

1 **Effectiveness of Health and Environmental Information Provision in Promoting Sustainable**
2 **Travel Modes**

3 **Viswa Sri Rupa Anne**

4 School of Civil and Environmental Engineering
5 Georgia Institute of Technology, Atlanta, GA 30332
6 Email: vanne3@gatech.edu

7 **Gulam Kibria**

8 H. Milton Stewart School of Industrial and Systems Engineering
9 Georgia Institute of Technology, Atlanta, GA 30332
10 Email: mkibria7@gatech.edu

11 **Yifan Liu**

12 School of Public Policy
13 College of Computing
14 Georgia Institute of Technology, Atlanta, GA, 30332
15 Email: yliu3494@gatech.edu

16 **Omar Isaac Asensio**

17 School of Public Policy
18 Institute for Data Engineering and Science (IDEaS)
19 Georgia Institute of Technology, Atlanta, GA 30332
20 Email: asensio@pubpolicy.gatech.edu

21 **Srinivas Peeta**

22 School of Civil and Environmental Engineering
23 H. Milton Stewart School of Industrial and Systems Engineering
24 Georgia Institute of Technology, Atlanta, GA 30332
25 Email: peeta@gatech.edu

26 Word Count: 5866 words + 5 table (250 words per table) = 7116 words

27 *Submitted to the 2025 Transportation Research Board Annual Meeting for Presentation. [July 31,2024]*

1 **ABSTRACT**

2 Community-wide adoption of sustainable travel modes such as transit, walking, and biking can alleviate
3 congestion and emissions while improving air quality and public health. However, promoting these modes
4 in the U.S. is challenging due to the high reliance on personal vehicles, which contribute \$260 billion
5 annually in social costs. Information about health and environmental externalities of personal vehicle usage
6 is often unavailable to travelers at the time of decision-making. This study explores whether mobile app-
7 based information provision about the health and environmental benefits of sustainable modes can
8 meaningfully change traveler preferences. In a sample of 3,470 U.S. car users aged 55 years and under,
9 balanced by gender, income, and census regions, this study tested the effectiveness of information provision
10 over a 90-day summer season, targeting bus transit, walking, and biking. Results show that participants
11 who received information on environmental benefits related to emission reductions were four times more
12 likely to choose bus transit, while those informed about active health benefits related to calories burned
13 were nearly seven times more likely to choose walking, compared to the control group. However, due to
14 barriers such as safety concerns and lack of infrastructure, health and environmental information was not
15 effective at promoting biking. The results may be scalable to a large segment of travelers in the U.S., but
16 the study did not test the effectiveness of these interventions for travelers 55 and over due to sampling
17 limitations. Low-cost mobile app-based implementation strategies for possible deployment of these
18 interventions in U.S. communities are discussed.

19
20 **Keywords:** Sustainable travel modes, mode choice, travel decision-making, information provision, health
21 and environmental benefits

1 I. INTRODUCTION

2 The transportation sector in the U.S. is the largest contributor of greenhouse gas emissions,
3 especially personal vehicle usage, accounting for 28% of total emissions (1). Travel-related air pollutants,
4 such as NO₂ and PM_{2.5}, are associated with respiratory illnesses in adults and children, heart diseases and
5 strokes, and adverse birth outcomes such as premature and low-weight births (2–4). These negative
6 environmental and health externalities of personal vehicle usage impact individuals as well as their
7 community, amounting to \$260 billion in yearly social costs, including healthcare expenses and
8 environmental damage (5). Community-wide adoption of sustainable travel modes such as transit, walking,
9 and biking can offset these social costs by alleviating congestion and emissions, promoting active mobility,
10 and improving air quality and public health. While some urban areas may have lower personal vehicle usage
11 due to factors such as high parking costs, safety concerns, or congestion, census data (6) reveals a
12 substantial reliance on personal vehicles among travelers. For instance, 82.27% of U.S. population depends
13 on personal vehicles, while 53.71% in the New York metropolitan area and 80.43% in Metro Atlanta rely
14 on personal vehicles. These figures underscore the significant dependence on personal vehicles. Despite
15 the positive health and environmental impacts of sustainable modes, promoting them is challenging due to
16 the high reliance on personal vehicles. Moreover, real-time trip-specific information about the immediate
17 health and environmental benefits is seldom available to travelers at the time of decision-making, indicating
18 a critical gap in information availability.

19 Information provision has been shown to be effective in inducing sustainable behavior in many
20 decision contexts, including selection of healthy foods (7), energy conservation (8, 9), recycling and reuse
21 (10), and waste reduction (11). For example, pro-social information provision about community benefits
22 has been found to be effective in reducing energy consumption (8, 12–17) and pro-self information
23 provision about health warnings on cigarette packages has been found to be effective in promoting public
24 health (12, 18, 19). In the context of travel mode choice, preliminary studies have found that information
25 provision related to the benefits of sustainable modes has high potential in demoting personal vehicle usage
26 (20–22). However, these studies primarily relied on educating the participant about the health and
27 environmental benefits of sustainable modes, rather than examining the impact of real-time trip-specific
28 information provision. In promoting sustainable modes, the potential of real-time information provision
29 about the associated health and environmental benefits is yet to be studied. Hence, this study examines the
30 effectiveness of different health and environmental information in promoting sustainable modes.

31 Promising studies from public health literature show that benefits such as calories burned (23, 24),
32 step counts (25), and heart health improvement (26, 27) are effective in promoting physical activity.
33 However, they did not examine these benefits in the travel context. Air quality and carbon emissions have
34 been investigated as effective environmental information in promoting sustainable modes (28–31), but
35 real-time trip-specific information has not been examined for its impact on promoting these modes. This
36 study examines the effectiveness of real-time information provision in promoting three sustainable modes:
37 bus transit, walking, and biking. The information provision includes three types of health information (i.e.,
38 step counts, calories burned, and heart health) and two types of environmental information (air quality and
39 emissions).

40 Traditionally, tolling and congestion pricing have been implemented to reduce private car usage
41 (32, 33). However, public perception of these approaches is generally negative (33–35), further
42 exacerbated by the inequitable nature of their impacts on disadvantaged groups, such as low-income
43 travelers (37, 38). To overcome the issue of inequity, monetary incentives (e.g., reward points and cash)
44 have been explored in various travel contexts, such as shifting to alternative travel routes, changing travel
45 modes, and redistributing travel demand to reduce peak-hour congestion (35, 36, 39–44). While these
46 monetary incentives are equitable, they are not sustainable in the long run because forming and maintaining
47 sustainable travel habits requires continuous provision of cash incentives over time which is often
48 impractical due to limited funding (43, 44). By contrast, given the widespread use of mobile devices, health

1 and environmental information provision can be implemented in real-time through mobile apps at a
2 significantly lower cost.

3 This study employs a stated preference survey design to test the effectiveness of different
4 informational messages in promoting sustainable modes. The findings from this study can provide insights
5 on which messages have higher potential in promoting sustainable modes, enabling policymakers to take
6 the necessary steps to implement them in the real world. Low-cost strategies for possible implementation
7 of these messages in communities across the U.S. using mobile apps is discussed. The rest of the paper is
8 organized as follows: Section II illustrates the methods, Section III presents results, Section IV discusses
9 the results and provides insights, and Section V provides concluding remarks.

10 **II. METHODS**

11 This study uses a stated preference survey design and was approved by Georgia Tech's Institutional
12 Review Board (#H23240). The survey is randomized and includes several treatment groups to test the
13 effectiveness of different health and environment related informational messages in promoting sustainable
14 travel modes: bus transit, walking, and biking. The informational messages under five different categories
15 were carefully crafted to convey the associated health and environmental benefits to individual traveler
16 (pro-self), or their community (pro-social), or both (pro-self + pro-social) to promote sustainable modes.
17 Each message highlights a health or environmental benefit and targets a specific sustainable mode. A series
18 of small-scale surveys were conducted to improve the framing (in terms of context, language, and tone) of
19 the messages. The following categories of informational messages were tested:

- 21 • Environmental – emissions
- 22 • Environmental – air quality
- 23 • Active health – step count
- 24 • Active health – calories burned
- 25 • Heart health

26 **A. Informational messages using emissions**

27 This set of messages highlights trip-specific emission reductions of each target mode compared to
28 personal vehicle travel. Messages in **Table 1** communicate different scales of benefits (pro-self: benefit to
29 individual travelers, pro-social: benefit to community, i.e., neighborhood) corresponding to the
30 improvement in air quality resulting from emission reductions.

31 **TABLE 1 Informational messages using emissions**

Scale of benefit	Target mode	Informational message
Pro-self	Bus	“Take the bus to reduce 0.7 pounds of carbon emissions and improve the air you breathe”
Pro-social	Bus	“Take the bus to reduce 0.7 pounds of carbon emissions to improve the air in your neighborhood”
Pro-self and pro-social	Bus	“Take the bus to reduce 0.7 pounds of carbon emissions to improve the air you and your neighbors breathe”
Pro-self	Walk	“Walk to reduce 1.2 pounds of carbon emissions to improve the air you breathe”
Pro-social	Walk	“Walk to reduce 1.2 pounds of carbon emissions to improve the air in your neighborhood.”
Pro-self and pro-social	Walk	“Walk to reduce 1.2 pounds of carbon emissions to improve the air you and your neighbors breathe”
Pro-self	Bike	“Bike to reduce 1.2 pounds of carbon emissions to improve the air you breathe”
Pro-social	Bike	“Bike to reduce 1.2 pounds of carbon emissions to improve the air in your neighborhood”
Pro-self and pro-social	Bike	“Bike to reduce 1.2 pounds of carbon emissions to improve the air you and your neighbors breathe”

1
2 **B. Informational messages using air quality**

3 Taking bus transit can reduce the exposure to air pollutants as buses undergo stringent maintenance,
4 including regular air filter replacements, compared to personal vehicles where air filter maintenance is often
5 neglected. Informational messages in **Table 2** are designed to illustrate the benefits of taking bus transit on
6 air quality and the resultant reduced exposure to air pollutants. Three different messages are selected to
7 differentiate the benefits to individual traveler, the community (e.g., neighborhood), and both.

8
9 **TABLE 2 Informational messages using air quality**

Scale of benefit	Target mode	Informational message
Pro-self	Bus	“Limit your exposure to air pollutants”
Pro-social	Bus	“Take the bus to reduce your neighborhood’s exposure to air pollutants”
Pro-self and pro-social	Bus	“Take the bus to limit your and your neighborhood’s exposure to air pollutants”

10
11 **C. Informational messages using active health**

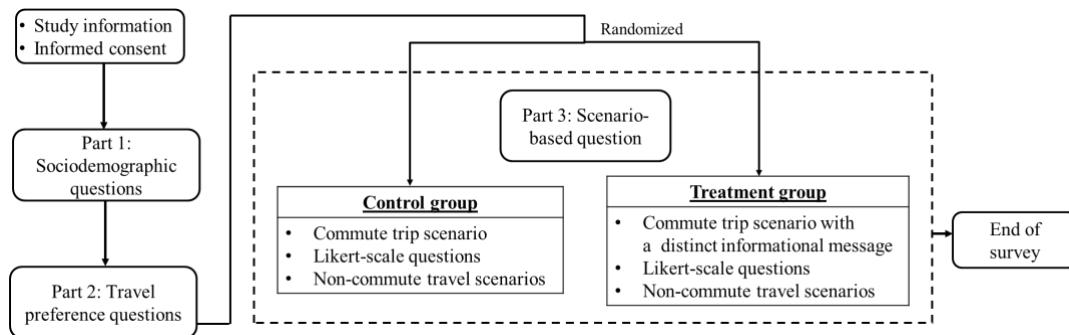
12 Walking 10,000 steps a day is a popular health campaign that points to several health benefits,
13 including improved blood pressure (45). Informational messages using daily steps can illustrate the
14 progress of a traveler’s daily step counts by adopting walking as a travel mode. Similarly, fitness tracking
15 apps, such as Fitbit or Apple Health, are widely used to track calories burned during the day. Messages
16 illustrating the calories burned by choosing walking or biking can communicate the impact of travel on
17 active health. While maintaining an active lifestyle is beneficial to an individual traveler, it also positively
18 benefits community health (46). **Table 3** shows eight messages designed to communicate the step counts
19 and calories burned from walking and biking. While showcasing the calories burned, equivalent number of
20 cookies are presented to make it more relatable.

21
22 **TABLE 3 Informational messages using active health**

Scale of benefit	Target mode	Informational message
<i>Step counts</i>		
Pro-self	Walk	“Complete 30% of your suggested daily steps”
Pro-social	Walk	“Walk to improve community health”
Pro-self and pro-social	Walk	“Walk to improve community health while completing 30% of suggested daily steps”
<i>Calorie counts</i>		
Pro-self	Walk	“You can burn up to 115 calories or 3 cookies”
Pro-self and pro-social	Walk	“Walk to improve community health while burning 115 calories or 3 cookies”
Pro-self	Bike	“You can burn up to 45 calories or 1 cookie”
Pro-social message	Bike	“Bike to improve community health”
Pro-self and pro-social	Bike	“Bike to improve your community health while burning 45 calories or 1 cookie”

23
24 **D. Informational messages using heart health**

25 Walking and biking are shown to reduce the risk of cardiovascular diseases (47). Individual heart
26 health improvement collectively improves community health. Messages in **Table 4** are designed to convey
27 these benefits to travelers.


1 **TABLE 4 Informational messages using heart health**

Scale of benefit	Target mode	Informational message
Pro-self	Walk	“Walk to improve your heart health”
Pro-self and pro-social	Walk	“Walk to improve your heart health and community health”
Pro-self	Bike	“Bike to improve your heart health”
Pro-self and pro-social	Bike	“Bike to improve your heart health and community health”

2
3
4
5
6
7
8
9
10
11
12
13

Survey Design

A stated preference survey design is employed to test the various informational messages. The survey takes 5-7 minutes to complete and consists of three parts as illustrated in **Figure 1**: (1) sociodemographic questions, (2) travel preference questions, and (3) scenario-based stated preference questions. The sociodemographic questions include age, gender, race, ethnicity, employment, education, and income. Travel preference questions include participants' usual travel time to work, their preferred travel modes for commute and non-commute trips, and a 7-point Likert scale question, ranging from 1 (strongly disagree) to 7 (strongly agree), with various statements (as outlined in **Table 5**, along with the intent of each statement) to gather data on opinions about health, environment, and willingness to choose alternative sustainable modes.

14
15
16
17 **Figure 1 Survey flow**

TABLE 5 Likert scale questions

Statement	Intent
I am open to trying out alternative modes (other than my preferred modes) for daily commute trips	Willingness to use alternative modes for commute trips
I am open to trying out alternative modes (other than my preferred modes) for daily non-commute trips	Willingness to use alternative modes for non-commute trips
I am concerned about my carbon footprint	Concern about carbon footprint
If I knew how to better reduce carbon footprint, I would take action	Willingness to take action to reduce carbon footprint
I maintain an active lifestyle	Level of physical activity
I am health conscious	Health consciousness
If I knew how to better contribute to improve air quality, I would take action	Willingness to take action to improve air quality

18
19 Scenario-based stated preference questions present participants with a hypothetical commute
20 scenario, displaying a customized image of a mobile app featuring different travel options coupled with
21 informational messages (a few examples are shown in **Figure 2**), mimicking a real-time travel decision-
22 making. The survey is conducted as randomized control trials where, in the control group the scenario
23 questions offer travel options with travel information, while each treatment group is presented with the
24 scenario questions containing both travel information with a distinct informational message. Travel

information, such as travel time and distance corresponding to each mode, remains the same across all treatment and control groups. The scenario-based questions are phrased as “Suppose you are on your way to work, and you use a navigation app (such as Google Maps, Apple Maps, Waze, etc.). You have four alternative options as shown in the screen below. Assume all four options are available to you. Please choose the option you prefer the most.” As a follow-up to the scenario-based question, participants are asked to rate a few statements such as “I would change my behavior based on the message” on a 7-point Likert scale ranging from 1 (strongly disagree) to 7 (strongly agree). Additionally, after the scenario-based question, participants are asked whether they would consider using the target mode for six different types of non-commute trips (i.e., shopping, entertainment, social, fitness, medical, and errands).

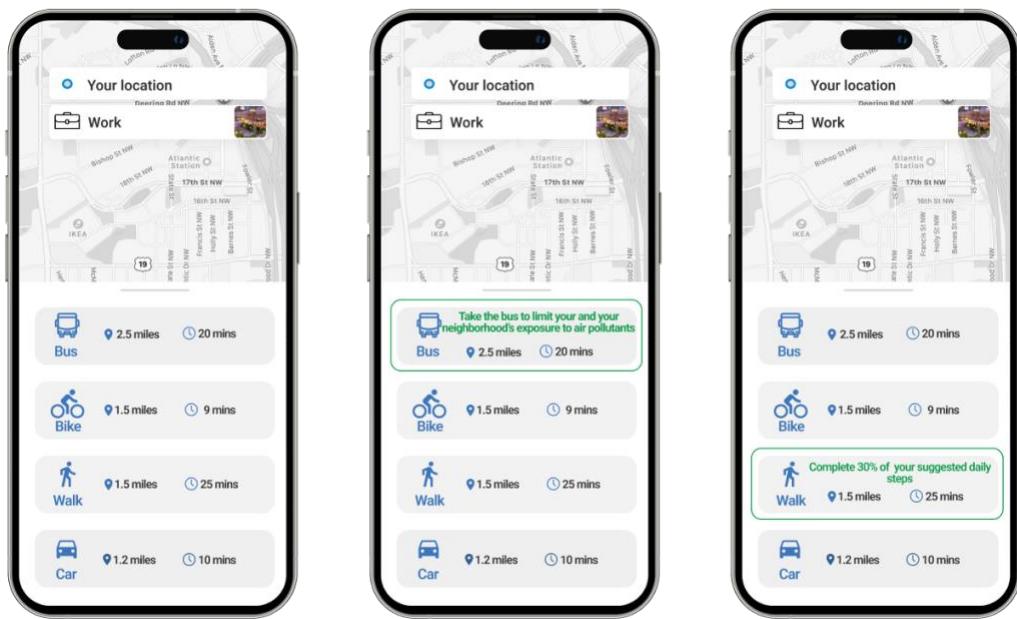


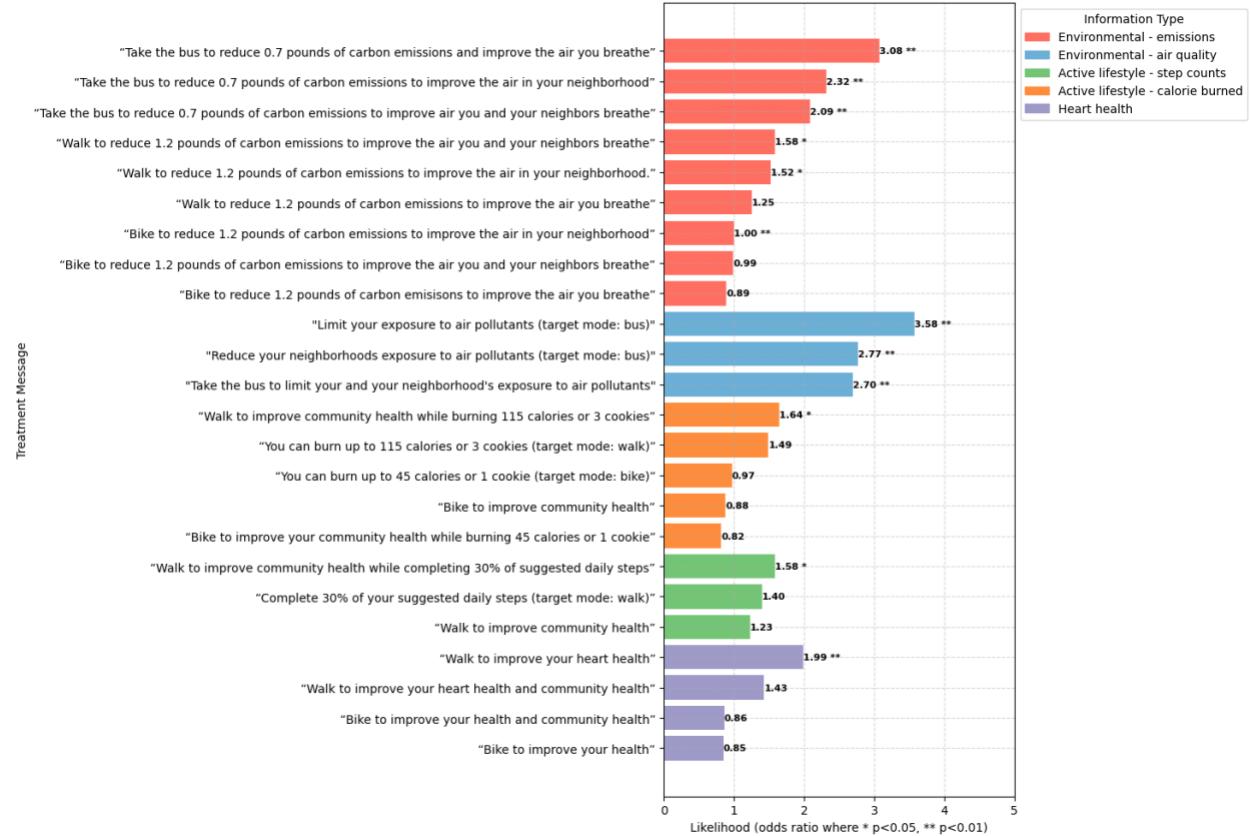
Figure 2 Examples of images used in the scenario-based questions

Participant recruitment and sampling

Participants were recruited via the Prolific survey data collection platform based on the criteria that they are 18 years or older, live in the U.S., and are primarily car users. The participants were compensated based on the standard rates set by Prolific. An informed consent was presented to the participants at the beginning of the survey as shown in **Figure 1**.

III. RESULTS

A total of 3,470 participants completed the survey, balanced across gender, income, and census regions. The Prolific platform has very few individuals aged 55 and over. Hence, they were not included in this study. The participants were randomly assigned to one of the 25 groups (24 treatment and 1 control groups). A one-way ANOVA conducted on the sociodemographic variables revealed that there were no significant differences among the groups, indicating that the randomization was successful and the groups were comparable in terms of sociodemographic characteristics.


Overall, the participants rated positively across various Likert scale statements listed in **Table 5**. Specifically, 78.92% of the participants indicated that they are health conscious, and 71.85% indicated that they maintain an active lifestyle. Overall, 56.24% of participants expressed concern about their carbon footprint, and 60.43% indicated a willingness to take action to reduce it.

Impact of informational messages on willingness to choose sustainable travel modes

The willingness to choose sustainable travel modes in the presence of informational messages is recorded using a 7-point Likert scale, ranging from “Strongly disagree” to “Strongly agree”. Since the response is on an ordinal scale, the effectiveness of the messages is analyzed using an ordinal logistic model (**Equation 1**). Each informational message’s effect is compared against the control group.

$$Y_n = \alpha X_n + \epsilon_n \quad (1)$$

Here, Y_n represents a latent variable that determines the discrete ordered outcomes for each participant n , X_n denotes explanatory variables, e.g., sociodemographic characteristics, and α represents the coefficients. The odds ratios corresponding to the informational message are plotted in **Figure 3**.

Figure 3 Effects on the willingness to choose sustainable modes in the presence of treatment messages compared to the control group (odds ratio)

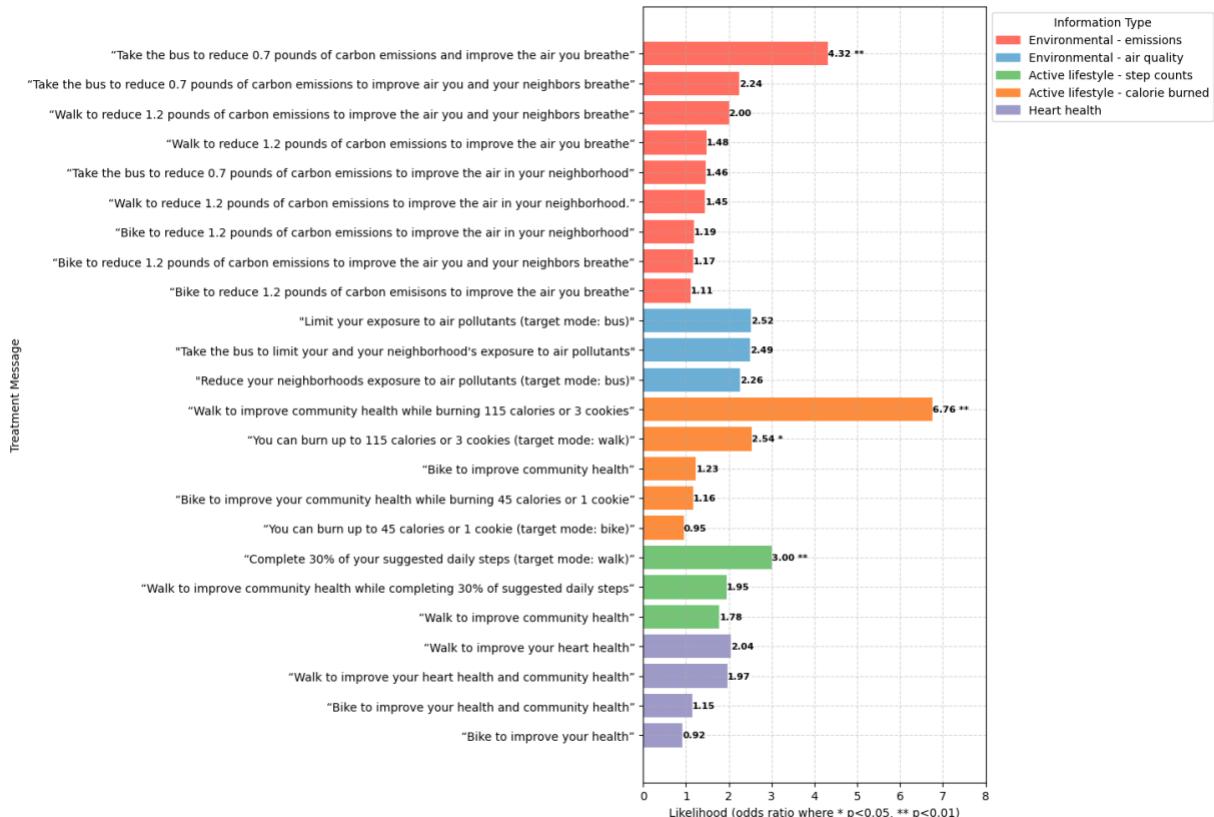
Based on the ordinal logistic model, all messages with environmental information about emissions to promote bus transit are effective in increasing participants’ willingness to choose bus transit. Of these, when the pro-self message was provided, the odds of willingness to choose bus transit increased by a factor of 3.08 compared to the control group. Pro-social message as well as combined (pro-self + pro-social) message with emissions information are also effective in increasing the willingness to choose walking. This could be attributed to the fact that 56.24% of participants expressed concern about their carbon footprint, and 60.43% indicated a willingness to take action to reduce it in the 7-point Likert scale statements.

All messages with environmental information about air quality are effective in increasing participants’ willingness to choose bus transit. Of these, when the pro-self message was provided, the odds of willingness to choose bus increased by a factor of 3.58 compared to the control group. The air quality

1 information likely aligns with their personal desire to reduce exposure to air pollution where 69.16% of the
 2 participants indicated a willingness to take action to improve air quality.

3 Messages highlighting calories burned while walking coupled with community health significantly
 4 increased the willingness to walk (odds ratio 1.64). Informational message about step counts (pro-self)
 5 coupled with community health benefits (pro-social) to promote walking significantly increased the
 6 willingness to walk (odds ratio 1.58). This could be because 71.85% of participants indicated that they
 7 maintain an active lifestyle. Step counts provide a clear and measurable personal health benefit making the
 8 message actionable. Additionally, community health benefits may appeal to individual's sense of social
 9 responsibility making it more likely to walk.

10 Pro-self heart health message significantly increased the participants' willingness to choose
 11 walking, with odds of choosing to walk increasing by a factor of 1.99 compared to the control group. This
 12 could be due to 78.92% of participants indicating that they were health conscious.


13

14 Impact of informational messages on travel mode choice

15 Since the responses to the scenario questions are categorical dependent variables, to understand the
 16 effectiveness of the informational messages on the mode choice, a multinomial logistic regression is used
 17 (**Equation 2**). Each informational message's effect is compared against the control group, with the baseline
 18 choice being the car (against which other mode choices are evaluated).

$$19 \quad U_n = \beta X_n + \epsilon_n \quad (2)$$

20 Here, U_n represents the utility of participant n , X_n denotes the explanatory variables, β represents the
 21 corresponding coefficients, and ϵ_n is the error term. **Figure 4** shows the odds ratios corresponding to the
 22 informational messages.

23
 24 **Figure 4 Likelihood of choosing sustainable modes in the presence of treatment messages compared
 25 to the control group (odds ratio)**

1 The message that combined calories burned (pro-self) with community health (pro-social) was
2 found to be effective in promoting walking. Considering that over 71% of participants agree that they
3 maintain an active lifestyle, it is not surprising that the participants in this group were 6.76 times as likely
4 to walk versus control group, especially for females (odds ratio of 10.77) and people with higher educational
5 attainment (odds ratio of 4.20). Participants receiving a similar message highlighting only the calories
6 burned from walking were 2.54 times as likely to walk versus control. Participants receiving pro-self
7 information about step counts were 3.00 times as likely to walk.

8 Participants receiving pro-self environmental message using emissions information were 4.32
9 times as likely to choose bus compared to the control group. This could be attributed to 56.24% of
10 participants expressing concern about their carbon footprint and 60.43% indicating a willingness to take
11 action to reduce it.

13 **Impact of informational messages on choosing sustainable travel modes for non-commute trips**

14 In every treatment group, as a follow-up to the scenario question, the participants were asked
15 whether they would choose sustainable modes for non-commute trips across six different non-commute trip
16 types. A higher percentage of participants chose sustainable modes for fitness and social trips while medical
17 trips had a lower percentage overall. For fitness trips, the activity itself (walking or biking) is aligned with
18 the nature of the trip, making these modes naturally appealing. For instance, 61.43% of participants chose
19 to walk for fitness trips when provided with a message illustrating the pro-self benefits in the form of step
20 counts. Social trips, with their relaxed nature and potential social interaction, also observed higher
21 percentages, with 60% for the same message. Entertainment trips also showed higher percentages of
22 participants choosing sustainable modes for travel (for example, 46.43% of participants chose to walk with
23 the same message). With entertainment trips (such as going to a concert), travelers could have difficulty in
24 finding parking space leading to higher percentages of participants choosing sustainable modes.

25 By contrast, medical trips had a low percentage of participants choosing sustainable travel modes
26 as they often require a high degree of convenience and reliability, which may be perceived as lacking in
27 sustainable modes. They can also involve a sense of urgency which may prevent the consideration of
28 sustainable modes with higher travel times. Next to medical trips, non-commute trips (errands and
29 shopping) also had a lower percentage of participants choosing sustainable travel modes. Since trips
30 pertaining to errands and shopping may have different requirements compared to commute trips, such as
31 flexibility, carrying capacity, and convenience, lower percentages were observed. Overall, the
32 informational messages promoting bus had a lower percentage of participants choosing it across all non-
33 commute trip types. Non-commute trips often require multiple stops or travel during off-peak hours. Transit
34 may be considered less convenient for these types of trips due to lower availability during off-peak hours
35 and limited service areas.

37 **IV. DISCUSSION**

38 **1. Informational messages with high potential to promote walking and bus transit**

39 Information about environmental benefits highlighting emission reductions is found to be a strong
40 contender to promote bus usage, which is consistent with prior literature (42). This message had a positive
41 effect on both the scenario-based question and the willingness to choose question to promote bus usage.
42 Calories burned along with community health benefits as well as step counts is a strong motivator to
43 promote walking. This result is consistent with prior literature in medical and behavioral evidence domains
44 (45, 46, 48, 49).

46 **2. Divergence between stated willingness to change versus mode choice decision**

47 Some divergence between participants' stated willingness to change and their mode choice in
48 scenario-based questions is observed. While the information on the benefits of reduced carbon emissions
49 increased the participants' willingness to choose bus transit, biking, and walking, they did not choose the
50 targeted mode except in the case of messages promoting bus transit. This divergence may stem from their

1 own perceptions about different travel modes as well as the practical challenges they face with biking and
2 walking, despite their willingness to change.

3 Another source of divergence is evident in the impact of air quality information on bus transit
4 adoption. While the information on the pro-social, pro-self, and combined benefits of air quality increased
5 people's willingness to take bus transit compared to the control group, none of these messages led people
6 to choose bus when presented with various travel modes in the scenario-based questions. This could be
7 because, although the prospect of improved air quality is an appealing benefit of choosing bus transit over
8 private vehicles, in practice, waiting for the bus may increase people's exposure to potential air pollution.

9 Information provision about heart health increased people's willingness to walk, but it did not lead
10 them to actually choose walking in the scenario-based questions. This may be due to practical challenges
11 such as distance, duration, weather, and other concerns.

12 13 **3. Informational messages that were ineffective**

14 Messages aimed at promoting biking had no impact on people's willingness to bike or their
15 selection of biking in the scenario-based choices. Biking can be perceived as physically demanding and less
16 convenient. Moreover, due to the lack of biking infrastructure in the U.S., biking can also induce safety
17 concerns. So, even with the informational messages illustrating the positive benefits of biking, these barriers
18 may outweigh the perceived benefits.

19 Overall, messages pertaining to heart health did not have any significant impacts in promoting
20 walking and biking, and in case of the pro-self message promoting biking, a negative effect was observed.
21 These mixed results could be because of differing perceptions of walking and biking. Walking may be
22 perceived as more accessible and less strenuous while biking may be perceived as less convenient and
23 physically demanding.

24 25 **4. Low-cost mobile app-based implementation**

26 Informational messages examined in this study can be easily implemented across communities in
27 the U.S. with low cost and high efficiency. The widespread use of mobile phones makes the implementation
28 cost-effective for large-scale implementation compared to the traditional monetary incentive-based
29 approaches. Moreover, previous literature (42) illustrates the higher efficiency of information provision
30 over monetary incentives. For example, the messages of giving up driving for environmental benefits
31 received a 39% positive response, while monetary incentives had a 30% positive response (42).

32 33 **V. CONCLUSIONS**

34 This study explores whether providing mobile app-based information on the health and
35 environmental benefits of sustainable travel modes can influence the preferences of personal vehicle users
36 in the U.S. A stated preference survey is conducted as a randomized control trial to investigate the
37 effectiveness of several health and environmental informational messages in promoting sustainable modes:
38 bus transit, walking, and biking. The study finds that health and environmental information promote bus
39 transit and walking, though the effectiveness varies across different modes and information. Information
40 provision about pro-self environmental benefits (emission reductions) promotes bus transit effectively.
41 Similarly, information provision about calories burned and community health benefits are effective in
42 promoting walking. By contrast, information provision aimed at encouraging biking is not effective.

43 This study has two limitations. First, it conducted a survey to assess people's stated preferences by
44 mimicking a real-time mode choice scenario by providing participants with images of a mobile app.
45 However, field studies are needed to validate the effectiveness of real-time health and environmental
46 information provision in promoting sustainable modes. Second, it did not test the effectiveness of
47 information provision on travelers aged 55 and over due to the limitations of the Prolific survey platform
48 which has few individuals in that age category.

49 The findings from this study highlight the importance of real-time health and environmental
50 information provision in promoting sustainable modes, leading to real-world policy implications. For
51 policymakers, designing and tailoring effective informational messages that highlight health and

1 environmental benefits of sustainable travel modes is crucial for encouraging shifts from personal vehicle
2 usage. Messages should highlight the individual benefits such as personal health and environmental
3 impacts, as well as community health benefits. Specifically, messages promoting bus usage should
4 incorporate information on emission reductions along with personal benefits, while messages promoting
5 walking should prioritize information on calories burned and community health benefits. Additionally, low-
6 cost implementation via mobile apps is scalable across the U.S., including small urban clusters and rural
7 areas where funding is often limited. Further, to make these policies more effective in promoting biking,
8 some supporting policies are needed to improve biking infrastructure and address specific situational factors
9 such as safety, distance, and time constraints that may discourage travelers from choosing this mode.
10

11 **ACKNOWLEDGMENTS**

12 This study is supported by funding from the National Science Foundation (NSF) Smart and
13 Connected Communities (S&CC) grant #2125390. Any errors or omissions remain the sole responsibility
14 of the authors. The authors are grateful to Suhana Shirol and Yoonsuh Kim, who joined this research
15 through NSF's REU Sites program, for their contributions in data collection and processing.
16

17 **AUTHOR CONTRIBUTIONS**

18 The authors confirm contribution to the paper as follows: study conception and design: Viswa Sri
19 Rupa Anne, Omar I. Asensio, Gulam Kibria, Yifan Liu, Srinivas Peeta; data collection: Viswa Sri Rupa
20 Anne; analysis and interpretation of results: Viswa Sri Rupa Anne, Yifan Liu, Gulam Kibria; draft
21 manuscript preparation: Viswa Sri Rupa Anne, Gulam Kibria, Yifan Liu, Omar I. Asensio, Srinivas Peeta.
22 All authors reviewed the results and approved the final version of the manuscript.

1 **REFERENCES**

2

3 1. U.S. EPA. Sources of Greenhouse Gas Emissions. <https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions>. Accessed Jul. 17, 2024.

4 2. Krzyzanowski, M., B. Kuna-Dibbert, and J. Schneider. Health Effects of Transport-Related Air

5 Pollution. *WHO Regional Office Europe*, 2005.

6 3. Boogaard, H., A. P. Patton, R. W. Atkinson, J. R. Brook, H. H. Chang, D. L. Crouse, J. C.

7 Fussell, G. Hoek, B. Hoffmann, R. Kappeler, M. Kutlar Joss, M. Ondras, S. K. Sagiv, E. Samoli,

8 R. Shaikh, A. Smargiassi, A. A. Szpiro, E. D. S. Van Vliet, D. Vienneau, J. Weuve, F. W.

9 Lurmann, and F. Forastiere. Long-Term Exposure to Traffic-Related Air Pollution and Selected

10 Health Outcomes: A Systematic Review and Meta-Analysis. *Environment International*, Vol.

11 164, 2022, p. 107262. [https://doi.org/https://doi.org/10.1016/j.envint.2022.107262](https://doi.org/10.1016/j.envint.2022.107262).

12 4. Zhang, K., and S. Batterman. Air Pollution and Health Risks Due to Vehicle Traffic. *Science of*

13 *The Total Environment*, Vol. 450–451, 2013, pp. 307–316.

14 [https://doi.org/https://doi.org/10.1016/j.scitotenv.2013.01.074](https://doi.org/10.1016/j.scitotenv.2013.01.074).

15 5. Choma, E. F., J. S. Evans, J. A. Gómez-Ibáñez, Q. Di, J. D. Schwartz, J. K. Hammitt, and J. D.

16 Spengler. Health Benefits of Decreases in On-Road Transportation Emissions in the United States

17 from 2008 to 2017. *Proceedings of the National Academy of Sciences*, Vol. 118, No. 51, 2021, p.

18 e2107402118.

19 6. U.S. Census Bureau. Means of Transportation to Work by Vehicles Available.

20 *Census2021ACSDT5Y2021.B08141*.

21 <https://data.census.gov/table/ACSDT5Y2021.B08141?q=transportation> mode

22 share&g=010XX00US_310XX00US35620_400XX00US03817. Accessed Jul. 29, 2024.

23 7. Folkvord, F., M. Van Der Zanden, and S. Pabian. Taste and Health Information on Fast Food Menus

24 to Encourage Young Adults to Choose Healthy Food Products: An Experimental Study.

25 *International Journal of Environmental Research and Public Health*, Vol. 17, No. 19, 2020, p.

26 7139.

27 8. Asensio, O. I., and M. A. Delmas. Nonprice Incentives and Energy Conservation. *Proceedings of*

28 *the National Academy of Sciences*, Vol. 112, No. 6, 2015, pp. E510–E515.

29 9. Bonan, J., C. Cattaneo, G. d'Adda, and M. Tavoni. The Interaction of Descriptive and Injunctive

30 Social Norms in Promoting Energy Conservation. *Nature Energy*, Vol. 5, No. 11, 2020, pp. 900–

31 909.

32 10. Goldstein, N. J., R. B. Cialdini, and V. Griskevicius. A Room with a Viewpoint: Using Social

33 Norms to Motivate Environmental Conservation in Hotels. *Journal of Consumer Research*, Vol.

34 35, No. 3, 2008, pp. 472–482.

35 11. Goldstein, N. J., and R. B. Cialdini. Using Social Norms as a Lever of Social Influence. In *The*

36 *Science of Social Influence*, Psychology Press, pp. 167–191.

37 12. Hagman, W., D. Andersson, D. Västfjäll, and G. Tinghög. Public Views on Policies Involving

38 Nudges. *Review of Philosophy and Psychology*, Vol. 6, 2015, pp. 439–453.

39 13. Hands, D. W. Libertarian Paternalism: Making Rational Fools. *Review of Behavioral Economics*,

40 Vol. 8, No. 3–4, 2021, pp. 305–326.

41 14. Hands, D. W. Libertarian Paternalism: Taking Econs Seriously. *International Review of*

42 *Economics*, Vol. 67, No. 4, 2020, pp. 419–441.

43 15. Nagatsu, M. Social Nudges: Their Mechanisms and Justification. *Review of Philosophy and*

44 *Psychology*, Vol. 6, 2015, pp. 481–494.

45 16. Vainre, M., L. Aaben, A. Paulus, H. Koppel, H. Tammsaar, K. Telve, K. Koppel, K. Beilmann, and

46 A. Uusberg. Nudging Towards Tax Compliance: A Fieldwork-Informed Randomised Controlled

47 Trial. *Journal of Behavioral Public Administration*, Vol. 3, No. 1, 2020.

48

1 17. Antinyan, A., and Z. Asatryan. Nudging for Tax Compliance: A Meta-Analysis. *ZEW-Centre for*
2 *European Economic Research Discussion Paper*, No. 19–055, 2019.

3 18. Beshears, J., J. J. Choi, D. Laibson, and B. C. Madrian. The Importance of Default Options for
4 Retirement Saving Outcomes. *Social Security Policy in a Changing Environment*, 2009, pp. 167–
5 195.

6 19. Hammond, D., G. T. Fong, A. McNeill, R. Borland, and K. M. Cummings. Effectiveness of
7 Cigarette Warning Labels in Informing Smokers about the Risks of Smoking: Findings from the
8 International Tobacco Control (ITC) Four Country Survey. *Tobacco Control*, Vol. 15, No. suppl 3,
9 2006, pp. iii19–iii25.

10 20. Sulikova, S., and C. Brand. Do Information-Based Measures Affect Active Travel, and If so, for
11 Whom, When and under What Circumstances? Evidence from a Longitudinal Case-Control Study.
12 *Transportation Research Part A: Policy and Practice*, Vol. 160, 2022, pp. 219–234.

13 21. Geng, J., R. Long, L. Yang, J. Zhu, and G. Engeda Birhane. Experimental Evaluation of Information
14 Interventions to Encourage Non-Motorized Travel: A Case Study in Hefei, China. *Sustainability*,
15 Vol. 12, No. 15, 2020, p. 6201.

16 22. Keall, M., R. Chapman, P. Howden-Chapman, K. Witten, W. Abrahamse, and A. Woodward.
17 Increasing Active Travel: Results of a Quasi-Experimental Study of an Intervention to Encourage
18 Walking and Cycling. *J Epidemiol Community Health*, Vol. 69, No. 12, 2015, pp. 1184–1190.

19 23. Xu, D. Burn Calories, Not Fuel! The Effects of Bikeshare Programs on Obesity Rates.
20 *Transportation Research Part D: Transport and Environment*, Vol. 67, 2019, pp. 89–108.

21 24. Sallis, R., B. Franklin, L. Joy, R. Ross, D. Sabgir, and J. Stone. Strategies for Promoting Physical
22 Activity in Clinical Practice. *Progress in Cardiovascular Diseases*, Vol. 57, No. 4, 2015, pp. 375–
23 386.

24 25. Smith-McLallen, A., D. Heller, K. Vernisi, D. Gulick, S. Cruz, and R. L. Snyder. Comparative
25 Effectiveness of Two Walking Interventions on Participation, Step Counts, and Health. *American
26 Journal of Health Promotion*, Vol. 31, No. 2, 2017, pp. 119–127.

27 26. Ogilvie, D., C. E. Foster, H. Rothnie, N. Cavill, V. Hamilton, C. F. Fitzsimons, and N. Mutrie.
28 Interventions to Promote Walking: Systematic Review. *BMJ*, Vol. 334, No. 7605, 2007, p. 1204.

29 27. Lee, I.-M., and D. M. Buchner. The Importance of Walking to Public Health. *Medicine & Science
30 in Sports & Exercise*, Vol. 40, No. 7, 2008, pp. S512–S518.

31 28. Ahmed, S., M. Adnan, D. Janssens, and G. Wets. Air Quality Based Informational Intervention
32 Framework to Promote Healthy and Active School Travel. *Procedia Computer Science*, Vol. 141,
33 2018, pp. 382–389.

34 29. Geng, J., R. Long, and H. Chen. Impact of Information Intervention on Travel Mode Choice of
35 Urban Residents with Different Goal Frames: A Controlled Trial in Xuzhou, China. *Transportation
36 Research Part A: Policy and Practice*, Vol. 91, 2016, pp. 134–147.

37 30. Chapman, R., M. Keall, P. Howden-Chapman, M. Grams, K. Witten, E. Randal, and A. Woodward.
38 A Cost Benefit Analysis of an Active Travel Intervention with Health and Carbon Emission
39 Reduction Benefits. *International Journal of Environmental Research and Public Health*, Vol. 15,
40 No. 5, 2018, p. 962.

41 31. Keall, M. D., C. Shaw, R. Chapman, and P. Howden-Chapman. Reductions in Carbon Dioxide
42 Emissions from an Intervention to Promote Cycling and Walking: A Case Study from New Zealand.
43 *Transportation Research Part D: Transport and Environment*, Vol. 65, 2018, pp. 687–696.

44 32. Basso, L. J., J.-P. Montero, and F. Sepúlveda. A Practical Approach for Curbing Congestion and
45 Air Pollution: Driving Restrictions with Toll and Vintage Exemptions. *Transportation Research
46 Part A: Policy and Practice*, Vol. 148, 2021, pp. 330–352.

47 33. Albert, G., and D. Mahalel. Congestion Tolls and Parking Fees: A Comparison of the Potential
48 Effect on Travel Behavior. *Transport Policy*, Vol. 13, No. 6, 2006, pp. 496–502.

49 34. Selmoune, A., Q. Cheng, L. Wang, and Z. Liu. Influencing Factors in Congestion Pricing
50 Acceptability: A Literature Review. *Journal of Advanced Transportation*, Vol. 2020, No. 1, 2020,
51 p. 4242964. <https://doi.org/https://doi.org/10.1155/2020/4242964>.

1 35. Li, Y., Y. Guo, J. Lu, and S. Peeta. Impacts of Congestion Pricing and Reward Strategies on
2 Automobile Travelers' Morning Commute Mode Shift Decisions. *Transportation Research Part*
3 *A: Policy and Practice*, Vol. 125, 2019, pp. 72–88.

4 36. Guo, Y., Y. Li, P. C. Anastasopoulos, S. Peeta, and J. Lu. China's Millennial Car Travelers' Mode
5 Shift Responses under Congestion Pricing and Reward Policies: A Case Study in Beijing. *Travel*
6 *Behaviour and Society*, Vol. 23, 2021, pp. 86–99.

7 37. Jaensirisak, S., M. Wardman, and A. D. May. Explaining Variations in Public Acceptability of
8 Road Pricing Schemes. *Journal of Transport Economics and Policy (JTEP)*, Vol. 39, No. 2, 2005,
9 pp. 127–154.

10 38. Weinstein, A., and G.-C. Sciara. Unraveling Equity in HOT Lane Planning: A View from Practice.
11 *Journal of Planning Education and Research*, Vol. 26, No. 2, 2006, pp. 174–184.

12 39. Wang, C., S. Peeta, and J. Wang. Incentive-Based Decentralized Routing for Connected and
13 Autonomous Vehicles Using Information Propagation. *Transportation Research Part B:*
14 *Methodological*, Vol. 149, 2021, pp. 138–161.

15 40. Avineri, E., and F. Steven. *Has the Introduction of the Cycle-to-Work Scheme Increased Levels of*
16 *Cycling to Work in the UK?* 2013.

17 41. Ettema, D., J. Knockaert, and E. Verhoef. Using Incentives as Traffic Management Tool: Empirical
18 Results of the "Peak Avoidance" Experiment. *Transportation Letters*, Vol. 2, No. 1, 2010, pp. 39–
19 51.

20 42. Riggs, W. Chapter 14 - The Role of Behavioral Economics and Social Nudges in Sustainable Travel
21 Behavior. In *Transportation, Land Use, and Environmental Planning* (E. Deakin, ed.), Elsevier,
22 pp. 263–277.

23 43. Li, T., P. Chen, and Y. Tian. Personalized Incentive-Based Peak Avoidance and Drivers' Travel
24 Time-Savings. *Transport Policy*, Vol. 100, 2021, pp. 68–80.
25 <https://doi.org/https://doi.org/10.1016/j.trapol.2020.10.008>.

26 44. Farooqui, M. A., Y.-T. Tan, M. Bilger, and E. A. Finkelstein. Effects of Financial Incentives on
27 Motivating Physical Activity among Older Adults: Results from a Discrete Choice Experiment.
28 *BMC Public Health*, Vol. 14, No. 1, 2014, p. 141. <https://doi.org/10.1186/1471-2458-14-141>.

29 45. Wattanapisit, A., and S. Thanamee. Evidence behind 10,000 Steps Walking. *J Health Res*, Vol. 31,
30 No. 3, 2017.

31 46. Lee, I.-M., and D. M. Buchner. The Importance of Walking to Public Health. *Medicine & Science*
32 *in Sports & Exercise*, Vol. 40, No. 7, 2008, pp. S512–S518.

33 47. Ekblom-Bak, E., B. Ekblom, M. Vikström, U. de Faire, and M.-L. Hellénius. The Importance of
34 Non-Exercise Physical Activity for Cardiovascular Health and Longevity. *British Journal of Sports*
35 *Medicine*, Vol. 48, No. 3, 2014, pp. 233–238.

36 48. Takama, Y., W. Sasaki, T. Okumura, C.-C. Yu, L.-H. Chen, and H. Ishikawa. Walking Route
37 Recommender for Supporting a Walk as Health Promotion. *IEICE TRANSACTIONS on*
38 *Information and Systems*, Vol. 100, No. 4, 2017, pp. 671–681.

39 49. Williams, D. M., C. Matthews, C. Rutt, M. A. Napolitano, and B. H. Marcus. Interventions to
40 Increase Walking Behavior. *Medicine and Science in Sports and Exercise*, Vol. 40, No. 7 Suppl,
41 2008, p. S567.

42
43