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The dynamical preparation of exotic many-body quantum states is a persistent goal of analog
quantum simulation, often limited by experimental coherence times. Recently, it was shown that
fast, non-adiabatic Hamiltonian parameter sweeps can create finite-size “lakes” of quantum order in
certain settings, independent of what is present in the ground state phase diagram. Here, we show
that going further out of equilibrium via external driving can substantially accelerate the preparation
of these quantum lakes. Concretely, when lakes can be prepared, existing counterdiabatic driving
techniques—originally designed to target the ground state—instead naturally target the lakes state.
We demonstrate this both for an illustrative single qutrit and a model of a Z2 Rydberg quantum
spin liquid. In the latter case, we construct experimental drive sequences that accelerate preparation
by almost an order of magnitude at fixed laser power. We conclude by using a Landau-Ginzburg
model to provide a semi-classical picture for how our method accelerates state preparation.

Introduction. The preparation of exotic quantum
many-body states using Hamiltonian dynamics is a cen-
tral goal of analog quantum simulation [1, 2]. The
paradigmatic tool in this quest is adiabatic state prepa-
ration, where one sweeps a Hamiltonian parameter at
a rate much smaller than the spectral gap [3]. While
these sweeps can be prohibitively slow, various “short-
cuts to adiabaticity,” implemented via e.g. external
driving, have been developed to accelerate these sweeps,
thereby keeping state preparation within experimental
coherence times and enabling further experimentation on
these states [4–7].

Nevertheless, adiabatic state preparation and its vari-
ous shortcuts have their limitations. Indeed, they gener-
ally require experimental phase diagrams that host an ex-
otic ground state of interest. Such regimes are not guar-
anteed to exist and, when they do, are typically sensitive
to the disorder and imperfections present in experiments
[see Fig. 1(a)]. However, a recent Rydberg atom experi-
ment [8] and related theoretical works [9–12] highlighted
that, in some circumstances, non-equilibrium parameter
sweeps can prepare finite-size “lakes” of quantum order
that is not present in the ground state phase diagram.
This phenomenon is a consequence of a “hemidiabatic”
regime of quantum dynamics that sits squarely between
the more traditional adiabatic and sudden (quench)
regimes [see Fig. 1(b)] [11, 13]. Crucially, realizing this
regime only requires engineering broad energy scales of
the Hamiltonian’s spectrum, not the exact order present
in the ground state. Given limited experimental co-
herence times, taking full advantage of this prepara-
tion scheme demands the development of “shortcuts to
hemidiabaticity”; otherwise, state preparation may con-
sume the entire run time or not be possible at all.

In this work, we show that existing shortcuts to adi-
abaticity can naturally target the hemidiabatic regime.
In particular, we demonstrate that standard approxima-
tions to counterdiabatic (CD) driving [14–32] prepare the
non-equilibrium lakes state instead of the ground state.

(a) Equilibrium:

(b) Dynamics:

VBSTrivial

“Hemidiabatic” Sweep (Previous Work)

Quantum
Spin LakesTrivial

Shortcut (This Work)

FIG. 1. Quantum Lakes from Driving. (a) Experimen-
tal phase diagrams may only host non-exotic, classically de-
scribed orders. For example, for Rydberg atoms on the links
of the kagome lattice, the phase diagram as a function of de-
tuning over laser power δ/Ω is dominated by trivial and va-
lence bond solid (VBS) phases (with excited atoms depicted
as red dimers); exotic orders occupy small parameter regimes
and can be destabilized by experimental imperfections [9].
(b) Previous work [8, 10–12] showed that parameter sweeps
(e.g. increasing δ/Ω) performed at a “hemidiabatic” rate—
between the usual sudden and adiabatic regimes—can prepare
finite-size “lakes” of exotic order (e.g. spin liquid order) in-
dependent of the ground state order. Here, we construct CD
driving protocols that—by efficiently forcing “defects” [e.g.
vacancies in the dimer covering (orange circles)] out of the
initial state—accelerate the preparation of these lakes by al-
most an order of magnitude.

We consider a simple qutrit model to build intuition for
this fact before performing large-scale exact diagonal-
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(a) (b)

FIG. 2. CD Driving in a Qutrit. (a) We consider the qutrit
model from Ref. [11] as the simplest example of hemidiabatic-
ity and show its energy spectrum (solid gray) as a function
of K [Eq. (1)]. By increasing K at a hemidiabatic rate, tran-
sitions into the first excited state occur while those into the
second are suppressed (dotted gray arrows), approximately
projecting the initial ground state into the low energy sub-
space for large positive K. In panel (b), we show this ef-
fect can be reproduced and accelerated by CD driving. As a
benchmark, we plot the overlap of the final state of an un-
driven sweep (gray) with the projected state as a function of
total sweep time T , showing a peak for hemidiabatic sweep
rates (hxT ≈ 10). By driving with the approximate AGP

A(1)
K (dotted red), this peak is both amplified and extended

to faster sweeps. The origin of this can be understood by driv-
ing under gapped AGPs, which exactly cancel all transitions
above energy ∆ and allow all transitions below it. For large
∆ (yellow), the driving only slightly changes the dynamics,
while small ∆ (maroon) reproduces adiabatic dynamics. In
contrast, intermediate ∆ (red) reproduces the approximate
CD driving to prepare the projected state.

ization numerics for the Rydberg ruby lattice model of
Refs. [8, 9]. We use these results to construct CD-inspired
pulse sequences that accelerate the preparation of the Ry-
dberg spin lakes state by almost an order of magnitude
at fixed laser power, providing a straightforward exper-
imental method for efficient state preparation in analog
quantum simulators. Finally, we provide semi-classical
intuition for our construction by considering an effective
Landau-Ginzburg field theory. Our work dramatically
expands the suite of state preparation tools that take
advantage of hemidiabatic regimes.

CD Driving in a Qutrit. Here we discuss the sim-
plest model exhibiting the hemidiabatic regime—the sin-
gle qutrit model from Ref. [11]—and show that exist-
ing approximate CD driving techniques naturally target
the state prepared by a hemidiabatic sweep. The model
Hamiltonian can be expressed as:

H = −KZ2 − hxX − hzZ, (1)

where X ,Y,Z are the spin-1 Pauli matrices. Through-
out, we will take hz > 0 and hz/hx ≪ 1, and we label Z
eigenstates as |0⟩ , |±1⟩.
Let us start by reviewing the undriven dynamics of

the model. Note that when K is large and negative (pos-

itive), the ground state of the model is ≈ |0⟩ (≈ |1⟩). As
such, a truly adiabatic sweep from K = −∞ to K = +∞
will naturally prepare |1⟩. However, by examining the
energy levels of this system as a function of K [see solid
gray lines in Fig. 2(a)], it is clear that an adiabatic sweep
will be difficult due to the small gap between the ground
state and the first excited state forK > 0. Instead, notice
that there is a regime of quantum dynamics where one
sweeps at a rate that is adiabatic relative to the split-
ting between the ground state and the second excited
state but sudden with respect to that of the ground state
and the first. This regime is precisely the hemidiabatic
regime.

In Ref. [11], it was shown that an ansatz for the state
created after such a sweep is given by the projection P
of the initial state into the low-energy subspace for large
positive K, spanned by |±1⟩. Since any large initial
value of K < 0 implies that |ψ(0)⟩ ≈ |0⟩ + ε(|1⟩ + |−1⟩)
(where ε ∼ |hx/K|), the prepared state is approximately
P |ψ(0)⟩ ∝ 1√

2
(|1⟩+ |−1⟩), a state inaccessible using adi-

abatic sweeps. This picture is substantiated by the nu-
merics shown in Fig. 2(b). Using hz = hx/15, we linearly
sweepK from −20hx to 20hx in time T and plot the over-
lap with the (normalized) target state P̃ |ψ(0)⟩ at the end
of the sweep. The overlap for this undriven sweep (shown
in gray) is maximized for sweeps of intermediate length
(hxT ≈ 10), while sudden and adiabatic sweeps perform
strictly worse.

We now consider the behavior of this system under
approximate CD driving. In particular, let us recall
that CD driving evolves the system under the time-
dependent Hamiltonian HCD(t) = H(t)+K̇AK(t), where
AK (known as the adiabatic gauge potential, or AGP) is
an external drive designed to cancel all transitions away
from the adiabatic trajectory1. While AK in the qutrit
can be implemented exactly, it generally becomes com-
plicated and nonlocal in many-body systems. As such, it
must be locally approximated in these settings. Our goal
will now be to demonstrate that driving under approxi-
mate CD techniques naturally targets the hemidiabatic
regime and prepares the projected state P̃ |ψ(0)⟩.
Concretely, let us start by considering a particu-

lar approximation scheme: the perturbative variational
method from Refs. [17, 18]. To lowest order, the

method approximates the AGP as A(1)
K = iα[H, ∂KH] =

ihxα[X ,Z2], where α can be determined analytically [17]
and the driving can be implemented experimentally via
a Floquet sequence [18, 33]. The results of driving un-
der this AGP are shown as the dotted line in Fig. 2(b).
Strikingly, the hemidiabatic peak in the undriven curve
has been amplified and extended to arbitrarily sudden

1 See the Supplemental Material (SM) [33] for a review.
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sweeps2!
We now show that this behavior results from a certain

“gapped” structure of the approximate AGP. Indeed, it
has already been noted that the approximation above
(and related versions) cannot effectively cancel transi-
tions below some energy scale ∆, only being effective for
larger transitions3 [18]. This structure is elucidated in
Fig. 2 by driving with an exactly gapped AGP that only
cancels transitions above ∆:

⟨m| A∆
K |n⟩ ≡ Θ(|Em − En| −∆) ⟨m| AK |n⟩ , (2)

where En (|n⟩) label the instantaneous eigenval-
ues(vectors) of H(t) and Θ is the Heaviside step func-
tion. Note that when ∆ = 5hx and the AGP cancels
few transitions, the results nearly reduce to the undriven
sweep. When ∆ = 0.1hx and the AGP cancels all transi-
tions, the adiabatic result is extended to all sweep rates.
Finally, when ∆ = 2hx and the AGP only cancels some
transitions, the driving both reproduces the first-order
result and targets the hemidiabatic state. This is in line
with the intuition that hemidiabatic preparation results
from suppressing large transitions while allowing small
ones. This gapped structure is a generic feature of many
approximations to the AGP [3, 22–24, 31, 34–36] and
is moreover a necessary feature of AGPs connecting dif-
ferent (topological) phases of matter which are defined
not to be connected by any finite-time local dynamics
[3, 36, 37].
Quantum Many-Body System. We now demon-

strate that similar results extend to the many-body set-
ting. In this context, the hemidiabatic sweep we con-
sider will be between parameter regimes hosting distinct
phases of matter. Crucially, the state prepared by the
sweep will exhibit an order distinct from either of these
phases. In what follows, we will first show, as a theoret-
ical point, that approximate CD driving systematically
targets the hemidiabatic state. While the particular ap-
proximation scheme we use here will require drives that
appear unrealistic in the context of experiments, we will
show how they can be realized via straightforward exper-
imental pulse sequences.

Let us concretely consider the so-called PXP model of
Rydberg atoms placed on the links of the kagome lattice
(i.e. the sites of the ruby lattice) [8, 9, 38]:

H =
Ω

2

∑
i

PXiP − δ
∑
i

ni, Rb
a

(3)

2 We note that similar results were observed in a nearly integrable
central spin model in Ref. [22].

3 Although the error of the approximate AGP is also large for very
high-energy transitions, these are already negligible even without
driving.

(a)

(b) (c)

Trivial VBS

RVB Liquid

FIG. 3. Approximate CD Driving in the Rydberg
Ruby Lattice. (a) Starting from the trivial phase of the
PXP model of 36 Rydberg atoms on a ruby lattice [Eq. (3)],
we sweep through the small RVB liquid phase into the VBS
phase. (b) At hemidiabatic rates (ΩT ≈ 102), such undriven
sweeps (gray) prepare an approximate RVB state. As the or-
der of approximate CD driving is increased (color), the state
prepared by faster sweeps also approaches the RVB state.
We show how to realize this type of driving experimentally in
Fig. 4. (c) Conversely, the VBS ground state is not targeted
by the approximate AGP despite exact CD driving (at infinite
order) necessarily preparing this state. Simulations are per-
formed in the translation and inversion symmetric subspace
of dimension 11438 ≡ 2Nd .

where ni = (1 + Zi)/2 counts the number of atoms in
the Rydberg state and Xi, Yi, Zi are the spin-1/2 Pauli
matrices on qubit i. Here, P ≡∏i,j:|ri−rj |≤Rb

(1− ninj)
projects out states where two atoms within a blockade
radius Rb are both in the Rydberg state. This block-
ade constraint arises energetically as a consequence of
the (Rb/r)

6 van der Waals interaction between Rydberg
atoms, approximated above to be infinite within Rb and
zero outside [39–42]. It will be convenient to represent
atoms in the Rydberg state as dimers on a kagome link,

i.e.
∣∣∣ ↑ 〉 =

∣∣ 〉
and

∣∣∣ ↓ 〉 =
∣∣ 〉

. If we then choose

Rb to be slightly greater than 2a as shown above, each
kagome vertex can neighbor at most one dimer.

Our undriven sweep begins at large negative δ where
the ground state corresponds to an empty state in the
trivial or “Higgs” phase as pictured in Fig. 3(a) [9, 11].
We then sweep to large positive δ where the ground
state has maximized the number of dimers subject to
the blockade constraint. Although there are an exten-
sive number of such dimer coverings of the lattice, only
a small subset participate in this valence bond solid
(VBS) or “confined” phase ground state. Despite this,
it has been shown that for experimentally accessible
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timescales, the dynamically prepared state is an approx-
imate resonating valence bond (RVB) state—the equal
weight, equal phase superposition of all dimer coverings
[8, 10, 11]. Indeed, we simulate such an undriven sweep
(shown in gray in Fig. 3) and find a peak in the RVB
overlap at hemidiabatic timescales. This occurs despite
the fact that the RVB quantum spin liquid phase only
occupies a sliver of the phase diagram and is destabilized
by tiny perturbations such as the tails of the van der
Waals interaction [8, 9].

Before elucidating the reason for this phenomenon,
let us show that approximate CD driving inherits the
same behavior and targets the hemidiabatic regime even
beyond first order. The first order AGP is given by

A(1)
δ = −α(Ω/2)∑i PYiP , an operator which is easy

to implement experimentally by tuning the phase of the
Rabi laser4. At higher orders, the AGP has the form

A(ℓ)
δ (δ) = −Ω

2

ℓ∑
k=1

αk(δ) [H(δ), . . . [H(δ)︸ ︷︷ ︸
2k−2

, PY P ]], (4)

where PY P is a shorthand for
∑

i PYiP , and the αk

are variationally optimized [17, 33]. Clearly, all orders
beyond k = 1 are unphysical in the sense that no such
terms appear in the native Hamiltonian, but we will soon
show how to realize them by simply modulating the phase
of Ω. The results of driving up to fifth order are shown in
Figs. 3(b-c). It is clear that higher-order AGPs continue
to target the RVB state rather than the VBS ground
state, in line with our results from the qutrit.

The sweep results can be understood via the existence
of a hemidiabatic window in the emergent timescales of
the system. In particular, the two timescales that define
the edges of the hemidiabatic regime are understood in
terms of two emergent quasiparticles in the RVB phase.
The e excitation corresponds to the removal of a dimer
from the RVB state and therefore has a large energy
set by δ, whereas the m excitation corresponds to states
without an equal superposition of all dimer coverings and
therefore has a small energy set by perturbation theory
[11, 33]. This separation of energy scales implies that e’s
respond quickly to the sweep while m’s remain frozen.

Given this understanding, an undriven sweep from the
trivial phase (where e’s have proliferated) to the VBS
phase (where m’s have proliferated) at a hemidiabatic
rate allows the e’s to equilibrate out while the m’s have
no time to nucleate. Similar to the qutrit, the final
state can be approximated by the projection PG of the
initial state into the dimer-covering subspace—spanned
by states with no e excitations—such that P̃G |ψ(0)⟩ ≈

4 We note in passing that evolution under this first order AGP
shares similarities with the method outlined in [43].

(a)

(b) (c)

FIG. 4. Pulse Sequences in the Rydberg Ruby Lattice.
(a) By dressing PY P evolution with PXP pulses, we can ef-
fectively evolve under terms present in the approximate AGP
[Eq. (6)]. These “cycles” composed of 5 pulses can be con-
catenated to construct sequences that efficiently prepare an
approximate RVB state. (b) We optimize x, y in each cycle to
maximize the final dimer density and plot the overlap density
with the RVB state as a function of total preparation time.
Comparing the overlap density of the states produced by the
pulse sequences with those of the undriven sweep, we find the
pulse sequences generate states close to the RVB state nearly
an order of magnitude faster. (c) By estimating the smallest
lightcone needed for a circuit to prepare these states, we cal-
culate a “lake size” Llake to quantify the scale over which the
prepared states display RVB order.

|RVB⟩5. The presence of the phase transition means that
this construction cannot remove all e’s from the initial
state—instead, a dilute density of e’s is left over [44–46],
leaving finite-size regions of RVB order coined quantum
spin lakes [11].
At low orders, the approximate AGP inherits this be-

havior and only flushes e’s out of the state without nu-
cleating m’s. At infinite order, we will recover the exact
AGP and target the ground state [see Fig. 3(b)]; how-
ever, it is clear that this behavior does not set in even
at fifth order. These results suggest that the approxi-
mate AGP (1) only acts on e excitations at low orders,
driving them out of the state, and (2) eventually acts
on both excitations at high enough order, removing e’s
and nucleating m’s. We will solidify this intuition when
discussing generalizations of our method.
Experimental Protocol. While we have established

that higher-order approximate AGPs systematically tar-
get the hemidiabatic regime, these terms are naively dif-

5 We remark that this approximation holds to an error 1 −
|⟨RVB|P̃G|ψ(0)⟩| ≈ 5.3× 10−12 in our system.
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ficult to implement in experiment. We now consider a
minimal driving sequence which realizes evolution under
such terms and corresponds to pulsing the Rabi laser at
zero detuning for various amounts of time as shown in
Fig. 4(a):

Uc = e−ixPXP e−iyPY P e2ixPXP e−iyPY P e−ixPXP , (5)

where Uc is repeated for Nc cycles. By dressing the first
order AGP (PY P ) with conjugation under PXP uni-
taries, each cycle implements evolution under the follow-
ing effective Hamiltonian:

2y
∞∑
k=1

(−ix)2k−2

(2k − 2)!
[PXP, . . . [PXP︸ ︷︷ ︸

2k−2

, PY P ]] +O(y2). (6)

This operator contains the same terms as the approxi-
mate AGP in Eq. (4) when δ = 0. Even with this restric-
tion, we will now show that this minimal CD-inspired
pulse sequence can quickly prepare quantum lakes6.
In particular, the system is initialized in the ground

state for δ = −5Ω. Then, for a given Nc, the x and y ap-
pearing in each cycle of the pulse sequence are optimized
such that the density of dimers in the state following the
full sequence is maximized (similar to the approach in
Ref. [47]), heuristically targeting e excitations in the ini-
tial state. Crucially, Fig. 4(b) shows that the resulting
state has a high overlap with the RVB state. Remarkably,
these fidelities can be achieved nearly an order of mag-
nitude more quickly than in the undriven case! Such a
speedup relative to the coherence time opens the door to
performing experiments that go beyond the preparation
of the spin lakes state.

While the overlap density confirms that we approxi-
mately prepare the RVB state, a more physical question
to ask is over what length scale the state is indistinguish-
able from this target. In other words, how large is the
quantum spin lake? As a heuristic estimate, we use the
lightcone size of the minimum depth circuit needed to
prepare the lakes state. In particular, we compute an
estimate of the minimal circuit depth Dmin required to
prepare a state with the final density of e and m exci-
tations after the pulse sequence [48] (fully defined in the
SM [33]). Using the “gate” size Rb = 2a, we define the
lake size to be Llake = 2aDmin. As mentioned, this scale
can be heuristically interpreted as the average distance
between e excitations in the final state. Fig. 4(c) shows
that the size of the prepared lake quickly approaches the
system size as we increase Nc.

Semi-Classical Picture. Thus far, we have analyzed
the hemidiabatic regime in two quantummodels. We now

6 Indeed, optimizing and driving with an AGP ansatz using just
the terms in Eq. (6) yields results very similar to those in Fig. 3
[33].

(a) (b)

FIG. 5. Approximate CD Driving in a Landau-
Ginzburg Model. (a) We show the potential [Eq. (7)] of
a two-component Landau-Ginzburg model that provides a
semi-classical picture of how driving prepares quantum lakes.
We sweep K from a regime in the model where ⟨ϕa⟩ ̸= 0 to

one where ⟨ϕb⟩ ̸= 0. A(1)
K (dashed arrows) acts as a state-

dependent force that sends ϕa → 0 without affecting ϕb. (b)
We plot the long-range two-point functions [Eq. (8)] at the
end of this undriven sweep (light color) to quantify how much
each boson has condensed. A clear hemidiabatic window ap-
pears (hxT ≈ 102) where neither boson has condensed, and

since A(1)
K only acts on ϕa, approximate CD driving extends

this window to faster sweeps (dark color).

turn to a semi-classical Landau-Ginzburg effective field
theory with two bosonic excitations. This model not only
distills hemidiabaticity (in the many-body context) to its
essential ingredients but also provides semi-classical in-
tuition for the effectiveness of the driving. In particular,
we will see how the AGP can be thought of as a state-
dependent force which targets fast excitations.
The Hamiltonian density of this field theory is H =

1
2

(
∆aΠ

2
a +∆bΠ

2
b + fa(∇ϕa)2 + fb(∇ϕb)2

)
+V , where ϕa

and ϕb are the scalar fields describing the two bosons a
and b. Moreover, Πi is the canonical field momentum,
∆i determines the dynamical timescale of each boson,
and fi quantifies the spatial coupling of each mode. The
potential V [see Fig. 5(a)] is

V =
1

2
Kϕ2a +

λa
4!
ϕ4a +

1

2
(hxϕ

2
a − hz)ϕ

2
b +

λb
4!
ϕ4b , (7)

where we have used the same parameter labels as the
qutrit for conceptual clarity. Although the qutrit’s dy-
namical timescales are determined by K,hx, and hz, we
are able to tune the ∆i values independently in this more
general model and will take ∆a ≫ ∆b such that a bosons
are fast and b bosons are slow. This effective field theory
is independent of any specific microscopic origin and will
provide an alternative and intrinsically many-body per-
spective on hemidiabaticity independent of level struc-
ture, showing that it arises from the existence of two
emergent modes whose dynamical timescales are well sep-
arated [11].
The model above has two dominant equilibrium

phases: when K is large and negative, the a bosons form
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a Bose-Einstein condensate (⟨ϕa⟩ ̸= 0), analogous to how
the e excitations proliferate in the trivial phase of the Ry-
dberg model; when K is large and positive, the b bosons
form a condensate (⟨ϕb⟩ ̸= 0), analogous to how the m
excitations proliferate in the VBS phase. As expected,
choosing the model parameters to separate the bosons’
energy and timescales causes a hemidiabatic window to
emerge in the sweep dynamics where neither boson has
condensed. We show this in Fig. 5(b) by first using the
truncated Wigner approximation [49–52] to simulate a
sweep from K = −20hx to K = 20hx and then subse-
quently examining the condensation of ϕa,b in the final
state. We probe the condensation of these bosons via the
long-range component of the two-point function:

lim
r→∞

⟨a†a,b(r)aa,b(0)⟩, (8)

which probes the magnitude of ⟨a†a,b(0)⟩ [33, 53, 54],

where aa ∝ ϕa + iΠa/
√
K(T )/∆a (ab ∝ ϕb +

iΠb/
√
hz/∆b) is the annihilation operator of ϕa (ϕb).

For undriven sweeps (light color), these order parame-
ters vanish in the hemidiabatic window (hxT ≈ 102).

Correspondingly, the first-order AGP, given by A(1)
K ∝

−
∫
d2xϕaΠa, targets the hemidiabatic regime by remov-

ing a bosons without nucleating b bosons. As expected,
the driving (dark color) extends the hemidiabatic win-
dow to faster sweeps. However, in this field theory, the
AGP takes on an intriguing semi-classical interpretation:
it is a state-dependent force. In particular, if ϕa > 0, Πa

will translate the field value such that ϕa → 0. Similarly,
if ϕa < 0, the translation is in the opposite direction and
ϕa → 0 still holds. The AGP is therefore able to uncon-
dense the ϕa field without touching ϕb [see Fig. 5(a)], a
behavior that we argue extends to higher orders in the
SM [33].

Discussion and Outlook. In this work, we have
shown how existing techniques for approximate CD
driving can accelerate the preparation of ordered non-
equilibrium states without relying on such order being
present in the ground state. In particular, the approx-
imate nature of the AGP means that slow excitations
which are frozen during hemidiabatic sweeps are also
frozen during the driving. Furthermore, in the Rydberg
ruby lattice of Refs. [8, 9], we design driving sequences
which accelerate state preparation by nearly an order of
magnitude at fixed laser power. This drastically reduces
time constraints set by decoherence and enables further
quantum simulation of spin liquid states with applica-
tions in recent experimental proposals [55–57].

Our results open the door to a number of exciting re-
search directions. In particular, let us first remark that
while our work focused primarily on preparing Z2 quan-
tum spin liquids, the lakes construction of Ref. [11] is
quite general and can apply whenever there is a separa-
tion of timescales in two emergent modes of a system.

Indeed, potential applications include a plethora of frus-
trated magnets [11, 55, 56, 58] and Hubbard systems near
their Mott limit where doublon (density) excitations are
heavily energetically penalized but spin excitations are
soft [58, 59]. Examining the hemidiabatic preparation
of exotic states in these settings—and whether the tech-
niques present here could accelerate it—could open the
door to new experiments previously made challenging by
prohibitively slow state preparation.

On a more theoretical front, our work also motivates
research directions in the field of CD driving. Indeed,
our results demonstrate that existing approximate CD
driving techniques can naturally target non-equilibrium
states associated with a hemidiabatic sweep. It would be
interesting to develop a better understanding of how ap-
proximate CD driving interpolates between the hemidia-
batic and adiabatic regimes and whether or not this could
be used to construct bespoke “hemidiabatic gauge poten-
tials” that target the hemidiabatic regime at all orders.
Such studies could elucidate a more rigorous treatment
of hemidiabaticity.
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ugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt,
X. Chen, and J. G. Muga, Shortcuts to adiabaticity,
in Advances in Atomic, Molecular, and Optical Physics
(Elsevier, 2013) p. 117–169.
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Supplemental Materials

Supplemental Materials A: Interpretation and Review

Advantages of hemidiabatic sweeps

Although we have argued that hemidiabatic sweeps allow for the creation of quantum lakes when the desired order
does not appear in the ground state, one might ask what advantage this method offers when the order does exist in
the ground state. Indeed, approximate CD driving can be used to accelerate such sweeps and avoid the issue of slow
defects (e.g. m excitations in the Rydberg case or b bosons in the Landau-Ginzburg case) altogether.

In the scenarios we have outlined, where the gap remains small for a portion of the parameter sweep, such an
ordered phase will typically only occupy a tiny sliver of the phase diagram. This occurs because the phase is only
protected by a small gap, so small perturbations can drive the system into a nearby disordered phase. As such, the
sweep must be fine-tuned to land exactly within this tiny sliver. The hemidiabatic construction, in contrast, opens up
a large portion of the phase diagram for state preparation. Disordered phases where the slow defects have proliferated
are still able to prepare the ordered phase, removing much of the fine-tuning necessary in the adiabatic case.

In addition, the small gap in the ordered phase generically causes the correlation length ξ to be large (see e.g.
Ref. [9] for the correlation length in the PXP case). Thus, even if one successfully sweeps adiabatically into the
ordered phase, the resulting order is difficult to probe locally; one must coarse-grain the system to verify the desired
order has been reached [60]. In contrast, hemidiabatic sweeps allow for the creation of lakes which are large compared
to the correlation length and can approach the system size: ξ ≪ Llake ∼ Lsys. With this hierarchy, large-scale order
is more easily detectable than the adiabatic case, where scales like ξ ≲ Lsys can easily shroud the order.

Approximate counterdiabatic driving

We now review counterdiabatic driving and its variational approximation [14–17, 19]. Consider a Hamiltonian
H(K(t)) as a function of K, a parameter which we can sweep. We can understand how diabatic transitions occur
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during this sweep by going to the moving frame where H is instantaneously diagonalized. This transformation is
implemented by a unitary U(K) which explicitly depends only on the parameter K. In this new frame, the effective
Hamiltonian acquires a new term similar to e.g. the Coriolis and centrifugal forces:

H̃eff = H̃ − K̇ÃK , (9)

where the tilde indicates the moving frame, e.g. H̃ = U †HU =
∑

nEn |n(K)⟩ ⟨n(K)|. The object ÃK is known as
the “adiabatic gauge potential” or AGP and is the infinitesimal generator of the unitary U(K):

ÃK = iU †∂KU. (10)

Since H̃ is by definition diagonal, the source of diabatic transitions is the AGP term, and as expected, the magnitude
of this term grows as the speed of the sweep grows. However, the moving frame Hamiltonian clearly motivates a
method for exactly following any eigenstate at any sweep rate. Consider evolving under the following Hamiltonian in
the lab frame:

HCD = H + K̇AK , (11)

where AK = UÃKU
† is the AGP in the lab frame. When this counterdiabatic Hamiltonian is expressed in the moving

frame, the AGP terms cancel and the resulting Hamiltonian is completely diagonal. Therefore, the K̇AK term applies
a driving in the lab frame which exactly cancels off diabatic transitions.

However, the AGP is only well defined when all eigenstates change continuously as we vary K. In systems which
are integrable or have well-separated levels, this condition is met and CD driving can be implemented relatively easily.
However, chaotic systems and gapless points will have AGPs which blow up, reflecting the fact that eigenstates are
extremely sensitive to perturbations. This effect can be seen more clearly if we write the off-diagonal matrix elements
of the AGP:

⟨m| AK |n⟩ = −i ⟨m| ∂KH |n⟩
Em − En

, (12)

an expression familiar from perturbation theory. When a system’s gap closes, the denominator vanishes and causes the
entire expression to blow up. One can show that a similar divergence occurs for chaotic systems [19, 61]. Moreover, the
exact AGP will not only have diverging magnitude but also highly nonlocal terms present, reflecting how long-range
correlations and structure within eigenstates can dramatically change near gap closures.

Motivated by these limitations, the authors of Ref. [17] developed a method for approximating the AGP using a
variational procedure. Given some (preferably local) ansatz A∗

K for the AGP, we consider the operator

GK(A∗
K) = ∂KH + i [A∗

K , H] . (13)

In systems with a finite local Hilbert space dimension, the action for this variational procedure is then calculated as

S(A∗
K) = Tr

[
G2

K

]
. (14)

As noted in Ref. [17], the fact that Pauli matrices are traceless and square to the identity means that such actions
can be calculated in spin-1/2 systems analytically. One can then vary the parameters within the AGP ansatz until
the action is extremized:

δS
δA∗

K

= 0. (15)

Such an approximate AGP represents the best local approximation to the true AGP, and as a result, it can be used
in CD driving to eliminate most transitions away from the desired state. This method has been generalized and
applied to many models since its inception, including spins, oscillators, their classical counterparts, and fermions
[17, 18, 21, 25–27, 62, 63].

Although this method can optimize a given ansatz, it does not suggest how to choose the ansatz itself. To address
this, the authors of Ref. [18] introduced the following form for the AGP:

A(ℓ)
K = i

ℓ∑
k=1

αk [H, [H, . . . [H︸ ︷︷ ︸
2k−1

, ∂KH]]]. (16)
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If we send ℓ → ∞, the terms will span the entire space of operators present in the exact AGP, and therefore the
variational procedure will return the exact form. Assuming H is local, successive terms in the expansion represent
more and more nonlocal contributions to the AGP and therefore allow for a controlled treatment of systems where
the exact AGP may not exist. Although this ansatz was motivated in various ways in [18], we are concerned with two
in particular. First, the off-diagonal elements of this operator are

⟨m| A(ℓ)
K |n⟩ = i

ℓ∑
k=1

αkω
2k−1
mn ⟨m| ∂KH |n⟩ , (17)

where ωmn = Em − En. Comparing this with the form in Eq. (12), we see that this ansatz is optimizing αk to make
the best polynomial fit to the function −1/ωmn. Importantly, this fit need only match this function for values of ωmn

which appear in H’s spectrum, and as a result different systems will have different optimal parameters αk. Crucially,
Ref. [18] notes that all terms in this expansion vanish as ωmn → 0 and therefore cannot capture the exact divergence
there. This ansatz therefore inherently cancels off large transitions more than small ones. As such, it is particularly
well-suited for accelerating the preparation of quantum lakes. Put more plainly, the hemidiabatic preparation of
quantum lakes relies on the fact that we can sweep at a rate which suppresses transitions into high-energy states
but allows transitions into low-energy states. The ansatz in Eq. (16) is therefore already constructed to implement
this “cancel high, allow low” procedure. In other words, a poor approximation of the exact AGP, which targets the
ground state, can be a great “hemidiabatic gauge potential” and target a quantum lakes state instead. The second
motivation of Eq. (16) is that it contains nested commutators which appear naturally in the Magnus expansion [18].
As such, even if the terms themselves seem unphysical, they can be realized with an appropriate Floquet protocol or
pulse sequence.

Let us now consider the simplest example of the above approximate CD driving ideas: a qubit with the Landau-Zener
Hamiltonian [64–67]

H = −KZ −X. (18)

For K → −∞, the ground state corresponds to Z = −1. As we sweep K → ∞, the ground state swings around the
Bloch sphere until it reaches the new ground state Z = 1. The rate at which we can perform such a sweep is set by
the gap ∆ = 2 when K = 0. Physically, this process corresponds to implementing a π pulse on the qubit, but the
rate is limited by the timescale set by the gap.

If we instead calculate the first order AGP, we find i[H, ∂KH] ∝ Y , which is the generator of the π pulse we
implement during the sweep. It is easy to see that this is the exact AGP, since all other terms in the expansion return
Y as well. CD driving therefore applies a torque to our qubit and pushes it along during a fast sweep, ensuring it
always follows the instantaneous ground state. Moreover, in the quench limit, the CD Hamiltonian reduces to just
the driving term: HCD → K̇AK . We therefore see that a quench sweep corresponds to implementing a π pulse in the
usual sense: simply applying a magnetic field to rotate the qubit.

There are two key takeaways from this simple example. First, although the overall rate of any quantum process is
set by the magnitude of the Hamiltonian, e.g. the laser power in a Rydberg atom array, evolution under the AGP
uses this power more efficiently. While the adiabatic protocol must realize both the X and Z components of the
field, only the latter sets the gap and restricts the preparation rate. Evolving under the AGP focuses all power into
the rotation, thereby accelerating the overall protocol even when laser power is constant. Second, the AGP can be
interpreted as a force applied to specific degrees of freedom which, upon evolution for a finite time, can “π pulse” the
system from one state to another. We show how approximate AGPs constructed for preparing quantum lakes can be
interpreted as forces on fast and slow defects and used to approximately “π pulse” the system from a trivial state into
an entangled quantum lakes state.

Supplemental Materials B: Other Driving Protocols in the Qutrit

In addition to the exactly gapped AGP from Eq. (2), we also consider a state-specific AGP defined as

⟨m| A(n=2)
K |n⟩ ≡ (δn2 + δm2) ⟨m| AK |n⟩ . (19)

Similar to the gapped AGP, the state-specific AGP only cancels off transitions into and out of the second excited
eigenstate of the Hamiltonian and allows all others.
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FIG. 6. Other AGPs in the Qutrit. We plot the sweep fidelity after driving with the state specific AGP and the Floquet

implementation of A(1)
K in the qutrit. The former cancels all transitions into and out of the second excited level while allowing

all others and is therefore able to prepare the target projected state. The latter replicates the behavior from Fig. 2(b) up to
slight deviations.

We also consider a Floquet protocol (introduced in Ref. [18]) which stroboscopically generates the same dynamics

as the Hamiltonian HCD = H + K̇A(1)
K from the text:

HF =

(
1 +

ω

ω0
cos(ωt)

)
H + K̇β sin(ωt)∂KH, (20)

where ω = 104hx is the Floquet frequency, β = 2ω0α encodes the driving strength, and ω0 = 10hx is a reference

frequency that is much greater than hx but is otherwise arbitrary. We use the same α from A(1)
K in the text:

α = −1/(4h2x + h2z +K2) (21)

which follows from a straightforward minimization of the action in Eq. (14).

Considering this protocol and H
(n=2)
CD ≡ H + K̇A(n=2)

K , we find the results in Fig. 6. These very nearly match those
for ∆ = 2hx in Fig. 2(b) for the same reason as before: large transitions (those which violate the P = 1 condition)
are canceled by the driving, while the small transitions that preserve the low-energy superposition are allowed. The
reason for the slight difference in the state-specific case is that this method allows transitions to the first excited level
for K ≪ −hx while the gapped method does not. Evidently, this has a small effect on the final superposition in the
low-energy subspace, but crucially, both methods support the “cancel high, allow low” strategy for designing AGPs.

The deviations in the Floquet procotol occur due to micromotion and higher order terms in the Magnus expansion.
We remark that this particular Floquet protocol could be experimentally infeasible as it requires a very large frequency
ω and very strong driving amplitude (ω/ω0 = 103). As we show in the Rydberg Z2 quantum spin liquid, protocols
more amenable to direct experimental implementation can be easily designed.

Supplemental Materials C: Additional Information for the Rydberg Ruby Lattice

e and m defects in the Rydberg ruby lattice

We now provide more details on the e and m anyons present in the Rydberg model [9, 11]. In particular, the e
excitations correspond to violations of the dimer covering constraint while the m excitations correspond to violations
of the equal weight, equal phase superposition of such dimer coverings.

More specifically, the dimer covering constraint, referred to as the Gauss law, is defined using the operator

Gv = , = Z Z . (22)

When Gv = −1, the vertex has an odd number of neighboring atoms in the Rydberg state. In the PXP approximation,
this number must be 1, implying that the dimer covering constraint is at least satisfied locally. When Gv = −1 for
all vertices, the state is fully packed with dimers. On the other hand, Gv = 1 means the vertex has an even number

11



(a) (b) (c) (d)

FIG. 7. Quasiparticle Observables in the Rydberg Ruby Lattice. (a) We plot RVB stabilizer expectation values at

the end of the sweeps from Fig. 3 from undriven (lightest) to A(5)
δ (darkest). The clear separation of timescales allows for the

hemidiabatic preparation of the spin lakes state, and approximate CD driving only targets the fast e defects. (b) We also show
the Gauss law ⟨Gv⟩ as a function of total preparation time for the undriven sweep in (a) and the pulse sequences in Fig. 4. As
the sweep rate is decreased, the Gauss law approaches −1, signifying the absence of e anyons in the state. (c) To quantify the
m anyon dynamics within the low-energy subspace, we consider the Wilson loop of the state projected into the dimer covering

subspace ⟨W̃p⟩. The values near 1 indicate the absence of m excitations, which—coupled with the absence of e excitations out
of this subspace—indicates that the states approximately realize the RVB state. (d) The full Wilson loop ⟨Wp⟩, in contrast, is
much lower for quench sweeps and only increases as ⟨Gv⟩ → −1 and the population in the dimer covering subspace increases.
This stabilizer value is used to calculate the lake size and quantify the spatial extent of the RVB order.

of neighboring Rydberg states, and in the blockaded subspace this even number must be 0. The dimer covering
constraint is violated locally and indicates the presence of an e anyon.

Likewise, the m excitation is defined locally using the operator

Wp = , =

{
↔
↔ .

(23)

This operator flips spins on kagome triangles that participate in the plaquette in such a way that dimer coverings are
mapped to each other. MeasuringWp = 1 therefore implies that all such dimer coverings have equal weight and phase,
and locally the superposition has the correct structure for the RVB state. If Wp = −1, however, some phases are −1
and the superposition does not have the correct local structure. In this case, an m anyon lives on the plaquette.

Note that although we cannot ensure that the AGPs do not interact with the m sector of the model, the driving
inherently targets the quantum spin lakes regime. Indeed, in the initial state, the expectation value ⟨Wp⟩ = 0 and
must therefore increase to ≈ 1 during the sweep if we wish to prepare an RVB-like state. One may ask how we can
argue that m dynamics are frozen if ⟨Wp⟩ evolves during the sweep. The reason is that the Wilson loop does not

evolve if we restrict to the Gauss subspace where Gv = −1. Here, ⟨W̃p⟩ ≡ ⟨P̃GWpP̃G⟩ starts and remains near 1 for
the entire sweep. As such, ⟨Wp⟩ increases due to the increasing population in this subspace, not because of some
nontrivial m dynamics.
This explanation of hemidiabaticity is supported by the numerics if we plot ⟨Gv⟩ and ⟨W̃p⟩ for the sweeps in Fig. 3.

These values are plotted in Fig. 7(a). It’s clear that the crossover from quench to hemidiabatic behavior is due to
the e timescale, and the crossover from hemidiabatic to adiabatic behavior is due to the m timescale. Moreover, the
approximate CD driving only targets the e sector, forcing ⟨Gv⟩ → −1 without affecting the m sector. In Figs. 7(b-c),
we plot these values for the optimized pulse sequences from Fig. 4. Just as with approximate CD driving, the pulse
sequences reduce the density of e excitations as ⟨Gv⟩ → −1 while leaving ⟨W̃p⟩ frozen near 1.

Finally, we see in Fig. 7(d) that the full Wilson loop ⟨Wp⟩ is suppressed relative to ⟨W̃p⟩ due to the population
outside the dimer covering subspace. Indeed, as this population is increased (⟨Gv⟩ → −1), ⟨Wp⟩ follows the same
trend as the Gauss law. Although this value does not provide a good heuristic for dynamics within the low-energy
subspace, it is necessary to calculate the size of the RVB lake, which we now discuss.

Defining the lake size

As mentioned in the main text, we define the lake size using the lower bound from Ref. [48]. Given a state with energy
density ϵ ≡ ⟨H⟩/Nq, where Nq is the number of qubits and H is a particular form of the toric code Hamiltonian [68],
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the bound states that the depth D of any circuit used to prepare the state must scale as D = Ω(min(1/ϵ
1−α
2 ,
√
Nq))

for any α > 0. Although Ref. [48] derives this result in the toric code, the bound also applies to the Rydberg case
using the following stabilizer Hamiltonian:

Hstab =
∑
v

1 +Gv

2
+
∑
p

1−Wp

2
. (24)

Unlike the Rydberg Hamiltonian in the text, the RVB state is (one of) the zero-energy topological ground states of
this Hamiltonian, with the ground state degeneracy depending on the topology of the lattice. A finite energy density
therefore quantifies the remaining density of excitations above the RVB state.

As a lower estimate of the depth needed to prepare the states at the end of each pulse sequence, we use the energy
density ϵ = ⟨Hstab⟩/Nq to calculate Dmin = 1/

√
ϵ. To convert this circuit depth into a lake size, we need to quantify

the length scale over which a “gate” would act in such a circuit. We use the interaction range Rb = 2a set by the
blockade as a heuristic estimate of this scale, giving a final value of Llake = RbDmin = 2a/

√
ϵ for the lake size.

In the text, we note that quantum spin lakes can intuitively be thought of as the finite-size regions between the
e excitations left over after a sweep or driving protocol. To make contact with this interpretation, let us first note
that every unit cell of the kagome lattice hosts 1 plaquette and 3 vertices. As such, the Wp contribution to Hstab is
suppressed relative to that of Gv. If we therefore approximate Wp as 1 and neglect this term from the energy density,

the lake size definition reduces to Llake →
√
2(2a/

√
(1 + ⟨Gv⟩)/2) by translational invariance.

The expression in parentheses is exactly the average distance between e excitations in the final state. In particular,
the density of e’s is given by ne = (1 + ⟨Gv⟩)/2 anyons per vertex. Using the distance 2a between adjacent vertices,
this average distance is indeed given by Le ≡ 2a/

√
ne. In the empty product state ni = 0, this returns Le = 2a, so no

lake includes more than a single vertex and the state exhibits no spin liquid correlations. However, for the true RVB
state, Le → ∞, indicating that no e anyon will be present even in an infinite system. When Le > Lsys, there is, on
average, less than one e anyon present in the system.

Finally, we note that values of Wp < 1 actually improve the agreement between these two definitions of lake size as
Llake is reduced and the

√
2 prefactor approaches 1. This point also motivates the use of circuit depth for lake size

instead of Le. Indeed, the latter definition completely ignores the density of m anyons, since it assumes Wp = 1, not

just W̃p = 1. In contrast, Llake accounts for both anyons in a single length scale.

Approximate CD driving in the Rydberg ruby lattice

For our numerics, we consider a 2 × 3 unit cell kagome lattice with periodic boundary conditions along its lattice
vectors. We restrict to the translation and inversion symmetric subspace such that the 36 qubit space is reduced to
a dimension of 11438 ≡ 2Nd . The αk in Eq. (4) are optimized according to the trace action in Eq. (14), but the
blockade projectors make analytic calculations of the trace difficult albeit possible. We instead use our numerically
constructed PXP and PY P operators in the translation and inversion symmetric subspace to calculate the traces
numerically for a 2 × 2 unit cell lattice. It has been shown that these optimized driving protocols generally do not
scale with system size [17, 21], and we observe that the 2 × 2 traces give driving which prepares states efficiently on
the larger 2 × 3 lattices in our numerics. As such, scaling this particular method to larger systems does not require
more intensive optimization.

We also multiply the AGP by an overall factor λf to maximize the final RVB fidelity of a quench sweep (we find

2.5 ≲ λf ≲ 3) [69]. As such, the results in Fig. 3 are simulated under the Hamiltonian H + δ̇λfA(ℓ)
δ . One might

worry that this optimization spoils our argument that approximate AGPs naturally target the hemidiabatic regime,
but this is not the case. Indeed, both the RVB and true ground state overlap display maxima at nearly or exactly the
same λf values. This is because the value of λf ≥ 1 is accounting for the fact that δ ̸= ∞ at the end of the sweep,
meaning that the prepared state is not the fixed-point RVB state; instead, it is dressed by perturbation theory and
includes some virtual e excitations. As such, λf ̸= 1 does not change how the driving interacts with m excitations; it
simply allows it to eliminate e’s more efficiently. As another example of this effect, consider the Landau-Zener model
in Eq. (18). If one sweeps from a finite negative K to a finite positive K, the qubit will never complete a full π pulse
and will end with ⟨Z⟩ < 1. To address this with CD driving, one can increase the strength of the driving under Y
such that the qubit is pushed slightly farther along its trajectory, achieving Z = 1 (the state analogous to the RVB
state in the Rydberg model).
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(a) (b) (c)

FIG. 8. Approximate CD Driving with a Simpler AGP Ansatz. (a) We plot the fidelity of preparing the RVB state

using the ansatz Ã(ℓ)
δ in Eq. (25) for the same sweep as in Fig. 3. For ℓ = 1, 2, this ansatz is the same as the one used in

the text, but at higher orders this ansatz leaves out some terms. This simpler form of the driving allows us to simulate much
longer sweeps at higher order. We find that the fidelity changes only marginally for most sweep rates, with the exception being
ΩT ≈ 10 where we see a dip. (b) The same observations hold if we plot the overlap with the final VBS ground state instead.
(c) The stabilizer expectation values for the sweep are also plotted. Here, the dip becomes a slight increase in ⟨Gv⟩ near the
same value of ΩT .

Other driving protocols in the Rydberg ruby lattice

We have argued that our results apply to a large class of approximate AGPs. We also consider pulse sequences which
do not realize all terms in Eq. (4) but rather a subset of them. As such, we now consider implementing approximate
CD driving using the following restricted ansatz for the AGP:

Ã(ℓ)
δ (δ) =

ℓ∑
k=1

α̃k(δ) [PXP, . . . [PXP︸ ︷︷ ︸
2k−2

, PY P ]], (25)

which uses only those terms that appear in the effective Hamiltonian of the pulse sequence in Eq. (6). For ℓ = 1, 2,
the two forms are actually equivalent, but once we go to third order and beyond, new terms appear in the full ansatz.

The results of optimizing and driving with this ansatz, using the same procedure outlined above, are shown in
Fig. 8. As expected, the performance is not dramatically different when compared with that of the full ansatz. In the
quench limit, there is very little change in the fidelities and stabilizer values. This supports the claim that the exact
form of the AGP is not crucial to the hemidiabatic argument. It also provides some explanation for why the pulse
sequence is still able to achieve a high preparation fidelity despite the missing terms in Eq. (6).

Although we do not have a full explanation for the dip in fidelity visible near ΩT ≈ 10, such fluctuations are not
uncommon in CD driving (see e.g. [17, 21, 23]), and we suspect that it may arise from some kind of destructive
interference between the AGP and Hamiltonian due to the missing AGP terms. We leave a full investigation to future
work.

Understanding the pulse sequence in the Rydberg ruby lattice

We now motivate the pulse sequence in the text from the driving terms in Eq. (25). The single cycle in Eq. (5) can
be rewritten as

Uc = exp
[
−iye−ixPXPPY PeixPXP

]
exp
[
−iyeixPXPPY Pe−ixPXP

]
, (26)

where we have simply treated e−ixPXP as a basis rotation. The Baker-Campbell-Hausdorff expansion then tells us
that the first dressed exponent can be expanded as

exp
[
−iye−ixPXPPY PeixPXP

]
= exp

−iy ∞∑
k=1

(−ix)k−1

(k − 1)!
[PXP, . . . [PXP︸ ︷︷ ︸

k−1

, PY P ]]

 , (27)
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FIG. 9. Matching States Prepared by Pulse Sequences and Undriven Sweeps. To confirm that our pulse sequences
generate spin lake states in the same fashion as a hemidiabatic sweep, we take the final state of each pulse sequence and find
the undriven sweep for which the final overlap is maximized. These undriven sweeps are indicated by the colored stars (the
3 cycle and 4 cycle sequences share the same optimal T value) along with the same data plotted in Fig. 4(b). The overlaps

between the states prepared by these sweeps and the corresponding pulse sequences are all Nd
√

|⟨ψsweep(T )|ψc⟩| ≈ 0.99. This
matching confirms the order of magnitude speedup observed in our other metrics.

and similarly for the other dressed exponent but with x → −x. Note that k starts at 1 to agree with the convention
in Eq. (25). Now taking the limit y ≪ 1, we can find the effective Hamiltonian Hc such that Uc = exp[−iHc]:

Hc = 2y
∞∑
k=1

(−ix)2k−2

(2k − 2)!
[PXP, . . . [PXP︸ ︷︷ ︸

2k−2

, PY P ]] +O(y2). (28)

Note that as long as y is small enough to discard higher order Baker-Campbell-Hausdorff terms, the only terms present
are those which also appear in Eq. (25). Rather than having a large set of parameters to optimize, however, we only
have two. While x encodes the magnitudes of α̃k relative to α̃1, y encodes the total time evolved under the AGP.
Although this expansion clearly realizes the same terms as in Eq. (25), one might ask whether the sequence

(−ix)2k−2/(2k−2)! is a good approximation for the optimal coefficients α̃k found by the trace action. Indeed, the two
degrees of freedom x and y are enough to ensure that α̃1 and α̃2 are exactly reproduced, but the higher order terms
may or may not be matched by the sequence. Empirically, we find that the sequence is often able to approximate
α̃3, α̃4, and α̃5 to within an order of magnitude even when x and y are chosen only using α̃1 and α̃2. However, this
difference is still too large to reproduce the behavior found in Fig. 8 using the pulse sequence. In fact, this sensitivity
of the dynamics to changes in the driving has been observed before in CD driving (see e.g. [21]). Thus, we instead
optimize x and y such that the higher order terms can still contribute despite not reproducing the α̃k.

Although the fidelity densities, stabilizer values, and lake sizes all confirm that these optimized pulse sequences
speed up lake preparation by about an order of magnitude, we can make this claim more precise by asking which
undriven sweep prepares a state |ψsweep(T )⟩ closest to that prepared by a given pulse sequence |ψc⟩. This data is
plotted in Fig. 9 with the same data from Fig. 4(b). For each pulse sequence, we find the value of T which maximizes
the quantity Nd

√
|⟨ψsweep(T )|ψc⟩| and mark this value with a colored star. We consistently find a maximal overlap

of Nd

√
|⟨ψsweep(T )|ψc⟩| ≈ 0.99, confirming that the pulse sequences generate spin lakes similar to those generated by

hemidiabatic sweeps. Moreover, the order of magnitude speedup in RVB preparation is clearly visible when comparing
stars and squares of the same color.

System size independence of the results

Numerical evidence suggests (see e.g. [21]) that the optimized αk do not scale with system size. Since the AGP
acts locally to create the desired order, this makes physical sense. To argue that our drive protocols do not scale with
system size, we provide two forms of evidence. First, we will now show that the same approximate CD driving and
optimized pulse sequences give similar (although slightly better) performance in a smaller Rydberg ruby lattice of
24 qubits. In Supplemental Materials E, we perform matrix product state (MPS) numerics for a modified toric code
model on an infinite cylinder, showing that our findings extend to the thermodynamic limit.

By using the same approximate CD driving protocol from the text in a 2× 2 unit cell Rydberg ruby lattice, we find
the results in Fig. 10(a-b). Compared to the results for the 2 × 3 lattice, the RVB fidelities in the quench limit are
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FIG. 10. Driving in a 24 Qubit Ruby Lattice. We use the same approximate CD driving protocols from Fig. 3 and the
same pulse sequences from Fig. 4 and apply them in a 24 qubit Rydberg ruby lattice. (a) Although the overlap density of
the RVB state with the true ground state is nearly unity (due to the absence of a VBS phase at this system size), the quench
values of each sweep are only marginally higher for 24 qubits than 36 qubits. (b) The absence of the VBS phase means that
the quench values of ground state overlap are higher than in the larger system, but it is clear that the driving still targets the
hemidiabatic regime instead of the adiabatic regime. (c) The same pulse sequences still lead to about an order of magnitude
speedup in RVB state preparation despite the changes in the fidelity density. (d) Similarly, the sizes of the lakes prepared by
these sequences are slightly larger in this smaller system, but the speedup remains about the same. (e) As expected the Gauss
law values for the approximate CD driving simulations are slightly closer to −1 than in the 36 qubit system. However, the

absence of the VBS phase means that the Wilson loop W̃p in the dimer covering subspace does not drop in the adiabatic limit.
This is not a cause for concern as we have already shown that the AGP only has a significant effect for sweeps faster than
hemidiabatic, where the m anyons are frozen anyway. (f) As expected, the Gauss law values of states prepared by the pulse
sequences do not change much with system size. (g) In addition, the sequences preserve the complete absence of m excitations

in the dimer covering subspace, keeping W̃p = 1. (h) Finally, the expectation values of the full Wilson loop ⟨Wp⟩ are marginally
larger than those for 36 qubits but still track the population in the dimer covering subspace.

marginally higher. If we now take the x, y values used in Fig. 4 and apply them in the 24 qubit system, we find the
results in Fig. 10(c-d). Aside from some small shifts, the fidelity densities do not dramatically change, and although
the lake sizes are a few lattice spacings larger than those found in the 2 × 3 system, the same speedup of nearly an
order of magnitude is observed.

To further investigate the driving performance in this system, we calculate the same stabilizers in Fig. 10(e-h) for
the 2×2 lattice as in Fig. 7. Although the values of ⟨Gv⟩ and ⟨Wp⟩ are marginally better, there is a glaring qualitative

difference in the behavior of ⟨W̃p⟩. In particular, this value does not decrease from 1 as the sweep becomes more

adiabatic. This is because the final ground state actually has ⟨W̃p⟩ = 1 for the smaller system. The VBS “phase”
only appears once the system size reaches 2 × 3 unit cells, a consequence of the fact that for 2 × 2 unit cells, one
cannot move from one dimer covering to another by applying the Wilson loop around a single plaquette. As a result,
the ground state has no e’s or m’s, but it is not exactly the RVB state. Rather, it is a different “logical” state of the
system, related to the RVB state by the application of a string operator which wraps around the torus. This accounts
for the overlap between the ground and RVB states not reaching unity but still being higher than in the larger system.
Although one might worry that this large qualitative difference between the system sizes ruins any argument we make
about system size independence, it is clear that in the quench limit, the m’s cannot affect the dynamics because they
are frozen. As such, whether or not they appear in the ground state is immaterial; rather, one can see that the e
dynamics are largely the same, as we would expect.

Another concern which must be addressed is whether the absence of the VBS phase artificially biases our optimized
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driving parameters (which are calculated using operator traces in the 2 × 2 system) to target the RVB state. To see
that this is not a concern, consider the driving parameter α from Eq. (21) used in the qutrit. The small splitting
of the low-energy subspace in the qutrit is controlled by hz ≪ hx, and this separation of energy scales defines the
hemidiabatic regime. It is clear that setting hz → 0 in Eq. (21) barely changes the driving protocol as it is already
such a small contribution to α, even though this change drastically affects the ground state for large K, making it
the target state 1√

2
(|1⟩ + |−1⟩). Indeed, this same structure is present in the Landau-Ginzburg model considered

above and the deformed toric code model considered in Supplemental Materials E. More generally, the existence
of the hemidiabatic regime means that ignoring the small energy scales of the slow excitation does not substantially
change the driving. Similarly, the perturbative splitting of the dimer coverings in the 36 qubit ruby lattice is too small
compared to the detuning δ to substantially modify the α’s. Moreover, note that the values of ⟨W̃p⟩ are completely
unaffected by the driving in Fig. 7(a) and Fig. 8(c). This is not due to some fine tuning of the driving parameters αk

but rather due to the inability of the approximate AGP to drive m anyon dynamics at all.
These small changes in the driving performance as a function of the number of qubits therefore provide preliminary

support for the claim that our results do not scale with system size. Later in the SM, we will show that MPS
simulations also give similar results in the thermodynamic limit.

Supplemental Materials D: Approximate CD Driving in a Landau-Ginzburg Model

In this section, we will review the statements made in the Semi-Classical Picture section of the main text and
provide further explanation for how hemidiabatic preparation is able to target the lakes state.

We consider the simple two-component Landau-Ginzburg field theory with the potential

V =
1

2
Kϕ2a +

λa
4!
ϕ4a +

1

2
(hxϕ

2
a − hz)ϕ

2
b +

λb
4!
ϕ4b , (29)

describing a gas of two bosons a and b. For K large and negative, the a bosons form a Bose-Einstein condensate
where ⟨ϕa⟩ ̸= 0. As K becomes large and positive, the ground state transitions to a condensate of b bosons, such that
⟨ϕb⟩ ̸= 0. These bosons can be interpreted as defects in an otherwise ordered phase; as such, when they condense, the
order is destroyed. It is clear that the ordered phase, where no condensate is present, is not accessible using adiabatic
sweeps of the parameter K, which always keeps the system in equilibrium.

By simply separating the intrinsic energy and timescales of a and b, we can realize a hemidiabatic regime and
prepare an “ordered” state with no defects. To implement dynamics, the full Hamiltonian reads

H =

∫
d2x

 ∑
i∈{a,b}

1

2
(∆iΠ

2
i + fi(∇ϕi)2) + V

 , (30)

where {∆i} control the timescales of each boson and {fi} control the spatial couplings. For our numerics, we use the
truncated Wigner approximation (TWA) [49–52] and linearly sweep K as in the qutrit. The results are pictured in
Fig. 5(b), where the off-diagonal long range order parameters quantify how much each boson has condensed [53, 54].
By choosing ∆a ≫ ∆b, the undriven dynamics (shown in light color) have a clear hemidiabatic window near hxT = 102

where neither boson is present, a state inaccessible in equilibrium. As explained in the text, approximate CD driving

still targets the hemidiabatic regime in this model. At leading order, the AGP takes the form A(1)
K = ∆aα

∫
d2xϕaΠa,

where α is calculated numerically (see below). The driven dynamics are shown in Fig. 5(b) in dark color. The driving
clearly only affects the a bosons—reducing the density of a’s without affecting the b’s—and widening the hemidiabatic
window.

As mentioned before, A(1)
K can be interpreted as a state-dependent force on only one of the bosons: if ϕa > 0, the

AGP applies a field translation generated by Πa such that ϕa → 0. Similarly, if ϕa < 0, the translation is in the
opposite direction and ϕa → 0 is still implemented. The AGP is therefore able to uncondense the ϕa field without
touching ϕb, as pictured in Fig. 5(a). In addition, as we include higher order contributions to the AGP, we will
eventually drive b dynamics and approach the true ground state. Indeed, at second order, the AGP already includes
terms like ∆bhxϕ

2
aϕbΠb. However, such terms are limited by the rate (∆b) and energy scale (hz) of b nucleation relative

to other terms at the same order targeting the a sector. One might worry that optimizing the driving could yield a
very large α at this order (e.g. scaling as 1/∆2

b) and ruin the argument. However, the presence of other terms at the
same order in the AGP which do not contain ∆b, hz (such as terms targeting the field ϕa) eliminates this loophole.
α must be optimized for all terms at the same order simultaneously; as such, the b terms get drowned out before α
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is even chosen. Thus, the AGP remains hemidiabatic even after optimizing the α coefficients. We argue that these
ingredients—the separation of scales between the a bosons (K,∆a) and b bosons (hz,∆b)—are sufficient for a system
to host a hemidiabatic regime.

TWA simulation details

For the TWA field theory simulations shown in Fig. 5, we use the following parameters: ∆a = 0.05hx, ∆b = 0.001hz,
fa = 0.1hx, fb = 0.01hx, hz = hx/5, λa = 100hx, and λb = 0.05hx. We use a 2D torus of 10×10 anharmonic oscillators
to discretize the space of our field theory. The amount of quantum fluctuations is controlled by ℏ, which we set to 1.

To simplify sampling from the initial many-body ground state’s Wigner function, we first compute the ground state
wavefunction of an uncoupled site. This state is nearly a product of Gaussians in both ϕa and ϕb with > 0.9989
fidelity, so we approximate it as such. This makes the associated Wigner function a product of Gaussians as well,
simplifying the sampling procedure. For each site, we sample ϕa, Πa, ϕb, and Πb independently from these Gaussians
and then classically evolve the entire system while adiabatically sweeping fa, fb linearly from 0 to their final values.
We are therefore able to account for spatial fluctuations and correlations without calculating the entire system’s
Wigner function. The values for fa, fb are chosen such that the condensed phases in the mean field treatment are not
washed out by spatial fluctuations. We randomly initialize 10 million system states in this way to include quantum
fluctuations in our classical dynamics.

Each initialization is classically evolved while K is swept linearly from −20hx to 20hx in a time T . Although
the order parameters ⟨ϕa⟩ and ⟨ϕb⟩ (where ⟨⟩ indicates averaging over initializations) are the most intuitive probes
of whether each boson has condensed, these quantities can still be zero if the classical trajectories choose different
degenerate ground states in the double well potential. In other words, the overall Wigner distribution will still be Z2

symmetric because the dynamics preserve the symmetry. To address this, we consider the Z2 off-diagonal long range
order parameter ⟨a†i (r)ai(0)⟩ in analogy with the superconducting case, where

aa(r) =

(
Kf

4∆a

)1/4
(
ϕa(r) +

i√
Kf/∆a

Πa(r)

)
,

ab(r) =

(
hz
4∆b

)1/4
(
ϕb(r) +

i√
hz/∆b

Πb(r)

)
, (31)

and Kf = 20hx is the final value of K. One can show (see e.g. Appendix F of [54]) that this encodes the same
information as the order parameters for r → ∞. The parameters are chosen using the on-site harmonic terms of
the Hamiltonian at the end of the sweep and mapping them onto harmonic oscillators in each defect sector. In our
simulations, we choose r = (5, 0) far from the point 0 = (0, 0) on our torus while still keeping the signal to noise
ratio reasonable. To eliminate spatial fluctuations and enforce translational invariance, we compute the average of
this quantity over the lattice:

⟨⟨a†i (r)ai(0)⟩⟩ ≡
〈

E
R∈Λ

a†i (R+ r)ai(R)

〉
, (32)

where Λ is our set of lattice coordinates.
The optimization of AGPs in systems of oscillators, where the local phase space (or Hilbert space) is infinite

dimensional, is not as straightforward as in systems of spins and fermions. Instead of using the infinite temperature
trace action described in [17], we use the method developed in [21] of tracking the adiabatic evolution of a single
distribution (or Wigner function) and then using this to optimize the driving. In addition to this optimization, we
multiply the driving term by an overall factor λf = 45hx chosen to minimize the a order parameter |⟨⟨a†a(r)aa(0)⟩⟩|
in the quench limit with driving [69]. As explained in the section on the ruby lattice, this does not spoil our argument
that approximate CD driving naturally targets the hemidiabatic regime because it is simply driving out more a bosons
and does not bias the b boson dynamics in any way.

Supplemental Materials E: Approximate CD Driving in the Deformed Toric Code

As a final example, we analyze how approximate CD driving can create quantum spin lakes in the deformed toric
code (DTC) model of Ref. [11]. First, we briefly review the model and discuss the theory and analytics behind
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approximate CD driving. Then, we show numerical evidence for accelerating the preparation of quantum spin lakes.
As these numerics are performed for using matrix product states (MPS) on an infinite cylinder, it provides evidence
that lakes preparation is not a finite-size effect. For a more detailed introduction to the model, see Ref. [11].

DTC model

The DTC Hamiltonian reads

HDTC = −K
∑
v

Z Z
Z

Z
− hx

∑
i

Xi − hz
∑
i

Zi, (33)

where Xi, Yi, Zi are the spin-1/2 Pauli matrices for the qubit living on the ith link of the square lattice. We will only
consider K,hx, hz ≥ 0.

For hz = 0, this model has two simple fixed points. When K = 0, the ground state is simply the product state
|+⟩⊗N

. When K → ∞, the ground state is the same as the toric code [68] and is stabilized by a perturbative resonance
term of strength Jeff ∼ O(h4x/K

3) that looks like

Wp =

X
X

X
X . (34)

Finally, as we increase hz from zero, a third phase emerges, the fixed point of which corresponds to K,hx = 0 and
the ground state |0⟩⊗N

. For the phase diagram of this model, see Ref. [11].
At the K → ∞, hx, hz = 0 fixed point, we can understand excitations in terms of the well-known e and m anyons

of the original toric code. e anyons are defined using the Gauss law term:

Gv = Z Z
Z

Z
. (35)

When Gv = −1, an e anyon lives at vertex v. Similarly, when the Wilson loop operator Wp = −1, an m anyon lives
on plaquette p. When both equal 1, there are no anyons present, and the system is in one of the logical states of
the toric code. The nearby phases can then be understood in terms of these anyons. As hx/K increases away from
the “deconfined” toric code phase, virtual e anyons start to appear in the ground state. Once hx/K becomes large
enough, these anyons condense in the ground state and drive a phase transition into the “Higgs” phase, which is
adiabatically connected to the K,hz = 0 fixed point. Similarly, as hz increases relative to the perturbative m anyon
gap Jeff ∼ O(h4x/K

3), virtual m anyons appear in the ground state before finally condensing and driving a transition
into the “confined” phase, which is adiabatically connected to the K,hx = 0 fixed point.

It was shown in Ref. [11] that initializing this system in the ground state with K = 0 and hz/hx ≤
√√

2−1
2 ≈ 0.46

and applying the Gauss law projector

PG =
∏
v

1 +Gv

2
(36)

will result in a quantum spin liquid. Dynamically, this can be implemented approximately to create quantum spin
lakes if K is increased from 0 at a hemidiabatic rate. Crucially, we do not need to target the toric code phase of the
model during this sweep; even if the final value of K lands us in the confined phase, the fact that hz, Jeff are small
compared to hx,K means that m anyons are inherently slower than e anyons and will not have time to condense into
the ground state.

Let us now consider how approximate CD driving will proceed in this model. The first order AGP is

A(1)
K = iα [H, ∂KH] = 2hxα

∑
v,µ

Z Z
Z

Y
, (37)
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where µ ∈ {0, 1, 2, 3} labels which leg of the vertex hosts the Y operator. We will refer to the operator inside the sum
as the “starY” operator. Before optimizing and driving with this AGP, let us consider its physical interpretation. As
it is a multiplication of the Gauss operator and a local X flip, the operator first detects the presence or absence of
an e anyon and, depending on the outcome, applies ±X to one bond of the vertex. Since this operator can nucleate
pairs of e anyons, or equivalently hop e anyons across a bond, this operator applies a phase-dependent flip of the
Gauss law on a given vertex, exactly analogous to the interpretation given in the Landau-Ginzburg treatment from
the main text. Finally, note that starY commutes with the Wp stabilizers in Eq. (34). As such, dynamics generated
by this AGP cannot change the density of m anyons (calculated as ⟨Wp⟩). As shown below, this fact provides a very
simple method for generating higher-order AGPs that exactly commute with Wp.

Optimization at first order

We want to calculate the optimal α for the AGP in Eq. (37). First, we have the GK operator:

GK = ∂KH + i[A(1)
K , H]

= (−1− 16h2xα)
∑
v

Z Z
Z

Z
+ 8hxKα

∑
i

Z X Z
Z

Z

Z

Z
+Xi

+ 8h2xα
∑

v,µ>ν

Z Y
Z

Y
+ 4hxhzα

∑
v,µ

Z Z
Z

X
.

(38)

In the first 8hxKα term, i labels the link where the X lives. In the 8h2xα term, µ, ν ∈ {0, 1, 2, 3} indicate the positions
of the two Y operators but µ > ν to avoid double counting.
Because Pauli matrices are traceless and square to the identity, calculating the action is straightforward:

S = Tr
[
G2

K

]
= DNv

(
(1 + 16h2xα)

2 + 2(8hxKα)
2 + 2(8hxKα)

2 + 6(8h2xα)
2 + 4(4hxhzα)

2
)
, (39)

where Nv is the number of vertices in the system and D = 22Nv is the total dimension of the Hilbert space. Optimizing
with ∂αS = 0 yields

α = − 1

4(10h2x + h2z + 4K2)
. (40)

Note that because we require hz/hx ≲ 0.46, the h2z term barely contributes to this protocol. Indeed, we might as well
eliminate it all together:

α = − 1

4(10h2x + 4K2)
. (41)

This is the protocol we would have in a DTC model where hz = 0. Conceptually this makes more sense: our AGP
has no interaction with the m anyon sector of the Hilbert space, so we should optimize it in a model where virtual m
anyons cannot affect the optimization. Indeed, when hz = 0, m anyons can never nucleate in the ground state, and
no confined phase exists. We should therefore interpret this AGP as a force which only acts on e anyons and drives
them into and out of our state. Although this change has essentially no effect at first order, it provides the road map
for designing higher-order AGP ansatzes which don’t interact with the m sector.
Note that our optimization can be improved using an overall factor λf as mentioned above. Because AGP evolution

corresponds to using approximate CD driving in a quench sweep, the evolution and final observables are the same
when the total time hxt under AGP evolution equals the total integrated driving strength in approximate CD driving:

hxt = −
∫ 4hx

0

αdK =
arctan

(
4
√

2
5

)
8
√
10

≈ 0.047, (42)

using Eq. (41). However, to truly reach the fixed-point toric code state, we need to sweep to K → ∞. This modifies
the integral to give π/(16

√
10) ≈ 0.062. Although we cannot sweep to infinite K in experiment, we can modify the

driving strength to “complete the π pulse” while doing a sweep to finite K [69] using

λf =
π

2 arctan
(
4
√

2
5

) ≈ 1.315. (43)
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(a) (b) (c) (d)

FIG. 11. Approximate CD Driving in the Deformed Toric Code. We implement approximate CD driving while
ramping K ∈ [0, 4hx] on an infinite cylinder with Ly = 2 and hz = 0.1hx. We use a bond dimension of χ = 64 and time
step of hxdt = 0.005min(1, hxT ), except for the largest value of hxT , which uses χ = 128 and hxdt = 0.001. (a) By plotting
the local overlap of the final state and the target state as a function of total sweep time, we recover the same hemidiabatic
behavior seen in our previous examples. (b) In addition, the separation of timescales between the e and m anyons is evident
by plotting the stabilizer expectation values as a function of total sweep time. Just as in the Rydberg case, the driving only
affects e anyons during fast sweeps and does not affect the dynamics substantially otherwise. We also observe a small dip in
performance around hxT ≈ 0.3 similar to the dip found in Fig. 8. (c) We show the X FM order parameter to quantify the
condensation of e anyons and see that the driving decreases the value in line with our previous results. (d) Similarly, the Z FM
order parameter (which quantifies the condensation of m anyons) is mostly unchanged except for a decrease for quench sweeps.

Although this method is not exact, and the variational procedure is not guaranteed to maximize the QSL fidelity
(since it is optimized for all states in the spectrum), all calculations are analytic and display quantum spin lake
signatures in the thermodynamic limit as shown below.

Approximate CD driving

Using the result from Eq. (43), we can implement approximate CD driving under the Hamiltonian

HACD = HDTC + K̇λfA(1)
K . (44)

The results of evolving under this Hamiltonian while sweeping K from 0 to 4hx in the confined phase over a time
hxT are shown in Fig. 11. Tensor network simulations were performed using the TeNPy library [70, 71] on an infinite
cylinder using the same construction as Ref. [11]. Due to the complexity of the driving, we were only able to reach
a circumference of Ly = 2 with our numerics, but the infinite system size in one of the dimensions (in combination
with the data from the ruby lattice simulations) shows the effectiveness of our methods in the thermodynamic limit.

In Fig. 11(a), we plot the fidelity per qubit of being in the projected state as a function of the total sweep time.
The undriven ramp, as shown in [11], increases from a small value for quench sweeps up to a spin lakes peak around
hxT = 1 before eventually sinking down to the adiabatic fidelity in gray, given by the overlap between the final ground
state and the target projected state. As expected, the first order AGP does not target the ground state but rather
the spin lakes state prepared at intermediate sweep rates. In the DTC, this has a very clear explanation: the AGP
only affects e anyon dynamics and therefore explicitly cannot push the system into the confined phase on its own. All
m anyon nucleation is controlled by HDTC dynamics.
This is clearly seen in Fig. 11(b), where we plot the stabilizer values for both the undriven and driven sweeps as

a function of total sweep time. While the Wilson loops are unaffected (up to numerical error), the Gauss law is
systematically increased near the quench limit as an (approximate) extension of the spin lakes peak. The slight dips
in the Gauss law occur because of oscillations in these stabilizers during the tail end of the sweep. Each sweep ends
at a different time, so each run ends at a slightly different point in the oscillation period. Aside from these dips, it is
clear that the driving increases the Gauss law and improves the overlap with the QSL state.

Finally, to probe the long-range correlations of the state, we also consider Fredenhagen-Marcu (FM) string order
parameters [9, 72–76], defined in [11] and plotted in Fig. 11(c-d). Intuitively, these parameters probe the condensation
of anyons similar to the ODLR order parameters used in the Landau-Ginzburg model. If both string order parameters
flow to zero with increasing string length, the state corresponds to the deconfined spin liquid phase where no anyons
have condensed. We see that the overall effect of the driving is to reduce the FM order parameters for fast sweeps.
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The one exception to this is the peak in ⟨X⟩FM near hxT ∼ 0.3 which lines up with the dip in the Gauss law in
Fig. 11(b). The exact reason for this is unclear and deserves further attention, especially because it also appears in
our results in Fig. 8.

Higher order AGPs

Having numerically shown that the first order AGP effectively targets the hemidiabatic regime where quantum spin
lakes are prepared, our next question is naturally how to extend this effect to higher orders. While we argue that the
unmodified variational procedure from [17, 18] already inherently targets this regime, the DTC allows us to construct
AGPs which exactly conserve Wp. Note that this is fundamentally different from our use of the 2 ruby lattice (where
no VBS phase exists) to optimize the α values used to drive the 2× 3 ruby lattice. In the larger system, the AGP is

not constructed to conserve W̃p but does so due to a separation of timescales, and will eventually reduce W̃p at high
enough order. Here, we modify the AGP such that it commutes with Wp at all orders.

In particular, the clear separation of the e and m anyon sectors in the Hilbert space allows us to create a “hemidi-
abatic gauge potential” which commutes with Wp at all orders. We modify Eq. (16) to be

A(ℓ)
K = i

ℓ∑
k=1

αk [He, [He, . . . [He︸ ︷︷ ︸
2k−1

, ∂KHe]]], (45)

using

He = −K
∑
v

Z Z
Z

Z
− hx

∑
i

Xi, (46)

where we have simply set hz = 0 in HDTC. This Hamiltonian commutes with all Wp, so we restrict the Hilbert space
to the totally symmetric sector with Wp = 1 for all plaquettes. The Hamiltonian can therefore never nucleate m
anyons and has no confined phase. All AGPs generated using (45) therefore commute with Wp. More intuitively, we
are constructing our AGPs in a variation of the DTC where m anyons do not appear and importing these operators
to target quantum spin lakes in a model which does feature m anyons. At first order, Eq. (45) reproduces the
same protocol as in Eq. (41). At second order, however, the difference becomes more apparent. While the original
AGP would not commute with the plaquettes due to virtual m anyon fluctuations, these terms would be small since
hz ≪ hx. When using He, these terms are automatically excluded, and the ansatz becomes

A(2)
K = 2hxα1

∑
v,µ

Z Z
Z

Y
+ α2

[
(80h3x + 32hxK

2)
∑
v,µ

Z Z
Z

Y

+ (−48h3x)
∑
v,µ

Y Y
Z

Y
+ (−32h2xK)

∑
i,µ

Z X Z
Z

Y

Z

Z
]
. (47)

In the third term, µ labels which leg hosts the Z operator. In the last term, i labels which link hosts the X operator,
while µ ∈ {0, 1, 2, 3, 4, 5} labels which of the 6 remaining legs hosts the Y operator.

We now optimize our second-order ansatz. Let’s simplify notation by using B1 ≡ 80h3x + 32hxK
2, B2 ≡ −48h3x,
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and B3 ≡ −32h2xK. One can then show that

GK = (−1− 8hx(2hxα1 +B1α2))
∑
v,µ

Z Z
Z

Z
+ 4K(2hxα1 +B1α2)

∑
i

Xi

+ (4K(2hxα1 +B1α2)− 12hxB3α2)
∑
i

Z X Z
Z

Z

Z

Z

+ (4hx(2hxα1 +B1α2)− 4hxB2α2 − 4KB3α2)
∑

v,µ>ν

Z Y
Z

Y

− 2KB2α2

∑
v,µ

X X
X

+ (2KB2α2 + 4hxB3α2)
∑
i,µ>ν

Y X Z
Z

Y

Z

Z

+ 8hxB2α2

∑
v

Y Y
Y

Y
+ 4KB3α2

∑
v,µ>ν

Z X X Z
Z

Z

Z

Z

Z

Z
. (48)

In the −2KB2α2 term, µ labels the leg with no X. In the next term, µ > ν label the two legs with Y . In the final
term, µ > ν label which legs of the central vertex v host the Xs connecting to the two outer vertices. The action is
then

S = DNv

[
(−1− 8hx(2hxα1 +B1α2))

2 + 2(4K(2hxα1 +B1α2))
2 + 2(4K(2hxα1 +B1α2)− 12hxB3α2)

2

+ 6(4hx(2hxα1 +B1α2)− 4hxB2α2 − 4KB3α2)
2 + 4(−2KB2α2)

2 + 30(2KB2α2 + 4hxB3α2)
2

+ (8hxB2α2)
2 + 6(4KB3α2)

2

]
. (49)

Extremizing this action gives the protocol

α1 = − 120h4x + 451h2xK
2 + 64K4

8 (192h6x + 1567h4xK
2 + 662h2xK

4 + 64K6)
,

α2 =
3h2x + 4K2

16 (192h6x + 1567h4xK
2 + 662h2xK

4 + 64K6)
. (50)

As before, we can estimate the proper scaling factor λf using

λf =

∫∞
0
α1dK∫ 4hx

0
α1dK

≈ 1.304, (51)

such that our driving protocol is

HACD = HDTC + K̇λfA(2)
K . (52)

Since implementing this “hemidiabatic gauge potential” in regular approximate CD driving is numerically costly, we
instead use the optimized coefficients to implement the pulse sequence from above on a larger Ly = 4 cylinder.

Preparation pulse sequence

We now modify the pulse sequence from the text for use in the DTC. A single cycle of our protocol is given by the
unitary

Uc = e−ixHee−iyA1e2ixHee−iyA1e−ixHe , (53)

23



(a) (b) (c) (d)

FIG. 12. Pulse Sequence in the DTC. We use an infinite cylinder with Ly = 4 and simulate a pulse sequence built out
of 3 iterations of the cycle in Eq. (53). We start from the product ground state with K = 0 and hz = 0.1hx. x and y are
chosen for each cycle using the optimized driving parameters in Eq. (50). (a) We plot the fidelity per qubit as a function of
time elapsed for each cycle. The pulse sequence is able to prepare a quantum spin lakes state with about the same fidelity as a
hemidiabatic sweep. (b) We also consider the stabilizer expectation values over the course of the pulse sequence. As expected,
the Gauss law quickly increases while the Wilson loop remains exactly conserved. (c) The X FM order parameter shows the e
anyons uncondensing during the pulse sequence in agreement with the Gauss law. (d) The Z FM order parameter begins at 1
due to the initial product state, but as soon as correlations develop the value shoots down to 0 as expected due to the lack of
m anyons.

where

A1 =
∑
v,µ

Z Z
Z

Y
. (54)

Rather than simply evolving under the starY Hamiltonian, we now dress each time step with He unitaries that
generate the higher-order AGP terms via the Magnus expansion. By setting hz = 0, we ensure that Wp is always
conserved and m anyons remain exactly frozen.
The parameter x is defined by x =

√
−2α2/α1 where α1, α2 are the driving parameters found from optimizing the

second-order AGP. With only this information, the protocol above is able to approximate the contributions of terms
beyond second order. For the DTC, we consider constant y and scan across various values to optimize the final fidelity,
Gauss law, or other figure of merit. Due to the computational intensity of these tensor network simulations, we leave
numerical optimization to future work and instead show the increase in fidelity from the analytically optimized α1, α2.
In Fig. 12, we numerically evolve under such a drive protocol in the DTC. We take the sweep interval K ∈ [0, 4hx]

and divide it into 3 equal steps such that each cycle is assigned the K value at the start of the respective interval. In
this way, we can simulate the K dependence of a quench sweep like in Fig. 11. The value of x(K) for each cycle is
thus determined using α1(K), α2(K), and the optimal y is found to be −2.17 × 10−2. All figures of merit and order
parameters surpass the quench values of first order driving in Fig. 11 and reach the spin lake values reached during
hemidiabatic sweeps, again showing that our protocol does not require the high Floquet frequencies of the protocol
from Ref. [18]. As such, our protocol is able to include higher order terms in the AGP using just evolution under A1

and He.
Although the state reached by this protocol is a quantum spin lakes state, comparing these results to those in

Fig. 11 and Ref. [11] reveals that no speedup in preparation is achieved. The long evolutions under He set by x(K)
increase the protocol time to equal that of an undriven sweep. As such, using CD-inspired pulse sequences for a
preparation speedup in the DTC requires further optimization of x, y, similar to our results for the Rydberg ruby
lattice. We leave such optimizations to future work.
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