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ABSTRACT

Hierarchical classification predicts labels across multiple levels of a taxonomy,
e.g., from coarse-level Bird to mid-level Hummingbird to fine-level Green hermit,
allowing flexible recognition under varying visual conditions. It is commonly
framed as multiple single-level tasks, but each level may rely on different visual
cues: Distinguishing Bird from Plant relies on global features like feathers or
leaves, while separating Anna’s hummingbird from Green hermit requires local
details such as head coloration. Prior methods improve accuracy using external
semantic supervision, but such statistical learning criteria fail to ensure consistent
visual grounding at test time, resulting in incorrect hierarchical classification. We
propose, for the first time, to enforce internal visual consistency by aligning fine-
to-coarse predictions through intra-image segmentation. Our method outperforms
zero-shot CLIP and state-of-the-art baselines on hierarchical classification bench-
marks, achieving both higher accuracy and more consistent predictions. It also
improves internal image segmentation without requiring pixel-level annotations.

1 INTRODUCTION

Hierarchical classification (Silla & Freitas, 2011; Chang et al., 2021; Jiang et al., 2024) predicts labels
along a semantic taxonomy (e.g., Bird — Hummingbird — Green hermit), rather than choosing from
a single flat label set (Fig. 1). This flexibility aligns well with real-world needs: a casual observer
may only recognize a general category like Bird, while a biologist might identify the exact species.
More importantly, when visual details are lacking such as a bird seen from afar, hierarchical models
can still offer informative predictions (Bird), whereas flat fine-grained classifiers may fail entirely.

Hierarchical classification is routinely framed as multiple single-level tasks, but each level may
depend on different visual cues: Distinguishing Bird from Plant relies on global features like feathers
or leaves, while separating Anna’s hummingbird from Green hermit requires local details such as
head coloration. Our work is the first to enforce visual consistency within an image to improve both
the accuracy of hierarchical classification and the consistency of predictions across levels (Fig. 1).
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Figure 1: We propose enforcing internal visual consistency to improve hierarchical classification
across taxonomy levels. Prior works rely on external semantic supervision, a statistical criterion
that fails to ensure consistent visual focus at test time. Our approach is the first to align predictions
through intra-image consistency, improving both accuracy and coherence. Our code is available at
https://github.com/pseulki/hcast.


https://github.com/pseulki/hcast
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Figure 2: Incorrect hierarchical classification often results from inconsistent visual grounding
across hierarchy levels. We show Grad-CAM visualizations (Selvaraju et al., 2017) of FGN (Chang
et al., 2021) trained on BREEDS (Entity-30) (Santurkar et al., 2021). a) A consistent case: both
classifiers focus on the same object, with the fine-grained classifier capturing details (bird leg), and
the coarse classifier attending to the whole bird. b) The coarse classifier localizes the chimpanzee but
the fine classifier fails to attend to its crucial details and makes a wrong prediction. ¢) The fine-grained
classifier correctly identifies the feather boa, while the coarse classifier wrongly attends to the bicycle.
d) Both classifiers attend to misaligned areas and make wrong predictions. These cases show that
semantic accuracy relies on consistent visual grounding. Our model aligns visual attention across
levels, capture different details within a coherent region, and predict all four cases correctly.

Existing works improve fine-grained accuracy by training with external, consistent semantic supervi-
sion across hierarchy levels (Chang et al., 2021; Chen et al., 2022; Wang et al., 2023a). However,
statistical alignment across levels during training does not guarantee visual consistency at test
time. Such inconsistencies worsen when multiple semantic concepts appear in an image, leading to
conflicting predictions that violate the hierarchical taxonomy.

Using Grad-CAM visualizations (Selvaraju et al., 2017) on FGN (Chang et al., 2021) trained on the
two-level BREEDS (Entity-30) dataset (Santurkar et al., 2021), we observe that incorrect predictions
result from coarse and fine-grained classifiers attending to entirely different regions (Fig. 2). In
Fig. 2c, the coarse classifier focuses on the bicycle and predicts Motor Vehicle, while the fine-grained
classifier attends to the headwear and predicts Feather Boa instead. In contrast, when both levels
focus on related regions, e.g., the whole bird and its leg in Fig. 2a, the predictions are consistent and
correctly aligned with the taxonomy. See a quantitative validation of this observation in Appendix A.

We propose enforcing internal visual parsing consistency to achieve semantic coherence and thus
more accurate hierarchical classification (Fig. 3). To recognize a Green hermit, the fine-grained
classifier attends to the beak, wings, and tail, while the coarse classifier attends to their collective
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Figure 3: Our method ensures internal visual consistency by aligning coarse and fine classifiers
on hierarchical segmentation, unlike prior approaches that rely only on external semantic losses
without visual grounding. Segmentation outputs show how fine details (e.g., , , tail) at the
32-way level are grouped into a unified bird region at the 8-way level. Identical color hues indicate
consistent groupings, encouraging the model to attend to coherent image regions.
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region to recognize the Bird. Our model progressively groups fine details into larger areas and shares
features across levels, addressing inconsistencies in prior methods that treat each level independently.

We develop H-CAST, a supervised hierarchical extension of CAST (Ke et al., 2024), which leverages
CAST’s coarse-to-fine segmentation for hierarchical classification (Fig. 1). We apply fine- and coarse-
grained classification losses at early and late stages, respectively, using Tree-path KL Divergence loss
to jointly optimize accuracy across all levels. H-CAST ensures visual consistency with its architecture
and propagates semantic errors across levels to produce aligned and accurate hierarchical predictions.

H-CAST outperforms state-of-the-art methods with 10% absolute improvement in Full-Path Accu-
racy (FPA) compared to ViT-based baselines on BREEDS, demonstrating superior consistency and
robustness. FPA, our proposed metric, measures the proportion of samples correctly classified at
all hierarchy levels. Even vision foundation models like CLIP (Radford et al., 2021) struggle with
maintaining hierarchical consistency. Our extensive experiments demonstrate that, H-CAST not
only significantly improves hierarchical classification, but also enhances internal image segmentation
without requiring pixel-level annotations.

Our contributions. 1) We introduce internal visual consistency, aligning fine and coarse classifica-
tion with consistent hierarchical segmentation to ensure classifiers across levels focus on coherent and
related regions. 2) We propose a Tree-Path KL Divergence Loss to enforce semantic consistency
across hierarchy levels. 3) Our method significantly outperforms ViT-based baselines, achieving
+3-10% FPA across all datasets, demonstrating superior consistency and robustness.

2 RELATED WORK

Hierarchical classification problem presents a unique challenge: the image remains the same,
but the output changes in the semantic (text) space (e.g. “Birds”— “Hummingbird”— “Anna’s
hummingbird”). Due to this structure, prior work has primarily focused on embedding data into
the semantic space, using additional loss functions (Bertinetto et al., 2020; Zeng et al., 2022) or
encoding entire taxonomies as lengthy text inputs, as in BIOCLIP (Stevens et al., 2024). In contrast,
we approach the problem from the visual space, exploring how hierarchical classification relates to
visual grounding by ensuring consistency across different levels of detail, from fine-grained features
to broader features. This visual-grounding perspective is novel and has not been explored in prior
work (see Fig. 1). Existing hierarchical classification methods can be divided into two approaches:

1. Single-level prediction: Single-level prediction can be further divided into two approaches.
First, fine-grained classification (bottom-up) targets fine-grained classes (leaf nodes), based on the
assumption that coarse categories can be inferred using a predefined taxonomy (Karthik et al., 2021;
Zhang et al., 2022; Wang et al., 2023b; Stevens et al., 2024). While effective for clear images, it
struggles with ambiguous test-time conditions when fine-grained classification is impossible (e.g.,
birds at high altitudes). Second, the local classifier (top-down) predicts a single label at the most
confident level by refining coarse-to-fine predictions (Deng et al., 2010; Wu et al., 2020; Brust &
Denzler, 2019). However, errors from coarse levels can propagate downward, limiting accuracy. We
address this by predicting across the entire taxonomy for greater robustness.

2. Full-taxonomy prediction: predicts all levels simultaneously using a shared backbone with
separate branches (Zhu & Bain, 2017; Wehrmann et al., 2018; Chang et al., 2021; Liu et al., 2022). A
key challenge is maintaining label consistency. While Wang et al. (2023a) adjusted predictions to
enforce consistency, separate branches process images independently, leading to misalignment. To
address this, we propose a model based on consistent visual grounding. To the best of our knowledge,
no prior work has utilized visual segments to resolve inconsistency in hierarchical classification.

Unsupevised/Weakly-supervised Semantic Segmentation aims to group pixels without pixel-level
annotations or using only class labels (Hwang et al., 2019; Ouali et al., 2020; Ke et al., 2022; 2024).
These works employ hierarchical grouping to achieve meaningful segmentation without pixel-level
labels. In this field, “hierarchical” refers to part-to-whole visual grouping, where smaller units
(e.g., a person’s face or arm) are grouped into larger regions (e.g., the whole body). Based on our
intuition that fine-grained classifiers need more detailed information, while coarse classifiers focus
on broader groupings, our approach leverages these varying types of visual grouping. To implement
this, we adopt the recently proposed CAST (Ke et al., 2024), whose graph pooling naturally supports
consistent visual grouping. Notably, our work introduces the novel insight that part-to-whole spatial
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granularity can align with taxonomy hierarchies (e.g., finer segments for fine-grained labels,
coarser segments for coarse labels), a connection not previously explored.

Detailed related work, including Hierarchical Semantic Segmentation is included in Appendix B.

3 CONSISTENT HIERARCHICAL CLASSIFICATION

We improve the consistency and accuracy of hierarchical classification via a progressive learning
scheme, where each level builds upon the previous one instead of training separate models per
level (Fig. 4). We address two key inconsistencies: visual inconsistency, where classifiers attend to
different regions (Fig.3), and semantic inconsistency, where predictions violate the taxonomy (e.g.,
Plant”-Hummingbird”). We propose H-CAST (Sec. 3.1) for visual consistency, and a novel Tree-path
KL Divergence loss that encodes parent-child relations to enforce semantic alignment (Sec. 3.2).
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Figure 4: Our method implements visually grounded hierarchical classification through visual
and semantic modules. The Visual Consistency module uses fine-to-coarse superpixel groupings to
ensure classifiers at different levels focus on corresponding regions while capturing different details.
The Semantic Consistency module encodes label hierarchies to align predictions across levels.
Together, they encourage cooperative learning across the hierarchy and improve overall performance.

3.1 H-CAST FOR VISUAL CONSISTENCY

The areas of focus within the image need to differ when conducting classification at the fine-grained
level compared to the coarse level. When distinguishing between similar-looking species (e.g., “Green
Hermit” vs. “Anna’s Hummingbird”), the fine-grained recognition requires attention to fine details
like the bird’s beak and wings; meanwhile, at the coarse level (e.g., “bird” vs. “plant”), the attention
shifts to larger parts such as the overall body of the bird. However, this shift in focus towards larger
objects does not imply a sudden disregard for the previously focused details and a search for new
larger objects. Rather, a natural approach involves combining detailed features such as the bird’s
beak, belly, and wings for accurate bird recognition. Therefore, we argue that the hierarchical model
should be grounded in consistent visual cues. From this insight, we design a model where the
details learned at the fine level (e.g., bird’s beak and wings) are transferred to the coarse level as
broader parts (e.g., bird’s body) through consistent feature grouping.

For internally consistent feature grouping, we build upon recent work CAST (Ke et al., 2024).
CAST develops a hierarchical segmentation from fine to coarse, an internal part of the recognition
process. However, their segmentation is driven by a flat recognition objective at the very end of
visual parsing. We extend it by imposing fine-to-coarse semantic classification losses at different
stages of segmentations throughout the visual parsing process. Our design reflects the intuition that
finer segments can be helpful in capturing fine-grained details (e.g., beaks and wings) required for
fine-grained recognition, whereas coarser segments can be effective in representing broader features
(e.g., the body of a bird) needed for coarse-grained recognition. We have a single hierarchical
recognition grounded on internally consistent segmentations, each driven by a classification objective
at a certain granuality. We refer to our method as Hierarchical-CAST (H-CAST).
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Consider a hierarchical recognition task where = denotes an image associated with hierarchical labels
Y1, -..YL, encompassing a total of L levels in the hierarchy. Level L is the finest level (i.e., leaf
node), and Level 1 is the coarsest level (i.e., root node). Then, given an image x, the hierarchical
image recognition task is to predict labels at all levels across the hierarchy.

Let Z; and .S; denote the feature and segment representations at the [-th level. We extract superpixels
from image = using SEEDS (Van den Bergh et al., 2012), which groups pixels by color and local
connectivity. These superpixels serve as ViT input in place of fixed patches and form the initial
(finest) segments Sy41. Each feature Z; consists of class tokens (Zfl“ss) and segment tokens
(Z;*?). Graph pooling (Ke et al., 2024) then merges similar segments, enabling features to capture
increasingly global context from Zj, to Z;. For hierarchical recognition, we add a classification
head (f;) consisting of a single linear layer at each level. Then, we define the hierarchical visual
consistency loss as the sum of L cross-entropy losses (L¢g), denoted as

L
Luv =Y Len(fi(Z{'*), u). (0
1=1
H-CAST applies hierarchical supervision across all levels, unlike CAST, which uses flat supervision
only on the final class token. This design allows labels at different levels to inform one another. In
Sec. 4.6, we show its effectiveness over alternatives, including reverse coarse-to-fine supervision.

3.2 TREE-PATH KL DIVERGENCE LOSS FOR SEMANTIC CONSISTENCY

To improve semantic consistency across hierarchy levels, we propose Tree-path KL Divergence loss
that imposes tree path relationships between labels. We first concatenate labels from all levels to
create a distribution, as ¥ = %[ly oi---3 1y, ], where 1,, represents the one-hot encoding for level [.
Next, we concatenate the outputs of each classification head and then apply the log softmax function
(LogSoftmax). We use Kullback—Leibler divergence loss (X L) to align this output with the ground
truth distribution Y. Then, TK loss is calculated as follows.

Lrr = K L(LogSoftmax ([fr(Z§1%%%); .. .; f1(Z19%)]),Y). )

This loss penalizes predictions that do not align with the taxonomy by simultaneously training on
multiple labels within the hierarchy. Therefore, despite the simplicity, TK loss enables the model
to enhance semantic consistency through this vertical encoding from the root (parent) node of
the hierarchy level to the leaf (children) node. Our final loss becomes as follows, where « is a
hyperparameter to control the weight of L1,

L=Lyy +alLrk. 3)
4 EXPERIMENTS

We first show that hierarchical classification remains challenging—even for vision foundation models,
which often yield inconsistent predictions. Our method outperforms existing approaches and flat
baselines on benchmark datasets. We further validate our design through ablations and demonstrate
that hierarchical supervision also benefits semantic segmentation.

4.1 EXPERIMENTAL SETTINGS

Datasets. We use widely used benchmarks in hierarchical recognition: BREEDS (Santurkar et al.,
2021), CUB-200-2011 (Welinder et al., 2010), FGVC-Aircraft (Maji et al., 2013), and iNat21-
Mini (Van Horn et al., 2021). BREEDS, a subset of ImageNet (Russakovsky et al., 2015), includes
four 2-level hierarchy datasets with different depths/parts based on the WordNet (Miller, 1995)
hierarchy: Living-17, Non-Living-26, Entity-13, Entity-30. For BREEDS, we conduct training and
validation using their source splits. BREEDS provide a wider class variety and larger sample size than
CUB-200-2011 and FGVC-Aircraft, making it better suited for evaluating generalization performance.
CUB-200-2011 comprises a 3-level hierarchy with order, family, and species; FGVC-Aircraft consists
of a 3-level hierarchy including maker, family, and model (e.g., Boeing - Boeing 707 - 707-320 );
For experiments on a larger dataset, we used the 3-level iNat21-Mini. Details of the iNat21-Mini are
provided in Sec. E.4. Table 4 in Appendix summarizes a description of the datasets.

Evaluation Metrics. We evaluate our models using metrics for both accuracy and consistency.
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* level-accuracy: the proportion of correctly classified instances at each level (Chang et al., 2021).

» weighted average precision (wAP) (Liu et al., 2022): wAP = ZlL:l %Ph where N; and P

denote the number of classes and Top-1 classification accuracy at level [, respectively. This metric
considers the classification difficulty across different hierarchies.

o Tree-based InConsistency Error rate (TICE) (Wang et al., 2023a): TICE = n;./N, where n;,.
denotes the number of samples with inconsistent prediction paths, and N refers to the number of
all test samples. This tests whether the prediction path exists in the tree (consistency).

o Full-Path Accuracy (FPA): FPA = n,./N, where n,, refers to the number of samples with all level
of labels correctly predicted. This metric evaluates both accuracy and consistency, ultimately
representing our primary metric of interest.

The difference between FPA and TICE is illustrated in Table 6 in Appendix.

Comparison methods. First, we evaluate our H-CAST with representative models in hierarchical
classification, FGN (Chang et al., 2021) and HRN (Chen et al., 2022). FGN uses level-specific heads
to avoid negative transfer across granularity levels, while HRN employs residual connections to
capture label relationships and a hierarchy-based probabilistic loss. We also compare TransHP (Wang
et al., 2023b), a ViT-based model that learns prompt tokens to represent coarse classes and injects
them into an intermediate block to enhance fine-grained predictions. Lastly, we compare Hier-ViT, a
variant without visual segments and TK loss. Like our approach, Hier-ViT trains each hierarchy level
using the class token from the last 6,9, 12 blocks. To establish a ceiling baseline, we compare with
flat models trained at a single hierarchy level. Flat-ViT classifies one level using the ViT class token,
while Flat-CAST trains independent models for each level using the CAST architecture (Ke et al.,
2024). We also compare with Hierarchical Ensembles, HiE (Jain et al., 2023), which improves
fine-grained predictions via post-hoc correction using a coarse model. Note that flat models require
separate models for each hierarchy level, leading to increased storage and training costs. For baseline
methods, we use the official codebases and their reported optimal settings. All models are trained for
100 epochs, except TransHP, which is trained for 300 epochs as in the original paper. Details on the
architecture and hyperparameter settings for H-CAST can be found in Appendix D.

4.2 HIERARCHICAL CLASSIFICATION WITH VISION FOUNDATION MODELS

First, to demonstrate that longstanding hierarchical classification is not easily solved by today’s vision
foundation models, we evaluate CLIP (Radford et al., 2021)’s performance on the 2-level BREEDS
dataset. The top row of Fig. 5 shows prediction rates on the test set, while the bottom row presents
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Figure 5: Vision foundation models struggle with consistent predictions in hierarchical classifi-
cation. We evaluate CLIP (Radford et al., 2021) on the 2-level BREEDS dataset (top) and present
misclassification examples from Entity-13 (bottom). a) CLIP struggles to maintain consistency and
correctness, achieving only about 50% accuracy on Entity-13. b) CLIP more frequently predicts the
coarse category correctly while misclassifying the fine-grained category compared to H-CAST across
all datasets. ¢) CLIP often predicts the fine-grained category correctly but fails at the coarse level, a
mistake that is rare in H-CAST, suggesting difficulty in grasping broader conceptual understanding.
H-CAST accurately predicts cases a-c. d) Both CLIP and H-CAST fail in complex scenes.
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examples from the Entity-13 dataset. Even considering the zero-shot prediction, Fig. 5 (a) shows that
the overall ratio of correct predictions for both coarse and fine-grained classifications is significantly
low, with only around 50% accuracy on the Entity-13 dataset. Fig. 5 (c) further highlights significant
errors in coarse predictions when addressing broader concepts. Our findings support the recent study
from Xu et al. (2024) that VLMs excel at fine-grained prediction but struggle with general concepts.
This highlights the ongoing challenges of hierarchical classification, even with vision foundation
models. Furthermore, when we examine the misclassification examples in bottom row of Fig. 5,
we can see that CLIP focuses on different object areas for coarse and fine-grained predictions. For
example, in (b), CLIP predicts “Equipment” in the coarse prediction but predicts “Miniskirt” in the
fine-grained prediction instead of “Monitor” (a child of Equipment). However, our model, based on
consistent visual segments, can make correct predictions in all cases.

4.3 CONSISTENT HIERARCHICAL CLASSIFICATION ON BENCHMARKS

Table 1 shows benchmarks on BREEDS. H-CAST outperforms both hierarchical (FGN, HRN,
TransHP, Hier-ViT) and flat (ViT, CAST, HiE) baselines. It exceeds ViT-based models like Hier-ViT
and TransHP by over 11 points, highlighting the effectiveness of our visual grounding and Tree-Path
Loss beyond simply adding hierarchy supervision. While TransHP uses coarse labels as prompts to
aid fine-grained prediction, it does not jointly optimize both levels, resulting in lower consistency.
H-CAST also improves FPA by 4.3-6.4 points over HRN, despite having far fewer parameters.

Table 1: H-CAST achieves both high consistency and accuracy, outperforming both hierarchical
and flat baselines on BREEDS. It achieves a 4.3-6.4 percentage point gain in FPA metric over HRN
with significantly fewer parameters. Additionally, H-CAST surpasses Hier-ViT and TransHP by over
11 percentage points, demonstrating that its success is due to our consistent visual grounding and
Tree-path Loss, rather than adding hierarchy supervision to a ViT backbone. (Higher the metric is the
best, except TICE.) ‘ViT-S’ refers to ViT-Small, while ‘RN-50" denotes ResNet-50.

| Configuration | Living-17 (17-34) | Non-Living-26 (26-52)
| backbone  #params | FPA  coarse  fine ~wAP TICE | FPA coarse fine ~ wAP TICE
Flat-ViT ViT-S 65.0M 66.24 7571 72.06 7328 17.11 | 5746 67.50 65.73 57.46 23.27
& | Flat-ViT + HiE ViT-S 65.0M 67.59 7571 7135 7281 9.88 | 59.73 67.50 6531 66.04 13.69
= | Flat-CAST ViT-S 78.5M 78.82 88.06 82.88 84.61 882 | 76.17 84.77 81.08 8231 11.77
Flat-CAST + HiE ViT-S 78.5M 81.59 88.06 83.24 8485 518 | 79.23 8477 8139 8251 6.19
FGN RN-50 24.8M 63.82 7259 68.00 69.53 12.12 | 60.81 6946 6577 67.00 16.46
2 | HRN RN-50 70.8M 79.18 87.53 8147 8349 629 | 7631 8238 80.15 80.90 9.54
E Hier-ViT ViT-S 21.7M 74.06 8094 7488 7690 10.50 | 72.04 7331 6839 70.03 1245
& | TransHP ViT-S 21.7M 7435 83.00 76.65 78.76 835 | 68.62 77.31 7231 7397 13.04
T | Ours (H-CAST) ViT-S 26.2M 85.12 90.82 8524 87.10 3.19 | 82.67 87.89 8315 8473 5.26
‘ Our Gains over SOTA ‘ +594  +3.29 +3.77 +3.61 +3.10 ‘ +6.36  +5.51 +3.00 +3.83 +4.28
\ Configuration \ Entity-13 (13-130) \ Entity-30 (30-120)
\ backbone  #params | FPA  coarse fine ~wAP TICE | FPA coarse fine ~wAP TICE
Flat-ViT ViT-S 65.0M 6422 76.28 76.06 76.08 21.33 | 6693 7628 7435 7477 18.75
& | Flat-ViT + HiE ViT-S 65.0M 6520 7647 7491 75.05 15.68 | 68.77 76.47 7392 7443 11.08
= | Flat-CAST ViT-S 78.5M 78.63 87.80 83.72 84.09 10.65 | 82.67 87.89 83.15 8473 526
Flat-CAST + HiE ViT-S 78.5M 79.52 87.80 83.40 83.80 6.83 | 83.70 87.89 8430 85.02 420
FGN RN-50 24.8M 7423 8535 78.00 78.67 9.43 | 6852 7747 73.18 7404 13.62
2 | HRN RN-50 70.8M 8143 90.00 8448 8498 634 | 79.85 86.57 8335 8399 838
L‘é Hier-ViT ViT-S 21.7M 74.63 8695 7539 77.70 5.19 | 73.01 8138 74.10 7476 11.61
& | TransHP ViT-S 21.7M 73.45 8628 7623 77.14 8.80 | 72.00 80.78 75.63 76.66 12.20
T | Ours (H-CAST) VIiT-S 26.2M 85.68 9342 86.15 87.60 1.69 | 84.83 90.23 8545 8588 2.57
‘ Our Gains over SOTA ‘ +4.25 4342 +1.67 +2.62 +4.65 ‘ +4.98 +3.66 +2.10 +1.89 +5.81

Note that flat models train separate networks per level, incurring higher memory and training costs. H-
CAST outperforms them, demonstrating its efficiency and effectiveness for hierarchical classification.
Similar results are observed on Aircraft and CUB (Appendix E.5), with additional evaluation on the
larger iNaturalist 2021-Mini dataset in Appendix E.4.

4.4  VISUALIZATIONS OF STRUCTURED VISUAL PARSING

Well-structured visual parsing is crucial for accurate hierarchical classification. H-CAST
improves hierarchical classification by ensuring structured visual parsing, where fine details pro-
gressively merge into meaningful objects at coarser levels. Fig. 6 visualizes this process on the
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Figure 6: Well-structured visual parsing enables accurate hierarchical classification, while frag-
mented segmentation correlates with misclassification. We compare fine-to-coarse segmentation
for fully correct (a) and incorrect (b) predictions on the Entity-30 dataset to show how visual parsing
quality affects classification. For correct predictions (a), fine details merge into coherent objects at
coarser levels, preserving structure. For example, in the correctly predicted s/.0¢ image, the s/0¢ and
ankle form a unified segment, maintaining object integrity. In contrast, for incorrect predictions (b),
segmentation is fragmented and inconsistent. The misclassified image shows

blending with the background, making it difficult to recognize the overall shape. Likewise, the beer
glass lose key features due to unstable grouping. These results highlight that accurate hierarchical
classification relies on structured visual parsing.

BREEDS Entity-30 dataset. In full-path correct predictions (Fig. 6, Left), fine-level details are
effectively grouped into coherent objects. For example, in a correctly predicted shoe image, the shoe
and ankle merge into a single segment, maintaining object integrity. Similarly, in the dog example,
fine details in the earlier segments merge into a unified face, eyes, and nose at the coarse level,
demonstrating structured feature grouping. Conversely, in full-path incorrect predictions (Fig. 6,
Right), segmentation is fragmented and inconsistent. The misclassified shoe image shows scattered
segments blending with the background, while even a simple-shaped object like a beer glass is broken
into disconnected parts, losing its structural coherence. This highlights that structured visual parsing
is key to accurate classification, while fragmented segmentation leads to errors.

4.5 EFFECT OF VISUAL GROUNDING ON HIERARCHICAL CLASSIFICATION

H-CAST Ensures Consistent and Class-Relevant Feature Learning. We compare nearest neigh-
bors of class token features at fine and coarse levels for queries correctly classified at both levels on
Entity-30 (Fig. 7). If a model truly learns discriminative class features, its nearest neighbors should
remain consistent across levels. However, Hier-ViT often retrieves visually similar but semantically
incorrect images, while H-CAST consistently selects class-relevant neighbors at both levels. For
example, Hier-ViT retrieves a person in a black uniform as the closest fine-level neighbor for an
Italian Greyhound, likely due to clothing color similarity (top left). Similarly, for a curly-haired
Bedlington Terrier, it selects a fur coat (bottom left), suggesting it relies on superficial textures rather
than class-specific features. In contrast, H-CAST consistently retrieves the correct class, selecting a
visually similar Iralian Greyhound and Bedlington Terrier at both levels, ensuring more stable and
meaningful feature learning. These results show that Hier-ViT lacks visual consistency across levels,
while H-CAST maintains class-relevant and hierarchically aligned retrievals.

4.6 ABLATION ANALYSIS OF ARCHITECTURE DESIGN AND L0OSS FUNCTION IN H-CAST

Fine-to-Coarse vs. Coarse-to-Fine learning. Our model adopts a Fine-to-Coarse (F—C) learning
strategy, first learning fine labels in the lower block and progressively integrating coarser labels.
This contrasts with prior methods, which typically learn coarse features first (Zhu & Bain, 2017;
Yan et al., 2015; Wang et al., 2023b). To evaluate its effectiveness, we compare F—C with two
baselines: Coarse-to-Fine (C—F), which follows a conventional hierarchy by learning coarse labels
first, and Fine-Coarse Merging (C+F), which combines fine and coarse features across blocks. For
fairness, we exclude Tree-path KL Divergence loss in these comparisons. Table 2a (FGVC-Aircraft)
shows that C—F yields the lowest fine-grained accuracy, while C+F slightly improves accuracy but
adds significant parameter overhead. In contrast, F—C balances simplicity and strong performance,
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Hier-ViT H-CAST
Fine Coarse

Figure 7: Consistent visual grounding enhances feature learning in hierarchical classification.
We compare nearest neighbors of class token features at fine and coarse levels for queries correctly
classified by H-CAST at both levels (Entity-30). Rows 1,2) Hier-ViT retrieves a person in a black
uniform or black hair at the fine level. This raises doubts about whether the model truly learned the
dog’s features. Row 3) The query bird has gray wings with a yellow body. H-CAST retrieves a gray-
winged bird at the fine level and a yellow-bodied bird at the coarse level, capturing fine-level detail
and coarse-level semantics. Hier-ViT lacks this distinction. Row 4) The query shows two llamas on a
green field. Hier-ViT retrieves two oxen in a similar setting, resulting in fine-level misclassification.
H-CAST retrieves true llama images: one showing both white and brown llamas at the fine level, and
a typical llama at the coarse level. This shows that H-CAST attends to class-relevant features while
maintaining hierarchical consistency. Green image borders indicate same-class retrievals; red image
borders indicate mismatches.

making it an effective choice for hierarchical classification. Additionally, attention visualizations
(Appendix E.2) reveal that lower blocks focus on fine details, while upper blocks capture broader
structures, demonstrating that our design effectively guides attention across hierarchy levels.

Ablation Studies on the Proposed Losses. We conduct two ablation studies to evaluate our loss
functions. First, we assess the individual contributions of Hierarchical Spatial-consistency loss Lz g

Table 2: Ablation studies of learning design and loss functions on Aircraft data.

Direction|C»F C+F F—C Lossabl.| Lyx Lpys Both  Consis.| Flat. BCE KL Div.

FPA 82.01 81.76 82.66 FPA 82.48 82.66 83.72 FPA 82.87 82.18 83.72
maker 93.16 93.52 94.27 maker |94.30 94.27 94.96 maker |[94.63 94.21 94.96
family 89.92 90.31 90.19 family |90.37 90.19 91.39 family |90.94 90.13 91.39
model 84.10 84.58 84.40 model |84.04 84.40 85.33 model |84.97 84.88 85.33
wAP 87.50 87.93 87.91 wAP 87.80 8791 88.90 wAP |88.51 88.11 88.90

(a) ‘Coarse—Fine’ design (b) Utilizing both losses yields (c) KL Divergence loss outper-
achieves best performance. best performance. forms alternative losses.
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CAST H-CAST CAST H-CAST

Living-17

Entity-30

Region accuracy on BREEDS with ground truth segmentation
regionmlOU | Living-17  Non-Living-26 ~ Entity-30  Entity-13

CAST 3152 21.86 23.30 14.41
H-CAST 32.83 22.12 22.08 16.19

Entity-13

Figure 8: H-CAST improves segmentation by leveraging hierarchical taxonomy. We visualize
segmentation results on BREEDS dataset and measure the region mIOU of fine-level objects for
samples with segmentation ground truth (GT) from ImageNet-S (Gao et al., 2022). In the visualized
images, we can observe that H-CAST better captures the overall shape in a more coherent manner
compared to CAST. In quantitative evaluation, H-CAST outperforms CAST in most datasets despite
using coarse-level supervision for the last-level segments whereas CAST employs fine-level supervi-
sion. It is surprising to find that the taxonomy hierarchy can help part-to-whole segmentation.

and Tree-path KL Divergence loss L1 on Aircraft. Table 2b shows that both losses significantly
enhance performance, with their combination achieving the best accuracy and consistency. Next, we
examine the effect of different loss functions by replacing KL Divergence loss with Binary Cross
Entropy (BCE) and Flat Consistency loss. BCE directly substitutes the KL divergence component,
while Flat Consistency loss, inspired by a bottom-up approach, infers coarse labels from fine predic-
tions using BCE. As shown in Table 2c, KL Divergence loss achieves the highest FPA, demonstrating
superior accuracy and consistency. Additional results on Living-17 are in Appendix E.3.

4.7 ADDITIONAL BENEFITS OF HIERARCHICAL CLASSIFICATION FOR SEGMENTATION

Hierarchical semantic recognition enhances segmentation. Although our primary focus is hier-
archical recognition, we investigate whether incorporating hierarchical label information can also
improve segmentation. Fig. 8 provide a qualitative and quantitative comparison between H-CAST
and CAST. H-CAST, which uses varying granularity supervision for segments, outperforms CAST,
which employs fine-grained level supervision, on most datasets such as Living-17, Non-Living-26,
and Entity-13. The visualized results show that H-CAST better captures the overall shape in a more
coherent manner compared to CAST. These findings demonstrate that utilizing hierarchical taxonomy
benefits not only recognition but also segmentation. Details of the evaluation method and more
visualization comparison with CAST are included in the Appendix E.7 and Fig. 11.

5 SUMMARY

We tackle inconsistent predictions in hierarchical classification by introducing consistent visual
grounding, leveraging varying granularity segments to align coarse and fine-grained classifiers.
Unlike existing methods that soly rely on external semantic constraints, our approach leverages
varying granularity segments to guide hierarchical classifiers, ensuring they focus on coherent and
relevant regions across all levels. This leads to significant improvements across benchmarks, setting a
new standard for robust hierarchical classification.
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Appendix

A QUANTITATIVE EVIDENCE FOR CONSISTENT VISUAL GROUNDING

To quantitatively validate our observation that inconsistent predictions often occur when coarse and
fine-grained classifiers focus on different regions in Figure 3, we analyze the Grad-CAM (Selvaraju
et al., 2017) heatmaps of these classifiers. Specifically, we compute two metrics: the overlap score
and the correlation score.

The overlap score quantifies the degree to which the regions activated by the two classifiers coincide.
For each heatmap, we define a significant region as the set of pixels where activation values exceed a
threshold. Specifically, the overlap count (O) measures the number of overlapping pixels between
heatmaps A and B, where both values exceed a threshold (7 = 0.001). It is defined as:

O =" [Ma(i,§) A Mp(i, j)], “
0,J
where M4 (i, j) and Mp(i, j) are binary masks indicating significant regions in A and B, respectively.
These masks are defined as:

Ma(i, j) = Mp(i,j) =

{1 it A(i,§) > T, .

1 if B(4,5) > T,
0 otherwise,

0 otherwise.

The correlation score measures the linear relationship between the activation values of the over-
lapping regions in the two heatmaps. Let A; and By the values in the overlapping regions, then
correlation score is computed as:

_ > pe1(Ax — ppa)(Br — i)
Vo (A = pa)® o (Bi — pp)?

where n is the number of overlapping pixels, 14 is the mean of { Ay}, and up is the mean of { By }.

R

(6)

Higher overlap and correlation scores indicate stronger agreement between the regions attended to by
the two classifiers. Conversely, lower scores highlight a lack of alignment in their focus.

Interestingly, empirical results from the FGN model (Chang et al., 2021) on the Entity-30 dataset
show that when both classifiers make correct predictions, the overlap and correlation scores are
significantly higher. In contrast, incorrect predictions correspond to notably lower scores, as shown
in Table 3. These findings support our hypothesis that aligning the focus of coarse- and fine-grained
classifiers enhances both prediction accuracy and consistency.

Table 3: Overlap and correlation scores between coarse and fine-grained Grad-CAM heatmaps.
This shows that correct predictions correspond to higher overlap and correlation between coarse and
fine-grained classifiers, highlighting the importance of aligning classifier focus for accuracy and
consistency.

Overlap | Fine-grained Correlation | Fine-grained

| True | False | True | False
Coars \True \ 0.51+ 0.20 \0.25 +0.13 \True \0.70 + 0.26/-0.02 £ 0.40
oarse Coarse
\False\0.36 + 0.18\0.37 +0.19 \False\0.30 + 0.42\ 0.35 £ 0.41
(a) Overlap Scores (b) Correlation Scores
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B ADDITIONAL RELATED WORK

Hierarchical classification can be divided into single-level prediction and full-taxonomy predic-
tion based on the output structure. Single-level prediction is further categorized into fine-grained
classification and local classifier approaches.

1) Single-level prediction:

1-1) The fine-grained classification (bottom-up) approach focuses on predicting fine-grained
classes (e.g., leaf nodes) by leveraging taxonomy (Deng et al., 2014; Zhang et al., 2022; Zeng et al.,
2022). It is often referred to as a bottom-up method because higher-level coarse classes can be
inferred from the predicted fine-grained classes. Various methods have been proposed to effectively
use hierarchical information. For example, hierarchical cross-entropy (HXE) loss (Bertinetto et al.,
2020) reweights cross-entropy terms along the hierarchy tree based on class depth. Inspired by
transformer prompting techniques, TransHP (Wang et al., 2023b) introduced coarse-class prompt
tokens to improve fine-grained classification accuracy. Recently, BIOCLIP (Stevens et al., 2024),
trained on large-scale Tree of Life data, achieved superior few-shot and zero-shot performance using
a CLIP (Radford et al., 2021) contrastive objective on text combining fine-grained and higher-level
classes. One of the actively studied topics is minimizing “mistake severity” (e.g., the tree distance
between incorrect predictions and the ground truth) (Bertinetto et al., 2020; Karthik et al., 2021; Garg
et al., 2022).

However, while effective on clear and detailed images, this approach struggles in real-world scenarios
where fine-grained predictions are challenging (e.g., birds flying at high altitude), leading to incorrect
predictions at higher levels. To address this, we propose a model that predicts across the entire
taxonomy, which we believe provides greater robustness in practical applications.

1-2) The local classifier (top-down) approach leverages local information, such as higher-level
class predictions, to make predictions at the next level. This design allows predictions at arbitrary
nodes by stopping the inference process when a certain decision threshold is met, leading to more
reliable predictions at higher levels (Deng et al., 2010; Wu et al., 2020; Brust & Denzler, 2019). As
a result, these methods emphasize metrics such as the correctness-specificity trade-off (Valmadre,
2022). While a single model is commonly used, HiE (Jain et al., 2023) adjusts fine-level predictions
post-hoc using coarse predictions from independently trained classifiers. However, a disadvantage of
this top-down approach is the propagation of errors from higher-level predictions to lower levels.

2) The full-taxonomy prediction (global classifier) approach aims to predict the entire taxonomy
at once, unlike prior approaches. Most popular and effective methods uses a shared backbone with
separate branches for each level (Zhu & Bain, 2017; Wehrmann et al., 2018; Chang et al., 2021; Liu
et al., 2022; Chen et al., 2022; Jiang et al., 2024; Zhang et al., 2024). The key difference lies in how
the hierarchical relationships are modeled. For instance, in FGN (Chang et al., 2021), finer features
are concatenated to predict coarse labels, whereas in HRN (Chen et al., 2022), coarse features are
added to finer features through residual connections. A critical issue in this approach is maintaining
consistency with the taxonomy in the predicted labels. To address this, Wang et al. (2023a) proposed
a consistency-aware method by adjusting prediction scores through coarse-to-fine deduction and
fine-to-coarse induction. However, we observed that using separate branches can lead to inconsistency,
as each branch processes the image independently. To address this, we propose a model based on
consistent visual grounding. To the best of our knowledge, no prior work has utilized visual segments
to resolve inconsistency in hierarchical classification.

Hierarchical Semantic Segmentation aims to group and classify each pixel according to a class
hierarchy (Li et al., 2022; Singh et al., 2022; Li et al., 2023; He et al., 2023; Wang et al., 2024; Qi
et al., 2024), with pixel grouping varying based on the taxonomy used. However, these works require
pixel-level annotations, which are not available in hierarchical classification. In addition, while these
method focus on precise pixel-level grouping, our work leverage unsupervised segments of varying
granularities within the image for hierarchical clasification.

Unsupevised/Weakly-supervised Semantic Segmentation aims to group pixels without pixel-level
annotations or using only class labels (Hwang et al., 2019; Ouali et al., 2020; Ke et al., 2022; 2024).
These works employ hierarchical grouping to achieve meaningful segmentation without pixel-level
labels. Here, “hierarchical” refers to part-to-whole visual grouping, where smaller units (e.g., a
person’s face or arm) are grouped into larger regions (e.g., the whole body). Based on our intuition
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that fine-grained classifiers need more detailed information, while coarse classifiers focus on broader
groupings, our approach leverages these varying types of visual grouping. To implement this, we
adopt the recently proposed CAST (Ke et al., 2024), whose graph pooling naturally supports consistent
visual grouping. Notably, our work introduces the novel insight that part-to-whole segmentation can
align with taxonomy hierarchies (e.g., finer segments for fine-grained labels, coarser segments for
coarse labels), a connection not previously explored.

C BENCHMARK DATSET
Table 4: Benchmark Datasets.

Datasets L-17 NL-26 E-13 E-30 CUB Aircraft iNat21-Mini

# Levels 2 2 2 2 3 3 3

# of classes 17-34  26-52  13-130 30-120 13-38-200 30-70-100 273-1,103-10,000
# Train images 44.2K 65.7K 167K 154K 5,994 6,667 500K

# Test images 17K 2.6K 6.5K 6K 5,794 3,333 100K

D HYPERPARAMETERS FOR TRAINING.

For a fair comparison, we use ViT-Small and CAST-Small models of corresponding sizes. As in
CAST, we train both ViT and CAST using DeiT framework (Touvron et al., 2021), and segmentation
granularity is set to 64, 32, 16, 8 after 3, 3, 3, 2 encoder blocks, respectively. Our training progresses
from fine to coarse levels, with each segment corresponding accordingly. The initial number of
superpixels is set to 196, and all data is trained with a batch size of 256. Following the literature (Chen
et al., 2022), we use ImageNet pre-trained models for the Aircraft, CUB, and iNat datasets. For the
ImageNet subset BREEDS dataset, we train the models from scratch. We show hyper-parameter
settings in Table 5.

Table 5: Hyper-parameters for training H-CAST and ViT on FGVC-Aircraft, CUB-200-2011,
BREEDS, and iNaturalist datasets. We follow mostly the same set up as CAST (Ke et al., 2024).

Parameter \ Aircraft CUB, BREEDS, iNaturalist
batch_size 256 256
crop_size 224 224
learning_rate le™3 5e4
weight_decay 0.05 0.05
momentum 0.9 0.9
total_epochs 100 100
warmup-epochs 5 5
warmup_learning_rate le~* le™®
optimizer Adam Adam
learning_rate_policy Cosine decay Cosine decay
augmentation (Cubuk et al., 2020) RandAug(9, 0.5) RandAug(9, 0.5)
label_smoothing (Szegedy et al., 2016) 0.1 0.1
mixup (Zhang et al., 2017) 0.8 0.8
cutmix (Yun et al., 2019) 1.0 1.0

a (weight for TK loss) 0.5 0.5
VIiT-S: # Tokens [196]x11

CAST-S: # Tokens [196] x3, [64] x3, [32] x3, [16] x2
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E ADDITIONAL EXPERIMENTS

E.1 COMPARISON BETWEEN FPA AND TICE.

FPA evaluates both accuracy and consistency, while TICE focuses solely on consistency. Achieving
high FPA is the primary goal in hierarchical classification. The distinction between FPA and TICE is
shown in Table 6.

Table 6: FPA considers both correctness and consistency. While TICE (Wang et al., 2023a)
measures only consistency, FPA marks predictions as positive only when they are both correct and

consistent.

s OB EN 80 £0 AN
o o (] (o]

TCE | v | v | x | x | x | x | v | V

FPA | v | x | x | x | x | x | x | X

E.2 VISUALIZATION OF ATTENTION MAP

To validate our claim that the model guides classifiers toward consistent visual grounding, we visualize
attention maps from H-CAST in Figure 9. The visualizations demonstrate that as we progress from
lower to upper blocks, the model increasingly attends to similar regions. In the lower blocks, attention
is more detailed and localized, while in the upper blocks, attention expands to cover broader regions,
including those highlighted by the lower blocks. These patterns align with our intended design for
visual grounding in hierarchical classification.

Image

Figure 9: Visualizations of Attention maps from H-CAST. We align the attention weights with
superpixels and average them across all heads. Darker red areas represent regions with higher attention
weights. At the lower level (level 2), the attention is more focused on specific regions, such as the
snake’s head and parts of its body, emphasizing these as critical features for fine-grained classification
(e.g., “Hypsiglena torquata”). In contrast, at the upper level (level 4), the attention expands to
encompass the entire body of the snake, suggesting a shift towards a more holistic understanding
of the object for coarse label (e.g., “snake”). This progression from localized to broader attention
illustrates how H-CAST hierarchically integrates information across layers, supporting consistent
visual grounding for hierarchical classification.
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E.3 ADDITIONAL EXPERIMENTS FOR LOSS ABLATION

Similar to the results on the Aircraft dataset, the Living-17 dataset also shows consistent performance
trends, with our proposed loss achieving strong results (Table 7, Table 8). Interestingly, for TICE,
which measures only semantic consistency, the TK loss alone (Table 7) and the BCE or Flat Con-
sistency loss achieved better performance (Table 8). However, when considering both accuracy and
consistency (i.e., FPA), our proposed loss delivered the best overall performance.

Table 7: Utilizing both losses yields best Table 8: KL Div. loss shows best perfor-
performance on Living-17. mance on Living-17.

Luys Ltk | FPA Coarse Fine wAP TICE Sem. Consis. | FPA Coarse Fine wAP TICE
X v |84.00 90.71 84.30 86.43 1.71 Flat Cons. 82.82 88.88 83.53 85.31 2.51
v X 8421 90.24 84.59 86.78 2.59 BCE 83.65 89.76 84.00 85.92 1.76
v v 8512 90.82 8524 87.10 3.19 KL Div. 85.12 90.82 85.24 87.10 3.19

E.4 EVALUATION ON THE LARGE-SCALE INATURALIST DATASETS.

We present the results of our experiments on the large-scale dataset, iNaturalist21-mini (Van Horn
etal., 2021) and iNaturalist-2018 (Horn et al., 2018). First, iNaturalist21-mini contains 10,000 classes,
500,000 training samples, and 100,000 test samples, organized within an 8-level hierarchy. For our
experiments, we focused on a 3-level hierarchy consisting of name, family, and order. This selection
was motivated by the need for models with practical and meaningful granularity for real-world
applications.

The number of classes at each hierarchical level is as follows: Kingdom (3), Supercategory (11),
Phylum (13), Class (51), Order (273), Family (1,103), Genus (4,884), Name (10,000)

We excluded coarse-grained levels such as kingdom (3 classes), Supercategory (11 classes), because
their minimal granularity adds little value for classification tasks. Similarly, overly fine-grained
levels such as genus (4,884 classes), where many species are represented by only one or two samples,
offer limited differentiation from direct name-level classification. Instead, we focused on order
(273 classes), family (1,103 classes), and name (10,000 classes) to ensure that each higher-level
class represents a meaningful subset of lower-level classes, allowing for interpretable and consistent
predictions.

The results are shown in Table 9. Compared to ViT baselines that use the same ViT-small back-
bone, our method achieves a 5.98% improvement over TransHP (Wang et al., 2023b) and a 9.27%
improvement over Hier-ViT in the FPA metric, demonstrating a significant performance advantage.

Table 9: Our H-CAST outperforms ViT-backbone baselines, Hier-ViT and TransHP, on the large-
scale iNaturalist2021-Mini dataset, achieving significantly higher accuracy and consistency.

\ iNaturalist2021-Mini (273 - 1,103 - 10,000)
\ FPA(T) order(1) family(1) name(f) wAP(1) TICE()

Hier-ViT 55.65 87.25 77.81 62.71 64.76 26.21
TransHP 58.94 83.49 82.15 68.82 70.46 24.63
Ours (H-CAST) 64.92 89.72 84.00 70.00 71.83 16.00
Our Gains | +5.98 +2.47 +1.18 +1.27 +1.37 +8.63
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We further compare our method with single-level approaches that utilize hierarchical labels to enhance
fine-grained accuracy (e.g., Guided (Garnot & Landrieu, 2020), HiIMulConE (Zhang et al., 2022),
and TransHP (Wang et al., 2023b)). The comparison is conducted on the large-scale iNaturalist-
2018 dataset, following TransHP. iNaturalist-2018 includes two-level hierarchical annotations with
14 super-categories and 8,142 species, comprising 437,513 training images and 24,426 validation
images. We use the same H-CAST-small and the model is trained for 100 epochs, using the same
hyper-parameters in Table 5. As shown in Table 10, our method achieves strong fine-grained accuracy,
demonstrating the effectiveness of consistent visual grounding.

Table 10: H-CAST outperforms methods leveraging hierarchical labels for fine-grained accuracy
on the large-scale iNaturalist-2018 dataset, demonstrating the effectiveness of visual consistency.
The results are reported from TransHP (Wang et al., 2023b).

iNaturalist-2018 (Acc.)

Guided 63.11
HiMulConE 63.46
TransHP 64.21
H-CAST 67.13

E.5 EVALUATION ON CUB-200-2011 AND FGVC-AIRCRAFT DATASETS.

Table 11 and 12 presents results on CUB and Aircraft datasets. In our experimental results, we
first observe a significant performance drop of Hier-ViT compared to Flat-ViT. This highlights a
common challenge in hierarchical recognition, where training coarse and fine-grained classifiers
simultaneously results in performance degradation, as observed in previous ResNet-based hierarchical
recognition models (Chang et al., 2021). Our experiments reveal that this problem also exists in ViT
architectures. This indicates that hierarchical recognition is a challenging problem that cannot be
solely addressed by providing hierarchy supervision to class tokens. On the other hand, our method
consistently outperforms most Flat models.

Compared to ViT-backbone models, Hier-ViT and TransHP, our approach achieves significantly
better performance. Specifically, using the FPA metric, which captures both accuracy and consistency
across all levels, our model outperforms TransHP by +8.2%p on the Aircraft dataset and +2.6%p on
the CUB dataset.

We also evaluate BIOCLIP (Stevens et al., 2024), a foundation model for biology, on the CUB dataset,
as it focuses on bird categories. BIOCLIP operates as a flat-based hierarchical model, concatenating
the entire taxonomy into a single text representation. As a result, all higher-level classes are directly
determined by the fine-grained species predictions, resulting in a TICE (Taxonomy-Inconsistency
Error) of 0. While BIOCLIP achieves strong performance, its reliance on fine-grained predictions to
define coarse classes introduces limitations in accurately predicting higher-level classes.

As Vision Transformer backbone models, when the training dataset is small, such as Aircraft and CUB
with around 6K images, HRN, ResNet-based models, demonstrates better performance. However,
HRN’s method is highly sensitive to batch size, with a significant drop in performance observed
when increasing the batch size from 8 to 64. This sensitivity makes it less suitable for training on
large-scale datasets.

20



Published as a conference paper at ICLR 2025

Table 11: Ours consistently shows the best performance on CUB-200-2011. H-CAST outperforms
ViT-backbone models, Hier-ViT and TransHP, by over 6.3 and 2.6 percentage points, respectively.
Additionally, it achieves a 3.2 percentage point gain in the FPA metric over the ResNet-based HRN
while using significantly fewer parameters. (A higher metric indicates better performance, except for
TICE.) Flat models require training three separate models.

| Configuration | CUB-200-2011 (13 - 38 - 200)
| backbone #params input batchsize] FPA  order family species wAP TICE
& |Flat-ViT ViT-S 65.1M 2242 256 82.30 98.50 94.84 84.78 87.01 5.76
M~ |Flat-CAST ViT-S 78.5M 2242 256 81.50 98.38 94.82 83.78 86.21 6.14
FGN RN-50 24.8M 2242 128 76.08 97.05 9144 79.29 82.05 7.73
%‘ HRN RN-50 94.5M 4482 64 80.07 98.17 93.75 83.14 8552 6.51
E HRN RN-50 94.5M 4482 8 84.15 98.58 9539 86.13 88.18 4.62
'% ‘BIOCLIP (zeroshot) ViT-B 149.6M - - ‘ 78.18 78.18 78.18 78.18 78.18 0.0
Hier-ViT ViT-S 21.7M 2242 256 77.03 9840 9294 7943 8246 872
TransHP ViT-S 21.7M 2242 128 80.70 96.70 94.15 84.59 86.66 7.16
Ours (H-CAST) ViT-S 26.2M 2242 256 83.28 98.65 95.12 84.86 87.13 4.12
|Our Gains over SOTA | -0.87 +0.07 -027 -127 -1.05 +0.50

Table 12: Evaluation on FGVC-Aircraft. On the smaller Aircraft dataset, ResNet-based models
such as FGN and HRN show good performance. However, our H-CAST achieves better results
in the consistency metric (TICE) and performs comparably in the FPA metric. Notably, H-CAST
outperforms ViT-backbone models, Hier-ViT and TransHP, by over 11 and 8 percentage points,
respectively, in the FPA metric.

| Configuration | FGVC-Aircraft (30 - 70 - 100)

| backbone #params input batchsize] FPA maker family model wAP TICE
8 |Flat-ViT ViT-S 65.1M 2242 256 76.99 9427 9193 80.14 86.39 10.98
M |Flat-CAST ViT-S 78.5M 2047 256 7822 9295 8893 8239 86.26 10.77

FGN RN-50  24.8M 2242 128 8548 92.44 90.88 88.39 89.87 7.50
%” HRN RN-50  94.5M 448> 64 83.56 9493 92.68 86.59 89.97 7.26
5 |HRN RN-50  94.5M 4482 8 91.39 97.15 95.65 9232 9421 3.36
'% Hier-ViT ViT-S 21.7M 2242 256 72.10 9235 86.26 7594 82.01 15.75

TransHP ViT-S 21.7M 2242 128 7549 90.16 87.46 8146 84.86 13.95

Ours (H-CAST) ViT-S 26.2M 2242 256 83.72 9496 91.39 85.33 8890 5.01

‘0ur Gains over SOTA ‘ -7.67 -2.18 -426 -699 -531 -1.65

E.6 ADDITIONAL VISUALIZATIONS OF SEGMENTS

We visualize additional examples of feature grouping from fine to coarse for full-path correct and
incorrect predictions on the Entity-30 dataset in Figure 10. For full-path correct predictions (all levels
correct), visual details are effectively grouped to identify larger objects at coarser levels. In contrast,
for full-path incorrect predictions (all levels incorrect), segments fail to recognize the object.
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Fine to coarse segments
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Figure 10: Additional examples of the differences in visual grouping between cases where predictions
at all levels are correct and where they are not. Correct predictions show better clustering, while
incorrect predictions often exhibit fractured or misaligned groupings.

E.7 COMPARISON OF IMAGE SEGMENTATION WITH CAST

To quantitatively evaluate the segmentation results in Figure 8, we use the ImageNet segmentation
dataset, ImageNet-S (Gao et al., 2022), to obtain the ground-truth segmentation data for BREEDS
dataset. The number of samples in the BREEDS validation data for which ground-truth segmentation
data can be obtained from ImageNet-S is 381 for Living-17, 510 for Non-Living-26, 1,336 for
Entity-30, and 1,463 for Entity-13. To calculate the region mIOU for fine-level objects, we use the
last-level segments (8-way) for segmentation. Following CAST, we name the 8-way segmentations
using OVSEG (Liang et al., 2023).

Also, we further visualize the segmentation results on Entity-30 in Figure 11, and show that additional
taxonomy information improves segmentation. For example in the first ‘bird” image, H-CAST is able
to segment meaningful parts such as the face, belly, and a branch, with less fractured compared to the
CAST. Thus, H-CAST delivers an improvement in segmentation with the benefits of hierarchy.
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Figure 11: Additional visual results on segmentation show that H-CAST with additional taxonomy
information improves segmentation. H-CAST successfully segments meaningful parts with fewer

fractures compared to CAST.
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