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Energy use is at the center of adaptation and evolution. To be successful, 

individuals must manage their energy expenditure and intake. One method of 

measuring this in free-living wildlife has been to measure where the animals go 

using GPS, and how much they move using tri-axial accelerometers. This 

combination has been shown to be highly correlated with energy expenditure in 

birds and many terrestrial mammals. However, the complex kinematics of bat 

flight may make acceleration-based proxies for energy expenditure less accurate 

than in other taxa. Because bats live at their energetic ceiling, understanding 

their energy expenditure and how to accurately measure it is key to testing 

fundamental hypotheses about their evolution and success, including decision-
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making, physiological adaptation, movement patterns, and sociality. To test if 

energy expenditure is predicted by accelerometer-based movement in bats, we 

deployed heart rate loggers alongside GPS with tri-axial accelerometers on 11 

free-roaming greater spear-nosed bats (Phyllostomus hastatus) on Isla Colón in 

Panamá. We used heart rate-based estimates of energy expenditure to develop 

relationships between vectorial dynamic body acceleration (VeDBA) and 

estimated energy expenditure. We detailed how these energy proxies interact 

with an additional metric of energy expenditure, airspeed. These relationships 

are then used to show movement-based energy landscapes – or the distribution 

of energy expenditure over space and time. Calibrated energy landscapes 

provide perspectives that allow for the exploration of how and why individual bats 

make movement-based decisions. Given both have been used as proxies for 

energy use, we hypothesized that heart rate would positively reflect increases in 

VeDBA and that information on behavior would further detail this relationship. 

Because airspeed is an important predictor of metabolic flight requirements, we 

also hypothesized that bats would primarily fly within energetically optimal range 

flight speeds. Plots of airspeed and flight duration showed that the majority of all 

flights were flown within energetically-optimal airspeeds. When modeling the 

relationship between VeDBA and airspeed, our models also reflected previously 

established mechanical power curve estimates for this species. We found 

VeDBA to have a strong positive relationship with heart rate, and that our models 

moderately increased when behavioral states of flying vs resting were defined. 

We conclude that VeDBA measured from free-flying bats predicts energy 
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expenditure, measured through multiple metrics, and information on behavior can 

provide improved accuracy of energy expenditure estimates.                                                                          

 

Key Words: tri-axial accelerometry, heart rate, airspeed, energy expenditure, 

vectorial dynamic body acceleration, energy distribution, energy landscape                        
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CHAPTER I 

INTRODUCTION 

 
Ecological and Evolutionary Significance of Energy Expenditure 

Energy serves as the currency of life. It influences nearly every aspect of biology 

and behavior. 

 

Animals have a finite amount of energy available to maximize their fitness (Brown 

et al., 2004; Hicks et al., 2017; Jeanniard-du-Dot et al., 2017b), and are often 

faced with trade-offs between survival and reproduction as a result of this 

energetic constraint on life history (Brown et al., 2004; Halsey et al., 2009; Hicks 

et al., 2017; Jeanniard-du-Dot et al., 2017b; Rebstock et al., 2022; Weimerskirch 

et al., 2003). Managing the balance between energy intake and expenditure is 

crucial for their survival, and influences behaviors that maximize food intake 

while minimizing expenditure (Anholt and Werner, 1995; Monteith et al., 2013, 

Scacco, 2021). Studying the movements and physiology of animals offers 

insights into how animals navigate the complex challenges posed by their energy 

requirements (Bishop et al., 2015; Elliott et al., 2013; Nathan et al., 2008; 

Shepard et al., 2013). Understanding these metabolic trade-offs and the role of 

energy allocation in wildlife ecology and evolution is fundamental to explaining 

the relationship between ecosystem dynamics and the adaptations of species to 

their environments (Nathan et al., 2008). This requires effective methods to 

measure or estimate energy distribution across different behaviors and time 
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scales (Shepard et al., 2013; Wilson et al., 2012). However, quantifying energy 

expenditure in free-living animals can be challenging. 

Unique to each animal is their energy distribution, which comprises two 

major processes; intake and expenditure. An animal’s energy intake refers to 

their acquisition of energy through food consumption, while their energy 

expenditure encompasses the various ways in which they spend their energy, 

including locomotion, thermoregulation, body maintenance, and reproduction. 

Energy expenditure influences life history traits, such as growth rates, 

reproductive output, and survival (Jeanniard-du-Dot et al., 2017b; Pontzer and 

McGrosky, 2022; Robertson et al., 2016; Sansom et al., 2009; Stephens and 

Krebs, 1986; Watanabe et al., 2020; Weimerskirch et al., 2003). Changes in the 

amount of energy that is allocated towards these different activities reflects 

adaptive responses to environmental conditions and evolutionary pressures 

(Auer et al., 2020; Kordas et al., 2022; McGrosky and Pontzer, 2023). 

Reproduction is an energetically intensive biological process. Therefore, energy 

expenditure is a crucial determinant of individual fitness, helping shape 

population dynamics (Brown et al., 2004; Halsey et al., 2009; Hicks et al., 2017; 

Jeanniard-du-Dot et al., 2017b; Rebstock et al., 2022; Smallegange et al., 2016; 

Weimerskirch et al., 2003). 

Species exhibit remarkable flexibility in energy allocation, adjusting 

metabolic rates and behavioral decisions in response to new ecological 

pressures (Bozinovic et al., 2007; Cant et al., 1996; Geiser, 2004; Geiser, 1988; 

Martins, 2024; Niven and Laughlin, 2008; Sabat et al., 1995; Schramski et al., 
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2015; Stearns, 1998). The interaction between energy intake and expenditure 

drives ecological interactions and can shape evolutionary trajectories (Algar et 

al., 2007; Andrewartha, and Birch, 1954; Kearney, 2012; Tomlinson et al., 2014). 

For instance, predator-prey dynamics are influenced by the energetic costs 

incurred by the predator from hunting, and the energetic costs incurred by the 

prey from avoiding predation (Bro-Jørgensen, 2013; Brose et al., 2008; Dawkins 

and Krebs, 1979; Janzen, 1980; Scales et al., 2009; Wilson et al., 2018). These 

ecological and physiological demands surrounding energy distribution can lead to 

selective pressure on physiologies that influence the rate at which energy is 

expended (Bro-Jørgensen, 2013; Scales et al., 2009; Simpson, 1944; Wilson et 

al., 2018). 

The evolutionary arms race between the cheetah and impala has driven 

the co-evolution of speed (Bro-Jørgensen; Wilson et al., 2018; Wilson et al., 

2013). Selective pressures from cheetah predation spurred the evolution of faster 

impalas over generations. In tandem, cheetahs also experienced similar 

pressures, favoring speed (Wilson et al., 2018). Slower individuals were likely 

gradually eliminated, favoring the evolution of increased speed in both species. 

Strategies for energy expenditure can target the optimization of morphologies 

(Dickinson et al., 2000). A cheetah has the ability to accomplish high speeds due 

in part to its increased hindlimb length (Hudson et al., 2011), hindlimb shape 

(Andersson & Werdelin, 2003), shoulder and spine flexibility (Meachen et al., 

2018), wide nostrils with enlarged nasal passages, semi-retractable claws (Gray, 

1968; Meachen et al., 2018), muscle fiber composition (Williams et al., 1997) and 
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optimal body size (Hirt et al., 2017). Furthermore, the co-evolution between 

predator and prey has been detailed in the relationships between lions - zebras, 

and cheetahs - impalas (Wilson et al., 2018). Using muscle biopsies and GPS & 

IMU collars to track location, acceleration, and body posture, biomechanical 

profiles of predator-prey interactions were developed, which detailed the 

strategies used by predators and prey to either capture prey or evade predators 

(Wilson et al., 2018). The results showed that lions and cheetahs had increased 

speed, muscle power, and capacity to accelerate and decelerate than their prey. 

These advantages were matched by the increased turning maneuverability of 

zebras and impalas compared to their predators (Wilson et al., 2018). The 

physiological capabilities of lions and cheetahs for pursuit, and of zebras and 

impalas for escape has resulted in sustainable success rates for both, 

demonstrating how the evolution of one species, predator or prey, can influence 

the evolution of the other (Bro-Jørgensen, 2013; Wilson et al., 2018). 

Physiological traits for energy distribution can also encompass variation in 

organ size (Bozinovic et al., 2007; Canals et al., 2005). The Chilean mouse 

opossum exhibits strong phenotypic flexibility in organ size. In times of food 

scarcity, these opossums are capable of reducing the size of energetically 

expensive organs like the digestive tract and liver, enabling them to maintain 

positive energy balances (Bozinovic et al., 2007). 

Bats are another example of an animal that possesses a diversity of 

physiological changes which aid in their locomotion. An example of this is seen in 

the heart and lung size in bats. As a result of the increased energetic cost that 
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flight demands, bats exhibit the largest relative heart and lung size compared to 

any other mammal with a heart to body ratio of 1.37% compared to 0.6% of most 

other mammals (Canals et al., 2005). Bats also display a significantly higher red 

blood cell count (11.0·106-26.2·106 RBC/gml) compared to other mammals 

(8.8·106–18.3·106 RBC/gml) (Jürgens et al., 1981). These changes enable them 

to achieve larger blood oxygen capacities, which allow for higher specific oxygen 

uptake (Jürgens et al., 1981). The size, shape, and morphological characteristics 

of a bat’s wing corresponds to their diet, mode of flight, and environment 

(Norberg and Rayner, 1987). Increased maneuverability and low wing loading 

(mass/wing area) is favored in insectivorous species gleaning in dense forests 

and is often correlated with short, broad wings, and short, rounded wing tips. 

Higher flight speeds and wing loading is ideal for insectivores hunting in more 

open habitats, often correlating with longer and narrower wings. Nectarivorous 

bats often have short wing spans allowing them to fly close to flowers, but large 

wing tips which are valuable for providing lift while hovering at low speeds 

(Norberg and Rayner, 1987). 

Animals exhibit diverse physiological traits and foraging strategies to 

acquire energy resources efficiently (Canals et al., 2005; Dickinson et al., 2000; 

Jürgens et al., 1981; Norberg, 2021; Norberg and Rayner, 1987; Reichle, 2023; 

Stephens and Krebs, 1986; Wilkinson & Boughman, 1998; Wilson et al., 2018). 

Increased foraging efficiency can positively influence energy distribution through 

increasing the reliability of energy intake and decreasing the time and energy 

spent looking for food (Brose et al., 2008; Parker et al., 1996; Stephens and 



7 
 

Krebs, 1986; Weimerskirch et al., 2003). Selection should favor foraging 

efficiency and success (Frey-Roos et al., 1995; Jeanniard-du-Dot et al., 2017b; 

Lescroël et al., 2010; Rebstock et al., 2022; Reichle, 2023; Robertson et al., 

2016; Watanabe et al., 2020). Animals are then faced with trade-offs between 

energy acquisition and expenditure, balancing the benefits of high-energy foods 

against the costs of obtaining them (Stephens, and Krebs, 1986). Knowledge of 

how much energy is distributed among these processes should prove important 

to understanding their movement decisions and overall ecology. 

A number of methods of quantifying energy expenditure have been 

developed (Green 2011, Wilson et al 2006, Butler et al 2004, Hicks et al 2017, 

Sutton et al 2023), but much of this work has relied on captive use in a laboratory 

setting. Less invasive methods have been developed that use dynamic body 

acceleration of an animal as a proxy for energy expenditure. Vectorial Dynamic 

Body Acceleration (VeDBA) has shown high accuracy across various taxa 

(Bidder et al., 2017; Elliott et al., 2013; Jeanniard-du-Dot et al., 2017a; Ladds et 

al., 2017; Metcalfe et al., 2016; Miwa et al., 2015; Mori et al., 2015; Qasem et al., 

2012; Rezende et al., 2023; Stothart et al., 2017; Sutton et al., 2023; Sutton et 

al., 2021; Udyawer et al., 2017; Wilson et al., 2020; Wright et al., 2014). 

However, its reliability in animals with complex locomotion kinematics or those 

moving through viscous or resistant mediums remains uncertain due to its strong 

reliance on terrestrial estimates of acceleration-based energy expenditure 

(Wilson et al., 2020). Verification of VeDBA is necessary to ensure it accurately 

reflects energy expenditure, considering factors like species locomotion styles 
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and environmental interactions. These challenges are highlighted by diving sea 

birds, which not only fly through the air column, but also navigate water. While 

diving, dynamic body acceleration was shown to have a different relationship with 

energy expenditure than during flight (Elliott et al., 2013; Gómez Laich et al., 

2011; Hicks et al., 2017). Muscle efficiency can differ with different modes of 

locomotion and the medium being traversed (Gómez Laich et al., 2011). This 

means that the relationship between oxygen consumption and accelerometry 

may differ in each case (Elliott et al., 2013; Gómez Laich et al., 2011; Hicks et al., 

2017). Without validation, there is substantial risk of errors in estimating energy 

expenditure, potentially leading to inaccurate conclusions about animal behavior, 

ecology, and energy budgets. Accurate understanding of an animal's energy 

distribution is necessary for assessing the costs of behaviors like foraging, 

migration, and dispersal, which are essential for survival in many species 

(Masello, et al., 2021; Scacco, 2021; Scacco et al., 2019; Shepard et al., 2013; 

Williams and Safi, 2021; Wilson et al., 2012). It also reveals how environmental 

changes and human activities affect animal populations, and offers insights into 

their adaptability (Horstkotte et al., 2023; Mandel and Bildstein, 2007; Masello et 

al., 2021; Monteith et al., 2018; Shaw, 2020; Shepard et al., 2013; Wang et al., 

2017). 
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Methods of Measuring Energy Expenditure 

All behavior is tied to an energetic cost, and understanding the cost framework 

gives a fundamental window into behavioral decision-making (Shepard et al., 

2013; Wilson et al., 2012). 

 

Doubly labeled water provides a comprehensive measure typically over a 

24-hour period, useful for understanding daily energy expenditure (Speakman 

and Racey, 1988; Speakman, 1997). Flow-through respirometry measures 

instantaneous metabolic rates during short-term activities, offering insights into 

immediate energy demands (Lighton and Halsey, 2011). Heart rate monitoring 

provides a continuous assessment of immediate energy expenditure, particularly 

beneficial for quick bursts of behavior (Barkse et al., 2014). Tri-axial 

accelerometry offers fine-scale, continuous data on movement patterns and 

activity levels over seconds to minutes, enabling detailed assessments of energy 

expenditure during specific behaviors (Shepard et al., 2008). 

 

Doubly Labeled Water 

The doubly labeled water (DLW) method has been shown to serve as a good 

measure for the amount of energy an animal spends between two defined times 

(Butler et al., 2004; Nagy et al., 1999; Speakman, 1997; Speakman, 1998; Sutton 

et al., 2021; Westerterp, 2017). This method uses a baseline collection of an 

animal’s urine or saliva, followed by orally administering 2H218O (doubly labeled 

water). A final saliva sample is collected hours later with a urine sample the 
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following day. The results of DLW are based on differential elimination of 

isotopes from the body as H2O or H2O + CO2. Using the animal’s fluid samples, 

CO2 production can be calculated. While using DLW has been shown to provide 

highly accurate energy estimates, is less invasive, and unobtrusive, and are only 

provided with a single, time-averaged estimate of oxygen consumption (V̇O2) 

(Speakman, 1997; Speakman, 1998) without any information about frequency or 

intensity. Both active (e.g., foraging) and resting energy comprise energy 

expenditure and can be measured across short- and long-term scales (Elliott et 

al., 2016; Green, 2011; Green et al., 2008; Green et al., 2009; Halsey et al., 

2009; Speakman, 1997; Speakman, 1998). Although DLW can provide a value 

for daily energy expenditure, it cannot measure its composition or how it’s 

distributed (Speakman, 1997; Speakman, 1998). 

 

Flow-through Respirometry 

Further work has been built on metabolic measurements within a tightly 

controlled laboratory setting using flow-through respirometry (FTR) (Lighton and 

Halsey, 2011). Here, the animal is placed into a chamber for a defined period of 

time and oxygen is pumped through at a set flow rate. This technique also 

utilizes oxygen consumption (V̇O2) as a proxy for energy expenditure and is 

based on the idea that the amount of oxygen consumed and carbon dioxide 

produced can be measured from the concentration of each gas in the incurrent 

and excurrent airstreams with respect to flow rates. 
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While these measures (DLW, FTR) have been shown to be accurate in a 

variety of taxa (Enstipp et al., 2011; Geiser et al., 2019; McNab and Weston, 

2018; Payne et al., 2015; Speakman and Racey, 1988; Westerterp, 2017), they 

cannot completely replicate every environmental condition and their respective 

energy costs. Furthermore, subsequent studies have shown that estimations of 

energy expenditure in captivity may be inaccurate as different behaviors come 

with different energetic costs and the behaviors seen in a controlled environment 

do not reflect those exhibited in free-living animals (Bishop and Spivey, 2015; 

Bowlin et al., 2005). 

 

Heart Rate 

Since each heart beat transports oxygen in blood to working tissues throughout 

the body, measurements of an animal’s heart rate can provide information on 

how much energy is being expended, and for how long through estimating the 

oxygen needed to generate energy for a behavior and duration of time (Bishop 

and Spivey, 2013; Brown et al., 2022; Butler et al., 2004; Green, 2011; Green et 

al., 2008).  

When allometrically scaled with respect to a particular species, heart rate 

has a proportional relationship with blood flow and oxygen consumption at each 

level of cardiac work (Bishop and Spivey, 2013; Brown et al., 2022; Butler et al., 

2004; Green, 2011; Green et al., 2008). Each beat of the heart delivers oxygen to 

the rest of the body to be used for the generation and expenditure of energy. By 

measuring heart rate frequency, energy expenditure can be determined through 
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estimating that rate of oxygen consumption by tissues during sustained 

movement (Barske et al., 2014; Bishop et al., 2015; Bishop and Spivey, 2013; 

Brown et al., 2022; Butler et al., 2004; Bowlin and Wikelski, 2008; Green, 2011; 

Green et al., 2008; O’Mara et al., 2017). This concept relies on the Fick principle 

that relates the total uptake of oxygen (V̇O2) to cardiac output (heart rate * stroke 

volume) and arteriovenous O2 difference (Bishop and Spivey, 2013). The 

arteriovenous difference represents the amount of oxygen being delivered to 

specific working tissue and is expressed as the difference of oxygen being 

carried in the arteries and in the veins. The rate of oxygen consumption by 

working tissue is dependent on the volume of blood being pumped to the tissue 

and the efficiency at which the tissue can extract oxygen from the blood. This 

establishes a relationship between heart rate and oxygen consumption, which 

can then be converted to kilojoules (kJ min-1) (Bishop and Spivey, 2013; O’Mara 

et al., 2017).  

 

Estimating Energy Expenditure in the Field 

Accelerometry 

An animal responds to its environment through an alteration in its behavior 

(Shepard et al., 2008). Behavior can often be characterized by the animal’s body 

posture and motion, or the static and dynamic components (Shepard et al., 2013; 

Shepard et al., 2008). For example, a bat’s flight is characterized by movement 

with a horizontal body posture, but while roosting its body is in a vertical 

orientation from head to tail. These are aspects that are measurable by recording 
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an individual’s acceleration in all three-dimensions (O’Mara et al., 2019; Shepard 

et al., 2008). In terms of total acceleration, the variation in velocity as a direct 

result of an animal’s movement is its dynamic acceleration. This metric can be 

obtained using a body-mounted triaxial accelerometer attached to the trunk of an 

animal and a basic understanding of physics (Shepard et al., 2008). These 

devices work by simultaneously measuring acceleration in three orthogonal axes 

(Figure 1 | a); sway (x), surge (y), and heave (z) (O’Mara et al., 2019; Shepard et 

al., 2008). Based on Newton’s 3rd law, when an animal moves a limb in one 

direction, there will be a corresponding opposite and equal movement in the 

trunk (Shepard et al., 2008). This is easily noticeable in movement such as bat 

flight (Figure 1 | b). The more repetitive the motion (such as wingbeats), the 

more apparent this change in dynamic acceleration becomes (O’Mara et al., 

2019; Shepard et al., 2008). The power stroke from a downwards wingbeat will 

result in the body of the bat moving in the opposite upward direction with an 

equal force (Kato et al., 2006; Shepard et al., 2008). This change in the trunk’s 

dynamic acceleration, in any dimension, is measurable when the animal is 

outfitted with a dorsally-attached accelerometer (Shepard et al., 2008). 

These data can then estimate energy expenditure based on the principle 

that movement will typically cause a greater increase in energy expenditure than 

any other process (Elliott et al., 2013; Spivey and Bishop, 2013; Stothart et al., 

2016; Wilson et al., 2020). Tri-axial accelerometers can also capture locomotor 

detail such as limb cycling or wing beat frequency (Bishop et al., 2015; O’Mara et 

al., 2019; Shepard et al., 2008), as well as behavioral activity profiles (Brown et 
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al., 2019; Shepard et al., 2008), as well as behavioral activity profiles (Brown et 

al., 2013; Chakravarty et al., 2019; Patterson, 2019). 

 
Figure 1. (a) Illustration of a greater spear-nosed bat outfitted with a tri-axial accelerometer. Each 

arrow represents a measurable axis of acceleration. The labeling order of axes is relative to our 

study and is dependent on the direction of tag placement. Red represents sway (X), green is 

surge (Y), and blue is heave (Z). (b) Depiction of bat flight demonstrating how the power of a 

downstroke creates an equal and opposite force moving the body in the opposite direction. 

 

Different behaviors come at different energetic costs (Elliott et al., 2013; 

Gómez Laich et al., 2011; Hicks et al., 2017; Williams et al., 2014). Sprinting 

requires more energy than walking (Williams et al., 2014). Traveling up an incline 

costs more energy than on level ground (Dunford et al., 2020). The longer an 

intensive behavior is performed, the more energy it costs to sustain that behavior 

(Brown et al., 2023; Mills and Mills, 2017; Williams et al., 2014). When we 

account for what behavior an animal is performing and for how long, using what 

is known as a time-activity budget, we can increase the accuracy of our energy 

proxies (Brown et al., 2022; Elliott et al., 2013; Gómez Laich et al., 2011; Hicks et 

al., 2017; Jeanniard-du-Dot et al., 2017a, 2017c; Ladds et al., 2017; Wilson et al., 
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2006). Time-activity budgets for different behaviors largely characterize the true 

nature of an animal’s energy distribution but can be difficult to properly allocate 

without obtaining measurements from a free-living animal behaving under natural 

conditions (Brown et al., 2022; Jeanniard-du-Dot et al., 2017a, 2017c; Ladds et 

al., 2017). Ultimately, measuring energy expenditure in free-living animals 

provides a crucial method for understanding their physiological needs and 

ecological interactions (Brown et al., 2022; Green et al., 2009; Hicks et al., 2017; 

Nagy et al., 1999; Parker et al., 1996; Wilson et al., 2006). Unlike laboratory 

settings, field studies offer a natural environment where animals can exhibit 

normal behaviors without constraints. This natural context allows researchers to 

capture a more accurate representation of an animal's daily energy expenditure, 

as it encompasses the full range of activities such as foraging, hunting, and 

resting (Dunford et al., 2020; Williams et al., 2014). Importantly, field studies 

account for environmental variability, such as temperature, rain, and wind, as 

well as terrain, all of which significantly influence metabolic rates and the cost of 

travel (Dickinson et al., 2021). 

 
Exploring Energy Estimates Using Heart Rate 

The use of acceleration as a proxy for energy expenditure relies on the fact that 

most energy expenditure above resting metabolic rate is due to movement (King 

& Farner, 1961). However, acceleration metrics can represent poorer estimates 

of energy expenditure during processes like resting metabolic inactivity (Green et 

al., 2009; Hicks et al., 2017; Weimerskirch et al., 2016). The advantage of 
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measuring heart rate as a metric for energy expenditure is that you are provided 

not only with more accurate metabolic measures of activity, but also periods of 

rest and its associated metabolic activity (Bishop et al., 2015; Bishop and Spivey, 

2013; Brown et al., 2022; Butler et al., 2004; Bowlin and Wikelski, 2008; Green, 

2011; Green et al., 2008; O’Mara et al., 2017). Therefore, outfitting a free-living 

animal with heart rate loggers and tri-axial accelerometers enables a real-time 

examination of VeDBA estimates within their natural environment (Bishop et al., 

2015; Brown et al., 2022; Green et al., 2008; Hicks et al., 2017; Miwa et al., 

2015). By comparing changes in heart rate with corresponding fluctuations in 

VeDBA during different levels of activities under natural environmental 

conditions, we can assess the accuracy and reliability of VeDBA as an energetic 

proxy (Bishop et al., 2015). Paired with GPS, these estimations can be annotated 

at a behavioral, spatial, and temporal scale (Figure 2). 

 

Figure 2. Vectorial dynamic body acceleration (VeDBA) (blue) and heart rate (red) for 2 bats 

plotted over two 24-hour periods, starting from 18:00:00 to 18:00:00. The light grey represents the 

daytime, darker grey represents nighttime, and the darkest grey represents the duration of time 

the bat was outside their cave. 
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In previous work, these same measures were collected on bar-headed 

geese (Anser indicus) during their annual migratory journey over the Himalayan 

mountains (Bishop et al., 2015). The study explored how these birds navigate 

one of the most challenging aerial routes, which involves crossing high mountain 

peaks that reach altitudes exceeding 5,000 meters. The study revealed that bar-

headed geese adopt a "roller coaster" flight pattern, utilizing updrafts and 

thermals to gain altitude before gliding downhill, thereby minimizing their energy 

expenditure. Using GPS and a combination of tri-axial accelerometry and heart 

rate loggers, researchers were able to verify the use of VeDBA with these birds 

during flight by comparing them against the more established measure of energy 

expenditure, heart rate (Bishop et al., 2015). 

 

Airspeed 

Knowing the speed at which an animal travels is an ecologically significant metric 

that influences animal behavior, decision making, and the distribution of energy. 

During flight, speed is dependent on the mass and wing load of the animal 

(Bowlin and Wikelski, 2008; Hedenström and Alerstam, 1996; Hedenström and 

Thomas, 1995; Pennycuick, 2008; Pennycuick, 1975; Riskin et al., 2010). 

Changes to airspeed can be made by changing the frequency, angle, and 

amplitude of wingbeats (Ward et al., 2001). 

How fast some animals fly has shown to be linked to their energy 

expenditure (Hedenström and Alerstam; 1996; Hedenström and Thomas, 1995; 
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O’Mara and Dechmann, 2023; Pennycuick, 2008; Pennycuick, 1975; von Busse 

et al., 2013). In birds, previous work has shown there to be strong curvilinear 

relationships between airspeed and the mechanical power needed to maintain 

that speed (Elliott et al., 2014; Hedenström and Alerstam, 1996; Hedenström and 

Thomas, 1995). 

Aerodynamic theory predicts that during flight, energy expenditure is 

directly dependent on the speed of flight (Pennycuick, 2008; Pennycuick, 1975; 

Rayner, 1979; Tucker, 1974). These theories increase that dependence, 

especially during high and low airspeeds and wind speeds, showing an increase 

in the energy required to maintain flight during these times. This relationship of 

airspeed to energy expenditure (mechanical power) can be visualized through a 

simple power curve (Figure 3). Based on an animal’s weight and the size and 

shape of its wings, the mechanical power needed to fly at a given speed follows 

a U or J-shaped curve (Hedenström and Alerstam; 1996; Hedenström and 

Thomas, 1995; O’Mara and Dechmann, 2023; Pennycuick, 2008; Pennycuick, 

1975; von Busse et al., 2013). There is a minimum power speed (Ump), or range 

of speeds that are the most economical for short distances. At speeds lower than 

Ump, it becomes increasingly energetically costly to simply stay aloft due to 

increased power needed to generate lift. Similarly, above Ump, increasing flight 

speed comes at increasing energetic costs due to increased drag of the faster-

moving animal. The point at which the best possible ratio between power 

required to maintain level flight and speed to move long distances is indicated by 

the maximum range speed (Umr) (Pennycuick, 2008; Pennycuick, 1975). 
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Figure 3. Standard model of animal flight power curve developed by Pennycuick, 2008. Minimum 

power speed is represented by Ump, and maximum range speed by Umr. Initially increasing speed 

(ms-1) reduced the required power for flight as it is too energetically costly to stay aloft at 

extremely low flight speeds. Past Ump, the required power for flight increases linearly with flight 

speed. 

The predictability value of this model has been supported through a wide 

range of studies (Engel et al., 2010; Hedenström and Alerstam; 1996; 

Hedenström and Thomas, 1995; Pennycuick, 2008; Pennycuick, 1975; Tobalske 

et al., 2003), including work on several bat species (O’Mara & Dechmann, 2023; 

von Busse et al., 2013). The model implies that all animals capable of flight have 

a species-specific optimal flight speed. This optimal flight speed would lie at 

some point on the curve between Ump and Umr. The animal should then choose a 

flight speed as close as possible to optimal flight speed, relative to the task being 

performed and the benefit gained (O’Mara & Dechmann, 2023; von Busse et al., 

2013). 
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Classifying Behavior With Accelerometry 

Dynamic body acceleration is useful when trying to differentiate between 

transient behaviors or as a proxy of the energy spent for the duration of a 

particular behavior (Bishop et al., 2015; Hicks et al., 2017; O’Mara et al., 2019; 

Shepard et al., 2013; Shepard, 2008; Wilson et al., 2018; Williams et al., 2014). 

With an understanding of the animal’s physics (Spivey and Bishop, 2013), body 

mechanics (O’Mara et al., 2019), and a basic understanding of their landscape 

and medium they travel through (Shepard et al., 2013), we can identify 

signatures in acceleration data characteristic of distinct behaviors (Hicks et al., 

2017; O’Mara and Dechmann, 2022; Shepard et al., 2008; Williams et al., 2014) 

(Figure 4). The use of acceleration-based energy estimates and behavioral 

classification has shown promise in a variety of taxa and studies (Bidder et al., 

2017; Elliott et al., 2013; Hicks et al., 2017; Jeanniard-du-Dot et al., 2017a; 

Ladds et al., 2017; Metcalfe et al., 2016; Miwa et al., 2015; Mori et al., 2015; 

O’Mara, et al., 2019; Qasem et al., 2012; Rezende et al., 2023; Shepard et al., 

2013; Shepard et al., 2008; Stothart et al., 2017; Sutton et al., 2023; Sutton et al., 

2021; Udyawer et al., 2017; Williams et al., 2014; Wilson et al., 2020; Wilson et 

al., 2012; Wright et al., 2014). 

A previous study detailed hunting habits and preferences of pumas (Puma 

concolor) using a combination of GPS and tri-axial accelerometers (Williams et 

al., 2014). By identifying unique changes in the animal’s acceleration specific to 

certain behaviors, researchers were able to determine when each puma began 

its initial pursuit, the start of a high-speed chase, the moment of attempted  
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Figure 4. The movement path of a greater spear-nosed bat (GPS ID: Phyl38) during an entire 

night of foraging. The associated accelerometry data illustrates how unique changes in the bat's 

acceleration correspond to different behaviors performed throughout the night. 
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capture, and whether the hunt was successful. The data could even provide 

details about what P. concolor was hunting (e.g., buck or fawn) and was also 

used to estimate energy expenditure at each phase of the hunt. Changes in total 

power requirements were able to inform researchers about the amount of energy 

spent each hunt (Williams et al., 2014). This information can be used to create an 

estimation of the animal’s energy requirements based on their movements, 

through calculating their total daily energy expenditure (DEE) (Barkse et al., 

2014; Elliott et al., 2013; Green et al., 2009; Jeanniard-du-Dot et al., 2017a; 

Stothart et al., 2016). 

 

Daily Energy Expenditure 

Daily energy expenditure (DEE) serves as an estimate of the total amount of 

energy expended over a 24-hour period and represents a combination of the 

energy your body uses while at rest and your physical activity. Measures of 

dynamic body acceleration (e.g., VeDBA) can provide detail on a large portion of 

total DEE (Elliott et al., 2013; Jeanniard-du-Dot et al., 2017b; Jeanniard-du-Dot et 

al., 2017c; Stothart et al., 2016). This is especially true in animals where 

locomotion makes up a substantial portion of their energy expenditure (Bishop et 

al., 2015; Elliott, 2016; Elliott et al., 2013; Gleiss et al., 2011; Hicks et al., 2017; 

Stothart et al., 2016). Extended durations of DEE have been used to infer the 

impacts of anthropogenic pressures and the capability of an animal to adjust to 

declining habitat and resources (Castejón-Silvo et al., 2021; Green et al., 2009; 

Wang et al., 2017). Using DEE, we can also quantify the individual variability in 
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energy expenditure across social groups or populations, providing us with further 

context on dynamic foraging strategies and movement behaviors employed by 

certain animals (Barkse et al., 2014; Elliott et al., 2013; Jeanniard-du-Dot et al., 

2017b; Jeanniard-du-Dot et al., 2017c; Stothart et al., 2016). Patterns in the 

spatial and temporal distribution of an animal’s energy expenditure has been 

shown to be reflected in their DEE (Barkse et al., 2014; Elliott et al., 2013; 

Jeanniard-du-Dot et al., 2017b; Jeanniard-du-Dot et al., 2017c; O’Mara et al., 

2023; Stothart et al., 2016), providing us with a way to quantify the success or 

efficiency of different foraging strategies or movement decisions (Barkse et al., 

2014; Green et al., 2009; Weimerskirch, 2003). 

 

Energy Landscapes and Modeling 

Every organism has metabolic obligations that govern its day-to-day behaviors. 

An animal spends a large portion of its life obtaining the physical energy it 

requires from its environment to perform behaviors essential to life (Geiser, 2019; 

Houston and McNamara, 2014). These energetic demands, acquisition, 

allocation, and eventual expenditure encompass an energy landscape which 

reflects the spatial and temporal distribution of these energetic processes - 

known as an energy landscape (O’Mara et al., 2021; Scacco, 2021; Scacco et 

al., 2019; Shepard et al., 2013; Williams and Safi, 2021; Wilson et al., 2012). 

Energy landscapes help shape our understanding of an animal’s cost of 

movement, energy requirements, daily energy expenditure, and its general life 

history (Shepard et al., 2013). Animals modulate their movements as they 
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navigate their environment in a multitude of ways. They can alter their speed, 

chosen route, and the type, timing, frequency, and angle of movement (Dickinson 

et al., 2000). These movement decisions can be heavily influenced by dynamic 

environmental factors (i.e., resources, landscape, seasons, temperature, wind 

and weather conditions), and construction of energy landscapes provide a 

mechanistic approach to quantifying, determining and modeling decision-making 

and movement patterns of animals over time and space (Bishop et al., 2015; 

Masello et al., 2021; O’Mara et al., 2021; Shepard et al., 2013; Scacco, 2021; 

Scacco et al., 2019; Williams and Safi, 2021; Wilson et al., 2012). 

When combined with predictive energy models, energy landscapes can 

provide clarification, and specific predictions of expected outcomes on individual 

to population level processes and movement decisions (Green et al., 2009; 

Klappstein et al., 2022; O’Mara et al., 2019). Quantifying and modeling an 

animal’s distribution of energy over space and time provides an ecological link 

between the physical landscape, resource distribution, and movement choices 

(Scacco, 2021; Scacco et al., 2019; Shepard et al., 2013; Williams and Safi, 

2021; Wilson et al., 2012). This approach also facilitates comparative studies 

across species or populations, improving our understanding of ecological 

strategies and responses to environmental changes (Shepard et al., 2013). 

 

Species Background and Study Aims 

Phyllostomus hastatus (greater spear-nosed bat) is an omnivorous bat that 

roosts in stable social groups consisting of unrelated females (Wilkinson et al., 
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2016; McCracken and Bradbury, 1981). Greater spear-nosed bats are an 

extremely social species (McCracken and Bradbury, 1977, 1981) forming groups 

that can persist for as long as 16 years (Wilkinson and Boughman, 1998). The 

dynamic and strength of these social groups is thought to be the result of 

mutually beneficial behaviors such as cooperative foraging or the exchange of 

resource location information as well as mutual offspring protection and care 

(McCracken and Bradbury, 1981; Boughman, 2006). 

A variety of bat species have been found to integrate social information 

about food into their foraging strategies using an assortment of cues (O’Mara et 

al., 2014; Page & Ryan, 2006; Ramakers et al., 2016; Ratcliffe & ter Hofstede, 

2005; Wright, 2016). Greater spear-nosed bats have been shown to have the 

ability to identify group mates and communicate foraging information through 

group-specific vocalizations (Boughman & Wilkinson, 1998; Boughman, 1998; 

Wilkinson & Boughman, 1998; Wilkinson et al., 2016). A previous study has 

shown social proximity to have a positive influence on time P. hastatus spent 

outside of the roost and increased resting duration while out foraging (O’Mara & 

Dechmann, 2023). 

Animals can be incentivized to participate in mutually beneficial behavior 

as it can increase foraging efficiency. Increased foraging efficiency can positively 

influence energy distribution through increasing the reliability of energy intake 

and decreasing the time and energy spent looking for food (Giraldeau and 

Beauchamp, 1999; McInnes et al., 2017; Snijders et al., 2021). These benefits 
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can be amplified when your food type is an ephemeral resource such as it is for 

the greater spear-nosed bat (O’Mara et al., 2014). 

These bats live at their energetic ceiling, surviving on the energy provided 

by the day’s feeding returns. To fulfill these energetic demands, P. hastatus 

alters their foraging strategies to match the seasonal changes and resulting 

resource shifts, switching between fruit (e.g., cecropia fruit) in the wet summer 

and the flower nectar (e.g., balsa flowers) in the dry winter, as well as insects and 

other small vertebrates (Wilkinson & Boughman, 1998). The dependence on 

ephemeral resources in the tropics can result in a larger diversity of foraging 

strategies, and consistent individual variation can stabilize cooperative behavior 

within populations (Bergmüller et al., 2010). 

Populations with a higher degree of individual variation should be more 

likely to persist across a range of environmental conditions and adjust to 

changing resources (Caspi et al., 2022; Forsman and Wennersten, 2016). In P. 

hastatus, this can be seen in their variable route selection, foraging patch 

location, foraging strategy, and food choice (Boughman and Wilkinson, 1998; 

O’Mara and Dechmann, 2023; Wilkinson G. S. & Boughman, 1998). Changes in 

these movement-based decisions may result from the constantly shifting cost 

versus return of each foraging night. Adverse weather conditions can cause route 

changes, while poor food patch quality can prompt more exploratory foraging 

behavior. A decrease in food resources may lead to a dietary shift and changes 

in foraging locations. Conversely, consistent quality in any of these factors can 

lead to stable behaviors (Stephens and Krebs, 1986). These examples 
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demonstrate the numerous factors influencing how an animal allocates its energy 

expenditure over time and across its landscape.  

In this study we aim to describe how accelerometry-based metrics of 

energy expenditure reflect measures of heart rate throughout a foraging night in 

the greater spear-nosed bat (Phyllostomus hastatus). Direct measurement of 

heart rate provides detailed insights into energy expenditure with high temporal 

resolution (Bishop and Spivey, 2013; Brown et al., 2022; Butler et al., 2004; 

Green, 2011; Green et al., 2008). By outfitting 11 greater spear-nosed bats with 

heart rate loggers and tri-axial accelerometers, we used heart rate to determine 

the quality of dynamic body acceleration (VeDBA) as an estimate of energy 

expenditure. Given that the cost of movement can be a substantial proportion of 

an animal's daily energy budget (King and Farner, 1961), we hypothesized that 

heart rate would positively reflect increases in VeDBA. Understanding that 

increasing and sustaining higher levels of activity requires increased energy 

costs, we also hypothesized that information on behavior would improve the 

accuracy of our energy estimates. Using these relationships, we also aim to 

construct movement-based energy landscapes detailing how individuals 

distribute their energy expenditure across time and space. By modeling and 

mapping the energetic framework of P. hastatus, we can provide context to their 

movement choices and associated costs. These calibrated energy landscapes 

allow for the exploration of how and why these bats make movement decisions, 

as well as provide more accurate estimates of their high-energy lifestyles. 
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CHAPTER II 

METHODS 

Study Overview & Design 

All data used in this study were collected from 11 greater spear-nosed bats 

(Phyllostomus hastatus) that comprised one roosting group, consisting of 10 

females and 1 harem male (Table 1). The roosting group was captured in a cave 

(‘La Gruta’) on Isla Colón, Bocas del Toro, Panamá using an elongated basket 

trap. Based on previous work of this species in Trinidad (Wilkinson & Boughman, 

1998), roosting groups consisted of individuals co-roosting in small depressions 

in the cave’s ceiling. All bats were caught as a group in one capture event and 

individuals were placed in breathable cotton draw-string bags and tied shut until 

being removed for processing. 

The group was made up of 1 sub adult female, 1 adult male, and 10 adult 

females, with all being determined as non-reproductive. We recorded the mass of 

each bat to the nearest gram and measured their forearm length to the nearest 

0.01 mm. Each bat was implanted with a passive integrated transponder (PIT) 

tag subcutaneously (Trovan ID -100, Euro ID, Weilerswist, Germany). 
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Table 1. Characteristics of greater spear-nosed bats tracked in this study. Information included is 

the weight, sex and relative age of the bat - noted as adult (A) or subadult (SA), forearm length, 

reproductive status - with all being non-reproductive (NR), GPS identification number (GPS ID), 

heart rate logger identification number (HRL ID), each bat’s name within the data, and number of 

nights they were tracked. 

Mass 

(g) 
Sex Age 

Forearm  

(mm) 
RS GPS ID HRL  ID Name Nights 

112 F A 91.00 NR Phyl32 1864UHL Bia 5 

118 F A 93.20 NR Phyl34 1863UHL Aurora 5 

110 F A 89.43 NR Phyl 30 1859UHL Nyx 5 

113 F A 94.64 NR Phyl 37 1855UHL Athena 5 

110 F A 91.07 NR Phyl 31 1857UHL Artemis 5 

111 F A 92.05 NR Phyl 38 1858UHL Andromeda 4 

117 F A 93.45 NR Phyl 36 1854UHL Cassiopeia 5 

128 F A 90.55 NR Phyl 35 1865UHL Thalia 2 

146 M A 97.24 NR Phyl 29 1861UHL Ares 5 

123 F SA 93.30 NR Phyl 33 1856UHL Nike 5 

126 F A 93.20 NR Phyl 40 1860UHL Amphitrite 5 

112 F A 90.60 NR Phyl 39 1862UHL Pandora 3 

 

Heart Rate & Body Temperature Logger Implantation and Removal 

An integrated physiology logger (DST micro-HRT, 3 g, Star:Oddi, Gardabaer 

Iceland) was used to measure heart rate and body temperature from individual 

bats. Each logger was programmed to record heart rate at 600 Hz and body 

temperature every 60 s, with a full ECG recorded every 60 min. Each heart rate 

recording received a quality score (0-3, best - worst) based on the 
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manufacturer’s scoring algorithm. Loggers were implanted subcutaneously on 

the dorsum of each bat under isoflurane anesthesia. Each animal experienced an 

anesthetic induction with 5% isoflurane delivered via a facemask (SomnoSuite, 

Kent Scientific Litchfield CT USA) and was maintained with 2% isoflurane and a 

heating pad was used to reduce the risk of hypothermia. A physical examination 

was performed, including lesions identification, body condition, hydration status, 

heart rate by auscultation, respiratory rate by visual detection, and rectal 

temperature by a commercial digital thermometer.  

Exam found uniform and normal parameters among the 12 individuals. 

The middle and caudal dorsum were shaved and cleaned with antiseptic soap 

chlorhexidine 4%. The bats received a 0.2 mg/kg dose of meloxicam (OstiLox) 

and 8 ml/kg of fluids (NaCl) subcutaneously.  

The surgical site was prepared with a 2% chlorhexidine scrub and 

isopropyl alcohol passages. A 1 cm horizontal skin incision was made with a 

surgical blade #15 in the middle-caudal dorsum. With a curved mayo scissor, the 

subcutaneous space was opened. The sterile logger was placed in the 

subcutaneous area, applying light pressure with the thumb and the index finger. 

The subcutaneous space was inspected for hemorrhage before closing and the 

skin was apposed anatomically and sutured with seven simple interrupted 

patterns using an absorbable suture (4-0 Coated Vicryl). Neomycin and clostebol 

spray (Neobol) were applied topically to the surgical wound site. The surgical 

procedure was consistent for all individuals and there were no complications 

present with the heart rate or respiratory rate. Temperatures dropped for the 
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majority of the animals after the surgeries. The animals were maintained in 

recovery bags until they were fully awake. The surgeries took 15 to 20 minutes 

on average. The whole procedure, with the presurgical preparation, took around 

30 minutes. To remove the loggers, all bats underwent the same anesthesia 

procedure and exam.  All animals presented a clean and healing surgical wound, 

and the loggers tended to be located laterally of the midline. No animal had loose 

sutures or signs of infection in the wound. The animals experienced the same 

presurgical preparation, induction, and maintenance as the first surgery. The bats 

received a 0.15 mg/kg dose of meloxicam (OstiLox), 10 ml/kg of fluids (NaCl) 

subcutaneously, and 5 mg/kg dose of enrofloxacin (Enroflox 10). For the surgical 

procedure, after the surgical site was prepared, an iris scissor was used to 

remove the skin sutures. The wound had a closed layer that was gently reopened 

using surgical blade #15. The logger was removed from the subcutaneous space 

by slight pressure and then the subcutaneous region was rinsed with saline. The 

free space in the subcutaneous was approximated with a simple interrupted 

suture. The edges of the skin wound were trimmed to revive the edges and allow 

the surgical closure. The skin was then apposed anatomically and sutured with 

seven simple interrupted patterns using an absorbable suture (4-0 Coated 

Vicrylt). Neomycin and clostebol spray (Neobol) were applied topically to the 

surgical wound site. The animals were maintained in recovery bags until they 

were fully awake and then released at the capture site. 
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GPS Logger Attachment 

After recovery from surgery, all bats were outfitted with an epoxy-coated GPS 

and tri-axial accelerometer data logger (Axy-Trek Mini, TechnoSmart, Rome, 

Italy) that was attached to the dorsum caudally to the scapulae and cranially to 

the logger incision. The combined weight of the GPS and heart rate loggers was 

7.8 g, ~6.6 ± 0.5% of mean ± SE body mass (range: 5.3-7.1%). The GPS tags 

were programmed to gather location data every one minute, between the hours 

of 18:00:00 to 05:00:00 local time (Eastern Standard Time). While actively 

tracking, a satellite search window of 2 minutes was set to obtain a GPS fix. 

During instances of poor reception, the GPS tags entered a low-energy sleep 

mode for 15 minutes before resuming a satellite search. Performance of each 

GPS tag varied due to the location of their roost (within a cave), their foraging 

sites being located in presumably dense forest, and resting under thick canopies. 

Tri-axial accelerometers were programmed to sample continuously at a 

frequency of 25 Hz at 10 bits with a dynamic range of ± 8g. Tags were positioned 

so the X-axis correlated to sway (left-right), Y-axis to surge (forward-backward), 

and Z-axis to heave (up-down). 

Bats were recaptured using the same methods on the 6th day of 

deployment shortly after 06:00:00 (EST) and there was a 100% tag recovery rate 

for all loggers. We removed one bat from our analysis (GPS ID: Phyl30) as a 

result of inactivity and poor-quality data, providing us with data from 10 females 

and 1 male, with each bat tracked for 4.10 ± 1.16 nights (range:1.8-5 nights), for 

a total of 496.32 total tracking hours. Accelerometers and heart rate loggers 
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sampled continuously for the duration of the study and recorded 1,216.12 hours 

for each logging device. To estimate airspeed during flight, wind data were 

recorded at 15-minute intervals at an automated weather station (9°21’04”N, 

82°15’29”W) managed by the Physical Monitoring Program at the Smithsonian 

Tropical Research Institute’s Bocas del Toro field station. Wind speed and 

direction measurements were taken every 10 seconds using an RM Young Wind 

Monitor Model 05103. At the end of each 15-minute interval, the mean wind 

speed and direction were calculated. 

 

Data Analysis 

Acceleration 

All data were processed and analyzed in R version 4.2.2 (R Core Team, 2022), 

and summaries are presented as means ± SD. 

 
To avoid unusual behavior caused by stress from the newly attached devices, 

the first night of data was also excluded from our data analyses. We calculated 

static acceleration, dynamic acceleration, vectorial dynamic body acceleration 

(VeDBA), and pitch from the raw tri-axial acceleration. Static acceleration (SX, SY, 

SZ) was calculated for each axis as: 

                                                                                                                    
  (1) 
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Using the static acceleration, pitch (θ) was calculated as: 

                                                                                   

  (2) 

 
 

Dynamic acceleration (DX, DY, DZ) was calculated for each axis as total 
acceleration minus static acceleration: 

  (3) 
 

and the Vectorial Dynamic Body Acceleration (VeDBA) was calculated as: 

  (4) 

Each axis of acceleration (AX, AY, AZ) was summed, and we calculated a rolling 

average over a 2 second window to smooth the data for each acceleration 

metric. To bring the data to the same temporal resolution, estimates of VeDBA 

were summed to one minute to match the heart rate sampling rate. 

 

Heart Rate 

All raw heart rate data was first processed in Star:Oddi HRT Analyzer (Star:Oddi 

HRT Analyzer v.1.2.0. Mercury Application Software). Star:Oddi assigned Quality 

Index (QI) numbers ranging from 0 – 3 to each one-minute sample of data. 0 

represents the highest quality data and 3 the lowest. Following manufacturer’s 

recommendations, to remove any sampling errors from the data frame, a data 

quality check was done by removing all samples with a QI of 2 and 3, as 

recommended by Star::Oddi (Star:Oddi HRT Analyzer v.1.2.0. User Manual, 

August, 2023). Based on minimum and maximum heart rates for P. hastatus from 
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previous literature (Thomas & Suthers, 1972), we removed heart rates above 900 

beats per min-1 and below 100 beats min-1. Together, these corrections resulted 

in a ~22% loss of our data. We observed no bias towards high or low values in 

the heart rate quality index. Each night of every bat’s heart rate data was joined 

with the corresponding accelerometry data by timestamps. We estimated energy 

expenditure from heart rate data (Bishop & Spivey, 2013) by modeling oxygen 

consumption as a function of heart beat frequency (fH), heart mass (Mh) and body 

mass (Mb) (Eq. 5). 

  (5) 

We estimated P. hastatus’ heart mass to be ~1% of its total body mass (Canals 

et al., 2005, Thomas & Suthers, 1972). V̇O2 was then converted to joules per 

minute (1 ml O2 = 21.11 J; V̇O2 * 21.11) (O’Mara et al., 2017), and finally to 

kilojoules per minute. 

 

Behavior Classification 

Acceleration data were manually inspected to section out durations of known 

behaviors using a basic understanding of flight physics and visual inspections of 

plotted data (Figure 5). Distributions of metrics from identified behavior (flying, 

roosting, crawling/scratching) provided the minimum, maximum, and most 

meaningful values for each variable during each behavior. 
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Figure 5. Raw tri-axial acceleration data plotted with values of VeDBA (black line) estimated from 

it. The data is derived from 10 seconds of tri-axial accelerometry data from the moment a greater 

spear-nosed bat takes off for flight, showing the significant changes seen in acceleration from 

each axis, and the values of VeDBA reflected by it. Tri-axial accelerometers record acceleration 

in all three axes as shown by the bat in the upper corner of the figure. The X axis (sway) is 

represented by red, the Y axis (surge) by green, and the Z axis (heave) by blue. 

 

Metrics with clear and useful differences between each behavior were 

then selected for our decision tree (Figure 6). A threshold towards the floor or 

ceiling of each behavior distribution, whichever was more likely, was chosen for 

the breakpoints in the tree. Depending on the quality of the threshold at 

identifying the unique behavior, flight metrics were hierarchically arranged in the 

tree. To smooth out potential errors in the behavioral classification model, 

behaviors occurring for less than one second were assigned to the previous 

behavior. 
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Figure 6. Behavioral decision tree showing the thresholds and classification hierarchy used to 

classify occurrences of flight for Greater spear-nosed bats. Decisions are ranked by their 

significance in identifying the behavior, with most significant at the top. 

 

Flight sequences were further categorized into commuting flight when 

applicable. Commuting flight was defined as any duration of flight lasting longer 

than 3 minutes and excluded the first and last 30 seconds of a flight sequence to 

account for landing and take-offs. 
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Modeling 

Heart rate should reflect a high fidelity estimate of energy expenditure (Bishop & 

Spivey, 2013; Thomas & Suthers, 1972). To determine possible relationships 

between heart rate and other estimates of energy expenditure, including VeDBA 

and airspeed, we constructed generalized additive mixed effect models 

(GAMMs). The rate at which our energy expenditure metrics change can vary 

between variables, depending on different behaviors, environmental conditions, 

and kinematic adjustments and the use of GAMMs allows for more appropriate 

modeling of energy expenditures that do not follow normal distributions. Tag ID 

was included as a random effect in all of our models. The structure of our 

baseline model was that heart rate was predicted by VeDBA or airspeed (e.g.,  

heart rate ~ VeDBA). This was used to determine any initial relationship between 

each metric and serve as a “type model” to compare our following models to. 

Since the maximum rate of oxygen consumption works as an asymptote (Bishop 

& Spivey, 2013), we wanted to understand how this model would respond to an 

estimate of energy expenditure derived from our heart rate data (kJ min-1) as our 

dependent variable, instead of the heart rate data itself (Hicks et al., 2017). We 

structured this model as energy expenditure ~ VeDBA. 

Sustaining increased physical activity requires a continual supply of 

oxygen pumped to the working muscles, which would be reflected in an 

individual’s elevated heart rate. We incorporated the effect of behavior (not flying, 

flying) into our models to understand how changes in heart rate reflects changes 

in VeDBA across two different levels of activity. We included the interaction 
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between the behavior being performed and VeDBA using heart rate ~ 

(VeDBA):activity. This was also completed for our models containing the heart 

rate-derived estimate of energy expenditure (kJ min-1). 

We used a multi-inference approach to select the best fitting models to 

describe the relationship between heart rate (or energy expenditure) and 

subsequent predictors. The p-value of each independent variable included in 

every model was calculated to determine the significance of its effect on the 

model’s outcome. The t-value was calculated to show the magnitude of the 

estimated effect on the dependent variable in each model. Models with larger t-

values suggested greater confidence in the significance of the estimate. The 

standard error of each model’s dependent variable values was calculated. Small 

standard errors provided us with more information on which models had more 

reliable estimates. The Effective Degrees of Freedom (edf) were calculated for 

each predictor variable (also known as smooth terms within the model). The edf 

reflects the complexity of the smooth terms in the model, and models with higher 

edf are more complex, with edf of 1 reflecting a straight linear fit. The adjusted R-

squared (R2 (adj)) of each model was calculated to measure how well the model 

explained the variability of the dependent variable. As more smoothed terms 

were added and the complexity of our models increased, the R2 (adj) was 

penalized. Finally, we used the Akaike Information Criterion (AIC) to evaluate the 

goodness-of-fit between models with the same dependent variables. The AIC 

balances the trade-off between model complexity and goodness-of-fit. Our 
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models with lower AIC values indicate a better fit, and we considered all models 

within two AIC units of the best fit models as equally likely. 

 

Ethical Statement 

This study was approved by the Ministerio del Ambiente, Panamá (SE/A-38-

2020) as well as the Animal Care and Use Committee at the Smithsonian 

Tropical Research (SI-23016-1) and to the ASAB/ABS Guidelines for the Use of 

Animals in Research. 
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CHAPTER III 

RESULTS 

Behavior and Tracking Summary 

Bats emerged from the roost at 20:50:35 ± 1.16 hours (Eastern Standard Time 

mean ± SD). The bats returned to their roost at 05:23:00 ± 1.86 hours. This 

results in a total of 47.78 hours of GPS data, 1,512 hours of accelerometry data, 

and 1,512 hours of heart rate data. We identified 18 foraging/resting sites from 8 

individuals. These bats traveled an average distance of 17.73 ± 4.14 km to reach 

off-island foraging/resting sites, with an average of 5.96 ± 2.05 km of that 

commute flown over the ocean. 

Bats began their commute with slight head winds and returned to their 

roosts with slight tailwinds. Wind was generally low and variable in speed and 

direction throughout each foraging night, with an average wind speed of 9.5 ± 

7.44 ms-1. Notably, on the second night of tracking, wind speed peaked at 21.98 

ms-1 at the time of emergence. 

Bats primarily divided their time between two aggregations of over-ocean 

foraging sites, (Figure 7). Clustered foraging sites were located off of the island 

they roosted on and reaching them entailed crossing a significant stretch of 

ocean (2-10 km). One over-ocean grouped foraging site was located on the 

mainland roughly 2 km southeast from the city of Changuinola (Figure 7 - Site 

1), and the other was located on Isla Cristóbal (Figure 7 - Site 2), an island 

directly south from the city of Bocas del Toro. The third foraging location was in  
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Figure 7 (a) - Tracked routes across 6 nights show foraging behavior, colored by individual bats. 

Numbered black boxes indicate two main foraging aggregations. The outset shows the isthmus 

connecting North and South America, with Isla Colón marked by a red circle. (b) Numbered insets 

zoom in on the two primary foraging aggregations, detailing each foraging cluster's location. 

 
the nearby forest surrounding their roost on Isla Colón. During this study, 

bats were more likely to visit Isla Cristóbal (Site 2, 19 of 24 trips) which was 11-

16 km away from their roost, than Changuinola (Site 1, 5 of 24 trips) which was 

20-25 km away from the roost. 

 One individual (Table 1 - Aurora) was recorded making additional stops 

to foraging sites on a small island southwest of Cristóbal (Site 3) after foraging 

there. The foraging sites on this island (Isla Pastores) were an additional 6.5 km 

away from their previously visited foraging sites on Isla Cristóbal (Site 3). This 

individual was observed returning to the same two sites, each on different 

islands, within consecutive nights. While no individuals were observed visiting the 

same patch of trees as another individual, not even on separate nights, 

individuals did seem to distribute their foraging sites within a relatively close 

proximity from each other’s (described by the foraging aggregations), although 

not always visiting the same aggregations as each other on the same night. 

 

Energy Expenditure Across Time 

The energy expenditure of Phyllostomus hastatus was primarily distributed 

between the local sunset and sunrise, shown by the shaded region in Figure 8c. 

During night hours, the average heart rate of P. hastatus was 254.13 ± 94.24 

beats min-1 (range: 101-800 beats min-1). The average nightly VeDBA was  
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Figure 8. Comparisons between energy metrics illustrating the temporal distribution of energy 

expenditure in various contexts. (a) Shows heart rate [violet] and VeDBA [green] data across a 

24-hour period for bat GPS ID: Phyl38. Black bars below each plot represents times of identified 

flight. (b) Inset zooms into 25 seconds of flight metrics from (a) (duration represented by grey 

vertical band), comparing changes in heart rate and VeDBA to airspeed [yellow]. (c) Presents a 

24-hour clock depicting average heart rate and VeDBA distribution by time of day, with shaded 

regions indicating the period between local sunset and sunrise. 

 

295.08 ± 441.57 g min-1 (range: 23.61-3,023.74 g min-1). During the day 

(06:00:00 - 18:00:00 EST), the average heart rate was 194.09 ± 58.41 beats  

min-1 (range: 101-800 beats min-1). The average daily VeDBA was 105.44 ± 

100.03 g min-1 (range: 22.45-2,064.59 g min-1). As airspeed increased, our 

energy metrics (heart rate, VeDBA) gradually decreased (Figure 8b). Once 

emerged from their roost, bats spent an average of 74.82 ± 44.01 minutes 
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flying/foraging, and 297.40 ± 145.97 minutes resting. After sunset (18:50:00 

EST), Activity peaked during the hours of ~21:00:00, ~01:00:00, and ~05:00:00 

(EST), with an average heart rate of 272.95 ± 46.92 beats min-1, and average 

VeDBA of 403.62 ± 146.65 g min-1 during these hours (Figure 8c). Throughout 

the night, activity was the lowest at ~04:00:00 (EST), with an average heart rate 

of 208.88 beats min-1, and average VeDBA of 134.65 g min-1 during this hour. 

 
Energy Expenditure Across Activity 

When analyzing how each metric of energy expenditure was distributed during 

different levels of activity, there was multiple similarities shared between heart 

rate and VeDBA observed. 

 
 

Vectorial Dynamic Body Acceleration 

During rest, VeDBA was characterized by a condensed aggregation of low 

values with a mean VeDBA of 130.66 ± 135.18 g min-1, yet had a large range of 

22.45-2,565.91 g min-1. Likely due to short bouts of energetically intensive 

behavior such as crawling depicted in the thin green horizontal line extending 

from the right of the VeDBA’s distribution in Figure 9 (Rest). While flying, VeDBA 

was considerably higher than during rest for greater spear-nosed bats (Figure 9, 

p-value < 0.001). 

Flight was characterized by a wider distribution of higher values with 

average VeDBA of 1,426.52 ± 366.46 g min-1, and ranged from 127.20-3,023.74 
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g min-1 across all types of flight (take off, commuting, foraging, and landing) 

(Figure 9 - VeDBA | Rest - mean: 87.47, σ2: 18273.71, Q1: 50.76, Q3: 162.73; 

Flight - mean: 1377.57, σ2: 134293, Q1: 1192.22, Q3: 1666.04). VeDBA 

experienced a 991.4% increase during flight. 

Figure 9. Density plots illustrating the distribution of heart rate and VeDBA data during periods of 

rest and flight among bats. Heart rate and its respective scales are indicated by the violet 

coloration. VeDBA and its scales are indicated by the green coloration. During times of rest, 

energy metrics become aggregated at low levels, while during flight, the metrics become more 

widely distributed at higher values. 

 
Heart Rate 

The same contrasting distribution observed in VeDBA between high and low 

activity levels was also observed in the distribution of heart rate (Figure 9). 
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Similar to VeDBA, heart rate at rest was primarily distributed towards the lower 

plot values. Although, heart rate during rest exhibited a larger distribution than 

that of VeDBA during rest, with a range of 101-800 beats min-1 and average 

resting heart rate of 218.95 ± 75.51 beats min-1. During flight, bats had an 

average heart rate of 434.21 ± 149.92 beats min-1 (range: 105-800 beats min-1). 

Heart rate showed a broader distribution during flight, with an increased 

frequency at higher rates across the scale (Figure 9 - Heart Rate | Rest - mean: 

205, σ2: 5701.28, Q1: 168, Q3: 251; Flight - mean: 418, σ2: 22474.80, Q1: 342, 

Q3: 418). Heart rate experienced a 98.3% increase during flight. 

 
Airspeed 

To understand how airspeed interacted with energy expenditure and whether we 

would observe a similar power curve in field-collected data from P. hastatus, we 

initially examined the distribution of all three of energy metrics during flight 

(Figure 10). Across all types of flight, we saw airspeed primarily distributed at 

higher and lower airspeeds, with a majority of the distribution above 6 ms-1 

(Figure 10 | Airspeed - mean: 7.46, σ2: 13.53, Q1: 2.16, Q3: 9.28). Airspeeds 

below 3 ms-1 accounted for ~31.53% of all flight speed data. 

 Of these low airspeeds, the first and last 60 seconds of a flight duration, 

and flights lasting less than 60 seconds accounted for 78% of these data, so it is 

likely that most of these low flight speeds consist of short flights, take-offs, and 

landings. Airspeeds between 3-6 ms-1 accounted for only ~10.72% of our flight 

speed data. P. hastatus spent very little time flying at median airspeeds. The  
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Figure 10. Density plots illustrating the distribution of airspeed, heart rate and VeDBA data during 

periods of flight among bats. Additionally, airspeed is indicated by the yellow coloration. 

 
majority of time spent flying was at airspeeds above 6 ms-1, which made up 

~57.76% of the flight speed data. Throughout all foraging nights, greater spear-

nosed bats flew at airspeeds ranging from 0.08-12.59 ms-1, resulting in an 

average airspeed of 6.15 ± 3.68 ms-1 across all types of flight. This was similar 

to minimum power speeds (6.81 ± 0.21 ms-1) from average power curves 

estimated for P. hastatus (O’Mara & Dechmann, 2023). Additionally, ~48.68% of 
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all airspeeds were flown between their estimated minimum power speed (6.81 ± 

0.21 ms-1) and maximum range speed (11.0 ± 0.35 ms-1). This range of 

airspeed is estimated to be the least energetically costly to fly at for greater 

spear-nosed bats (O’Mara & Dechmann, 2023). 

 

Estimating Energy Expenditure from Heart Rate 

During rest, bats expended an average of 0.07 ± 0.06 kJ min-1, with a range of 

0.01-0.96 kJ min-1. In comparison, while flying, an average of 0.28 ± 0.18 kJ min-1 

was expended, and ranged from 0.01-1.08 kJ min-1 across all types of flight 

(Table 2). The average estimated daily energy expenditure was 143.29 ± 30.18 

kJ day-1 (range: 101.43-209.71 kJ day-1) (Figure 11). These estimates are similar 

to previous ones from the same species captured in the same cave of 198.47 ± 

69.44 kJ day-1 (O’Mara & Dechmann, 2023) as well as estimates using only body 

mass of 153.02 ± 5.96 kJ day-1 (range: 143.07-164.89 kJ day-1; Speakman, 

2005). 

 
 

 

 

 

 
 

Figure 11. Daily energy expenditures (DEE) for each individual bat. Change in color within each 

bar represents a different day with a higher DEE than the previous day. 
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Table 2. Energy expenditure and morphological data of individual bats. Information includes sex, 

body weight (Mb), heart weight (Mh), average rate of oxygen consumption during flight (X̄ V̇O2 F), 

average energy expenditure during flight (X̄ VeDBAF), name of bat within data set, and heart rate 

logger ID. 

Sex Mb 
(kg) 

Mh 
(kg) 

X̄ V̇O2 F 
(ml min-1) 

X̄ EEF 
(kJ min-1) 

X̄ VeDBAF 
(g min-1) 

Name HRL ID 

F 0.112 0.00110 16.22 0.342 1479.13 Bia 1864UHL 

F 0.111 0.00109 12.26 0.259 1572.64 Andromeda 1858UHL 

M 0.146 0.00143 12.12 0.256 1640.57 Ares 1861UHL 

F 0.112 0.00110 10.67 0.225 1422.22 Pandora 1862UHL 

F 0.118 0.00116 9.93 0.210 1395.72 Aurora 1863UHL 

F 0.113 0.00111 9.80 0.207 1343.01 Athena 1855UHL 

F 0.117 0.00115 8.58 0.181 1263.79 Cassiopeia 1854UHL 

F 0.128 0.00125 8.43 0.178 1274.95 Thalia 1865UHL 

F 0.123 0.00121 8.40 0.177 1384.44 Nike 1856UHL 

F 0.110 0.00108 8.27 0.175 1309.22 Artemis 1857UHL 

F 0.126 0.00123 6.04 0.128 1292.59 Amphitrite 1860UHL 

 

Modeling Energy Expenditure 

Each model incorporated a different combination of energy metrics and 

behavioral interactions aimed at finding the model that best represents the true 

nature of the relationship between heart rate and the various estimates of energy 

expenditure. Model results, including how each was structured, their statistics, 

and relative performance values are included in Table 3. 

 
VeDBA & Heart Rate Relationship 

Our first model (Figure 12 | Model 1), compared only heart rate and VeDBA. We 

found a positive dynamic relationship (p-value < 0.001, t = 36.01) between heart 

rate and VeDBA. 
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Figure 12 | Model 1. The relationship of VeDBA and heart rate.  Each color represents the 

GAMM results for a different individual. The p-value and R2 (adj) are shown in the upper corner 

for each model. 

 

Using VeDBA as the only smooth effect when predicting heart rate provided 

an edf of 8.459. Overall, the model received an AIC score of 508,410.80. Our 

model shows that in general, when a bat increased its dynamic body acceleration 

(VeDBA), this was positively correlated with an increase in the frequency of each 

heart beat.  

To better understand how the relationship between heart rate and VeDBA 

may change between different behaviors, we modeled the predictability of 

VeDBA for heart rate for periods of rest and times of flight (Figure 13 | Model 2). 

We incorporated the interaction between VeDBA and the behavior being 

performed (not flying, flying), which allowed us to determine if the value of 

VeDBA as a predictor of energy expenditure is dynamic between levels of 
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activity. VeDBA predicted heart rate across all model types (Figure 12 & 13, p-

value < 0.001). However, the best fit model for predicting heart rate from VeDBA 

included behavior state (Table 3). 

 

Figure 13 | Model 2. Heart rate during rest (a) and during flight (b) relative to VeDBA. Each color 

represents the GAMM results for a different individual. The p-value and R2 (adj) are shown in the 

upper corner for each model. 

 

By separating these data based on behavior (Model 2), we observed a 

statistical improvement across all tests from our baseline model (Model 1). When 

behaviorally classified, VeDBA performed slightly better at explaining change in 

heart rate with greater confidence (Model 1 - R2 (adj): 0.301, t = 36.01; Model 2 - 

R2 (adj): 0.303, t = 36.06). These values of heart rate were also estimated with a 

smaller degree of error (Model 1 - 225.350 ± 6.258; Model 2 - 224.28 ± 6.22). 

We concluded that informing our models on which behavior the bat is performing 

provides a better fit than our simpler model and improves the model’s accuracy 

and explanatory power for heart rate (Model 1 - AIC: 508,410.8; Model 2 - AIC: 

508,289.3).  
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While we increased the complexity of the model as a whole, by classifying 

behavior, the complexity of the relationship between VeDBA and heart rate 

decreased, likely representing a more parsimonious nature of the relationship 

(Model 1 - edf: 8.459; Model 2 - edf: 4.596, 4.885). Model results of flight 

showed a substantial spike in heart rate during the initial increase in VeDBA, 

followed by a brief decline before slowly increasing. 

To establish an initial relationship between VeDBA and V̇O2, we used our 

estimates of energy expenditure (kJ min-1) derived from our V̇O2 values. We 

structured the model as energy expenditure ~ VeDBA. A positive relationship 

was also observed between heart rate-derived energy expenditure (kJ min-1) and 

VeDBA (Figure 14 | Model 3) (p-value < 0.001). Our analyses showed higher 

degree of confidence in the significance of the estimate (Model 1 - R2 (adj): 

0.301, t = 36.01; Model 3 - R2 (adj): 0.286, t = 17.81). Model 1 better explained 

the variability of the dependent variable and had a higher degree of confidence in 

the significance of the estimate (Model 1 - R2 (adj): 0.301, t = 36.01; Model 3 - 

R2 (adj): 0.286, t = 17.81). When using VeDBA to predict energy expenditure (kJ 

min-1), the complexity of VeDBA’s relationship with the dependent variable 

increased (Model 1 - edf: 8.459; Model 3 - edf: 8.582), and the standard error 

also made up a larger percentage of the dependent variable’s values (Model 1 -

225.350 ± 6.258; Model 3 - 0.074742 ± 0.004196). Model 3 received an AIC of -

123,146.5. 
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Figure 14 | Model 3. The relationship of VeDBA and energy expenditure (kJ min-1).  Each color 

represents the GAMM results for a different individual. The p-value and R2 (adj) are shown in the 

upper corner for each model. 

 
We wanted to understand if different levels of activity also resulted in 

changes to the relationship between oxygen consumption (V̇O2) and 

accelerometry, so models predicting energy expenditure (kJ min-1) were also 

behaviorally classified. Just as we observed in the comparisons of Model 1 & 2, 

complexity of VeDBA’s relationship with the dependent variable decreased when 

behaviorally classified (Model 3 - edf: 8.582; Model 4 - edf: 4.690, 4.895). We 

also saw an increase in reliability in our model’s estimates of energy expenditure 

(kJ min-1) using behavioral classification (Model 3 - AIC: -123,146.5, R2 (adj): 

0.286; Model 4 - AIC: -123,383.5, R2 (adj): 0.290). Similar differences in the 

relationship between VeDBA and heart rate observed during resting and flying 

(Model 2) were also seen in VeDBA’s relationship with energy expenditure (kJ 

min-1) across behaviors. 
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Figure 15 | Model 4. Energy expenditure (kJ min-1) during rest (a) and during flight (b) relative to 

VeDBA. Each color represents the GAMM results for a different individual. The p-value and R2 

(adj) are shown in the upper corner for each model. 

 

 
Airspeed & Energy Expenditure 

To explore how energy expenditure changes with airspeed, we constructed 

additional generalized additive mixed effect models (GAMMs) incorporating 

airspeed as the independent variable (Figure 16). We structured the models as: 

heart rate ~ airspeed, VeDBA ~ airspeed, and energy expenditure ~ airspeed. 

 All of our energy metrics in each model had a negative relationship with 

airspeed. Heart rate and its derived energy estimate (kJ min-1) had linear 

relationships with airspeed (Figure 16a - edf: 1.000; c - edf: 1.000). Airspeed had 

a larger effect on VeDBA than it did on heart rate and its derived estimate (kJ 

min-1) (Figure 16a - p-value = 0.0017, t = 16.41; (b) - p-value < 0.001, t = 46.58; 

(c) - p-value < 0.001, t = 8.523). Airspeed also performed better at explaining the 

variability of VeDBA than it did for heart rate or its energy estimate (kJ min-1), 
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Figure 16 | Model 5-7. The effect of airspeed on different energy metrics. GAMM results are 

shown in color for Model 5 (a) heart rate, Model 6 (b) VeDBA, and Model 7 (c) energy 

expenditure (kJ min-1). Each color represents the results for a different individual. The p-value 

and R2 (adj) are shown in the upper corner for each model. 

 

 
although airspeed’s relationship with VeDBA was determined to be more 

complex (Figure 16a - R2 (adj): 0.176, edf: 1.000; (b) - R2 (adj): 0.314, edf: 

3.011; (c) - R2 (adj): 0.15, edf: 1.000). Predicting for energy expenditure (kJ min-

1) resulted in the lowest AIC out of all models using airspeed as the independent 

variable (Figure 16a - AIC: 3187.899; (b) - AIC: 11103.84; (c) - AIC: -208.1214). 
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During flight, airspeed was primarily distributed at higher and lower 

regions, but the majority of VeDBA and heart was distributed near their medians 

(Figure 10). We wanted to assess whether these distributions align with 

expected patterns based on P. hastatus' airspeed distribution. Using our models 

of airspeed (Figure 16), we predicted the average for each energy metric during 

mean flight speed. 

P. hastatus flew at an average airspeed of 6.15 ms-1 with an average 

heart rate of 434.2132 ± 149.916 beats min-1, an average VeDBA of 1,426.52 ± 

366.46 g min-1, and expended an average of 0.279 ± 0.183 kJ min-1. When using 

airspeed as a predictor of heart rate, VeDBA and energy expenditure (kJ min-1), 

model results predicted that while flying at their average airspeed, P. hastatus 

would have an average heart rate of 437.21 ± 65.33 beats min-1 (Model 5), an 

average VeDBA of 1307.1 ± 73.89 g min-1 (Model 6), and would expend an 

average of 0.284 ± 0.083 kJ min-1 (Model 7). 

After ~220 seconds of flying, bats increased their airspeed above their 

minimum power speed (6.81 ± 0.21 ms-1) (Figure 17), suggesting that P. hastatus 

may have a preferred airspeed during longer flights. Long distance flights, such 

as these, primarily consist of travel between roosts and foraging sites. During 

these types of commutes, we observed airspeed increase by 191.1%. On 

average, these bats flew at commuting airspeeds of 8.18 ± 2.61 ms-1 (Figure 18). 

The average airspeed during flights lasting less than three minutes was 2.07 ± 

1.75 ms-1. 
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Figure 17. Average airspeed of P. hastatus over the duration of flight. Minimum power speed 

(Ump) is represented by the horizontal solid red line. Maximum range speed (Umr) is represented 

by the horizontal dashed line. 

 
 

 
Figure 18. Bar plot comparing the average airspeeds between non-commuting and commuting 

flights. 
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To understand how airspeed patterns vary across two different flight 

modes, we used the duration of flight sequences as a predictor of airspeed 

(Figure 19). The relationship between airspeed and the duration of commuting 

flights showed a strong positive correlation, similar to that seen in Figure 17 (p < 

0.001). Model results also showed a positive effect of duration on airspeed during 

short non-commuting flights, but not statistically significant (p = 0.235, R2(adj): 

0.151). We observed greater variance explained in the commuting model, 

indicating that the duration of a flight influences the airspeed at which it is flown 

(Figure 19a - R2(adj): 0.151, t = 7.806; (b) - R2(adj): 0.213, t = 30.12). 

Figure 19. Airspeed during non-commuting flight (a) and during commuting flight (b) relative to 

the duration of it. Each color represents the GAMM results for a different individual. The p-value 

and R2 (adj) are shown in the upper corner for each model. 
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Energy Landscapes 

When traveling to foraging sites, bats did not commute with groupmates. 

Commuting accounted for 71.66% of all flights. We observed no initial evidence 

of group-level cooperative foraging. Each bat used an average of 2.25 ± 0.46 

foraging/resting sites located on the mainland or adjacent islands. The average 

foraging site was 17.47 ± 4.18 km away from the roost, while the average bat 

flew 17.73 ± 4.14 km to travel between each. Over 33% of this commute was 

flown over open ocean waters and flights to and from foraging sites were flown 

relatively direct, with a low average tortuosity of 1.06 ± 0.04. Each individual 

spent 22.38 ± 14.13% of their night flying/foraging, and 77.62 ± 14.13% resting. 

  

 Bats substantially increased their airspeeds when flying over the ocean 

(Figure 20). While flying over land, bats maintained an average airspeed of 5.48 

± 3.67 ms-1, with an average heart rate of 452.71 ± 144.83 beats min-1 and an 

average VeDBA of 1446.98 ± 331.78 g min-1. In contrast, while flying over the 

ocean, bats increased their average airspeed to 9.33 ± 1.49 ms-1, with an 

average heart rate of 414.59 ± 133.67 beats min-1 and an average VeDBA of 

1270.06 ± 156.63 g min-1. Bats foraged and rested in separate patches of trees. 

 Certain GPS clusters, defined as GPS points less than 100 meters apart, 

were identified as just resting sites, while others were mixed-use (foraging + 

resting). All foraging sites had resting sites located within less than 100 m. 

Multiple individuals were observed returning to the same foraging and rest site on 
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Isla Cristóbal (Site 3) (Table 4). In every instance of an individual visiting the 

island multiple nights, they would return to the same primary foraging and resting 

site. Some individuals visited multiple foraging sites within the island. The 

average (mean ± SD) return frequency for individuals that visited Cristóbal on 

multiple nights was 85.5 ± 14.77 % (range: 67-100%). 

 
 

Table 4. Individual foraging site information for Phyllostomus hastatus on Isla Cristóbal. 

 

GPS ID Visits to Island Visits to Island’s 
Foraging Sites 

Returns to Same 
Foraging Site Frequency (%) 

Phyl33 3 4 3 75 

Phyl34 2 2 2 100 

Phyl38 5 5 5 100 

Phyl39 2 3 2 67 
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Figure 20. Distribution of a greater spear-nosed bat (GPS ID: Phyl38) foraging over an entire 

night. Each map represents the same movement paths, each colored according to different 

metrics of energy expenditure. Light colors correspond to lower values and darker colors to 

higher values. Insets below each map provide a scaled view of the foraging/resting patch and the 

bat’s movements within it, each colored according to respective metrics of energy expenditure. 
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CHAPTER IV 

DISCUSSION 

By combining heart rate loggers and tri-axial accelerometers we were able to 

collect three different metrics of energy expenditure on 11 free-flying greater 

spear-nosed bats, heart rate, VeDBA, and airspeed. We found positive 

relationships between energy expenditure / heart rate and VeDBA that were 

improved through behavioral classifications of flight and rest. We also found that 

VeDBA was a better predictor of energy expenditure estimates derived from 

heart rate (kJ min-1) than the raw heart rate values themselves, and that VeDBA 

closely resembles predictions from mechanical power curves predicted from 

aerodynamic theory. Our results suggest that VeDBA has a close predictive 

relationship with energy expenditure in bats, and that this less-invasive measure 

of energy expenditure and behavioral insight can be used to understand broad-

scale energy expenditure and its ecological context for free-ranging bats.  

When evaluating whether a proxy accurately reflects energy expenditure, 

it is important to test the estimate against different levels of activity. In other taxa, 

previous research has indicated that animals with complex relationships between 

their kinematics and the medium in which they travel through may benefit from 

increased accuracy in estimates of energy expenditure when paired with time-

activity budgets (Brown et al., 2022; Jeanniard-du-Dot et al., 2016a; Jeanniard-

du-Dot et al., 2017c; Ladds et al., 2017). By using a decision tree for behavioral 

classification (Patterson et al., 2019), we were able to classify two levels of 

activity, resting and flying (Figure 6). This behavioral classification greatly 
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improved the predictive fit of the VeDBA models, and revealed two different 

shapes in the relationship between VeDBA and heart rate and energy 

expenditure.  

Across both behaviors we observed the positive relationship between 

VeDBA and heart maintained. In Figure 9, we can see how different levels of 

activity, such as resting and flying, require variable energy expenditure, and how 

these associated costs are sufficiently captured through each energy metric. By 

informing the model of the bat’s behavior, we were able to better capture the 

variability in heart rate among the bats, across different behaviors. This was 

evident in the decreased slope of the resting model when compared to the flying 

model (Figure 14 | Model 2) . This implies that the relationship between VeDBA 

and heart rate differs depending on the bats' behavior, and while in rest, a bat’s 

heart rate increases at a slower rate during moments of increased activity than 

compared to times of high, energy intensive activities such as flight. 

The model displayed a steeper slope during flight, reflecting VeDBA’s 

relationship with heart rate, which mirrored its pattern exhibited throughout flight. 

Initially, there was a substantial increase in heart rate corresponding to the rise in 

VeDBA, followed by a brief decline before stabilizing or gradually increasing, 

similar to the observed pattern at the onset of flight (Figure 21). This is most 

likely indicative of the initial energy intensive act of taking flight, which might not 

result in as much VeDBA as it does require oxygen delivery via increased heart 

rate. 
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Figure 21 (a) - The distribution of VeDBA and its pattern from the start of flight throughout its 
duration, with the red LOESS line depicting the general trend of the data. (b) Heart rate during 
flight relative to VeDBA. 

 

We saw the positive relationship between heart rate and VeDBA further 

improved by replacing the dependent variable (heart rate) in our behaviorally 

classified model (Model 2) with the heart rate-derived estimate of energy 

expenditure (kJ min-1) (Model 3 & 4). This also provides further support for the 

method of behaviorally classifying the models when we compared the goodness-

of-fit, complexity of the smooth terms, and how well VeDBA explained the 

variability in energy expenditure from Model 3 and Model 4. 

By using VeDBA as a predictor of energy expenditure (kJ min-1), we also 

showed VeDBA to represent a quality indicator of oxygen consumption, providing 

further support for its use as an estimation of energy expenditure in bats (Model 

3). However, muscle efficiency can differ between levels of activity (Gómez Laich 

et al., 2011) which may cause changes in the relationship between oxygen 

consumption and accelerometry, so new models were constructed, accounting 

for behavior. Behaviorally classified models showed a positive relationship 
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between VeDBA and energy expenditure (kJ min-1) (Model 4). Although the 

relationship between energy expenditure (kJ min-1) and VeDBA varied between 

behaviors, it closely mirrored the relationship seen between heart rate and 

VeDBA (Model 2). 

When comparing VeDBA to various measures of energy expenditure, it is 

important to understand the fundamentals of each and how they are measured. 

As a result of a resting metabolic rate, heart rate never drops to zero. In 

situations where there is no movement (such as during sleep or inactivity), 

VeDBA can approach or reach zero, indicating minimal body acceleration. There 

is also a delay in the response of heart rate to changes in activity levels. It's also 

important to consider the range of scale sizes for each metric. Within our study, 

VeDBA is calculated on a much larger scale (range: 22.45-3023.74 g min-1) 

compared to the measurement scale of heart rate (range: 101-800 beats min-1). 

These fundamental differences in their baselines and dynamics affect how they 

are compared and are key factors to consider when using either of them as 

proxies of energy expenditure. 

When selecting which models performed the best, we prioritized values of 

AIC then R2. We found VeDBA served as a better predictor for energy 

expenditure (kJ min-1) than heart rate and had substantially lower AIC values 

(Model 1 - AIC: 508410.8; Model 3 - AIC: -123146.5). The benefit of using 

energy expenditure (kJ min-1) as the dependent variable might result from 

incorporating individualized morphometric measures (Mb, Mh) in V̇O2 estimation 

(Eq. 4). Additionally, R2(adj) was slightly higher in models when VeDBA predicted 
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heart rate, suggesting VeDBA was better at explaining the variability of heart rate 

than energy expenditure (kJ min-1) (Model 1 - R2(adj): 508410.8; Model 3 - 

R2(adj): -123146.5). We also found behaviorally classifying models to provide 

multiple statistical improvements in the performance of the model, which was 

most evident in Model 2. Interestingly, by incorporating behavior into models, edf 

values dropped by almost half, which suggests that information on activity levels 

decreases the complexity of VeDBA’s relationship with each metric of energy 

expenditure. Based on these model results, we concluded that Model 4 

performed the best. While Model 2 had a higher AIC value than Model 3 & 4, it 

had a slightly larger R2(adj). It also performed better in all other statistical 

analyses. As a result, we determined Model 2 to be the next best fit.  

The airspeed at which a bat chooses to fly should be strongly linked to the 

mechanical power and energy required to maintain that speed (Hedenström and 

Alerstam; 1996; Hedenström and Thomas, 1995; O’Mara and Dechmann, 2023; 

Pennycuick, 2008; Pennycuick, 1975; von Busse et al., 2013). Previous work has 

estimated the minimum power speed (6.81 ± 0.21 ms-1) and maximum range 

speed (11.0 ± 0.35 ms-1) for greater spear-nosed bats, establishing a framework 

for understanding the power requirements of various flight speeds (O’Mara & 

Dechmann, 2023). Based on this, during times of low airspeed, we expected an 

increase in the power required to stay in the air. Conversely, as airspeeds 

increased up to their estimated maximum range speed, we expected to see a 

decrease in the power required to maintain flight. 
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We demonstrated that increasing airspeed is associated with decreasing 

flight power across all three metrics of energy expenditure using GAMMs. Using 

AIC and R2(adj) as a selection tool, we concluded that airspeed was able to best 

predict energy expenditure (kJ min-1) and VeDBA (Table 3). Using the 

distributions of each energy metric during flight, we verified the accuracy of each 

airspeed model, providing evidence for a strong relationship between airspeed 

and energy expenditure. Flying at a maximum airspeed of ~12 ms-1, the 

observed power curves correspond to the initial segment of P. hastatus’ 

predicted power curve (Figure 22). Aerodynamic theory predicts that it is most 

energetically efficient to fly between the minimum power speed and the 

maximum range speed (Pennycuick, 2008; Pennycuick, 1975; Rayner, 1979; 

Tucker, 1974). The power required to maintain flight is a combination of the 

power needed to overcome both induced and parasite drag. At low speeds, high 

induced drag demands more power. As speed increases, induced drag 

decreases, minimizing power needs at a specific point (minimum power speed). 

Beyond this, parasite drag, which grows with the square of speed, dominates and 

rapidly raises power requirements. Maximum range speed optimizes the balance 

between induced and parasite drag, maximizing distance per unit of energy. 

Beyond this speed, increased parasite drag significantly reduces energy 

efficiency due to higher power demands (Pennycuick, 2008; Pennycuick, 1975). 

The maximum airspeed flown by P. hastatus during this study was 12.59 ms-1, 

indicating that these bats rarely exceeded their estimated maximum range 

speeds (11.0 ± 0.35 ms-1). 
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Figure 22. The estimated power curve of greater spear-nosed bats (top), with an inset of the 

observed energy expenditure of P. hastatus across various flight speeds. The red box represents 

the general position of the observed energy costs relative to the entire power curve estimate. 

 

Based on this, and our model results (Figure 16 | Model 5-7), we concluded that 

flight speeds of P. hastatus closely followed the previously estimated mechanical 

power curves for this species (Figure 22). 
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Characterizing P. hastatus’ power curve provides a way to practically 

assess their biomechanical and physiological capabilities, valuable for comparing 

flight patterns and route selection, and offers a mechanistic perspective on 

decisions regarding flight speed and optimal foraging strategies (Grodzinski et 

al., 2009; Hedenström and Alerstam; 1996; Hedenström and Thomas, 1995; 

O’Mara and Dechmann, 2023; Pennycuick, 2008; Pennycuick, 1975; von Busse 

et al., 2013). 

We also hypothesized that bats would primarily fly within energetically 

optimal flight speeds. Since flying within the estimated minimum power speed 

and maximum range speed is the least energetically expensive for P. hastatus 

(O’Mara and Dechmann, 2023), we anticipated that these bats would increase 

their airspeed above the minimum power speed shortly after taking off for the 

majority of flights. Using LOESS smoothing, we created a scatter plot to reveal 

how airspeed changes throughout the duration of all flight data (Figure 17). Bats 

increased their airspeed above the minimum power speed within the first ~3 

minutes of flight and maintained it above the minimum power speed but below 

the maximum range speed throughout the flight. We concluded that the majority 

of flights were flown at an energetically optimal airspeed. 

To understand how airspeeds are distributed across short and long-

distance flights, we used the duration of flight to predict changes in airspeed 

(Figure 19). Model results showed that commuting airspeed is strongly related to 

how long the flight lasts, suggesting that bats may modulate their flight speeds 

based on the anticipated travel distance or time. To increase energy efficiency, 
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the majority of long flights, such as commuting journeys between roosting sites 

and foraging grounds, should be flown within this energetically optimal range. 

This movement-based decision would reflect the optimization of energy 

expenditure over extended time and space. Bats may adjust their flight dynamics 

to achieve a balance between covering distance quickly and conserving energy 

to sustain flight. In contrast, shorter flights, which typically involve local 

movements or brief foraging trips, exhibit more variable or lower average 

airspeeds. While model results showed a positive relationship between non-

commuting airspeed and the duration of the flight, it was not statistically 

significant. This means there's no strong evidence to suggest that these bats 

prioritize the energetic benefits gained from flying at increased airspeeds during 

short bouts of flight. These shorter flights may prioritize immediate task 

completion or navigation within the surrounding environment, allowing for greater 

maneuverability and turning agility. The variability in airspeed across flight types 

may reflect adaptive strategies to the specific energetic demands and locomotor 

challenges encountered during different behaviors (von Busse et al., 2014). 

Animals are continuously expending energy, and therefore do so as a 

function of time (Wilson et al., 2012). How energy expenditure gets distributed 

over a temporal scale is best illustrated in Figure 8. However, the associated 

metabolic costs vary according to the precise method in which it is expended 

(Wilson et al., 2012).  When plotted over 24 hours, we can see that the 

distribution of VeDBA broadly mirrors the changes in heart rate. High levels of 

activity occur exclusively during nighttime hours, with no flight observed during 
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the daytime (see black bars in Figure 8). Nightly energy expenditure, averaged 

across all bats, was characterized by three large peaks in heart rate and VeDBA. 

These likely correspond to average time of emergence, a major foraging event, 

and the return trip to the roost. This would suggest that during foraging there is, 

to some degree, a temporal distribution pattern to energy expenditure across a 

social group or possibly roost. 

The spatial and temporal distribution of energy expenditure plays a pivotal 

role in determining the quality of a foraging patch and daily energy requirements, 

which shapes the distribution and abundance of wildlife populations (Shepard et 

al., 2013; Stephens and Krebs, 1986; Wilson et al., 2012). For animals, 

movement incurs both energy-related costs and benefits, and examining their 

use of the landscape provides a perspective into their decision-making and 

behavioral ecology. When and where animals expend their energy is a direct 

result of the interaction between their movement decisions and the landscape 

they live in (Shepard et al., 2013; Wilson et al., 2012). Landscapes vary in 

character, such as changes in the medium through which the animal travels, 

including changes in wind speed and direction, or moving from an open area into 

a dense forest, which can make movement more challenging (Wilson et al., 

2012). Landscapes also change over time; for example, resource availability can 

vary across seasons. The degree of variation in the landscape influences 

movement costs, this variation translates into dynamic movement decisions and 

energy costs for animals traveling through it (Wilson et al., 2012). 
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Using GPS, accelerometry, and heart rate data metrics, we selected a bat 

(GPS ID: Phyl38) with high-quality data to model how greater spear-nosed bats 

distribute their energy expenditure throughout a foraging night. This model 

illustrates a strong relationship between terrain and movement preferences. 

While flying over the ocean, bats would increase their airspeed by 70.26% which 

resulted in a 17.24% decrease in energy expenditure (kJ min-1). During this time, 

airspeeds were maintained above the minimum power speed and maximum 

range speed. However, non-commuting flights averaged much lower airspeeds, 

indicating that P. hastatus does not consistently maintain this energetic optimum. 

Changes in airspeed may represent a method of balancing trade-offs between 

costs and rewards during foraging nights. Due to the increased maneuverability 

required from foraging in dense vegetation, bats may exhibit higher energy 

expenditure flying over land, compared to more open areas such as over the 

ocean, where flight may be less energetically demanding to navigate (Shepard et 

al., 2013). This suggests that these bats use adjustments to airspeed as an 

energy-saving strategy depending on the distance to be traveled or the purpose 

of the flight. 

As bats approached the western coastline of Bocas del Toro, many 

individuals were observed making slight deviations in their trajectory, following 

the path of the coast before eventually heading towards their destination. It is 

unclear whether bats used these coastlines as a roadmap or landmark to guide 

them towards their intended destination, or if there is an energetic benefit gained 

from this behavior. Further work is needed to model potential relationships 
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between wind speed, wind direction, and energy expenditure along this path to 

better understand this pattern. 

Greater spear-nosed bats are known to have a diverse diet throughout the 

year, but switch almost exclusively to O. pyramidale during the dry season 

(O’Mara and Dechmann, 2023). Previous work on bats from the same roost has 

shown that while P. hastatus commuted and often foraged alone, some 

individuals reunited with other group members at these flower patches. 

Individuals from our study commuted and foraged completely alone. These 

species all travel from a shared roost to distant foraging patches, yet we 

observed no overlap in individual foraging ranges among group members. These 

distinct ranges may have developed through reinforcement learning processes 

aimed at reducing competition (Goldshtein et al., 2020; O’Mara and Dechmann, 

2023). This also may be influenced by seasonal changes to their resource 

distribution and food type, as well as the dynamic value of social information 

during these shifts (Kohles et al., 2022; O’Mara and Dechmann, 2023). It is likely 

that there is also a degree of plasticity in foraging behaviors across social groups 

and seasons (Boughman, 2006). Social group formations and foraging strategies 

may also vary regionally or across populations depending on the resource 

landscape. In Trinidad, females forage in groups depending on the season. They 

use special group-specific social calls to form foraging groups (Boughman, 1998; 

Wilkinson and Boughman, 1998). It has been suggested that recruiting group 

members to foraging patches could serve as a strategy to defend trees against 

competitors (Wilkinson and Boughman, 1998). Further work mapping their 
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resource landscape across seasons is needed to better understand how 

seasonal changes to it affect energy expenditure, movement patterns, and 

foraging strategies. 

Other species of bats that feed on nectar and fruit seem to possess 

extensive and well-developed cognitive maps of their foraging territories (Harten 

et al., 2020; Toledo et al., 2020). These bats demonstrated substantially high 

return rates to specific foraging sites, and flights to and from these foraging sites 

showed low tortuosity, indicating that these animals do not distribute themselves 

randomly and exhibit relatively high spatial cognition. Low degrees of exploratory 

behavior while foraging can indicate predictable sources of food at high quality 

food patches (Stephens and Krebs, 1986). In general, these bats would forage in 

a patch of trees and then rest in another close by (Figure 20). They did not 

forage and rest in the same patch of trees. How their food is distributed is likely a 

significant driver of these movement choices and foraging behaviors. 

Ultimately, measuring the energetic costs of movement across landscapes 

offers a mechanistic understanding of animal-based decision-making important to 

advancing movement ecology (Bishop et al.,. 2015; Elliott et al., 2013; Gleiss et 

al., 2011; Gómez Laich et al., 2011; Green et al., 2008; Hicks et al., 2017; 

Stothart et al., 2016; Sutton et al., 2023; Wilson et al., 2020; Wilson et al., 2012). 

This provides a perspective into how and why animals distribute themselves 

across space and time (Bishop et al.,. 2015; Klappstein et al., 2022; O’Mara et 

al., 2021; Scacco, 2021; Shepard et al., 2013), especially those living at their 

metabolic ceiling and rely on ephemeral resources like P. hastatus.  
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Measuring field energy expenditure offers insights into the metabolisms of 

animals, and provides valuable ecological insight into metabolic requirements 

and physiological limitations, revealing how they acclimatize to environmental 

changes such as temperature fluctuations, food scarcity, or habitat alterations 

(Bishop et al., 2015; Castejón-Silvo et al., 2021; Elliott et al., 2013; Watanabe et 

al., 2020). Knowing when and where an animal is expending energy helps 

identify metabolically valuable spatial or temporal areas within an animal’s 

environment which can ultimately be used to improve conservation strategies 

(Madliger et al., 2020; Wikelski and Cooke, 2006). This study has provided 

support for the use of VeDBA as a less-invasive method for measuring energy 

expenditure, capable of providing behavioral insight that can be used to 

understand broad-scale energy distribution and its ecological context for free-

ranging bats. 
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SUPPLEMENTARY MATERIALS 

 
Table 5. Definitions of accelerometry-derived metrics, statistics, and other variables of energy 

expenditure used. 

 

Variable Units Meaning 

AX, AY, AZ ms2 Raw acceleration of each axis 

SX, SY, SZ ms2 Static acceleration of each axis 

θ ° Pitch angle 

DX, DY, DZ ms2 Dynamic acceleration of each axis 

VeDBA g min-1 Vectorial Dynamic Body 
Acceleration 

X̄ VeDBAF g min-1 Mean rate of estimated energy 
expenditure during flight 

EEhr kJ min-1 Heart rate-derived estimate of 
energy expenditure 

X̄ EEF kJ min-1 Mean rate of energy expenditure 
during flight 

DEE kJ day-1 Total daily energy expenditure 

X, Y, Z ms2 Axes of acceleration in three 
perpendicular planes 

V̇O2 ml min-1 Rate of oxygen consumption 

X̄ V̇O2 F ml min-1 Mean rate of oxygen consumption 
during flight 

Mb kg Body mass 

Mh kg Heart mass 

fH beats min-1 Heart beat frequency 

Ump ms-1 Minimum power speed 

Umr ms-1 Maximum range speed 
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