How Carbon Metrics Impact Device Selection
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ABSTRACT

As computing systems increasingly contribute to carbon
emissions, understanding how comprehensive carbon met-
rics influence device selection is crucial for sustainable com-
puting. We investigate how considering embodied carbon
alongside operational carbon affects optimal device choice
for AI inference workloads. Our results show that includ-
ing embodied carbon changes the optimal device choice
for up to 58% of workloads, with the impact being more
pronounced in low carbon intensity regions. This demon-
strates that operational carbon alone is insufficient for sus-
tainable device selection, highlighting the need for compre-
hensive carbon-aware metrics.

1 Introduction

The increasing environmental impact of computing sys-
tems has spurred a shift toward more sustainable com-
puting practices. Traditionally, the computing commu-
nity assessed a system’s carbon footprint via its opera-
tional energy (e.g., PUE [5]) or via its operational carbon
emissions—those produced during active workload execu-
tion [6]. However, recent studies [8, 19] have highlighted
the importance of also accounting for (i) embodied carbon
(emissions incurred during hardware manufacturing and
deployment) and (ii) the carbon intensity of the energy
source (which depends on, for example, the amount of re-
newable energy employed). For example, recent works on
temporal and spatial shifting of workloads have focused
on exploiting lower carbon intensity to reduce the total
carbon footprint of execution [26, 21, 15].

This broader perspective has led to the development of

holistic metrics such as Software Carbon Intensity (SCI) [12],

defined as:
SCI = (O x carbon intensity + M) per functional unit R

(1)
Here, O and M are the operational and embodied carbon
emissions. A functional unit R can be a user, an API-call,
or an inference run.

In recent years, several works advocated using one carbon-
related metric (or metrics [3, 13, 11]) over the other [22,
7, 14]. However, it is not always clear what the impact
of the carbon metric is on the underlying system
design choice. That is, would using a different carbon
metric result in a significantly different system design that
is optimal for procurement and use? The Carbon Explorer
work [2] investigated this question for the specific use case
of employing renewable energy infrastructure (e.g., solar
panels, batteries) for data centers. The authors highlight
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the trade-off between the operational carbon savings that
such infrastructure can provide and the embodied carbon
cost of procuring that infrastructure. The authors also ob-
serve that the location of the data center affects the total
carbon footprint as the cost of setting up renewable energy
farms factors in.

Inspired by the aforementioned works, in this paper we
consider the impact of the carbon metric on the system
design choice for the specific problem of device procure-
ment for edge-inference tasks—given an inference job that
is to be run on the edge, which edge device should be pro-
cured and employed to execute the job in the most “car-
bon” efficient manner? Recent works have considered this
question [10, 25], but only using operational energy as the
metric. While we do not endorse any specific sustainabil-
ity metric, the goal of this work is to highlight the impact
of the metric (and associated factors such as carbon inten-
sity, job runtime, and embodied carbon) on the optimal
device choice for an edge-inference task.

We investigate this problem using Al-inference work-
loads on various edge devices under traditional and con-
temporary carbon metrics. Our results indicate that, for
about 58% of the workloads, the optimal device choice dif-
fers between the metrics, and these discrepancies are more
pronounced for low carbon intensity regions (75% of the
workloads see a change in optimal device).

2 ““Carbon’’-aware edge device selection

We experimentally investigated the edge device selection
question.

Edge devices.

We experimented with four edge devices, listed here in
ascending order of their compute capability: (i) Jetson
Nano (4 ARM cores, 128 CUDA cores), (ii) Xavier NX
(6 ARM, 384 CUDA, 48 Tensor cores), (iii) Orin Nano (6
ARM, 1024 CUDA, 32 Tensor cores), and (iv) Orin NX (8
ARM, 1024 CUDA, 32 Tensor cores). These are NVIDIA’s
Jetson series devices [1], capable of running Deep Learning
(DL) models due to their integrated GPUs with CUDA
support. They also consume low power; for example, the
Xavier NX consumes at most 20W of power.

Al-inference workloads. We consider 5 PyTorch infer-
ence models across 4 different batch sizes: (i) AlexNet [18],
(ii) VGG16 [24], (iii) ResNet50 [16], (iv) DenseNet121 [17],
and (v) MobileNetV2 [23]. Due to the limited compu-
tational capabilities of the edge devices, we restrict our
workload choice to these models (as opposed to LLMs or
training).

“Carbon” metrics. For evaluation, we consider:

1. Operational energy (measured from device)

2. SCI—Software Carbon Intensity (defined in Eq. (1))



3. EDP—Energy Delay Product (operational energy X run-
time)
4. CDP—Carbon Delay Product (SCI x runtime)

We use EDP as it captures the trade-off between energy
and performance in a single metric and is widely used in
system evaluation studies [32, 4]. We introduce CDP to
contrast it from EDP and to study the impact of energy
vs. carbon on edge device selection. Prior works have sug-
gested various carbon metrics for different purposes [13,
14]. To illustrate the impact of metrics on system de-
sign, we consider the above four metrics that account for
factors such as carbon intensity, manufacturing emissions,
and hardware performance. The evaluation could be ex-
panded to include other metrics as well, such as through-
put per watt or total SCI [7].

To obtain embodied carbon for the edge devices (say,
M ewvice ), we use estimates derived using ACT [14], a recent
framework that models manufacturing emissions of com-
puting hardware based on process node, chip area, fabrica-
tion location, RAM size, and other parameters. For each
device, we estimate the embodied carbon using the pro-
cessor die and memory specifications from TechPowerUp
GPU Specs Database [27]:

e Jetson Nano 4GB [28]: 54.60 kgCOze
Xavier NX 8GB [31]: 132.39 kgCOze
e Orin Nano 8GB [29]: 168.26 kgCOqe
e Orin NX 16GB [30]: 230.32 kgCOqe

To estimate the embodied cost of each job (Mje), we
amortize the device embodied carbon over its operational
lifetime of five years [9] and multiply this result with the
job’s measured runtime:

Mdevice

Mjop = ——-aevice
7% = Jevice lifetime

X job runtime (2)
Carbon intensity. We use regional average values based
on data from Electricity Maps [20], which provides hourly
carbon intensity metrics (gCO2¢/kWh) across global re-
gions. We chose three regions—France (22gCO2e/kWh),
California (138gCO2e/kWh), and Italy (325gCO2e/kWh)—
whose intensities are representative of low, medium, and
high carbon-intensity regions, respectively.
Methodology. For each device, we disabled DVFS and
set them to MAXN performance mode. Each configuration
was tested for 10 iterations, measuring runtime and energy
consumption. We used the jetson-stats package to get the
edge device’s total energy consumption. Averaged results
for each model were then sorted per the target “carbon”
metric across the four devices.

Results and insights

Figure 1(a) illustrates the comparative sustainability per-
formance of the four Jetson devices across low, medium,
and high carbon intensity regions for both operational en-
ergy and SCI metrics when running VGG16 with a batch
size of 4. For each metric in each graph, the value is nor-
malized by that under Jetson Nano. The order of devices
is then sorted based on increasing operational energy.
Starting with Figure 1(a) for the medium carbon in-
tensity region (California), we see that the sorted order

of devices changed noticeably between operational energy
and SCI metrics. All four devices had a different sorted
rank under the SCI metric compared to their rank un-
der the energy metric. We quantify this as “4 changes” in
sorted order (e.g., Orin Nano has the lowest energy but has
the second-lowest SCI). In particular, Orin NX consumes
more energy than Orin Nano, and Jetson Nano consumes
more energy than Xavier NX. However, SCI prefers Jetson
Nano over Xavier NX because Jetson Nano has very low
embodied carbon—so despite higher operational energy,
the SCI is lower. Interestingly, even though Orin NX has
the highest embodied carbon among all devices, it has the
lowest SCI. This is because of the shorter runtime under
Orin NX, which reduced the job’s embodied carbon share
(Mjob, see Eq. (2)). This shows how SCI can favor faster
devices, even if they have a higher embodied footprint.

If we picked the most “carbon”-efficient device per en-
ergy rankings, we would choose Orin Nano. However, us-
ing SCI as the metric, we would choose Orin NX, which re-
sults in 16% lower SCI compared to the energy-minimizing
Orin Nano device. This shows that the “carbon” metric
greatly impacts the device choice.

A similar shift in sorted order, with 4 changes, is no-
ticed under the low carbon intensity (Figure 1(b)) and
high carbon intensity (Figure 1(c)) regions. However, we
observe a more pronounced change for the low-intensity
region (France) as the SCI for Orin NX drops even further
and the gain in SCI for Xavier NX is higher.

Across all 20 workloads we experimented with, for the
low-intensity region, 17 of them experienced some change
in sorted order, with 4 of them experiencing a complete
change in order (i.e., 4 changes). For medium and high-
intensity regions, we still observed 16 and 13 workloads
experiencing some change in sorted order, respectively.
However, the biggest shifts happened in the low carbon in-
tensity region, highlighting the importance of the location
when making the most carbon-efficient decision. Overall,
for 58% of the workloads, the optimal device (the one with
the lowest “carbon” metric value) changes under SCI when
compared with operational energy. Table 1 (“Energy vs.
SCI”) provides further details.

Next, we also consider performance as a deciding fac-
tor. EDP and CDP capture this by combining operational
energy and total carbon with runtime, respectively. In
Figure 2, when ResNet50 is run with a batch size of 8 in a
low carbon intensity region, the device order changes sig-
nificantly (with 4 changes) for both energy vs. SCI and for
EDP vs. CDP. Using EDP as the metric, we would choose
Orin Nano as the best device (11% better than the next-
best Orin NX), whereas under CDP, we would choose Orin
NX, which provides 8% lower CDP than Orin Nano. It is
worth noting that although Jetson Nano has a lower SCI,
its CDP is much higher compared to Orin NX and Orin
Nano. This is because Orin devices, being faster, complete
inference sooner, and this advantage shifts the order under
CDP where runtime is taken into account explicitly. This
highlights the trade-off between total carbon and runtime,
which becomes important in performance-sensitive appli-
cations.

Across all workloads, under low, medium, and high in-
tensity, we observed a change in order for 8, 6, and 5
workloads, respectively. We find that the optimal device
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Figure 1: Change in device order for VGG16 (batch size 4) when sorted on distinct carbon metrics in different locations.
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Figure 2: Device order under all 4 carbon metrics for
ResNet50 with batch size 8.

Energy vs SCI | EDP vs CDP
# changes | 2 3 4 2 3 4
Low CI 5 8 4 7 0 1
Mid CI 9 2 5 6 0 0
High CI 9 2 2 5 0 0

Table 1: Number of workloads (out of 20) experiencing
various degrees of sorted-order changes for edge devices
under different carbon-intensity regions.

changes under CDP for 12% of the workloads. Table 1
(“EDP vs CDP”) provides further details.

3 Conclusion

Our study shows that carbon metrics significantly impact
edge device selection for Al inference workloads. We found
that considering various factors, like embodied emissions
of the devices and carbon intensity of data center location,
changes the optimal device for procurement and use, with
low carbon intensity regions showing bigger differences.
Based on the above results, we conclude that the choice
of the “carbon” metric can impact the system de-
sign choices being made for sustainable computing,
especially based on how pronounced some factors (carbon
intensity, job runtime, embodied carbon) are in the chosen
metric.
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