
HGEN: Heterogeneous Graph Ensemble Networks

Jiajun Shen1 , Yufei Jin1 , Kaibu Feng2 , Yi He2 and Xingquan Zhu1

1Dept. of Electrical Engineering and Computer Science, Florida Atlantic University, USA
2Department of Data Science, William & Mary, USA

{jshen2024, yjin2021, xzhu3}@fau.edu; {kfeng03, yihe}@wm.edu

Abstract
This paper presents HGEN that pioneers ensemble
learning for heterogeneous graphs. We argue that
the heterogeneity in node types, nodal features,
and local neighborhood topology poses significant
challenges for ensemble learning, particularly in
accommodating diverse graph learners. Our HGEN
framework ensembles multiple learners through a
meta-path and transformation-based optimization
pipeline to uplift classification accuracy. Specif-
ically, HGEN uses meta-path combined with ran-
dom dropping to create Allele Graph Neural Net-
works (GNNs), whereby the base graph learners
are trained and aligned for later ensembling. To
ensure effective ensemble learning, HGEN presents
two key components: 1) a residual-attention mech-
anism to calibrate allele GNNs of different meta-
paths, thereby enforcing node embeddings to focus
on more informative graphs to improve base learner
accuracy, and 2) a correlation-regularization term
to enlarge the disparity among embedding matri-
ces generated from different meta-paths, thereby
enriching base learner diversity. We analyze the
convergence of HGEN and attest its higher regu-
larization magnitude over simple voting. Experi-
ments on five heterogeneous networks validate that
HGEN consistently outperforms its state-of-the-art
competitors by substantial margin. Codes are avail-
able at https://github.com/Chrisshen12/HGEN.

1 Introduction
Ensemble learning that combines multiple base models to
enhance predictive performance has achieved remarkable
success across diverse domains, from weather forecast-
ing [Molteni et al., 1996] and online trading [Sun et al.,
2023] to image classification [Yang et al., 2023a] and recent
prompt-based ensembling in Large Language Models [Zhang
et al., 2024]. While individual models often struggle with
generalization and overfitting, ensemble learning harnesses
the diversity of base models to improve robustness, reduce
variance, and achieve superior accuracy.

Despite its wide adoption, ensemble learning has been
mostly studied in the context of i.i.d. data, leaving its appli-

cation to data with complex interdependencies such as graphs
relatively underexplored. Early studies such as graph repre-
sentation ensembling [Goyal et al., 2020] fused node embed-
dings from multiple graph learning models through concate-
nation. Subsequent methods such as stacking-based frame-
works [Chen et al., 2022] proposed multi-level classifiers
to aggregate representations for tasks like link prediction.
More recent efforts such as Graph Ensemble Neural Network
(GEN) [Duan et al., 2024] integrated ensemble learning di-
rectly within Graph Neural Networks (GNNs), performing
ensemble operations throughout the training process rather
than solely at the prediction stage. To further improve ro-
bustness and mitigate overfitting and adversarial attacks, re-
cent methods such as Graph Ensemble Learning (GEL) [Lin
et al., 2022] introduced serialized knowledge passing and
multilayer DropNode strategies to promote diversity, while
GNN-Ensemble [Wei et al., 2023] employed substructure-
based training to defend against adversarial perturbations.

While these methods have advanced ensemble learning for
homogeneous graphs, they falter in dealing with heteroge-
neous graphs, which are commonly observed in real-world
applications, such as social networks [Fu et al., 2020], cita-
tion networks [Tang et al., 2008], urban networks [Houssou et
al., 2019], and biomedical networks [Jin et al., 2024]. Indeed,
ensemble learning on heterogeneous graphs has three unique
challenges as follows. 1) Graph heterogeneity, where diverse
node and edge types necessitate specialized techniques such
as meta-path [Zhang et al., 2019] or attention-based [Xiao et
al., 2019] models to extract meaningful relationships and pat-
terns, 2) Base learner accuracy, where the non-uniform struc-
ture of heterogeneous graphs requires accurate base learners
to ensure reliable ensemble performance, and 3) Base learner
diversity, where ensuring diverse learners is crucial for robust
and generalized predictions, given the varied nature of het-
erogeneous graphs.

To address these challenges, we propose HGEN, a novel
ensemble learning framework with solid theoretical founda-
tion for heterogeneous graphs. HGEN is tailored to accom-
modate various mainstream graph learners, such as Graph
Convolutional Networks (GCNs), Graph Attention Networks
(GATs), and GraphSAGE, offering a flexible and efficient so-
lution for complex networked data. Specifically, HGEN si-
multaneously enhances learner accuracy and diversity by de-
vising a regularized allele GNN framework, which employs
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Figure 1: The proposed HGEN for heterogeneous graph ensemble learning. From left to right, 1⃝: a heterogeneous graph is first converted to
m meta-graphs (one for each meta-path), with Am denotes adjacency matrix of the graph from the mth meta-path; 2⃝: node feature dropout
is applied to each meta-graph and help train k GNN learners (i.e. Allele GNNs); 3⃝: Residual-attention is applied to allele GNNs of each
meta-path to consolidate their node embedding features, with one multi-layer-perceptron (MLP) project layer is learned from each meta-path;
and 4⃝ a correlation regularizer enforces meta-path’s embedding features to be different from each other and ensembles of MLPs to have
minimum cross-entropy loss. The combined objective function enforces the GNNs, residual-attention, and MLP project layers to collectively
learn for optimized ensemble learning goal.

feature and edge dropping to generate diverse GNNs from
heterogeneous graphs. This enhances generalization by en-
couraging different perspectives of the graph for promoting
diversity across base learners. To further improve accuracy, a
residual-attention mechanism is incorporated to enable adap-
tive ensemble weighting, allowing base learners to aggregate
allele GNNs derived from perturbed graph structures while
favoring more informative graphs. Unlike existing serialized
or boosting-based ensemble methods, which can be computa-
tionally expensive hence impractical for large graphs, HGEN
adopts a bagging strategy, enabling a balance between com-
putational efficiency and scalability through parallelization.
Specific contributions of this paper includes the following:

1. HGEN is the first framework to enable ensemble learn-
ing for heterogeneous graphs, tackling the unique chal-
lenges posed by their complexity and diversity.

2. A novel attention-based aggregation that dynamically
adjusts weights based on the contributions of base graph
learners is proposed. A residual attention mechanism is
to refine ensemble weighting further, enhancing adapt-
ability and improving overall predictive accuracy.

3. Our theoretical analysis substantiates the convergence of
HGEN, and that its magnitude of correlation regulariza-
tion overweighs naı̈ve voting.

4. Empirical study on five real-world heterogeneous net-
works validates the effectiveness of HGEN over the re-
cent arts, where the datasets establish a new benchmark
for heterogeneous graph ensemble learning.

2 Problem Definition
Let G = (V,E,X, Y ) denote a heterogeneous graph, where
V is the set of nodes, E is the set of edges, X is the feature

matrix for the nodes of a certain targeted type, and Y is the
one hot encoding label matrix for those target nodes. Denote
T v as the set of node types and T e as the set of edge types,
where ti ∈ T v is the node type i and ei,j ∈ T e is the edge
type that connects the node type from ti to tj .

Define ϕ : V 7→ T v that maps the node from V to its
node type, and φ : E 7→ T e that maps the edges from
E to its edge type. A meta-path P is a relational sequence
(ei,jej,k . . . ek,jej,i) that is symmetric. Given a specific meta-
path Pi, we can construct a homogeneous graph equipped
with an adjacency matrix Ai ∈ 1n×n where Ai[j, k] = 1
⇐⇒ ∃ p = (vj , . . . , vk) such that edges in the path p match
the meta-path Pi, formally presented as follows.

Gen(G,P) = Ai where

Ai[j, k] =

{
1 if ∃p = (vj , . . . , vk) matching Pi,

0 otherwise.
(1)

Given graph G and a target node type tι ∈ T v , with Vtι ⊂ V
being the target node set containing n target nodes, a simple
graph learner such as GNN can only learn from a homoge-
neous graph. Our goal is to enable ensemble learning of mul-
tiple GNNs to predict the label Y for the target node set Vtι
so to maximize the classification accuracy and AUC values.

3 Proposed Framework
The proposed HGEN ensemble learning framework, in Fig-
ure 1, uses meta-paths to extract multiple disparate homo-
geneous graphs from the heterogeneous graph, such that base
graph learners like GCN, GAT, or GraphSAGE can be trained
from the extracted graphs to form an ensemble. Two major
components of HGEN to enhance base learner accuracy and
diversity are presented in Sections 3.1 and 3.3, respectively,



followed by the analysis. Main steps of HGEN are outlined in
Algorithm 1 in Appendix.

3.1 HGEN Base Learner Accuracy Enhancement
Allele Graph Neural Network Learning
For each meta-path Pi, we extract a homogeneous graph
Gi = (Ai, Xi) consisting of target nodes and its adjacency
matrix denoted by Ai and nodal features Xi. Although GNNs
under certain conditions such as Lipschitz graph filters are
stable [Gama et al., 2020], most GNNs intend have unstable
learning outcomes, especially when trained with limited sam-
ples with random initialization. This motivates us to devise
allele graph neural networks for ensemble learning, where
alleles refer to variant GNN networks learned from the same
source. Therefore, we propose to augment each meta-path
graph by using node feature dropout, as follows.

X̃i = Dropout(Xi, b) (2)

H
(0)
i = σ(X̃iW

0
i ) (3)

where b is the dropout rate, σ(·) is the non-linear activation
function, Xi is the original node features, W 0

i is the projec-
tion learnable parameters, and H

(0)
i is the embedding output

prepared for graph learning. Instead of using more sophis-
ticated graph augmentation approaches, our ablation study in
Sec. 4 will soon demonstrate that feature dropout outperforms
other alternatives. This is also consistent with previous obser-
vations where feature dropout often outperforms node or edge
dropout [Shu et al., 2022].

After applying base graph learner GNN to augmented
meta-path graph G̃i = (Ai, X̃i), we can obtain one base
learner. For each meta-path Pi, we apply different initial-
izations and dropout to obtain k base GNN models. With m
meta-paths, a total of (k ∗ m) base GNNs are created. Each
single base GNN consists of a single linear projection layer
projecting raw feature input X along and multiple graph fil-
tering layers aggregating embeddings with corresponding ad-
jacency matrix Ai. The projection layer is a simple linear
layer projecting raw features with a random feature dropout
followed by a nonlinear-activation. For the message pass-
ing scheme, we used three different backbones: graph con-
volution layer, graph attention layer, and GraphSAGE layer
to show the effects of base model variants. In general, any
standard message passing scheme can fit into the framework.

In the following, we outline the jth GNN from the ith

meta-path Pi using GCN, and the layer-wise aggregation of
the node information is as follows:

H
(l)
i,j = σ(D

− 1
2

i (Ai + I)D
− 1

2
i H

(l−1)
i,j W

(l)
i,j ) (4)

with Di denoting the degree matrix of (Ai + I), W
(l)
i,j as

the learnable parameters for the convolution layer l. With
L graph convolution layers in total l ∈ {1, · · · , L}, the GCN
outputs of the final node embeddings for the jth GNN from
the ith meta-path Pi is represented as H(L)

i,j .

3.2 Intra Fusion for each Meta-Path
Residual-Attention for Allele GNN Fusion
The allele GNNs each learns from an augmented meta-path
graph, conveying unique information of the underlying meta-

Figure 2: Residual attention concept: instead of learning the atten-
tion for each GCN with only one branch, we use the residual mech-
anism to learn a “Branch 2” representing perturbation deviated from
the “Branch 1” which is a simple average ensemble GNN.
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Figure 3: Residual attention computation: k GNNs first being com-
pressed to attention space through projection weight Wi,j and then
being concatenated and fed to a shared projection weight W ′

i to learn
k Θ attention scores. Using minmax normalization (refer to Eq 5),
the final fusion residual attention Θ̃ is obtained. Final fusion repre-
sentation H ·∪ is the summation of “Branch 1” and “Branch 2”.

path semantics and the network heterogeneity. As the first key
step of the ensemble learning process, a fusion mechanism
is introduced to consolidate embedding features from allele
GNNs to adaptively adjust weight of respective GNNs.

Instead of directly learning GNN weights, we introduce
a residual-attention mechanism which borrows residual net-
work’s [He et al., 2015] unique strength of learning identity
mapping that is hard to directly learn from highly nonlinear
functions. The residual mechanism provides a good precon-
dition or initial points that guarantee easy learning on recover-
ing shallow layer results. Meanwhile, it is known that the at-
tention mechanism is highly non-linear and could be difficult
to learn a uniform weight distribution. Inspired by the resid-
ual mechanism and its success in image recognition [Wang et
al., 2017], we propose a residual-attention approach for the
first ensemble stage that ensures an easy learning of allele
GNN aggregation, which is shown to be a simple mechanism
serving as a good precondition analogy to identity mapping.

Specifically, for each meta-path Pi, our model leverages
multiple single GNN to learn the embeddings. To aggregate
the final embeddings of multiple GNNs, a residual-attention
based fusion mechanism is designed as follows:

Θ = ∥kj=1

{
(H

(L)
i,j )Wi,j

}
W

′

i , and (5)

Θ̄ = Mean(Θ), Θ̂ = Θ− Θ̄, Θ̃ =
(Θ̂− Θ̂↓)

(Θ̂↑ − Θ̂↓)

where Θ ∈ Rn×k is the learned residual attention with



meta-path Pi, where n denotes number of target nodes and
k denotes the number of allele GNNs for each meta-path.
Θ̄ is the row average of learned Θ. Θ̂ is the broadcast-
ing difference between Θ and Θ̄, which is zero-centered.
Θ↑ = max(Θ̂) and Θ↓ = min(Θ̂) are the corresponding
maximal and minimal attention scores over row. Θ̃ is the final
minimax version of residual attention. The min-max resid-
ual attention adaptively adjusts the weights/influence of each
base learner. Strong learners making more correct predic-
tions are promoted with higher weights, while weaker learn-
ers have lower weights, allowing the model to mitigate the
impact of errors without explicit error detection.
Residual-Attention Fusion. In order to fuse embeddings
from allele GNNs which are derived from the same meta-
path graph, we employ a residual-attention mechanisms, as
defined in Eq. (6), where Θ̃[:, i]+ 1

k is the node-wise attention
and + is the broadcasting plus over nodes as follows.

H ·∪
i =

k∑
j=1

(Θ̃[:, j] +
1

k
) ·H(L)

i,j (6)

As the results of the residual-attention, H ·∪
i is used to de-

note the aggregated node embeddings for meta-path Pi after
residual-attention fusion. It is worth noting that the residual-
attention in Eq. (6) does not involve any learnable parameters.
The attention in Eq. (5) learns respective parameters to regu-
late the residual-attention fusion.

3.3 HGEN Base Learner Diversity Enhancement
After obtaining the final embedding H ·∪

i for each meta-path
Pi, we project the embedding to the output class dimension
with a linear layer decoder. Finally, we use summation to bag
the prediction for each meta-path to obtain final prediction:

Ŷ =

m∑
i=1

MLP(H ·∪
i ), (7)

where a mean pooling operator MP(·) is used to obtain graph
embeddings H̃i ∈ Rf over H ·∪

i for each meta-path Pi. De-
note the stacked version of all meta-paths H̃i as H̃ ∈ Rm×f .
A correlation matrix is computed quantifying the inter corre-
lation among meta-paths:

S = H̃ ∗ H̃T (8)

where S ∈ Rm×m is the correlation matrix for evaluat-
ing inter meta-path relation. We applied L1 norm on S as
regularization loss to ensure more independent embeddings
learned among all meta-paths. The final objective function of
the HGEN is then defined by Eq. (9).

ℓ = −
∑
i

yi log(ŷi) + λ∥S∥1 (9)

We evaluated the impact of correlation regularization term
by varying its weight coefficient λ as indicated in Eq. (9).
A larger λ enforces greater sparsity in the correlation ma-
trix, encouraging base learners trained from different meta-
path graphs to be more independent. To assess this effect, we

examined the ensemble performance across different meta-
paths for λ ∈ {0, 0.1, 0.5}, as shown in Fig. 4(c) . The vio-
lin plots visualize the distribution of ensemble performance.
As λ increases, the spread (i.e., width) of the distributions
becomes larger, suggesting that models trained from indi-
vidual meta-paths produce increasingly diverse predictions.
This validates that the correlation-regularization term posi-
tively contributes to diversity between ensemble models.

3.4 Theoretical Analysis
Complexity. Algorithm 1 in Appendix lists the major steps
of HGEN which takes a heterogeneous graph as input, learns
allele GNNs from meta-path graphs, and outputs predictions
for target nodes. Given m meta-paths and k allele GNNs for
each meta-path, with an average of e number of edges for
each meta-path. Denote training a single GNN time com-
plexity is T with T at least linearly scaled to O(nf + e).
The asymptotic complexity of the HGEN is then at least
O(m ∗ (kT ) + m ∗ (k ∗ nf). With m ∗ k ∗ nf roughly the
time for the residual attention computation and m ∗ (kT ) for
each individual GNN training. Since nf ≤ T , we should ap-
proximately have c ∗m ∗ (kT ) time complexity and asymp-
totically O(m ∗ (kT )) time complexity. With the assumption
that m, k ≪ T , the total complexity of the ensemble model
is linearly scalable.

We report the wallclock runtime performance by assessing
the average training time per epoch across ensemble sizes in
Fig. 4(b) . We observe a linear increase of runtime w.r.t. en-
semble size in all five datasets. Besides, on larger graphs,
the increasing trend of average training time per epoch w.r.t.
increasing number of nodes and edges is also linear. The
two results suggest scalability of HGEN in both ensemble
size and graph size, attesting its practicability for large-scale
graph learning. We also conduct experiments by using a large
Freebase dataset containing 40,000 nodes and four different
magnitude datasets, with the results illustrated in Fig. 4(d) .
We observe that the attention in HGEN could introduce slight
overhead, but it remains constant and does not scale up with
the graph size. If we remove this attention mechanism, the
runtime of HGEN will be on a par with the naive ensemble
baseline. The extra runtime is mainly required from comput-
ing the attention, it will remain manageable for large graphs.

Convergence & Superiority Than Naive Voting. In the
following, we derive a Theorem and two remarks, which as-
sert the convergence of HGEN, and its superiority compared
to simple voting based ensemble. Detailed derivations are re-
ported in Supplement D.

Theorem 1. Denoted by L′ = −
∑

i yi log(yi) the cross-
entropy loss accumulated by by minimizing the objective
Eq. (9) over t training iterations. The cumulative loss ℓ at
the t-th iteration satisfies:

ℓ = L′ + ∥S∥1

≤ t · L′(Wt,W
mlp
∗ ) +

∥Wmlp
t −Wmlp

∗ ∥
2η′

+m · f ·max |h ·∪
ij |2,



Figure 4: (a) Average runtime per epoch w.r.t. different number of base learners on five datasets. (b) Log Average runtime per epoch using
three base learners increases with number of nodes plus number of edges in log term. (c) Ensemble accuracy of each meta-path w.r.t. different
λ values. (d) Runtime comparison on HGEN, HGEN w/o attention, and simple ensemble model on five datasets, where Freebase is the largest
to attest their scalability.

where Wt and Wmlp
t represent the learnable parameters of

base graph learner and the weights of MLP at the t-th iter-
ation, respectively; Wmlp

∗ is the optimal MLP weights and η′

the step size. L is the Lipschitz constant. Denoted by h ·∪
ij the

(i, j)-th entry of the fused node embedding matrix H ·∪
j , whose

magnitude is bounded by:

h ·∪
ij ∈

(
min

(
µ− 4σ −

√
t ηL, (k + 1)(µ− 4σ −

√
t ηL)

)
,

max
(
µ+ 4σ +

√
t ηL, (k + 1)(µ+ 4σ +

√
t ηL)

))
.

Remark 1. Consider the immediate loss lt(Wt) that holds

lt(Wt) ≤ L′(Wt,W
mlp
∗ ) +

∥Wmlp
t −Wmlp

∗ ∥
2η′t +

m·f ·max |h ·∪
ij |

2

t .

We observe limt→∞(L′(Wt,W
mlp
∗ ) − lt(Wt)) = 0, where

lt(Wt) is approaching its optimal status as t goes larger. This
suggests that the learning process of using MLP to ensemble
the resultant node embeddings of base graph learners is
stabilizing and improving over time, indicating convergence.
Remark 2. The θ-weighted ensemble strategy in HGEN en-
joys a magnified term ∥S∥1 hence strengthen the regular-
ization effect through the aggregated embedding , because
range(h ·∪

ij) ≥ range(h̃ ·∪
ij), where h̃ ·∪

ij ∈ (µ− 4σ−
√
tηL, µ+

4σ+
√
tηL) is the (i, j)-th entry of the fused node embedding

matrix generated from naı̈ve voting, and Θ̃i,j ∈ [0, 1], ∀i, j.
This means that HGEN provides a broader range of possible
embedding values compared to the naı̈ve voting, thereby re-
sulting in more flexible and informative embeddings, which
helps improve overall performance and generalization.

4 Experiment
4.1 Benchmark Datasets
Five heterogeneous graphs from real applications are used as
benchmark datasets. Their statistics and detailed descriptions
are deferred to Supplement B of Appendix due to page limits.

4.2 Baselines
We compare our HGEN with some state-of-art baselines in-
cluding heterogeneous graph embedding models.

• HAN [Xiao et al., 2019] leverages node- and semantic-
level attention mechanisms to learn heterogeneous node
embeddings from different meta-paths.

• Ensemble-GNN is a variant of the state-of-the-art en-
semble learning method for homogeneous graphs [Wei
et al., 2023], which combines predictions from multi-
ple GNNs through voting. To make the method [Wei
et al., 2023] working for hoterogeneous graphs, we use
meta-paths to generate homogenerous graphs, and ap-
ply the method [Wei et al., 2023] for ensemble learning
(predictions are generated using GCN, GraphSAGE, and
GAT). After training, the predictions across all GNNs
and meta-paths are aggregated through voting to deter-
mine the final prediction.

• Transformer-GNN uses a transformer architecture to
combine embeddings from different GNNs (GCN,
GraphSAGE, and GAT) for each meta-path. Once pre-
dictions are generated for a meta-path, they are stacked
and integrated to produce the final prediction, ensuring
an effective fusion of heterogeneous graph information.

• SeHGNN [Yang et al., 2023b] is a heterogeneous
graph representation learning that precomputes neigh-
bor aggregation using a lightweight mean aggregator
and avoids repeated computations during training. Se-
HGNN extends the receptive field with long meta-paths
and fuses features through a transformer-based module.

• NaiveWeighting-GNN is a variant of the proposed
HGEN. It uses the same architecture and loss function
(and regularizer) as HGEN to guide learning but replaces
the residual-attention fusion of HGEN using a simple
mean average to aggregate all allele GNNs. Its com-
parision to HGEN can demonstrate the advantage of the
residual-attention fusion, compared to simple voting.

4.3 Implementation Details
We perform a grid search with selected range of hyperparam-
eters including hidden dimension, layer size, dropping rate,
number of individual GNN, and control rate for regularizer.
We choose Adam [Kingma and Ba, 2014] as our optimizer.
We fix the learning rate, weight decay, the number of epochs
and apply early stopping mechanism. For each method, we
report the average accuracy and roc-auc score across five ran-
dom seeds. All experiments are run on desktop workstations
equipped with Nvidia GeForce RTX 2080 Ti.



Base Learner: GCN GraphSAGE GAT

Dataset Model Accuracies AUC Model Accuracies AUC Model Accuracies AUC

IMDB HANGCN 0.540∗±0.0160 0.720∗±0.0072 HANSAGE 0.523∗±0.0059 0.697±0.0121 HANGAT 0.563∗±0.0219 0.747∗±0.0140
SeHGCN 0.536∗±0.0031 0.712∗±0.008 SeHSAGE 0.398∗±0.0101 0.568∗±0.0117 SeHGAT 0.419∗±0.0101 0.591∗±0.0123
GCN-Ensemble 0.551∗±0.0406 0.747∗±0.0184 SAGE-Ensemble 0.589∗±0.0055 0.760∗±0.0021 GAT-Ensemble 0.583∗±0.0034 0.754∗±0.0017
NaiveWeightingGCN 0.596∗±0.0031 0.774∗±0.0029 NaiveWeightingSAGE 0.587∗±0.0067 0.762∗±0.0063 NaiveWeightingGAT 0.595±0.0034 0.770±0.0030

TransformerGCN 0.595∗±0.0075 0.771∗±0.0034 TransformerSAGE 0.584∗±0.0072 0.757∗±0.0047 TransformerGAT 0.591∗±0.0036 0.767±0.0034

HGENGCN 0.604±0.0033 0.776±0.0010 HGENSAGE 0.605±0.0040 0.775±0.0032 HGENGAT 0.600±0.0021 0.769±0.0034

ACM HANGCN 0.839∗±0.0183 0.973∗±0.0015 HANSAGE 0.880∗±0.0174 0.977∗±0.0032 HANGAT 0.872∗±0.0107 0.965∗±0.0066
SeHGCN 0.794∗±0.0168 0.923∗±0.0145 SeHSAGE 0.753∗±0.0213 0.914∗±0.0121 SeHGAT 0.730∗±0.0577 0.898∗±0.0385
GCN-Ensemble 0.766∗±0.0088 0.969∗±0.0030 SAGE-Ensemble 0.802∗±0.0308 0.984±0.0012 GAT-Ensemble 0.825∗±0.0078 0.978±0.0005

NaiveWeightingGCN 0.892∗±0.0089 0.977±0.0017 NaiveWeightingSAGE 0.909∗±0.0113 0.984±0.0009 NaiveWeightingGAT 0.892±0.0062 0.978±0.0005

TransformerGCN 0.898∗±0.0103 0.977±0.0019 TransformerSAGE 0.912∗±0.0017 0.983∗±0.0008 TransformerGAT 0.905±0.0041 0.978±0.0007

HGENGCN 0.909±0.0016 0.977±0.0016 HGENSAGE 0.923±0.0022 0.984±0.0006 HGENGAT 0.908±0.0007 0.977±0.0011

DBLP HANGCN 0.868∗±0.0247 0.970∗±0.0097 HANSAGE 0.891∗±0.0161 0.975∗±0.0048 HANGAT 0.900∗±0.0100 0.982∗±0.0020
SeHGCN 0.809∗±0.0175 0.878∗±0.0355 SeHSAGE 0.780∗±0.0266 0.926∗±0.0155 SeHGAT 0.878∗±0.0094 0.971∗±0.0026
GCN-Ensemble 0.925±0.0123 0.990±0.0014 SAGE-Ensemble 0.930∗±0.0022 0.990±0.0006 GAT-Ensemble 0.867∗±0.0439 0.977∗±0.0046
NaiveWeightingGCN 0.932±0.0017 0.990∗±0.0007 NaiveWeightingSAGE 0.931±0.0021 0.989±0.0007 NaiveWeightingGAT 0.919∗±0.0071 0.984±0.0016

TransformerGCN 0.913∗±0.0179 0.948∗±0.0114 TransformerSAGE 0.928∗±0.0025 0.988∗±0.0014 TransformerGAT 0.902∗±0.0103 0.983∗±0.0013
HGENGCN 0.932±0.0020 0.991±0.0003 HGENSAGE 0.936±0.0021 0.989±0.0015 HGENGAT 0.928±0.0031 0.987±0.0018

Business HANGCN 0.717∗±0.0022 0.782∗±0.0015 HANSAGE 0.720∗±0.0030 0.779∗±0.0029 HANGAT 0.692∗±0.0193 0.744∗±0.0296
SeHGCN 0.702∗±0.0134 0.759∗±0.0163 SeHSAGE 0.678∗±0.0037 0.708∗±0.0093 SeHGAT 0.597∗±0.0927 0.587∗±0.1487
GCN-Ensemble 0.708∗±0.0012 0.775∗±0.0006 SAGE-Ensemble 0.710∗±0.0026 0.772∗±0.0008 GAT-Ensemble 0.705∗±0.0038 0.774∗±0.0016
NaiveWeightingGCN 0.715∗±0.0035 0.770±0.0329 NaiveWeightingSAGE 0.720∗±0.0030 0.784∗±0.0022 NaiveWeightingGAT 0.712∗±0.0038 0.778∗±0.0051
TransformerGCN 0.719∗±0.0023 0.786∗±0.0018 TransformerSAGE 0.721∗±0.0064 0.783∗±0.0045 TransformerGAT 0.713∗±0.0021 0.780∗±0.0021
HGENGCN 0.725±0.0042 0.788±0.0011 HGENSAGE 0.732±0.0019 0.787±0.0018 HGENGAT 0.726±0.0059 0.785±0.0027

Urban HANGCN 0.231∗±0.0155 0.596∗±0.0090 HANSAGE 0.502∗±0.0178 0.811∗±0.0061 HANGAT 0.368∗±0.0650 0.765±0.0470

SeHGCN 0.204∗±0.0037 0.458∗±0.0062 SeHSAGE 0.329∗±0.0276 0.779∗±0.0175 SeHGAT 0.206∗±0.0000 0.487∗±0.0637
GCN-Ensemble 0.206∗±0.0000 0.416∗±0.0026 SAGE-Ensemble 0.454∗±0.0185 0.832∗±0.0052 GAT-Ensemble 0.300∗±0.0207 0.761∗±0.0134
NaiveWeightingGCN 0.246∗±0.0367 0.532∗±0.0798 NaiveWeightingSAGE 0.538∗±0.0108 0.831±0.0125 NaiveWeightingGAT 0.444∗±0.0578 0.815±0.016

TransformerGCN 0.201∗±0.0045 0.457∗±0.0034 TransformerSAGE 0.500∗±0.0477 0.815∗±0.0091 TransformerGAT 0.383±0.0531 0.787∗±0.0212
HGENGCN 0.289±0.0000 0.612±0.0090 HGENSAGE 0.591±0.0142 0.850±0.0115 HGENGAT 0.451±0.0353 0.813±0.0106

Table 1: Performance comparisons between baselines and our proposed method equipped with GCN, GraphSAGE, and GAT graph base
learners across five heterogeneous datasets. Accuracies (ACC) and AUC values are reported over 5 different initialization status. Superscript
* indicates that HGEN is statistically significantly better than this method at 95% confidence level using the performance metrics.

4.4 Results and Analysis
Variants and Baseline Comparison. Table 1 reports the
results of the experiment on five datasets with different base-
lines, our proposed method, and variants over three individ-
ual message passing backbones, including graph convolution
network (GCN), graph attention network (GAT), and Graph-
SAGE. Within the same message passing scheme, it can be
observed that our proposed HGEN consistently performs bet-
ter over other baselines with 95% confidence level on IMDB,
Business, ACM, and Urban datasets, and scores on top along
with the GCN-Ensemble method on DBLP dataset, proving
the superiority of our framework.

Compared to all baselines (excluding NaiveWeighting
GNN, which is HGEN’s variant), HGEN performs consistently
better over all datasets with 95% confidence level. For GCN
backbones, HGEN beats all other variants over IMDB, Busi-
ness, ACM, and Urban dataset and performs on top along
with weighted GCN over DBLP dataset. For GAT backbones,
our methods is on par with TransformerGAT and weighted
GAT over Urban and ACM datasets and outperforms others
in the rest of datasets. This shows the advantage and necessity
of our individual components.

Note, HGEN is statistically significantly better than GNN-
Ensemble on 25 out of 30 occasions (across all five datasets).
Although both of them are graph ensemble learning methods,
GNN-ensemble’s base learners are not regulated by the global
objective function and there is no constraint to enhance base
learner diversities. This results in suboptimal base learners
with low accuracies and diversity.

Comparing HGEN and its variant NaiveWeightingGNN , the
results show that HGEN is statistically significantly better

than NaiveWeighting-GNN on 17 out of 30 occasions (across
all five datasets), asserting the advantage of the proposed
residual-attention for allele GNN fusions, compared to naive
voting. This is also consistent with our theoretical analysis
in Section 3.3 which asserts that the Θ-weighted ensemble
strategy strengthens the regularization effects due to its larger
range of h ·∪

ij , compared to naive voting.

Ablation Study on Allele GNNs & Meta-paths. In order
to validate the impact of allele GNNs on HGEN’s ensemble
learning results, we report mean and variance for allele GNNs
leaner and HGEN in Figures 5(a) and 5(b), where the blue vi-
olin plots represents allele GNN models’ accuracies (mean
and variance), and the the orange violin plots show the corre-
sponding final accuracy of HGEN. For each dataset, the results
are reported by increasing the number of meta-paths. Fig-
ures 5(a) and 5(b) show that the variance of the blue plots is
significantly larger than that of the orange plots. This sug-
gests that individual allele GNN models exhibits larger vari-
ability and diversity in their predictions, a preferable setting
for ensemble learning. As a result, the final accuracy, after
ensemble, shows a more stable and consistent result.

As we add more meta-paths, more GNNs are obtained.
Each GNN model learns different aspects of the data, im-
proving the overall robustness of the model. However, while
individual GNNs show more diversity, their performance can
still be limited by the inherent biases or weaknesses of each
model. Meanwhile, when comparing individual GNN accu-
racy and HGEN final accuracy, we observe that the ensemble
results have a much higher accuracy, showing the success of
our residual attention ensemble approach. Using attention
mechanisms, HGEN learns dynamic weights to each meta-
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Figure 5: Impact of allele GNNs and meta-paths on the ensemble
learning results (using GCN as the base learner). Blue violin plots
show allele GNNs’ mean and variance whereas orange violin plots
show HGEN’s mean and variance.

path, focusing on capturing and fusing individual GNN’s ad-
vantage in the learning process. By enforcing diversity across
models from different meta-paths through the ∥S∥1, HGEN
strengthens their embedding fusion range(h ·∪

ij) as we have
theoretically analyzed in Section 3.3, and therefore improves
the final prediction results.

Dataset Model ACC AUC
IMDB HGEN feature drop+regularizer 0.605±0.0040 0.775±0.0032

HGEN feature drop 0.600±0.0112 0.773±0.0071

HGEN edge drop+regularizer 0.582±0.0143 0.755±0.0168

HGEN feature drop+edge drop+regularizer 0.595±0.0034 0.771±0.0050

ACM HGEN feature drop+regularizer 0.923±0.0022 0.984±0.0006

HGEN feature drop 0.909±0.0083 0.983±0.0014

HGEN edge drop+regularizer 0.914±0.0067 0.983±0.0005

HGEN feature drop+edge drop+regularizer 0.912±0.0142 0.983±0.0014

DBLP HGEN feature drop+regularizer 0.936±0.0021 0.989±0.0015

HGEN feature drop 0.933±0.0030 0.988±0.0004

HGEN edge drop+regularizer 0.916±0.0220 0.985±0.0060

HGEN feature drop+edge drop+regularizer 0.921±0.0168 0.987±0.0044

Business HGEN feature drop+regularizer 0.732±0.0019 0.787±0.0018

HGEN feature drop 0.725±0.0043 0.787±0.0021

HGEN edge drop+regularizer 0.724±0.0045 0.788±0.0032

HGEN feature drop+edge drop+regularizer 0.723±0.0059 0.785±0.0047

Urban HGEN feature drop+regularizer 0.591±0.0142 0.850±0.0115

HGEN feature drop 0.553±0.0117 0.837±0.0122

HGEN edge drop+regularizer 0.537±0.0185 0.842±0.0083

HGEN feature drop+edge drop+regularizer 0.548±0.0348 0.845±0.0059

Table 2: Ablation study results w.r.t. regularizer, feature Dropout,
edge Dropout (using GraphSAGE as base learners). Node Dropout
was left out due to its significant inferior performance.

Ablation Study on Augmentations & Regularizer.
Table 2 reports the results of HGEN using different augmen-
tations (feature/edge dropout), combined with the regularizer
across various datasets. Feature dropping diversifies individ-
ual GNNs by enabling a broader range of learning process,
which improves the models’ capacity for generalization. The
regularizer ensures predictive consistency by enforcing con-
straints which further enhances model performance. These
combined effects make the framework particularly suitable
for handling heterogeneous graphs. We observed that the Ur-
ban dataset benefits significantly from the regularizer and fea-
ture dropping, showcasing their utility in domains character-
ized by high heterogeneity and noise.

4.5 Case Study Analysis
To demonstrate why and how HGEN outperforms baselines,
we carry out case studies on each benchmark dataset to com-
pare samples on which HGEN makes correct classification
whereas rivals (i.e. HAN [Xiao et al., 2019]) make mistakes,

Figure 6: Case study on the DBLP dataset explaining why and
how HGEN outperforms HAN using t-visualization. Points represent
samples in the DBLP dataset, colored-coded based on their ground-
truth labels. The circled points are correctly classified by HGEN but
misclassified by HAN. There are 214 circled points.

and report the case study on DBLP in Figure 6 (case studies of
rest datasets are reported in Supplement C). For each dataset,
points represent samples which are color-coded based on their
ground-truth class. Circled points are correctly classified by
HGEN but misclassified by HAN.

Taking DBLP dataset in Figure 6 as an example, it can be
observed that the circled points are mostly around the edges
of the clusters, meaning boundary or difficult cases for sepa-
ration. The proposed HGEN can correctly identify boundary
points for each class that the HAN method incorrectly clas-
sify. Similar phenomena can be observed from other four
datasets. In fact, this is one of the frequently observed ad-
vantages that are naturally brought about by ensemble learn-
ing [Ross et al., 2020; Polikar, 2006].

5 Conclusion
This paper proposed HGEN, a novel ensemble learning frame-
work for heterogeneous graphs. Unlike existing ensemble
methods that focus mainly on homogeneous graphs, HGEN
addresses the unique challenges posed by graph heterogene-
ity, including various node and edge types, and the need for
accurate and diverse base learners. By leveraging a regu-
larized allele GNN framework, HGEN enhances generaliza-
tion through feature dropping techniques, promoting diversity
among base learners. The residual-attention mechanism fur-
ther enables adaptive ensemble weighting, ensuring improved
predictive performance through dynamic aggregation of al-
lele GNNs.
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