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Abstract

We provide maximal LP-regularity up to the level T < oo or T = oo of an abstract evolution equation
in Banach space, which captures boundary closed-loop parabolic systems, defined on a bounded multidi-
mensional domain, with finitely many boundary control vectors and finitely many boundary sensors/actu-
ators. Illustrations given include classical parabolic equations as well as Navier-Stokes equations in L? (Q)
or L%(Q), respectively.

1. The case of boundary controls and boundary sensors/observers, [LPT.6]
Overview

The topic of maximal LP-regularity was (apparently) first studied in the fundamental paper [Sim] (in Italian)
published in 1964. In it, the author considers the generator 4 of a s.c. (C,) semigroup e“? on the Hilbert
space H and shows a definitive result in this setting: that et possesses maximal LP-regularity up to T on
the Hilbert space H if and only if it is analytic (holomorphic); with T = o in case e4¢ is, moreover, (expo-
nentially) uniformly stable. The sophisticated, technical proof was based (as stated in the paper’s title) on
the theory of singular integrals. This was truly a pioneering paper that stimulated an intense subsequent
research activity, both at the abstract Banach space setting as well as at the LP or Holder spaces settings
for the class of (parabolic) equations. At the general Banach space setting, it was established that maxi-
mal LP-regularity of the s.c. semigroup e“? implies that e4¢ is analytic, but not conversely. To date known
counterexamples exist in abstract Banach spaces setting, see [HNVW.2, Section 17.4.c]. Instead, the PDE-
framework includes: either dynamics defined on the entire multidimensional space; or on half-spaces; or
on domains exterior to multidimensional bounded domains; or else on a multidimensional domain ), with
possibly, open-loop inhomogeneous boundary terms on d( in Triebel-Lizorkin spaces, see [DHP]. Similar
results are available for Pseudodifferential setting as well. The list of significant papers will likely exceed
the length permitted for this extended abstract. Thus, we must constrain ourselves to quote only a few.
In contrast, the emphasis of the present extended abstract is quite different. While the setting is still at
the abstract Banach space level, the modeled dynamics intend to capture closed-loop boundary feedback
(parabolic) problems, with either (i) finitely many boundary controls and interior sensors/actuators [LPT.5];
or else (ii) with finitely many boundary controls and boundary sensors/actuators [LPT.6]. The assumption
imposed on the two abstract models are automatically satisfied by the intended, motivating applications.
These include, in addition to classical parabolic dynamics, physical important dynamics such as Navier-
Stokes equations (particularly in dimension d = 3), Boussinesq systems, Magnetohydrodynamics (MHD)
systems, etc [LPT.1, LPT.2, LPT.3, LPT.4, LPT.5, LPT.7]. Here maximal LP-regularity is first established in the

2
Banach space L1(£2), 1 < g < oo, or even a suitable Besov space B;,p /v (Q) which does not recognize bound-

ary conditions (1 < p < 22—31, q > dimension d). Next, such maximal LP regularity is exploited to obtain

(well-posedness as a nonlinear semigroup and) uniform stabilization of the full nonlinear feedback model in
the vicinity of an unstable equilibrium solution.

1.1. Abstract setting

The focus of the present section is the operator

A, =—A(—GF):Y>D(4p) — Y (1.1a)
D(A,) ={x €Y : (I - GF)x € D(A)}. (1.1b)
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and corresponding abstract equation
Ye = Apy = —A(l = GF)y (1.2)
under the following standing assumptions:

(H.1) Y is a reflexive Banach space.

(H.2) —A : Y D D(A) — Y is the maximal dissipative generator of a Cy-contraction semigroup e ¢ on

Y, t = 0, which possesses the maximal LP(0, T; Y)-regularity property up to T, either 0 < T < oo; or else
T =00, 1 < p < o0; in symbols [Dore.1]

—A € MReg (LP(0,T;Y)), either0 <T < oo; orelseT =,1 <p < oo;

so that, a fortiori, the strongly continuous (s.c.) semigroup e“¢ is analytic (holomorphic) on Y. At the price
(harmless for the present note) of replacing A with a suitable translation to the right (4, = A + k?I), the
fractional powers A?,0 < 6 < 1, of A are well-defined [Pazy].

(H.3) U is another Banach space and G is the (“Green”) linear operator satisfying
G : continuous U — D(A%) c Y, or A% G € L(U;Y) (1.3)
for some 0 < ap < 1.

(H.4) F is a linear (“feedback”) operator of the form

Fz =(yz,w),g9, w,g€U (1.4)
where y is a linear (trace) operator
y : continuous D(A°) c Y — U, 0<o<a,<1 (1.5)
so that
F : continuous D(4°) c Y — U. (1.6)

K

[In the applications we shall take Fz = Z Yz, widy 9o Wi gk € U]
k=0

Remark 1.1 F is thus unbounded as an operator on Y. For the similar problem considered in [LPT.5] in JDE,
F was a bounded operator on Y. The purpose of this work is to extend to the operator (1.1) the result on
maximal LP (0, T; Y)-regularity of [LPT.5], T < o. The proof of [LPT.5] requires F € L(Y; U). Thus, the proof
of the present note is quite different from that in [LPT.5]. See [Las] for abstract parabolic boundary problems.

With reference to assumption (H.3) centered on the constant 0 < «, < 1, we introduce two Banach
spaces, where 0 € p(4),

& = D(A%), withnorm |[|x||; = ||x||D(AaO) = [|A%x|l,, (1.7)
= *(1-a,) ! i = ;) = -(1-ag)
E = [D(A4"*~%))] with norm ||z||, = ||z|I[D(A*(1_aO))] |4 oz, (1.8)
Accordingly we introduce the following holomorphic interpolation spaces
, D(A%9),0<0<a, (1.9a)
[8, E]g = [D (AIZO) , [D (A*(l—(lo))] ] — ( ), 0
o |[D(Aa® %)), a, <6< (1.9b)

sincea (1 —0) — (1 —a )0 = a, — 0, with corresponding norm

Ixlife, g, = Ixllpgaee-0) = [4%~°x]|,, 0< 6 < a,, (1.10)

Izlle, £, = IIZII[D(A*(G_%))]I =[|[aC%)z]|,, @, <0 < 1. (1.11)
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£ =D (4%)

E=[p(4%)]

Fig 1: Symbolic illustration of the spaces and operators involved.

1.2. Main Result

Theorem 1.2 (a) Let 0 < T < oo. The operator A in (1.1) defined on Y generates a s.c. semigroup Tr(t),
which is analytic on Y and, moreover, possesses the maximal LP(0,T;Y)-regularityonY, 1 <p < oo, T <
co: the map

t
- LR = fo e4F(t=5) f(s)ds continuous LP(0,T;Y) = LP(0,T; D(AF));

in symbols, [Dore.1]
Ap € MReg (LP(0,T;Y)), 1<p<oo, T < oo, (1.12a)

(b) Let T = oo. Assume further that the s.c. analytic semigroup Tg(t) is uniformly stable on Y: there exist
constants M = 1, 6 > 0, such that

||TF(t)||L(Y) < Me=%, t > 0. (1.12b)

Then, Tr(t) possesses the maximal LP (0, oo; Y)-regularityonY, 1 < p < oo, T = oo; in symbols [Dore.1]
Ap € MReg (LP(0,00;Y)), 1<p<oo, T = oo, (1.12¢)

Actually, in the each case (a) and (b), Tr(t) extends/restricts with the same properties - as s.c. analytic,
uniformly stable (case (b)) semigroup, with maximal LP-regularity (0 < T < oo in case (a), T = oo in case
(b)) - on the space E in (1.8), on the space € in (1.7), as well as on all holomorphic interpolation spaces
(1.9)-(1.11).

The proof of the present Theorem 1.2 with F unbounded as in (1.6), F € L(D(A%),U) given in [LPT.6], is
completely different from the one in [LPT.5]. It is inspired by a proof in [LT.2] about analyticity of a specific
parabolic semigroup in an Hilbert setting. It consists of three steps, (i) first, showing LP-maximal regularity
in the larger space E in (1.8); next, (ii) showing LP-maximal regularity in the smaller space £ in (1.7); and
finally, (iii) showing L?-maximal regularity on Y by interpolation.

In contrast, the proof of [LPT.5] for F € L(Y;U) was based on considering Ay rather than Ar. With
F € L(Y;U) and G satisfying AYG € L(U;Y) for some y, 0 < y < 1, the expression of Ar makes such form
not directly suitable for deducing its maximal regularity on Y, as it would leave the power A*~ on the LHS
unaccounted for on Y. The form of Ay in [LPT.5] is more amenable to show Az € MReg(LP(0,T;Y™)) by
perturbation [Dore.2, Theorem 6.2, p311], [KW.1, Remark 1, p426, for § = 1], [Weis]. Next, to show that the
original A satisfies Ar € MReg(LP(0,T;Y)) as desired, paper [LPT.5] employs the result that on the UMD
space Y, the property that Ar € MReg(LP(0,T;Y)) is equivalent to the property that the family, T € L(Y),

T = {tR(it,AF), t € R\{0}} be R — bounded,

[KW.2] where R(:, Ar) denotes the resolvent of Ar. And in the UMD-setting for Y, the R-boundedness prop-
erty for the family 7 is equivalent to the property that the corresponding dual family t’ in L(Y™)

' = {tR(it, A}), t € R\{0}} be R — bounded,
[HNVW.1, Proposition 8.4.1, p211].
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2. Illustrations

For simplicity and brevity of exposition, Example # 1 (for T < oo and T = o0) will be restricted to a canonical
case. More general results can be given by referring to [LT.3,CV,DaV, Dag, Ves].

2.1. Case 0 < T < oo,

Example # 1 The PDE model: Let Q) be a bounded domain in R4, d > 2, with boundary Q0 = T, assumed
to be (d — 1)-dimensional variety with (1 locally on one side of I, and sufficiently smooth. We consider the
following canonical locally fully boundary closed loop parabolic system on Q, with boundary control in the
Neumann BC and boundary sensing (observations):

dy(t, x) ,
Franke (A= Dy(t,x) in (0,T] x Q (2.1a)
y(0,x) = yo(x) in Q (2.1b)

K
ay(t,
YOO _ pee = ;(w(t. 9w (Drg(©) (219)
=Fy(t,") on (0, T] xT (2.1d)
(a) Let

Y=190Q),1<qg< o0, A=-A+;YDODA)->Y (2.2a)

D — 2,q . a(p —
@) =jp eW> (@) —| =0;. (2.2b)
r

Then —A generates a s.c. contraction, analytic semigroup e™4¢, t > 0 on Y = L9(Q). The fractional powers
A% 0 < 6 < 1, are well-defined.

(b) y denotes any continuous operator [Trie, Wahl]
1
y : D(A9) = W?94(Q) » U = L1(Q), 20 = 7 +e (2.3)

in particular the trace operator
vy =yl € L(D), € W27U(Q). (2.4)

Thus, the (feedback) operator F defined in (2.1d) satisfies

1
F:D(A%) = W294(Q) - U = LI(Q), 20 = Jte (2.5)

, 1 1
as well, for all vectors wy, € L9 (T'), g € Lq([‘),a + ? = 1, where (, )r denotes the duality paring between

L4(T) and L7’ (T).
(c) We introduce the Neumann (Green) map [LT.4]
.o d¢
Gg=¢p & (A—I)(pEOmQ,E=gonF (2.6a)
1 1 1
G:U= Lq(ﬂ) - W1+ /qu(ﬂ) C D(Aao), dg = E + 2_q — E&. (26b)

(d) We observe from (2.3) and (2.6b) that

—1+€< —1+1 2.7
U_Zq > ao—z 2q £ (2.7)

The abstract model. As is well known, we can rewrite (2.1a) as

v=Q—-Dy=QA-1)—Gf), since(A—-—1)(Gf) =0inQ (2.8)
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by (2.6a), recalling f in (2.1c). Moreover
oy -Gf) _ 9y 9Gf)
av ov av

and so (y — G f) satisfies the boundary conditions of the operator A in (2.2b). In conclusion, recalling f = Fy
from (2.1d) we can rewrite (2.8) as

=f—f=0onT (2.9)

vy = —A(l — GF)y = Apy (2.10)

which is the abstract model on ¥ = L9(Q) of the original PDE feedback model (2.1a-d). We now verify that
the abstract model (2.10) for (2.1a-d) satifies all abstract assumptions of Section 1.

(H.1)is satisfied since Y = L1(Q), 1 < q < oo is reflexive Banach space. (H.2)is satisfied since the
operator —A in (2.2a) is the maximal dissipative generator of a Cy-contraction semigroup e 4¢onY, t > 0,
which possesses the maximal LP (0, T; Y)-regularity property, 0 < T < o0, 1 < p < co. (H.3)is satisfied since
U = L9(T) is a Banach space A%°G € L(U;Y) from (2.6b), ¢y < 1. (H.4)is satisfied by (2.5).

In conclusion: Problem (2.1a-d) satisfies all assumptions of Theorem 1.2, for 0 < T < oo, and hence
Ap € MReg(LP(0,T;L1(Q))), 1 < p < 0,1 < p < oo, T < oo with A = —A(l — GF) in (2.10). This
conclusion is true for all wy, € Lq'(F), i € L1(T). Below we shall consider the case T = oo.

Example # 2: We return to [LT.6, LPT.2] and consider the linearized Navier-Stokes problem over a bounded
domain Qin RY, d = 2,3, with boundary Q) = I (after translation by the equilibrium solution, see [LPT.2, Eq

(1.28)]))

W —VoAw + L, (W) +Vy =0 inQ (2.11a)
divw =0 in Q (2.11b)
K
W=Ev= Z (yw, pi)r gk = Fw onX (2.11¢)
k=0
w(0,x) = wy(x) on () (2.114d)
whose abstract version is given by
K

dw

T Aqw — AgD Z (Yw, picdr 9k (2.12a)
k=1

= Aqw — ADFw = Aq(I —DF) = A, w. (2.12b)

see [LPT.2, Eq (4.3)] with m = 0 and a modified boundary control v. We have
Y=13(Q), =2 Ay =—Wodq+4sq), D(A,) =D(A,) € LE(Q) [LPT2, Eq (2.16)] (2.13)
Aqz = —P,Az, D(Ag) = W29(Q) n W,"9(Q) N LE(Q)  [LPT2, Eq (2.14)] (2.14)
Le(2) = (¥ -V)z+ (z.V)y, [LPT.2,Eq(1.9)] (2.15)

Ap gz = Fyle(2) = Pq[(ye Vz+(2.V)y.], (2.16a)
D(Apq) = z)(A;/ 2y = W"9(Q) N LL(Q) c LL(Q). [LPT2, Eq(2.15)] (2.16b)
L1(Q) = LL(Q) ® GI(Q) (Helmholtz direct sum decomposition) (2.17)
LE@Q)={geliQ):+g=0;g-v=00n0Q}, [Ga] (2.18)

the solenoidal space. It is verified in [LPT.6] that all the assumptions of Theorem 1.2 are satisfied for the
feedback operator A\.Fﬂ = Ag(I —DF)in (2.12b)on Y = L%(Q). In particular, (H.2) is verified since the

operator A, in (2.13) has maximal LP-regularity on Y = LE(Q), for 0 < T < oo. (H.3) is satisfied with

UsU;={geliT): g-v=0onT} (2.19)
1 -
D : Uy » WYa(Q) n LY(Q) € D(AJ* %) (2.20a)
Yo 1
or A% D € LU, LY(Q)), o = 27 ¢ (2.20b)
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(H.4) is satisfied by taking
1

Y : continuous D(A7) c ¥V = L) » Uwith0 <o <0y = 2_q —¢€ (2.21)

so that then
F : continuous D(A7) €Y - U (2.22)
, 1 1
as well. Then we take p, € L? (I') and g € LY(T), — + — = 1. Then all the assumptions of Theorem 1.2 are
satisfied for the feedback operator A, = Aq(I — DF) in (2.12b). See [Sol.1, Sol.2,S0l.3,Sol.4] for open-loop
problems.

2.2. CaseT =0

We return to Example # 1, except that, to make the problem more significant, we replace (2.1a) by the canon-
ical equation
ay(t, x)

Framte (A + k)y(t, x) (2.23)
k? large, while keeping Eqts (2.1b-c). Thus, for f = 0, the corresponding free dynamics operator
2 2 a(p
Ap=(A+k%)p, Y =L1Q) 2DA) =49 € W>1(Q), | = 0 (2.24)
r

is the generator of a s.c. analytic semigroup on Y which is unstable and possesses maximal LP(0,T;Y)-
regularity, T < oo. We take the boundary vectors g, € L4(I') to be linearly independent. According to
Theorem 1.1(b), or the basis of the analysis of Example # 1 (k? rather than —1 is irrelevant), we only need
to verify the additional assumption that, for suitable vectors w;, € L9 ' (D), gx € L1(I), the semigroup Tx(t) =
e4rt, Ap = —A(I — GF) in (2.10), is exponentially stable

el sy = ITe @Iy < Me™®, £20,6>0,7 = LI(Q). (2.25)
This statement amounts to saying that the original boundary homogeneous problem (2.23), (2.1a-d) which
with f = 0 is unstable (i.e. it has finitely many unstable eigenvalues on C* = {1 € C : Re 1 = 0}) can be
uniformly stabilized by a finite dimensional feedback control f(t,§) = RHS of (2.1c), with suitable boundary
vectors gy € L4(T) and boundary sensors w;, € Lq’(F). This problem was originally studied in early 1980s,
see [LT.2,LT.3,Tr.1,Tr.2, Tr.3] and references therein. The vectors w; have to be chosen to satisfy the algebraic
condition

rank W, = ¢, = algebraic/geometric multiplicity of the unstable eigenvalue A;,

2.26
of the self-adjoint operator A in (2.24) ( )
where
(Wi, Pdp, Wy, @) o <W1"Dk€k)r
(Wa, Ppet)p, (Wo, Ppea) oo (W, ‘Dkek)r
W, = : : (2.27)
Wi, Pt Wi, Pp2)p o (W ‘Dkfk)r

(-, ) duality pair, where {®y 4, ..., Py, } are the normalized eigenvectors in Y of the unstable eigenvalues 4, of
the operator 4 in (2.24). Condition (2.27) can always be satisfied by infinite choices of the vectors wy, ..., wg,
since for every Ay, the Dirichlet traces {‘bm I Pr2lrs ) Prey, |r} are linearly independent [Tr.4, Tr.5, Tr.6].

Itisknown [LT.3] thatif Qis either a d-sphere or a d-parallelepiped, is it always possible to select boundary
vectors g, k = 1, ..., k such that the exponential decay (2.25) holds true [LT.3] and hence Theorem 1.2 holds
true for T = oo for these special geometries. For other geometries, d > 2, technical conditions are available
which cannotbe recalled here for brevity of exposition. We refer to the reference [LT.5] Moreover, ifd = 1, the
uniform stability (2.25) is impossible if A has at least 3 unstable eigenvalues, with only to boundary vectors
g1, 92> atx = 0, or x = 1 with Q = (0, 1) [LT.3]. See [LT.1] for Dirichlet boundary feedback problems.
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