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Abstract

Planning in real-world settings often entails addressing partial observability while
aligning with users’ requirements. We present a novel framework for expressing
users’ constraints and preferences about agent behavior in a partially observable
setting using parameterized belief-state query (BSQ) policies in the setting of goal-
oriented partially observable Markov decision processes (gPOMDPs). We present
the first formal analysis of such constraints and prove that while the expected
cost function of a parameterized BSQ policy w.r.t its parameters is not convex,
it is piecewise constant and yields an implicit discrete parameter search space
that is finite for finite horizons. This theoretical result leads to novel algorithms
that optimize gPOMDP agent behavior with guaranteed user alignment. Analysis
proves that our algorithms converge to the optimal user-aligned behavior in the limit.
Empirical results show that parameterized BSQ policies provide a computationally
feasible approach for user-aligned planning in partially observable settings.

1 Introduction

Users of sequential decision-making (SDM) agents in partially observable settings often have require-
ments and preferences on expected behavior, ranging from safety concerns to high-level knowledge
of task completion requirements. However, users are ill-equipped to specify desired behaviors from
such agents. For instance, although reward engineering can often encode fully observable preferences
[Devidze et al., 2021} |Gupta et al., 2023], it requires significant trial-and-error, and can produce
unintended behavior even when done by experts working on simple domains [Booth et al.,|2023].
These challenges are compounded in partially observable environments, where the agent will not
know the full state on which the users’ requirements and preferences are typically defined. For
example, defining a reward function on the belief state to align the agent’s behavior with the user can
result in wireheading [Everitt and Hutter, 2016] (see Sec.for further discussion on related work).

Consider a simplified, minimal example designed to illustrate the key principles (Fig.[I(a)). A
robot located on a spaceship experiences a communication error with the ship and needs to decide
whether to attempt to repair itself or the ship. Importantly, while a robot error is harder to detect, the
user would rather risk repairing the robot than repairing the ship, as each repair risks introducing
additional failures. In other words, the user may expect the robot to work with the following goals and
preferences: The objective is to fix the communication channel. First, if there is a “high” likelihood
that the robot is broken, it should try to repair itself; otherwise, if there is a “high” likelihood that the
ship is broken, it should try to repair that. Such preferences go beyond preferences in fully observable
settings: they use queries on the current belief state for expressing users’ requirements while using the
conventional paradigm of stating objectives in terms of the true underlying state. Such a formulation
avoids wireheading, allowing users to express their constraints and preferences in partially observable
settings. Although such constraints on behavior are intuitive and common, they leave a significant
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Figure 1: (a) Spaceship Repair running example. (b) parameterized BSQ policy for the user preference
from the Introduction. (c) The expected cumulative cost function for (b) with a horizon of 12.

amount of uncertainty to be resolved by the agent: it needs to optimize the threshold values of “high”
probability under which each rule would apply while attempting to achieve the objective.

We introduce mathematical and algorithmic foundations for addressing these problems by defining
constraints on behaviors in terms of properties of the belief state, expressed through belief-state
queries (BSQs). We prove the surprising result that although the space of possible threshold values in
preferences such as the one listed above is uncountably infinite, only a finite number of evaluations
are required for computing optimal, user-aligned policies for finite-horizon problems. We use this
result to develop a probabilistically complete algorithm for computing optimal constrained policies.
Our main contributions are:

1. A framework for encoding user requirements and preferences over agent behavior in goal-
oriented partially observable Markov decision processes (Sec.[3).

2. Mathematical analysis proving that the expected cost function of a parameterized BSQ
policy w.r.t its parameters is piecewise constant but generally non-convex. (Sec.[).

3. A probabilistically complete algorithm for computing optimal user-aligned policies in
goal-oriented POMDPs (Sec.[3).

4. Empirical evaluation on a diverse set of problems showing both the efficiency of our
algorithm and the quality of the computed user-aligned policies. (Sec.[7).

2 Related Work

Planning over preferences has been well studied in fully observable settings [Baier et al.,[2007} [Aguas|
let al.}[2016]. [Voloshin et al.|[2022] present an approach for complying with an LTL specification
while carrying out reinforcement learning. Other approaches for using LTL specifications use the
grounded state to create a reward function to teach reinforcement learning agents
2018} [Vaezipoor et al., 2021]. These approaches do not extend to partially observable settings as they
consider agents that can access the complete state.

In partially observable settings, existing approaches for using domain knowledge and preferences
require extensive, error-prone reward design and/or do not guarantee compliance. LTL specifications
have been incorporated either by designing a reward function that incentivizes actions more likely
to adhere to these specifications [Liu et al.,[202T, [Tuli et al., 2022] or by imposing a compliance
threshold [Ahmadi et al.}[2020]. In both approaches, the user calibrates rewards for user alignment
with those for objective completion; it is difficult to ensure user alignment. We focus on the problem
of guaranteeing user alignment without reward engineering.

Mazzi et al. [2021, 2023] proposed expressing domain control knowledge using belief state proba-
bilities. [Mazzi et al. [2021] used expert-provided rule templates and execution traces to construct a
shield to prevent irregular actions. [Mazzi et al.|[2023] used execution traces and domain-specified
belief-state queries to learn action preconditions over the belief state. Both approaches use input
traces and focus on ensuring a policy is consistent with previously observed behavior. We address the
complementary problem of computing user-aligned policies without past traces.




Belief-state queries have been used to solve POMDPs with uniform parameter sampling [Srivastava
et al.,2012]] but formal analysis, feasibility of optimizing BSQ policies, and the existence of provably
convergent algorithms have remained open as research questions prior to this work.

3 Formal Framework

This section formally defines the BSQ framework, which expresses user requirements on an agent’s
belief and is designed for relational goal-oriented partially observable Markov decision processes.

3.1 Goal-Oriented Partially Observable Markov Decision Process

Partially observable Markov decision processes (POMDPs) constitute a standard mathematical
framework for modeling SDM problems in partially observable, stochastic settings [Kaelbling et al.,
1998, Smallwood and Sondik, |1973]. State-of-the-art POMDP solvers often rely on approximate
online approaches [Silver and Veness|[2010, Somani et al., 2013] where recent work addresses the
problem of obtaining performance bounds [Barenboim and Indelman, 2023} Lim et al.,2023].

We use goal-oriented POMDPs (gPOMDPs), where the agent aims to complete one of the tasks/goals.
This eliminates the burden of error-prone reward engineering by using a default cost function
that associates a constant cost for each timestep before reaching the goal. E.g., the Spaceship
Repair problem (Sec.[I) has two objects: the robot and the spaceship. A state is defined using
a Boolean function broken(o) representing whether object o needs repair and an integer-valued
function rlocation() representing the robot’s location. Both functions are not observable. The agent
has two types of actions: try to repair object o (repair(o)) or wait (wait()). A transition function
expresses the distribution of rlocation() depending on the action taken and the robot’s previous
location. At each timestep, the robot receives a noisy observation obs_err(o) regarding the status of
object o. The set of observations can be expressed as {obs_err(robot), obs_err(ship)}. Due to noisy
perception, obs_error(o) may not match broken(o). An observation function denotes the probability
of each observation conditioned on the (hidden) current state. The goal is to reach the repair station
corresponding to the truly broken component. We define gPOMDPs formally as follows.

Definition 1. A goal-oriented partially observable Markov decision process P is defined as
(C,F, A0, T,Q,G,Cost, H,byy where C is the finite set of constant symbols and F is the finite
set of functions. The set of state variables for F, Vr, is defined as all instantiations of functions
in F with objects in O. The set of states S is the set of all possible valuations for Vi; A is a
finite set of actions, O is a subset of F of observation predicates, T : S x A x § — [0, 1] is the
transition function T'(s, a,s") = Pr(s'|a, s); G S S is the set of goal states that are also sink states,
Q:8xAx O — [0,1] is the observation function; (s,a,0) = Pr(o|s,a), Cost(s) = {0 if
s € G;else 1} is the cost function, H is the horizon, and by is the initial belief state. A solution for a
gPOMDP is a policy that has a non-zero probability of reaching G in H — 1 timesteps.

3.2 Belief-State Queries and Policies

Computing a policy for any gPOMDP requires planning around state uncertainty. This is done using
the concept of a belief state, which is a probability distribution over the currently possible states.
Formally, the belief state constitutes a sufficient statistic for observation-action histories [Astrom
et al.,|1965]]. We express user requirements using queries on the current belief state.

For any belief state b, when action « is taken and observation o is observed, the updated belief
state is computed using V' (s") = af)(s’, a,0) >, T (s, a, s")b(s) where « is the normalization factor.
We refer to this belief propagation as ' = bp(b,a,0). We extend the notation to refer to the
sequential application of this equation to arbitrary bounded histories as bp* (bg, a1, 01, ..., G, 0n) =
bp(. .. bp(bp(bo, a1, 01), az,02) ...).

For example, the Spaceship Repair problem user preference has the expression “a high likelihood that
the robot is broken”. This can be expressed as a query on a belief state b: Pr[broken(robot)], >
O,.0p Where ©,.,p is a parameter. If rlocation() is fully observable, the expression “the robot location
is smaller than Oy in a belief state b” can be expressed as Pr[rlocation() < ©;], == 1. We can
combine both queries to express “a high likelihood the robot is broken and its location is lower than
©,”, as: Prbroken(robot)]y > O.op A Pr[rlocation() < ©;], == 1.



Formally, BSQs use the vocabulary of the underlying gPOMDP. There are two types of queries we
can ask: (1) whether formula ¢ is true with a probability that satisfies a threshold ©; (2) whether the
fully observable portion of the state satisfies a formula ¢ containing a threshold ©. These thresholds
represent the parameters of a parameterized BSQ policy. The agent must optimize these parameters
to achieve the goal while aligning with the user’s requirements. BSQs can be combined using
conjunctions or disjunctions to express more complex requirements, which we define as a compound
BSQ in Def. [3] We omit subscripts when clear from context.

Definition 2. A belief-state query A\p(b; p, 0, ©), where b is a belief state, ¢ is a first-order logic
Sformula composed of functions in gPOMDP P, o is any comparison operator, and © € R is a
parameter, is defined as Ap(b; p,0,0) = Pr[e]p o ©.

Definition 3. A compound BSQ ¥ (b; @), where b is a belief state and O e R", iseithera conjunction
or a disjunction of BSQs that contain n total parameters.

We use BSQs to formally express user requirements of the form discussed in the introduction by
mapping BSQs with variable parameters to actions. Fig.[I(b) illustrates this with a parameterized
BSQ policy for the Spaceship Repair problem. Formally,

Definition 4. Let b be a belief state and © be a tuple of n parameter variables over R. An n-
parameter Parameterized Belief-State Query policy 7 (b, ©) is a tuple of rules {r1, ..., rn} where
eachr; = U; — a; is composed of a compound BSQ ¥; and an action a; € A. The set {¥y,..., U}
is mutually exclusive and covers the n-dimensional parameter space R™.

In practice, mutually exclusive coverage is easily achieved using an if... then... else structure, where
each condition includes a conjunction of the negation of preceding conditions and the list of rules
includes a terminal else with the catchall BSQ True (Fig.ll]). Any assignment of values ¥ € R” to the
parameters © of a parameterized BSQ policy produces an executable policy that maps every possible
belief state to an action:

Definition 5. A BSQ policy (b, 9) is a parameterized BSQ policy 7(b, ©) with an assignment in R
to each of the n parameters ©.

Let Pr7(G) be the probability that an execution of a policy 7 reaches a state in G within ¢ timesteps.

A BSQ policy 7(b,¥) is said to be a solution to a gPOMDP with goal G and horizon H iff

Prz(i’f? )(g) > 0. The quality of a BSQ policy is defined as its expected cost; due to the uni-

form cost function in the definition of gPOMDPs, the expected cost of a BSQ policy is the ex-
pected time taken to reach a goal state. Formally, the expected cost of a BSQ policy (b, ?) is
E.(0;H) = Zil t x Prg 4[m(b,9)], where H is the horizon and Prg ;[ (b, 9)] is the probability
of policy 7(b, ) reaching a goal state for the first time at timestep . Thus, given a gPOMDP P, with
goal G, and a parameterized BSQ policy (b, ©), the objective is to compute:

0 = argming{E (0; H) : Prz(f’?)(g) > 0}

4 Formal Analysis

Our main theoretical result is that the continuous space of policy parameters is, in fact, partitioned
into finitely many constant-valued convex sets. This insight allows the development of scalable
algorithms for computing low-cost user-aligned policies. We introduce formal concepts and key steps
in proving this result here; complete proofs for all results are available in the Appendix. We begin
with the notion of strategy trees to conceptualize the search process for BSQ policies.

4.1 Strategy Trees

Every parameterized BSQ policy 7 (b, ©) and gPOMDP P defines a strategy tree (e.g., Fig.lZ(a))
that captures the possible decisions at each execution step. Intuitively, the tree starts at a belief node
representing the initial belief state. Outgoing edges from belief nodes represent rule selection in
7(b, ©), resulting in action nodes. Outgoing edges from action nodes represent possible observations,
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Figure 2: (a) Strategy tree created from parameterized BSQ policy in Fig.E and Spaceship Repair
gPOMDP with horizon of 2. (b) Complete partitions of parameter space with two of the braids
highlighted. Error detection sensor accuracy for the robot and ship is 60% and 75%, respectively.

leading to belief nodes representing the corresponding updated belief. If the tree is truncated at horizon
H, each leaf represents the outcome of a unique trajectory of rules from (b, ©) and observations.

Each belief node represents a belief state that can be calculated using the rule-observation trajectory
leading to that node. A labeling function ! : Vg u V4 — B U A maps the set of belief nodes Vp
to belief states in B and the set of action nodes V4 to actions in A. For ease of notation we define
bf = l(v;) for all belief nodes v; € Vpp and a} = I(v;) for all action nodes v; € Vy4.

Definition 6. Let P be a gPOMDP, 7 (b, ©) be a parameterized BSQ policy for P, and by be the
initial belief state. The strategy tree T (b, ) is defined as T, (b,) = {V, E) where set V = Vg u V4
contains belief nodes Vg and action nodes V4, whereas, set E = Ep U I 4 contains edges from belief
nodes to action nodes (Ey, Vg x V1) and edges from action nodes to belief nodes (E4 < V4o x Vp).
Ep is defined as {(vi,r,vj)|vi € Vp,v; € Va,r € m(b,0), and IV : r = U — a¥}. E, is defined
as {(Vm, 0,vn)|vm € Va, v, € V,0€ O,3(vp, 7 =V — a,vy,) € Ep; b = bp(bys, a,0)}.

Non-convexity of the expected cost function Each parameterized BSQ policy permits infinitely
many BSQ policies, one for each assignment of real values to its parameters. Unfortunately, the
expected cost of parameterized BSQ policies is not a convex function of these parameters. Fig.[T]c)
shows this with a counterexample using the parameterized BSQ policy from Fig.[I(b), a horizon of
12, and setting the robot’s initial distance from each repair station to 5. This plot was constructed
by sampling the expected cost for 251,001 equally-spaced parameter assignments to the Fig.[T(a)
parameterized BSQ policy. E(¥; H) is clearly not convex: the expected cost along the line ©4 =
©1 — 0.25 has two inflection points at ©; = 0.6 and ©; = 0.8. This creates two local minima:
07 < 0.16 and ©1 > 0.83 A O < 0.1. Intuitively, this is due to the short horizon, which causes
the optimal strategy to be selecting a repair station and traversing to it regardless of the observations.
This complicates finding good BSQ policies using existing solvers. However, every possible BSQ
policy can be associated with a set of strategy tree leaves that are reachable under that policy. Thus,
for a given horizon, there are only finitely many expected costs for BSQ policies for a given problem.

The main challenge in computing good BSQ policies is that the set of possible BSQ policies with
distinct expected costs grows exponentially with the horizon and good BSQ parameters could be
distributed arbitrarily in the high-dimensional, continuous space of parameter values. We use strategy
trees to define groups of leaves called braids, which we will then use to prove that the space of BSQ
policy parameters turns out to be well-structured in terms of the expected cost function.

Braids We refer to the set of all leaves reachable under a policy 7 (b, ) as the braid of V. Due to
the mutual exclusivity of rules for every assignment of parameter values to a parameterized BSQ
policy, at most, one outgoing edge can be taken from each belief node (as these correspond to the
rules and actions). However, the stochasticity of dynamics and observations allows for multiple
outgoing edges to be possible from action nodes. E.g., in the strategy tree for the Spaceship Repair
problem (Fig.@(a)), leaves /5 and {1 cannot both be reachable under a BSQ policy because that
would require rules r; and ry to be satisfied at the same belief. However, both /; and /5 may be
reachable under the same BSQ policy since their paths diverge on an action node. Formally,



Definition 7. Let H be the horizon, and let 7(b,©) be a parameterized BSQ policy for a

gPOMDP P. The braid of a parameter assignment ¥, braid. (V) is the set of all leaves
in strategy tree T.(byg) rooted at the initial belief by that can be reached while executing
7(b,9): braid, y(9) = {{g : thepathtolyis (r1,01,....,rm,0m);Vi 1, = V; — a;, b; =
bp* (bo, 71,01, ..., 73, 0;) and O satisfies V;.

The unique interval of parameter values where a leaf is reachable can be calculated by taking the
intersection of the parameter intervals needed to satisfy each rule on the path to that leaf. This is
because for any compound BSQ ¥, we can compute the unique interval of parameter values (V)
under which b will satisfy I(¥) by substituting each BSQ in ¥ with its corresponding inequality:

Lemma 1. Let W(b; ) be an n-dimensional compound BSQ. There exists a set of intervals I1(¥)
R™ s.z. U(b; ©) evaluates to true iff © € I(T).

We can utilize this result to compute the unique interval of parameter values consistent with a braid
by taking the intersection of the intervals of each leaf contained in that braid (Def.[§):

Definition 8. Ler 7(b, ©) be a parameterized BSQ policy, P be a gPOMDP, by be the initial belief
state, and H be the horizon. The interval of leaf ¢, 1({), is defined as the intersection of intervals
(), I(¥;) of the conditions of each rule r; that occurs in the path to that leaf. The interval for a set of
leaves L is defined as 1(L) = (1,1, I(4:).

Any leaf or braid with an empty parameter interval does not align with the user’s requirements. For
example, in Fig.[2, note that rq is the only rule satisfiable if r; is selected from by and the robot is
observed to be broken. Using the Fig.[T[b) policy and assuming the sensor accuracy is 60%, picking
a rule other than r; implies that 50% likelihood was high enough to fix the robot yet 60% was not,
which is a contradiction. Removing misaligned leaves and braids prunes the tree.

4.2 BSQ Policies are Piecewise Constant

We now use the concept of braids to prove that the continuous, high-dimensional space of parameter
values of a parameterized BSQ policy reduces to a finite set of contiguous, convex partitions with each
partition having a constant expected cost. This surprising result implies that although the expected
cost of BSQ policies is not a convex function of parameter assignments, optimizing a parameterized
BSQ policy requires optimization over a finite set rather than over a continuous space. We first define
a notion of similarity over assignments to parameterized BSQ policies that define BSQ policies:

Definition 9. Let f(bf, ©) be a parameterized BSQ policy, P be a gPOMDPF, and H be the horizon.
Two assignments V1,92 € © are said to be similar, 01 =g Vo, iff braid. p (V1) = braid. u(Js).

It is trivial to show =y is transitive, symmetric, and reflexive, making it an equivalence relation over
R™. As such, =g defines a partition over the same space:

Theorem 1. Let 7t(b, ©) be a parameterized BSQ policy, P be a gPOMDP, by be the initial belief
state, and H be the horizon. The operator =y partitions R".

However, this result is not sufficient to define the structure of partitions induced in R™, which will
be required for an efficient optimization algorithm. Based on Sec. . 1| we know that leaves whose
trajectories diverge due to different rules must not be in the same braid. Furthermore, a belief state
can only lead to one set of possible observations for an action regardless of the BSQ policy being
followed. Intuitively, this prevents braids from being proper subsets of each other, which implies that
the parameter intervals for two braids can never have overlapping parameter intervals. This gives us
the desired structure for partitions induced in the space of parameter values for parameterized BSQ
policies: there are parameter intervals corresponding to distinct braids in the policy tree. In other
words, the set of braids partitions the parameter space into contiguous, high-dimensional intervals.
This can be proved formally and stated as follows:

Theorem 2. Let 71(b, ©) be a parameterized BSQ policy, by be the initial belief state, and H be the
horizon. Each partition p created by operator =g partitioning R™ is the disjoint intervals, p = R"™
where VU € p, braid. g (V) = L where L is a fixed set of leaves.

Since each partition corresponds to a braid and each braid corresponds to a fixed set of leaves, which
defines the expected cost for all policies corresponding to that braid, all policies defined by a partition



of the parameter space have a constant expected cost. As such, the domain of the expected cost
function E1(19; H) for gPOMDP P can be represented as the disjoint intervals of each braid partition.
Thus, E,(¥; H) is piecewise constant. The following result formalizes this.

Theorem 3. Let 7t(b, ©) be a parameterized BSQ policy, P be a gPOMDP, by be the initial belief
state, and H be the horizon. Each partition created by =g on R™ has a constant expected cost.

In some situations, the braids that partition the parameter space can be calculated in closed form
(e.g., see the Appendix for partitions for the Spaceship Repair problem). The next section develops a
general approach for computing the braids and intervals corresponding to a parameterized BSQ policy,
for evaluating the expected cost for each such partition, and for optimizing over these partitions.

5 Partition Refinement Search

In this section, we present a novel algorithm for op- Algorithm 1 Partition Refinement Search (PRS)

timizing the parameters for a parameterized BSQ } - ;
policy using the theory of braids developed above. I+ Inputs: gPOMDP P, parameterized BSQ

The Partition Refinement Search (PRS) algorithm policy W(bv_Q)’ horizon H i
(Algo.[T) constructs the set of partitions using hier- % Output: Minimum cost partition and its ex-
archical partition selection and refinement, where pected cost <popt7 E [popt]>

a partition is selected to be refined, a leaf that 3t Pinit < X oo Do
can occur in that partition is sampled and evalu- 4 X = {{pinit; 00}, Xopt = {pinit, )
ated, and the partitions are refined to isolate the ~ 5: while !TimeOut() do
interval of the braid corresponding to the sample.  6:  (p, E[p]) < Select Partition(X)
The hypothesized optimal partition is tracked and 7. 9, ~ Uni formSample(p)

8

9

returned as the final result after timeout. ¢, By « Rollout(P, (b, D), H)

PRS constructs the first parameter space interval DX — (X\(p, E[p])) up\(0), E[p])
as the domain of all possible parameter values 19 X «— X u pnI0), E[p] u Ep)
(line 3). This is set as the initial hypothesized ;. x , < argmin E[ )

optimal partition (line 4). In each iteration, a par- P (o BlobeX

tition p is selected using exploration-exploitation  {5. end while

approaches discussed in Sec.[6] (lines 6). A leaf 3. peturn Xopt

¢ is sampled from p by uniformly sampling pa-
rameter value 1) from p’s parameter intervals and
performing rollouts from the initial belief state to a reachable leaf using the BSQ policy 7 (b, ) (lines
7 and 8). The sampled leaf ¢ is used to refine partition p using the insight braids cannot overlap
(Sec.@). If there exists a subinterval of p where ¢ does not occur, a new partition for this subinterval
is constructed containing p’s previous leaves and expected cost (line 9). The remaining portion of
p, where £ can occur, is used to construct a partition with an updated expected cost representing p’s

previous leaves and ¢ (line 10). The hypothesized optimal partition is then updated (line 11).

PRS converges to the true optimal BSQ policies in the limit:

Theorem 4. Let (b, ©) be a parameterized BSQ policy, P be a gPOMDP, b the initial belief state,
and H be the horizon. The likelihood of the Partition Refinement Search algorithm returning the
optimal parameter interval converges to one in the limit of infinite samples.

Complexity analysis While the theoretical space and time complexity are linear in the number of
leaves, due to PRS grouping leaves from the strategy tree (Def.[6), there is good reason to expect
better performance in practice. As discussed in Sec. [4.1] strategy trees can get pruned with the
removal of branches and leaves that do not align with the user’s requirements. For example, in the
Spaceship Repair problem using the Fig.[T| parameterized BSQ policy, a third of the possible leaves
are pruned at a horizon of two, and the pruning becomes even more significant for longer horizons.
Additionally, empirical results suggest that rules earlier in rule-observation trajectories are more
important in dictating the partitions. Furthermore, selecting and refining partitions can be performed
in parallel, further improving performance.



6 Partition Selection Approaches

We explored multiple partition selection approaches with a multiprocessing version of PRS. Each
approach used the same dynamic exploration rate e,. that diminished over time. Each thread managed
a subset of partitions X’ € X and updated a global hypothetical optimal partition. Additionally, we
warm start PRS by randomly selecting 20 points in the parameter search space and evaluating them
40 times to build an initial set of partitions. Also, partitions that have a lower expected cost than the
hypothesize optimal are sampled up to 40 before updating the hypothesize optimal. In this paper, we
focus on three selection approaches and discuss two others in the Appendix.

Epsilon Greedy (PRS-Epsilon) We explore e,. percent of the time by uniformly sampling s ~ U}
and checking if s < e,. If we are exploring, we uniformly at random select a partition from X”.

Otherwise, the partition with minimum expected cost, arg min (o B[pDeX’ E[p], is selected.

Boltzmann Exploration (PRS-Bolt) Partitions are selected in a weighted random fashion with the

probability of selecting partition p as a x exp(F|[p]/e,) with « being the normalization factor.

Local Thompson Sampling (PRS-Local) Each thread treats the problem as a multi-armed bandit
problem where the expected cost for the next sample from each partition is simulated using N (ji¢, o)
with . and o, being the partition’s mean and standard deviation, respectively. The partition with the
lowest estimated expected cost is selected.

7 Empirical Results

We created an implementation of PRS and evaluated it on four challenging risk-averse problems.
Complete source code is available in the supplementary material. We describe the problems and user
preferences here; further details, including parameterized BSQ policy, can be found in the Appendix.

Lane merger (LM) In this problem, an autonomous vehicle driving on a two-lane road must switch
lanes safely before reaching a lane merger. However, there is currently a car in the other lane that
the agent does not know the location or speed of. Switching lanes too close to this car risks a severe
accident. The autonomous vehicle has a noisy detection system that returns whether a vehicle is
located in regions around the car. The user’s preference is: If there’s a high likelihood of safely
switching lanes, do so. If there is a high likelihood of the other car being in close proximity and it is
possible to slow down, slow down. Otherwise, keep going.

Spaceship repair (SR) This is a modified version of the running example with parameterized BSQ
policy Fig.[I(b). The robots start 7 steps and 5 steps away from the robot and ship repair stations,
respectively. Additionally, the robot’s sensor is 75% accurate at detecting errors with the robot and
only 55% for the ship. With the short horizon H = 12, this results in the parameter space being not
convex with multiple local minimums with differing expected costs.

Graph rock sample (GRS) We modified the classic RockSample(n, k) problem [Smith and
Simmons, 2004] by replacing the grid with a graph with waypoints where some waypoints contain
rocks. Additionally, we introduced risk by causing the robot to break beyond repair if it samples a
rock not worth sampling. We also categorized the rocks into types, and the rover’s goal is to bring a
sample of each type to the desired location if a safe rock for that type exists. This goal requires a
longer horizon to reach compared to the other problems. The user’s preference is: Evaluating rocks of
types not sampled in order r1, ..., ry, if the rock has a high likelihood of being safe to sample, go and
take a sample of it. Else, if the rock has a high likelihood of being safe to sample, get close enough
and scan it. Otherwise, move towards the exit if no rocks are worth sampling or scanning.

Store visit (SV) This problem is based on the partially observable OpenStreetMap problem in|Liu
et al. [2021]]. A robot is located in a city where some locations are unsafe (e.g., construction, traffic),
which can terminally damage the robot. The robot is initially uncertain of its location but it can scan
its surroundings to determine its general location. The agent traverses the city and can visit the closest
building. The goal is to visit a bank and then a store. This problem features a nuanced parameterized
BSQ policy: If you are significantly unsure of your current location, scan the area. If you have visited
a bank, do the following to visit a store; otherwise, do it to visit a bank. If you are sufficiently sure the
current location has the building you are looking for, visit it. Otherwise, move towards where you
think that building is while avoiding unsafe locations. If all else fails, scan the current area.
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Figure 3: Empirical results evaluating the hypothesized optimal partition performance tracked.
Equally spaced samples across PRS evaluation time are taken while a sample is taken each iteration
of Nelder-Mead and Particle Swarm. The error displayed is the standard deviation error.

7.1 Baselines

We evaluated PRS against three different types of baselines.

RCompliant Select random parameter values uniformly at random from the parameter space to
produce user-aligned policies.

Hyperparamter optimization algorithms To measure the benefits of PRS against existing hyper-
parameter optimization algorithms, we implemented both Nelder-Mead [Nelder and Mead| |[1965]
and Particle Swarm [|Kennedy and Eberhart, |[1995]. The expected cost of parameter space point ¥, for
parameterized BSQ policy 7, was computed by averaging 1,000 parallel runs of the policy 7 (b; ).
For Nelder-Mead optimization, we used a simplex that had vertices numbering one more than the
number of parameters in the parameterized BSQ policy being optimized. We warm start by initially
evaluating a 100 random points to construct the initial simplex using the best-performing points. For
Particle Swarm optimization, 10 particles were used with the location and momentum of each particle
clipped to the search space. The coefficients changed based on steps since the last improvement.

Unconstrained POMDP solvers To measure the differences between BSQ policies and uncon-
strained POMDP solvers, we implemented variations of our problems into POMDPX and solved
them with DESPOT [Somani et al.,[2013] and SARSOP [Kurniawati et al., 2009] for 1,000 evaluation
runs. To measure whether an action-observation trajectory produced with these solvers aligns with the
user’s requirements, we check if there exist parameter values ¢ where policy m(b; ) could produce
that trajectory. We use this to evaluate the solutions produced.

7.2 Analysis of Results

For each problem, we evaluated each baseline and PRS variant ten times. The horizon was 12 for
Spaceship Repair and 100 for the other problems. The timeout for PRS was set on a problem-by-
problem basis. Timeout for Nelder-Mead and Particle Swarm was one hour. Note that the highest
expected cost is equal to the horizon due to the default cost function. The performance of each PRS
partition selection approach can be found in Figure d]and the quality of solutions over time compared
to the baselines are shown in Figure[3]

Partition selection approach evaluations PRS partition selection approaches converged to a
similar quality policy. The only difference was the time taken with approaches that did not rely
on the standard deviation converging faster due to there being a lower standard deviation near the
optimal solution, causing selection approaches that used the standard deviation to explore the wrong
partitions. We use PRS-Bolt as a representative when comparing against the other baselines.



PRS solution quality PRS produced a higher-
quality policy compared to the ones produced by
RCompliant. For Spaceship Repair, the simplest
problem solved on the shortest horizon, poli-
cies produced by PRS-Bolt had a 15.68% lower
expected cost and 3.47% higher goal achieve-
ment rate. For the other problems, policies pro-
duced by RCompliant had more than triple the LM GRS SR sV
expected cost and achieved only half the success Domains
rate on both Graph Rock Sample and Store Visit.
These results demonstrate that optimizing BSQ
parameter values has a significant impact on the
performance of user-aligned policies.

PRS-Bolt HEm PRS-Epsilon Il PRS-Local

N
%

o

75

== N
[

5)

v
o

Expected Cost
N
w

% Goal Achievemen

o w

0
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Hyperparameter optimization evaluation Compared to traditional hyperparameter optimization
algorithms, PRS always found the user-aligned policy with the lowest expected cost with little
performance deviation. This is due to Nelder-Mead and Particle Swarm struggling to optimize a non-
convex piecewise-constant function using noisy data, resulting in known problems with local-search
algorithms: problems of getting stuck in sub-optimal local minima and exploring the incorrect space.
Additionally, PRS converged first since it is more sample-efficient. It is computationally expensive
to update the belief state, resulting in poor-quality solutions being more expensive to evaluate due
to taking longer to reach the goal. PRS only requires a couple of evaluations before spending the
computational resources on more promising areas.

An interesting result is that, in Spaceship Repair, solutions found by Nelder-Mead and Particle
Swarm both had a 7.73% higher expected cost and 18.31% higher goal achievement rate than the
PRS-Epsilon solutions. There is likely a high negative correlation between the expected cost and goal
achievement rate. PRS is better at optimizing the stated objective of minimizing the expected cost.

Unconstrained solver evaluation Without guiding from the parameterized BSQ policies, DESPOT
and SARSOP struggled with this set of problems. SARSOP failed to converge to a policy due to the
long problem horizon. DESPOT could not run on Lane Merger, which had the largest state space
and branching factor. DESPOT also only achieved the goal 0.5% of the time on Graph Rock Sample.
DESPOT achieved a lower expected cost of 20.0% and 13.3% on variations of Spaceship Repair and
Store Visit, respectively. However, DESPOT’s policy never aligned with the user’s requirements on
Store Visit and only 7.3% of the time on Spaceship Repair. This indicates that the BSQ framework
offers a new approach for expressing both domain knowledge and user requirements.

8 Conclusion

We presented the BSQ policy framework for expressing users’ requirements over the belief state
in partially observable settings for computing user-aligned agent behavior. We performed a formal
analysis of these policies, proving that the parameter value space introduced in the parameterized
BSQ policies can be partitioned, resulting in parameterized BSQ policies being optimizable through
a hierarchical optimization paradigm. We introduced the probabilistically complete Partition Refine-
ment Search algorithm to perform this optimization. Our empirical results show that it converges
to the optimal user-aligned policy quicker and more consistently than existing approaches. Results
indicate that parameterized BSQ policies provide a promising approach for solving diverse real-world
problems requiring user alignment.

Limitations and future work There are many interesting directions for future work based on the
current BSQ policy framework. BSQ representations can be made more expressive by allowing
deterministic functions, which would not compromise the presented theoretical results. Furthermore,
there exists a natural extension of this work into finite memory controllers that allows temporally
extended requirements to be encoded with the same theoretical results. Relaxing the constraints on
mapping each belief state to a single action would expand the usability. For more complex problems,
a belief-state approximation approach would be required, but the underlying strategy tree discussed
in this work would remain mostly unchanged. Another interesting research direction is to develop
methods that help users express their requirements in the BSQ framework.
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A Appendix Organization

The Appendix is organized as follows. Appendix [B]contains the proofs for showing the expected cost
function is piecewise constant. Appendix [C|contains the proof that PRS is probabilistically complete.
Appendix [D]discusses the evaluation problems and provides the parameterized BSQ policies used.
Appendix [E discussed additional implementation details of both Nelder-Mead and Particle Swarm.
Appendix %discusses two additional partition selection approaches we tested and provides additional
analysis of our results. Appendix [G]discusses the experimental setup and computational cost of
our experiments. Appendix [H] contains the calculated closed-form solution of the partitions for the
Spaceship Repair problem. Appendix [[|discusses the broader impacts of our work. Finally, Appendix
[ discusses additional limitations not discussed in the main paper.

B Lemmas and Proofs From Formal Analysis [Section 3]

In this section, we provide the formal proofs for Lemma|[I, Theorem[I, Theorem 2, and Theorem 3
from Section [3] where we proved that braids partition the parameter space resulting in the expected
cost function of a parameterized BSQ policy w.r.t its parameter being piecewise constant. We define
and prove Lemmas M] and[5in this section for building these proofs.

First, we prove that the similarity operator =y for braids (Def.[J) has the properties of being reflexive,
symmetric, and transitive. As such, =y defines an equivalence relation over the n-dimensional
parameter space R, meaning it defines a partition over R™.

Theorem 1. Let 7t(b, ©) be a parameterized BSQ policy, P be a gPOMDP, by be the initial belief
state, and H be the horizon. The operator =y partitions R".

Proof. Let ¥ € R" be n-parameter values and H be the horizon. By way of contradiction, let’s
assume that o is not similar to itself, J # 9. This would mean that braid 1(9) # braidg »(9).
As such, there must exist a leaf ¢, which is in one but not the other braid. Note that ¢ represents a
unique rule-observation trajectory {ry, 01, ...,7m, o }. Additionally, for £ to be in one of these braids
it would need to be true that Vi, r;. W (b}, J) must be satisfied, where b = bp* (b, 71,01, ..., 74, 0;)
(Def.[7). However, note that this would hold true for the other braid as well, making it a contradiction
for ¢ to be exclusive in either braidy 1(J) or braidy 2(J). As such, ¥ must be similar to itself
meaning the similarity property holds.

Let 51,52,53 € R™ where El =g 52 and 52 =g 53. Therefore, braide(gl) = b?“a,ide(Eg)

and braid, g (V2) = braid, g(93) (Def.lz). Using substitution, braid, i (91) = braid. z(J3)
meaning ¥, =y 3. As such, the transitive property holds.

Due to set equality being symmetric, the symmetric property holds. Thus, the operator = is an
equivalence relation over R" causing =y to define a partition over R”. O

For compound BSQs W, we now prove that there exist unique intervals of the parameter space where
W is satisfied that we can calculate.

Lemma 1. Let V(b; ©) be an n-dimensional compound BSQ. There exists a set of intervals (V) <
R™ s.t. U(b; ©) evaluates to true iff © € I(V).

Proof. Let P be a gPOMDP, b be a belief state, © € R be a parameter, o be a comparison operator,
and ¢ be a first-order logic formula composed of functions from P. There exist two possible forms for
aBSQ (Def [2). Let A, (b; 0, 0,0) = Pr[¢], o ©. Note that Pr[], evaluates into the probability of
¢ being satisfied in a belief state b. Therefore, we can simplify A, (b; ¢, 0, ©) to po© where p € [0, 1],
meaning this type of BSQ simplifies to an inequality. Now, let A, (b; ¢, 0,0) = Pr¢], == 1 where
@ is composed of © and fully observable functions in P. We assume that © cannot be used as a
function parameter, meaning that it must be an operand of a relational operator in ¢. Since the
functions are fully observable, they can be evaluated for b, leaving the inequalities involving © to
dictate whether ¢ is satisfied. Thereby, BSQs evaluate to inequalities involving ©.

A compound BSQ ¥ comprises conjunctions/disjunctions of BSQs by Definition[3} By substituting
each BSQ with its inequalities, we can calculate the interval of ¥, I(¥).
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Let us assume that © € [(¥). By way of contradiction, let us assume that © does not satisfy .
If ¥ is a conjunction of BSQs, there exists at least one BSQ that is not satisfied by ©. If ¥ is a
disjunction, all the BSQs are unsatisfied by ©. However, this would mean that © cannot satisfy the
inequalities from these BSQs, so © cannot be in I (W) since I(¥) is constructed using the regions of
the parameter space that satisfy the necessary BSQs, which is a contradiction.

Conversely, let us assume that O satisfies ¥. This means one or all the BSQs are satisfied by ©
depending on if W is a conjunction or disjunction. If © was not in I(¥), there could not exist a set of
BSQs satisfied for ¥ to be satisfied.

Thus, for a belief state b, a n-parameter compound BSQ V¥ has an interval in the parameter space
I(V) s.t. VO € R™, © € I() iff O(b; ©) evaluates true. O

As mentioned in Section [3] braids cannot be proper subsets of each other, which we will now prove
in Lemma 2. As a high-level intuition, removing a leaf can only occur if a rule along that leaf’s
rule-observation trajectory is not satisfied, which would mean another rule must be satisfied since
Def.[2 guarantees coverage of the belief state and parameter space. This results in at least one leaf
being added to a braid that removes this first leaf, making this new braid not a subset of the other one.

Lemma 2. Let (b, ©) be a parameterized BSQ policy, P be a gPOMDP, by be the initial belief,
and H be the horizon. ¥91,92 € R", ifbraidﬁ,H(El) C braid, g (92) then braide(ﬁl) =
braid, i(0z).

Proof. Assume there exists U1, 05 € R" s.t. braid, p(91) < braid, g (92) implying there exists
leaf fz where EQ € b’l“a?;dﬂr}H(192)\b7“aidﬂ—7H(191).

Let ¢1 € braid, g (1) be the leaf with the largest rule-observation trajectory 7o prefix shared with ¢5
before differing. The trajectory for /1 can be expressed as 797, where 77 is the remaining trajectory
for reaching ¢;. Similarly, the trajectory for ¢5 can be expressed as 7y72. Note 7y represents the
actions executed and observations observed from the initial belief state till right before the diversion
resulting in the the belief state b being the same for both leaves up to this point.

If the first element in 77 and 73 is a rule, note that braid,, H(@g) must also contain ¢1. This would

imply that 7(b; J3) is not mutually exclusive since two rules can occur in one element of the strategy
tree. This is a contradiction by Def. E If the first element in 7; and 75 is an observation, different
observations occurred after executing the last shared action in 7y5. Due to the observation model
and sharing the belief state b at this point, both observations must be possible. This means a leaf

in braidy, (1) must have a larger shared trajectory prefix than ¢;, which is a contradiction. Thus,
braids cannot be strict subsets of each other. O

Since braids cannot be proper subsets of each other, we can now prove that both braids must contain
leaves the other does not have. In turn, this prevents the interval of braids from overlapping. Note
that the interval of a braid can be calculated by taking the intersections of the intervals of each leaf

contained in that braid (Def.: I(braid,n(9)) = MNicvraid, @ L (©)-
Lemma 3. Let m(b,©) be a parameterized BSQ policy, P be gPOMDP, by be the initial belief,

and H be the horizon. V01,92 € R", if braid, g(91) N braid, g(V2) # @ and braid, p(91) #
braid. g (02) then I(braid, (V1)) n I(braid, g (92)) = @.

Proof. Let 01,02 € R"™ where braid. (V1) n braid, g(92) # @ and braid, g(91) #
braid,, H(@g). Both braids cannot be proper subsets (Lemma E) meaning both braids must
contain leaves that are not in the other braid: braid, g (92)\braid, g(9;) # @ and
braid. g (01)\braid, g(92) # @.

By Definition 8} the interval of a braid is the conjunction of the intervals of each leaf it contains.
Using the associative and commutative properties, this can be rewritten as the conjunction of two
sets: the interval of leaves shared and the interval of leaves not.

I(braid, g (V1)) = I(braid. g (01) N braid. g(92)) 0 I(braid, g(91)\braid. g (J2)
I(braid, g (92)) = I(braid. g (01) N braid. g (92)) 0 I(braid, g(92)\braid. z(J1)
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A braid’s interval must exclude these unreachable leaves since a braid is all reachable leaves
(Def.lz). As such, I(braid. g(¥2)) must not overlap with I(braid, m(V1)\braid, u(J2) and
I(braid, ;(91)) must not overlap with I(braid, i (J2)\braid, r(91). However, due to the con-
junctions of intervals, I(braid, (1) S I(braid. g(91)\braid, g(92) and I(braid, () <
I(braid, g (92)\braid, (91). Thus, the intervals of I(braid, z(91) and I(braid, i (J2) cannot
overlap. O

The fact that two braids cannot have overlapping intervals allows us to prove that the sets of parameter
values are similar iff they share the same braid interval.

Lemma 4. V@l,ﬁg € Rn, 51 =g 52 l‘ﬁfl(bTaidﬂ—’H(gl)) = I(bTa’idﬂ—,H<52)).

Proof. Letd; =y VU2, meaning braid, (01) = braid, ;(J2) = L where L is the set of reachable
leaves (Defs.[7]and[9). By Definition[8] the interval of a set of leaves is the intersection of each leaf
contained in the set, meaning both braids must have the same interval.

Let I(braid, (V1)) = I(braid. z(J2)). By way of contradiction, assume braid, g(91) #
braid, g(0z2). By Lemma this would mean I (braid, r(91)) N I(braid, g (92)) = @, which is
a contradiction. Thus, braid(9,) = braid(J2) meaning ¥, =g U2 (Def.@). O

We can now prove that partitions produced by =y partitioning the parameter space R” each represent
a single braid, causing each partition to have a disjoint interval where a constant set of leaves is
reachable.

Theorem 2. Let 70(b, ©) be a parameterized BSQ policy, by be the initial belief state, and H be the
horizon. Each partition p created by operator =y partitioning R™ is the disjoint intervals, p = R™
where Y0 € p, braid, (V) = L where L is a fixed set of leaves.

Proof. Let p be a partition produced by =y partitioning the parameter space R™. Note that this
means that parameter value sets contained in p must be similar (Def.lgl): Y, , Jq € 0, 91 =g Us. As
such, all parameter values have the same braid (Def., meaning there exists a set of leaves L that are
reachable in p. By Def. this set’s interval must be I(L) = (), o 1(¢x). By Lemma the interval

of other braids cannot overlap with I(L). Also, there are no proper subsets (Lemma, meaning that
no other braid can occur in I (L) making it disjoint.

By Def.[8] 7(L) must be contained in p due to all parameter value sets in /(L) having the same braid
of L leaves. If p contained parameter value sets not in I(L), this would imply there exists ¢ outside
of I(L) where just the leaves in L are reachable, which is a contradiction due to /(L) being the only
interval space where all the leaves of L are reachable. Meaning the interval of p is actually I(L).
Thus, each partition represents a disjoint interval where only all leaves in L are reachable. O

Due to the braid intervals not overlapping, we can prove that parameter value sets contained in that
braid’s interval must have a constant expected cost.

Lemma 5. Let ﬂ(bL@) be a parameterized BSQ policy and H be the horizon. Vi, € R™, Yy, 03 €
I(braid(V1)), Ex(¥2; H) = E;(V¥3; H).

Proof. Let ¥2,93 € I(braid, g(J1) where J; € R™ is a tuple of n parameters. Note that
braid(0,) = braid(Vs) = braid(J3) due there being no strict subsets (Lemma ) and leaves
in 15 and 95 would have to be reachable in 1J;. Each braid represents a policy tree (Def.lél), and the

expected cost is based on the probability distribution of leaves in the braid. Since both 95 and 3
represent the same policy tree, they must have identical expected cost values. O

It is now trivial to show that each partition represents a disjoint interval of the parameter space where
the expected cost is constant.

Theorem 3. Let 7t(b, ©) be a parameterized BSQ policy, P be a gPOMDP, by be the initial belief
state, and H be the horizon. Each partition created by =g on R"™ has a constant expected cost.
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Proof. Let p be a partition created by partitioning R™ with =p. By Theorem|2] all parameter value
sets in the disjoint interval of p must have the same braid. As such, by Lemma|[5] the expected cost is
constant for all the parameter sets. Thus, the disjoint interval of each partition must have a constant
expected cost. O

C Proofs For Partition Refinement Search [Section S]]

In this section, we provide the formal proof for Theorem{ proving that the Partition Refinement
Search algorithm introduced in Section[]is probabilistically complete. We define and prove Lemmas
[61 [7 and 8] for building this proof.

When PRS refines a partition p using a leaf ¢, it can produce up to two possible partitions: a partition
for p where ¢ is reachable and a partition for p where ¢ is not (if it exists). We now show that this
process prevents empty partitions.

Lemma 6. Let (b, ©) be a parameterized BSQ policy, P be a gPOMDP, by be the initial belief
state, and H be the horizon. For each partition p constructed by Partition Refinement Search, p # .

Proof. Let p < R"™ be a partition constructed by PRS. Since PRS creates partitions based on whether
sampled leaves are included or excluded, let L; be the leaves PRS included in partition p and L. be
the leaves excluded. Therefore, p = I(L;)\I(L.).

By way of contradiction, let p = @. There are two cases where this could occur: (1) excluding leaf ¢
caused p = @ or (2) including ¢ caused p = &. For case (1), we explicitly do not add partitions if
excluding the leaf results in an empty interval, meaning this cannot happen. For case (2), this implies
that there exists a previous partition py where sampling leaf ¢, resulted in the partition constructed
from pg including ¢, creating p where p = @. Due to £y being uniformly sampled from pg, £, must
be reachable in pg meaning po N I(¢y) # . However, line 10 of Algo. calculates the interval of p
as po N I(fy) meaning p # &, which is a contradiction. Thus, all partitions must be not empty. ]

A critical property of PRS is that each partition constructed converges to represent a single braid.

Lemma 7. Let (b, ©) be a parameterized BSQ policy, P be a gPOMDP, by be the initial belief
state, and H be the horizon. Let p be a partition constructed by Partition Refinement Search. If all
leaves reachable in p < R™ have been sampled, V0 € p, I(braidy g (9)) = p.

Proof. Let p € R be a partition constructed by PRS. Let L, = {¢1, ..., {,,} be the n-sampled unique
leaves for p. Let all leaves reachable from p be sampled, V¢, £ € L, <> [3U € p, £ € braid, i (J)].

Duetop # @ (Lemma@ and parameterized BSQ policies covering R™ (Def. |i), there must exist a
non-empty set of leaves L reachable within p. Since all leaves are sampled, we know that L < L.
However, there cannot be proper subsets (Lemma@ meaning L = L,. This means that the interval
of p must also equal the interval of leaves I(L). Thus, p must represent a braid. O

Since partitions are constructed by including/excluding sampled leaves hierarchically, we can prove
that this makes each partition represent a unique braid.

Lemma 8. Let w(b, ©) be a parameterized BSQ policy, P be a gPOMDP, by be the initial belief
state, and H be the horizon. Let p1,p2 S R"™ be partitions constructed by Partition Refinement
Search. If all leaves reachable in p1 and ps have been sampled, Vi, € 01, Yy € p1,braid,, H@l) #*
braid, p (92).

Proof. Let p1, po € R”™ be two different partitions constructed by PRS. Note that the PRS partitions
R™ by refining one partition using leaf ¢ into two by explicitly including I(¢) in one partition and
excluding I () in the other (Algorithm. Meaning p; and p, cannot overlap.

Since both partitions represent a possible non-empty braid (Lemmal7), there exists a set of leaves
reachable in both partitions. However, by the partition construction process, there must exist at least
one leaf included in one but excluded in the other. Due to there being no interval overlap between
braids, two different braids must be reachable in each partition (Lemma. Thus, all partitions must
represent a unique braid. O
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Using the property that each partition in PRS represents a unique braid, we can now prove that PRS
is probabilistically complete.

Theorem 4. Let (b, ©) be a parameterized BSQ policy, P be a gPOMDP, by the initial belief state,
and H be the horizon. The likelihood of the Partition Refinement Search algorithm returning the
optimal parameter interval converges to one in the limit of infinite samples.

Proof. Note that gPOMDPs have a finite set of observations and finite horizon (Def.[I)), and param-
eterized BSQ policies have a finite number of rules (Def.[). As such, there exists a finite number
of unique rule-observation trajectories in the strategy tree (Def.[6). Therefore, there exists a finite
number of leaves due to each leaf having a unique rule-observation trajectory. This results in there
only being a finite set of braids being all possible combinations of reachable leaves (Def.[7). Since
each partition represents a unique braid (Lemma|g), the number of partitions must be finite.

Let p < R™ be a partition constructed by PRS that is not equivalent to a braid. By Lemmal(7| this means

there exists a leaf ¢ reachable in p that has not been sampled yet. This also means there must exist a

non-empty interval p N I(¢) where sampling from p can reach £. Due to uniform sampling selecting

parameter values when sampling a leaf for refining the partition (line 7 of Algorithm([T}), the probability
pnI(f)

of selecting a parameter value that could sample £ can be calculated as === = Pr(I(¢)|p).

Note that ¢ represents a unique rule-observation trajectory {r1,01, ..., 7gr, o }. Note the probability
of an observation o being observed in belief state b after action a is executed is Pr(o|b,a) =
D[, a,0) > T (s,a,s")b(s)]. Meaning that the probability of reaching ¢ during rollout is
Pr(t) = [, Pr(o;|b;) where b; = bp*(bo,r1,01,...,7:,0;). Since we know that ¢ is reachable,
Pr(¢) > 0.

We assume that partition selection approaches discussed in Section[6 have a non-zero probability
of refining any partition. Let Pr(p) be the probability of p being selected. This means that in any
refinement step, the probability of sampling leaf £ is Pr(¢) Pr(I(¢)/p)Pr(p). Due to each probability
being greater than zero, the probability of any non-sampled leaf being sampled must be greater than
zero. Therefore, with enough refinement steps, all the leaves will be sampled since there is only a
finite number of leaves. Thus, the set of partitions will be refined to the set of braids as the number of
samples increases to infinite.

Note that each partition represents a unique braid (Lemma(8) with a set probability distribution of
outcomes based on the reachable leaves. Due to a non-zero probability of refining a partition Pr(p),
the sampled expected cost of a partition will converge to the actual expected cost due to the law of
large numbers.

Therefore, within a finite number of samples, the partitions constructed by PRS will accurately
represent the set of braids with an accurate representation of their expected costs. Thus, PRS will
find the minimal expected cost partition as the number of samples increases to infinite. O

D Evaluation Problem’s Belief-State Query Preferences

In this section, we provide the parameterized BSQ policies for the Lane Merger, Graph Rock Sample,
and Store Visit problems discussed in Section|z. To do this, we first describe the functions that
compose each problem’s states and actions. We use loops and quantifiers in the parameterized BSQ
policies for clarity that can be unrolled on a problem-by-problem basis.

D.1 Lane Merger

The Lane Merger problem is that there are two lanes, and the agent must merge into the other lane
within a certain distance. In this other lane, there is another car whose exact location and speed are
unknown. Therefore, there exist two objects in the environment: the agent (agent) and the other
car (other). For either object o, the location and speed are tracked using the unary integer functions
loc(o) and speed(o). For actions, the agent can increase their speed (speed_up()), decrease their
speed (slow_down()), remain in their current lane at their current speed (keep_speed()), or attempt
to merge lanes (merge()). Using these functions, the parameterized BSQ policy 7, (b; ©1, O2) is
formally defined as follows.
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Tim (D; ©1,02) :
If Prloc(agent) > loc(other) + speed(other) + 2v
loc(agent) + speed(agent) + 2 < loc(other)], > ©1 — merge()
Else if Pr{|loc(agent) — loc(other)| < 1], > O3
Pr[speed(agent) > 0], == 1 — slow_down/()
Else keep_speed))

D.2 Graph Rock Sample

The Graph Rock Sample problem is that there is a rover with pre-programmed waypoints, where
some waypoints contain rocks. These rocks have been categorized into types, and whether it is safe
for the rover to sample them is unknown. The objective of the rover is to sample each type with
a safe rock before traversing to a dropoff location. The objects are the waypoints, including the
rocks {ry,...,r,} and the dropoff location (dropoff). The rover knows if or if it is not located at
waypoint w using the unary Boolean function loc(w). The rover also knows whether it needs to
sample rocks of type ¢ using the unary Boolean function needed(t). For any rock r, the distance
from the rover, whether the rock is type ¢, and if the rock is safe to sample are tracked using the
unary double function distance(r) and the Boolean functions type(r, t), and sa fe(r), respectively.
The rover can move to neighboring waypoint w (move(w)), sample rock r at its current waypoint
(sample(r)), and scan any rock r (scan(r)). For clarity, we use the function goto(w) to specify
taking the edge that moves the rover closer to waypoint w. Using these functions, the parameterized
BSQ policy mg,5(b; ©1, O, O3) is formally defined as follows.

Tgrs(0; 01, 02,03) :
Forr. € {r1,...,rn}:
If Pr(3t|type(rc,t) A needed(t) A loc(re) A safe(re)]y = O1 — sample(r,)
Else if Pr[3t|type(re, t) A needed(t) A —loc(re) A safe(re)]s = ©1 — goto(r.)
Else if Pr[3t|type(re,t) A needed(t) A safe(re)]y = Oan
Prldistance(r.) < O3], == 1 — scan(r.)
Else if Pr[3t|type(re,t) A needed(t) A safe(re)]y = Oan
Pr[distance(r.) > O3], == 1 — goto(r.)
Else goto(dropof f)

D.3 Store Visit

The Store Visit problem involves an agent in a city with a grid-based layout. Some locations are
unsafe, while others contain a bank or a store. The objective is for the agent to visit a bank safely and
then a store. The objects are the agent, the set of stores {s1, ..., s, }, and the set of banks {b1, ..., b, }.
Labeling functions bank(o) and store(o) check whether object o is a bank or store, respectively.
The ternary Boolean function keeps track of the current (x, y) location of the object o, loc(o, , ).
Similarly, whether location (x, y) is safe is tracked by the binary Boolean function is_safe(z,y).
Lastly, the state keeps track of whether the agent has visited a bank using the nullary Boolean function
vbank(). The agent can move left (left()), right (right()), up (up), and down (down()) in the grid.
The agent can also visit a building in its current location (visit()) or scan its surroundings to figure
out its location (scan()). Using these functions, the parameterized BSQ policy g, (b; ©1, ©4, O3) is
formally defined as follows.
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Tou(b;©1,02,03) :
If Va, y| Prlloc(agent, z, y)]p < O3 — scan()
Else if Pr[3s, z, ylvbank() A store(s) A loc(s,xz,y) A loc(agent, x,y)]p = ©1 — visit()
For s. € {$1,...,8n} :
Else if Pr3x1,y1, 2, y2|vbank() A store(s.) A loc(agent, z1,y1) A loc(s., T2, y2) A
Is = ©2 — right()
)

x1 < x9 Ads_safe(xy +1,y1)
Else if Pr[3z1, y1, 22, y2|vbank(
)

store(sc) A loc(agent,z1,y1) A loc(se, T2, y2) A

> 0, — left()

b
A

x1 >z Ads_safe(zr — 1, y1)]e
Else if Pr[3x1,y1, 22, y2|vbank() A

s
y1 > y2 Ads_safe(xy,yr — 1)]p = O2 — down()
Else if Pr[3x1, y1, T2, y2|vbank() A s

=

y1 <y2 Ads_safe(zy,yr + 1D
Else if Pr[3k, z,y|—vbank() A bank(k) A loc(k,z,y) A loc(agent, z,y)]p = O1 — visit()
For k. € {k1,....km} :
Else if Pr[3x1,y1, 2, y2|—vbank() A bank(k.) A loc(agent, z1,y1) A loc(ke, x2,y2) A
x1 < x9 Ads_safe(xr + 1,y1)]p = O2 — right()
Else if Pr3x1,y1, 2, y2|—vbank() A bank(k.) A loc(agent, z1,y1) A loc(ke, x2,y2) A
x1 >z Ads_safe(ry — 1, y1)]p = Oz — left()
Else if Pr[3x1,y1, 22, y2| ~vbank() A bank(k.) A loc(agent, x1,y1) A loc(ke, 22, y2) A
y1 > y2 Ads_safe(xy,yr — 1))y = O2 — down()
Else if Pr[3x1, y1, 22, y2| ~vbank() A bank(k.) A loc(agent,x1,y1) A loc(ke, 2o, y2) A
Y1 < y2 Ads_safe(xi,yr +1)]p = O2 — up()
Else scan()

E Hyperparameter Optimization Algorithms Implementation

As a baseline comparison, we implemented Nelder-Mead and Particle Swarm as hyperparameter
optimization algorithms to compare solving for the optimal parameter values for a parameterized
BSQ policy to minimize the expected cost of the resulting BSQ policy. Both algorithms evaluate
points in the parameter space to decide which areas to explore next. For both, we evaluate a parameter
point by taking a thousand parallel runs of the BSQ policy with those values to approximate the
expected cost.

Nelder-Mead We used a simplex that has edges numbering one more than the number of parameters
in the parameterized BSQ policy being optimized. To start with a better initial simplex, we randomly
sampled a hundred points and tracked the points that had lower expected costs and were 0.4 distance
away from each of the better-performing points. The closer points were saved but were given a lower
priority. Each iteration followed the standard Nelder-Mead steps with the sum quality of all the edges
in the simplex calculated. If five iterations pass without an increase in quality, the run is deemed to
have converged, and the best quality point of the simplex is returned as the solution.

Particle Swarm Particle swarm used 10 particles randomly selected from within the parameter
space with a random velocity. Let ¢ be the number of iteration steps since the last improvement in
the best quality point found. For each iteration, the cognitive coefficient is 1.0 — 0.1¢, and the social
coefficient is 0.1 + 0.1¢, which causes the particles to become more greedy as time since the last
improvement increases. The momentum is statically set to 0.6 with the velocity clipped between
+0.5. The location of points is also clipped to the parameter search space. If 10 iteration steps pass
without seeing an improvement, the run is deemed to have converged, and the best quality point of
the swarm is returned as the solution.
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Figure 5: Performance of the hypothesized optimal partition while solving for the Lane Merger,
Spaceship Repair, and Store Visit problems. Each line is the average over 10 independent runs with
the standard deviation error shown.

F Additional Results

In this section, we provide additional results from the experiments performed. This includes intro-
ducing two additional partition selection approaches we evaluated: Global Thompson Sampling and
Maximum Confidence. We also provide graphs of the performance of the hypothesized optimal
partition across all PRS variants. Finally, we provide a results table for all five partition selection
approaches and the baseline RCompliant.

PRS is implemented for multiprocessing by having each process manage a subset of the partitions
X'’ € X but share a global hypothesis of the optimal partition. Also, a dynamic exploration rate e,. is
used that diminishes over the solving time. Using this framework, two additional partition selection
approaches were explored.

Maximum Confidence (PRS-Max) We explore e, percent of the time by uniformly sampling
s ~ Uj and checking if s < e,.. If exploring, we uniformly at random select a partition from X’.

Otherwise, the partition with maximum standard deviation, arg min (o B[pDeX’ a(E)[p], is selected.

Global Thompson Sampling (PRS-Global) Unlike the other partition selection approaches, each
processor iterates over all partitions it manages before selecting multiple partitions to refine. Partitions
are chosen for two reasons: (1) they are below the minimum number of samples, or (2) the partition
has the potential of being better than the current global hypothesized optimal partition. This is
simulated for each partition using A (p¢, ¢ x €,) with y. and o, being the mean and standard
deviation of that partition, respectively. If the sample taken from this normal distribution has a lower
expected cost than the hypothesized optimal partition, this partition is selected for refinement.

Performance of the hypothesized optimal In Figurel5, the hypothesized optimal over the runtime
of PRS for each partition selection approach is shown. On Lane Merger and Spaceship Repair, the
performance of each PRS variant is quite similar, with the solver quickly converging to a near-optimal
policy. However, PRS-Global has a much slower convergence rate due to trying to evaluate all
promising partitions rather than focusing on the most promising ones. This resulted in PRS-Global
not converging before timeout on Store Visit. PRS-Max is expected to perform poorly due to its poor
partition-selection strategy. These results highlight that, with a competent partition-selection strategy,
PRS will converge to the optimal policy that minimizes the expected cost, with the main variation
being the convergence time.

Tabulated performance In Table|l|and Table[2] the expected cost and the goal achievement rate have
been tabulated, showing the near identical performance of four of the partition refinement approaches.
The solution for Nelder-Mead and Particle Swarm are taken at PRS’s timeout time to give each
solver the same solving time. For all the problems, the more effective partition-selection approaches
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Problems | Lane Merger | Graph Rock Sample | Spaceship Repair |  Store Visit

PRS-Bolt 4.39 + 0.04 18.19 + 0.82 8.52 +0.00 19.81 + 2.09
PRS-Epsilon 4.40 + 0.04 17.84 + 0.25 8.52 + 0.00 22.20 +4.70
PRS-Global 4.40 + 0.03 18.47 +£1.72 8.61 +0.31 38.07 + 13.63
PRS-Local 4.39 + 0.03 20.61 + 2.96 8.57 +0.05 21.57 + 5.80
PRS-Max 4.48 + 0.08 34.12 + 7.00 8.58 +0.07 58.16 + 18.33
Nelder-Mead 4.89 + 0.65 19.56 +1.44 8.82 +0.38 22.39 + 8.24
Particle Swarm 4.91 + 0.56 21.12 +2.34 8.69 + 0.33 18.95 + 2.42
RCompliant 22.10 + 15.70 60.91 + 18.46 9.97+0.77 56.64 + 33.04

Table 1: Expected cost of Partition Refinement Search, Nelder-Mead, Particle Swarm, and RCom-
pliant on the Lane Merger, Graph Rock Sample, Spaceship Repair, and Store Visit problems. The
performance was measured over ten runs to calculate the performance average and standard deviation.

Problems | Lane Merger | Graph Rock Sample | Spaceship Repair |  Store Visit

PRS-Bolt 99.6% + 0.1% 96.0% + 1.8% 49.8% + 0.0% 95.6% + 2.7%
PRS-Epsilon 99.6% + 0.1% 97.3% + 1.3% 49.8% + 0.0% 92.0% + 5.8%
PRS-Global 99.6% + 0.0% 96.3% + 2.9% 50.6% + 2.6% 72.6% + 16.3%
PRS-Local 99.6% + 0.1% 92.2% + 4.0% 49.3% + 0.4% 92.7% + 7.2%
PRS-Max 99.5% + 0.2% 83.6% + 9.6% 49.3% + 0.6% 48.2% + 21.3%

Nelder-Mead
Particle Swarm

98.9% + 1.2%
99.0% + 1.1%

94.0% + 2.7%
91.3% + 3.5%

52.7% + 7.9%
52.0% + 5.2%

92.4% + 10.6%
96.6% + 3.5%

RCompliant

86.9% + 16%

41.3% £ 20.5%

48.1% £ 10.2%

49.8% =+ 38.4%

Table 2: Goal achievement rate of Partition Refinement Search, Nelder-Mead, Particle Swarm, and
RCompliant on the Lane Merger, Graph Rock Sample, Spaceship Repair, and Store Visit problems.
The performance was measured over ten runs to calculate the performance average and standard
deviation.

discussed in the main paper achieved equal, if not better, performance than Nelder-Mead and Particle
Swarm.

G Experimental Setup And Computational Cost

In this section, we go through the empirical setup of the experiments performed in Section[7 and
include an estimate of the computation cost for running the experiments for this paper.

All experiments were performed on an Intel(R) Xeon(R) W-2102 CPU @ 2.90GHz without using a
GPU. The Partition Refinement Search algorithm was implemented using a manager-worker design
pattern where 8 workers were initialized when solving. The manager maintained the hypothesized
optimal partition and current exploration rate. Table[3 shows the timeout and sample rate used for
each problem for PRS. PRS was allowed to use an addition minute beyond timeout in the case the
hypothesized optimal partition had less than the minimum allowed samples, however this case did
not occur.

Both solutions and recorded hypothesized optimal partitions were evaluated using the same random
seed to ensure that the same initial states were assessed. This evaluation process was carried out
in parallel using a manager-worker design pattern with 16 workers. 25,000 independent runs were
conducted for each solution to determine the expected cost and goal achievement rate. Additionally,

Problem \ Timeout (seconds) \ Sample Rate (seconds)
Lane Merger 120 0.5
Graph Rock Sample 120 1
Spaceship Repair 30 0.125
Store Visit 300 2.5

Table 3: The timeout and the sample rate of the hypothesized optimal partition for PRS for the
evaluation problems.
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for each recorded hypothesized optimal partition, 10,000 runs were performed. The average perfor-
mance and standard deviation error were calculated by averaging the results of ten runs for each
combination of problem and solver. A similar approach was used to evaluate the random-parameter
user-compliant policy RCompliant. Instead of using solved policies, ten parameter value sets were
uniformly selected randomly from the parameter space, and each set was evaluated for 25,000 runs.
These results are presented in Figure[3]

For constructing the Spaceship Repair heatmap (Figure[I), all combinations of parameters ©1 and O,
were evaluated with parameter values sampled from O to 1 with increments of 0.002. This produced
251,001 equally-spaced parameter values. Parameter values were evaluated on 300 runs with a
horizon of 12 to calculate the expected cost.

Computational cost Running the Partition Refinement Search algorithm for the empirical evalua-
tion section (Section[7) involved nine processes running simultaneously for 25 minutes across ten
trials for each of the five partition-selection approaches. This resulted in 1.58 hours of CPU usage
when run in parallel, equivalent to 14.22 hours if executed sequentially. Evaluation complexities
were significant, such as the variance in time per run and problem type. For instance, evaluating the
solutions and hypothesized optimal partitions for the Lane Merger problem using 17 processes took
approximately 48 hours in parallel. The overall CPU usage for the main experiment approximates
to 360 hours (15 days) in parallel, translating to about 6,288 hours (262 days) if run sequentially.
Additionally, constructing the Spaceship Repair heatmap (Figure[T) required approximately 24 hours
of CPU time using 11 processes. These experiments were conducted thrice, culminating in an
estimated total computational cost of 2,160 hours (90 days) using an Intel(R) Xeon(R) W-2102 CPU
@ 2.90GHz, or 19,656 hours (819 days) if operations were performed sequentially.

H Spaceship Repair Partitions Closed Form

In this section, we calculate the braids that partition the parameter space for the Spaceship Repair
problem with the parameterized BSQ policy from Fig.[I]

First, we give the exact observation model used. From Section[3.1] the Spaceship Repair state is
composed of two functions: broken(o) and rlocation(). This means each state is expressed as
{broken(robot), broken(ship), rlocation()}. Additionally, the set of observations can be expressed
as {obs_err(robot), obs_err(ship)}. Let p, and p, be the probability of the observation reflecting
the actual state of the robot and spaceship, respectively. The probability of observation o in state s
after action a is executed is calculated as follows.

Pr(o = {obs_err(robot), obs_err(ship)}|s = {broken(robot), broken(ship), rlocation()}) =
DrDs) if broken(robot) = obs_err(robot) A broken(ship) = obs_error(ship)
pr(1 — ps), if broken(robot) = obs_err(robot) A broken(ship) # obs_error(ship)
(1 — pr)ps, if broken(robot) # obs_err(robot) A broken(ship) = obs_error(ship)

(I —-p)(1 —ps), otherwise
ey

Note observations are independent of the robot’s location and actions. For clarity, we express the
states as whether or not the robot and spaceship are broken, {broken(robot), broken(ship)}. This
means there are four possible states depending on whether the robot and ship are broken. For ease of
notation, we represent these states as .S = {sTT, STF,SFT,SF F}, where s p represents that state
where the robot is broken and the spaceship is not. Similar, let the four possible observations be
represented as O = {oprr, 0rF, 0pT,0FF}.

The precondition of the first rule of the Spaceship Repair problem parameterized BSQ policy is
[broken(robot)], < ©1 (Figurel[l). For any belief state b, the probability of the robot being broken
is the probability of the states where that is true: [broken(robot)], = b(srr) + b(sTF).

Let {ay, 01, ..., at, 0+ } be an action-observation trajectory for ¢ timesteps where at each timestep an
action is executed followed by an observation being observed. We can calculate the probability of the
state where the robot and spaceship are broken, s7r, as follows.
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bi(str) = aPr(odsrr,ar) Y, T (s, ar, s71)br—1(5) )

S

Note that, due to the observations being independent of the robot’s location, the observation and
transition functions are independent of the action. For example, there is no action the robot can
perform to change whether the robot or spaceship is broken due to the problem being to reach a
broken component rather than fixing it. We can simplify Equation[2]significantly as follows.

bi(srr) = aPr(ot|srr)bi—1(srT) 3)

We can now rewrite Equation[3 by unrolling the recursion. Note that « is the normalization factor
meaning we don’t need to calculate o each timestep because the final normalization will factor in
all these changes. Additionally, due to the probability of each initial state being uniform, we don’t
need to keep track of the initial belief. Also, note there exist four possible observations. Due to the
commutativity of multiplication, we can rearrange to get the following. Let ¢y, crp, cpr, and cpp
be the counts of the number of each observation where ¢ + crp + cpr + cpp = t.

bi(str) = aPr(orr|srr)TT Pr(orr|srr)™F Pr(opr|srr)FT Pr(opr|srr)™"  (4)

Using Equation|[I] the probability of this state can be written in terms of p, and p,.

bt(sTT) = a(prps)CTT(pr(]- _ps))CTF((]- _pr)ps)CFT((l - pr)(l - ps))CFF (5)

bt(sTT) — apiTT+CTFp§TT+CFT(1 _pT)CFT+CFF(1 _pS>CTF+CFF (6)

This same process can be applied to the other three states to get the equation of their likelihoods.

bt(STF) — apgTT‘FCTFpZTF‘FCFF(l _ pr)cFT"FCFF(l _ pS)CTT+CFT (7)
bu(spr) = QpEFTHOEEpSITEORT (1 )T (1 T ers ®)
bt(SFF) — apf’FT"rCFFpgTFJFCFF(]_ _ pT)CTT+CTF (1 _ pS)CTT+CFF 9)

We can group the states into two groups depending on whether or not the robot is broken. By factoring
we can get the following.

be(stT) + bi(sTF) = 10
apCTT"rCTF(l _ pT)CFT+CFF [pCTT"FCFT(l _ pS)CTF+CFF + pCTF+CFF(1 _ pS)CTT"FCFT] (10)
be(sFr) + bi(sFr) = 1
apCFT+CFF(1 _ pT)CTT+CTF [pCTT+CFT(1 _ pS)CTF+CFF + pCTF+CFF(1 _ pS)CTT-‘rCFT] ( )
Note that in Equations [I0]and [IT|everything in the brackets is shared, which is due to the individual
observations of the spaceship and robot being independent of each other. Also, for normalization,
we just divide the sum of Equations [I0/and [IT, which is equivalent to the sum probability of all
states. Additionally, note that Equation|10|is equivalent to the BSQ precondition [broken(robot)]s, .
Substituting into this BSQ and simplifying we get the following.

pﬁTT+CTF (]_ _ pT)CFTJFCFF

[broken(robot)]s, = (12)

pgTT+CTF(1 _ pr)CFT+CFF + pf_FTJrCFF(l _ pr)cTT+CTF

Note that there are two exponent values: the number of times the robot is observed to be broken and
the number it is not. Let d,. = ¢y + ¢rp — cpr — ¢ be the difference in the number of times that
the robot is observed to be broken to not. If d,. > 0, then the robot has been observed to be broken
more often than not. By substituting d,. + cprcpr = crr + cpp into Equation@tbe equation
simplifies down.

d
by

[broken(robot)]y, = —————
pi + (1= pr)tr

(13)
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Following a similar process, the BSQ from the second rule in the parameterized BSQ policy from
Figure|l can be written similarly. Let d, be the difference in the number of times the spaceship is
observed to be or not. If d; > 0, then the spaceship has been observed to be broken more often than
not.

Py

[broken(ship)]p, = ——"——-
psis + (1 - ps)dS

(14)

Note that the observation model used p,, = 0.6 and p; = 0.75 for the heatmap in Figure[l. The
horizontal thresholds can be calculated using Equation[T4]and the vertical with Equation[I3]

Therefore, a partition is specific value of d, € Z and d € Z that is equivalent to saying: The objective
is to fix the communication channel. If the difference in the number of times the robot has been
observed being broken than not is greater than d., it should try to repair itself; otherwise, if the
difference in the number of times the spaceship has been observed being broken than not is greater

than dg, it should try to repair that. Formally, this partition represents the parameter space where
dr—1 dr dg—1 ds
- < < Lo and L < < ——P=—— where all
P+ (1—p)dr 1 1 e H(—pp)dr T plE T (1—py)ds ©2 Pt +(1—ps)ds
parameter value sets that satisfy both inequalities are similar. Due to d,. and d being the difference

between observation counts, the set of possible partitions is finite for finite horizons.

We explored solving the Spaceship Repair problem directly using these inequalities. The belief
state reflects the probability of each outcome, meaning the main challenge is calculating the average
number of timesteps to reach the goal. This can be solved by finding the average length of time of the
Gambler’s Ruin problem. One possible direction of future work is exploring solving parameterized
BSQ policies and gPOMDPs this way.

I Broader Impacts

The primary positive impact of parameterized BSQ policies is their accessibility to non-experts,
allowing them to input their requirements directly into a solver that optimizes the completion of
tasks while aligning with the user. Moreover, parameterized BSQ policies enable encoding safety
constraints with enforceable guarantees over the belief state. Thus, this paper represents an important
step in making AI more usable for non-experts, particularly in encoding constraints and preferences,
while addressing safety concerns in real-world applications."

A potential negative impact of making Al more accessible through parameterized BSQ policies is
that it could also be exploited by bad actors who might encode harmful preferences. To mitigate this
risk, one approach is to design goals such that negative outcomes inherently prevent goal completion,
thereby teaching the agent to avoid these outcomes. Additionally, future work can explore methods
for prioritizing certain constraints to ensure that the Al does not align with harmful intentions.

J Additional Limitations

While we discussed in Section[8 some of the limitations of this work, one additional limitation is
an essential direction of future work: aligning user and problem objectives. For example, in Graph
Rock Sample, if the encoded goal for the gPOMDP did not require collecting rocks but the user still
wanted to collect one rock of each type using the parameterized BSQ policy in Appendix[D.2] PRS
would optimize the parameters to make it so no rocks are worth scanning or sampling to exit as fast
as possible to minimize the expected cost. While this case is an obvious misalignment between the
gPOMDP and parameterized BSQ policy, these misalignments can be more subtle, leading to the
optimal policy not behaving as intended. Therefore, future work needs to be done to explore catching
misalignments to allow the user to understand and fix them.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in both the abstract and introduction reflect the paper where
we introduced a new framework for user preferences (Section[3), performed a formal analysis
of it (Section §), introduced a piecewise constant algorithm (Section [5), and empirically
evaluated this algorithm (Section[7).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to both Section[§]and Appendix [J]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Refer to Appendix [B]and Appendix [C|for the formal proofs of the lemmas and
theorems defined in the paper.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Both the code has been provided in the supplementary material and the detailed
methodology can be found in Appendix [G.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code used for this paper has been provided in the supplementary material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Refer to Appendix[G for a detailed methodology.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In both Section[/|and Appendix [F] all shown results are shown with standard
deviation error. Additionally, we make it clear in both sections that we are using standard
deviation error.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

27


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Refer to Appendix[G!
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed and can confirm our research conforms to NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Refer to Appendix [I}
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: This paper poses no risk of being misused.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Documentation on the code used in this paper is provided with the code.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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