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Abstract
Oversmoothing is a common challenge in learning graph neural networks (GNN), where,
as layers increase, embedding features learned from GNNs quickly become similar or
indistinguishable, making them incapable of differentiating network proximity. A GNN
with shallow layer architectures can only learn short-term relation or localized structure
information, limiting its power of learning long-term connection, evidenced by their infe-
rior learning performance on heterophilous graphs. Tackling oversmoothing is crucial for
harnessing deep-layer architectures for GNNs. To date, many methods have been proposed
to alleviate oversmoothing. The vast difference behind their design principles, combined
with graph complications, make it difficult to understand and even compare the difference
between different approaches in tackling the oversmoothing. In this paper, we propose
ATNPA, a unified view with five key steps: Augmentation, Transformation, Normalization,
Propagation, and Aggregation, to summarize GNN oversmoothing alleviation approaches.
We first propose a taxonomy for GNN oversmoothing alleviation which includes three
themes to tackle oversmoothing. After that, we separate all methods into six categories,
followed by detailed reviews of representative methods, including their relation to ATNPA,
and discussion of their niche, strength, and weakness. The review not only draws an in-
depth understanding of existing methods in the field but also shows a clear road map for
future study.
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1 Introduction
Graph Neural Networks (GNN) [1–3] have become prevalent in support learning from net-
worked data, especially after the success of the Graph Convolution Network (GCN) [4]. The
main goal of GNN is to learn feature representation [5] for network entities, such as nodes
or edges, in order to support downstream tasks, like node classification or link prediction.
While GNN has achieved competitive performance in many benchmark graph datasets, it is
known to only perform well with shallow layer architectures but cannot learn long-term node-
node relation well. One consequence of such inability leads to its inferior performance on
heterophilous graph [6].

It has been shown that simply stacking GNN layers to build a deep architecture can-
not learn well due to the observed oversmoothing phenomenon [7, 8]. Oversmoothing can
be described as a phenomenon that all node emebeddings, after deep GNN layers, become
similar to each other. Several measures such as Dirichlet energy [9] and Mean Average Dis-
tances (MAD) have been proposed to quantify the extent of oversmoothing of a model [10].
In this paper, unless otherwise specified, Dirichlet energy will be used as the major measure
of oversmoothing for analysis. Figure 1 demonstrates the GCN embedding learning results
from the Karate network [11], where increasing GCN layers from 1 to 3 results in better class
separability whereas increasing the layer further results in embedding features with deteri-
orated class separability. Figure 2(b) demonstrates the oversmoothing phenomenon on the
Cora network [12] where all node embedding becomes similar to each other.

GNN models equipped with oversmoothing alleviation can in general accommodate more
GNN layers and therefore allow nodes to have a larger receptive fields [13]. As a result,
models aiming to alleviate oversmoothing also tend to gain advantage over heterophilous
datasets. Such dual relation has been observed in several studies [14, 15].

1.1 Research Gap and Motivations
Indeed, many works have been proposed to tackle oversmoothing in GNNs, by using dif-
ferent types of design principles. For example, energy-control approaches aim to increase
initial energy or keep energy from exponential decay during propagation in GNNs. Other
methods focus on decoupling topology propagation and feature transformation. The vast dif-
ference in their design principles, combined with complicated graph topology and message
passing mechanisms, making it difficult to understand and even compare their difference in
tackling the oversmoothing. Very few survey papers exist to review methods tackling GNN
oversmoothing challenges. A recent survey [16] has compared several methods, and pointed
out that some of the existing methods (such as GCNII [17], GraphCon [9]) cannot increase
their model performance with deep layers despite the oversmoothing measure (i.e., Dirich-
let energy) is preserved to be constant among layers, mainly because of lacking expressive
power. Therefore, existing survey [16] is mainly focused on reviewing method drawback from
the expressive power perspective.

To date, there is no literature focusing on summarizing and comparing different alleviation
approaches. Collectively, there is a missing knowledge of main themes and categorization
of existing methods in the field, which may help researchers understand design principles to
tackle oversmoothing. Individually, there is a lack of comparison of main stream approaches
(e.g. strength and weakness) to guide future research.
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Classical GNN message passing includes two critical operations: message aggregation
and message update, where message aggregation focus on how to aggregate information
passed from connected neighbors and message update focuses on how to update the node
information to the next iteration or next layer. In many works, augmentation prior to train-
ing, such as feature or edge dropout, is also a part of standard pipeline, which can be simply
described as a stochastic masking over original data sources, including graph topology and
node features for graph learning.

To alleviate oversmoothing for GNN learning, most existing methods are motivated by
modifying or changing the three operations, including augmentation, message aggregation,
and message update, in the GNN training process with the objective of obtaining final
embeddings without oversmoothing. Nevertheless, there is no systematic study of existing
methods on how the three main operations affect the oversmoothing problem. To close the
gap and provide guidance for future studies of oversmoothing, we propose a taxonomy with
a unified view of five key steps: Augmentation, Transformation, Normalization, Propaga-
tion, and Aggregation, to summarize GNN oversmoothing alleviation approaches. The unified
view therefore provides a systematic study of the three operations (augmentation, message
aggregation, and message update) with more detailed analysis and categorization of existing
methods.

We notice that the three major themes only correspond to three main operations in
classical GNN but also reflect the underlying different principles that are leveraged to allevi-
ate oversmoothing. The methods we selected, despite various motivations, inspirations, and
structures, all fall into the three major themes and their underlying principles.

1.2 Contributions
In this paper, we propose to unify existing methods in the same form and study their connec-
tions in tackling GNN oversmoothing. Our study not only provides a taxonomy and a unified
view, ATNPA to summarize all methods using common math formulations, but also separates
them into three themes and six subgroups, by taking their unique designs into consideration.
The survey outlines the differences between methods in each group, explains their rationality,
and addresses their limitations. Our review has a number of math formulas, because reviewed
papers are heavy in math formulations. To precisely summarize and highlight their difference,
we keep representative methods’ backbone formulas in the review for a better understanding.

The remainder of the paper is structured as follows. Section 2 provides the definition
of oversmoothing problem and its common measures in existing works. Section 3 describes
our taxonomy for GNN oversmoothing problems from different angles. Section 4 introduces
our main unified view and the six categories of existing methods, followed by a detailed
discussion over each category. Section 5 concludes our works along with future guidelines
for oversmoothing problems. For ease of reference, Table 1 summarizes key symbols and
notations used in the paper.

2 Problem Notation
A graph with n nodes is denoted by G(V,E,X), where V = {v1, . . . , vn} is the vertex
set with |V | = n, E is the edge set, and X ∈ Rn×m is the node content matrix recording
m dimensional attributes for each node. For ease of representation, we use A ∈ Rn×n to
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(a) Karate Club Topology (b) 1-layer GCN Embedding (c) 3-layers GCN Embedding

(d) 5-layers GCN Embedding (e) 10-layers GCN Embedding (f) 20-layers GCN Embedding

Fig. 1: Visualization of GCN node embedding results with respect to increasing number of
layers (Karate club network [11]). Nodes are color-coded with same colored nodes belonging
to the same class. From top to bottom, left to right, (a) denotes the Karate club network top-
poloy, (b) to (f) denotes node embedding from 1-layer GCN to 20-layer GCN, respectively.
As GCN layer increases from 1-layer to 3-layer, the embedding achieve better class separa-
bility (i.e., better results). As layer continuously, from 5-layers to 20-layers, GCN embedding
loss node separability.

denote adjacency matrix of G, with A[i, j] = 1 if an edge connects vi and vj , or 0 otherwise.
Learning node embedding (or feature representation) is essential for graph neural networks.
Meanwhile, because embedding learning is often carried out in a layer-by-layer fashion, we
use H l ∈ Rn×f to denotes feature embedding learned at the lth layer (where each node is
denoted by an f dimensional latent features). σ(·) denotes a non-linearity activation function.
In the following, we define operators commonly used in GNN learning and will be using these
operators in the later analysis.

Definition 1 (Feature encoders: fθ(·) and Fθ(·)). We use fθ(·) to denote a content based
feature encoder, parameterized by learnable parameters θ, converting node attributes X into
latent feature space. This can be achieved by using simple multi-layer perceptron (MLP) or
more sophisticated learners, such as CNN or LSTM (for network having image or text as
node content). Likewise, Fθ(·) denotes graph convolution operators which leverage both node
content and network topology to derive latent features. Because feature encoders typically
work in a layer-wise manner, we use following notations to denote their propagation between
layers.

H l−1 ← fθ(H
l−1); (1)
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(a) 1-layer GCN Embedding (b) 3-layers GCN Embedding (c) 5-layers GCN Embedding

(d) 10-layers GCN Embedding (e) 15-layers GCN Embedding (f) 20-layers GCN Embedding

Fig. 2: Visualization of oversmoothing from GCN embedding learning (Cora network [12]).
Nodes are color-coded with same colored nodes belonging to the same class. From top to
bottom, left to right, (a) to (f) denotes node embedding from 1-layer GCN to 20-layer GCN,
respectively. As GCN layer increases from 1-layer to 5-layer, the embedding achieve better
class separability (i.e., better results). As layer continuously, from 10-layers to 20-layers,
GCN embedding loss node separability.

H l ← Fθ(H
l−1, A) : H1 = X (2)

Where Eq. (1) represents encoding node feature only before propagation and Eq. (2)
shows the propagation process after feature encoding.

Batch normalization has been proven to be an effective component in deep neural archi-
tectures in many fields such as computer vision and natural language process. Inspired by
the success of batch normalization [18] and subspace theorem [19], normalization techniques
have been proposed to alleviate the oversmoothing in graph neural networks.

Definition 2 (Normalization operator: NT(·)). We use NT(·) to denote normalization tech-
niques in GNNs, where · input could be learnt embedding H only or combined with topology
A for normalization to accommodate graph structure. An example of NT(·) is the PairNorm
method [20] as follows where where H and H̄ denote node embedding and its mean, s is a
hyperparameter, n is the number of nodes, and ∥(·)∥2 denote L2 norm.

NT(H) =
s
√
n(H − H̄)

∥H∥2
(3)

Note that · input for NT(·) could be both X and A. While normalization techniques are
different, the principle behind is the same: to preserve Dirichlet energy (an important measure
for oversmoothing) [9] or to reduce the variance of the learned embeddings [21].
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Table 1: Summary of key symbols and notations.
Notations Descriptions

G = (V,E,X) An attributed graph with node set (V ), edge set (E), node feature content (X)
A ∈ Rn×n An adjacency matrix

Ã An augmented or synthesized adjacency matrix
σ(·) A non-linearity activation function

H , H ′, H ′′ Graph node embedding, the changing rate of H (first derivative), and the changing
rate of H ′ (second derivative)

Hl ∈ Rn×f Graph node feature embedding learned at the lth layer
Hl

c Graph node feature embedding learned through convolution (or in general any local
aggregation)

U U denotes the velocity of embedding changing (assume graph node feature embed-
ding evolves continuously with time t)

fθ(·) A content-based feature encoder parameterized by θ
Fθ(·) A graph convolution operator parameterized by θ
NT(·) Normalization techniques in GNNs
LA(·) Layer-wise aggregations
Aug(·) Topology augmentation function

Definition 3 (Layer aggregator: LA(·)). We use LA(·) to denote layer-wise aggregations that
aggregate embeddings learnt from current and preceding layers. Examples of aggregation
include concatenate, max pooling, and LSTM-attention operations [22].

H l ← LA(∪li=1H
i) (4)

Notice that Eq. (4) often occurs in dense-based approach and can be treated as an
ensemble trick over different layers.

Definition 4 (Topology augmentation operator: Aug(·)). We use Aug(·) to denote topology
augmentation function using given input to generate an adjacency matrix Ã. For example
Aug(H l, X) uses node attributes X and latent features at layer l to generate an adjacency
matrix Ã.

A common choice of Aug(·) could be symmetric Laplacian, Laplacian, First-order
Chebyshev approximation (akin to GCN) following traditional spectral graph theory. Other
choices include different random masking schemes such as random edge dropping [23] which
is proven to be effective both empirically [23] and theoretically [19], and learnable attention
matrix that has the same structure as A (examples include transformer architecture [24] and
diffusivity in GRAND [25]).

2.1 Oversmoothing Definition
According to [19], oversmoothing is defined as features exponentially converging to a sub-
space that is invariant to the propagation matrix A. Assume M ∈ Rn×k, k ≪ n is a subspace
invariant to A (or A’s augmentation Aug(A)) i.e., for ∀Ω ∈M , AΩ ∈M as well. DM (H) is
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defined as the distance between H and its closest element in M , i.e.,

DM (H) = inf
Ω∈M

∥H − Ω∥2F (5)

where ∥ · ∥2F is the matrix norm. Oversmoothing indicates that DM (H l) → 0 exponentially
converges, w.r.t the increase of layer value l.

Likewise, a node similarity measure µ is defined with two axioms [16]. ∃c∀i ∈ V such
that Vi = c and µ(c) = 0; µ(x + y) ≤ µ(x) + µ(y), i.e., µ(·) satisfies triangle inequality.
Then, oversmoothing is defined below with µ(H l) → 0 when l → ∞, where C1 and C2 are
constants and l is the layer number.

µ(H l) ≤ C1e
−C2l (6)

The definition above is similar to the definition in [19] with µ(·) defined as DM (·) with
the measure decay rate limit to exponential decay. The second definition is often used in
diffusion-based system analysis such as [9] with µ as the Dirichlet energy of the system while
the first definition is often used in GNN-backbone methods such as EGNN [26] and DropEdge
[23].

2.2 Oversmoothing Measures
A commonly used oversmoothing measure is Dirichlet energy which can be defined as:

εDE(H
l) =

1

n

n∑
i=1

∑
j∈N(i)

∥H l
i −H l

j∥22 (7)

where H l
i , H

l
j are feature vectors reflecting nodes L2 distance with respect to its neigh-

bors. In practice, the specific distance metric can be treated as a learnable parameter or
hyperparameter.

Two examples of using this measure include (1) the coefficient selection of EGNN based
on the lower bound of εDE(H

l), and (2) G2-gating directly leveraging εDE(H
l) to compute

the coefficient for each node and feature channels. We comment here that εDE(H
l) can reflect

the current convergence state of the model but cannot accurately guide the model to learn
correct local oversmoothing.

Another commonly used measure is Mean Average Distance (MAD) which is defined as:

εMAD(H
l) =

1

n

n∑
i=1

∑
j∈N(i)

∥1−
(H l

i)
T (H l

j)

∥H l
i∥∥H l

j∥
∥22 (8)

where we can observe that MAD simply replaced L2 distance metric to cosine similarity
compared with Eq. (7). Note that MAD is closely related to cosine similarity and therefore
only considers the direction of the two embeddings and ignores their magnitude difference.
Compared with Dirichlet energy measure, caution on feature magnitude is needed when using
the MAD measure.
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2.3 Oversmoothing Benchmarks
Table 2 lists commonly used benchmark datasets by existing methods for oversmoothing val-
idation. The datasets are listed and ordered, from left to right, based on the number of times
each dataset is used in descending order. Cora, Citeseer, and Pubmed datasets are three com-
mon homophilic benchmarks used. Texas, Cornell, Wisconsin are three common heterophilic
benchmarks used. Frequently used datasets are all small or medium scale ranging from 103

to 104 number of nodes. Few methods test shared large-scale heterophilic or homophilic
benchmarks over 105 number of nodes.

Oversmoothing problem occurs when GNN layers are stacked, aiming to learning global
and longer hop-size node relations. For node classification tasks, homophilic graphs assume
that nodes intend to share same labels with their nearby neighbors and the heterophilic graphs
have more nodes sharing same labels with distant hops away. Heterophilic graphs could show
more benefits and improvements for the models with deep GNN layers and reflect the model’s
ability to learn the global node relationship[15]. Therefore, we recommend that future stud-
ies focus more on datasets that are heterophilic for testing the effectiveness of oversmoothing
alleviation. Moreover, it can be observed that few large-scale heterophilic datasets are com-
monly tested by existing methods, resulting a lack of recognition of scalability comparison
among existing methods.

3 A Taxonomy for GNN Oversmoothing Alleviation
In this section, we first outline message propagation process commonly used in GNN learning
(Sec 3.1), then summarize main themes to tackle oversmoothing (Sec 3.2). After that, we
propose a taxonomy for GNN oversmoothing alleviation, as shown in Fig. 3.

3.1 GNN Message Propagation
Deep neural architectures typically require ability to preserve long-term information passing.
To achieve the goal, an inter-layer information delivery mechanism is used to regulate infor-
mation passing process between layers. We briefly separate such processes into the following
two subgroups.

3.1.1 Traditional Approaches: Residual vs. Dense Connections

Residual connection and dense connection are two common approaches to achieve inter-
layer information passing. Research has shown that such simple architectures can achieve
long-term information preservation, and therefore be beneficial to alleviate oversmoothing in
general.

To preserve long-term information during deep layer propagation, two types of con-
nections are commonly used in existing works, namely residual connection and dense
connection:

Residual Connection in message passing scheme can be defined in Eq. (9) where α, β can
be hyperparamter constant but can also be learned.

H l ← Fθ(H
l−1, A) + αH l−1 + βH1 (9)
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We note that Eq. (9) provides a choice for node embeddings update to preserve part of its
original information H l−1 and H1 rather than entirely change to its aggregated message
Fθ(H

l−1, A), which typically leads to smooth update.

Dense Connection is defined in Eq. (10). Being dense, it implies that embeddings at the
current layer H l aggregate information from all preceding layers, including l − 1, l − 2, . . .
and so on.

H l ← LA(∪li=1H
i) : H l = Fθ(H

l−1, A) (10)

From model expressive power perspective, because dense connection can be considered as a
linear version of residual connection, residual connection is more expressive in general.

3.1.2 Complex Approaches: Dynamics and Recurrence Relation

Recently, physics-informed approaches are proposed to first model the entire graph learn-
ing process as a continuous time process (second order partial differential equation PDE or
ordinary differential equation ODE) and then use different methods to discretize continuous
system, leading to a nuanced recurrence relation different from traditional GNN schemes.

A general physics-informed system (assuming a static graph) can be defined in Eq. (11),
where H is the learned node embedding and l is the layer number from the model’s perspec-
tive or iteration number from the solver’s perspective. H ′ and H ′′ stand for the changing rate
of H (first derivative) and changing rate of H ′ (second derivative), respectively. A time t vari-
able acting as a continuous feature propagation corresponds to GNN feature propagation with
layer l increases.

H ′′ ← Fθ(H,H ′, H ′′, A, t) (11)
Discretizaing Eq. (11) with different discretization schemes induces a recurrence relation
similar to residual connection or dense connection but with a more complex structure. An
example of discretization could be

(H l)′ ← (H l−1)′+β(σ(Fθ(A,H l−1))

−γH l−1 − α(H l−1)′) (12)

H l ← H l−1+β(H l)′ (13)

where Eq. (12) and Eq. (13) shows a common form with iterative form for both its first-
derivative (embedding update rate) update equation and embedding update equation.

The principle behind the physics-informed system is that energy preserved in the
physics system while the system evolving can fit into Dirichlet energy measure and a dis-
cretization method therefore keeps Dirichlet energy from exponential decay and alleviates
oversmoothing accordingly.
Definition 5 (Message propagation operator: Update(·)). We use Update(·) to denote
an abstraction of the message propagation process in GNN learning, such as residual connec-
tion, dense connection, different recurrence relation, and implicit Euler discretization [25],
etc.
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Fig. 3: The proposed taxonomy of oversmooth alleviation approaches for deep graph neural
networks. The taxonomy includes three themes and six categories of methods for oversmooth
alleviation. Some approaches, such as physics-inform methods, are used by all three themes.
Others, such as residual connection, dense concatenation, graph transformer, are only used
by a unique theme.

3.2 Themes to Tackle Oversmoothing
To tackle oversmoothing, different design principles have been proposed. The themes behind
these approaches are largely driven by modeling iterative GNN learning as energy regular-
ization or as continuous system process. Here, the concept of energy can correspond to any
oversmoothing measure or distance metric and we will refer to it as Dirichlet energy for sim-
plicity and consistency unless otherwise specified. We summarize main themes behind exist-
ing GNN oversmoothing approaches into following three types. Table 3 lists representative
methods and corresponding type of approaches employed to tackle oversmoothing.

3.2.1 Energy Regularization

Initial Energy Regularization:
As defined in Sec 2.1, oversmoothing implies that the whole system energy is exponentially
decayed to zero. Stochastic masking based methods provide a simple solution to alleviate the
oversmoothing issue with GNN-backbone. The analysis [19] has shown that with a relatively
less dense graph, GCN is less likely to suffer from information loss (i.e., oversmoothing).
Therefore, DropEdge [23] randomly reducing the density of the graph in the beginning nat-
urally alleviates oversmoothing. Similarly, EGNN uses orthogonal weight initialization [26]
to ensure each layer’s initial energy is upper bounded at the starting point of training. Both
methods are consistent with the analysis [19] that energy is related to both propagation matrix
aug(A) and learnable weight W .

Energy Decay Regularization:
Armed with the measure of oversmoothing (Dirichlet energy), existing methods optimize the
structure (e.g., GraphCon [9]), coefficient(e.g., G2-gating [15]), and learned features (e.g.,
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PairNorm [20]) to control the energy of the generated embeddings from decaying exponen-
tially with the layer increases. Such designs provide a theoretical assurance for embeddings
to not become oversmooth. However, simply maintaining embedding energy from exponen-
tial decay does not necessarily result in a model with good performance. A recent study [16]
shows that although G2-gating, GCNII, and GraphCon have similar ability in maintaining
embedding energy, as the layer increases, G2-gating enhances its model expressive power
(through learned coefficients), resulting in better performance than GCNII and GraphCon.
Empirical studies and theoretical analysis are needed to deepen the understanding of a
model’s capability in maintaining energy vs. expressive power.

Methods that prevent energy from decaying exponentially can be divided into three main
types: structure preserved, feature normalization preserved, and coefficient preserved. The
structure preserved method mostly comes from different combinations of residual connection,
dense connection, and discretization of the diffusion equation, leading to different recur-
rence relations of the Updating function. Feature normalization preserved method includes
those normalization techniques that directly apply to features such as PairNorm, NodeNorm,
etc. The coefficient preserved type is about how to select the coefficient of each residual
component to preserve Dirichlet energy, including EGNN, G2-gating, etc.

3.2.2 Dynamics System Modeling

Instead of regulating the energy decay using normalization or other approaches, an alterna-
tive solution is to model the process as a discretized dynamic system with explicit control on
system evolving and avoidance of the fixed point convergence. To this end, physics-inspired
continuous systems have been leveraged as a starting point for constructing the new fam-
ily of graph learning structures. The continuous systems equipped with Dirichlet energy are
augmented with non-linearity and discretized with different discretization schemes, resulting
in complex recurrence relations different from traditional residual and dense-based meth-
ods [9]. Different dynamic systems provide rich properties inheriting from their continuous
form analysis that traditional GNN do not have.

3.2.3 Propagation and Transformation Decoupling

Oversmoothing is essentially tied to the feature propagation through network topology.
Another way of avoid oversmoothing is to decouple the feature learning from feature prop-
agation. Such decoupling can be achieved through two paths: (1) positional-encoding and
(2) simple stacking. Positional-encoding-based methods are mostly graph transformers where
graph structure information is encoded first and then concatenated with features to feed into
the transformer structure. We comment here that this type of method treats the structure as
plain feature information and therefore does not involve propagation operation that causes
oversmoothing. Therefore, we will not discuss this type of method in detail in this survey.
The simple stacking-based method, like SGC [49] and DAGNN[40]), first applies feature
transformation without the adjacency matrix being involved and then applies the power of the
adjacency matrix to encoded features. The final learned embedding can be summarized into
a kernel or diffusion-based adjacency matrix that convolutes with encoded features.
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3.3 GNN Oversmoothing Alleviation Taxonomy
Based on the three themes to tackle the oversmoothing in the GNNs, we propose a taxonomy
in Fig. 3, which categories all methods into three themes and six subgroups. Under the newly
proposed taxonomy, some approaches, such as physics-inform methods, are used by all three
themes. Whereas others, such as residual connection, dense concatenation, graph transformer,
are only used by a unique theme. The taxonomy helps lay the foundation for ATNPA, the
unified view and categorization (Sec 4). In the next session, we will present unified view
and categorization, and review representative methods in each category, including their key
steps and relation to the ATNPA, as well as their rationality in tackling the oversmoothing
challenges.

4 ATNPA: Unified View and Categorization
The three themes to tackle oversmoothing differ significantly in their principles, and such
difference is even more profound in respective methods’ implementation. To delve into the
analysis of these seemly different approaches, a unified view ATNPA with five major steps
(Augmentation, Transformation, Normalization, Propagation, and Aggregation) is proposed
to help review and understand how different approaches address the oversmoothing.

Augmentation: Ã← Aug(X,A) (14)

Transformation: H l
c ← Fθ(H

l−1, Ã) (15)

Normalization: H l
c ← NT(H l

c) (16)

Propagation: H l ← NT(Update(H l
c, H

l−1, H1)) (17)

Aggregation: H l ← LA(∪li=1H
i) (18)

The ATNPA unified view, defined from Eq. (14) to Eq. (18), outlines an abstract-level frame-
work majority GNN methods follow, with all operators being defined in previous sections.
Notice that after augmentation as in Eq. (14), it is rare to use the original matrix A unless it is
in a self-supervised learning settings with multi-views of graphs utilized [50]. In the follow-
ing, we categorize all methods into six categorizes, and review each category in details in the
succeeding subsections.

4.1 Categorization
Following the three major themes in Sec 3.2, we categorize existing alleviation methods based
on critical changes they made compared with the vanilla GNN scheme, and link them to the
ATNPA unified view framework. First, we summarize its general properties and show their
implicit connections. Then, we discuss specific methods within each category in detail.

Energy Regularization is one major theme we categorize for alleviating oversmoothing.
Both Residual connection and Dense concatenation belong to this major theme with its unique
property of alleviating energy decay thorough layer updates and they separately focus on
adapting the propagation step Eq. (17) and aggregation step Eq. (18). Notice that some of
the methods in this category also belongs to dynamic system modeling as the entire layer
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stacking process can be modeled as a dynamic system and alleviating oversmoothing can be
considered as controlling the energy change in the system.

Residual connection:
Residual-based models explicitly add skip- or residual-connection to the ATNPA’s Propa-
gation step at Eq. (17). Examples include APPNP [36], ResGCN [35], GCNII, GEN [37],
EGNN, G2-gating, GRN, etc). Initial works, such as ResGCN, APPNP are inspired by resid-
ual connection in the computer vision field [51] and only contains either skip-connection
H1 or residual-connection H l−1. GCNII covers both skip-connection H1 and residual con-
nection H l−1 to its update() function and shows better performance. However, its residual
coefficient remains hyperparameter. Later, EGNN and G2-gating focus on selection of each
residual coefficient under the principle of preserving Dirichlet energy among layers and gen-
eralize the residual connection trick to the gating mechanism. GRN further generalizes the
constraint of Dirichlet energy to a learnable metric for better adaptation.

Dense Concatenation:
Dense concatenation based methods explicitly aggregate all layer embeddings into the final
embeddings, which is reflected in ATNPA’s Aggregation step at Eq. (18). Examples include
JKnet [22], DenseGCN [41], MixHop [42], Scattering GCN [52] and DAGNN [40].

In addition to the residual-based energy change regularization, many methods focus on
explicit energy control directly over the node embeddings learned and this corresponds to our
Normalization step at Eq. (16) and Propagation step at Eq. (17).

Energy Control:
Energy-controlled models introduce normalization techniques that control Dirichlet energy
or feature variance of the learned embeddings to explicitly optimizing the measure of over-
smoothing and alleviate oversmoothing. This is reflected at ATNPA’s Normalization step at
Eq. (16) and Propagation step at Eq. (17). Examples include EGNN, PairNorm, NodeNorm
[21], GroupNorm [38], G2-gating.

While the two main branches above focus on regularizing the energy change thorough
layer stacking, another branch of alleviating oversmoothing for energy controlling energy
is to modify the initial energy (corresponding to regularize the initial condition in terms of
dynamic system). This type of methods often focus on modifying our ATNPA’s Augmentation
step at Eq. (14).

Stochastic Masking:
Stochastic-mask (random-mask) based models randomly mask or drop edges/nodes of the
original graph, corresponding to changes in ATNPA’s Augmentation step at Eq. (14), and then
use resulted stochastic graph for propagation. Examples include DropEdge, Drop-connect
[43], DropMessage [44].

Combined from the two principles stated from with either boundary condition control
and system update control (corresponding to a complete solver for PDE and ODE system),
inspired from dynamic system modeling in physics, a branch of method focus on explicit
construct continuous ODE or PDE related to graph diffusion and discretize it. As solving
ODE or PDE requires both boundary condition (initial condition) and update equation, this
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type of methods falls into our ATNPA’s Augmentation step at Eq. (14) and Propagation step
at Eq. (17).

Physics-inform Process:
Physics-informed methods first model a continuous ODE or PDE related to graph diffusion
equation and then discretize the continuous equation with different discretization meth-
ods. This leads to nuanced recurrence relation and possibly a combined propagation matrix
learnt from both features and topology, which corresponds to ATNPA’s Augmentation step
at Eq. (14) and Propagation step at Eq. (17). Examples include GraphCon, GRAND [25],
ACMP [46], Neural Sheaf Diffusion [47].

Finally, inspired by recently emerging transformer techniques in sequence generation
problems, which can learn long-context sequence relationship, an ensemble of capturing both
local relation with shallow layer GNN learning and global relation learning with transform-
ers are studied. It is also worthnoting that transformer structure can be treated as sequence
propagating on a dynamic complete graph.

Graph Transformer:
Transformer-based methods integrate transformer structure into GNN backbones and leverage
different combination or integration to allow models to learn both long-term relation (from
transformer capacity) and local relation (from GNN capacity). A recent study [53] categorizes
transformer-type models into three types: (1) Graph auxiliary Type (GA) such as GraphTrans
[54] and GraphBert [55], (2) positional encoder type (PE) such as Graphormer [56], and (3)
improved attention matrix from graph (AT) such as GraphiT [48] and graphT [24]. Among
the three types, PE can be considered as a decoupling of feature and topology learning, and
AT types mostly resemble to GNN backbones to alleviate oversmoothing. As a result, these
approaches are reflected in ATNPA’s Augmentation and Transformation steps.

4.2 Residual Connection Methods
Early example of residual-based deep GNN method is APPNP [36] and GCNII [17], which
are inspired from image field residual architecture [51]. APPNP can be summarized as
(assuming fθ as a one-layer MLP):

Ã← Aug(A) : H1 ← σ(XW ) (19)

H l ← (1− α)ÃH l−1 + αH1 (20)

Notice that Eq. (20) focus solely on preserve original feature information (skip-connection)
without residual connection and no non-linearity function is used for feature update.

GCNII can be summarized as:

Ã← Aug(A) : H1 ← σ(AXW 1) (21)

H l ← σ(Ã(αH l−1 + (1− α)H1)(βI + (1− β)W l)) (22)

where its update equation Eq. (22) combines both residual connection and its skip connection.
The residual coefficient remains to be hyperparameter.
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GEN is an extension of GCNII method and can be summarized as:

H l ← Fθ(H
l−1 +H l

c) : H l
c ← s · ∥H l−1∥2

H l
c

∥H l
c∥2

(23)

where the regularization is inspired from batch normalization [18] and it empirically works
very well.

EGNN [26] uses a slightly more complex structure that includes both skip connection and
residual connection:

H l ← σ(((1− cmin)AH l−1 + αH l−1 + βH1)W l) (24)

where α+β = cmin and cmin is a positive hyperparameter chosen to satisfy the lower bound
of initial Dirichlet energy. Its main motivation is to choose an appropriate cmin which is an
lower bound of initial Dirichlet energy to keep the Dirichlet energy in a controllable range
during propagation. Therefore, EGNN is an explicit energy preserving technique compared
with implicit energy control by physics-informed methods.

Similar to EGNN, G2-gating uses simple residual GCN as a backbone with the form

H l ← (1− σ(εDE(Fθ(H
l−1, A)))H l−1 + σ(εDE(Fθ(H

l−1, A)))H l−1Fθ(H
l−1, A) (25)

G2-gating’s main contribution to oversmoothing lies on its controllable message dropping
mechanism similar to DropMessage method. G2-gating drops message after message aggre-
gation while DropMessage drop messages before message aggregation. Therefore G2-gating
has a more controllable way to preserve Dirichlet energy. We will discuss G2-gating’s
message dropping mechanism, GEN and EGNN’s normalization technique and coefficient
selection in the energy-based model in details.

Discussion:
Note that all above methods fit into ATNPA’s unified view by making changes to the Prop-
agation (Eq. (17)) steps. In general, residual based methods have been primarily focused on
learning coefficients for each component (i.e., coefficients for H l, H l−1, or Fθ(H

l−1, A)
etc.). Nevertheless, there is insufficient study and theoretical analysis about the order of each
residual components in terms of their position w.r.t activation function σ(·). To date, GEN is
the only work that empirically validated that order they proposed works better than GCNII.

4.3 Dense Concatenation Methods
Existing dense-based methods include JKnet, DAGNN, and DCGCN [41]. While Mixhop
and Scattering GCN do not explicitly show oversmoothing benefits, they have a similar struc-
ture as DCGCN except that the aggregation is performed on fixed multi-hop embeddings
instead of previous embeddings. JKnet provides different options over the final aggregation
for layer embeddings. Here we consider the concatenate version aligned with DAGNN. Final
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embeddings learnt from JKnetcat can be summarized as:

HL ←
L∑

i=1

ciH
i : H l ← σ(AH l−1W l) & H1 ← X (26)

where the aggregation stage is only applied to the final layer and with concatenation aggrega-
tion followed by projection. This can be described as the summation of each layer embeddings
with a weight ci learned from the projection layer, as defined in Eq. (26). For DAGNN, final
embeddings can be summarized as (assuming one layer MLP in the beginning):

HL ←
L∑

i=1

ciH
i : H l ← AH l−1 & H1 ← σ(XW ) (27)

It can be observed that the two dense-based methods share similar final aggregation scheme
(i.e., final embedding can be considered as a linear combination of layer embeddings). Yet,
the embedding learnt in the intermediate layers is different. JKnetcat still includes learnable
parameters in the middle and keep non-linearity while DAGNN removes both parts. With-
out non-linearity and learnable paramters, DAGNN essentially becomes a diffusion kernel
based method similar to [57]. We can see that both methods fit into ATNPA’s unified view
in Transformation Eq. (15) and Aggregation Eq. (18), which is the key component for dense
connection based method.

Instead of applying dense connection only to the final layer aggregation, DCGCN
introduces layer aggregation at every layer in a recurrence style:

H l ← Fθ(∪l−1
i=1H

l, A) (28)

which is still a variant of ATNPA’s Aggregation (Eq. (15)) with a slight difference in the order
of aggregation before convolution instead of after convolution.

Discussion:
We note that dense-connection can be considered as an extension of residual connection with
all previous embedding being used rather than only the initial embedding or previous layer
embedding. Both dense-based methods and residual-based methods can be treated as attempts
of positioning residual components at different locations. However, there is a lack of the-
oretical analysis and empirical study comparing the two types of methods in general. It is
easy to observe that ignoring non-linearity, both methods can be explained in a Markov Ran-
dom Walk framework [49]. Nevertheless, we shall point out that non-linearity is an important
component for increasing model capacity and expressive power in terms of deep layers and
therefore should not be discarded in analysis.

4.4 Stochastic-masking Methods
Randomly dropping edges or nodes is commonly considered as an augmentation technique
to avoid overfitting. It has been shown that random edge dropping is also beneficial for over-
smoothing alleviation [23], where the key step is to randomly generate the adjacency matrix
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with a subset of edges from original edges and obtain the masked adjacency Ã by

Ã← Aug(A) : Aug(A) = Bern(p)⊙A (29)

where Bern(p) is a matrix filled with Bernoulli distribution elements and p controls the
drop rate. The motivation behind edge dropping is the subspace theorem [19] that indicates
less connected graph leading to slow convergence of oversmoothing state. The random-mask
modification fits into ATNPA’s Augmentation step Eq. (14).

DropConnect generalizes DropEdge to edges of each feature channels instead of edges of
all features. Specifically, DropConnect create different random masked adjacency matrix Ã
for each features instead of one shared random masked adjacency matrix for all features.

Similar to DropConnect, DropMessage [44] has recently been proposed to unify different
masking methods including edge dropping, node dropping, and Dropout. Its key modification
is:

H l ← AH̃ l−1W : H̃ l−1 = H l−1⊙Bern(p) (30)

where Bern(p) is a feature matrix filled with Bernoulli distribution elements and p controls
the drop rate. Note that H̃ l−1 becomes a random variable matrix and each time H̃ l−1

ij is
accessed during matrix production, it will be randomized.

Discussion:
DropEdge prefers a shared masked adjacency matrix throughout layers instead of layer wise
masking as empirically a layer-wise variant has the risk of overfitting and have additional
computation cost. Additionally, Dropout method is complementary to DropEdge and apply-
ing both of them is beneficial to the model performance [23]. DropMessage unified them
together and show theoretical that message dropping techniques increase Shannon Entropy
of propagated message compared with dropping edges, nodes or features alone, which alle-
viates oversmoothing. Compared with DropEdge, DropConnect which change augmentation
step in ATNPA’s unified view. DropMessage can be considered as combining augmentation
and normalization steps in ATNPA’s unified view.

4.5 Energy Control Methods
Energy-based methods share common motivation of controlling generated embeddings in
each layer with constraints on either preserving Dirichlet energy or reducing feature variance.
Examples of preserving Dirichlet energy include EGNN, G2-gating, PairNorm, Group-
Norm, while NodeNorm reduce feature variance and WeightRep directly reparameterize the
learnable parameters to allow independence of input features .

Compared with GCNII randomly searching coefficient α, β for each residual component,
EGNN [26] explicitly limits the coefficient searching to satisfy the lower bound of the initial
Dirichlet energy and control the initialized Dirichlet energy by orthogonal weight initializa-
tion. However, the coefficient is still a scalar shared for each node and feature channels and
is determined by fine tuning hyperparameters. G2-gating [15] provides a way of computing
coefficients according to the graph gradient, which is essentially the Dirichlet energy and uses
the gating mechanism to control features that tend to converge to stop updating and therefore

17



avoid treating coefficient as hyperparameter. In addition, G2-gating generalizes scalar coeffi-
cient to a matrix coefficient in the shape of embedding matrix, providing fine-grained energy
control. Assuming that ideal embedding is that all the nodes sharing the same labels con-
verge to the same embedding (i.e., locally oversmooth) while across labels, node embeddings
should be different (i.e., large Dirichlet energy). The gating mechanism prevents node embed-
dings from converging globally but also limit the local oversmoothing. Therefore, G2-gating
method produces only sub-optimal solutions.

Unlike G2-gating and EGNN that have a residual-GNN backbone, PairNorm [20] normal-
izes the feature matrix X directly according to Eq. (3) without requiring a residual component.
The theoretical analysis is based on SGC which ignores non-linearity. Similar to EGNN,
PairNorm’s main idea is to keep the underlying distance (such as total pairwise distance) the
same, before vs. after the layer propagation. Empirically, PairNorm alleviates oversmoothing
issue but its peroformance does not improve with layer increasing. The author suggests that
PairNorm may not be beneficial to standard dataset such as Cora and need a more nuanced
setting (i.e., missing features), whereas other methods have shown performance gain in the
standard dataset. A potential reason behind PairNorm’s performance degradation, w.r.t layer
increasing, is that the normalization used in PairNorm results in less expressive power for
models and therefore cannot perform well, as suggested by [16].

GroupNorm [38] uses a simple residual-GNN backbone similar to G2-gating. Unlike G2-
gating focusing on determining proper coefficients, GroupNorm normalizes the features by
first assigning nodes to groups (i.e., clustering) and then normalizes nodes within groups to
push nodes within clusters to locally oversmooth. Empirically, GroupNorm reports the results
of miss features settings to validate the performance gain, which shows similar problem as in
PairNorm, suggesting that normalization techniques seem to weaken the expressive power of
the models with layers increasing in general.

WeightRep [45] suggests that learning a proper weight can avoid oversmoothing at any
layer and dynamically construct an input-dependent weight and show both empirically and
theoretically that such weight can avoid oversmoothing. However, it is observed that perfor-
mance degradation persists after deep layers, suggesting other factors that might cause the
performance degradation.

Discussion:
We note that both normalization and coefficient computation approaches fit into ATNPA’s
unified view in Normalization Eq. (16) and Propagation Eq. (17). Direct normalization on
features such as mean substraction and variance shifting empirically reduce model capacity
and expressive power while coefficients learning seem to be a more promising direction to
not only keep Dirichlet energy but also preserve model expressive power.

4.6 Physics-inform Process
Physics-informed methods consider GNN learning as a continuous system and derive solu-
tions by formulating the system’s evolving as a model propagation process. In this context,
the time component t in continuous system corresponds to GNN based model’s layer con-
cept. Different discretization methods provide a complex family of methods indicated by a
continuous system and most GNN based backbone can be considered as an explicit Euler
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discretization (only considering the recurrence relation or the Update function in GNN frame-
work) [25]. Examples of continuous systems include GRAND, GraphCon, ACMP, Neural
Sheaf Diffusion, and G2-gating (It was first reviewed as GNN backbones, but is also related
to the continuous system).

GRAND [25] leverages graph diffusion PDE equations as the continuous system and
performs both explicit and implicit Euler discretization. The diffusivity is modeled with an
attention structure Eq. (31) related to node features and edges Eq. (32):

Aug(X)← σ(
(KX)T (QX)

dk
) (31)

Aug(X,A)← (Aug(X) > ϵ)⊙A (32)

where σ(·) is a non-linearity activation softmax function. K and Q are learnable parameters,
and dk is the hidden dimension for K which is used as normalization. ϵ is a threshold value
to sparsify attention matrix Aug(X) and ⊙ denotes element-wise multiplication. Eq. (31) is
the diffusion variant and Eq. (32) is rewired variants for GRAND. With both discretization,
the key component fits into ATNPA’s unified view in Augmentation Eq. (14).

Similar to GRAND, ACMP [46] modifies the graph diffusion equation to a particle inter-
action system. It generalizes GRAND’s Aug() in Eq. (32) by adding a negative constant to
the attention weight so that the attention could be negative. This allows the nodes to not only
attract but also repulse each other through learning. Additionally, to control the upper bound
Dirichlet energy, a well-shaped function (called double-well potential) is added as a regular-
ization (equivalent to feature normalization) to avoid infinite Dirichlet energy growth. It fits
into ATNPA’s Augmentation and Normalization steps, despite a very different origin (particle
system interpretation).

GraphCon [9] leverages a graph dynamic system of non-linear ODEs:

U ′ ← Fθ(A,H, t)− γH − αU (33)
H ′ ← U (34)

where H ′ is the first order derivative with respect to time t (a default setting at physics) and
U ′ is equivalent to H ′′. After discretization, t is essentially equivalent to layer l in GNN
backbones. Following IMEX (implicit-explicit) time discretization [58], GraphCon obtains a
new recurrence:

Un ← Un−1 +∆(t)(σ(Fθ(A,Hn−1, tn−1))

− γHn−1 − αUn−1) (35)

Hn ← Hn−1 +∆(t)Un (36)

where ∆(t) is the discretization step.
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Discussion:
Diffusion systems above share a common point of establishing a connection between the
feature changing rate H ′ and the graph gradient

∑
j∈Neighbor(i) |hi − hj | which is Dirich-

let energy for one node. A discretization of the system then provides a unique complex
recurrence relation that preserves established connections.

The niche of diffusion-based methods stem from the design that the system preserves
Dirichlet energy (mitigates oversmoothing) through the complex residual recurrence struc-
ture, avoiding fixed point convergence at exponential rate and small perturbation deviates the
fixed point away in the GraphCon case. This makes diffusion-based method unique, compared
with other works that preserve energy through explicit feature value control or coefficient
control.

Neural Sheaf diffusion is an approach using cellular sheaf theory to model evolving of
the features at each layer and the geometry of the graph [47]. The augmentation to Sheaf
Diffusion, similar to GCN augmentation, constructs a continuous differential equation as:

(Ht)′ ← −σ(Augθ(A,Ht)W t
1H

tW t
2) (37)

where Ht unlike common feature matrix with dimension n× d with d as hidden dimension,
each node feature is vertically stacked and Ht is of dimension nd × 1. Augθ(A,Ht) also
produces an nd× nd matrix with n× n subblocks of dimension d× d. The discrete version
of Eq. (37) becomes

(Ht)← Ht−1 − σ(Augθ(A,Ht−1)W t−1
1 Ht−1W t−1

2 ) (38)

Discussion:
We comment here that the extra nd dimensions provide each feature channel with a possi-
bly different propagation channel compared with the original settings where the propagation
channel binds to the node level. The idea behind is similar to G2-gating where they also have
a multi-rate coefficient matrix to control the update fine-grained to each feature of each node
instead of each node. Another point about Sheaf Diffusion is that they use shared weight
among each block, i.e. W t−1

1 can be decomposed as the Kronecker product of the Identity
matrix and a learnable W

′

1 with dimension d × d and therefore reduce the exponential num-
ber of parameter increase, which in term indicates an assumption that one feature correlation
is shared among graph topology.

4.7 Transformer-based Methods
Transformer has shown superior performance in long-term relation learning [59]. GNN has
been proven to be effective on local relation learning and performance deteriorates when both
global and local relation exists (i.e., graphs with middle homophily scores [60]. Combining
transformer and GNN architecture has been used to capture both long and short-term rela-
tions and improve model performance on heterophilous graphs. With the connection between
heterophily and oversmoothing [14], we consider transformer-based methods candidates for
alleviating oversmoothing.

There are mainly three types of approaches according to the position of the two compo-
nents, PE (positional encoding), GA (graph auxiliary), and AT (attention matrix from graph).
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Admittedly, many graph transformers simultaneously use several techniques. To understand
the role each part plays in the learning process, we will discuss each component individually
and fit them into the proposed framework. PE-type can be roughly considered as projecting
certain graph properties to feature space and then aggregating the projected graph features
with node features. The aggregated feature is then fed into the transformer block. A general
form of PE for one transformer block is therefore:

X ← Transformer(X, Ã) : Ã← Aug(A) (39)

Discussion about PA:
Unlike normal graph convolution, Transformer() can be considered as a complex feature
transformation, where X and Ã are not convoluted but are processed in a transformer style.
Because it avoids convolution directly, it can considered as a decoupled feature and topol-
ogy learning. Theoretical analysis of model expressive power between transformer and graph
convolution is lacking in existing research and potential analysis is necessary to justify the
learnability of such structure.

Discussion about GA:
As GA type stacks transformer block with graph convolution block, making it hard to ana-
lyze and the concept of oversmoothing becomes vague in this case. Briefly speaking, we can
treat the transformer block as a complex feature Transformation or Normalization steps of
ATNPA. Then GA-type transformer can be treated as a common GNN framework with com-
plex normalization applied in the middle. Since the transformer does not ensure the energy
of learned node embeddings, the GA-based component will not necessarily help alleviate
oversmoothing.

AT-type graph transformers, such as GraphT and GraphiT, have unique Aug(·) com-
ponents, defined in Eq. (40) for GraphT and Eq. (41) for GraphiT, which share a striking
similarity to attention-based diffusivity structures, such as GRAND and ACMP.

Aug(X,A)← σ(
(XQ)(XK)T

dk
⊙A) (40)

Aug(X,A)← σ(
(XQ)(XK)T

dk
⊙κ(A)) (41)

where σ is the softmax nonlinear activation function, dk is the hidden dimension of X , and
κ(A) ∈ Rn×n denotes a transformation of A, such as graph Laplacian.

Discussion about AT:
The main difference between GraphT Eq. (40) and GRAND Eq. (32) is the location of the
non-linearity activation function σ(·). The similarity between GRAND and transformer-based
methods comes from the diffusivity modeled as an attention structure in GRAND and the
diffusivity can fit into the Aug(·) Augmentation step in ATNPA. AT-type methods can be
treated as a graph rewiring approach. Since the rewired graph will be more sparse compared
with the original graph and the rewired process can be done in each layer, we can consider
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them as an extension of a controllable masking mechanism aiming to increase the energy at
each layer.

5 Experimental Results Reported From Existing Methods
Under Same Settings

To verify the effectiveness of existing methods, we report each method’s best report
results under similar/same settings on public datasets including three most frequently used
homophilic and three heterophilic datasets. The results are shown in Table 4. For each dataset,
the best performance is bold-faced, and the second best performance is in italic format. In
the table, we also highlight four methods with bold fonts that achieve significant performance
boost over either homophilic datasets and heterophilic datasets, including GCNII, EGNN,
G2-gating, and GRN. It is worth noting that all methods are residual based with three meth-
ods focus on limiting residual coefficients based on dirichlet energy constraint or learnable
metric constraint. This result suggests a promising direction following the principle of energy
change regularization over propagation and residual-based GNN structure. Additionally, we
observe that GRAND also shows good performance gain with its physics-informed structure,
suggesting the future of dynamic system based approaches.

6 Conclusion
In this paper, we reviewed and analyzed GNN oversmoothing alleviation methods. We argued
that despite of dramatic differences in their design principles and math formulations, exist-
ing approaches share three common themes in their motivations to tackle oversmoothing, and
the commonality allows us to summarize them into six categories. To allow in-depth under-
standing and analysis of all methods, we proposed ATNPA, which uses five steps to distill
properties and architectures of existing methods and shows that existing oversmoothing alle-
viation methods are variants by introducing changes to one or multiple steps of the ATNPA.
The unified view allows a clear understanding on how oversmoothing is alleviated for indi-
vidual methods, strength and weakness of each type of methods, and possible future study
directions. We drew discussion and remarks on representative methods, and observed that
despite many methods focusing on constraining energy of the learned embeddings, diffusion-
based methods use a physics-inspired structure to keep energy, while residual-based methods
use a simple structure but focus on tuning coefficient or directly applying normalization to
features to preserve energy. In addition, the modeling of network propagation has evolved
from a static topology to dynamically learn topology, or to seek respective adjacency matrix
for each feature instead of one shared topology for all features.

The paper summarizes three main themes according to the underlying principles. With
the theme dynamic system modeling combine two principles behind energy regularization
and propagation and transformation decoupling. It is possible that our paper may over-
look some works that are not explicitly focused on oversmoothing. Nevertheless, we are
confident that reviewed methods cover major oversmoothing alleviation branches and the
underling principles leveraged are coherent to the problem and are discussed to the best of
our knowledge.
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From a high abstract level, we highlight that oversmoothing alleviation is equivalent to
dynamic system control with constraints. It is therefore suggested in the future studies to
focus on two main principles for system controlling: energy initialization or boundary con-
dition control and energy change control thorough propagation. Moreover, our ATNPA view
provides an excellent component-wise separation for future researchers to modify according
to the highlighted two principles. Practically, we notice that existing methods lack a unified
comparisons for large-scale benchmark on both heterophilic and homophilic datasets. Scal-
ability of existing methods could therefore become an important future study for real-world
applications.
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diffusion: A topological perspective on heterophily and oversmoothing in gnns. In: 36th
Conferenceon Neural Information Processing Systems (NeurIPS). (2022)

[48] Mialon, G., Chen, D., Selosse, M., Mairal, J.: Graphit: Encoding graph structure in
transformers. arXiv:2106.05667 (2021) [cs.LG]

[49] Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph con-
volutional networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the
36th International Conference on Machine Learning. Proceedings of Machine Learn-
ing Research, vol. 97, pp. 6861–6871 (2019). https://proceedings.mlr.press/v97/wu19e.
html

27

https://doi.org/10.1109/ICDM59182.2024.00083
https://doi.ieeecomputersociety.org/10.1109/ICDM59182.2024.00083
https://doi.ieeecomputersociety.org/10.1109/ICDM59182.2024.00083
https://doi.org/10.1609/aaai.v37i4.25545
https://openreview.net/forum?id=SWHuXfasuW
https://openreview.net/forum?id=4fZc_79Lrqs
https://openreview.net/forum?id=4fZc_79Lrqs
https://proceedings.mlr.press/v97/wu19e.html
https://proceedings.mlr.press/v97/wu19e.html


[50] Jin, Y., Zhu, X.: Predictive masking for semi-supervised graph contrastive learning. In:
2022 IEEE International Conference on Big Data (Big Data), pp. 1266–1271 (2022).
https://doi.org/10.1109/BigData55660.2022.10020970

[51] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778
(2015)

[52] Min, Y., Wenke, F., Wolf, G.: Scattering gcn: Overcoming oversmoothness in graph
convolutional networks. In: Proceedings of the 34th Conference on Neural Information
Processing Systems (NeurIPS2020) (2020)

[53] Min, E., Chen, R., Bian, Y., Xu, T., Zhao, K., Huang, W., Zhao, P., Huang, J., Ananiadou,
S., Rong, Y.: Transformer for graphs: An overview from architecture perspective. ArXiv
abs/2202.08455 (2022)

[54] Wu, Z., Jain, P., Wright, M., Mirhoseini, A., Gonzalez, J.E., Stoica, I.: Representing
long-range context for graph neural networks with global attention. In: Advances in
Neural Information Processing Systems (NeurIPS) (2021)

[55] Zhang, J., Zhang, H., Xia, C., Sun, L.: Graph-bert: Only attention is needed for learning
graph representations. arXiv preprint arXiv:2001.05140 (2020)

[56] Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers
really perform badly for graph representation? In: Beygelzimer, A., Dauphin, Y., Liang,
P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems (2021).
https://openreview.net/forum?id=OeWooOxFwDa
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Table 3: A summary of representative methods w.r.t their categorization and properties in
tackling oversmoothing.

Methods Category Energy(Rewiring) Energy(Nomalization) Energy(Coefficient) Energy(Initialization) Decoupling Dynamics Residual Dense

ResGCN [35] residual connection ✓ ✓
APPNP [36] residual connection ✓ ✓ ✓
GCNII [17] residual connection ✓ ✓
GEN [37] residual connection/energy control ✓ ✓

EGNN [26] residual connection/energy control ✓ ✓ ✓
GroupNorm [38] residual connection/energy control ✓ ✓

GRN [39] residual connection/energy control ✓ ✓
G2-gating [15] residual connection/energy control/physics-inform ✓ ✓ ✓

JKnet [22] dense concatenation ✓
DAGNN [40] dense concatenation ✓ ✓
DCGNN [41] dense concatenation ✓
MixHop [42] dense concatenation ✓

DropEdge [23] stochastic masking ✓ ✓
DropConnect [43] stochastic masking ✓ ✓ ✓
DropMessage [44] residual connection/stochastic masking ✓ ✓ ✓ ✓

PairNorm [20] energy control ✓
NodeNorm [21] energy control ✓
WeightRep [45] energy control ✓
GRAND [25] physics-inform ✓ ✓ ✓
GraphCon [9] physics-inform ✓
ACMP [46] physics-inform ✓ ✓ ✓ ✓

Neural Sheaf Diffusion [47] physics-inform ✓ ✓
GraphT[24]/GraphiT [48] graph transformer ✓ ✓ ✓

Table 4: Collected average results from each method following the same setting for six most
frequently used datasets with three homophilic and three heterophilic datasets. For the Plan-
etoid dataset (Cora, Citeseer, Pubmed), NA indicates missing reports. Some of the results are
reported by other method’s paper as its original paper has a different split setting. Bold font
indicates best results and italic font indicate second best results.

Method/Dataset Year Cora Citeseer Pubmed Texas Cornell Wisconsin

APPNP 2018 83.3 71.8 80.1 65.41 73.51 69.02
GCNII 2020 85.5 73.4 80.2 77.84 76.49 81.57

GroupNorm 2020 82 69.5 79.5 NA NA NA
EGNN 2021 85.7 NA 80.1 NA NA NA

G2-gating 2023 NA NA NA 87.57 87.3 87.65
GRN 2024 NA NA NA 89.73 86.22 88.4
JKnet 2018 83.3 72.6 79.2 57.3 61.08 50.59

MixHop 2019 81.9 71.4 80.8 77.83 73.51 75.88
DAGNN 2020 84.4 73.3 80.5 NA NA NA

DropEdge 2020 81.69 71.43 79.06 NA NA NA
DropConnect 2020 82.2 71.72 NA NA NA NA
DropMessage 2023 83.33 71.83 79.2 NA NA NA

PairNorm 2020 82.1 69.6 78 60.27 58.92 48.43
NodeNorm 2020 83 72.9 80.7 78.92 80.54 83.14
WeightRep 2024 82.21 69.04 77.68 NA NA NA
GRAND 2021 84.7 73.3 80.4 NA NA NA
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