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Abstract

Cosmic-ray physics in the GeV-to-TeV energy range has entered a precision era thanks to recent data from
space-based experiments. However, the poor knowledge of nuclear reactions, in particular for the production
of antimatter and secondary nuclei, limits the information that can be extracted from these data, such as
source properties, transport in the Galaxy and indirect searches for particle dark matter. The Cross-Section
for Cosmic Rays at CERN workshop series has addressed the challenges encountered in the interpretation of
high-precision cosmic-ray data, with the goal of strengthening emergent synergies and taking advantage of
the complementarity and know-how in different communities, from theoretical and experimental astroparticle
physics to high-energy and nuclear physics. In this paper, we present the outcomes of the third edition of
the workshop that took place in 2024. We present the current state of cosmic-ray experiments and their
perspectives, and provide a detailed road map to close the most urgent gaps in cross-section data, in order
to efficiently progress on many open physics cases, which are motivated in the paper. Finally, with the aim
of being as exhaustive as possible, this report touches several other fields — such as cosmogenic studies, space
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radiation protection and hadrontherapy — where overlapping and specific new cross-section measurements,
as well as nuclear code improvement and benchmarking efforts, are also needed. We also briefly highlight
further synergies between astroparticle and high-energy physics on the question of cross-sections.
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1. Introduction

Charged particles arriving at the Earth from space with energies! above 100 MeV — the so-called cosmic
rays (CRs) — are dominated by protons and helium nuclei (He in the following, mostly *He), with some traces
of heavier nuclei, electrons, and antiparticles. Up to energies of about 100 TeV, it is now feasible to detect
these particles directly using balloon-borne and space-based instruments, which can precisely determine
their charge. At higher energies, the flux becomes exceedingly low, and CRs can only be detected indirectly
through the extensive air showers they produce upon interacting with the atmosphere. A striking and well-
known characteristic of the CR spectrum is its nearly featureless, power-law behaviour, spanning roughly
12 orders of magnitude in energy and 33 orders of magnitude in flux, as illustrated in Fig. 1. Beyond the
overall energy range and the typical power-law index v ~ 2.5-3, considerable attention has been devoted
to explaining specific spectral features. These include the Knee at a few PeV, where the spectral slope
steepens by Ay ~ 0.5, the Ankle at several EeV, where the spectrum flattens again, and a flux suppression
at E ~ 10?Y eV. The Knee and Ankle are commonly interpreted as signatures of a transition from Galactic to
extragalactic CR components. Meanwhile, the flux suppression at ultra-high energies may indicate either a
maximum acceleration limit in extragalactic sources and/or reflect significant energy losses of CRs travelling
through the cosmic background radiation field.

CRs in the GeV-PeV range are typically referred to as Galactic Cosmic Rays (GCRs), whereas those
exceeding 108 eV, dubbed ultra-high-energy cosmic rays (UHECRS), are generally considered to be of ex-
tragalactic origin. Within our Galaxy, uG-scale turbulent magnetic fields cause the trajectories of charged
GCRs to lose any directional memory, yielding a highly isotropic flux at the level of 107%4-1073. Above
3 x 10'¥ eV, however, the moderate strength and direction of the detected anisotropy (pointing toward the
Galactic anti-centre) strengthens the case for an extragalactic nature of UHECRs, even further so if com-
bined with the chemical composition indicators [1]. The Sun, for its part, can accelerate particles up to a
few GeV during solar flares, and the heliosphere modulates GCR fluxes up to several tens of GeV. This solar
modulation is reflected in an increased suppression of the observed GCR intensity with decreasing energy
(at GeV energy, this suppression is 2 10).

The physics of GCR, which is the main focus of this paper, has entered a precision era. Thanks to
satellite-borne and space-based experiments, data on many CR species reach a precision below 10% in the
GeV-TeV energy range (e.g., [2, 3]). A major motivation to investigate messengers such as CRs, as well as
understanding their sources and our Galactic environment, is the indirect search for particle dark matter
(DM) signatures. These relics from the early universe could annihilate or decay in the halo of our Galaxy,
leaving a feeble footprint in charged GCRs and/or in photons. The disentanglement of a possible hint
from these particles in the observed CR fluxes must rely on a robust theoretical framework for GCRs as a
whole. However, the poor knowledge of nuclear reactions, in particular for the production of antimatter and
secondary nuclei, limits the information that can be extracted from the CR data about the source properties,
the transport in the Galaxy, and the eventual presence of a signal from DM annihilation or decay.

The huge array of cross-sections needed for a precise prediction of CR data can actually be determined
only by experiments at accelerators. While some of these data has already been collected in ongoing CERN
experiments, significantly larger and more precise datasets are still required. The issue of determining the
cross-sections necessary for a precise modelling of GCRs has been the topic of a series of workshops held
at CERN [4-6]. This review is one of the outcomes of the last edition held in October 2024, XSCRC 2024

1To avoid any ambiguity in the notations and units, throughout this review, the total and kinetic energy are denoted E
and Fy, respectively, and are expressed in GeV (or other multiple of eV). The other energy variables and units employed are
the momentum p in GeV/c, the rigidity R = pc/Ze in GV and the kinetic energy per nucleon Ey,, in GeV/n. Different
communities use different units in the literature for the latter, and the meaning of GeV /n is the same as, for instance, A GeV
or GeV/u.
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Figure 1: Compilation of the CR energy spectrum, scaled by E? to highlight spectral features (notably the Knee at ~10% GeV
and the Ankle at ~10% GeV). Coloured markers and lines show measurements of the total (all-particle) spectrum and individual
components (e.g., protons, electrons, positrons, antiprotons (=p)), while open symbols indicate neutral particles (diffuse v rays
from the Galactic plane and from the isotropic vy-ray background, and diffuse neutrinos). Diagonal lines represent integral flux
levels for reference. The charged-CR data are taken from the cosmic-ray database (CRDB) [7-9], with additional y-ray and v
data from Fermi-LAT (Large Area Telescope) [10, 11| and IceCube [12], respectively. The energy reached at the LHC (Large
Hadron Collider) at CERN is also indicated.

(Cross-Sections for Cosmic Rays at CERN) [6]. It aims at providing a road map to the most urgent cross-
sections to (re-)evaluate, in order to progress on many physics cases, mostly related to GCRs, but not
only.

The paper is organised as follows. In Sec. 2, we review the most important physics cases related to
GCRs, highlighting specific situations where current cross-sections uncertainties prevent further progress.
Improved cross-section measurements are also mandatory in several transverse topics, including cosmogenic
studies, space exploration protection and hadron therapy. With the goal of building synergies between our
communities (owing to overlapping or complementary needs), we also highlight their science cases. In Sec. 3,
we review the current precision and energy reach of charged CR data, their most striking features, and some
recent advances they brought to the field. These data are the primary drive for improving cross-sections, so
we also present the ongoing and future CR experiments. The latter illustrate the existing long term and long-
lasting programmes to get even more precise CR data, which will further drive the need for even more precise
nuclear data (than the ones already needed now). In Sec. 4, we discuss the status and limitations of nuclear
data, in the context of GCR data interpretation. We provide an actionable list of reactions and energies to
measure, and their required precision, sorting the highest priority ones. We cover nuclear fragmentation but
also anti-particle and ~v-ray production, illustrating how these new nuclear data would be a game changer
for GCRs. To be complete, we also discuss the status and impact of other cross-sections involved in the
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modelling of GCRs (inelastic, annihilation, etc.). In Sec. 5, we move to the facilities and experiments where
some of these nuclear measurements are taking or could take place. For the highest energies, we detail
how strong synergies between the GCR and high-energy physics (HEP) communities have been recently
built, highlighting recent successful results and ongoing measurements at CERN experiments. In the multi-
GeV regime, we present ongoing experiments and forthcoming facilities (at the 2026-2027 horizon) where
strong synergies with the nuclear physics community could be built. We also show that CR experiments
are themselves excellent apparatus for measuring important cross-sections, in an energy range not accessible
elsewhere. In Sec. 6, we come back to the cross-sections needs from transverse communities. We present
their specific requirements, in terms of reactions, energies and precision, along with their priority list. We
also briefly touch some other topics, where promising HEP and astroparticle physics synergies take place.
Throughout this review, we provide summary tables and figures, to give an as clear and straightforward
view as possible of: (i) the CR experiment panorama and projects; (ii) the nuclear data status and needs;
and (iii) the beam capabilities and opportunities at various facilities. Although we do not have a dedicated
section on nuclear and Monte Carlo (MC) codes in this review, we highlight and discuss at many points the
importance, uses, and associated benefits and difficulties of these tools.

2. Physics cases in a high-precision era

This first section presents the physics cases and key questions in several topics where limitations appear
because of cross-sections uncertainties. The main focus is on GCR physics questions and related cross-
sections (Sec. 2.1), but we also present transverse fields where similar cross-sections are involved (Sec. 2.2),
and other astroparticle physics cases where different cross-sections, but similar needs for better measure-
ments, arise (Sec. 2.3).

2.1. Astrophysics and beyond SM physics cases for GCRs

In Fig. 2, the composition in the GCR flux is compared against the inferred one from photospheric
measurements and chondrites in the Solar system (SS) [13], which is representative of the environment
around a typical (population I) Galactic star. The overall similarity comforts the idea that GCRs are
accelerated from an environment resembling the interstellar medium (ISM). Yet, intriguing differences stand
out: elements like lithium, beryllium, and boron are only one order of magnitude less abundant than carbon
or oxygen in the GCR flux, while merely present in traces in the ISM. Similar trends appear elsewhere,
notably in fluorine and elements slightly lighter than iron (Sub-iron elements: Sc, Ti and V). These “over-
represented” species are interpreted as formed (almost) exclusively during propagation (hence they are
dubbed secondary) from the fragmentation of heavier GCR nuclei into lighter ones during interactions with
the ISM targets. This secondary component provides relevant insights into the travel history of parent nuclei
as they propagate through the ISM before reaching the Earth. For instance, they are one of the most solid
evidences for some kind of diffusive propagation, since the amount of material crossed compatible with the
measurements is orders of magnitude larger than what expected from a ballistic propagation.

2.1.1. Can we reveal DM with CRs?

Anomalous energy spectra, anisotropy, and composition patterns of the cosmic particle fluxes provide
one of the main strategies (the so-called indirect one) in the searches for signals beyond the standard model
(SM) of particle physics (see, e.g., [22, 23] for reviews). In particular, the rarest cosmic particles, such as
antimatter (positrons, P and antinuclei) and stable neutral messengers, are privileged channels for indirect
searches of byproducts of DM particle decays or annihilations [24]. The current consensus is that the fluxes of
all firmly detected energetic cosmic particles are dominated by established astrophysical processes, not all of
them however precisely known. In particular, the bulk of CR antimatter and diffuse v photons are related to
interactions of GCRs with the atoms of the ISM in the Milky Way. This implies that any exotic contribution
coming for instance from DM represents a subdominant contribution, with the possible exception of poorly
probed energy ranges. To fully exploit the precision of current data, one should make sure that theoretical
uncertainties are under control at least at a level comparable to the observational one, which is hardly the
case today. Which directions appear as the most promising ones to tackle this challenge?
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The Galactic environment for GCR propagation is typically modelled as a cylinder with a radius of about
20 kpc and a vertical size or thickness, labelled Galactic halo (half-)height L, whose value is only poorly
constrained between 2 and 10 kpc [25-27]. The value of L is especially relevant for the prediction of the
flux of cosmic particles from DM annihilation, since it controls how much of the injected flux is retained
in the diffusive environment [28-30]. In fact, the flux of positrons and p from DM annihilation is directly
related to the uncertainty on L (e.g., [30]). This halo size is determined from ratios of radioactive to stable
secondary GCR species (e.g., [31]). The -unstable species °Be, 26Al, 36Cl and 54Mn, with half-live in the
Myr range, of the order of the residence time in the Galaxy, are the considered species to constrain L [31-33].
Recent studies have focused on the °Be/?Be ratio [25, 26, 34], and it was shown that nuclear cross-sections
uncertainties on the production of Be isotopes were already limiting the interpretation of current data, and
would similarly plague forthcoming CR measurements.

GCR D are expected to be produced mainly as secondaries. The AMS experiment has measured the
flux of P between 0.5 GeV and 500 GeV, which is globally consistent with the expectations for a secondary
origin [35, 36]. However, different groups have found a mild excess at around 10GeV that could be ex-
plained by DM particles annihilating with a thermal cross-section into quarks [37, 38]. Nonetheless, the
current uncertainties on the p production cross-sections, as well as propagation and the correlations in the
experimental data [39, 35|, make these claims shaky and dependent on the data analysis approximations
adopted [39, 40]. The NA49 experiment has released a preliminary measurement of antineutron () produc-
tion from proton—proton (pp) collisions that is about 20% larger than the cross-section for P production,
corroborating earlier indications [41]. This data suggests an isospin asymmetry between the p and @ pro-
duction that is indeed relevant for the interpretation of the AMS P flux, see e.g., [42]. The presence of an
isospin asymmetry is expected considering the different production yields between the positive, negative,
and neutral charged pions at low energies. However, regarding the n/p asymmetry, no published and precise
measurements have been performed so far, and no theoretical predictions have been calculated from funda-
mental assumptions. Currently, the magnitude of the isospin effect is the main theoretical uncertainty for
the AMS data interpretation.

The search for antideuteron (d) and antihelium (He) nuclei in GCRs is one of the most promising
indirect search strategies for DM [43]. The reason is that at kinetic energies below a few GeV/n, the
secondary production is expected to be at least one order of magnitude smaller than the most optimistic
yields associated to viable thermal relic DM models. However, theoretical predictions are not fully under
control. Until recent years, CR antinuclei have been evaluated by considering simple coalescence models
of antinucleons, whose free parameters are fitted to available antinuclei data from accelerator experiments.
Currently, two data points from ARGUS (A Russian-German-United States-Swedish collaboration) at the
Upsilon mass resonances [44], one data point from ALEPH (Apparatus for LEP PHysics) [45] at the Z
resonance, and data from pp collisions with centre-of-mass energy /s from 900 GeV to 13 TeV from ALICE
(A Large Ion Collider Experiment) [46-51] are available. In a recent analysis, Ref. [52] reported that the main
current theoretical uncertainties of the coalescence model resides in the d production data from accelerator
experiments. In fact, once different coalescence models are tuned using the same data point, e.g., the one
from ALEPH, the theoretical predictions vary at most by 10-15% in the relevant energy range. Very precise
measurements of the antinuclei production at centre-of-mass energies between 10 and 100 GeV are required to
tune the coalescence parameters at the energies relevant for astroparticle physics. Alternatively, significant
efforts have been made to develop a parameter-independent coalescence model, based on the Wigner function
formalism. However, the nucleon yields and the nucleon emission source describing the relative distances at
which nucleons are produced must be constrained by the data. This model has been applied successfully to
predict d spectra measured by ALICE in pp collisions at 13 TeV [53] and other collision energies [54].

On top of the rather uncertain production cross-sections of antinuclei, another uncertainty in their flux
predictions is related to inelastic cross-sections, leading to antinuclei destruction during their propagation.
Only recently a first measurement of such a quantity has been performed [55], but further progress is required
to validate currently used parametrisations [56].

Another indirect mean to probe particle DM, albeit not strictly concerning charged GCRs, is through
v rays. The search for photons is not hampered by the diffusion on magnetic fields, and regions expected
to exhibit high DM densities can be targeted by telescopes. So far, the deepest and most sensitive searches
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have been conducted by Fermi-LAT [57]. Strong bounds have been obtained by targeting a number of dwarf
spheroidal galaxies, whose mass is largely dominated by DM [58, 59]. A Galactic center excess (GCE) in
Fermi-LAT data at GeV energies has been extensively investigated over the past two decades [60, 61]. Its
angular and spectral features make it intriguingly similar to expectations from simple particle DM models,
although alternative explanations invoking an unresolved millisecond pulsar population in the bulge have
gained momentum over the years [62, 63]. For a DM origin of the GCE, a ~-ray signal is also expected
from dwarf spheroidal galaxies: depending on the data analysis technique and the assumption on the DM
abundance in these systems, they put weak or strong constraints on the DM hypothesis for the GCE, at
a level comparable to P constraints (see, e.g., Fig. 3b in [40]). One major issue for DM observations via =y
rays is the modelling of the diffuse Galactic emission, typically produced by GCR nuclei scattering off the
ISM and electrons interacting with the interstellar radiation fields. This emission, which unavoidably fills
any line of sight, is dependent also on the nuclear production cross-sections.

2.1.2. Where are GCRs synthesised, accelerated, and how?

Both based on energetic considerations and multi-wavelength observations of their non-thermal spec-
tra [64, 65], the main sources of GCRs have long been speculated to be supernova remnants (and, for
leptons, also pulsar wind nebulae), with the role of star clusters, X-ray binaries or mergers of compact ob-
jects raised from time to time. The exact mechanisms that accelerate particles from these Galactic sources
are not known, although variants of diffuse shock acceleration or magnetic reconnection are typically in-
voked (see, e.g., Ref. [66, 67]). The observation of fine spectral features in the proton, electron, and photon
spectra are required to identify signatures of subtle non-linear effects in the acceleration process, or the rel-
ative weight of hadronic and leptonic components in the accelerated yields [68, 69]. The goal of identifying
these signals is only meaningful, however, if uncertainties related to collisional physics, recently subject to
re-evaluation [70, 71], are well under control.

Isotopic anomalies, such as the measured overabundance of the ?2Ne isotope over 2°Ne, may point to a
prominent role of star clusters and superbubbles [72]. The detection of %°Fe in GCRs, a short-lived radionu-
clide with a half-life of 2.6 Myr synthesised in core-collapse supernovae, further constrains the history and
source location of the GCRs measured at Earth [73]. These topics are entangled with the understanding
of the site of the r-process for the nucleosynthesis of %°Fe, a transverse argument that links together the
searches of ultra-heavy nuclei in GCRs with geophysical methods, our theoretical and experimental under-
standing of cross-sections in nuclear astrophysics, and the astrophysics of binary neutron star mergers and
core-collapse supernovae (as revealed by the electromagnetic counterpart [74, 75] of the binary neutron star
merger LIGO/Virgo GW170817 [76]).

2.1.3. GCR transport: refining the model or going beyond it?

Galactic energetic particles propagate in the Milky Way environment in their journey from the sources
to the Earth. As detailed in Sec. 4.1, these particles are affected by both non-collisional processes and
energy loss mechanisms, the latter being particularly relevant for electrons and positrons [77]. By a careful
study of the energy spectra of these particles, notably the ratios of fluxes mostly produced by spallation
in the ISM to fluxes mostly affected by source acceleration, one infers information on the rigidity and
spatial dependence of the diffusion coefficient, which is ultimately informing on the physics of the Galactic
magnetic turbulence [78, 79, 36]. The standard scenario assumes that GCRs propagate onto externally
assigned magnetic field turbulence, onto which they do not backreact. Features of the CR data uncovered
in the past decade (see Ref. [80] for an early review), such as the different slope of proton and He GCRs
at energies below/above 100 GeV, may hint at a change of regime [81], where lower-energy GCRs would
rather scatter onto the turbulence that they self-generate [82, 83]. However, non-factorisable spatial vs.
power-spectrum properties of the turbulence may also accommodate the data [84]. It is not yet clear if the
transport is close to quasi-homogeneous, rather than being localised in small volumes of the ISM [85-87].
Disentangling these possibilities is an extremely challenging effort, which may be completely hampered by
cross-section uncertainties.



2.1.4. Going beyond the standard paradigm for the sources?

The source terms are typically factorised in a continuum function of (¢,x)? in the Galaxy, times an often
universal power-law energy spectrum. With respect to the chemical composition, normalised abundances
tracing the ISM composition are often assumed, though the data seem to point at a preferential acceleration
of refractory elements contained in interstellar dust [17, 88]. These various approximations can be questioned.

The stochastic distribution of astrophysical sources in space and time leads to spectral deviations from
the average, see, e.g., [89-91]. Uncovering these effects at a statistical level requires however to keep errors
associated to collisional effects at a percent-level or lower. This is especially true above 1-10 TeV, where
specific spectral features may hint at a predominant contribution of one or few local sources.

Some isotopes and elements, such as deuteron [92] and lithium [93], seem to indicate some departure
from the standard secondary origin [94, 95]. The robustness of these hints is however plagued by the
significant uncertainties affecting their predicted yields from spallation cross-sections, so that the predictions
are currently still consistent with the expectations thanks to the large uncertainties [96, 97].

One component that was supposed to be absent from primary sources until ~ 15 years ago, but whose
existence is now robustly accepted, is the positron flux [98-102]. Yet, its interpretation is still unclear.
While DM could in principle contribute to the observed flux above 10 GeV, which provoked a significant
early excitement for this measurement, the needed annihilation intensity is nowadays in conflict with other
bounds. The two most physically motivated interpretations are related to the acceleration of electron and
positron pairs from pulsar wind nebulae [103-107], or positrons produced and accelerated in supernova
shocks sweeping the circumstellar medium [108, 109]. In order to infer as precisely as possible a primary
component in the positron flux, a very precise estimate of the positron production cross-sections, which are
used for calculating the secondary production, is mandatory [27].

To check the extent to which the GCR injection spectrum and the propagation properties are homoge-
neous over the Galaxy, one may want to probe GCR properties away from the location of Earth. This goal
can be indirectly attained by studying the angular and spectral properties of the interstellar v-ray emission
(e.g., Ref. [110, 111]), probed by Fermi-LAT and, to lesser extent, by imaging Cherenkov telescopes. Its
main contribution is due to the fragmentation of GCRs interacting with ISM atoms and their follow-up
production of 7°, which subsequently decay into two photons (7 rays). Currently, data for the Lorentz
invariant cross-section for the production of neutral pions are not sufficient to obtain a precise estimate of
7 ray spectrum originating from 7° production [70].

2.2. Transverse physics cases with overlapping nuclear cross-sections needs

Beyond the purely astrophysical and cosmological topics of interest summarised above, nuclear cross-
sections also play a key role in other topics related to CRs. The key questions related to the time variation of
GCRs are introduced below, and then some links to societal aspects, namely space exploration and medicine,
are given.

2.2.1. Cosmogenic studies, impact on climate and life on Farth

For most cosmogenic nuclide studies, constant GCR fluences are assumed. There are, however, reasons
why GCR fluences in the SS should vary over timescales of millions of years. First, the periodic passage of
the SS through Galactic spiral arms might cause periodic GCR variations. In spiral arms, star formation
and supernova rates are higher, leading to an increased GCR flux. Second, the SS periodically moves up and
down the Galactic plane, which can affect the GCR flux. There are some arguments that such periodic GCR
fluency variations can affect Earth’s climate. At times of higher GCR fluences, there are higher ionisation
rates in the upper atmosphere, which can produce higher cloud coverage. This finally could produce a cooling
effect and even start an ice age. This would most likely affect the origin and evolution of life. Third, as the
SS occasionally moves through dense molecular clouds, the heliosphere can shrink and, as a consequence,
GCR modulation is diminished or disappears completely. Such an episode, in which the Earth might have
been even outside the heliosphere and directly exposed to the ISM of the dense molecular cloud, would

?Usually, stationary conditions are considered and no time-dependence is assumed.
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significantly affect the evolution of life on our planet. It has been proposed that the 55 might have passed
such a dense molecular cloud ~ 2Myr ago (e.g., [{12]). There are some arguments that cosmogenic nuclide
studies in iron meteorites provide evidence for periodic GUR fluency variations (e.g., [{13-113]). While some
studies were supportive, many subsequent investigations have questioned the original hypothesis [114, 117]
and/or the interpretation of the database [118]. In addition to periodic (+U!R intensity variations, there
are also indications for a onetime and sudden increase in the R intensity with a higher flux in the past
several million years, relative to the long-term average over the past 500-1000 Myr [118-12, 118].

To prove or reject {2UR fluency variations, cosmogenic nuclides stored in terrestrial archives and produced
in meteorites or planetary surfaces provide a powerful tool or even can be considered as the only diagnostics.
The half-lives of the different radionuclides then correspond to the different time intervals the dating system
is sensitive to. For example, the 1*C activity concentration is sensitive to the last ~20kyr, >*Mn to the last
~15Myr, and 4°K to the entire age of the S5. For all these studies, a precise knowledge of the cosmogenic
production rates is mandatory, and such production rates can only be determined based on an accurate,
reliable, and consistent cross-section database for the relevant nuclear reactions [122].

2.2.2. Space exploration

Uncertainties in predicting radiation-related health effects due to exposure to the space radiation envi-
ronment are one of the major challenges for human spaceflight beyond Earth orbit [123-123]. In shielded
environments, light ions (i.e., isotopes of H and He) and neutrons make the largest contrlbutlons to the dose
equivalent received by astronauts. The largest uncertainties in predicting radiation doses and the associated
health risks stem from a limited understanding of radiation biology and from disagreements in transport
codes [126— . The latter is primarily due to inadequate knowledge about the light-ion production cross-
sections [129, 138, which also constitute the largest gap in currently available nuclear data [131]. Tt is
therefore imperative that these cross-sections be measured to place space radiation protection on a solid
foundation.

2.2.8. Hadrontherapy
Hadrontherapy treats deep-seated tumours using charged particle beams, such as protons and '2C. In-
deed, these particles exhibit a favourable depth-dose distribution in tissue, characterised by a peak in energy
deposition (the Bragg peak) near their end range, which coincides with the tumour’s location. Additionally,
C and O ions demonstrate enhanced biological effectiveness, making them suitable for treating radio-resistant
tumours. However, nuclear interactions between the ion beam and patient tissues can result in the fragmen-
tation of plOJeCtlleS and/or target nuclei. These interactions must be carefully considered when designing
tment planning us {TPS). Currently, there is a significant lack of experimental data on nuclear
fldgmentd.tlon mvolvmg hght fragments (Z < 10) within the energy range commonly used in hadronther-
apy of 80 MeV /n to 400 MeV /n. Such data would be invaluable for further optimisation of TF% in hadron
therapy [132].

2.8. Further astroparticle physics cases affected by cross-section uncertainties

Two additional examples where cross-sections data bridge the astrophysics and high-energy physics com-
munities are presented in this section. Indeed, not only better cross-section data enhance our ability to
interpret CR data, but also to deepen our understanding of dense and compact astrophysical objects and
environments.

2.8.1. Origin of ultra-high energy cosmic-rays

Unveiling the composition and spectrum of UHECRs would reveal the most energetic dCLeleIdtOIb in
the Universe and the nucleosynthesis processes in the most hostile environments (e.g., the ac 319
nuctens (AGN)}, compact binary mergers, collapsars). Mostly nuclei up to A = 56 are considered for
the interpretation of current data, but heavier nuclei could play a role for the observed tlend of the mass
composition at the highest energies [133]. The results from the Pierre Auger Observatory and TA (Telesrope

Array) have stimulated several studies focusing on the nuleosynthesis [134], acceleration and multl—messenger
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secondary emissions [1353, 136]. Recent multi-messenger observations [137, 138] strongly indicate that the
discovery of the sources is imminent, but the cross-sections are still one of the limiting factors [138]. UHEL
generate extensive air showers, Whose precise modelling hinges on accurate hadronic cross-sections, well
beyond energies accessible at current accelerators. Uncertainties in these cross-sections propagate directly
into the interpretation of shower development, energy spectra and composition. Improved data are therefore
crucial to refining theoretical frameworks and reducing systematic uncertainties in UHECH observations at
facilities like the Pierre Auger Observatory and TA.

2.8.2. The equation-of-state of neutron stars and femtoscopy

Neutron stars are the most compact material objects in the Universe, with extreme conditions of pressure
and density, possibly undergoing phase transitions during their evolution. These extreme properties can be
probed by astronomical observations [140]. The outer core of neutron stars consists of matter composed
by nucleons, electrons and muons, in a strongly interacting regime, where sophisticated models describing
the correlations among two and three nucleons are necessary. The inner core is the least understood, and
there could be charged mesons, such as pions or kaons in a Bose condensate, or other heavier baryons with
stlangeneSb (e g hyperonb) At the highest densities, quarks might be deconfined. The recent NICER
Neut H 3 rver) observations of pulsed X-ray emission from millisecond pul-
—144] provide the first data to constrain the equation-of-state from the reconstructed radius—mass
dlagrams While the exact matter content and interactions in the neutron star are not the only ingredients of
the modelling, they are one of the limiting factors. Femtoscopy probes hadron—hadron interactions, includ-
ing multi-body forces, at distance scales unresolvable by direct scattering experiments. Precise cross-section
measurements for particles containing strange quarks are particularly relevant for modelling the composition
and equation-of-state of neutron stars, where strangeness and multi-body forces can drastically alter matter
at high densities.
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flight in May 2024 for ~6 days); and calorimeters, as Fermi-LAT (Large Area Telescope, satellite operating
since 2008) [57], DAMPE (DArk Matter Particle Explorer, satellite operating since 2015) [165], CALET
(CALorimetric Electron Telescope, operating on the ISS since 2015) [166], NUCLEON (satellite operated
between 2014 and 2017) [167] and ISS-CREAM (Cosmic Ray Energetics And Mass, operated on the ISS
between 2017 and 2019) [168]. Magnetic spectrometers can distinguish particles from antiparticles, and hence
they can measure the spectra of positrons, p, and search for antinuclei in CRs. They measure the rigidity,
i.e., the ratio between momentum and charge, of the incoming CR particle. Their maximum detectable
rigidity (MDR), defined as the rigidity at which the relative rigidity resolution is equal to 1, is set by the
intensity of the magnetic field provided by the magnet and the lever arm of the instrument. The largest
magnetic spectrometer ever deployed, AMS, reaches an MDR of 2 TV for protons, 3.2 TV for He nuclei, and
3.5 TV for heavier nuclei [3].

Magnetic spectrometers combined with detectors able to measure the velocity, such as time-of-flight
(TOF) systems or ring-imaging Cherenkov (RICH) counters, have the ability to measure isotopic com-
positions of nuclei by reconstructing the mass from the rigidity and the velocity measurements. Current
experiments employing this technique, AMS and HELIX, can measure isotopic fluxes with accuracies of
~ 10%, up to a kinetic energy per nucleon of about 10 GeV /u [169, 170, 164]. Both PAMELA and AMS
have been equipped with an electromagnetic calorimeter to accurately determine the energy of electrons and
positrons, with a resolution of a few percent over the entire energy range of their measurements. In the
AMS experiment, the energy of electrons and positrons is determined with accuracies < 2% from 30 GeV to
500 GeV and <4% above, up to 3 TeV [171]. The maximum energy that can be measured by electromagnetic
calorimeters is mainly determined by their depth. The depth of the AMS calorimeter is 17 radiation lengths,
allowing measurements of energies of electrons and positrons up to 3 TeV [171]. Because of the rapid de-
crease with increasing energy of CR fluxes (see Fig. 1), flux measurements at the highest energies require,
in addition to an extended upper energy, larger acceptance detectors operated over long-duration missions.

The past decade marked the era of active deployment of large-area calorimetric CR experiments in space.
In 2015, the DAMPE [165] satellite was launched into orbit and the CALET [172] detector was delivered to
the ISS. Both instruments feature deep total-absorption calorimeters, with an integrated detector thickness
of > 30 radiation lengths. The acceptance for electron detection with DAMPE and CALET is ~0.3m? - sr
and ~ 0.12m? - sr, respectively. Due to their thick fine-segmented calorimeters, the two detectors have
excellent energy resolutions of about 1.2% and 2%, respectively, at > 100 GeV energies. With their relatively
large acceptance, this allows the combined electron and positron spectrum to be probed up to ~ 10 TeV
energies. Next, the ISS-CREAM [168| detector — legacy of the balloon-flight CREAM |[173] — is another
calorimetric experiment that was deployed on the ISS in 2017. Unlike DAMPE and CALET, it utilises a
sampling calorimeter alike the one of AMS, with scintillating fibres interleaved with passive tungsten layers,
having a total thickness of 21 radiation lengths, and a geometric factor of ~0.27m? - sr, close to the one of
DAMPE. Thanks to their relatively large acceptance, calorimetric experiments like DAMPE, CALET and
[SS-CREAM are capable of measuring individual CR nuclei spectra up to hundreds of TeV.

In this section, the status in terms of energy range and precision, and the recent progresses made by CR
experiments, are discussed for all GCR species (Sec. 3.1). Then, the near and far future projects are listed
(Sec. 3.2). The discussion is accompanied by a timeline of all datasets available for these various species.
Figures 3 to 7 illustrate the increase of precision and upper energy of the CR experiments and data over
time. Figure 8 also provides a summary view of ongoing and future experiments.

8.1. Energy range and precision of current data

8.1.1. Proton and He fluzes

AMS has provided precision measurements of the proton spectrum as a function of rigidity from 0.5 GV
to 1.8 TV, with accuracies of 1% at 100 GV and < 5% beyond 1TV, and for the He spectrum from 1.92
to 3TV with uncertainties of 1% at 100GV and < 4% at 1 TV [3]. A progressive spectral hardening has
been observed around 200GV, with a different rigidity dependency between proton and He, confirming
earlier observations by PAMELA [174] and CREAM [173, 175]. The proton-to-helium ratio decreases with
increasing rigidity [3]. Results of CALET and DAMPE confirm the spectral hardening in both proton and
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Figure 3: For H, He and D (top to bottom), timeline of the highest energy decade (colour-coded) and best precision reached
(height of the bars) in CR experiments, based on the data compiled in the CRDB [7-9]. The width of the bars indicates the
integration time of the CR experiments: very thin widths correspond to balloon flights (few days flights at most), and larger
widths correspond to satellite or space (or more rarely ground-based) experiments. The best precision is always achieved at
low energies, not at the highest (colour-coded) energy reached. The name of experiments for which datasets were collected
over several months or years is indicated on top of the relevant period; some experiments like AMS have several datasets
published with overlapping periods (same start date but longer integration time), but their name is indicated only once to
avoid overlapping text. Note that the Voyager data after 2015 are the only datasets outside the solar cavity.

He CRs [176-179] and the decrease of the proton-to-helium ratio up to about 10 TeV/n. All experiments
consistently show that the proton spectral index is about 0.1 softer than that of He, with no significant
structures in the proton-to-helium flux ratio. While both calorimetric experiments demonstrate a higher
value of the spectral break position, compared to AMS, at about 500 GeV for protons, the results for all the
experiments are compatible within the uncertainties.

At higher energies, CALET, DAMPE and ISS-CREAM demonstrate a softening structure in proton and
He spectra at about 10 TeV /n [176-179, 168, as previously indicated by CREAM [175, 173]. Recent updates
from DAMPE and CALET indicate that the positions of both hardening and softening structures favour
the charge (rigidity) dependence of the breaks, although mass (energy per nucleon) dependence is not ruled
out [176, 180]. It has to be noted that while calorimetric experiments measure particle kinetic energy, the
conversion to energy per nucleon requires knowledge of the isotopic composition, which is normally taken
from available measurements at low-energy, below few GeV/n, and extrapolated to higher energies. The
limited knowledge of isotopic compositions is considered as an additional source of systematic uncertainty
in the interpretation of calorimetric data on nuclei. At even higher energies, a hint of a new structure —
hardening at about 150 TeV — is seen in the recent data of DAMPE [180] and ISS-CREAM [168]. The
DAMPE measurement of combined p-+He spectrum, profiting from higher statistics and a cleaner event
selection, reaches 0.5PeV [181]. ISS-CREAM results reach even higher energy, 0.65PeV for proton and
~1PeV for He, although with much larger uncertainties [182].

8.1.2. Antiprotons and searches for antinuclei

Antimatter is a tiny component in CRs. In the GeV—TeV energy range, there is only 1 antiproton per
10000 protons. The P spectrum has been measured by balloon-borne (e.g., BESS-Polar-I and II flights
[183, 184]) and satellites experiments (e.g., PAMELA [185-187|). The most precise information is based on
the 6.5 yr of AMS data, with accuracies <4% in the rigidity range 1 GV to 100 GV and ~40% at 500 GV.
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Figure 4: Same as Fig. 3 but for leptons (including the positron fraction, bottom row).

Statistical uncertainties still dominate above 125 GV [3]. The low-energy P spectrum will soon be explored
by the GAPS (General AntiParticle Spectrometer) experiment [188], see Sec. 3.2.4. GAPS will measure the
D flux in the kinetic energy per nucleon range from 0.07 to 0.21 GeV/n, where signals from hidden sector
DM models are expected [189].

So far, no observation of antinuclei heavier than p has been confirmed in CRs. The BESS, BESS-Polar-I
and BESS-Polar-II magnetic spectrometer series of balloon flights, have extensively searched for d in the
kinetic energy per nucleon range from 0.163 to 1. GeV/n, setting the best upper limit on the d flux in this
energy range with the BESS-Polar-1I flight at 6.7 - 107° (m?s sr GeV/n)~! at 95% CL [190]. The BESS
collaboration has also set the current best upper limit on the He to He flux ratio, in the rigidity range from
1 to 14 GV, by combining the results from the BESS, BESS-Polar I and BESS-Polar-II flights. This limit
is 6.9 - 1078 at 95% CL [161]. So far, AMS has reported few d and Ie candidates, both 3ITe and *Te [191],

still needing further studies before an observation can be confirmed.

8.1.8. Electrons and positrons fluzes

To efficiently separate positrons from protons and p from electrons, magnetic spectrometers are combined
with electromagnetic calorimeters, as in PAMELA and AMS, and with transition radiation detectors, as in
AMS. Electromagnetic calorimeters, beside distinguishing electron-like from proton-like particles, allow the
determination of the energy of electrons and positrons with a resolution of a few percents. The measurements
of the separate spectra of positron and electrons by magnetic spectrometers, PAMELA up to 300 GeV, and
AMS up to 1TeV, have ascertained that the rise of the positron fraction above ~10 GeV observed by earlier
experiments is due to an excess of high-energy positrons. The high-precision of the AMS measurements (4%
at 100 GeV and < 10% up to 500 GeV for the published results based on 6.5 years of data, still dominated
by statistical uncertainties above 30 GeV) has also revealed a rapid decrease of the positron flux above
~ 300 GeV compatible with an exponential energy cut-off in the TeV energy range [101, 3]. AMS has also
released a high-precision measurement of the electron spectrum in the energy range from 0.5 GeV to 1.4 TeV
(<2% up to 130 GeV and < 5% up to 500 GeV), observing a hardening above ~40 GeV but no high-energy
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Figure 5: Same as Fig. 3, but for individual elements of broad groups (for the sake of compactness) of heavy nuclei with Z < 30.
For each of these groups, the best precision and highest energy among the elements measured is reported: not all elements in
these groups have been measured, and not all experiments have the capability to measure all elements of a given group, usually
because of too low abundances.

cut-off [192, 3]. Analysis of the arrival directions of positrons and electrons with the AMS data has shown
that both are compatible with the hypothesis of an isotropic flux, with upper limits on the amplitude of
dipole anisotropy of 0.019 for positrons and 0.005 for electrons at 95% CL above 16 GeV [3, 193].

Results of the CR electron plus positron spectrum from CALET and DAMPE, reaching 4.6 and 7.5 TeV,
respectively, reveal a remarkable softening at ~ 1 TeV, consistent between the two experiments [194, 195].
While it is difficult to corroborate whether the observed spectral structure is due to the transition from
a multiple source population to an individual GCR accelerator, further measurements towards 10 TeV and
higher energies will be crucial to clarify the CR electron picture [196]. One of the key challenges in the
realisation of such measurement with the existing experiments, such as DAMPE, is the rejection of the
overwhelming proton background contamination, which increases with energy [197].

3.1.4. Heavy elemental fluzes (Z=3-30)

For Z < 30, ACE-CRIS (Advanced Composition Explorer Cosmic Ray Isotope Spectrometer) [198, 199]
and Voyager have provided fluxes below hundreds of MeV/n at 3-5% precision, while AMS, CALET and
DAMPE are measuring the individual spectra of nuclei in the hundreds of GeV to multi-TeV region. So far,
AMS has published the rigidity spectra of all nuclei from He to Si, of S, and of Fe nuclei in the rigidity range
from ~2 GV to 3TV [3, 200, 201, 14, 15], with typical accuracies at 100 GV of 3% to 4% for nuclei from Li to
0, and 4% to 6% for heavier nuclei. Before AMS, the previous experiment which provided a comprehensive
measurement of such a large range of nuclei was the HEAQO3 satellite, flown between 1979 and 1980, with
Be to Ni fluxes from 0.6 to 35 GeV/n at precision of ~10% [16]). At 1 TV the AMS measurements of the
primary nuclei, C, O, Ne, Mg and Si, have accuracies of 6% to 7%. For the less abundant Ne, Mg and Si
nuclei, the statistical errors still dominate above 1.2 TV [15]. The AMS measurement of the Fe spectrum at
1TV has an accuracy of 10%, but it is still dominated by statistical errors above 300 GV [14].
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Slopes for primary and secondary species. AMS has found that above 60 GV the rigidity spectra of C and
O are identical to He [20%], and that the I‘lgldlt\/ spectra of the heavier primaries Ne, Mg, and Si are
distinctly different from the He spectrum [203]. Above 86.5 GV, Ne, Mg, and Si spectra have identical
rigidity dependencies, they progressively harden above 200 GV, but less than the He, C and O spectra [233].
Instead, the Fe spectrum above 80.5 GV follows the same rigidity dependence as the light primary He, C and
O [i4]. AMS has found that light secondary nuclei, Li, Be and B, have identical rigidity dependencies above
30 GV, and that they harden above 200 GV with twice the hardening observed for C and O [2(4] hinting at a
propagation origin (break in the diffusion coefficient) of the spectral hardenings. The accuracy of the latest
MS measurement of the F spectrum, recently updated with 10-year dataset, is 6% at 100 GV and 18% at
~ 1TV, dominated by statistical errors above ~90 GV [i3]. AMS has found that the rigidity spectrum of
the heavier secondary F nuclei is different from the spectra of the light secondary Li, Be and B, and that the
secondary-to-primary ratio F/Si is significantly different from the light secondary-to-primary ratios, B/O or
B/C [20€]. Alternative interpretations have been proposed for this observation, as the presence of a primary
F component [2{(13] or to spatially dependent diffusion [206]. However, model calculations of the expected
secondary F spectrum with similar accuracy as the AMS measurement are currently out of reach because of
uncertainties or lack of measurements of relevant nuclear fragmentation cross-sections [207].

Multi-TeV domain. The extension of B C, O and Fe nuclei measurements to the multi-TeV domain has
been recently advanced by CALET and DAMPE. The CALYET results on B [204], C and O [209] reach about
3TeV /n, indicating a spectral hardening in both CR primaries (C and O) and CR %econdaues (B) at around
200 GeV /n, consistent with AMS. The CALET B/C and B/O ratios, similar to AMS, confirm that the break
in secondaries is about twice as large as in primaries. Notably, while CALET B, C and O ﬂuxes show an
overall shape consistency with AMS, there is an apparent discrepancy in normalisation, with CALET fluxes
being ~ 20% lower than AMS ﬂuxes. This difference is not accounted for by systematic uncertamtles and,
as was reported at this confe\ren(‘e lb] iq not attributed to the choice of the hadronic model (M{' generator)
used for the interpretation of CALI'T data (see also Sec. 4.4.4). At the same time, the normalisation
errors cancel out in the B/C and B/ O ratio calculations, resulting in very good normalisation match of
CALET with AMS. Also, recent DAMPE results on the B/C and B/O flux ratios confirm the B/C and B/O
breaks and find a hardening position at 100 + 10 GeV/n [210]. This result is consistent with a hypothems
of a ~200 GV universal {!R hardening, and agrees well with ’rhe accurate measurements of spectral breaks
in AMS data [211, 21 4, 3]. For higher mass elements, CALET’s Fe spectrum reaches 2TeV /n dIld is
consistent with a power law behaviour with coefficient v~ 2.6 and no indication of hardening [213]. C 3
Fe spectral shape is very similar to the AMS result, but is 20% lower in normalisation. The CA
flux [214] measurement is still limited to below 240 GeV/ n. It shows no structure in the spectrum aloncr
with a flat Ni/Fe ratio of about 0.06 in the entire energy range of the measurement, consistent with the
expectation of similarity in acceleration mechanisms of primary GCRs.

3.1.5. Ultra-heavy elemental fluzes (Z > 30)

Fluxes above Z = 30 are about 10* to 10° lower than Fe [215], with the rarest actinides (Z > 90)
about 107 times less abundant than Fe [216] — see the bottom panel of Fig. 2. Standard techniques used for
measurements of Z < 30 CRs can still be pushed to cover the 30 < 7 < 6() region [213], but they are not
able yet to provide fluxes, only ratios: the ACE-CRIS satellite (Si scintillators) collected data for more than
20 years to unveil the isotopic content of Gx R elemcnts Z = 30-38 at a few hundreds of MeV/n [217]; the
SuperTiGER balloon-borne experiment is measuring elemental fractions up to Z < 56 [2i8]. For heavier
species, passive detectors are exposed for long durations (several years), and chemical modifications made in
a solid state nuclear track detector (by passing {’Rs) are etched in a chemical agent to reconstruct the charge
and velocity of the ‘R. Very few datasets exist from < 1990s expe Hnentb7 Wlth 1nteg1a,ted measur 'mentb
around GeV/n CH energies. These datasets are from Ariel 6 [£9], 3 21],
skylab [Z2§] and Trek [221]. Some recent original data come from ¢ ; v [280, 222, where olivine
crystals contained in stony-iron meteorites (pallasites) are used as CH detectors. They give, however, only
integral measurements over energies and irradiation time over up to hundreds of Myr.
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Figure 6: Same as Fig. 3 but for ultra-heavy nuclei. For the latter, only ratios are measured for individual elements below
Z = 40, and pairs or range of elements for Z > 40. The question mark in the last group (Z > 80, Hg to ?7) highlights the fact
that the current situation is not completely clear regarding the heaviest CR species detected; the 2023 data points come from
the OLIMPIYA stony-iron meteorites (see text for details).

3.1.6. Isotopic fluxes and ratios

Elements in GCRs are almost all mixtures of two or more isotopes. Isotopic composition measurements
are still scarce and limited to low energies, below about 2 GeV/n in most cases.

Light isotopes. Recent measurements of H to Be isotopes have superseded all previous measurements in
terms of precision and energy coverage (see Fig. 7). The so-called quartet isotopes include the dominant 'H
and “He species of primary origin, and 2H and ®He isotopes expected to be of secondary origin. PAMELA
has measured them from a few hundreds of MeV /n to GeV/n at a precision of 10%, pushing their analysis
to get ratios of some Li, Be, and B isotopes [223-227]. AMS has measured ?H, *He and *He fluxes in the
rigidity range 1.9 GV to 21 GV with accuracies of 3%, < 3%, and < 1%, respectively [92]. While the 3He/*Ie
flux ratio exhibits a typical secondary-to-primary rigidity dependence, ox R~0-289£0.003 the 2H /4He ratio
follows a distinct power law oc R~0-108+0.005 - AN[S has also presented preliminary measurements of 5Li and
7Li fluxes, roughly in equal amount in CRs, from 1.9GV to 25 GV with accuracies ~ 3% at 10 GV, which
do not support the hypothesis of a primary component in “Li [228].

CR Be nuclei are secondaries, composed of three isotopes (“Be, Be and '“Be), with °Be decaying to
1B with a half-life of 1.39 Myr, probing the residence time in the Galaxy. Current measurements of the
10Be /9Be ratio include low-energy data at 100 MeV /n with a 20-30% uncertainty (ACE-CRIS [229], Ulysses
[230] and Voyager [231]), and a couple of GeV /n data points from both PAMELA [225, 226] and the ISOMAX
balloon-borne superconducting spectrometer [232], with a much poorer precision. AMS has presented at
recent conferences preliminary measurements of the “Be, °Be and '9Be fluxes as functions of kinetic energy
per nucleon, ranging from 0.4 GeV/n to 12 GeV/n [228]. The accuracy of the AMS preliminary measurement
of 1°Be/9Be is ~10%. Complementary results are also expected from HELIX [164] (see Sec. 3.2.3).

All these great and recent experimental achievements, however, cannot be exploited at full potential
yet, as the interpretation of the light isotopes are particularly plagued by scarce nuclear data and large
uncertainties [97, 233].

Heavier isotopes. For isotopes in Z = 6-30, only ratios are measured, and only at a very low energy below
a few hundreds of MeV /n, with a precision of 10-20%. These measurements are all from pre-1980’s balloon
flights and pre-2000’s space experiments (ACE-CRIS, CRRES, ISEE, Ulysses, Trek, Voyager) integrating
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Figure 7: Same as Fig. 3 but for secondary-to-primary ratios currently used for GCR analyses. For compactness, we grouped
together d/4He and *He/4He (top panel) and ratios of Li, Be, and B to C or O (third panel), but the precision and datasets
are not exactly the same for these individual ratios (e.g., d is particularly difficult to separate from the dominant p, while
a good charge separation is needed to isolate Li from the much more abundant He); sub-Fe (in the sub-Fe/Fe ratio, bottom
panel) corresponds to Z = 21-23 (or sometimes Z = 21-25) and was used in almost all past experiments because of their
limited charge resolution/statistics, but AMS will provide individual fluxes and ratios for this charge range. The GCR clock
ratio 1°Be/9Be (second panel) is the best measured ratio to date compared to other GCR clocks and other relevant radioactive
GCR species (see text for details).
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the signal over many years. A systematic survey of these isotopes is hence missing, with the main efforts
concentrated on key isotopic ratios: GCR clocks (i.e., B-unstable species similar to °Be) via the ratios
10Be/9Be (see above), 26A1/27Al [234-236, 229|, 36Cl/Cl [237, 238, 229] and °*Mn/Mn [239-243, 229];
nucleosynthesis clocks (i.e., unstable species constraining the time elapsed between their nucleosynthesis
and acceleration, expected to be ~Myr) with electron-capture unstable species (**Fe, °"Co, **Ni, and their
daughter) [244, 239, 245, 243, 246] or the B-unstable 5°Fe recently detected by ACE-CRIS (cumulating
~ 17yrs of data) [247|; electron-capture decay species sensitive to GCR re-acceleration (ratios of *°V and
51Cr and their daughters) [244, 243, 248]; source abundance anomalies (i.e., isotopes whose GCR abundance
departs from SS ratios) with the striking 22Ne/2°Ne anomaly [249-255] and possibly ®8Fe/*¢Fe [245, 256].

For elements beyond Ni, the only datasets are Z < 38 ratios of isotopes to their elements provided by
the ACE-CRIS experiment at a few hundreds of MeV/n with a precision ~50%, from data cumulated over
more than 20 years [217]. While the number of unstable isotopes grows steadily with mass, and could help
to shed further light to the processes discussed above, the difficulties of pursuing such measurements due
to the very low abundances and the limitation of cross-section models in this range leaves this region as
uncharted territories for now.

8.2. Ongoing and future projects: energy, mass, isotopes, antinuclei and precision frontiers

In this section, a quick overview of operational experiments and future projects is presented. ACE-
CRIS and Voyager satellites, that have recently provided very useful data sets (see previous section), are
not covered: these detectors have outlasted their initial programmes by far, and although they are still
taking data, it is not clear if their recent relevant results (IS spectra for Voyager and Z = 30-40 data for
ACE-CRIS) could be surpassed, extended or reveal new surprises. In the coming years, space experiments
will mostly target the energy frontier, thanks to upgrades (AMS), longer data taking periods (DAMPE and
CALET) or larger acceptance detectors like HERD (High Energy cosmic-Radiation Detection) and HERO
(High-Energy Ray Observatory). The mass frontier will be explored by TIGER-ISS and NUCLEON-2.
Balloon-borne experiments are targeting the isotope (HELIX) and antinuclei (GAPS and others) frontiers.
For the next decades, the sub-percent precision, energy, isotope and anti-matter frontiers will all be targeted
at once, with the ambitious but very uncertain projects ALADInO (Antimatter Large Acceptance Detector
In Orbit) and AMS-100. The reach in terms of species, energy, and precision of these current and future
experiments is discussed below and summarised in Fig. 8. We do not report or discuss interstellar probe
projects to measure very-low energy IS spectra by the end of the century [257].

3.2.1. AMS (2011-2030): prospects and upgrade

AMS will operate for the entire ISS lifetime, through at least 2030. By the end of the mission, AMS will
provide the rigidity spectra for nuclei up to Ni and up to TV energies at least (to 3.7TV rigidities), and
measure the isotope fluxes in the 0.4-12 GeV/n range for light nuclei. An upgrade of the detector is foreseen
in early 2026 by adding a double-layer of silicon micro-strip detectors at the top of the instrument. This
will increase the geometrical acceptance by a factor 3 and add two charge measurement points with almost
no material above. This allows measuring the fluxes of nuclei between S and Fe with similar accuracies as
lighter nuclei, by collecting more statistics (3 times faster with the upgrade), and by improving the rejection
of background originating from interactions of material above the first charge measurement point. The
upgrade will also allow extending the measurements of the positron flux up to 2 TeV, that of the electron
flux up to 3TeV, and to improve the accuracy of the p flux [193].

3.2.2. DAMPE and CALET (2015-2030): sub-PeV energy frontier

All sub-systems of DAMPE remain in excellent condition and the satellite is expected to continue data-
taking for at least a few more years. With more accumulated data, it will be able to reach a few hundred
TeV for individual hadronic CR spectral measurements and at least 10 TeV for electrons. Similarly, the
CALET mission demonstrated stable performance, leading to the extension of its lifetime on ISS until 2030,
with no special operations or interventions scheduled.
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Direct detection CR experiments
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Figure 8: Species (z-axis) and energy (y-axis) reach of direct detection CR experiments. Shown are (i) experiments that
have outlasted by far their initial physics programme but are still functioning (orange and red dotted line boxes), (ii) ongoing
experiments (solid line filled boxes), and (iii) forthcoming or future projects (dashed line empty boxes). See Sec. 3.2 for details.

8.2.8. HELIX (first balloon flight in 2024): °Be/° Be

HELIX is aimed at measuring spectra and composition of light isotopes from He to Ne nuclei, thanks to
a combination of a 1 T superconducting magnet, a high-resolution TOF system, and a RICH detector [164].
The first balloon flight was successfully conducted from Kiruna, Sweden to northern Canada, for 6 days
from May 28 to June 3, 20243, An anticipated longer flight in Antarctica will yield measurements up to
10 GeV/n. Compared to previous ISOMAX (ISOtope Magnet eXperiment) measurements [232], HELIX will
enable, in particular, sampling the secondary production of the GCR clock °Be from a larger volume of the
Galaxy, to provide more stringent constraints on the halo size of the Galaxy (crucial for DM searches).

3.2.4. GAPS (balloon-flight ready) and other future designs (GRAMS, PHeSCAMI): low-energy antinucles
General AntiParticle Spectrometer (GAPS). The GAPS experiment is optimised for CR antinuclei [258] at
low-energy (< 0.25 GeV/n). The experiment consists of ten planes of semiconducting Si(Li) strip detectors
surrounded by a plastic scintillator TOF system. GAPS will undertake a series of Antarctic long-duration
balloon flights, and is ready for its first flight during the 2025/26 balloon season. GAPS relies on a novel
particle identification technique based on exotic atom formation and decay [258], in which antinuclei slow
down and eventually annihilate within the detector. The identification of antinuclei uses the simultaneous
occurrence in a narrow time window of X-rays of characteristic energy and nuclear annihilation products,
providing high rejection power to suppress non-antiparticle background and identify the antinucleus species.
This exotic atom detector design yields a large grasp compared to typical magnetic spectrometers, and allows
for identifying p, d and He CRs. GAPS will provide a precision P spectrum for the first time in the low-energy
range below 0.25 GeV/n [189], and has a sensitivity to d that is about two orders of magnitude better than
the current BESS limits. Though the instrument is optimised for d, the exotic atom detection technique is
also sensitive to ITe signatures [259]. Due to the higher charge, the Ie analysis is even less affected by P
backgrounds than the d analysis, which allows for a competitive He sensitivity in the low-velocity range.

Shttps://stratocat.com.ar/fichas-e/2024/KRN-20240528 .htm
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Gamma-Ray and AntiMatter Survey (GRAMS). The GRAMS experiment is a novel instrument designed to
simultaneously target both astrophysical v rays with MeV energies and antimatter signatures of DM [260].
The GRAMS instrument consists of a liquid argon time-projection chamber (LArTPC) surrounded by plastic
scintillators. The LArTPC is segmented into cells to localise the signal, an advanced approach to minimise
coincident background events in the large-scale LArTPC detector. The GRAMS concept potentially allows
for a larger instrument since argon is naturally abundant and low-cost, compared to current experiments
that rely on semiconductors or scintillation detectors. GRAMS is proposed to begin as a balloon-based
experiment, as a step forward to a satellite mission. GRAMS has been developed to become a next-
generation search for antimatter signatures of DM. The detection concept resembles GAPS’s, relying on
exotic atom capture and decay. However, as the LArTPC detector can provide an excellent 3-dimensional
particle tracking capability, with nearly no dead volume inside the detector, the detection efliciency can
be significantly improved while reducing the ambiguity of antimatter measurements, which is crucial for
discovering rare events. A prototype flight called MiniGRAMS is planned for 2025/26.

Pressurised Helium Scintillating Calorimeter for AntiMatter Investigation (PHeSCAMI). The goal of the
PHeSCAMI project is to study the signatures offered by a high-pressure He target for the identification
of d in space. Exotic atoms are produced by stopping p/d in He gas. The identification uses the delayed
annihilation of antinuclei in He to identify cosmic antimatter species. The typical lifetime for stopped d in
matter is of the order of picoseconds, similar to that of stopped P. However, the existence of long-lived (of
the order of microseconds) metastable states for stopped p in He targets has been measured [261]. These
metastable states in He have also been measured for other heavy negative particles, such as pions and
kaons [262, 263]. The theoretical description of this effect predicts that the lifetimes of these metastable
states increase quadratically with the reduced mass of the system, i.e., a larger delay of the annihilation
signature is expected for d than for P capture in He [264 268]. The project is still at the development
stage [269], but a prototype could be flown as a payload for an Antarctic stratospheric balloon in the coming
years.

3.2.5. TIGER-ISS (2027-2030) and NUCLEON-2 (20277?): ultra-heavy nuclei

TIGER-ISS, scheduled for launch in 2027 [270], is the next step of the TIGER and SuperTIGER project,
whose dataset from the second flight, 32 days in 2019-2020, is still being analysed [271, 272]. It is designed
to measure the abundances of rare ultra-heavy nuclei of energies above 350 MeV/n from B (Z = 5) up to Pb
(Z = 82). The key instrumental difference of TIGER-ISS, compared to SuperTIGER, is the replacement of
scintillator-based detectors by Si strip detectors, to avoid scintillator saturation effects, improving the charge
resolution capability [270]. The instrument will have a geometrical factor of 1.3 m?- sr. In less than one year
of operation, TIGER-ISS will collect as many events as the 55-day SuperTIGER-1 balloon flight [270]. One
of the main advantages of an ISS-based configuration, compared to balloon flights, is that the results will
be free of systematic effects related to nuclear interactions in the atmosphere.

The NUCLEON-2 satellite mission, to measure nuclei from C (Z = 6) to Pb and isotopes from Z = 6
to Z = 66 in the energy range from 100MeV/n to 3GeV/n, is currently under development [273, 274].
The detector design achieves a geometric factor of 0.8 m?- sr with 48 hexagonal modules made of stacks of
40 silicon detectors, composed of 4 double layers of micro-strip tracking devices interleaved by 3 stacks of
10 calorimetric sensors each. NUCLEON-2 will determine nuclei charge and mass by multiple measurements
of £ — dFE along the nucleus trajectory inside the detector, until it stops. The isotope identification per-
formance has been studied on a prototype detector, using test beams of {9Ar at the JINR (Joint Institute
for Nuclear Research) Nuclotron and 13°Xe at the CERN SPS. To accurately calibrate the isotope mass
measurement method, further tests are foreseen in the framework of the DPS project [275, 276] at the NICA
(Nuclotron-based Ion Collider Facility accelerator complex [277] in Dubna. NUCLEON-2 is expected to
operate on a russian commercial satellite at 400 km altitude for at least five years.

3.2.6. HERD (2028-2038) and HERO (2029-2036): going to the Knee

Extension of direct CR measurements towards the Knee requires a significant enhancement of the in-
struments’ geometric acceptance.
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The HERD mission, expected to be deployed on the Chinese Space Station by 2028, is a leap forward for
calorimetric experiments [278]. It will feature the first 3-D imaging cubic calorimeter, which allows accepting
particles from 5 sides. This enables achieving the geometric acceptance of about 2m?-sr — nearly one order
of magnitude more than the current largest calorimeters (DAMPE and ISS-CREAM). With a thickness of
about 55 radiation lengths and 3 nuclear interaction lengths, HERD will probe CR protons and ions up to
10PeV, and CR electrons up to 100 TeV. Among the scientific goals of HERD are the measurement of the
CR elemental composition and spectra up to the Knee, and the search for indirect DM signatures in CR
electrons and ~-ray spectra. The response to hadrons of a large-scale CaloCube, similar to HERD, has been
recently investigated using data collected at the CERN SPS accelerator, at energies of a few hundreds of
GeV [279].

Similarly, the HERO project will employ a heavy ionisation calorimeter in a 47 acceptance design to reach
a geometric acceptance of at least 12m?. sr for protons, and at least 16 m?-sr for nuclei and electrons 280,
281]. The calorimeter will be surrounded by multi-layer silicon detectors, able to measure absolute charges
up to Z ~ 100. HERO will measure the spectra of proton and nuclei in the energy range from 1TeV to
10PeV, and electron plus positron and v-ray energy spectra from 100 GeV to 10TeV [280]. The HERO
mission will operate for at least 5 years on a Russian satellite. Designs with heavier calorimeters, reaching
geometric acceptances up to 60 m?. sr, are being considered to match the payload capability of the Russian
heavy and super-heavy launch vehicles, currently under development and expected to be ready not earlier
than 2029 [282].

3.2.7. ALADInO and AMS-100 (beyond 2040): sub-percent precision and energies up to the Knee

The qualitative leap forward on direct CR measurements in space is expected with the deployment
of large high-temperature superconducting magnets. Currently, two conceptual designs based on large-
acceptance magnetic spectrometers equipped with deep 3D imaging cubic calorimeters are being developed,
ALADInO [283, 284] and AMS-100 [285]. The combination of a magnetic spectrometer with a calorime-
ter allows their cross-calibration and precise determination of rigidity and energy scales as in AMS. Both
ALADInO and AMS-100 are designed to be placed at the Earth Lagrange Point 2, to maintain a stable
cold environment for the magnet operation. Either of the two instruments is anticipated to start science
operation not earlier than 2040 [285, 284].

The AMS-100 instrument has a solenoidal magnetic field configuration with a magnetic spectrometer
acceptance of 100 m?-sr, reaching an MDR of 100 TV, and a calorimeter of 70 radiation lengths and 4
interaction lengths with an acceptance of at least 30 m?-sr. AMS-100 is expected to measure the energy
spectrum of electrons and positrons up to 20 TeV and 10 TeV, respectively, the rigidity spectrum of p up
to 10 TV, and the energy spectra of nuclei (up to at least Ni) up to 10PeV. AMS-100 features also a TOF
system with a 20ps time resolution, allowing to search for He and to measure d in the energy range from
0.1 GeV/n to 8 GeV /n, with a sensitivity of 3x 1071 (m? s st GeV/n)~! in 10 years of data taking. AMS-100
will also be able to perform detailed studies of diffuse «-ray emission and v-ray sources up to 10 TeV, with
the ability of resolving structures with angular resolution comparable to modern X-ray telescopes.

With a much smaller payload mass (6.5 tons compared to the 40 tons of AMS-100), ALADInO has a
magnetic spectrometer acceptance larger than 10 m?. sr, with a toroidal magnetic field setup and a calorime-
ter of similar acceptance, with 61 radiation lengths and 3.5 interaction lengths. ALADInO reaches a MDR
better than 20[, TV, and will measure the energy of electrons and positrons up to 10 TeV with 2% resolution.
It is expected to measure the rigidity spectrum of P up to 10 TV, the energy spectra of proton and He nuclei
up to 10PeV, and those of heavier nuclei (up to at least Ni) up to 1PeV [283]. The ALADInO setup will
also include a TOF with time resolution better than 100 ps, allowing to measure the d flux up to 4 GeV/n
and to search for He with a sensitivity better than 1071°(m2s sr GeV/n)~! in the first 5 years of operation.

4. Cross-section needs for GCRs: current vs. sought precision and energies

In this section, the reactions in terms of projectiles, targets and products, energy coverage, and the cross-
section precision needed to be able to fully take advantage of current high-precision CR data are detailed.
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These desired precisions are not the same for all reactions and all energies, as CR fluxes in which these
reactions are involved are not measured with the same precisions, as discussed in Sec. 3.

Technically, the propagation of uncertainties goes through the GCR transport equation, and propagating
them back to an observed GCR flux precision — to finally derive a desired nuclear data precision — is not
completely straightforward. These questions have been investigated recently in depth for the production
cross-sections of GCR nuclei and antinuclei. Indeed, both are pivotal to take full advantage of current CR
data, e.g., for the DM searches discussed in Sec. 2. After introducing the transport equation and several
definitions (Sec. 4.1), the reactions needed for the two above cases, i.e., nuclei and antinuclei production, are
detailed (Sects 4.2 and 4.3). Many other reactions (inelastic, annihilation, etc.), relevant for GCR studies or
by CR experiments themselves to deliver their promised precision, are also reviewed (Sec. 4.4), in particular
with respect to their status and their contribution to the error budget.

4.1. The key transport equation for GCRs: definitions and relevant cross-sections

For a GCR species j, the central object of interest is the time, space and momentum-dependent function
¥J (t,x,p), which is the ensemble and angle average (over realisations of magnetic inhomogeneities and
momentum direction {2, respectively) of the single-particle distribution function f7(¢,x,p) entering the
Vlasov—Boltzmann equation. The function 17 is connected to the flux by ® = (v/(47))y7, where v is the
particle’s speed. It obeys the transport equation (see, e.g., [286]):

i — N S R 10 (5, Oy ,
V. DV . J_2\. ‘ . D, — | = 1
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Oy 7 () ] T Do,

The left-hand side of Eq. (1) contains transport terms of collisionless origin, i.e., from the scattering onto
the electromagnetic field irregularities. The second to the fifth term correspond to the spatial diffusion
with diffusion tensor D(%, E), a convective term associated to the ISM plasma velocity field %(x), adiabatic
energy changes, and reacceleration (i.e., magnetic inhomogeneity diffusion in momentum space) controlled
by Dpp. The latter two terms are notably involved in the so-called first and second order Fermi acceleration,
respectively. The right-hand side, besides a possible primary source term ¢’ (first term), accounts for
collisional effects, described by terms representing continuous losses (second term), catastrophic sinks (third
term) and possible secondary sources (last term). Catastrophic sinks include both decays, if the species
is unstable with lifetime at rest 77,., and inelastic interactions over all possible targets ¢ of the ISM with

. . : j+t
density nlgy, quantified by the cross-section o7 tf, so that
FJ — 1 t Jj+t 9
tot = —5 T 2 TMSM Y Tipel - (2)
Tdec t

In practice, only H and He have significant densities in the ISM to be targets relevant above the percent
level. The last term in Eq. (1) represents a generic integral operator acting on 1, which is more easily
expressed in terms of the kinetic energy Fy = E — m, rather than momentum variables*, so that
. dotttod 4
W T = Yk [ B0 T (B (B, 3)
7 dEy

where we introduced the differential cross-sections to produce the secondary particle j, in the collision of the
primary ¢ with the target ¢. They can be written as a function of the kinetic energy of the primary parent,
E}, and of the secondary daughter, Eﬁ, as

d ifcf;’ﬁx o ) Nt
—er— B B) = o (B) ——— (Bl By) (4)
k k

4Note that ¥(Ey) = ¥(p(Ey)) - dp/dEy = 871 - ¥ (p(Ex)), since p? = (m + Ey)? — m? = 2mE, + EZ.
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with dA /dEf{ the multiplicity spectrum of the species j in the collision of ¢ with ¢. Since data are typically
scarce, regularities motivating semi-empirical formulae turn out to be useful in interpolating between and
extrapolating beyond measurements, or to estimate cross-sections involving nuclei for which no measurement
exists. 4

As an example of some of these regularities, away from the thresholds, dA /dE} is only weakly dependent
on B! and depends on i and ¢ mostly via a normalisation. To a good approximation, in spallation reactions,
the kinetic energy per nucleon Ey,, = Ex/A, where A is the mass number, is conserved (we come back to

this in Sec. 4.4), so that
AN

dE]

(B, ) = iy (B - Tk ) )
P ] 7

Fragmentation and spallation cross-sections are hence strategic ingredients in numerous astroparticle
physics processes related to the acceleration, propagation and detection of cosmic particles, both charged and
neutrals (photons, neutrinos). In astrophysical settings, they limit for instance the maximum acceleration
energy attainable in a source, and for the propagation from the source to the detector, they enter both as
energy-loss channels and, above all, as source channels of the so-called secondary species [287]. In order
to isolate these effects from other interesting and poorly known astrophysical aspects, however, one should
reduce the current cross-section uncertainties below the differences spanned by several viable astrophysical
scenarios.

4.2. Isotopic production cross-sections

The history of cross-sections and GCRs goes a very long way. Indeed, nuclear/particle and CR topics
were one and the same until the 1950s, before becoming two communities going their separate ways and
addressing different questions. With the flight of many balloons and space experiments from the 1950s
to the 1970s, it was realised that the poor accuracy of the nuclear cross-sections was a limitation for the
interpretation of their data (e.g., [288]). The situation back then had strong similarities with the current
one, with dedicated studies to identify the needed reactions and then the set-up of long term programs for
these new measurements (that started in the 1980s). Most of these data are still of use and remain the most
accurate for many reactions.

Below, the procedure devised in Refs. [289, 207] is recalled to provide a priority list of nuclear produc-
tion cross-sections to be measured and improved, in order to profit from the current CR data precision.
Throughout this section, the straight-ahead approximation Eq. (5) is used, in which the kinetic energy per
nucleon Fjy /, is conserved in nuclear reactions. As a result, the quantities of interest are the total (and not
the differential) production cross-section (rijg:k and their uncertainties, with ¢ the GCR projectile, j the
ISM target and k the fragment. Actually, for GCR propagation studies, cumulative cross-sections are used,
ie.,

Tonmt = Optaa+ D Opraa ! Br(g = k). (6)
gEghosts
In this cumulative, the so-called ghosts are short-lived nuclei with half-live < 100kyr, i.e., decay times
much shorter than the propagation time, ending their decay chain into fragment k& with a branching ratio
Br(g — k).

In practice, a network of more than a thousand reactions is involved for Z < 30, and many more for
ultra-heavy nuclei. Nuclear data and codes need to provide both the direct and ghost production of any
GCR fragment. To illustrate the severity of the situation and of the needs, a brief summary of the existing
nuclear data and models and their limitation is provided.

4.2.1. Status of nuclear data and models

The ISM is made of ~90% of H and ~ 10% of He in number, with only traces of heavier elements.
With the few percent precision of CR data, the need to include the interactions with C and O in the I[SM
is getting closer and should be re-evaluated in the future. But for current data, the requirements on the
production cross-section precision is typically the percent level on H and tens of percents on He (see next
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section). Actually, for the latter, very few data exist, and all GUH studies rely on the scaling proposed more
than 35 years ago in Ref. [280], which has limitations, e.g., for the production of light elements from heavy
projectiles [37].

Reference nuclear data in CFE studies. Nuclear data are obtained from two main techniques: (i) heavy
ion beams on H effective targets, i.e., liquid hydrogen or CH; and C subtraction, and outgoing fragments
identified by a spectrometer; (ii) targets of heavy elements irradiated by a proton beam with the cross-
sections determined either by ~-spectrometry, whenever fragments are radioactive isotopes, or after chemical
processing by mass spectroscopy for the long-lived and stable isotopes produced.

The current body of data and models (based on these data) used for contemporary GCH studies is a
combination of a patchy collection of reactions measured by the nuclear and particle physics community,
with some data dating back to the 19508 and systematic measurements led by different groups over the
last 40 years. One figurehead of the CR community, Bill Webber, led and coordinated many efforts over
two decades, 1980s to 2000s, using mostly Z < 26 beams, to measure isotopic production cross-sections on
liquid hydrogen, carbon and methylene CH, targets, in the energy range ~400-800 MeV /n [281, 280, 202—
303]. Extensive efforts were also driven by the study of space-flight radiation shielding applications (see
Sec. 6.2) and the study of cosmogenic isotopes [304, 303] (see Sec. §.1): for the former, a large body of
data, using beams of light to heavy species, were obtained in the 2000s by Zeitlin’s group [306-318], but
for charge-changing cross-sections only (not directly of interest for (iCH studies); for the latter, extensive
measurements using proton [31i] and neutron [31Z] beams were carried out from the 1990s, and over two
decades, by R. Michel’s group [$13-322], and also by J. Sisterson’s group [: 29]. To this list, a relatively
recent and VCIY useful body of high-precision Fe fragmentation cross-sections can also be added, down to Li
fragments [338, 331]. However, it is fair to say the reactions of interest for the nuclear physics community
nowadays 1nvolve ultra-heavy species, highly deformed nuclei, and/or short-lived radioactive beams, which

YO

is not providing further data for GCR science.

Nuclear codes status and perspectives. To account for the lack of data for many reactions and energies,
dedicated formulae were dcvolopod as early as the 1960s [332]. Parametric codes soon followed to describe
both the inelastic (see Sec. 4.4.2) and production cross-sections, with the semi-empirical parametrisation in
the YIELDX code of Silberber; g and Tsao’s group [333—341] and in the WNEW code of Webber and coworkers [29€,
302, 303, 301, and other efforts (e.g., [343] — we refer the reader to Sec. 5 of Ref. [344| for a 19(’911’(
detailed review of nuclear models and the various interaction mechanisms). Both were developed in the
1980s and updated till the 2000s, and by comparing the prediction of these codes (fit on older data) to
new nuclear data, the former was found to be better (resp. worse) than the latter for reactions without
(resp. with) data [34%, 340]. These codes remain the underlying models (original FORTRAN code) of the
widely used numerical GALPROP package |346| for the propagation of relativistic Z < 30 G{'Rs. However, to
improve on these models, GALPROP combines several parametric formulae re-normalised to data and direct
)] and also uses the parametrisation of Ref. [351] for light isotopes. The overall accuracy
of these codes is difficult to assess, but is estimated to be in the 10%-20% range. Recent works have also
shown the importance of continuously importing more recent nuclear data and sometimes less important
(R production channels to keep improving these nuclear predictions [352, 353, 87, 233|. It is also worth
noticing that these parametrisations need further improvements, as they assume energy-independent cross-
353].

sections above a few GeV /n, whereas inelastic cross-sections are known to rise ,
Outside the CUR community, othel parametric codes exist (EPACS [336-358], SPACS [35%, 364, FRACS
i5], TALYS [3 MO simulation codes and event generators (FLUKA [367],

[381], NUCFRAG [3GZ2-3610
—&73|, SHIELD-HIT [374], etc.). These models are bench-

MCNP6 with CEM and LAQGSM |: 37
marked and compared with overall fd.ll agreement (see also Sec. §.2.1). The Geant4 framework [373] also
provides many options, including specific cascade models in the above list, that can be used, combined or
compared. In terms of accuracy, these transport codes cannot replace the above-discussed ones tailored
for GOUR studies, but they could probably bridge some gaps in the data for specific regimes, despite this
requiring dedicated studies and careful evaluations.
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Overall, there is no free lunch with nuclear cross-section data and codes. Without new data, the margin
of progress is probably thin, and will be based on painful compilations of missed data in the literature and
possible updates and systematic benchmarking of existing codes. Machine learning techniques could possibly
bring some improvements, but this remains to be proven. Gathering new high-precision nuclear data seems
to be the only path to go forward.

4.2.2. From GCR data precision to desired cross-section precision
The impact of the production cross-section ogp. = a“;tf;l_m, on the flux 97 of a given GCR isotope or
element j, is quantified in terms of the relative difference between the standard or reference flux calculation,

wref, and the calculation where this cross-section is set to zero, ¢, _,. We thus define the coefficients

_ ,ll)gabc* O(Ek/l’l)
ref (Ek/n)

whose ranking is equivalent to rank the most important production cross-sections [289]. These coefficients
vary with energy, because the various GCR progenitors contributing to j have different energy dependence,
owing to the energy-dependent solution of the transport equation and, obviously, to the energy dependence of
Oabe itself. Moreover if we decompose 1/)tot into a primary and secondary origin, i.e zptot = 7/)pnm +,., then

by definition ¢ . does not depend on the production cross-sections, and f,p. is roughly the contributing
fraction of the reaction a + b — ¢ to .. [289].

As shown in Ref. [289, 207], the f/, = coefficients enable to link the cross-section uncertainties to the
predicted flux uncertainties. Different plausible assumptions on the presence or absence of correlations
between these cross-section datasets (i.e., in practice, on the modelling of the cross-sections based on these
data) lead to different error propagation formulae. We report two noteworthy cases below, dropping the
energy dependence for simplicity:

FeBryn) = : (7)
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where fI, =i,/ d)f()t is the secondary fraction of the flux j considered, Acgpe/0ape the relative uncertainty
of the nuclear cross-section, Ng; is the number of a+b reactions considered in a new measurement campaign,
and o4, = o) is the inelastic cross-section of reaction a 4 b (discussed in Sec. 4.4.2). These formulae can
be used to decide which reactions need to be measured in order to reach a relative precision on the modelled

flux, 47, better than e. The two cases are useful in the following situations:

o Eq. (8) for rough estimates of improvements brought by new measurements: this case assumes that the
data gathered so far — and nuclear models based on these data — have uncorrelated uncertainties for
fragments of the same projectile, but correlated uncertainties for different projectiles. This formula can
be used to illustrate how the flux uncertainties can be brought back below the sought precision €, when
a growing number of the most important reactions are perfectly measured (e.g., see Fig. 3 in [207]);

o [gq. (9) to determine the number of reactions Ngp and beam time to reach (Ay/1¢) < e this case
assumes a multinomial distribution of the measured fragments ¢ in the a+b reaction, an approximation
that fails for light fragments because of the multiplicity. As shown in Ref. [207], demanding for all
measured reaction that

:VJ ( sec C¢J1b Z C(JLb (10)
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is the optimal scheme to minimise the beam time, as it minimises the number of Nyot = >, Nasp
reactions that must be measured. The use of this equation is illustrated below to determine a wish
list of measurements.

4.2.8. A game-changing wish list for Z < 30

The above formulae can be used to set up a wish list for any (3R species, energy, and i data precision.
However, this is a tedious and incremental process, requiring a careful review and update of the best nuclear
data available. So far, only GOUR fluxes from Li to Si have been analysed in detail [388, 207], relying on the
USINE propagation code [374], and production cross-section parametrisations from GALPROP [248] updated
for Li, Be, B and F isotopic production as described in Ref. [%, 377]. The study of light nuclei (Z < 3) and
heavier ones (14 < Z < 30) are not published yet, but preliminary results are shown in Table i.

As discussed in Sec. 3.1.6 and shown in Fig. 2, the most informative GOUR nuclei are the secondary
species, namely d, 3He, LiBeB (and their isotopes), F, sub-Fe Z = 21-25 and also some {3UR clocks. The
precision of their measurements in CHs is illustrated in Fig. 7. Actually, the consistency of a pure secondary
origin of the d [378, 374, 96, 94], Li 8§0-382, 97] and F [2¢ 7] fluxes is particularly debated in
the literature in the light of recent AMY data, respectively Refs. [“‘] [ 204] and [204]. The 1°Be case is also
an issue [233, 333, 34, 384], and the production cross-sections for Z = 21-25 elements will become a new
focal point as soon as AMS will release its data. As highlighted in Sec. %, these species have a key role in
determining the transport parameters, and also to calculate accurate backgrounds for IYM searches: they are
also maximally sensitive to the production cross-sections, as the relevant fluxes are directly proportional to
them. Mixed species, like N, Na or Al, come second in terms of priority, and require fewer reactions to reach
the same modelling precision; indeed, their secondary production, overall, is only a fraction of the total flux.
Finally, purely primary species like H, He, O, Si and Fe are just not impacted at all by these production
cross-section uncertainties and are irrelevant in this context. There are two extreme and complementary
situations regarding how to carry out new nuclear data measurement campaigns, which are motivated by
past measurements and existing experimental setups, impacting the choice of the wish list. In all cases, the
energy range of interest is from a few hundreds of MeV /n up to a few GeV/n (same projectile and fragment
energy) and ideally up to a few tens of GeV /n for a few reactions, in order to test the expected mild energy
dependence of the cross-sections.

o high-precision measurement (< 1%) of a few specific production cross-sections over the energy range
~ 0.1-10 GeV/n: in that case, the goal is to determine the energy dependence of the most important
reactions, as available in the ranked list shown in Table 1. In there, the reactions for Li, Be, B
and F are taken from Ref. [207], and those for d and *He isotopes and Z = 21-25 elements from a
preliminary analysis following the same steps. The cumulative weight of tens to hundreds of reactions
with individual fepe < 1% can reach < 20%, with most of these reactions having no data. Moreover,
even more important reactions sometimes have inconsistent data, or only one or two energy points
below a few hundreds of MeV /n, still in the rising or resonance part of the cross-section (i.e., before
having reached their asymptotic high-energy value).

o high-precision measurement of all fragments of many reactions at once at a unique energy: in that
case, the recommendation is to evaluate the number of each reaction to be measured in order to reach
a desired flux precision of e. This is done by using Eq. (%) and the f7, coefficients (reported for Li
to Si fragments in Ref. [#37]). As an illustration, Table 2 reports the number of reactions 1equned
to reach a ~1% uncertainty (i.e., below the best AMS ~ 3% accuracy) on Li, Be, B and F GCH
data. 1‘he\se numbers were prepared for the test case of measurements at NA61/SHINE (a 8
[ ' in wient), where systematic uncertainties are < 0.5% [333]; see Sec. !
&7] for more dctals on the pilot run.

In Tables 1 and 2, the most abundant GO isotopes (“He, 12C, 160, 20Ne, 24Mg, 28Si, %Fe) are recognised
as the most 1mp0rtant progenitors of the ranked reactions. The key target is H, but reactions on He
contribute to ~10-15% of the 3CR fluxes overall. Concerning the fragments, as seen in Table 1, the main
channels always involve direct production of the isotopes, as well as unstable short-lived parents of the
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Table 1: Wish list of individual reactions sorted according to their flux impact f?
CR secondary fluxes (only f2, > 1% are shown). We highlight reactions with short-lived fragments (bold), reactions without
nuclear data (1), and the ranking after which the cumulative is > 50% (*). Adapted from Tables V, VI, VI, and XI of Ref. [207]
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Table 2: Required number of interactions to be recorded, oredered by increasing charge and mass of the projectiles, in order
to reach a modelling precision < 1% on GCR fluxes Li, Be, B and F. Adapted from Table IV of Ref. [207].
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Figure 9: Illustration of the existing nuclear data below (blue disks) and above (red circles) 2 GeV/n, and their relative precision
(size of the circles). We restrict ourselves to the matrix of projectiles (y-axis) and fragments (z-axis) formed from the reactions
(black empty squares) contributing to at least 1% of the flux of GCR secondary species Z < 30, as listed in Table 1). The
grey zone shows forbidden production regions (Ay > Ap): the fact that some nuclear data are reported for 52Cr into %*Mn,
illustrates that some measured cross-sections come from projectiles in natural abundances (i.e., a mix of several isotopes, some
heavier than the one reported) instead of single isotopes reported in this figure (for simplicity).
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Figure 10: Forecast of the impact of new cross-section measurement campaigns on the normalisation and slope of the spatial
diffusion coeflicient entering the GCR transport Eq. (1), namely Do—6 (left panel), p background calculation at 10 GV (middle
panel) and diffusive halo size L determination (right panel). Each figure shows 1o contours or distributions for current nuclear
data uncertainties (red solid lines) and newly measured cross-sections according to Table 2 (magenta dashed lines), along with
the irreducible/intrinsic uncertainty from current CR data (solid black line). For D, we also show the uncertainties related to
their direct production cross-section (blue dotted line), see Sec. 4.3. Adapted from [207].

GCR element under investigation. However, intermediate steps reactions, like the production of C and O
isotopes from heavier nuclei always show up: this explains why the strategy of measuring all fragments for
all reactions of interest (Table 2) is always the best option, if experimentally possible, to decrease the overall
uncertainties on the modelled GCR fluxes. Figure 9 illustrates, for the most relevant reactions identified
with black squares (matching those listed in Table 1), that (i) many reactions either have no data (empty
squares) or data below 2 GeV/n only (blue disks and no red circles), and (ii) for the cases where data exist
in the asymptotic regime above 2GeV/n (red circles), their uncertainty is typically at the 20% level (as
captured by the size of the circles).

To further prove that these measurements are worth doing, we can use the wish-list reactions given in
Table 2 to sample the cross-sections before and after the new measurements. By repeating GCR analyses of
secondary-to-primary ratios [26], the radioactive clock ratio 1Be/?Be [233] and P background calculations
[35], we can forecast the impact of these new measurements [207]. Figure 10, adapted from [207], shows that
the improvements on several key GCR parameters is drastic, and a sure game changer for the field.

4.2.4. Uncharted needs for Z > 30 reactions

The situation is far less clear for ultra-heavy nuclei. As illustrated in Fig. 6 and anticipated in Sec. 3.1.5,
the GCR data in this mass range are very scarce and were mostly taken several decades ago. However, in
the range Z = 30-40, the interpretation of the recent high-precision ACE-CRIS data [217], the forthcoming
SuperTIGER [271, 272], and the future TIGER-ISS [270] and HERO [282] data (see Sec. 3.2.6), will also hit
the cross-section uncertainties bottleneck. Besides, even the interpretation of the past Z > 40 data might
also be limited by these uncertainties. The abundance pattern in Fig. 2 shows no dominant primary species
(contrarily to C, O, Si and Fe for Z < 30), meaning that instead of a few dominant progenitors (as for
Z < 30 species), many reactions from a broad range of elements will contribute equally in the modelled
fluxes.

The efforts to perform new measurements have already started at Brookhaven, see Sec. 5.3.2. However,
as for the lighter nuclei, a systematic analysis of the reactions to be measured with high priority must be
carried out. The YIELDX code 340, 341], which gives the best results for unmeasured reactions, is appropriate
for such study. But a systematic compilation of existing nuclear data is mandatory, to first renormalise the
code before applying the predictions. Also, the number of short-live nuclei grows with A, so the decay
branches of CRs, compiled more than four decades ago in Ref. [388], must first be updated from recent
nuclear properties [389-391], in order to have the full list of ghost nuclei entering Eq. (6).
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4.8. Production cross-sections relevant for indirect DM searches

As discussed in Sec. 3.1.2 and 3.1.3, the indirect search for DM in antimatter GCRs is pursued since
decades. CR P, as well as antinuclei, positrons and ~ rays, are very sensitive probes for DM annihilation or
decay in our Galaxy, as discussed in Sec. 2. The first data on antimatter were collected by balloon-borne
detectors [160, 190], then followed by satellite [162, 186, 99], and space-based experiments, especially by AMS
on the ISS [3, 101, 392]. In particular, the discovery of the rise of the positron fraction data above 10 GeV,
found by PAMELA [99] and Fermi-LAT [102], and confirmed with unprecedented precision by AMS [100],
have been the subject of a broad theoretical debate. In fact, these very high-energy positrons cannot be
explained with the secondary production alone, but may originate from primary sources, such as pulsar wind
nebulae [103, 393, 105], supernova remnants [394] and DM annihilation or decay [395].

The modelling of all the above fluxes suffer from several uncertainties, including propagation uncertainties
driven by nuclear cross-section uncertainties (see previous section). The calculation of exotic (primary)
fluxes suffer in particular from the diffusive halo size uncertainty (see Section 4.1), while the calculation
of background (secondary) fluxes are dominated by the production cross-sections uncertainties. The cross-
sections entering the computations of the secondary flux, which acts as a background when searching for an
exotic component, are the singly differential production cross-sections, do*™/?*+X(E! E*)/dEF, of a GCR
projectile i (with energy E?) interacting on the ISM target j to produce a GCR species k with energy E*.
In the Galaxy, the set-up is that of a fixed-target (ISM-like) experiment, and the secondary source spectrum
is computed from an integration of the inclusive cross-section, do'™/7**X(E! E*)/dE*, over all the GCR
spectrum energies E?, as seen in Eq. (3). However, the above cross-section derives from the measured, more
fundamental and convenient, double differential Lorentz invariant cross-section:

e E d%¢

with F, pr, and pp the energy, longitudinal and transverse momentum of the outgoing species f. The radial
and Feynman scaling variables zp = E*/E} . and zr = 2pf /y/s, where E* and p} are the energy and
longitudinal momentum in the centre-of-mass frame, are also used. The centre-of-mass energy and GCR
projectile energies are linked by /5 = (m7 +m; + 2E;m;)'/2, where m; and E; are the mass and total
energy of the GCR projectile, and m; the mass of the ISM target (at rest).

The production cross-sections involved in the calculation of secondary p are discussed in Sec. 4.3.1, those
for antinuclei in Sec. 4.3.2, and those for positrons and - rays in Sec. 4.3.3. For each GCR species, the
current status of nuclear data is presented, and then the reactions — in terms of projectiles and targets, the
energy range, and the cross-section precision —, needed to fully exploit current and near future CR data for
DM searches, are listed. The role of nuclear codes is commented in Sec. 4.3.4, along with a synthetic view
of a wish list in Table 3.

4.8.1. Antiprotons: status and game-changing measurements

Concerning P, the pp channel dominates the secondary production, alongside the contributions from Hep,
pHe and HeHe, either in the GCR projectile or as ISM target, the rest coming mostly from interactions
of heavier abundant GCR species (CNO, NeMgSi, and Fe) on H [396, 397, 35, 398, 35|. Data on the pp
channel have been collected by the fixed-target NA49 experiment [399] at /s = 17.3 GeV, and by the NA61
experiment at 4/s=7.7, 8.8, 12.3 and 17.3 GeV, corresponding to beam proton energies Ex = 31, 40, 80
and 158 GeV, respectively [400]. Lower-energy data are available at /s = 6.1 and 6.7 GeV [401], and at
Vs = 6.15GeV [402]. Data from the BRAHMS (Broad RAnge Hadron Magnetic Spectrometers) experiment
have been taken in pp collisions at /s = 200 GeV [403]. Data on p*He have been recorded by the LHCDb
(LHC beauty) collaboration at CERN in fixed-target mode, using the SMOG (System for Measuring Overlap
with Gas) device [404] with a proton beam momentum of 6.5 TeV /¢ (corresponding to /s = 110 GeV). More
recently the AMBER (Apparatus for Meson and Baryon Experimental Research) collaboration, at the CERN
SPS M2 beam line, has collected data with a proton beam impinging on a liquid *He target at six different
momenta, from 60 GeV /¢ to 250 GeV/c (corresponding to /s = 10.7 GeV and 21.7 GeV). Data on pC have
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also been collected by NA49 [405] at /s = 17.3 GeV. A full discussion on all the P cross-section data and
their role in the context of cosmic source spectra can be found in Ref. [398].

The current modelling of reactions on He of heavier GCR projectiles is based on a rescaling of the models
derived on the pp reaction channels, and denoted o}, hereafter. The latter is separated in a prompt and
a delayed emission originating from the decay of strange hadrons, labelled A in the following. Assuming

pdelayed _ T delayed 1491 one can write:

inv — Yinv

0_5 — O_ﬁ,ﬁ prompt + O_ﬁ,ﬁ delayed — 0_1_3 prompt(2 + AIS + QA/\) 7 (12)

inv inv inv inv

with the isospin enhancement and the hyperon factors defined as:

7 prompt P delayed
_ 0inv / _ Oinv 1
Alg = 1 and Ay =0 (13)
P prompt P prompt
inv Tiny

The currently available data are insufficient to establish distinct parametrisations for the above individual
cross-sections. The parametrisations are therefore rescaled to the prompt emission and to the enhancement
terms Arg and Aj. The dominant production comes from the prompt emission, with significant additional
contributions from hyperon-induced channels like A and . The T contribution requires the knowledge of a
possible isospin asymmetry, that could induce a possible enhancement Arg of T over p production.

The total secondary GCR P production uncertainty ranges about 15-20% [42, 398, 35]. It is primarily
driven by the p+p — p+ X cross-section and receives contributions from all nuclei channels, dominated by
the ones involving He. To enhance the accuracy of current models — to be on par with CR data precision (see
Sec. 3.1.2 and Fig. 10) —, a set of key p production measurements of the Lorentz-invariant fully differential
cross-section (oiny) is essential for:

e Prompt emission from pp at better than 3% precision: first and foremost, new measurements should
focus on reducing uncertainties of p+ p — P+ X across the /s = 5-100 GeV range, and cover regions
with pr £ 1GeV/c and |zp| < 0.3;

e Production on He target with uncertainties below 5%: additionally, measurements in pHe reactions are
needed. The first-ever data on the inclusive cross-section p + He — p + X were collected by the LHCb
collaboration at CERN, using proton beams with Fy = 6.5 TeV and a fixed He target (see Sec. 5.1.1).
These data were analysed in [398], although the centre-of-mass energy of the provided data is higher
than the energy of the p measured by AMS [392]. An extensive coverage of oy, in the /s = 5-100 GeV
range for pHe would allow an independent parametrisation for this channel.

o Isospin enhancement Arg with uncertainties below 5%: an improved determination of the isospin
asymmetry, affecting the contributions of 1, is needed. The potential isospin asymmetry is particularly
significant, as approximately half of the p in GCRs originate from the decay of long-lived m. However,
due to the limited experimental data on T production, this contribution can only be inferred using
symmetry arguments. Preliminary results from the NA49 experiment [41] suggest that T production
in pp collisions exceeds P production, indicating the presence of an asymmetry; see also Sec. 5.2.1 and
Fig. 17 for future measurements from AMBER and LHCb. To evaluate this asymmetry accurately,
data on oy, for T production in pp collisions, or for p production in pp and pn collisions in the
/s = 5-100 GeV range, are critically needed.

e Strange hadrons factor Ay with uncertainties below 1 0%: the contributions from strange hadron decays,
in particular the total A production in both pp and pHe reactions in the 1/s = 5-100 GeV range, should
be measured, with uncertainties at the 10% level [42].

For all these reactions, pushing the lower limit of 1/s to values close to the P production threshold (~ 3.8 GeV)
will be also extremely helpful for interpreting upcoming low-energy CR data from GAPS [258]. In order to
get the GCR P modelling uncertainties below a few percent, two conditions are required: first, the above
quoted P production precisions must be achieved for all production channels; second, significant improvement
must be made on the nuclear production cross-sections, also responsible for dominant uncertainties on the
GCR P flux modelling (see Sec. 4.2.3).
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4.8.2. Antideuterons and He: coalescence-driven uncertainties

While not detected in CRs vet, d are expected to be even more sensitive probes than p for DM searches.
Compared to possible DM production with a thermal cross-section, the secondary contribution of d is
suppressed by a factor 10 or more at kinetic energy per nucleon below 1 GeV/n [406-408]. This is due to
the fact that the secondary production has to satisfy the baryonic number conservation, and thus GCR p
must have a total energy in the lab frame of at least 17m, to produce an d (the corresponding value for p
is Tmy,).

Formation of antinuclei. The GCR spectra of d and He are typically calculated using the so-called coales-
cence models [409-411] both for secondary production and DM contributions. These models assume that
individual P and T form antinuclei when their relative momentum falls below a certain threshold, referred to
as the coalescence momentum. A first consequence is that the model describing d and He astrophysical pro-
duction is directly impacted by the P production cross-section uncertainties described in the previous section.
This coalescence parameter cannot be derived from first principles and varies depending on the production
mechanism of the nucleus, such as whether it originates from different final states in DM annihilation or
hadronic interactions. Alternative coalescence models, employing a quantum-mechanical Wigner function
formalism [412-416, 53, 54], form the basis of recent advancements in calculating (anti)nuclei production
from hadronic interactions, using MC simulations. We also stress that, the coalescence models are not the
only approach to produce light nuclei in hadronic interactions. They can be produced by the statistical
hadronisation of hot quark matter [409] which can be produced even in light systems [417]. This should
be taken into account in particular in the description of pp data. Further studies and data are needed to
understand if this could replace the coalescence model, or if both mechanisms play a role at the same time.

Existing nuclear data. The dataset for d production from pp collisions, which is relevant for the secondary
flux, is quite rich thanks to the ALICE experiment, which provided data between 900 GeV and 13 TeV [51, 46—
50], as described in Sec. 5.1.2. However, near the production threshold, only the Serpukov data at pj, =
70 GeV /c [418] are available. For the production relevant for d primary flux, there are currently two data
points from ARGUS at the Upsilon mass resonances 1S, 25, 4S and continuum ~ 10 GeV [44], and one data
point from ALEPH at the Z boson resonance [45]. The latter is typically used to tune the DM production
of d, because the Z boson production from ete™ annihilation is assumed to be similar to the DM particle
annihilation process.

Antideuteron and e flux modelling uncertainty. For primary antinuclei fluxes, Ref. [52] showed that once
the coalescence models are tuned on the ALEPH data, the predictions for the d yield agree within 10%
for high mass DM, despite the very different assumptions used in the simple coalescence and the Wigner
function approach. For low mass DM, only the assumption of a decay into WTW™ pairs gives a comparable
prediction. In contrast, a decay of DM into bb pairs shows a significant enhancement of factor two for
the Wigner function formalism using the Argonne v18 wave function. This indicates that the theoretical
uncertainties in d production are no longer a major limitation, at least for high-mass DM and several
channels for low-mass DM: the main limiting factor remains the error on the ALEPH data, of the order
of 30%. While the Wigner function formalism is free of this parameter dependence, its dependence on the
size of the emission source induces a similar constraint to its predictive power. The typical value of the
coalescence momentum pe., (see [419] for definitions) found when fitting ALEPH data is 0.15-0.21 GeV/c
(see Refs. [407, 415, 419-421]). This leads to a conservative < 60% uncertainty on the d primary flux
prediction for most DM masses and channels, folding into a factor of a few for the flux of primary antinuclei.

For secondary antinuclei fluxes, values peoa > 0.2GeV/c are found when using ALICE data for pp
collisions. Changing the coalescence momentum from the above 0.15 to 0.21 GeV/c would introduce uncer-
tainties in the d spectra of approximately a factor of 3. However, the scarcity of current data on d from
ete™ and the lack of reliable data at low energy for pp collisions (we recall that only the Serpukov data
are available), makes difficult to study a possible dependence of the coalescence momentum value according
to the physical process and the centre-of-mass energy: considering these Serpukov data leads to a strong
decrease in the d production, which can be interpreted as an energy dependence of peoal [422]. As a result,
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coalescence-related uncertainties for the secondary flux are a factor of a few for d, and up to an order of
magnitude for antinuclei [423].

Desired nuclear data. Collecting data on the production of d and e in pp collisions at /s < 100 GeV
would greatly improve the theoretical predictions for their secondary production. This could be achieved
by measuring oy, over a large kinematic range in pr and zp or, at least, the integrated multiplicity in
the energy range /s € [10,100] GeV. Owing to a lower threshold, production from pp collisions is also of
interest: its contribution amounts to a few percents only at a few GV (see the pink dashed line in Fig. 15),
but any data would be useful to check that the correct magnitude is used for this cross-section, i.e., to check
that this production channel is not underestimated. In addition to this, more precise measurements for the
antinuclei production from e*e™ collisions are mandatory to verify whether the coalescence models and their
parameters change according to the underlying physical process. In the light of the recent AMS claims on
possible observation of several Ie candidates, new scenarios for the enhanced production of Ile have been
proposed, including the decay of A, baryons produced by the DM annihilation into bb pairs [424], though
it is disputed [425, 426]. Preliminary results from LHCDb seem to disfavour these models [427], but further
measurements of the Ie production from antibaryons decay could help better constrain the expected e
flux.

4.3.83. Positrons and y-rays: improvement needed

The production cross-sections of positrons above 1GeV in the pp channel, the primary channel for
secondary positron production, were recently derived in an accurate model presented in Ref. [71]. This
parametrisation was directly tuned using available measurements at various /s values, from 3 GeV to 10 TeV,
specifically from NA49 [428, 429], NA61 [400, 430], ALICE [431], CMS [432, 433] and a collection of older
data [434]. While the empirical framework for the pp production cross-section is provided with an uncertainty
of about 5-7%, there is room for improvement in the treatment of other nuclear channels. Indeed, no data
on reactions involving He have ever been taken. For reactions beyond pp, the cross-sections employed in
Ref. [71] rely on rescaling of the pp reaction channels. This rescaling is tuned on data from pC collisions
collected by NA49 [435] at /s = 17.3GeV and by NA61/SHINE [385] at /s = 7.7 GeV. Improvements
could be achieved through precise measurements of the Lorentz invariant fully differential cross-sections of
7% and K* from pHe collisions in the /s = 5100 GeV range, with a primary focus on /s = 10-20GeV.
These measurements should cover a broad kinematic range, with ppr < 1GeV/c and extensive coverage
in zp, aiming for uncertainties at the 5% level. Such data would enable proper modelling of individual
reaction channels involving He, eliminating the need for simple rescaling approaches. For positron energies
Ex < 1GeV, the cross-section data are missing, and the computation of the et source spectrum relies on
extrapolations.

Most of the 7 rays produced by hadronic interactions and detected by Fermi-LAT [436] originate from
the 7% — v decay, which results from hadronic interactions, with pp being the main production channel. A
new model for the Lorentz-invariant cross-section of ¥ production was proposed in [70], with uncertainties
ranging between 10% and 20%. This model was developed using the limited available data on total cross-
sections of 7°[437], LHCf (LHC forward) data in the high-energy regime [438], and is strongly based on the
previous analyses of the et cross-section from Ref. [71]. New data on the Lorentz-invariant cross-section
of 70 production are necessary to reduce the uncertainty in o(i + j — 7° + X) to 5%, aligning it with the
statistical uncertainties of Fermi-LAT. Specifically, measurements of 7° production in the /s = 5-1000 GeV
range, covering a broad kinematic range with pr < 1GeV/c and extensive coverage in zy, for both pp
and pHe collisions, would significantly reduce these uncertainties. Even for pp collisions, the model in
[70] depends on results obtained for £ to describe the pr and zr dependencies of the cross-section. The
larger /s range with respect to e™ and P is required by the energy range at which v rays are measured by
experiments like MAGIC (Major Atmospheric Gamma Imaging Cherenkov telescope) [439], H.E.S.S. (High
Energy Stereoscopic System) [440], HAWC (High Altitude Water Cherenkov experiment) [441], LHAASO
(Large High Altitude Air Shower Observatory) [442] and the upcoming CTAO (Cherenkov Telescope Array
Observatory) [443].
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Table 3: Summary of the wish list of production cross-sections for GCRs that can be indirect probes of particle DM. Here,
niot 18 the integrated multiplicity. The most pressing need is for p, whose interpretation is already limited by cross-section
uncertainties, but forthcoming CR data for d, and possible He events from AMS, call for new cross-section measurements for
these species. See text for the detailed motivations.

Particle Reaction Measurement N Sought precision
p+tp—=p+X < 3%
p+He—-p+X < 5%

_ p+p—A+X < 10%

A inv 5 to 100 GeV

P p+He - A+X ? ? ¢ < 10%
p+p—10+X < 5%
p+tn—p+X < 5%

d p+p— H_Jr X Cinv [ Thot 5 to 100 GeV (any data)
p+He—d+X Tiny /Mot 5 to 100 GeV (any data)
p+p—d+X Cinv 2 to 10 GeV (any data)

He p+p— He+X Cinv [ Thot 5 to 100 GeV (any data)

o+ p+He— 7t +X _ < 5%

e p+ e — K+ + X Tinv 5 to 100 GeV < 5%
p+p—al+X _ < 5%

7 p4He—s 04X Tiny 5 to 1000 GeV < 5%

4.8.4. Summary and wish list

In Table 3, the wish list of the measurements discussed throughout this section is reported. The needs
and precision are not the same for various GCR species. The most pressing physics case is for p, where new
nuclear data are needed now. Figure 11 illustrates the fraction of the source term, as defined in Eq. (3),
covered by current and forthcoming data. As the source spectrum implies an integration of the cross-section
over the kinematic phase-space of the produced p and a convolution with the projectile, i.e., incident GCR,
energy, a plethora of data with different /s is needed for a very precise determination of the source spectrum.
From left to right, we report the contribution to the pp, pHe and Hep source terms covered by available
data (NA49 [399], NA61/SHINE [400] and LHCb [444, 445]), assuming the cross-sections are constant in
a /s interval around the provided results or the foreseen campaigns. The contributions are normalised to
the total source term of each channel. Possible extensions brought by data that have been collected but are
not yet publicly accessible (AMBER, dashed lines), or by potential data-taking campaigns (LHCb, dotted
lines), are also indicated (see Sec. 5.1 for more details). It is worth underlining that, while data at lower /s
cover a larger fraction of the total produced P, following the power-spectrum decrease of the incident GCR
fluxes (see Fig. 1), data at higher /s allow the violation of the Feynman scaling to be constrained. For
example, in Ref. [398], it was shown how the pioneering measurement by LHCDb for antiprotons produced
in pHe collisions [404] was able to discriminate between two different parametrisations for the invariant
antiproton production cross-section. The pp channel is satisfactorily covered only for p kinetic energies in
the 5-30 GeV, corresponding to the low-energy range of AMS CR data; there are no high-precision CR data
for p below a few GeV, in a range where the future GAPS data will take data. For the He channels, the
situation is far from optimal, and campaigns undertaken by AMBER and by LHCb would be very desirable.
Second, improving the coalescence factor for d is a necessity for the coming years, where one could expect
their detection by ongoing and future CR experiments. Third, the impact of nuclear data uncertainties is
less critical for the physics cases associated to e™ and « rays, but bringing nuclear data precision at the level
of the current and forthcoming CR data precision remains desired.

These potential new measurements, encompassing various reactions and elements, are instrumental in re-
fining and validating MC [446—452], the latter being crucial in simulating particle interactions and secondary
production processes. By tuning MCs against experimental data, it is possible to improve their predictive
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Figure 11: Fraction of the pp (top), pHe (bottom left) and Hep (bottom right) source terms originating from the kinematic
parameter space of the cross-sections covered by different experiments. The contributions are normalised to the total source
term of each channel. Solid lines represent experiments with data already collected and publicly available (NA49 [399],
NA61/SHINE [400] and LHCb [444, 445]). Dashed lines indicate predictions for data that have been collected but are not yet
publicly accessible (AMBER). Dotted lines correspond to future predictions for potential data-taking campaigns (LHCD).
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Figure 12: Left: the current AMS experimental § errors at 10 and 200 GeV, alongside cross-section and propagation uncertain-
ties. Right: prospects for the future, showing when and how cross-section uncertainties might reach levels comparable to AMS
data.

accuracy, particularly for key observables such as cross-sections, particle multiplicities and energy spectra.

To conclude this section, as illustrative cases, Fig. 12 presents the current and future experimental errors
for the AMS flux data and cross-sections for P and electrons, together with the theoretical errors related to
propagation. Current cross-section data uncertainties are 15% for p and 8% for positrons, while the current
AMS data errors are taken from [3|. The propagation uncertainties are taken to be about 15% across all
the energies [52, 30]. Currently, the propagation and cross-section uncertainties are much larger than the
AMS flux errors. This is true for both positrons and p and for the most relevant energies for propagation
and new physics studies. In the future, with the AMS upgrade, the CR flux errors could reach about 4% for
P and 2% for positrons at 50 GeV. The envisioned improvements in the ¢ and P production cross-sections
could reduce significantly the theoretical errors, at a level close to the AMS ones. Moreover, as explained in
Sec. 4.2.3, the envisioned improvements in the nuclear cross-sections will bring to a significant reduction of
the propagation uncertainties.

4.4. Other relevant cross-sections for data interpretation and experiments

Accurately modelling the propagation of GCR (anti-)nuclei from their source to their detection site re-
quires precise knowledge of all cross-sections governing their interaction with the matter they encounter.
Furthermore, and for antinuclei in particular, annihilation cross-sections are important not only to propa-
gation but also to experiments. Some instruments purposely built for the detection of antinuclei, such as
GAPS [188], rely on the characteristic patterns of secondary particles, mostly pions and ~ rays, created upon
annihilation, and therefore require knowledge of the multiplicities and energy spectra of these secondaries.
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4.4.1. Contributions to ov (inelastic, quasi-elastic, etc.) for nuclei and antinucles

The total cross-section for the interaction of (anti-)nuclei with matter is given by the sum of the cross-
sections for the different physical processes that can occur. In the following, we present decompositions
of the cross-sections for nuclei and antinuclei that are consistent with each other, and briefly discuss the
inconsistent use of nomenclature in the literature.

Contributions for nuclei. Following the notation used in Ref. [453], we decompose the total cross-section
into
Otot = Oel T (Jquasi—el + Uprod) = O¢] + Oinel, - (14)

Considering a generic reaction for a projectile ¢ on a target j, the various subscripts in the above equation
correspond to total (i.e., i +j — X), elastic (¢ +j — ¢+ j), the sum of the quasi-elastic (i +j — i+ j + X)
and production (i + j — X not ¢) reactions, combined into the total inelastic cross-section, gine. Other
notations are also used in the literature, namely ogr (reaction) for oinel and oaps (absorption) for oprod.
However, as stressed in Ref. [433], not all measurements and experiments use the same terminology for these
processes (e.g., 0abs has been used for oproq and oinel), leading to some confusion. In the GCR community,
the modelling for propagation studies relies on oj,el, but the different roles of ogyasi-el and oproq is probably
overlooked — as illustrated in Fig. 6 of Ref. [28%] for C projectiles, where gipe and Oprod data are treated on
the same footing.

Contributions for antinuclei. As for nuclei, the total antinuclei interaction cross-section can be decomposed
into
Otot = Oel + (Uquasi—el + [Uann + Uprod]) =0 + (Uquasi—el + Uabs) = Oe¢l t+ Tinel, (15)

where the subscripts stand for total, quasi-elastic, annihilating, production, absorption and inelastic cross-
sections, respectively. Compared to the total cross-section for nuclei, Eq. (14), annihilation is a third
inelastic contribution to take into account: at high energy (above a few tens of GeV), oann = 0, so that

Tinel & Oguasi-ol + Oprod. In GUR publications, o,y is often denoted oann, wWhile oquasi-o1 is denoted onon—ann
or onar (for non-annihilating rescattering).

4.4.2. Inelastic and other relevant cross-sections for interpreting GCE nuclear data

The low-energy part of the GCUHR spectrum is shaped by energy losses, dominant below a few hun-
dred MeV/n, and by inelastic interactions — the second term in Eq. (Z). The latter is the second most
important ingredient, after production cross-sections, required to model R fluxes with percent-level pre-

cision.

Relevance of elastic, quasi-elastic and production contributions in Eq. (14). First, in all GCR propagation
codes, elastic interactions are neglected. However, a recent analysis pointed out that their impact is ~ 1%
for protons below GeV energies [154]. For consistency, this effect should thus be taken into account in the
modelling, given the percent-level precision of measured proton fluxes.

Second, the correct way to model GUER transport should be to use gine (i.e., including oquasie1) and
consider the energy redistribution of the surviving projectile toward lower energies. The latter effect is
modelled via the differential cross-section doguasi-e1(Ein, Fout)/dEout, which is non-zero for Eoy < Ein
only, and which satisfies fooo(daqmsi_cl /dEout) dEout = Oguasi-el(Fin). This redistribution is important for
antinuclei (see next section), but is expected to be sub-dominant for nuclei: indeed, GCR nuclei shifted to
lower energies add up to a larger flux (at these lower energies), owing to a power-law behaviour observed
down to ~ 100 MeV /n 148, 150]. This energy redistribution is not considered in current propagation codes
and should be quantified, as it may impact the flux, in the GeV/n regime, at the few-percent level.

Parametrisations and codes for oye (often denoted og in the literature). The simplest approximation for

this cross-section considers the total surface of the projectile ¢ and the target 7, i.e., Ojnel (Ag/3 + A;/s)Q.

A first correction was proposed in the 1950s in Ref. [433],

. . 2
el = T (A,}” + AV - bo> : (16)
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with rqg the effective radius of the nucleus and by the overlapping or transparency parameter. To account
for the energy dependence of oy at low energy, several improvements and refinements have been proposed
since [335, 338, 456-467], based on the inclusion of more nuclear effects (Coulomb barrier, Pauli blocking,
etc.), and thanks to growing nuclear data sets. Several of the above parametrisations are tailored for inter-
actions on protons, scaled to He targets following Ref. [290], while others provide full parametrisations for
nucleon—nucleon interactions. For light projectile-target systems, whose nuclear structure is quite different,
specific modifications of the above formulae were proposed [459, 460, 462| (see, in particular, Ref. [346]
for comparisons of these predictions). Some of the above cases are available in general-purpose tools (e.g.,
Geant4 and PHITS). Alternative approaches are also being developed, for instance based on the Glauber the-
ory (see, e.g., Refs. [468-471]), and in nuclear and MC codes (FLUKA [472], CEM event generator in MCNP6 [370],
the Liége intranuclear-cascade model [473]) — the modelling of the elastic and differential cross-sections
is included in some of these codes.

Over the years, systematic comparisons between the proposed cross-sections have been carried out
[340, 474, 467, 370, 475]; see, in particular, Ref. [475] for the most recent comparison of a variety of
parametrisations. Overall, the nucleon—nucleon NASA parametrisations [461], with special cases for light
systems [462], are always among the most successful to match all data sets: they are thus the ones used
below for estimating the error budget in GCR fluxes. It is worth stressing that many nuclear data reach a
< 5% precision, but as their coverage is not complete in terms of reaction (see Fig. 13), the precision of the
models is unclear, because their spread in the asymptotic high-energy region can be as large as 20% (e.g.,
[476]).

From GCR data precision to desired Acine/Tinel precision. To estimate the precision needed on oipe for
propagation modelling, we first quantify their impact on fluxes and flux ratios. We define the impact on the
isotopic flux ¢’ to be

i

Bay=1-—"— (17)

inel 7
wo .
/O_J+(H,H6):O

inel

i.e., the relative difference between the modelled flux with and without oj,e. For simplicity, the ISM targets
are not considered separately. This relative difference is calculated with USINE, and is shown in the left
panel of Fig. 13 for several energies and elements with Z < 30 (fluxes are not directly measured for heavier
elements, see Sec. 3.1.5, so they are not shown). The flux of individual isotopes (also not shown) have
similar ojne1, hence exhibit similar impacts (only isotopic fluxes forZ < 6 have been reported so far, see
Sect. 3.1.6). Overall, the impact of gine; on fluxes decreases with energy (from black squares to pink crosses)
— as the timescale of escape from the Galaxy becomes much shorter than the inelastic cross-section timescale
(taift/tines x 1/ R%, with § the diffusion slope) —, and increases with the GCR mass (as oipe A2/ 3.

It is also useful to show the impact of destruction on elemental and isotopic flux ratios, the latter being
often published in experiments (as they minimise the systematics) and also used in GCR phenomenology
analyses. The thin lines (disk symbols) in the right panel of Fig. 13 show the impact of oine) on elemental
ratios: the best way to mitigate this impact (and that of Acy,e) is to consider adjacent charges, i.e., 2 J¢pZret
with |Z — Zef| < 3. For isotopes, most of the CR data consists of ratios at low energy, and the solid black
line (square symbols) shows that these ratios strongly mitigate the impact of ginel, and thus of Aciye. The
only, but very important, exception is for ratios involving a S-unstable isotope (e.g., °Be in °Be/’Be).
In that case, oipel does not impact the flux of the radioactive species (whose transport is dominated by its
decay time), while the stable isotope is fully impacted (no mitigation). As a result, the impact of oj,e on
this ratio is directly that of the stable isotope.

The precision needed for gjye to reach a desired flux modelling precision is given by

modelled
AYZ A(ffle ]
( '(PZ ) (Ek/n) = < Z ! X |]incl(Z7 Ek/n)‘ . (18)
inel

With the best CR data precision at the few-percent level for many elements and some very light isotopes, a
modelling precision of 1% should be targeted, i.e., nuclear data with Acinel/Tinel S 1/|ine1| are needed. To
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Figure 13: Impact of destructive interactions, Eq. (17), on the flux of GCR with Z < 30. Left: impact on elemental fluxes
at 2GeV/n (black squares), 20 GeV/n (blue disks) and 100 GeV/n (magenta crosses). The lines correspond to the fit function
given in Eq. (19). Right: impact on the ratio of two elemental fluxes (coloured lines with disks) or the lighter-to-heavier isotopic
flux ratio of the corresponding element (solid black line and squares). For the latter, the spikes for Be and Al are related to the
presence of a 3-unstable isotope in the ratios X = ("Be/1°Be) and X = (?6Al1/27Al) because the fluxes of radioactive isotopes
are insensitive to destruction at low energy. In this plot, the impact of inelastic interactions on flux ratios is shown at 2 GeV /n
only. See text for discussion.

calculate this number for any species and energy, Iise can be parametrised as

Iii;(H’He)(Ek/n) = [(ao + a1 By, + a2 logyg (Bi/m)) x 1og1o(Z +0.45) x Zotr B/t a logm(Ek/n)} . (19)

with a(o,1,2) = (0.49565,0.00069, —0.104312), b(p,1,2) = (—0.254173,0.000252,0.070613) and E/, in GeV /n,
as shown by the thin lines in the left panel of Fig. 13. Finally, to get the elemental flux at the desired
precision, the uncertainty on the isotopic inelastic cross-sections is further weighted by the contribution of
each isotope j to the flux of the element Z:

1 GCRdata
AO-ijncl _ AO—i%ml % w_Z (20)
Jijncl Uflel 1/)j '

These values are shown in Fig. 14, where the needs are compared to the current precision of (or merely
whether there exists) nuclear data for all relevant isotopes. The y-axis shows the GCR relative abundance
of relevant isotopes, averaged over all data found in CRDB. The desired nuclear data precision calculation
is weighted by the above isotopic fraction, Eq (20). Some inelastic cross-section data used in Fig. 14
were extracted from the EXFOR database [477, 478, 476]: pN scattering measurements below 1 GeV/n, as
compiled in Refs. [479, 480] and, above 2 GeV /n, very few data points for pd [481, 482|, p on He, Be, Al
and Cu [483, 484]. The rest of the data above 2 GeV/n were retrieved from the largest set of Ref. [485],
complemented by Refs. [486—494]|, and more recent measurements from 50 to 900 GeV [495-497]|, including
the very recent NA61/SHINE data points [453].

Overall, the existing nuclear data points exhibit precisions below a few percent, but it is somehow difficult
to believe that data taken from the 1960s to the 1980s are as precise as the data reported very recently
from NA61/SHINE [453]. Moreover, most data come from interaction with elements in natural abundances,
not always dominated by a single isotope. Also, the most abundant natural and GCR isotopes are not
always the same. The main conclusion from this plot is that the data for oi,e above a few GeV/n (i.e.,
in the asymptotic regime) remain scarce for many important isotopes/elements (e.g., Be, N, O and heavier
species) while, for the modelling, a precision of < 3% is needed for all leading-order GCR isotopes.

Beyond the straight-ahead approzimation for nuclear production. For secondary production, all propagation
calculations rely on the straight-ahead approximation, Eq. (5), where the kinetic energy per nucleon of the
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Figure 14: For all meta-stable isotopes in GCRs (sorted by increasing Z on the w-axis), the plot shows: (i) the relative abundance of each isotope in GCRs (x symbol),
calculated from the weighted average over all data extracted from CRDB; (ii) the currently existing nuclear data and their average precision below (blue disks) and
above 2 GeV /n (red circles); (iii) the cross-section precision needed to get a 1% modelling precision (black/grey squares) on Z < 2 isotopic fluxes and Z < 30 elemental
fluxes, as obtained from Egs. (18), (19) and (20). To illustrate the scarcity of data in the high-energy asymptotic regime, the number of available data sets is indicated
in red in parentheses. Higher-precision (or any) data are needed for each isotope for which the red or blue circles are larger than the black/grey squares, or if there are
no red circles at all. See text for discussion.
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fragment is conserved. However, non-zero recoil velocities of the fragments [330] lead to a broadening of
their energy distributions. Besides the intrinsic interest of connecting this velocity to reaction mechanisms
and to the internal nucleonic motion (e.g., [498, 499]), this broadening, if not taken into account, affects the
precision of the modelled fluxes. As studied in Ref. [500], it can be parameterised by a Gaussian distribution
of the momentum transfer, with a parabolic dependence on the fragment mass. For the B/C ratio, the
impact of relaxing the straight-ahead assumption was found to be < 6%, peaking at ~ 1 GeV /n; similar
conclusions were reached using an improved modelling of the recoil-velocity distributions [501]. This implies
that the effect must be incorporated when comparing modelled secondary fluxes to AMS data. In particular,
it should also be re-investigated and assessed for different secondary elements. A priori, the precision of
current data should be sufficient for modelling this effect, given its small impact on the calculated fluxes.
This hypothesis, however, must be confirmed with a dedicated study.

Electron attachment and stripping cross-sections for electron capture decay. Beside spontaneous g-decay,
electronic capture (EC) decay — whereby an orbital electron is captured by a proton in the nucleus and the
latter is transformed into a neutron — is another catastrophic loss to consider in the GCR transport equation.
It involves a competition between three timescales [388, 502]: tattachment, tstripping and trc, which refer to the
timing of the attachment and stripping of electrons in the ISM, and to the EC decay, respectively. Precise
EC-decay time can be challenging to disentangle from A1 decay experimentally, as the daughter nucleus
is the same in both decays, and fully ionised species (in the laboratory) are needed to disentangle the two
channels. According to available data [503, 504], the attachment and stripping cross-sections vary roughly
as (Z°, E¥%) and (Z72, EY), respectively. This explains why, above a few hundred MeV /n, GCR species are
fully ionised and why heavy species at low energy are the most likely to pick up electrons. For this reason,
the latter have, among others, been used as (re-)acceleration clocks (see the discussion and references in
Sec. 3.1.6, and see also, e.g., Ref. [505]). It is worth stressing that the current attachment and stripping
cross-sections are based on parametrisations from the 1980s [388, 502] fit on data from the 1970s [503, 504].
So, in principle, they should be updated and their uncertainties re-estimated. However, in Ref. [506], the
impact of EC in the associated fluxes and flux ratios — which is maximal at < 1 GeV/n — was estimated
to be at most at the precision of the current data (AMS and SuperTIGER). Therefore, there seems to be
no urgency for new measurements of these cross-sections, unless one can assess that they are not known at
better than a 50% precision.

4.4.8. Inelastic and non-annihilating cross-sections for interpreting GCR antinuclei data

The precision of available data and required improvements for the three inelastic processes of Eq. (15)
are discussed below. As underlined in Sec. 4.4.2, we do not discuss elastic scattering, as it peaks in the
forward direction (and hence results in negligible energy losses) and has a < 1% impact on antinuclei fluxes.

Desired precision on inelastic and quasi-elastic cross-sections for GCR antinuclei. Figure 15 shows the
impact of the above cross-sections on the flux of p and d calculated with the USINE code. It does so in the
form of the relative difference,

5.d p.d p,d
]g’d = 7/)520 1/)fcf -1, (21)

for the reaction cross-section, oine (solid lines), and for quasi-elastic scattering, O quasi-el (dashed lines),
using the parametrisations of Refs. [507-510, 407| and assuming that doguasi-el/dE = Oquasi-el/ Ex/n- The
impact of oups on P and d is similar to its effect on p and d shown in Fig. 13: it is highest at low rigidities
and increases with the atomic number, A. Actually, the impact of oabs (resp. Oquasi-el) increases (resp.
decreases) with A, so that oaps is the dominant source of uncertainty for A > 2. To model the P flux at the
precision of AMS data, we thus need the uncertainty of both Acaps/Tabs and Adguasi-el/Fquasi-el to be much
better than (Av/¢)4%8 /T, ie., much smaller than 20%. For (Ag/y)medelled < 197 this translates into
Ac/o < 5%. For some forthcoming CR experiments, and as part of a long-term effort toward the detection
of antinuclei (e.g., for DM searches), validating and improving the existing [511, 512] inelastic cross-section
parametrisations (e.g., used in Geant4) for antinuclei-p and antinuclei-antinuclei, is already important now.
While not critical for current GCR modelling, new data for the differential cross-section doyon—ann/dE and
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Figure 15: Impact of oaps (solid lines)and oqyasi-el (dashed lines) on d (thin magenta) and 7 (thick blue) fluxes as a function
of Ey/y. For d, the specific contribution to the flux of the production via P is also shown, as discussed in Sec. 4.3.1.

any data for open—ann for d (none exist at the moment) should prove very useful as well in the coming years.

Status of total and elastic scattering data. Total-reaction (oiot) and elastic (oq) cross-sections for p—p
scattering were measured at CERN’s LEAR (Low Energy Antiproton Ring) [513, 514], ISR (Intersecting
Storage Rings) [515, 516], PS (Proton Synchrotron) [517] and SPS (Super Proton Synchrotron) [518, 516,
519, 520], at Fermilab [521-524], at LBNL (Lawrence Berkeley National Laboratory) [525-528], at BNL
(Brookhaven National Laboratory) [529-531] and at IHEP (Institute of High Energy Physics) [532, 533],
over a wide range of energies. Most early fixed-target experiments were performed at P beam momenta
between 200 MeV /¢ and 900 MeV/¢, and between 4 GeV /¢ and 370 GeV/c. Only one experiment covered the
range from 575 MeV/c to 5.35 GeV/c. For a compilation of all these data, see Ref. [534]. Many of the older
measurements suffer from poorly understood (or reported) systematic uncertainties, and few have statistical
uncertainties better than 5%. Later experiments at colliders were more precise but focused on much higher
energies (31 GeV < /s < 1.8V, corresponding to fixed-target projectile momenta between 512 GeV /¢ and
1727 TeV /c), where the difference between p—p and p—p scattering is negligible.

Status of inelastic scattering data. Less data is available on inelastic p—nucleus scattering (onon—ann). Mea-
surements were performed on deuterons (deuterium) for projectile momenta between 1 GeV /c and 370 GeV/c
at LBNL [528], at BNL [530, 531] and at Fermilab [521, 522]|. Total-reaction cross-sections have also been
published at a few selected energies (i.e., usually not more than two or three per experiment) for He [535, 536],
Li [491], Be [537, 491], C [537, 491, 538], O [539], Al [491, 538], Cu [491, 538, 539], Ag [539], Su [491], Pb
[537, 491, 539] and U [491|. These, however, often suffer from poorly understood uncertainties and limited
statistical significance. Comprehensive measurements are therefore needed to improve the ability to model
the interaction of p with, for example, detectors and the shielding surrounding them.

Besides P, the first measurement of the inelastic cross-section for d-nucleus interactions at low energies
was performed by the ALICE experiment at momenta between 300 MeV /¢ and 4 GeV /c [540]. The only
previously published measurements were those of the d absorption cross-sections in Li, C, Al, Cu, and Pb
at fixed momenta of 25 GeV/c [541] and 13.3 GeV/c [542]. In a unique experimental approach, the ALICE
collaboration used their detector as interaction target for d created in pPb collisions at VSNN = 5.02 Tev.>

5In collisions involving nuclei a and b with four-momenta p, and py, respectively, it is conventional to introduce another
variable in addition to the centre-of-mass energy /s = +/(ps + pp)?, denoted the centre-of-mass energy per nucleon pair
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This approach, however, did not allow them to determine the cross-section for the interaction with a specific
material. Instead, they measured oy (H+ (A)), where (A) is the average mass number, with corresponding
average nuclear charge, (Z), of the material seen by the particles; (A) and (Z) come from simulations with
an accurate model of the detector. They benchmarked their method with p, achieving good agreement with
the Geant4 parametrisation of antinucleus-nucleus interactions. For d, they observed reasonable agreement
above 1 GeV/c but discrepancies of up to a factor 2.1 at lower momenta.

This near complete lack of experimental data must therefore be addressed. The ALICE measurements
have only hinted at a discrepancy between experimental data and theoretical models at lower momenta.
They are unfortunately of limited use for improving the latter, because they do not allow to extract element-
specific values. Using the same experimental technique, ALICE also performed the first ever measurements
of the inelastic interaction cross-sections for t [543] and *He [55], though with larger uncertainties than for
d. So far, there are no other measurements for these isotopes, and none at all for *ITe. While conclusively
detecting d and He in GCR will probably only be achieved with the next generation of experiments, the
d and He event candidates observed by AMS [191] show that cross-section measurements related to these
species will be needed.

4.4.4. Nuclear cross-section needs for CR detectors

Apparent discrepancies exist among CR nuclei flux measurements from different experiments. The recent
precision measurement of B, C, O and Fe from AMS [202, 204, 14] and CALET [209, 208, 213] exhibit an
overall normalisation discrepancy of about 20% (as discussed in Sec. 3.1.4). In contrast, preliminary B flux
measurements by DAMPE [544]| show no such discrepancy relative to AMS. Earlier measurements from
HEAO3 [16], PAMELA [545], CRN (Cosmic Ray Nuclei detector) [546] and CREAM [547] seemingly show
a similar ~ 20% offset with respect to the B, C, O and Fe data of AMS. Disagreements are also observed
between AMS and HEAO3, CREAM and CRN regarding Ne, Mg and Si fluxes [203]. Interestingly, no evident
normalisation difference is observed among the H and He fluxes measured by AMS [202, 211|, CALET [177,
176] and DAMPE [179, 178]. The existing discrepancies, particularly in the recent high-precision datasets
from AMS, DAMPE and CALET, pose a challenge to the understanding of CR propagation.

While it is difficult to conclude what could be the origin of such discrepancies — given the large differences
in the employed experimental and data-analysis techniques in different experiments —, an important and often
predominant source of systematic error is due to the limited understanding of nuclear interactions in the
detector materials. In general, the CR flux estimation relies on the knowledge of the experiment’s geometric
factor and fragmentation probabilities of the traversing CR nuclei, which are calculated using simulation
codes such as Geant4 [548| or FLUKA 549, 550]. These codes model the transport of nuclei through the
detection volumes, simulating their interactions with detector materials and the subsequent production of
secondary particles. However, in such codes, the interaction of heavy CR nuclei (Z > 2) with detector
materials (such as C, Al, Si, and others) is modelled with a sparse and scattered dataset of nucleus—nucleus
cross-section measurements. Often, nuclear models are extrapolated in regions where no experimental data
exists. The lack of such nuclear data translates into a systematic uncertainty in the CR measurements. As
described in Sec. 5.4, important efforts have been made by the AMS [551] and DAMPE [552] experiments
to determine the interaction of CR nuclear species in their detectors, though additional measurements are
still required.

Current (AMS, CALET and DAMPE), and future experiments (HERD, HERO, TIGER-ISS, etc.), can
significantly benefit from precision measurements of the nucleus—nucleus inelastic cross-sections. The knowl-
edge of the cross-sections of materials used in calorimeters is of particular importance, because they make

VINN = V(Pa/Aa + pu/Ap)2, As and A, being the respective nuclear mass numbers. For collisions involving equal nuclei,
one has \/sNN = +/s/A, so that this new variable coincides with /s for nucleon—nucleon collisions. In the relativistic limit
Erxp>m,
EaEb ZaZb
VL = 2 = /8 _— 22
NN A, Ay pp AL A, (22)
where the latter equality assumes that the energy of a nucleus of atomic number Z, is Fo = Z4 FEp, E)p being the energy that a
proton reaches in the same accelerator; the expression thus relates \/sNnx to /Spp, the centre-of-mass energy for two colliding
protons in the same machine.
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up most of the mass (and thus radiation length) of experiments. For instance, BGO (bismuth germanium
oxide) and LYSO (lutetium—yttrium oxyorthosilicate) scintillating crystals are the major constituents of the
DAMPE and HERD calorimeters, respectively, with other materials (mostly scintillators and absorbers)
used in the calorimeters of some other experiments.

4.4.5. Annihilation cross-section needs for antinuclei CR detectors

The annihilation cross-section (0any,) is particularly relevant to experiments that rely on the detection
of annihilation products for identifying antinuclei, like GAPS [188]. Such experiments do not only require
precise knowledge of o,y to calculate fluxes but also of the multiplicities and energy distributions of the
created secondary particles. Some data exists for p annihilation in H at rest [553, 554] and in flight [539,
555-559] but much of the energy range of interest to CR experiments remains uncovered and many older
experiments have large (between about 5% and >20%) and sometimes unknown uncertainties. Only some
newer measurements for in-flight annihilation reach precisions < 5% (e.g., [559]). Limited experimental data
for other targets are available [560, 555, 561-567], suffering from a similarly limited precision, and agreement
with theoretical models varies. For p annihilation in C, for example, significant deviations from model
expectations were observed below 500 MeV /¢, which led to renewed interest in theoretical calculations [568,
569]. In addition to the problem of poorly known cross-sections, the multiplicities and energy distributions
of secondaries emerging from the annihilation were only measured for a selection of targets and energies.
The available data do not agree well with model predictions: see, for example, Geant4 and FLUKA, which
deviate from each other by as much as 25% [554].

Due to the complexity of such experiments, even fewer measurements were performed for d [570] and
none at all for He. While the recent measurements by ALICE (see Section 4.4.2) have shown that inelastic
and absorption cross-sections for d and ITe can in principle be measured above a certain threshold energy
using unconventional techniques, the feasibility of performing experiments at the low energies required to
probe the annihilation process currently remains questionable. With the availability of facilities like CERN’s
Antiproton Decelerator and LEAR, the situation is much better for P, for which comprehensive measurements
of the most relevant o,y, and of the secondary particles created during annihilation, including multiplicities
and energy distributions, should be conducted. Better data on the m—p [571-573] and T—nucleus [574]
annihilation cross-sections and secondaries would allow improving theoretical models of the annihilation
process. Finally, if the annihilation of d and Ie could be probed in ways similar to the ALICE approach,
even data with relatively large uncertainties would be useful for model validation.

4.4.6. Summary and wish list

In this section, all cross-sections (not production) relevant for GCR data interpretation, and also for CR
experiment analyses, were carefully reviewed. The most pressing needs are gathered in Table 4.

Related to the first item, i.e., to better constrain GCR propagation models, inelastic cross-sections for
nuclei on H are needed at the few percent level — for energies from a few hundreds of MeV/n to several
tens of GeV/n — for all leading isotopes in GCRs; measurements on He targets are also needed, but at a
lesser precision (< 10%). Figure 14 provides the current status of the nuclear data on H along with the
desired precision for all the CR isotopes. For the interpretation of p data, absorption and quasi-elastic
cross-sections for p—p scattering need to be precise at the ~ 5% level for energies between 1 and 10 GeV;
slightly less accurate measurements for p—He are also desired. While data at this level of precision exists for
the total and elastic cross-sections (with some caveats), direct measurements of the absorption cross-sections
would be highly useful because of their large impact on the p flux (see Figure 15). If the quest for d detection
in forthcoming CR experiments succeeds, having data on the absorption cross-sections for d + p and d + He
at energies between 100 MeV /n and 50 GeV/n will no longer be optional; the required precision will depend
on how precisely these future experiments will be able to measure fluxes. In light of the potential detection
of TTe nuclei by AMS, experiments should also be devised to measure cross-sections for e-p and He He
scattering at similar projectile kinetic energies.

A second item on the wish list is the extension of cross-sections to target materials relevant to instrumen-
tation. First, new nuclear data are needed for inelastic interactions of GCR nuclei above GeV/n energies
on C, Al, Si and Cu targets, and also on elements constituting BGO and LYSO crystals (because their
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Table 4: Summary of highest-priority measurements for inelastic nucleus—nucleus and antinucleus—nucleus interactions (see
definitions in Eq. (14) and Eq. (15), respectively): (i) interactions of GCR isotopes (for Z < 30 species only, summarised
from Fig. 13) and antinuclei with H and He targets are required for propagation modelling, and thus for the interpretation of
data gathered by CR experiments — the needed precision decreases with energy; (ii) interactions of GCR elements and p with
heavier targets are needed for modelling the interaction with the detector material (C, Al, Si, Fe, and Cu) and with Earth’s
atmosphere (N and O) for the specific case of balloon-borne experiments; (iil) cann and the total multiplicity, ntot, are required
for experiments relying on annihilation signatures for identifying antinuclei (e.g., GAPS), with oann measured at rest up to
500 MeV (with a stronger emphasis on lower energies), and n¢ot and the energy spectra of the emerging secondaries measured
particularly for 1:2:3H, 3:4Me, v and 7%, In this table, the projectile kinetic energies per nucleon, Ey/n, for a (hypothetical)
fixed-target experiment are quoted.

Reaction Measurements  Projectile Ey,,, Precision
(p,d)+1I < 10%
(p,d) + He < 50%
(3He,*He) + H _ , < 5%
(3T, Te) + e Oinel; Tprod 1 to 10 GeV /n < 50%
(°Li,"Be,!' B...%%Fe...%*Zn) + 0 < 1%
(°Li,"Be,!' B...%% Fe...5*Zn) + Ie < 10%
ﬁ +p Oabs; Oquasi-el < 5%

B + He Tabs; Tquasi-el 0.1 to 50 GQV/H < 50%
d+ (pv He) Oabs; Oquasi-el (any data)
e + (p, He) Tabs (any data)
(p,He,C...Fe) + (C,N, O, Al Si, Fe, Cu) Tinel 0.1 to 1000 GeV/n < 10%
P+ (C,N, O, Al Si, Fe, Cu) Tabs 0.1 to 50 GeV/n 10%
P+p <5%

ﬁ =+ ( ja A17 Sla Fe7 Cll) Tann, Mot < 500 Nlexr/n <1000
p+n (any data)
n + any

d + any Oanns Mot < 500 MeV /n (any data)
He + any

composition is variable) and other commonly used calorimeter materials. Dedicated studies are required to
assess the possible mass-dependence of the cross-section uncertainty impact on the CR data precision. This
impact is detector-dependent, but roughly, a better than 10% precision is needed. Second, cross-sections of
P and antinuclei annihilating on C, Al, Si, Fe, and Cu for GAPS-like experiments, or inelastically scattering
on N and O (prevalent in Earth’s atmosphere), to aid the interpretation of data gathered by balloon-borne
experiments, are required. The energy ranges and desired precisions are provided in Table 4. For experi-
ments relying on annihilation signatures, the precision to which .y, is known directly drives the uncertainty
of the measured flux; a precision of <5% for H and <10% for other targets is therefore desirable. Since
Oann 15 largest for annihilation at rest, experiments should probe energies below 10 MeV /n and, if possible,
extend to about 500 MeV/n, above which the cross-section becomes small enough for its uncertainty to not
significantly impact flux calculations. Realistically, these measurements can only be performed comprehen-
sively for p. Data for 71, d and He are not a priority for the next ten years, but any measurements would
certainly be crucial to GAPS-like next-generation experiments. Any data for d and He on p and He targets
would also help to validate and improve interaction models and, therefore, reduce uncertainties compared
to the scenario where only p data is available and extrapolated to heavier projectiles.
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Figure 16: Timeline of the data acquisition (Run) and shutdown (LS) periods for the CERN LHC accelerator operations. The
main phases of the ALICE, LHCb and LHCT experiments (discussed in the main text) are also overlaid. Upgrades currently
under review and hence not yet officially approved, LHCbUII and ALICES, are indicated in light purple.

5. Main facilities and experiments for ongoing and future cross-section measurements

In this section, the ongoing and future efforts carried out by the HEP and nuclear physics communities to
provide some cross-sections listed in Sec. 4 (nuclear fragmentation, anti-matter production and interactions)
are presented. The variety of required reactions and energy ranges calls for a variety of facilities and
experiments, whose properties and specifics define in turn the measurements they are/will be able to do.
These facilities include high-energy beams available at CERN from the LHC (Sec. 5.1), the SPS and the
PS accelerators (Sec. 5.2), current and future nuclear physics multi-GeV accelerators (Sec. 5.3), and space
CR experiments themselves (Sec. 5.4). Other facilities, where in principle relevant measurements can be
carried out, such as the KEK or Fermilab [575] accelerators, are not covered here (see also Ref. [576] for
a road map of the next generation accelerator facilities in the next decade). In the following, the most
important characteristics of these facilities and experiments are highlighted, together with some recent
results and planned measurements. The results obtained in the last years illustrate the successful emergence
and growth of synergies between our communities, which need to be further strengthened in order to tackle
the physics cases presented in Sec. 2.

5.1. CERN LHC experiments

Measurements of the P production cross-sections have been performed at various facilities and different
collision energies. While historical experiments [401, 434, 577, 578] laid the groundwork for these studies, the
precision of their results falls short of current requirements, about 5%, as summarised in Table 3. In addition,
the interpretation of their systematic effects, such as the subtraction of the p feed-down contribution, is not
always clear. High-statistics collision samples are also needed for d and He production measurements, as their
production is rare and suppressed by at least a factor of 1000 for each additional antinucleon with respect
to antiprotons [47]. For light collision systems and collision energies below 100 GeV, which are relevant
for models of GCR antinuclei production, only sparse data are available. Precise measurements of their
production mechanisms have only been achieved at colliders with very large collision energy [422, 579, 580].
Finally, as discussed in Sec. 4.3.3, measurements of neutral particle production cross-sections are crucial to
better constrain the vy-ray case.

At CERN, the LHC particle accelerator provides collisions of protons at multi-TeV energies, up to the
value of 13.6 TeV (recently achieved in 2022), and also of lead and lighter ions. As summarised in Fig. 16, the
accelerator has operated since 2009, with several Long Shutdown (LS) periods, i.e., interruptions necessary to
increase the achievable energy or luminosity. During those periods, experiments also have been significantly
improved, as separately discussed in more details in the sections below.
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5.1.1. The LHCb experiment

The LHCb experiment [581] at CERN LHC is a fully instrumented single-arm spectrometer, covering
a pseudorapidity® region, 2 < n < 5, not accessible by other LHC experiments. In addition, LHCb has the
unique possibility to operate in fixed-target mode, leveraging on the injection of gases in the LHC beam
pipe through the SMOG [382]. The energies covered by LHCb-SMOG, between 27 and 113 GeV in the
nucleon—nucleon centre-of-mass frame for LHC beam energies ranging between 450 GeV and 7 TeV, bridge
the gap between previous fixed-target experiments and the higher values by RHIC (Relativistic Heavy Ton
Collider) or LHC. Starting from the LHC Run 3, simultaneous operation of the upgraded experiment [583] in
collider and fixed-target mode has been proven [444, 445], allowing the negative to central Feynman-z values
to be probed with very high-precision at a poorly explored energy scale. The SMOG upgrade, SMOG2,
is equipped with a direct measurement of the gas flux, which reflects into a measurement of the collected
luminosity with a 1-2% expected uncertainty, and also non-noble gases, such as H and D, can be used. In
all collision systems, p identification is ensured by RICH detectors, for momenta above 10 GeV/c. First
measurements in pHe collisions for the prompt [404] and feed-down from strange [584] p production have
been published with data collected in 2016 at /snn = 110.5 GeV, constraining for the first time — at the
relevant energy scales — the extrapolation from H to He as a target. Another pHe dataset at /syn = 87 GeV
was collected in 2016 with SMOG, while with SMOG?2 high-statistics samples with injected H, D and He
have been acquired at /syy = 70.9 GeV and /sy = 113 GeV in 2024. With these datasets, as summarised
in Fig. 17, the isospin-violating difference between P and @ production will be constrained with expected
uncertainties below 5%, filling the gap between the expected AMBER results and measurements at collider
energies. Absolute cross-section measurements with similar precisions will also be repeated with all these
gases. Finally, discussions are ongoing to explore the opportunity to develop machine optics such as to
squeeze a 1 TeV beam sufficiently, in order to close the LHCD innermost detector and acquire data close to
the lowest possible energy scale at LHC [585]. This would provide a larger coverage of the p production
phase space, and would allow comparing with results from lower-energy fixed-target experiments.

Although heavier antinuclei identification was initially not planned at LHCb, methods have been recently
developed to identify d and He in the recorded Run 2 data. For d, the TOF capabilities of the track-
ing detectors downstream of the LHCb magnet are exploited, leading to identification of low-momentum
(anti)deuterons [586, 587]. Based on this new technique, measurements of the deuteron production cross-
section, both absolute and relative to P, are ongoing. For He, the detector responses are used to build
discriminators quantifying the energy loss. Despite initially only applied to pp collision data [588, 589, 427],
measurements are ongoing to constrain Ie production in pNe fixed-target data as well. The absolute cross-
sections at 13.6 TeV pp collision data, albeit at higher energy scales with respect to those needed for CR
experiments interpretation, will also be finalised soon. In the long-term future, a further upgrade of the
LHCDb experiment is planned [590, 591], starting from the LHC Run5. This will include a dedicated TOF
detector, TORCH (Time Of internally Reflected CHerenkov light) [590], allowing direct identification of
nuclei in a large momentum range.

5.1.2. The ALICE experiment

The ALICE experiment at CERN LHC is a mid-rapidity experiment dedicated to nuclear physics in pp
and heavy-ion collisions. The detector consists of several subdetectors that allow particle tracking in the
pseudorapidity range of |n| < 0.9. Particle identification is mainly based on energy-loss measurements in a
large time-projection chamber, and is completed with a TOF measurement system for higher momenta [592].

Antiproton production has been measured in pp, pPb, PbPb and XeXe collisions at several collision
energies and particle multiplicities [431, 593-597]. Different antinuclei species and their ratios have also been
measured, including d, ¥, *He and *He [597-600]. Additionally, (anti)hypernuclei — nuclei including a nucleon
with strangeness — productions have been measured [601]. The variety of measurements allows detailed
studies of the formation process of light nuclei, often described by the so-called coalescence model [409].
Parameters related to the coalescence probability of nuclei, with two and three nucleons, have been measured,
and the experimental results have triggered studies beyond the classical coalescence model [50, 53].

6Being 6 a particle polar angle with respect to the beam axis, its pseudorapidity is defined as = — In[tan(8/2)].
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ALICE has also performed momentum correlation studies [602-604], known as femtoscopy technique,
of several hadron pairs. This allowed to constrain the size of the particle-emitting source in pp collisions,
which is a necessary input for the coalescence model based on the Wigner function formalism. These results,
together with the above-mentioned precise measurements of p and d production spectra, showed that d
yields can be successfully predicted by this model [54]. Moreover, ALICE also used femtoscopy to study the
residual strong interaction between hadron pairs and triplets, including hyperons. This provides essential
inputs for astrophysics, for instance to constrain the equation of state of dense matter, and to understand
better the composition of such dense systems, in particular the inner core of neutron stars [605-607]. Further
details on this technique are given in Sec. 6.4.2.

Besides the formation process of antinuclei, ALICE also measured the absorption of d and He in mat-
ter [540, 55]. These processes have been experimentally mostly unexplored, while they impact the survival
probability of antinuclei produced in our Galaxy during their propagation from their sources to the Earth
(see Sec. 4.4.3).

An upgrade of the experiment, ALICE3, is expected to start by the LHC Run 5. This will include a more
extensive rapidity coverage, allowing to probe antinuclei production out of the central rapidity regime [608].

5.1.83. The LHCf experiment

The LHCf experiment [609] at CERN LHC is made of two imaging and sampling calorimeters, located at a
distance of 141.05 m from Interaction Point 1, and covering a pseudorapidity region i > 8.4. The experiment
is dedicated to the precise measurement of forward neutral particle production in pp and p—-ion collisions,
in order to provide calibration data to tune the hadronic interaction models used to simulate extensive air
showers. These data provide indirect information on the event inelasticity, and on the fraction of the primary
energy that goes into the electromagnetic and the hadronic channels. By changing the collision energy and
the colliding ion, it is also possible to test the reliability of different scaling laws, and study the impact
of mass number on forward production. Finally, the LHC{~ATLAS (A Toroidal LHC Apparatus) joint
analysis gives access to an even higher level of information, for example by separating different mechanisms
responsible for forward production (e.g., diffractive and non-diffractive), and by studying central-forward
correlation or exclusive production mechanisms (like one-pion exchange or A resonance).

So far, the experiment has acquired data in pp collisions between /s = 0.9 and 13.6 TeV and pPb
collisions at /syn = 5.02 and 8.16 TeV. The published results indicate a tension between models and data,
which is particularly strong in the case of neutron production [610, 611], and not negligible in the case of
[612], 70 [438] and 7 [613] production. Thanks to an ongoing improvement of the reconstruction algorithm,
it will be possible to measure K? and possibly A° forward production, from the data acquired in pp collisions
at 4/s = 13.6 TeV. In parallel, the LHCf~ATLAS joint analysis will give a better insight in the understanding
of production mechanisms, leading to greater constraints for the calibration of hadronic interaction models.
The LHCf measurements can be used to constrain the production cross-sections entering the calculation of
the astrophysical v-ray background (from GCRs on the ISM), as shown in Ref. [70]. Indeed, 7° and 7 are
the main contributions to the ~-ray flux, and the inclusive v production measured by the experiment can
be used as a benchmark.

5.2. CERN SPS and PS experiments

Before circulating in LHC, particles are accelerated at CERN by lower-energy machines. The PS acceler-
ator is one of the first acceleration stages, and can reach a maximum energy of 26 GeV. It delivers particles to
the SPS, which has a maximum energy of 450 GeV for nuclei, and also provides secondary beams of nuclei to
experiments from 10 to 158 GeV energy per nucleon. To this purpose, a primary beam of 2°®Pb is extracted
onto a beryllium target, and nuclear fragments are guided to the experimental area. The rigidity acceptance
of the beam line can be adjusted to select the specific mass-to-charge ratio of the desired nuclei [614-616].
The SPS also delivers secondary hadrons at momenta up to 400 GeV/c, depending on the beam line”: on
the H2 beam line (for NA61/SHINE), secondary hadron beams up to 400 GeV/c can be produced; on the
M2 beam line (for AMBER), 280 GeV/c is the maximum hadron beam momentum.

"https://sba.web.cern.ch/sba/BeamsAndAreas/H2/H2_presentation.html
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5.2.1. The AMBER experiment

The AMBER experiment at the M2 secondary beam line of CERN SPS is a fixed-target experiment that
started data-taking in 2023 as the successor of the long-standing COMPASS (Common Muon and Proton
Apparatus for Structure and Spectroscopy) experiment. Within the first approved phase of the experiment,
from 2023 to around 2031, AMBER reuses and upgrades the 2-stage magnetic spectrometer from COMPASS,
to perform measurements of the p production cross-section, of the charge radius of the proton, and of parton-
distribution functions of pions and kaons via the Drell-Yan process [617]. Measurements of P production
in collisions of protons on H, D and He targets took place in 2023 and 2024. The experimental setup
includes two differential Cherenkov counters with achromatic ring focus to identify protons in the mixed
hadron beam, a cryogenic target filled with the target gas, and the AMBER spectrometer to characterise
the secondary particles created in the interaction. In order to measure the momentum of the secondary
particles, the AMBER spectrometer consists of around 300 tracking detector planes that measure the tracks
of charged particles traversing the two spectrometer magnets, with a bending strength of up to 1 Tm and
4 Tm, respectively. Additionally, a RICH detector and muon detectors allow particle identification over an
extensive momentum range. Antiprotons with a total momentum between 10 GeV/c and 60 GeV/c, and
transverse momentum up to 2 GeV/c, are identified. In 2023, a cryogenic target filled with He was used to
performing the p production measurement in pHe collisions. Data were recorded at six different collision
energies between /snn = 10.7GeV and /syny = 21.7GeV. In 2024, a new cryogenic target was built to
allow the usage of lammable gases, such as H and D. For both targets, collisions at 12.3 GeV, 17.3 GeV, and
21.7 GeV were recorded with an identical spectrometer setup.

Besides providing p production cross-sections for the different targets on the level of 5% relative uncer-
tainty, one dedicated goal of the measurements is to investigate the possible isospin asymmetry of P in pp
and pn collisions (see Sec. 4.3.1), as suggested by data from NA49 [41], by comparison of the P production in
proton—hydrogen and proton—deuterium. The expected uncertainties on the individual cross-sections should
allow a measurement of the isospin asymmetry, Ais = fF/f5 — 1, at the 10% level for the three collision
energies. In the case of a measurable asymmetry, the measurement of the different collision energies would
additionally constrain the collision-energy dependence of the effect. Figure 17 illustrates the impact of the
AMBER and LHCDb measurements on the isospin asymmetry in p production, given an arbitrary asymmetry
(based on the parametrisation of M. Winkler [42]).

In the future, the AMBER spectrometer will undergo several upgrades and improvements to operate
the spectrometer at around 10-100 times higher read-out rates [618|. This improvement would allow the
measurement of rare particles, such as d and He. However, dedicated nuclei identification is needed for these
studies, and is currently under investigation.

5.2.2. The NA61/SHINE experiment

The fixed-target experiment NA61/SHINE at the CERN SPS is a hadron spectrometer capable of study-
ing collisions of hadrons with different targets, over a wide range of incident beam momenta [619]. It
is the successor to the NA49 experiment, which pioneered P production cross-section measurements at
V38N = 17.3GeV in pp and pC collisions, covering nearly the full phase space of created p. Using a deu-
terium beam, NA49 also provided a first measurement of a potential isospin asymmetric production of p
and 71, by comparing the flipped reaction of P in pp and pn collisions. The recorded data hints at an isospin
asymmetry of up to 50% in central production (zp = 0).

NA61/SHINE consists of different subdetectors for particle identification. It has already recorded pp
interactions with beam momenta from 13 to 400 GeV/c, and also collected data for other hadron interactions,
including pC, 7+C, ArSc, pPb, BeBe, XeLa and PbPb at different energies. During the CERN LS2, upgrades
to the time projection chamber backend electronics resulted in improvements in the specific energy loss
(dE/dz) resolution. Essential for future d production measurements is the new data acquisition system,
with about 20 times faster rate and new TOF detectors with improved time resolution [620, 621]. NA49 and
NAG61/SHINE have published several relevant data [405, 400] for tuning models of the production of GCR
species, and also for models describing CR-induced air showers [622, 623].
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Figure 17: Impact of the AMBER and LHCb measurements on the uncertainties of a potential isospin asymmetric production
of p and T; see Egs. (12) and (13). Data points are filled in case of data already taken and empty in case of planned for the
upcoming years. The black dashed line indicates the current uncertainty on Ayg given the current data and model of the isospin
asymmetry by M. Winkler [42]. The projected uncertainties for the individual measurement points from LHCb and AMBER
are estimated based on assumed measurement uncertainties of 1% and 2% for the ratio of p production cross-sections in p-D
and p—H, respectively. Additionally, the limited phase-space coverage of both experiments reduces the sensitivity to the isospin
asymmetry, which is primarily located in the target-fragmentation region (negative Feynman-x values, zr). As a conservative
estimate, the given uncertainties account for sensitivities of the experiments only down to zr = 0. Other potential modelling
uncertainties, such as an explicit xr dependence of the isospin asymmetry, are not considered in this estimate.

Antiproton cross-sections and coalescence for antinuclei. The published measurements of light nuclei in pp
and various nucleus-nucleus data sets can be used to study the production of light ions at the threshold.
These measurements will complement the NA49 [624, 625] and ALICE results, and allow testing coales-
cence and thermal models in a different regime. Extended data-taking with an upgraded NA61/SHINE
experiment, relevant to understanding cosmic antinuclei, is already planned before 2026. A pp dataset of
approximately 600 M events, collected with a beam energy of 300 GeV, will provide new measurements of pp
correlations, p and deuterons. This proposed dataset will feature significantly reduced systematic and sta-
tistical uncertainties, enhancing the ability to discriminate between different nuclear formation models. It is
also anticipated that, for the first time, d will be identified in this range, crucial for the cosmic antideuteron
interpretation. Combining these new measurements will enable building, testing and validating data-driven
d and d production models in the energy range most relevant to GCRs. This will reduce uncertainties in
the modelling of the astrophysical background of d.

Nuclear fragmentation. A first pilot run of carbon fragmentation measurement at 13.5 A GeV was conducted
at NA61/SHINE in 2018, demonstrating that the measurements are possible [616]. For this type of mea-
surement, the primary 2°®Pb is extracted from the SPS and fragmented in collisions with a 160 mm-long
beryllium plate in the H2 beam line. The resulting nuclear fragments of a chosen rigidity are guided to
the NA61/SHINE experiment, where the projectile isotopes are identified via a measurement of the particle
charge and TOF over a length of approximately 240 m. Moreover, data of the fragmentation of nuclei from
Li to Si at 12.5GeV/n were collected at the end of 2024, and are currently being analysed. The collected
data were inspired by the interactions listed in Tab. 2, and they will provide a comprehensive set of cross-
sections in the lower triangular region of Fig. 9. High-precision measurements of oine and oprod, as defined in
Eq. (14), necessary for GCR data interpretation (see Sec. 4.4.2), is also possible, as illustrated in Ref. [453].
In the future, these measurements of nuclear fragmentation (and inelastic cross-sections) with NA61/SHINE
can potentially be extended up to Fe and performed at different energies.
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Table 5: Overview of maximum beam energies (in GeV/n), for a few selected nuclei of interest for GCR fragmentation
measurements (see Sec. 4.2), at the facilities described in Sect. 5. See the text for more details and discussions about possible
measurements. The next-to-last column (secondary beams) indicates whether any of the above beams can be fragmented and
filtered, thus offering a high-purity secondary beam with an energy close to the primary beam; for NA61, except for p, all
species listed are from a primary beam of 298Pb (see Sec. 5.2), but other primary nuclear beams (e.g., O) are possible. The last
column (experiment type) corresponds to the detection system used at the date of this paper — it might evolve in the future:
spectrometry refers to the identification in mass and charge of each heavy fragments; activation refers to the determination of
concentrations of elements from ~y-ray emitters.

Facility  Selected beams and maximum E,,, (GeV/n) Secondary Experiment

P ‘He "Li '2C 10 2°Ne 285i 5OFe beams type
CNAO 0.25 0.4 no Spectrometry
NSRL 2.5 1.5 1.0 1.0 1.0 1.0 1.0 no Activation
FAIR 4.5 20 1.55 20 20 2.0 2.0 1.75 ves Spectrometry
HIAF 6.5 2.9 2.4 2.9 29 2.9 2.9 2.7 yes Spectrometry
SPS 400 158 158 158 158  1b8 158 158 yes Spectrometry

5.2.8. CERN n_TOF for neutron-related cross-sections

The n_ TOF neutron time-of-flight facility [626] is located at CERN. A 20 GeV /c proton beam from the
PS accelerator is shot on a thick lead target, generating neutron beams covering kinetic energies ranging from
the thermal region to several GeV. The facility was optimised for high-precision measurements on radioactive
materials, due to a very low duty cycle (repetition rate less than 0.5 Hz) and very long flight-paths, from 20
to 180 m. In recent years, developments have been made to measure cross-sections of reactions leading to
the emission of charged particles, often abbreviated in (n,cp) channels, using silicon detectors. Preliminary
results were obtained for neutron energies up to a few MeV [627]. A limitation to reach higher energies can
be ascribed to the very strong « flash that comes with every neutron pulse and blinds most detectors for a
short time. A development has started to use gaseous detectors PPACs (Parallel Plate Avalanche Counter)
for such measurements, since these detectors are much less sensitive to the ~ flash.

This facility could be taken advantage of to carry out measurements on various targets (C, O, etc.),
crucial for cosmogenic studies. Indeed, neutron-induced reactions are the dominant contributors to the
formation, for instance, of 1°Be (see Fig. 19 in Sec. 6.1).

5.8. Multi-GeV facilities for nuclear cross-sections

Nuclear fragmentation cross-sections are critical down to energies of a few hundreds of MeV/n, hence
high-precision measurements are also needed in this energy range. Below the energies of the CERN complex
(covered in sections 5.1 and 5.2), many facilities exist. However, the requirement of energy beams above
~ 100 MeV/n drastically limits the list of facilities where direct relevant measurements may be conducted:
the CNAO (Centro Nazionale di Adroterapia Oncologica) reaches a few hundreds of MeV /n for proton and
carbon beams (Sec. 5.3.1), the NSRL at BNL offers a variety of beams in the GeV /n range (Sec. 5.3.2), the
GSI/FAIR (Facility for Antiproton and Ion Research at GSI Helmholtz Centre for Heavy Ion Research) offers
various beams in the 1-2 GeV/n range [628] (Sec. 5.3.3), and the upcoming HIAF (Heavy-lIon Accelerator
Facility) in China should deliver heavy beams up to 2.9 GeV/n (Sec. 5.3.4).

Below, the most salient features of these facilities are presented, including the detection systems adapted
to high-precision fragmentation cross-section measurement. In Table 5, the maximum energy and most
relevant beams that could be suitable to carry out the nuclear fragmentation programme of Sec. 4.2 are
listed. Note that the NICA complex [277] in Dubna, designed to produce heavy ions with an energy of
1-3.9 GeV/n, is not discussed in this paper, since no appropriate detection system is known at the time of
writing.

5.3.1. CNAO (Italy)
The CNAO facility, located in Pavia (Italy), is a hadrontherapy centre using a synchrotron accelerator. It
is equipped with an experimental room that can provide clinical ion beams [629]. Currently, it can provide
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protons and 12C ions with energies between 60-250 MeV (protons) and 120-400 MeV /n for 12C, and will
soon be able to provide other ion types: *He, "Li, 0. The accelerator can deliver up to 10'° p per spill
(equivalent to 2 nA) and 4.10% C ions per spill (equivalent to 0.4 nA). The spills are delivered within 1 s, with
a time of 2 s between each spill. The size of the pencil beam is around 10 mm (full width half-maximum),
and thanks to the scanning magnets, it can irradiate a field up to 200x200 mm? at the isocenter.

This facility is being used to measure a variety of cross-sections relevant to hadrontherapy (see details
in Sec. 6.3), and future measurements will take advantage of the additional ion beams available. No energy
or intensity upgrades are planned for the next 5 years.

5.3.2. Brookhaven (USA)

The RHIC accelerator [636] at BNIL, New York, is a high-energy collider (up to 100 GeV/n for gold
and to 250 GeV/n for protons). Howeve17 HHIC is dedicated to the physics of quark and gluon plasma
and no experimental hall is currently equipped or foreseen to host fixed-target experiments focused on the
identification of heavy fragments

Also part of

: soratory) is an irradiation facility that takes
advantage of the BNL / : dlent 5 ro1:) to provide protons and heavy ions at space-
relevant energies [631] (see more in Sec. 6.2 protons up to 2.5 GeV, “*He up to 1.5 GeV/n, and several heavy
nuclei (12C, 160, 2°Ne, 4°Ar, %Fe) up to 1 GeV/n The maximum intensities are on the order of a few 10°
per second, except for protons, where the intensity can reach 2.2 x 1()11 /s. A series of quadrupole magnets is
available to shape the beam to cover large areas or to irradiate multlple targets at once. NSRI: can provide
measurements over the entire energy range with a single experimental setup, a feature which contributes to
i ploton beam flux is measured in situ Wlth a pre(’lsmn of 3. 6%

~

Gl

i} 1 while for longcr lived 1sot0pcs the irradiated targets
ca,nbe sent bdckto\‘z\“r\‘ IS (G‘er" ray Newtron Test Facility) at GSEC ard Space Flight Cen-

er) for decay analysis usmg hldh—precmon Ge—based 'y—Spectrometels The detection efficiency is calibrated
using NiST-traceable (National Tustitute of Standards and Technology) sources that have activities known
with a precision of 3% or better. Cross-sections can be deteumned from the activated target measurements
using basic nuclear physics coupled with the relevant nuclear decay parameters. Recent examples of such
experiments are the measurement of spallation cross-sections of " Cu [632], **Cr and "**Mn, from 200 MeV
to 2.5 GeV protons.

.
FIN A

5.3.8. G8I (Germany): past measurements and FAIR in 2027

(ST offers a large variety of beams with a maximum energy defined by the magnetic rigidity of its
synchrotron, 18 Tm presently. This corresponds to 2GeV/n energies for light systems such as C and O.
Currently, 28 different primary beams are available at GSE, from p to 233U, covering the most abundant
nuclei in the iSM. In addition to these primary beams, hundreds of radioactive species can be proposed as
secondary beams using the FRS (81 it Separator ) a low-transmission, high-resolution recoil magnetic
spectrometer [633].

The facility has a significant history with spallation cross-section measurements. Between 1996 and
2011, several such measurements were performed at (i3I, based on the inverse kinematics technique and
using liquid hydrogen targets: *Fe at 300, 500, 750, 1000 and 1500 MeV /n [330]; 36Xe at 200 and 500 [6
and at 1000 MeV /n [635], 1°TAu at 800 MeV/n [636], 29%Pb at 500 MeV /n [637] and at 1000 MeV /n [¢
and 238U at 1000 MeV /n [63%3]. Most of these measurements relied on the complete identification (mass
and charge) of the heavy fragment by the aforementioned ¥RS. Cross-sections were obtained with a typical
uncertainty of 4%, but it should be noted that the transmission of the spectrometer was estimated in a
rather crude way (a sharp 15 mrad cut-off), so error bars for large mass variations and/or low energies were
possibly underestimated at the time. Another pair of experiments, on %°Fe [540] and '36Xe [541], both at
1000 MeV /n, were conducted using the large-acceptance ALADIN (A Large Ace
magnet, with the goal of simultaneously measuring the heavy residue and the light fr agments and paltlcles

The FAIR facility is currently in the final stage of construction and is expected to host its first experiments
in 2027. Its powerhouse will be a new synchrotron, the SIS100 [$42], with a maximum magnetic rigidity of
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100 Tm. Depending on the chosen element, beams are expected to have a maximum intensity of the order
of 10'! per spill, the slow extraction mode making this roughly equivalent to a constant intensity of 101! Hz.
Taking over the role of the present F&S, the new recoil separator, the Super-FRS [843], will offer access to
an even larger diversity of secondary beams, with increased intensities.

The first possibility to measure (R cross-sections is to use the Super-E'RS, in a way similar to the
spallation campaign mentioned above. It is important to note that the Super-F'RS itself was designed with
a maximal magnetic rigidity of 18 Tm, the same as the FES. However, the Super-FHS will offer improved
transmission (cut-off of 40mrad in the horizontal duectlon and 20mrad in the vertical one) and, more
importantly, better knowledge and flexibility of its optics. Therefore, Super-F'®S could prove to be an
excellent tool for measuring cross-sections with high accuracy, provided the efficiency can be assessed with
sufficient precision. At the time of this writing, no liquid-hydrogen target is foreseen at the entrance of the
Super-FHS, so early experiments should be conducted with CHs and C farge'r@

A second direction is to set up a measurement in the future ¥

» Cave), where the new
supraconducting, large-acceptance magnet GLAD (GSI Le *) will be installed to be
the backbone of the R3B (Reactious with R it 7 setup. Exclusive experiments,
similar to the SPALADIN (spallation at ALADIN) measulements mentioned above, can be foreseen there.
A liquid-hydrogen target is already available for this setup. A possible downside of such an experiment is
that only reduced beam intensities can be used, as the full beam goes through the detection chain. Since
the beams will be delivered to the HE{ through the Super-FRS, the rigidity limit of 18 Tm also apphes

A third, and much more hypothetic at the moment, posmblhtv is the compressed barvonde matter (CBM)
cave. There, the SIS100 beams will be delivered up to their maximal energy. However, {Z13M is a fixed setup.
designed to study high-multiplicity events, and focused on the identification of light hadrons and baryons.

A spallation measurement would require a large modification of the TR setup.

e
1K

5.8.4. HIAF (China) in 2026

For over half a century, the HIRFL A 1) [644], designed and operated
by the IMP (Tostits of the Chinese Academy of Sciences, has played a pivotal role in
advancing heavy-ion accelerator technology, heavy-ion physics, and their applications in China. To meet the
increasing demands for hlghel beam mtenblty and beam energy in next-generation heavy-ion accelerators,

TMP proposed the HIAF (Heavy-lon Accel Facility) [645], which is expected to become operational by
the end of 2025.

HIAF consists of a superconducting ion linear accelerator, a high-energy synchrotron booster, a high-
energy radioactive isotope beam line, an experimental storage ring, and a few experimental setups. The
13 syichrotron Ring) is designed to achieve a maximum magnetic rigidity of 34 Tm, enabling
the dehvcry of a typical %0 beam with the energy of 2.6 GeV /n at an intensity of 6-10!! particles per pulse
(ppp) or a proton beam with the energy of 9 3 GeV/n at 2:10'2 ppp [645]. Beams extracted from the BRing
are injected into the HFRS (H R nt Separator), a powerful high-energy 1ad10act1ve beam
line. At the entrance of the HFRS, the beams impinge on a target to produce Rii3s (Hadionctivs i
via projectile fragmentation or in-flight fission reactions. The HI'HS is engineered to purify and bepdldte
HiBs with a maximum magnetic rigidity of 15 Tm through a two-stage separation process (pre-separator and
main-separator). This setup achieves an excellent removal rate of primary beams and an effective separation
for nuclides from hydrogen to uranium. Notably, the current design of 15 Tm magnetic rigidity is not the
ultimate goal, as future upgrades aim to enhance the HFRS to a maximum magnetic rigidity of 25 Tm,
which corresponds to the maximum energy of 2.9 GeV /n for light nuclei with a mass-to-charge ratio of two.

Several methods are available for cross-section measurements at HIAY. The first approach utilises the

HEFRS itself. Isotopes are separated and purified in the pre-separator and the initial half of the main separator
before impinging on a target. The second half of the main separator acts as a zero-degree spectrometer,
enabling the identification of fragments after the reaction using the Bp—-T{(OF-AE method, and fragmentation
cross-section measurements. Recent design optimisations have increased the horizontal and longitudinal
angular acceptances of the HERS to £30 mrad and +25 mrad, respectively [646]. These enhancements allow
the HERS to collect fragments after the target more effectively, thereby yielding more precise cross-section
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measurements. Similar to the Super-F&3 in GS1, initial experiments with the HEFRS do not support the

hydrogen targets, and the C—CHsy subtractlon would be used instead.

The second method relies on the I £ tv) of the H]

a complete beam sepalator delivering Rifis to the BTE, WhEle the beams impinge on a ta1 get. A detector

array at the BTF can identify reaction products and facilitate flagmentatlon cross-section measulements

i operates a radioactive isotope beam line, the second RIBL C at £

in Lanzhou) at HIRFL, which has successfully conducted fragmentation cross- sectlon measurements at its

external target facility [647]. With the enhanced magnetic rigidity of the HFHS compared to ¥ 2, future
operations are expected to enable cross-section measurements in higher energy regions.

{5, The HFFRS can function as

GeV-to-TeV measurements from R experiments

CR experiments, as particle physics detectors in space, possess the capability to perform cross-section
measurements. Although not primarily designed for this purpose, the need to understand and constrain
challenglng systematic uncertalntles in their data provides a strong motivation for such measurements (see
Sec. 4). A key advantage of CR experiments is their natural access to a diverse range of beam species
and energies (although the GCH “beam luminosity” rapidly declines with energy). Recent results have
demonstrated their potential to deliver important contributions to cross-section measurements, as described
below.

Spectroscopic. Accurate measurements of the individual spectra of nuclei require knowledge of nuclear frag-
mentation cross-sections with the detector material to reject background from fragmentation of heavier
nuclei within the upper part of the detector. The modularity of modern experiments, such as AMS, allows
to directly measure nuclei survival probabilities within the detector and rescale the M simulation accord-
ingly to overcome the lack of measurements of nuclear fragmentation cross-sections. From the measured
survival probabilities and the knowledge of the material within the AMS detector, the AMS collaboration
has derived measurements of charge-changing inelastic cross-sections on a C target f01 p1 ojectile nuclei: He,

Li, Be, B, C, N, O, Ne, Mg, Si, and Fe in the rigidity range from 2GV to 1 TV [:

Calorimetric. For calorimetric experiments, uncertainties from fragmentation cross-sections are secondary
to those of the total inelastic cross-sections, which determines the acceptance and energy response of the
detector. More a(‘(‘urate parame‘rrisations of inelastic nu(“leusfnucleus (‘ross-se(’fions in the GerPeV regime
a lack of measurements, models generally rely on the conversion of pp cr oss—sect1ons to different primaries and
target materials using, e.g., the Glauber-Gribov approach [64&—651]. For heavy-target materials (A 2 50),
often present in calorimetric detectors, such conversions come with typical uncertainties of 10-20%. Lowering
these hadronic uncertainties would make CH flux measurements more constraining, significantly improving
{CH production and propagation models. The DAMPE collaboration recently pubhshed a measurement of
the 1nelast1c cross-section of H (mostly protons) and He (mostly *He) on a BGO (BigGezOq2) target [352],
see Figure 18. In the case of He, these are the first measurements in the klnE‘Tl(‘ energies range of 20 GeV
to 10 TeV (lab frame) on any heavy-target material. This pioneering measurement achieved three major
objectives: it demonstrates the feasibility and potential of doing inelastic cross-section measurements with
calorimetric space-based experiments; it enables improving the accuracy of CH flux measurements; and it
provides a base measurement from which the cross-section of other heavy-target materials can be extracted
with model dependencies of only a few percent. Efforts are currently planned to extend the D3AMPE cross-
section measurements to other nuclei, including C and O. On longer timescales, it is worth noting that the

D mission [652], planned to launch in 2027, will significantly enhance the statistics of high-energy CR
observations. With its calorimeters segmented in all three spatial dimensions, HIZRI} data will enable to
improve the accuracy of the current R cross-section measurements, and to extend them to higher energies.

N

Caveats of these measurements. It is worth noting that for both the AMS and DAMEP cross-section mea-
surements, the projectile nuclei are {3{Rs and therefore a mixture of two or more isotopes, with one dom-

inating isotope in some cases. Moreover, only the charge of the projectile and of the final-state nuclei was
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Figure 18: Leflt: measurements of the proton inelastic cross-section with calorimetric space-based experiments [552], respective
to results by extensive air shower experiments [653-663] and model predictions [664-669]. Right: inelastic cross-section of
He measured by DAMPE [552] and AMS [551], compared to results by accelerator experiments [483, 670, 671] and model
predictions [664—669].

measured, but not the isotopic composition, though with the AMS detector it is possible to measure the
isotopic composition of the daughter nuclei (see Section 3.1.6). In general, space detector have not been
designed to perform cross-section measurements, and verifications with accelerator experiments where the
same quantities can be measured in a more straightforward way are needed. This is illustrated with the
discrepant charge-changing cross-section in C+C as inferred in AMS or recently measured in NA61/SHINE
[616].

6. Overlapping cross-section needs from other communities, and further astro/HEP synergies

As briefly introduced in Sec. 2.2, GCR physics is an interdisciplinary domain, with connections to several
adjacent fields of research. The long term evolution and stability of GCR fluxes over Gyr timescales comes
with its specific wish list of reactions and priorities (Sec. 6.1). Other science cases, more related to applied
physics and societal topics, have yet other cross-section needs and priorities. Among them, space radiation
protection is a topic of growing interest (Sec. 6.2). Hadrontherapy is a curious example, where GCRs are
completely absent, yet a significant overlap exists in terms of the cross-sections and energies of interest
(Sec. 6.3). For these three topics, where some overlap exists with the reactions needed for GCR studies,
the reactions involved, the status of nuclear data or codes, and the needs in terms of reactions, energy, and
precision are detailed below.

To further illustrate the richness, similarities, and advantages of synergies between the HEP and as-
troparticle communities, the cases of ultra-high energy CRs and femtoscopy (related to the equation of state
of neutron stars) — where even completely different cross-sections or regimes are explored —, are also briefly
covered (Sec. 6.4).

6.1. Cosmogenic production in meteorites

As briefly introduced in Sec. 2.2.1, cosmogenic studies focus on the nuclides stored in meteorite and
terrestrial archives. Long-lived radioactive nuclides, in particular, provide a powerful tool to assess GCR
fluency variations over time.

Obtaining cosmogenic production rates is possible via physical model calculations, some type of empirical
calibration using experimental meteorite data, or a combination of both. Here we focus on physical model
calculations as they are widely used for cosmogenic nuclide studies. Though the following discussion is
mainly focused on cosmogenic nuclide production in meteorites, most of the arguments are also applicable
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to terrestrial cosmogenic nuclides. The production rate P* (number of atoms per mass and time unit) of a
cosmogenic nuclide of type k in a meteoroid of radius R at position 7 is given by:

Pk(F7 8samplev 6meteoroid7 Z Z & / ;Jrrg(?k (74 Cmeteoroida Rx E)dE7 (23)

with R the pre-atmospheric radius of the meteoroid, Csample the chemical composition of the studied sample,
and émeteoroid the chemical composition of the meteoroid. Note that Cample and émeteoroid can be different
if, for example, a metallic inclusion in a stony meteorite is studied. The differential flux density of primary
and secondary particles of type i is 1 (7, émeteoroid, R, E) — particle per time, surface, and energy unit — and
depends on the pre-atmospheric geometry, the depth of the sample within the pre-atmospheric meteoroid,
and the bulk chemical composition of the meteoroid émeteoroid. The nuclear cross-section for the production

of nuclide k from chemical element j by particles of type i is a;':g ; k(E) i.e., the same cross-section type as

'‘Its, and & represents the concentration of element 5 in the meteormd assumed to be constant.

\g Ty

needed for
For qurnph(’l‘ry7 it is usually assumed that the pre-atmospheric meteoroid was spherical and that the ¢
flux was temporally constant. It can be shown that the calculated production rates are not very sensmve
to the assumption of a spherical shape (e.g., [672]). In addition, there are earlier and still ongoing studies
tackling the very important question of whether the ZUR fluence was temporal constant (for a discussion,
see [344]).

While the chemical composition of the studied sample Coample and of the bulk meteoroid émeteoroid can
easily be measured, the particle spectra and the relevant cross-sections are more problematic input param-
eters. Since the particle spectra ¢ (7, Cm@fmmld, R, E) — that are typically calculated using M{! techniques
— are not the subject of this paper, we focus the discussion on the current status of knowledge f01 the rele-
vant cross-sections. Considering the possible target elements, the bulk composition of chondrites (common
meteorite type) closely matches the bulk composition of the Sun, except for a few elements that usually
occur in the gas phase, e.g., H, C, Ni and He. Consequently, almost 95% of a chondrite is made from only
six elements. As an example, for a special chondrite type, called CI carbonaceous chondrite, the six major
elements are (in percent by weight): C (3.22%), O (46.5%), Mg (9.61%), Si (10.68%), S (5.41%), Fe (18.43%)

and Ni (1 08%). The other elements of the periodic table are all there but only in minor concentrations

For example, cosmogenic Kr is produced from the minor amounts of Rb, Sr, Yr and Zr, cosmogenic Xe is
produced from La and Ba, and cosmogenic *?°I is produced from Te.

6.1.1. Cross-sections for proton-induced reactions

Thanks to decades of experimental effort, most of the relevant cross-sections for proton-induced reactions
are relatively well known and are compiled in various databases, e.g., [477]. However, some relevant published
cross-sections need to be improved/adjusted due to the changed/adjusted standards used for the analysis
by accelerator mass spectrometry (1°Be, 3¢Cl, #'Ca). For example, when the activity concentrations of
the long-lived radionuclide °Be are measured by accelerator mass spectrometry, the °Be/?Be ratio of the
sample is measured against the 1Be/?Be ratio of a standard. If the 1Be/?Be ratio of the standard is not
as assumed, all samples measured against these standards end with wrong °Be/“Be ratios and therefore
wrong cross-sections. Thanks to recent inter-laboratory comparisons, the differences among the different
standards used in different laboratories are better resolved. Some standards, however, needed to be revised,
and such data need either to be recalculated and/ or to be remecasured. Such changes are sometimes in the
range 10-15% and are therefore relevant (e.g., [67 77]). In addition, some relevant half-lives have recently
been revised, e.g., for 1°Be, *!Ca and %°Fe (e.g., [678, 679]) and therefore also such cross-sections need to
be recalculated and/or redetermined.

For some relevant target product combinations, the cross-section database is still scarce. Examples are
the production of ' Ca and *3Mn from Fe and Ni, the production of Kr isotopes from Rb, Sr, Yr and Zr, and
the production of Xe isotopes from Ba and La. Importantly, the cross-section database for the production
of *C, which is a relevant target element for terrestrial and extraterrestrial applications, is still very scarce.
This is probably due to the fact that extracting '*C and measuring *C/!2C ratios via accelerator mass
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spectroscopy was for a long time very challenging. However, new instruments making '*C extractions and
measurements more accurate and more precise have been developed (e.g., [68G, 81|, which would make
revisiting the '*C cross-sections worthwhile.

6.1.2. Cross-sections for neutron-induced reactions

For neutron-induced reactions the situation is different, as there are only very few experimental data in
the energy range of interest, from the reaction threshold up to a few GeV. To overcome this problem, some
relevant neutron-induced cross-sections have been inferred from various thick target irradiation experiments
[642-6&87]. For details of the procedure, see [687, §8%|. In addition, there are very few directly measured
neutron-induced cross-sections relevant for the study of meteorites and planetary surfaces ([6&8, §39]). For
some relevant target-product combinations, there are not enough data to perform the adjustment procedure,
and the neutron excitation functions must be calculated using various nuclear model codes (e.g., TALYS or
INCL++6). Though some of these models have significantly been improved over the decades, the quality of the
calculated cross-sections is often still not sufficient for high-quality studies of cosmogenic nuclide production
in meteorites and planetary surfaces. As a consequence, currently the most limiting factor for the quality of
the model calculations is the ill-known and sometimes missing knowledge of the neutron cross-sections. Some
major improvements can be expected, if at least some relevant cross-sections could be measured directly.

6.1.8. Cross-sections for * He-induced reactions

For *He-induced reactions, the situation is even worse: there are essentially no experimental data for the
relevant reactions, namely the production of cosmogenic species on O, Si, Fe...targets, and in the energy
range of interest, from threshold up to a few GeV/n. So far, this was of no major problem, because the
M codes used to calculate the differential particle spectra were not able to consider *He or other light
charged particles reliably. Due to this shortcoming, there was no real effort in measuring the cross-sections
for *He-induced reactions. Moreover, primary &CE *He ions and their secondary products were considered
using a relatively crude approximation. However, this situation has just changed, and it is now possible, for
the first time, to directly include the full interactions of these *He ions [#77], and exciting new results are
expected. However, the missing experimental cross-sections are a serious limitation.

6.1.4. Cross-sections for muon-induced reactions

Most studies of cosmogenic nuclides in extraterrestrial material assume that production is dominated
by primary and secondary protons and secondary neutrons and that for some target—product combinations,
secondary *He-particles also contribute. However, a recent study argues that secondary charged pions might
contribute more than 20% to the measured activity concentration of °Be on the lunar surface [681]. This
finding contrasts with the good results obtained by studies that describe depth profiles for a variety of
cosmogenic nuclides on the lunar surface (including 1°Be) without it (e.g., [67" i]). Therefore, confirming
or rejecting the secondary pions hypothesis is crucial. This is especially true, considering that the study of
muons (originating from the decay of pions) on planetary surfaces is just becoming an important tool, in
space missions, to study the water-ice composition, and the density and chemical composition of lunar or

In contrast to cosmogenic nuclides in extraterrestrial matter, muon-induced reactions are very relevant
for some terrestrial cosmogenic nuclide studies. Since muons are leptons — and therefore do not interact via
the strong force —, they penetrate much deeper into the ground than neutrons. Therefore, despite their short
lifetime and their relatively small contribution (<2%) to the total terrestrial nuclide production at the Earth
surface, slow negative muons and fast muons are the dominant projectiles for nuclide production at depths
larger than ~4 m. This makes muon-induced production very important, whenever the sample was buried
more than 1 m deep and/or whenever terrestrial cosmogenic nuclides are used to study burial histories (for
more information see, e.g., [677]). Currently, there are no cross-sections for muon-induced production of
cosmogenic nuclides and all estimates are based on theoretical nuclear model codes with unverifiable quality.
Consequently, studying and quantifying muon-induced production in terrestrial and extraterrestrial samples
is one of the next important steps in the field. Some data are already available [44, 68%], but the database
is far from complete.
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6.1.5. Summary and wish list

The most important needs for modelling cosmogenic production are summarised in Table §. The main
target elements are C, O, Mg, Al, Si, S, Fe and Ni, although for some product nuclides, other (and heavier)
target elements are also important. Cross-sections from the respective reaction thresholds up to ~ 20 GeV
are needed. Since most excitation functions show little energy dependencies above a few GeV, extrapolation
towards higher energies is often possible and accurate enough. Figure 1§ shows measured and modelled
cosmogenic production rates for 1°Be (left panel) and 26 Al (right panel) for the L/LL6 chondrite Knyahinya.
The experimental data are from Ref. [:98], and for the model calculations, the contributions from protons,
neutrons and *He are distinguished. The estimated uncertainties for the individual contributions, but also
for the total production rates, are given by the grey areas. This plot helps to demonstrate the different
priorities and precisions reported in Table €.

e The highest priority and precision is for neutron-induced reactions, because their contributions often
dominate the total production in extraterrestrial samples; they are also often the sole contributions for
terrestrial applications. In that respect, the scarce (or very often lacking) cross-section database is the
limiting factor for most cosmogenic nuclide studies. This situation must urgently been improved. This
is clearly seen in Fig. 19, where the neutrons contribute to ~70% and ~50% of the total for °Be and
26 A1, respectively, and where the (so far large) uncertainties attributed to the neutron contributions
clearly dominate the uncertainties for the total production rates.

e The second priority (and precision) is for protons-induced reactions, as illustrated in Fig. 18, although
dominate the production of some nuclides (e.g., *®Cl and *!Ca from Fe and Ni). Most of the relevant
data are relatively well known. However, some target-product combinations, highlighted in boldface
in Table §, need remeasurements, due to recent changes in standards and/or half-lives (as detailed in
Sec. £.1.1).

o The contribution of *He-induced reactions is small, and cross-sections calculated from nuclear models
should be reliable enough not to significantly enlarge the uncertainties for the production rates (darker
shade in Fig. i8). However, there are only very few experimental data, and new measurements (at
mild precision) would more strongly support these conclusions.

e Finally, there is the open question about muon-induced reactions, whose contribution is not yet clear.
Studying, for instance, °Be cross-sections for some relevant target elements (at a mild precision) is a
necessary first step to assess the impact and importance of these interactions. Muon production and
muon-induced reactions will also be very important for future space missions (collecting extraterrestrial
samples), and it is also not clear, whether existing models are accurate enough or if experimental cross-
sections will be needed.

6.2. Space radiation protection

An important safety priority for human spaceflight is the protection of astronauts from the harmful
effects of the radiation environment in space [627-70¢]. The three main sources of radiation exposure are
geomagnetically trapped particles (mostly protons and electrons [701]), solar energetic particles (mostly
protons and light ions [702]), and &GCEs. The GOUR contribution is of primary importance for long-duration
missions to the Moon, Mars, and other deep-space destinations, where little or no natural atmospheric and
magnetospheric shielding is available [689, 7G3]. The relevant part of the GUR spectrum includes all nuclei
up to Ni, with energies up to at least tens of GeV/n, or even up to TeV/n for some aspects. Nuclei of
higher mass or energy are currently not considered in space radiation protection because of their much lower
fluxes. This radiation field interacts with a spacecraft’s hull and structures, and is significantly modified —
via electronic energy loss, fragmentation, and nuclear interactions [7{4] — by the time it reaches an astronaut
inside the vessel [703, 706]. It is then modified even further throughout the astronaut’s body [707]. The
most important particles that contribute to the radiation environment (inside a spacecraft or habitat) are

fi], protons [711], light ions (i.e., isotopes of H and He), and pions [712]. All these particles

neutrons [7H&-71
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L/LL6 chondrite Knyahinya
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Figure 19: Production rates of 19Be (left panel) and 26 Al (right panel) as a function of depth below the pre-atmospheric surface
for the L/LL6 chondrite Knyahinya (solid symbols). The result of the physical model calculations are shown by the solid lines.
The grey areas indicate the estimated uncertainties. For the model calculations, the contributions by protons, neutrons and
4He projectiles are distinguished. The total production rate is the sum of the three individual contributions. The experimental
data are from Ref. [696].

Table 6: Summary of the critical cross-section measurements for cosmogenic nuclide studies in terrestrial and extraterrestrial
matter. The highest-priority measurements are for neutron-induced, then proton- and muon-induced, and then *He-induced
reactions. The most important reactions within these priorities are highlighted in bold.

Particle Targets j Products k Measurements Projectile Ex  Precision
C, O, Mg, Al, Si t, >*He, mBg, 140, Ne, , Threshold
Neutrons Ca, Fe, Ni, Rb, Sr 261, 36C1, *Ar, 41»Ca, agif(ﬁk up to a few < 5%
Yr, Zr, Nb, Ba, La 53Mn, ®OFe, ‘Kr, ‘Xe 100 MeV
0, Mg, Al, Si t, *He, °Be, C _ Threshold
Protons  Ca, Fe, Ni, Rb, Sr E”S.Mn7 .GOFe Jg;tfd_’k up to a <10%
Yr, Zr, Nb, Ba, La ‘Kr, ‘Xe few GeV
0, Mg, Al, Si t, >*He, 1°Be, 1C, _ Threshold
Muons Ca, Fe, Ni ‘Ne, 25Al, 36Cl,_"Ar,_‘uCaL7 Jgrtf,%k up to a < 20%
53Mn, °Fe, ‘Kr, ‘Xe few GeV
O, Mg, Al Si t, >4He, 'Be, 1*C, . Threshold
‘He Ca, Fe, Ni ‘Ne, 25Al, 36Cl,viAr,.‘uCa, gpg‘fjj_*k up to a < 20%
53Mn, %°Fe, ‘Kr, ‘Xe few GeV/n
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Boundary condition: Full GCR spectrum
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Figure 20: Simulated dose equivalent (total all particles) as a function of shielding depth for a detector exposed to the full GCR
spectrum and located between two slab shields, each of them having the thickness indicated on the horizontal axis. The results
of the Geantd MC code [548, 717] with the QMD and INCLXX nuclear models are shown in red and cyan, respectively. Those of
the HZETRN [718-721] transport code with three different nuclear models (DDFRG (722, 723|, Badhwar [724], and G4, where G4
refers to the INCLXX model from Geant4) are shown as solid and dashed black lines. The other evaluated MC codes are FLUKA
(blue) [549, 550], PHITS (green) [725, 726] and MCNP6 (purple) [727]. Updated version of Fig. 13 in Ref. [130], provided by Tony
Slaba.

are light in mass and are therefore scattered at large angles. Thus, fully three-dimensional transport codes,
which use double-differential cross-sections in solid angle and energy as input, are required to assess how
spacecraft shielding alters the primary CR radiation field.

6.2.1. Transport code disagreements

To date, most spacecraft shielding has been relatively thin, with typical aerial thicknesses of about
20g/cm? (compared to 1000g/cm? and 20 g/cm? for Earth’s and Mars’ atmospheres, respectively). The
ISS shielding, for example, shows considerable variation, from less than 10g/cm? to about 100g/cm? or
more [713]. Figure 20 shows the results of a variety of transport-code calculations that assess the dose
equivalent produced by the full GCR spectrum, in a detector between two slab shields of varying thick-
ness [130]. As the shielding increases, the dose equivalent drops steadily and reaches a minimum around
20 g/cm?, beyond which it starts to rise again due to the increased production of secondary particles. The
existence of this minimum shows that there is an optimal shield thickness for radiation protection, if only
GCR are taken into account [130]. Martian and lunar habitats for crewed long-duration missions will likely
have shielding approaching or exceeding this optimal thickness [714, 715] and may, in extreme cases, reach
several hundreds of g/cm? [716]. Good radiation protection criteria will thus need to rely heavily on ac-
curate and reliable estimates of the radiation environment inside these thick shields. Unfortunately, the
transport-code calculations presented in Fig. 20 show disagreements on the order of 30% or more at large
shielding depths.

The key question is: what is the source of this large variation, and what can be done about it? The main
reason for the disagreement between the codes are the different nuclear-reaction models they use, which is
nicely illustrated by Fig. 20. For example, two different nuclear models, QUMD and INCLXX, are used as input
to the otherwise identically configured Geant4 MC framework [548, 717], showing variation of about 10%
at large shielding depth. Another example is the deterministic transport code HZETRN [718-721] that was
evaluated with three different nuclear models, producing even larger variations of about 40%. The other MC
codes, FLUKA [549, 550], PHITS [725, 726] and MCNP6 [727], did not allow changes to their underlying nuclear
models, though it can be argued that they are among the primary differences between the otherwise similar
codes [728]. Clearly, the key to resolving the observed disagreements hence lies in significantly improving
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Figure 21: Example of available nuclear-reaction double-differential cross-section measurements (represented by the symbols
“D”) for the production of *He particles from nucleus-nucleus reactions with By /n < 280MeV/n (left), 280 MeV/n < By <
3 GeV/n (middle) and 3GeV/n< By, < 15GeV/n (right). There are no measurements available for Ey ;,, > 15GeV/n. Figure
reproduced from Ref. [131].

the nuclear-reaction models. What, then, is the obstacle to doing so? It is not the shortage of models or
the lack of nuclear theorists working on model development. Rather, it is the lack of sufficient experimental
cross-section data that would allow validating the available models.

6.2.2. Nuclear data: availability and gaps

Norbury et al. [131] performed an exhaustive survey of the availability of nuclear-reaction cross-section
data for charged-nuclei production relevant to space radiation protection. An example, highlighting the
availability of double-differential cross-sections for nucleus-nucleus reactions producing *He particles, is
shown in Fig. 21. The presence of the symbol “D” on the plots indicates that experimental data are available
for a given projectile-target combination, while the quality of the data is not ascertained. Below the pion-
production threshold, 280 MeV /n, there is an abundance of data available for a variety of targets and for
projectile charges Z < 10. Above Z = 10, there is very little data. The same is true to a lesser extent for
projectile energies, Ey /,, between the pion threshold and 3 GeV/n; for 3GeV /n < Fy/,, < 15GeV/n, there
are only two data sets; for Ey,, > 15GeV /n, no data is available. Figure 21 only shows the production of
“He particles, but Norbury et al. [131] compiled measurement data for a broad range of nuclear fragments
and types® of cross-sections (total, charge-changing, single-differential, etc.).

The most important reference for neutron production data is that by Nakamura and Heilbronn [729].
They collected all the existing world data for both cross-sections and thick-target yields. Most data came
from experiments at the RIKEN (Rikagaku Kenkyusho, Institute of Physical and Chemical Research, Japan),
HIMAC (Heavy Ion Medical Accelerator in Chiba, Japan) and Bevalac (at LBNL) accelerators. Subse-
quently, Satoh et al. [730] and Itashiki et al. [731] reported more data, some of which overlaps with that
listed in Ref. [729], enabling comparisons between experiments. When one analyses all these data, some
significant disagreements are found. Bevalac data (337 MeV/n) [729] show inconsistencies with HIMAC
data, though the recent measurements by Satoh and Itashiki are broadly consistent with the latter. The
low-energy (95MeV/n and 135 MeV /n) RIKEN data [729] also show some inconsistencies. Overall, the com-
plete neutron data set needs a re-evaluation and extensive new experimental data to resolve disagreements
between the different available measurements.

6.2.53. Summary and wish list
As summarised in Table 7, the primary projectiles of interest for future measurements of light-ion produc-
tion relevant to space radiation protection are Fe, Si, O and He. Energies of interest are between 100 MeV /n

8Yield distributions were not included because they cannot be used without prior conversion into cross-sections.
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Table 7: Summary of highest-priority cross-section measurements for light-ion, neutron and pion production relevant to space
radiation protection. Experiments should determine the multiplicities and energy spectra of the reaction products. If possible,
neutron energies should be measured down to 1 MeV.

Projectile ¢ Targets j Products & Measurements Projectile Ey,, Precision
2giti—k (any data)

H C, Al Fe “23H, %*H 4T i 0 to 50GeV)/ ’
€ p, G, Al; Fe ) & n, dQdE  Tinel © ev/n pref. < 20%
d2giti—k (any data)

0, Si, Fe p, C, Al, Fe  V23H, 34He n, 7t i+5 0.1 to 50 GeV/n

Ta0dE  Tine pref. < 20%

and 50 GeV /n, with an emphasis on data at higher energies, where there are significant data gaps. Other
projectiles and energies above 10 GeV /n are also of interest for testing models and transport codes, if such
data is all that is available. A variety of targets are of interest, including the major constituent elements of
the most commounly used aerospace materials and the human body (e.g., H, C, Al and Fe). To be useful as in-
put to nuclear-reaction models and hence transport codes, measurements must determine double-differential
as a function of the solid angle and energy, and total inelastic cross-sections oine — also denoted og, see
discussion of Eq. (14) —, and identify fragments and secondary particles over as broad an energy range as
possible. For secondary particles, pions are of particular interest, for which production cross-sections should
be measured with high precision. In principle, any data is helpful for improving nuclear models, though
preferably measurements should reach a precision of 20% or better.

There is also a variety of other measurement needs, the most important being double-differential cross-
sections for neutron production, especially above 1 GeV /n, where there is essentially no data, and for energies
as low as 1 MeV, where the biological damage from neutrons is the largest [732]. Many measurements of
yield distributions are already available in the literature (see, e.g., [733]), for which it would be very helpful
if a methodology was developed to reliably convert them into cross-sections. Finally, extensive comparisons
of the most important nuclear models used in transport codes are needed, including validations against
currently available and future measurements.

6.3. Hadrontherapy

The study of nuclear processes involved in the interaction of protons and heavier ions is crucial for
hadrontherapy, as well as for space radiation protection. In fact, the energies and ions of interest for
clinical applications overlap the ion types and energies composing the GCR particle field. It was previously
demonstrated that ion fragmentation processes in clinical treatments are a source of uncertainties in the
calculation of the relative biological effectiveness, which is commonly used to calculate the dose delivered to
the patient via the TPS [734].

It is also essential to correctly reproduce nuclear reactions during a particle-therapy treatment, as many
dose monitoring techniques are based on the detection of secondary particles emitted by these reactions.
For example, many research teams are developing monitoring systems based on prompt-gamma detection,
these prompt-gamma being emitted during hadronic processes occurring in the patient [735, 736]. Other
techniques suggest detecting the annihilation v from 'C, produced by the incoming beam interacting with
the target [737, 738|. Finally, it was also suggested to develop monitoring techniques based on the detection
of secondary protons that are produced by ion fragmentation in the patient (only if Z > 1) [739, 740]. Most
of these studies rely on MC simulations, although it was demonstrated that important discrepancies exist
between measured data and simulated output [741, 742]. An example of the differences in energy spectra
simulated by different hadronic models of the Geant4 MC code (BIC, QMD and INCL), compared to measured
data, is presented in Fig. 22. The significant discrepancies, observed between the three models and the
experimental results, mainly arise from the difficulties MC simulations encounter in accurately reproducing
the hadronic processes undergone by the incoming carbon ion. Therefore, improving the accuracy of the
nuclear cross-sections, that can occur during particle-therapy treatment, is essential.
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Figure 22: Measured and simulated energy spectra of prompt-gamma produced by 220 MeV /n 12C interacting in a 20-cm thick
target of PMMA, measured at 90 and 60°. Reproduced from Ref. [742].
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Figure 23: Double differential cross-sections of *He produced by 95MeV /n 12C ion on carbon target, measured at 4 and 17°.
Reproduced from [741].

6.3.1. Current status

Many studies have already been carried out to characterise the radiation fields of secondary particles
produced by MeV to GeV ions [743, 741, 744-746]. For example, the GSI Biophysics Department made avail-
able a fragmentation cross-section database, providing useful and crucial data for GCR field characterisation
[475]. Measurements on thin and thick targets were also carried out. Several experiments were performed at
the GANIL (Grand Accélérateur National d’Tons Lourd, Caen, France) facility with 50 and 95MeV /n 12C
ions, allowing to extract double-differential cross-sections on different targets (H, C, O, Al and "*Ti). For
example, the measured d?c/(dQdE) of *He produced by '2C ions on carbon target at different angles can
be seen in Fig. 23, compared to several hadronic models provided by Geant4. Different measurement strate-
gies were investigated to characterise secondary particles, from TOF techniques with scintillating detectors
to dose measurements, with thermoluminescent dosimeters-based [747] or Bonner sphere spectroscopy for
neutron measurements, or tissue equivalent proportional counter that can provide a direct measurement of
the linear energy transfer.

Currently, the international FOOT (FragmentatiOn Of Target) collaboration intends to perform sys-
tematic measurements of differential cross-sections of secondary particles produced by radiation on tissue-
equivalent targets [748]. The first results produced by the collaboration were measurements of elemental
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Table 8: Summary of highest-priority cross-section measurements and precision required for hadrontherapy. See text for the
motivation.

Particle i Targets j Products k Measurements Projectile Ey, Precision
o’737% (charge changing) < 2%
oI (mass changin : < 5%
“He, 12C, %0 H, C, O, Ca All AA d_a(i ST ging) gy o By <400MeV/n 10;0
d?c'I7F /(dQAE) < 5%

cross-sections in [749], performed at the GSI facility, from 400 MeV /n 60 interacting with a carbon target.
Another experiment at GSI with the same ion allowed the first measured differential cross-sections by the
collaboration, available in [750].

6.3.2. Wish list

Several studies have already been carried out, but there is still an important lack of data on double-
differential cross-sections in the energy range of hadrontherapy (i.e., between 80 and 400 MeV/n), as pre-
sented in Fig. 21. The needs of charge-changing, differential and double-differential cross-section measure-
ments for ion therapy overlap some recommendations for space radiation protection (see previous section).
The most important needs (reactions and precision) for the hadrontherapy community are summarised in
Table 8.

For therapy, the most used ions are currently p and '2C, but a renewed interest has recently emerged for
4He and 60 [751, 752]. Therefore, the priority in the hadrontherapy field is to measure double-differential
cross-sections of *He, 12C and '5O-induced reactions on targets of interest for clinical applications: mainly
H, C, O and Ca. The measurements of hadronic reactions on H targets will allow the evaluation of tar-
get fragmentation through an inverse kinematic approach, as proposed by the FOOT collaboration [749].
Nuclear reactions on Al can also be of interest to take into account the activation of accelerator materials.
The precision required for the cross-sections measurements in hadrontherapy is based on compliance with
requirements on delivered dose uncertainties in clinical practice. Indeed, the 62°¢ report of the ICRU (In-
ternational Committee for Radiological Units) recommends a maximal variation around the delivered dose
of +7% and —5% [753]. The charge-changing cross-sections, owing to their large contribution to the target
fragmentation, dominate the error budget of the delivered dose, and hence require the best precision. As
secondary particles produced during hadrontherapy treatments are responsible for an additional dose deliv-
ered outside the tumour volume, the double-differential cross-sections accuracy will have a more important
impact on the out-of-field dose.

6.4. Further synergies between astroparticle and high-energy physics

Despite not described in detail in this paper, other synergies between the astroparticle and high-energy
physics communities exist, where experimental inputs on the cross-sections are also needed. A first example
discusses how the current interpretation of the atmospheric shower data induced by UHECRs is limited by
the knowledge of the hadronic cross-sections (Sec. 6.4.1). A second example explains how measurements of
two-particle correlations is relevant to the understanding of the structure of neutron stars (Sec. 6.4.2).

6.4.1. Ultra-High-Energy Cosmic Rays

The physics case of UHECRSs was discussed in Sec. 2.3.1. We highlight below two interaction meachanisms
for which better nuclear data are needed, and how they impact the measurement or interpretation of UHECR
data.

Hadronic interactions in the atmosphere. Knowledge of hadronic cross-sections is fundamental to understand
the physics of air showers, namely cascades of secondary particles generated when UHECRs (see Fig. 1)
interact with Earth’s atmosphere [659]. These interactions, dominated by hadronic processes, govern the
development, energy distribution, and particle composition of air showers. Precise measurements of hadronic
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cross-sections are essential for interpreting air shower data, with profound implications for analysing the
UHECHs spectrum and composition, as observed by facilities like the Pierre Auger Observatory and the
FA. At the heart of air shower physics lies the challenge of modelling hadronic interactions across an
enormous energy range, often surpassing the energies achievable in terrestrial accelerators such as the LHC
These high-energy interactions involve nuclei from primary {!Rs colliding with atmospheric atoms, resultlng
in a complex cascade of secondary particles, including pions, kaons, and baryons. Measuring hadronic
cross-sections provides critical constraints on the theoretical models used to predict particle multiplicities,
energy spectra and angular distributions within the shower. Accurate cross-section data enable more reliable
extrapolations of hadronic interactions at ultra-high energies, where theoretical uncertainties and model
dependencies become significant [7%4]. Reducing uncertainties in these measurements enhances our ability
to distinguish between different 'R composition models and deepens our understanding of the origins and
acceleration mechanisms of these particles.

Photo-disintegration and giant dipole resonances. The observed UHEHRs exhibit a predominantly heavy
composition, suggesting that photo-disintegration processes play a crucial role in modifying their nuclear
species as they travel from their sources to Earth. The dominant contribution to photo-disintegration arises
from the excitation of the giant dipole resonance, a collective vibration of protons and neutrons within the
nucleus. This resonance typically occurs at photon energies above ~8MeV (in the nucleus’ rest frame) and
leads to the emission of one or two nucleons. At higher energies, the quasi-deuteron process becomes signifi-
cant, wherein the photon interacts with a nucleon pair, resulting in the ejection of nucleons or light fragments.
For photon energies exceeding ~ 150 MeV, even more energetic processes, such as baryomc resonances, begm
to dominate. Given the average energy of today’s photons from the cosmic mic
UHECR nuclei with Lorentz factors exceeding a few 10° experience 1n’r91act10ns where U}
reach tens of MeV in their rest frame. In the sources of UHE(
(e.g., accretion disks) can even reach beyond 150 MeV in the UHECH’s rest frame and lead to photopion
production, with observable predictions of coincident neutrino and gamma-ray emissions [753],

3 photons can
JHs, intense photon fields from local structures

, besides also
producing photodisintegrations of these CR. Therefore, photonuclear interactions contribute 91gn1ﬁcantly to
the evolution of the U ‘R composition during propagation [’ 7] and in the sources [75&
Despite extensive studies, photonuclear cross-section data remain incomplete and 1ncon51stent System-
atic discrepancies persist among different experimental techniques at various accelerator facilities, and there
is a lack of measurements for many nuclear species [754]. Several models have been developed to describe
photonuclear reactions in UHECH propagation. The Puget—Stecker—Bredekamp model historically provided
a simplified approach by implementing a single decay chain per nucleus. However, more advanced simula-
tions, such as those in TALYS [364], allow for multiple decay chains and have been incorporated into modern
propagation codes like CRPropa [7{}] and SimProp [¥61]. Nonetheless, discrepancies between model pre-
dictions and available cross-section data introduce systematic uncertainties in interpreting current UHIECR
observations [762]. In the case of photomeson interactions, the limited data available have been gathered to
produce models beyond the prevalent simplistic nucleon superposition approach [139], but the description is
still lacking, and the required precision in the cross-sections and secondary yields have not been attained.
Addrossmg thcsc experimental and theoretical challenges is a key motlvatmn for ongomg efforts, such as
the PARX ] . and Ibse ‘ i) pIOJeCt
which aims to rcﬁnc our undorstandmg of photonucloal interactions relevant to Ul physics [763, 784].
Measurements of photomeson-related quantities are not currently under planning, but they could be (:anled

out at UIKRN, where the necessary projectile energies are already available.

- x\n(f"‘c ion of N ervation & ‘,i'\l\l v

6.4.2. Femtoscopy for neutron-star research

Femtoscopy allows the study of residual strong interaction between hadrons, by measuring momentum
correlations of hadron pairs produced in collisions at accelerator facilities. It is especially beneficial for
the studies of more exotic particles, for which direct scattering experiments are limited or even impossible,

-

due to their short-lived nature — for instance, hadrons containing strange quark(s) [¢ The residual
strong interactions between nucleons and hyperons are of especial interest for astrophysics (as introduced
in Sec. ), as they are the necessary components to understand what are the constituents of neutron
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Figure 24: Sketch illustrating the central role of cross-sections (denoted XS) for many physics cases discussed in this review. At
the core of all studies lie the cross-sections. The first layer includes the measurements of cross-section DATA in diverse facilities
(Sec. 5), ideally curated and made available in public DATABASES, included and fitted in public nuclear CODES, ideally regularly
BENCHMARKED (against the data and one another). The second layer consists in the physics topics, some having been deeply
discussed in this review, with high-precision era of CR experiments (Sec. 3) motivating GCR studies (Sec. 4), but also others
more briefly described, such as cosmogenic studies (Sec. 6.1), space and medicine applications (Secs. 6.2 and 6.3), and other
astroparticle/HEP/BSM (Beyond Standard Model) synergies (Secs. 4 and 6.4). The last layer highlights some salient physics
cases (Sec. 2) that can be advanced with high-precision cross-section measurements (and the use of nuclear codes, ideally for
the less important unmeasured reactions only).

stars [765]. Whether and at which density hyperons appear in neutron stars depends on the equation of state
of dense matter, and thus on the nucleon—hyperon interactions included in it. In the last decade, correlation
functions were measured for p—% [766], p—= hyperons [767] and p-A [768, 769], providing unprecedented
precision data to constrain the relevant two-body strong interactions. Moreover, femtoscopy technique was
recently extended to the three-body sector, allowing the study of three free hadron scattering process 3 — 3,
which is not accessible with any other experimental setup [770, 771]. Hyperon-nucleon—nucleon three-body
force is one of the most crucial components for the proper description of the equation of state of dense
matter [772, 773].

The facilities and experiments capable of performing femtoscopy in high-energy collisions are shared
laboratories for hadron and nuclear physics (e.g., ALICE, AMBER, LHCb, NA61/SHINE). They provide
important input for different research questions in astrophysics. For more details, see, for instance, the
recent JENAA 2024 workshop at CERN [774].
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7. Conclusions and long-term plans

This paper is a call to start, support and develop long-term campaigns to measure a variety of cross-
sections. High-precision cross-sections are mandatory to fully exploit recent high-precision 3R measure-
ments, and of pivotal importance to address the associated physics puzzles. In the last decade, many studies
were pursued to provide actionable lists of cross-sections to measure, and successful synergies were built
between several communities to do some of these measurements. The most salient results presented in this
review can be summarised as follows:

o Physics and societal challenges. The quest for difficult physics questions, relatively new (What is
3M7?) or much older (What are the sources of (GCURs and the origin of life on terrestrial planets?),
cannot go forward without new campaigns of high-precision cross-section measurements. Some of these
cross-sections, and many others, are also needed for several societal and applied topics, ranging from
human space exploration to cancer treatment. These synergies are summarised and highlighted in
Fig. 24.

e Ongoing and future {8 experiments. In the last decade, direct R experiments broke several barriers
in terms of precision (percent level), energy (hundreds of TeV) and variety (anti-matter, leptons,
nuclei) — see Figs. 4 to 7. The next decade will see even more results (see Fig. &), and despite a
foggy horizon after 2030, the sub-percent-precision frontier is one of the many ambitious objectives of

projects beyond 2040.

c w

o Cross-section needs for &8s, The methodology to establish and rank the list of cross-sections to im-
prove is sound, and the desn ed reactions have been well-identified. Moreover, forecasts have shown that
these measurements are guaranteed to be a game changer for the field. We refer readers and experimen-
talists to our summary tables and plots of cross-section needs (reactions, energv range and precision):
production cross-sections (for G{/R flux modelling) are presented in Tables i, % and Fig. ¢ for nuclei,
and in Table 3 for an’rinu(‘lei positrons and + rays; inelastic, anmhlla‘rlng and non- annlhllating Cross-
sections — required for UR propagation studies or the analy51s of CH experiments — are presented for
nuclei and antinuclei in Table 4 (and further detailed in Fig. 14 i for nuc101).

o Other cross-section needs. A large variety of reactions (projectiles, targets, and products) and cross-
sections (total, simply or doubly differential) are also required in adjacent fields, where some overlap
exists with the GUR needs. Tables 6, 7 and & summarise the highest-priority cross-section needs
for cosmogenic studies, space-radiation protection and hadrontherapy. We do not provide wish lists
for UHECHs or neutron stars/femtoscopy physics, as these topics were presented mostly to illustrate
further existing synergies between the astrophysics and HIFP communities.

o Key facilities and experiments. Given the wide range of energies (hundreds of MeV to hundreds of TeV),

projectiles (all nuclei, anti-matter, neutrons and muons), targets (H, He, C, O, etc.) and fragments
to measure, not a single facility will provide all the needs. Luckily, fd.Clhtleb at PS8, SPS and LHC
at ¢ N (see Fig. 14) are already being taken advantage of, and several near- futu1c nuclear physms
fa(’lh‘rles will have the capability to perform some desired measurements (see Table ). In addition, R
experiments themselves have proven to be excellent detectors and complementary setups to measure
cross-sections based on flight data. However, measurements of the cross-sections highlighted in this
review remain marginally supported in current physics programs. We hope this paper will give more
visibility to the current efforts and motivate experimentalists to join, in order to achieve at least the
most urgent measurements in our wish lists.

o Nuclear databases, transport codes and M event generators. The number and energy coverage of
the cross-sections needed is huge. On the one-hand, easy-to-use and up-to-date databases of nuclear
data, possibly specific to physics sub-topics, would be a huge boost to facilitate their comparison and
use. On the other-hand, general-purpose parametrisations and codes will always play a critical role
for filling the gaps. Several efforts and initiative already exist to provide public and verified data,
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and to benchmark codes in the nuclear physics and HEP communities. Nevertheless, more synergies
and coordinated efforts could only be more beneficial to all communities. This possibly calls for a
dedicated road map.

Looking at the past often gives a good vantage point to prepare for the future. In that respect, it is
worth stressing that in the 1980s, similar synergies, though at a smaller scale, and efforts were carried for
over 20 years to provide the cross-section data needed to interpret CUR data of the time with a precision of
tens of percent. These nuclear data and codes still have a legacy status. Today’s and tomorrow’s challenges
are no less difficult than these past ones, but we are clearly embarked on the premises and promises of a
long term programme that will secure legacy nuclear data for the next 20 years.

Besides pursuing the current data campaigns highlighted in this paper, there are straightforward and
relatively easy directions to follow: on the modelling side, one need to provide more robust and comprehensive
compilations of nuclear cross-sections, extend the wish list of desired cross-section to ultra-heavy GCR
species, quantify in more detail the impact and needs for other cross-section types (inelastic, non-annihilating,

..), etc. There are also somehow more difficult or involved directions to follow: survey more closely the
possibilities offered by current facilities and experiments, and prepare and plan for new opportunities and
new detectors to make strong proposals for beam time for these cross-section measurements. On the R
experiment side, the next generation of detectors will bring even more challenging precisions in terms of
cross-sections needed to analyse and interpret their data. As these particle physics detectors already rely on
beam tests at {EHN (integration and validation), it could be interesting to think about, and possibly plan
as well for, dedicated cross-section measurements campaigns at this early stage.

The clear, long-term, challenging but rewarding programme ahead of us, however, faces the difficulties
of limited human resources and funding, in a future constrained by a necessary decrease of our footprint in
terms of greenhouse gas emissions. Its advantage is that it relies on existing facilities, taking a priori a very
small fraction of the physics programmes for which they were conceived. In this respect, given the broad
and interdisciplinary questions, we hope that the road map provided in this review will help convince and
gather support from deciding committees and the many agencies financing research world-wide.
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