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Abstract 

The dynamic nature of modern manufacturing systems necessitates adaptive problem-solving approaches that respond 
to rapid changes and complex challenges to improve productivity. This research explores multiplayer virtual reality 
(VR) environments for adaptive problem-solving in manufacturing settings. Existing VR studies often focus on 
specific organizational contexts, isolating technological or social factors rather than integrating both. This approach 
limits our understanding of VR’s potential to support adaptive problem-solving in diverse, realistic environments. We 
address this gap by examining how VR allows users to dynamically respond to varying task complexities and promote 
collaborative problem-solving across industries. The study investigates how task transitions affect physiological and 
cognitive engagement of participants during task execution. In a simulated production environment, ten teams of three 
participants were asked to design and assemble toy cars. Participant tasks were distinguished by having high, medium, 
or low complexity. Some of these tasks include ordering from a workstation, assembling car toy components, or 
teleporting around the production environment. Throughout the simulation experiment, electrodermal activity (EDA) 
data was collected to assess stress and engagement during task execution. By analyzing physiological responses, this 
research investigated correlations between task complexity and adaptive problem-solving capacity, as well as patterns 
in task transitions. The findings contribute to understanding how VR environments can enhance team performance, 
adaptive thinking, and efficient decision-making in manufacturing. This research highlights VR’s potential as a tool 
for advancing collaborative problem-solving in complex, real-world production environments. 
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1. Introduction 
 

Manufacturing serves as a key driver of economic growth. As industries evolve with technological innovation, 
adaptability has become increasingly vital. Manufacturers must continuously adapt to unforeseen challenges while 
maintaining high levels of efficiency and productivity, which requires professionals who can quickly assess complex 
situations, adjust strategies in real time, and create innovative solutions. Thus, adaptive problem-solving, which 
involves dynamic reactions to varying scenarios, can be identified as a necessary skill.  
 

Virtual teamwork and immersive technologies are transforming organizational change, performance, and learning [1]. 
As virtual reality (VR) continues to spread through various sectors, from entertainment to education, healthcare, and 
beyond, the need to understand the nuances of human behavior and adaptation within these digital environments 
becomes increasingly paramount. VR enables real-time tracking of cognitive and physiological responses, offering 
increased insight into how people react under varying degrees of task complexity. Exploring how individuals and 
teams collaborate to solve problems and navigate these immersive virtual worlds can yield valuable insights that can 
inform the design and development of more effective and engaging VR applications [2, 3]. The use of VR provides 
an effective means of investigating adaptive problem-solving within a controlled yet dynamic environment [4].   

2. Problem Description 
 

Traditional problem-solving approaches in modern manufacturing have shown limitations when addressing dynamic 
production challenges [5]. Ineffective adaptive responses can result in inefficient and reduced productivity. This study 
navigates VR as a tool to explore adaptive problem-solving by simulating manufacturing scenarios, allowing 
participants to engage with different complex tasks and analyze their physiological response to transitioning between 
these tasks. The study explores the interaction between task complexity, physiological engagement, and adaptive 
problem-solving behavior in VR manufacturing settings. 
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3. Related Research 
 

Despite limited short-term gains, Kittel et al.'s 360° virtual reality usage helped umpires better remember what they 
learned and felt more realistic. The researchers recommended looking into how VR might affect umpires' actual 
performance on the field [2]. Understanding the role of agency in virtual environments, Wei et al. explored how 
perceived control of avatars whether human or computer-controlled influenced prosocial decision-making in VR [6]. 
This highlights a gap in VR learning: the lack of adaptive approaches. To address this, Wojitok et al. proposed a 
framework for an adaptive VR learning environment that emphasizes personalization through user modeling, emotion 
detection, and interaction optimization. Though theoretical, this framework suggests promising directions for future 
research to develop and evaluate these components in VR learning applications [4].  
 
Several studies have investigated the promising potential of VR for emergency training. Sharma et al. created a 
collaborative virtual reality system with 3D models and simulated agents to study how people make decisions during 
big-city evacuations [7]. Their work showed that practicing emergency drills in this virtual setting helped train 
personnel, resulting in faster real-world response times. While virtual reality has been shown to enhance problem-
solving capabilities, the specific effects appear to vary. Araiza-Alba et al. found that immersive virtual reality 
significantly improved children's problem-solving skills compared to traditional methods [8]. Chen et al. revealed that 
VR-assisted problem-based learning enhanced vocabulary and motivation, although it did not significantly improve 
problem-solving performance among English language learners [3]. In contrast, Jin and Lee compared problem-
solving approaches using desktop and virtual reality tools in apartment design. Their study suggests that desktop tools 
were more effective for space utilization, while VR users produced a wider variety of designs [9]. Additionally, Hwang 
et al. examined the effects of peer learning behaviors in virtual reality on geometry problem-solving, finding that 
collaboration in VR significantly enhanced problem-solving skills [10].  
 
The current state of VR research highlights several critical areas that warrant further investigation. Key challenges 
include accurately modeling human behavior within immersive environments, providing rich multisensory 
experiences, and effectively replicating the complexity of real-world scenarios. Our research addresses these 
limitations by designing and evaluating a collaborative VR environment that simulates real-world manufacturing 
tasks. By integrating biometric data (e.g., heart rate and electrodermal activity) and behavioral logs, our study provides 
a multi-layered understanding of adaptive problem-solving strategies in team-based VR settings. Additionally, our 
approach includes a larger and more diverse participant pool, enhancing the generalizability of the findings. The 
multiplayer aspect further contributes to modeling complex human interactions in dynamic environments, offering 
insights that bridge the gap between controlled VR studies and real-world applications in smart manufacturing. 
  
4. Methods 
 

4. 1 Virtual Environment Setup 
 

This study was conducted within a VR craft production environment for toy car manufacturing. The simulation, 
developed in Unity with Photon for multiplayer functionality, featured four workstations, each having its own set of 
instructions for the toy car build (pictured in Figure 1). Additionally, a product checker was integrated to verify build 
accuracy based on price and weight. Building a toy car involved 12 steps (detailed in Table 1), with tasks varying in 
cognitive and manual effort depending on complexity level. Complexity levels were assigned through a survey study. 

   
 

Figure 1: Snapshots of a workstation in the craft production room (left), a sample toy car (middle), and checking the 
price and weight of the toy car. 
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Table 1: Summary of Task Complexity Levels. 
 

Task Name Complexity Task Name Complexity 
Teleport to workstation Low Assemble Windshield  Medium 
Check instructions and select parts Low Assemble steering wheel  High 
Pick and organize parts High Assemble driver set High 
Assemble tires and wheel hubs Low Assemble roof  Medium 
Assemble wheels and axles to base Medium Finalize the toy car assembly Medium 
Assemble the toy car frame High Check price and weight Low 

 
4. 3 Data Collection and Analysis 
 

Thirty students, assigned into ten groups of three, participated in a simulated VR manufacturing environment where 
they worked collaboratively on assembling toy cars. Participants completed informed consent forms prior to the study. 
Demographic data, including age, gender, and prior VR experience, were collected through a pre-experiment survey. 
Electrodermal activity (EDA) data was selected as a physiological measure of stress and engagement; participants 
were outfitted with an Empatica Plus wearable device to continuously collect their EDA. In addition, the VR 
environment and participant’s communications were video-recorded for qualitative analysis. Task performance 
metrics, such as assembly accuracy and task completion time, were collected directly from the VR environment. After 
completing the VR tasks, participants filled out post-experiment surveys, including the NASA Task Load Index (TLX) 
and self-efficacy measures. The EDA data was first organized by the correlated task upon collection, and data was 
then pre-processed and normalized using min-max normalization to ensure comparability across participants. Changes 
in EDA were calculated between consecutive tasks to identify significant fluctuations, indicating a change in 
physiological engagement. Significant physiological responses were defined using a threshold of 0.0048 μS, derived 
from Empatica’s recommended 0.05 μS range and normalized to the study’s scaled dataset [11]. Task complexity 
transitions were categorized by complexity levels (e.g., High → Low), and significant EDA changes were analyzed 
to assess adaptive responses.  

Figure 1 provides an overview of the composition of the study sample. Most participants were male (73%) with a 
smaller percentage being female (27%). The participants were primarily graduate students (47%), with juniors (43%) 
and seniors (10%) making up the rest. Racial representation in the sample was predominantly Asian (53%), with White 
participants constituting 30%, Black participants 10%, and Latinx participants 7%. Regarding parental education, 77% 
of participants reported having parents with a bachelor’s degree. Figure 3 shows prior VR experience by demographic 
group. Graduate students reported the highest familiarity with VR (3.14), indicating they may have had greater 
exposure to VR technology compared to juniors (2.69) and seniors (1.67). Gender differences were also observed, 
with male participants having a higher familiarity score (3.05) than female participants (2.29). Among racial groups, 
Asian participants exhibited the highest familiarity (3.13), followed by White (2.56) and Black participants (2.33), 
with Latinx participants reported the lowest familiarity (2.00). Interestingly, individuals whose parents do not hold a 
bachelor’s degree had a slightly higher VR familiarity score (3.14) compared to those whose parents do (2.70). These 
findings suggest that VR familiarity may be influenced by education level, gender, race, and parental education, 
though findings are not generalizable due to the sample size of this study. 
 
 

  
Figure 2: Demographics distribution of the 

participants. 
Figure 3: Familiarity with virtual reality by 

demographic factor. 
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5. Results  
 

5.1 Statistical Correlation Testing 
 

Statistical testing using the Kruskal-Wallis H test revealed significant differences in EDA changes across transitions 
(H = 27.14 and p = 0.0007). This non-parametric test was selected due to the non-normal distribution of EDA data 
across groups. Post hoc Mann-Whitney U tests with Bonferroni correction showed further insights. Two significantly 
different pairs were identified: High → High vs. Low → Low (p = 0.0101), and Medium → Low vs. Low → Low (p 
= 0.0076). The results indicate distinct physiological responses in these specific transitions. 
 
5.2 Electrodermal Activity Changes During Task Transitions 
  

Significant fluctuations in EDA were observed across different task complexity transitions. Figure 4 presents the 
percentage of transitions resulting in significant EDA increases or decreases relative to total transitions. Imbalances 
in transition frequency were observed, with some transitions occurring more frequently than others, as shown in Table 
2. For example, Low → Low transitions were the most common with 42 occurrences, while a High→ High transition 
only occurred three times. This imbalance reflects the structured nature of task sequencing, where participants often 
completed consecutive tasks in a similar order, repeating certain transitions more often than others. 
 

 
Figure 4: Percentage of significant EDA change during transitions between tasks. 

 
Table 2:  Significant EDA changes by task transition 

 

 High to 
High 

High 
to Low 

High to 
Medium 

Low to 
High 

Low to 
Low 

Low to 
Medium 

Medium 
to High 

Medium 
to Low 

Medium to 
Medium 

Total 
Transitions 

3 19 27 24 42 21 29 15 12 

Total 
Significant 

Changes 

2 4 7 5 4 4 8 4 3 

Percent 
Significant 

Changes 

67% 21% 26% 21% 10% 19% 28% 27% 25% 

Significant 
Increases 

2 4 3 2 0 3 5 4 3 

Significant 
Decreases 

0 0 4 3 4 1 3 0 0 
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The data presented in Figure 4 and Table 2 reveals important distinctions in physiological response patterns. High → 
High transitions, while rare, showed the highest proportion of significant changes overall (67%), consisting entirely 
of EDA increases, indicating that maintaining high complexity levels can also elicit substantial physiological 
responses. Transitions such as High → Medium and Medium → High showed more moderate proportions (26% and 
28%, respectively), with more balanced distributions of increases and decreases. In contrast, Low → Low transitions 
had the lowest percent of significant EDA changes (10%), with all four being decreases in EDA, suggesting reduced 
physiological reactivity during a low-complexity task. Notably, transitions involving reductions in complexity, such 
as Medium → Low, showed a predominance of EDA increases, as reflected in Figure 4. 

5.3 Correlation Between EDA Changes and Performance 
 

Figure 5 showcases a comparison of percent changes in normalized EDA during task transitions by participant 
performance level. Three performance metrics were considered: part selection accuracy, assembly accuracy, and car 
completion score. These metrics were summed and averaged per participant to achieve a composite performance score. 
Participants were classified into high and low performance based on the median performance value. As shown in the 
plot, lower performers (blue) are shown to exhibit greater variability in percent EDA changes, with a wider range and 
more extreme outliers. Some extreme outliers in the low-performance group exceeded the graph’s y-axis range and 
are not visible in the plot window. In contrast, high performers (green) display more stable physiological responses, 
with percent changes closer to zero and fewer extreme deviations.  

 
Figure 5: Comparison of percent EDA changes during task transitions between high and low participant scores. 

 
6. Conclusions   
 

The findings of this study offer insights into the relationship between task complexity, EDA responses, and adaptive 
problem-solving behaviors within multiplayer virtual reality manufacturing environments. The analysis of EDA 
fluctuations during task transitions highlights how physiological responses are influenced by changes in cognitive 
demands and task structure. EDA responses varied substantially by transition type, revealing consistent physiological 
patterns across the dataset. Transitions that sustained high-complexity tasks (High → High) produced the strongest 
engagement, with 67% of transitions showing significant EDA increases, although this trend should be interpreted 
with caution due to the small sample size. Downward transitions such as Medium → Low and High → Low also 
elicited consistent increases, suggesting that cognitive downshifting may trigger engagement, potentially due to abrupt 
shifts in effort or task context. In contrast, Low → Low transitions showed only decreases in EDA, indicating 
disengagement during repetitive low-effort tasks. Transitions into higher complexity (e.g., Low → High) resulted in 
more mixed responses, potentially reflecting anticipatory coping or familiarity. Collectively, these trends suggest that 
both sustained challenge and task simplification can elevate physiological engagement, while repetition in low-
demand contexts suppresses it. The boxplot analysis presented in Figure 5 comparing EDA changes in task transitions 
between high and low performers revealed that low performers had greater physiological variability and more extreme 
outliers, while high performers showed more stable responses. This suggests that high performers may possess more 
effective adaptive strategies, enabling them to better regulate physiological arousal during task transitions, even when 
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faced with complex or rapidly changing tasks. The presence of extreme outliers in the low-performance group 
indicated that some individuals may struggle with adaptive regulation, in turn emphasizing difficulties in maintaining 
consistent cognitive control and focus. This relationship between EDA variability and performance emphasizes the 
importance of regulating stress and engagement levels to optimize performance in dynamic environments. 

Statistical testing supported the observed trends. A Kruskal-Wallis H test confirmed significant differences in EDA 
changes across transition types (H = 27.14, p = 0.0007), and post hoc comparisons revealed that both High → High 
and Medium → Low transitions differed significantly from Low → Low transitions. However, other task transitions 
did not have statistically significant results from the post hoc comparisons. These findings reinforce that not all task 
shifts are equal in their physiological impact and show the importance of transition structure in adaptive performance. 
While this study provides valuable insights, it is important to acknowledge limitations. The reliance on EDA as the 
sole physiological measure may overlook other relevant indicators of cognitive and emotional stress. Future research 
should explore measurements such as heart-rate analysis and eye-tracking, to gain a more comprehensive 
understanding. Additionally, EDA data was limited to a small sample size which affects the generalizability of the 
findings. Finally, stress may occur due to outside factors, so while the study identifies a correlation between EDA 
fluctuations and adaptive problem solving, it cannot conclusively establish a causal relationship. This research 
highlights the potential of VR environments as powerful tools for studying adaptive problem-solving in manufacturing 
contexts. The ability to track real-time physiological responses provides a nuanced view of how individuals navigate 
complex tasks, offering practical implications for training programs aimed at enhancing cognitive flexibility and stress 
management in high-stakes industries. These findings can inform the design of adaptive training in manufacturing, 
emphasizing the need to manage cognitive load during task transitions.  
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