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AbstractWe provide maximal ÿý-regularity up to the level ý < ∞ or ý = ∞ of an abstract evolution equationin Banach space, which captures boundary closed-loop parabolic systems, defined on a bounded multidi-mensional domain, with finitely many boundary control vectors and finitely many boundary sensors/actu-ators. Illustrations given include classical parabolic equations as well as Navier-Stokes equations in ÿý(Ω)or ÿþ�(Ω), respectively.
1. The case of boundary controls and boundary sensors/observers, [LPT.6]
OverviewThe topic of maximal ÿþ-regularity was (apparently) first studied in the fundamental paper [Sim] (in Italian)published in 1964. In it, the author considers the generator ÿ of a s.c. (ā0) semigroup þ�Ā on the Hilbertspace Ć and shows a definitive result in this setting: that þ�Ā possesses maximal ÿþ-regularity up to ý onthe Hilbert space Ć if and only if it is analytic (holomorphic); with ý = ∞ in case þ�Ā is, moreover, (expo-nentially) uniformly stable. The sophisticated, technical proof was based (as stated in the paper’s title) onthe theory of singular integrals. This was truly a pioneering paper that stimulated an intense subsequentresearch activity, both at the abstract Banach space setting as well as at the ÿþ or Hölder spaces settingsfor the class of (parabolic) equations. At the general Banach space setting, it was established that maxi-mal ÿþ-regularity of the s.c. semigroup þ�Ā implies that þ�Ā is analytic, but not conversely. To date knowncounterexamples exist in abstract Banach spaces setting, see [HNVW.2, Section 17.4.c]. Instead, the PDE-framework includes: either dynamics defined on the entire multidimensional space; or on half-spaces; oron domains exterior to multidimensional bounded domains; or else on a multidimensional domain Ω, withpossibly, open-loop inhomogeneous boundary terms on �Ω in Triebel-Lizorkin spaces, see [DHP]. Similarresults are available for Pseudodifferential setting as well. The list of significant papers will likely exceedthe length permitted for this extended abstract. Thus, we must constrain ourselves to quote only a few.In contrast, the emphasis of the present extended abstract is quite different. While the setting is still atthe abstract Banach space level, the modeled dynamics intend to capture closed-loop boundary feedback(parabolic) problems, with either (i) finitelymanyboundary controls and interior sensors/actuators [LPT.5];or else (ii) with finitely many boundary controls and boundary sensors/actuators [LPT.6]. The assumptionimposed on the two abstract models are automatically satisfied by the intended, motivating applications.These include, in addition to classical parabolic dynamics, physical important dynamics such as Navier-Stokes equations (particularly in dimension ý = 3), Boussinesq systems, Magnetohydrodynamics (MHD)systems, etc [LPT.1, LPT.2, LPT.3, LPT.4, LPT.5, LPT.7]. Here maximal ÿþ-regularity is first established in theBanach space ÿÿ(Ω), 1 < þ < ∞, or even a suitable Besov space Ā2−2/ýÿ,þ (Ω)which does not recognize bound-ary conditions (1 < ý < 2ÿ2ÿ−1 , þ > dimension ý). Next, such maximal ÿþ regularity is exploited to obtain(well-posedness as a nonlinear semigroup and) uniform stabilization of the full nonlinear feedbackmodel inthe vicinity of an unstable equilibrium solution.
1.1. Abstract settingThe focus of the present section is the operator

ÿ� = −ÿ(ć − ąĄ) ∶ � £ þ(ÿĀ) ⟶ � (1.1a)� þ(ÿ�) = {ā ( � ∶ (ć − ąĄ)ā ( þ(ÿ)} . (1.1b)
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and corresponding abstract equation ĂĀ = ÿĀĂ = −ÿ(ć − ąĄ)Ă (1.2)under the following standing assumptions:(H.1) � is a reflexive Banach space.(H.2) −ÿ ∶ � £ þ(ÿ) ⟶ � is the maximal dissipative generator of a ā0-contraction semigroup þ−�Ā on�, Ā g 0, which possesses the maximal ÿþ(0, ý; �)-regularity property up to ý, either 0 < ý < ∞; or elseý = ∞, 1 < ý < ∞; in symbols [Dore.1]−ÿ ( ĀÿþĀ (ÿþ(0, ý; �)) , either 0 < ý < ∞; or else ý = ∞, 1 < ý < ∞;so that, a fortiori, the strongly continuous (s.c.) semigroup þ�Ā is analytic (holomorphic) on �. At the price(harmless for the present note) of replacing ÿ with a suitable translation to the right (ÿ� = ÿ + �2ć), thefractional powers ÿ�, 0 < � < 1, of ÿ are well-defined [Pazy].(H.3) þ is another Banach space and ą is the (<Green=) linear operator satisfyingą ∶ continuous þ ⟶ þ(ÿ�0) ¢ �, or ÿ�0ą ( ℒ(þ; �) (1.3)for some 0 < ÿ0 < 1.(H.4) Ą is a linear (<feedback=) operator of the formĄă = ïāă, Āð� Ā, Ā, Ā ( þ (1.4)where ā is a linear (trace) operatorā ∶ continuous þ(ÿ�) ¢ � ⟶ þ, 0 < � < ÿ0 < 1 (1.5)so that Ą ∶ continuous þ(ÿ�) ¢ � ⟶ þ. (1.6)
�In the applications we shall take Ąă = ÿ��=0 ïāă, Ā�ð� Ā�, Ā�, Ā� ( þ�
Remark 1.1 Ą is thus unbounded as an operator on �. For the similar problem considered in [LPT.5] in JDE,Ą was a bounded operator on �. The purpose of this work is to extend to the operator (1.1) the result onmaximal ÿþ(0, ý; �)-regularity of [LPT.5], ý f ∞. The proof of [LPT.5] requires Ą ( ℒ(�; þ). Thus, the proofof the present note is quite different from that in [LPT.5]. See [Las] for abstract parabolic boundary problems.With reference to assumption (H.3) centered on the constant 0 < ÿ0 < 1, we introduce two Banachspaces, where 0 ( �(ÿ),ℰ ≡ þ(ÿ�0), with norm ‖ā‖ℰ ≡ ‖ā‖�(��0) ≡ ‖ÿ�0ā‖� , (1.7)ă ≡ �þ(ÿ∗(1−�0))�′ with norm ‖ă‖ÿ ≡ ‖ă‖��(�∗(1−�0))�′ = �ÿ−(1−�0)ă�� . (1.8)
Accordingly we introduce the following holomorphic interpolation spaces

[ℰ, ă]� ≡ �þ �ÿ�0� , �þ �ÿ∗(1−�0)��′�� = � þ�ÿ�0−�� , 0 f � f ÿ0 ,�þ �ÿ∗(�−�0)��′ , ÿ0 f � f 1. (1.9a)(1.9b)since ÿ0(1 − �) − (1 − ÿ0)� = ÿ0 − �, with corresponding norm‖ā‖[ℰ, ă]� = ‖ā‖�(��0−�) = �ÿ�0−�ā�� , 0 f � f ÿ0 , (1.10)‖ă‖[ℰ, ă]� = ‖ă‖��(�∗(�−�0))�′ = �ÿ−(�−�0)ă�� , ÿ0 f � f 1. (1.11)
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ă ≡ �þ �ÿ∗(1−�0)��′

� ℰ ≡ þ (ÿ�0)þ(ÿ)

ÿ̂

ÿ

Fig 1: Symbolic illustration of the spaces and operators involved.
1.2. Main Result
Theorem 1.2 (a) Let 0 < ý < ∞. The operator ÿĀ in (1.1) defined on � generates a s.c. semigroup ýĀ(Ā),

which is analytic on � and, moreover, possesses the maximal ÿþ(0, ý; �)-regularity on �, 1 < ý < ∞, ý <∞: the map ÿ → (ÿÿ)(Ā) = �Ā
0 þ��(Ā−ÿ)ÿ(ÿ)ýÿ continuous ÿþ(0, ý; �) → ÿþ(0, ý; þ(ÿĀ));

in symbols, [Dore.1] ÿĀ ( ĀÿþĀ (ÿþ(0, ý; �)) , 1 < ý < ∞, ý < ∞. (1.12a)
(b) Let ý = ∞. Assume further that the s.c. analytic semigroup ýĀ(Ā) is uniformly stable on �: there exist

constantsĀ g 1, Ă > 0, such that �ýĀ(Ā)�ℒ(�) f Āþ−ĀĀ, Ā g 0. (1.12b)
Then, ýĀ(Ā) possesses the maximal ÿþ(0,∞; �)-regularity on �, 1 < ý < ∞, ý = ∞; in symbols [Dore.1]ÿĀ ( ĀÿþĀ (ÿþ(0,∞; �)) , 1 < ý < ∞, ý = ∞. (1.12c)
Actually, in the each case (a) and (b), ýĀ(Ā) extends/restricts with the same properties - as s.c. analytic,
uniformly stable (case (b)) semigroup, with maximal ÿþ-regularity (0 < ý < ∞ in case (a), ý = ∞ in case
(b)) - on the space ă in (1.8), on the space ℰ in (1.7), as well as on all holomorphic interpolation spaces(1.9)-(1.11).The proof of the present Theorem 1.2 with Ą unbounded as in (1.6), Ą ( ℒ(þ(ÿ�), þ) given in [LPT.6], iscompletely different from the one in [LPT.5]. It is inspired by a proof in [LT.2] about analyticity of a specificparabolic semigroup in an Hilbert setting. It consists of three steps, (i) first, showing ÿþ-maximal regularityin the larger space ă in (1.8); next, (ii) showing ÿþ-maximal regularity in the smaller space ℰ in (1.7); andfinally, (iii) showing ÿþ-maximal regularity on � by interpolation.In contrast, the proof of [LPT.5] for Ą ( ℒ(�; þ) was based on considering ÿ∗Ā rather than ÿĀ. WithĄ ( ℒ(�; þ) and ą satisfying ÿÿą ( ℒ(þ; �) for some ā, 0 < ā < 1, the expression of ÿĀ makes such formnot directly suitable for deducing its maximal regularity on �, as it would leave the power ÿ1−ÿ on the LHSunaccounted for on �. The form of ÿ∗Ā in [LPT.5] is more amenable to show ÿ∗Ā ( ĀÿþĀ(ÿþ(0, ý; �∗)) byperturbation [Dore.2, Theorem 6.2, p311], [KW.1, Remark 1, p426, for Ā = 1], [Weis]. Next, to show that theoriginal ÿĀ satisfies ÿĀ ( ĀÿþĀ(ÿþ(0, ý; �)) as desired, paper [LPT.5] employs the result that on the UMDspace �, the property that ÿĀ ( ĀÿþĀ(ÿþ(0, ý; �)) is equivalent to the property that the family, � ( ℒ(�),� ≡ {Āÿ(�Ā, ÿĀ), Ā ( ℝ\{0}} be ÿ − bounded,[KW.2] where ÿ(⋅, ÿĀ) denotes the resolvent of ÿĀ. And in the UMD-setting for �, the ÿ-boundedness prop-erty for the family � is equivalent to the property that the corresponding dual family �′ in ℒ(�∗)�′ ≡ �Āÿ(�Ā, ÿ∗Ā), Ā ( ℝ\{0}� be ÿ − bounded,[HNVW.1, Proposition 8.4.1, p211].
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2. IllustrationsFor simplicity and brevity of exposition, Example # 1 (for ý < ∞ and ý = ∞) will be restricted to a canonicalcase. More general results can be given by referring to [LT.3,CV,DaV,DaG,Ves].
2.1. Case 0 < ý < ∞.Example # 1 The PDEmodel: Let Ω be a bounded domain in ℝý, ý g 2, with boundary �Ω ≡ �, assumedto be (ý − 1)-dimensional variety with Ω locally on one side of �, and sufficiently smooth. We consider thefollowing canonical locally fully boundary closed loop parabolic system on Ω, with boundary control in theNeumann BC and boundary sensing (observations):©¬¬ª¬¬«

�Ă(Ā, ā)�Ā = (� − ć)Ă(Ā, ā) in (0, ý] × ΩĂ(0, ā) = Ă0(ā) in Ω�Ă(Ā, þ)�ý = ÿ(Ā, þ) ≡ ÿ��=0(āĂ(Ā, ⋅), Ā�(⋅))ΓĀ�(þ)≡ ĄĂ(Ā, ⋅) on (0, ý] × �

(2.1a)(2.1b)(2.1c)(2.1d)(a) Let � ≡ ÿÿ(Ω), 1 < þ < ∞, ÿ = −� + ć; � £ þ(ÿ) → � (2.2a)þ(ÿ) = �ý ( �2,ÿ(Ω) ∶ �ý�ý �Γ = 0� . (2.2b)
Then −ÿ generates a s.c. contraction, analytic semigroup þ−�Ā, Ā g 0 on � ≡ ÿÿ(Ω). The fractional powersÿ�, 0 < � < 1, are well-defined.(b) ā denotes any continuous operator [Trie,Wahl]ā ∶ þ(ÿ�) ≡ �2�,ÿ(Ω) → þ ≡ ÿÿ(Ω), 2� = 1þ + ă (2.3)in particular the trace operator āÿ ≡ ÿ|Γ ( ÿÿ(�), ÿ ( �2�,ÿ(Ω). (2.4)Thus, the (feedback) operator Ą defined in (2.1d) satisfiesĄ ∶ þ(ÿ�) ≡ �2�,ÿ(Ω) → þ ≡ ÿÿ(Ω), 2� = 1þ + ă (2.5)
as well, for all vectors Ā� ( ÿÿ′(�), Ā ( ÿÿ(�), 1þ + 1þ′ = 1, where ( , )Γ denotes the duality paring betweenÿÿ(�) and ÿÿ′(�).(c) We introduce the Neumann (Green) map [LT.4]

ąĀ ≡ ý ⟺ �(� − ć)ý ≡ 0 in Ω, �ý�ý = Ā on �� (2.6a)
ą ∶ þ ≡ ÿÿ(Ω) → �1+1/þ,ÿ(Ω) ¢ þ(ÿ�0), ÿ0 = 12 + 12þ − ă. (2.6b)(d) We observe from (2.3) and (2.6b) that� = 12þ + ă2 < ÿ0 = 12 + 12þ − ă (2.7)

The abstract model. As is well known, we can rewrite (2.1a) asĂĀ = (� − ć)Ă = (� − 1)(Ă − ąÿ), since (� − 1)(ąÿ) ≡ 0 in Ω (2.8)
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by (2.6a), recalling ÿ in (2.1c). Moreover�(Ă − ąÿ)�ý = �Ă�ý − �(ąÿ)�ý = ÿ − ÿ ≡ 0 on � (2.9)and so (Ă−ąÿ) satisfies the boundary conditions of the operatorÿ in (2.2b). In conclusion, recalling ÿ = ĄĂfrom (2.1d) we can rewrite (2.8) as ĂĀ = −ÿ(ć − ąĄ)Ă = ÿĀĂ (2.10)which is the abstract model on � ≡ ÿÿ(Ω) of the original PDE feedback model (2.1a-d). We now verify thatthe abstract model (2.10) for (2.1a-d) satifies all abstract assumptions of Section 1.(H.1)is satisfied since � ≡ ÿÿ(Ω), 1 < þ < ∞ is reflexive Banach space. (H.2)is satisfied since theoperator −ÿ in (2.2a) is the maximal dissipative generator of a ā0-contraction semigroup þ−�Ā on �, Ā g 0,which possesses the maximal ÿþ(0, ý; �)-regularity property, 0 < ý < ∞, 1 < ý < ∞. (H.3)is satisfied sinceþ = ÿÿ(�) is a Banach space ÿ�0ą ( ℒ(þ; �) from (2.6b), ÿ0 < 1. (H.4)is satisfied by (2.5).In conclusion: Problem (2.1a-d) satisfies all assumptions of Theorem 1.2, for 0 < ý < ∞, and henceÿĀ ( ĀÿþĀ(ÿþ(0, ý; ÿÿ(Ω))), 1 < ý < ∞, 1 < ý < ∞, ý < ∞ with ÿĀ = −ÿ(ć − ąĄ) in (2.10). Thisconclusion is true for allĀ� ( ÿÿ′(�), Ā� ( ÿÿ(�). Below we shall consider the case ý = ∞.Example # 2: We return to [LT.6, LPT.2] and consider the linearized Navier-Stokes problem over a boundeddomainΩ inℝý, ý = 2, 3,with boundary �Ω ≡ � (after translation by the equilibrium solution, see [LPT.2, Eq(1.28)])) ©¬¬ª¬¬«
ĀĀ − ýý�Ā + ÿþ(Ā) + 'þ = 0 in þdivĀ = 0 in þĀ ≡ ÿ ≡ ÿ��=0 ïāĀ, ý�ðΓ Ā� ≡ ĄĀ on ΣĀ(0, ā) = Ā0(ā) on Ω

(2.11a)(2.11b)(2.11c)(2.11d)whose abstract version is given byýĀýĀ = �ÿĀ − �ÿĂ� ÿ��=1 ïāĀ, ý�ðΓ Ā�� (2.12a)
= �ÿĀ − �ÿĂĄĀ = �ÿ(ć − ĂĄ) ≡ ��,þĀ. (2.12b)see [LPT.2, Eq (4.3)] with� ≡ 0 and a modified boundary control ÿ. We have� ≡ ÿÿ�(Ω), þ g 2, �ÿ = −(ýýÿÿ + ÿý,ÿ), þ(�ÿ) = þ(ÿÿ) ¢ ÿÿ�(Ω) [LPT.2, Eq (2.16)] (2.13)ÿÿă = −ýÿ�ă, þ(ÿÿ) = �2,ÿ(Ω) ∩ �1,ÿ0 (Ω) ∩ ÿÿ�(Ω) [LPT.2, Eq (2.14)] (2.14)ÿþ(ă) = (Ăþ . ')ă + (ă . ')Ăþ [LPT.2, Eq (1.9)] (2.15)

ÿý,ÿă = ýÿÿþ(ă) = ýÿ[(Ăþ . ')ă + (ă . ')Ăþ], (2.16a)þ(ÿý,ÿ) = þ(ÿ1/2ÿ ) = �1,ÿ0 (Ω) ∩ ÿÿ�(Ω) ¢ ÿÿ�(Ω). [LPT.2, Eq (2.15)] (2.16b)ÿÿ(Ω) = ÿÿ�(Ω) ⊕ ąÿ(Ω) (Helmholtz direct sum decomposition) (2.17)ÿÿ�(Ω) = {Ā ( ÿÿ(Ω) ∶ ÷ Ā = 0; Ā ⋅ ý = 0 on �Ω}, [Ga] (2.18)the solenoidal space. It is verified in [LPT.6] that all the assumptions of Theorem 1.2 are satisfied for thefeedback operator ��,þ = �ÿ(ć − ĂĄ) in (2.12b) on � ≡ ÿÿ�(Ω). In particular, (H.2) is verified since theoperator�ÿ in (2.13) has maximal ÿþ-regularity on � ≡ ÿÿ�(Ω), for 0 < ý < ∞. (H.3) is satisfied withþ ≡ þÿ ≡ {Ā ( ÿÿ(�) ∶ Ā ⋅ ý = 0 on �} (2.19)
Ă ∶ þÿ → �1/þ,ÿ(Ω) ∩ ÿÿ�(Ω) ¢ þ(ÿ1/2þ−āÿ ) (2.20a)or ÿ1/2þ−āÿ Ă ( ℒ(þÿ, ÿÿ�(Ω)), �0 = 12þ − ă (2.20b)
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(H.4) is satisfied by takingā ∶ continuous þ(ÿ�ÿ) ¢ � ≡ ÿÿ�(Ω) → þwith 0 < � < �0 = 12þ − ă (2.21)so that then Ą ∶ continuous þ(ÿ�ÿ) ¢ � → þ (2.22)as well. Then we take ý� ( ÿÿ′(�) and Ā ( ÿÿ(�), 1þ + 1þ′ = 1. Then all the assumptions of Theorem 1.2 aresatisfied for the feedback operator ��,þ = �ÿ(ć − ĂĄ) in (2.12b). See [Sol.1, Sol.2,Sol.3, Sol.4] for open-loopproblems.
2.2. Case ý = ∞We return to Example # 1, except that, tomake the problemmore significant, we replace (2.1a) by the canon-ical equation �Ă(Ā, ā)�Ā = (� + �2)Ă(Ā, ā) (2.23)�2 large, while keeping Eqts (2.1b-c). Thus, for ÿ ≡ 0, the corresponding free dynamics operator

ÿý = (� + �2)ý, � ≡ ÿÿ(Ω) £ þ(ÿ) = �ý ( �2,ÿ(Ω), �ý�ý �Γ = 0� (2.24)
is the generator of a s.c. analytic semigroup on � which is unstable and possesses maximal ÿþ(0, ý; �)-regularity, ý < ∞. We take the boundary vectors Ā� ( ÿÿ(�) to be linearly independent. According toTheorem 1.1(b), or the basis of the analysis of Example # 1 (�2 rather than −1 is irrelevant), we only needto verify the additional assumption that, for suitable vectorsĀ� ( ÿÿ′(�), Ā� ( ÿÿ(�), the semigroup ýĀ(Ā) =þ��Ā, ÿĀ = −ÿ(ć − ąĄ) in (2.10), is exponentially stable�þ��Ā�ℒ(�) ≡ �ýĀ(Ā)�ℒ(�) f Āþ−ĀĀ, Ā g 0, Ă > 0, � ≡ ÿÿ(Ω). (2.25)This statement amounts to saying that the original boundary homogeneous problem (2.23), (2.1a-d) whichwith ÿ ≡ 0 is unstable (i.e. it has finitely many unstable eigenvalues on ý+ = {� ( ý ∶ Re � g 0}) can beuniformly stabilized by a finite dimensional feedback control ÿ(Ā, þ) = RHS of (2.1c), with suitable boundaryvectors Ā� ( ÿÿ(�) and boundary sensors Ā� ( ÿÿ′(�). This problem was originally studied in early 1980s,see [LT.2,LT.3,Tr.1,Tr.2,Tr.3] and references therein. The vectorsĀ� have to be chosen to satisfy the algebraiccondition rank�� = ℓ� = algebraic/geometric multiplicity of the unstable eigenvalue ��of the self-adjoint operator ÿ in (2.24) (2.26)
where

�� = £¤¤¤¤¤¥
ïĀ1, Φ�1ðΓ , ïĀ1, Φ�2ðΓ … �Ā1, Φ�ℓ��ΓïĀ2, Φ�1ðΓ , ïĀ2, Φ�2ðΓ … �Ā2, Φ�ℓ��Γ⋮ ⋮ïĀÿ, Φ�1ðΓ , ïĀÿ, Φ�2ðΓ … �Āÿ, Φ�ℓ��Γ

¦§§§§§̈ (2.27)
ï⋅, ⋅ðΓ duality pair, where {Φ�1, … ,Φ�ℓ�} are thenormalized eigenvectors in�of theunstable eigenvalues�� ofthe operatorÿ in (2.24). Condition (2.27) can always be satisfied by infinite choices of the vectorsĀ1, … , Āÿ,since for every ��, the Dirichlet traces �Φ�1|Γ, Φ�2|Γ, … ,Φ�ℓ�|Γ� are linearly independent [Tr.4,Tr.5,Tr.6].It is known [LT.3] that ifΩ is either aý-sphereor aý-parallelepiped, is it alwayspossible to select boundaryvectors Ā�, � = 1,… , � such that the exponential decay (2.25) holds true [LT.3] and hence Theorem 1.2 holdstrue for ý = ∞ for these special geometries. For other geometries, ý g 2, technical conditions are availablewhich cannot be recalledhere for brevity of exposition. We refer to the reference [LT.5]Moreover, ifý = 1, theuniform stability (2.25) is impossible if ÿ has at least 3 unstable eigenvalues, with only to boundary vectorsĀ1, Ā2 at ā = 0, or ā = 1with Ω = (0, 1) [LT.3]. See [LT.1] for Dirichlet boundary feedback problems.
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