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Abstract
In this paper, we study the problem of multi-reward reinforcement learning to jointly optimize for multiple text
properties for natural language generation. We focus on the task of counselor re昀氀ection generation, where we
optimize the generators to simultaneously improve the 昀氀uency, coherence, and re昀氀ection quality of generated
counselor responses. We introduce two novel bandit methods, DYNAOPT and C-DYNAOPT, which rely on the broad
strategy of combining rewards into a single value and optimizing them simultaneously. Speci昀椀cally, we employ
non-contextual and contextual multi-arm bandits to dynamically adjust multiple reward weights during training.
Through automatic and manual evaluations, we show that our proposed techniques, DYNAOPT and C-DYNAOPT,
outperform existing naive and bandit baselines, demonstrating their potential for enhancing language models.

Keywords: multi-reward optimization, multi-armed bandits, reinforcement learning, linguistic rewards, policy
optimization, re昀氀ection generation

1. Introduction

The 昀椀eld of natural language processing (NLP) has
witnessed remarkable advancements in recent
years, with reinforcement learning (RL) emerging
as a powerful approach for optimizing language
models (Li et al., 2016b; Snell et al., 2023; Ra-
mamurthy* et al., 2023). This paradigm has en-
abled practitioners to train models to align with
diverse text properties and constraints, such as
safety, helpfulness, or harmlessness (Touvron
et al., 2023; Bai et al., 2022). Central to this
progress is the optimization of linguistic and behav-
ioral constraints, which serve as guiding signals
during the RL training phase, shaping the model’s
behavior toward desired objectives. However, as
NLP tasks grow in complexity and diversity, a crit-
ical challenge arises when multiple linguistic re-
wards must be integrated into the training process.

Researchers have explored di昀昀erent strategies
to tackle the challenge of incorporating multiple
rewards into the optimization of language models.
Two prominent classes of methods have emerged
in this context: (1) alternating between optimizing
individual metrics at di昀昀erent points in the train-
ing process (ALTERNATE) (Pasunuru and Bansal,
2018; Zhou et al., 2019), and (2) optimizing lan-
guage models by simultaneously considering mul-
tiple metrics and combining their associated re-
wards into a uni昀椀ed objective (COMBINE) (Sharma
et al., 2021; Yadav et al., 2021; Deng et al., 2022).
ALTERNATE involves training language models by
focusing on individual metrics at di昀昀erent stages
of the training process, which can help address the
challenge of incorporating multiple rewards by pri-
oritizing each metric separately. COMBINE aims to

Figure 1: Work昀氀ow of RL training of language mod-
els with multiple rewards. The main question is
how to simultaneously use the multiple rewards to
update the LM (Step 4).

optimize language models by simultaneously com-
bining multiple metrics into a single uni昀椀ed objec-
tive, hence o昀昀ering a more integrated approach
when optimizing for various criteria.

Previous methodologies employed in these ap-
proaches have predominantly relied on static con-
昀椀gurations, wherein the alternating order or the
combining ratio remains 昀椀xed and unchanging
throughout the training process. To address this
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limitation, Pasunuru et al. (2020) introduced the
DORB extension within the ALTERNATE class of
methods, which harnesses multi-armed bandit
(MAB) algorithms to dynamically select the reward
function to optimize at each stage of training. How-
ever, notably absent from their work is an explo-
ration of how MABs can be leveraged to enhance
and adapt the COMBINE class of multi-reward opti-
mization methods, where rewards are jointly con-
sidered.

In this paper, we extend the ALTERNATE ap-
proach for multi-reward optimization by incorpo-
rating the dynamic control and adjustment of the
mixing ratio of multiple rewards using MABs. Fur-
thermore, we use contextual multi-armed bandits
to address the absence of contextual information
that could further aid in the optimization process.
We evaluate our novel approaches against various
baseline methods from both the ALTERNATE and
COMBINE classes on counselor re昀氀ection genera-
tion, based on Motivational Interviewing counsel-
ing exchanges. Through our experiments, (1) we
昀椀nd that previous naive and bandit-based multi-
reward optimization methods fall short of consis-
tently improving training reward metrics, and (2)
we show that our proposed methods, DYNAOPT
and C-DYNAOPT, o昀昀er a comparative advantage
in optimizing multiple rewards in the counselor re-
sponse generation task, as shown in both auto-
mated and human evaluations.

We release our code at https://github.
com/michiganNLP/dynaopt.

2. Related Work

Our work relates to several main research areas at
the intersection of Machine Learning and NLP.

Reinforcement Learning. RL has been suc-
cessfully used to improve various NLP systems,
including task-oriented dialogue systems, news ar-
ticle summarizers, and empathetic response gen-
erators (Singh et al., 2002; Laban et al., 2021;
Sharma et al., 2021). These systems have applied
various RL techniques to go beyond supervised
learning with ground truth data by implementing re-
ward models that provide learning signals to steer
the behavior of language models (Ramamurthy*
et al., 2023). RL strategies for this purpose in-
clude proximal policy optimization (PPO) (Schul-
man et al., 2017), self-critical sequence training
(SCST) (Rennie et al., 2017), implicit language Q-
learning (Snell et al., 2023), or Quark (Lu et al.,
2022) to name a few. In our work, we chose the
k-SCST algorithm for its simplicity and efficiency
(Laban et al., 2021), but our approach is 昀氀exible
enough to be used in tandem with RL optimization
techniques.

Multi-reward Optimization. The inherent com-
plexity of NLP tasks has motivated the use of multi-
reward optimization in NLP methods (Garbacea
and Mei, 2022; Dann et al., 2023). Particularly, in
cases where de昀椀ning a desired behavior for lan-
guage models requires using multiple reward met-
rics, as single metrics often fall short of capturing
the intricacies of model performance. Some ex-
amples can be found in (Li et al., 2016a) which
uses answering, coherence, and information 昀氀ow,
as multiple rewards for training dialogue agents, or
in Bai et al. (2022); Touvron et al. (2023), where
safety and helpfulness preference models serve
as guiding rewards for the reinforcement learning
with human feedback (RLHF) strategy. Despite
the widespread use of multiple rewards, the chal-
lenge of e昀昀ectively combining them has received
comparatively less attention in the literature. No-
tably, Pasunuru et al. (2020) tackle this issue by
dynamically selecting one reward for optimization
during training.

Multi-armed Bandits. MABs o昀昀er a framework
for dynamically selecting among multiple actions
and o昀昀er a way to navigate the exploration-
exploitation trade-o昀昀 (Audibert et al., 2009; Auer
et al., 2002a,b; Bubeck and Cesa-Bianchi, 2012;
Burtini et al., 2015a,b). This makes them suit-
able in NLP applications where dynamic control
over multiple parameters, or input, selection is pre-
ferred over static control (Sokolov et al., 2016).
MABs have been successfully used for tasks
such as news article recommendation (Li et al.,
2010), data selection in neural machine transla-
tion (Kreutzer et al., 2021), model selection from a
pool of multiple NLP systems (Ha昀昀ari et al., 2017),
and crowdsourced worker selection for annotation
(Wang et al., 2023). In this work, we apply MABs
to the problem of multi-reward optimization.

NLP and Psychotherapy. Through our appli-
cation testbed, our research is also closely con-
nected to recent developments in NLP designed
to support counselors in their practice and ongoing
training within the counseling domain. Re昀氀ection,
a critical element in counseling strategies like Mo-
tivational Interviewing, has been the subject of pre-
vious investigations to evaluate counseling. For in-
stance, practitioners have used the frequency and
quality of re昀氀ections as a proxy for the quality of
overall counseling (Flemotomos et al., 2021; Ar-
dulov et al., 2022). Furthermore, research has
been conducted on the generation of re昀氀ections,
where retrieval of human-written examples or rel-
evant knowledge has been found to improve re-
昀氀ection generation performance (Shen et al., 2020,
2022; Welivita and Pu, 2023). In our work, we
focus on exploring and comparing di昀昀erent multi-



5439

Figure 2: An overview of the DYNAOPT work昀氀ow. At each bandit step, the bandit pulls an arm, which
updates the reward weights. Then, the RL optimization phase uses the summed weights and updates
the language model. In the bandit update phase, the LM generations are scored by the reward models,
and the scores are used to update the bandit model.

reward optimization techniques for RL training of
counselor re昀氀ection generation models.

3. DYNAOPT: Dynamically Adjusting
Rewards for Multiple Rewards

Reinforcement Learning

We introduce DYNAOPT, a bandit method that en-
ables COMBINE multi-reward optimization inspired
by the Dynamically Optimizing Multiple Rewards
with Bandits (DORB) framework (Pasunuru et al.,
2020). DYNAOPT leverages the bandit framework
to dynamically adjust the weights assigned to mul-
tiple rewards as shown in Figure 2.

3.1. Multi-reward Optimization with
Multi-armed Bandits

The DORB framework employs the Exponential-
weight algorithm for Exploration and Exploitation
(Exp3) algorithm, which tackles the adversarial
bandit problem (Auer et al., 2002a,b), to dynami-
cally select from a pool of reward functions during
training stages. However, it only uses the ALTER-
NATE paradigm during the selection process. In
contrast, DYNAOPT enables the use of the COM-
BINE strategy. When the Exp3 bandit chooses a
reward, its corresponding weight is incremented.
In addition, while the DORB framework always
chooses one reward at any given stage of training,
DYNAOPT allows for a “Do Nothing” option, which
does not update the reward weights. Below, we
describe the di昀昀erent steps followed by DYNAOPT
to enable these strategies. The pseudocode for
DYNAOPT is shown in Algorithm 1.

Choosing an Action. Given a reward function
fi with i ∈ 1, 2, .., N where N is the number of re-
wards, the probability of selecting fi at time t is
given as:

pt(i) = (1− γ)
at,i

∑N

j=1 at,j
+

γ

N + 1 (1)

where N +1 indexes the choice of not updating re-
ward weights, γ is a mixing parameter for smooth-
ing the probability with a uniform probability over
the rewards. Importantly, the arm weights at,j are
distinct from the reward weights (wt,j) themselves,
and are only used to sample an action, which then
updates the weights.

Updating Reward Weights. Our key idea is that
given a bandit’s reward selection, we increment its
weight instead of optimizing for that reward only.
Speci昀椀cally, when a bandit B chooses reward i at
time t, we adjust the weight of the reward function
Wt+1,i (Lines 5 & 17, Algorithm 1), using Equa-
tions 2,3, with rBt set as 1:

r̂B
W

t,j =

{

rB
W

t

pt(i)
if j = i

0 otherwise
(2)

wt+1,i = wt,i exp
(

γr̂B
W

t,i

K

)

(3)

Here, we reuse the Exp3 method of updating the
bandit arm weights to update our reward weights.
The 昀椀nal reward weights W can be obtained by
normalizing over wt+1,i. Moreover, we introduce
an additional weight WN+1, with the N + 1st arm
representing the ”Do Nothing” action, with Wt+1 =
Wt.



5440

Although we reuse the weight update equa-
tion of the Exp3 algorithm, we note that di昀昀erent
weight adjustment schemes can be employed in
DYNAOPT, allowing 昀氀exibility in adapting to various
reward optimization scenarios.

Bandit Reward Computation. After optimizing
the LM with the updated weights Wt, a reward
must be computed to update the bandit B. This
can be obtained by measuring the performance of
the updated LM over a validation set. Departing
from DORB, we use a di昀昀erent reward computa-
tion function for updating bandits (see line 4, Algo-
rithm 1). Instead of using scaled rewards, we de-
昀椀ne the bandit reward as the sum of the average
improvement of reward i:

r̂t =
∑

i

rti

rti = Mean(Rt,i)− Mean(Rt−1,i)

(4)

where Rt,i = is the history of unscaled rewards for
function i at time t.

Updating the Bandit. Given a reward for the
bandit, we update the bandit arm weights using the
Exp3 algorithm (Auer et al., 2002a; Pasunuru et al.,
2020) (Line 15, Algorithm 1). Updating the bandit
arm weights at,i uses the same formulas used to
update the reward weights (Equations 2,3).

3.2. C-DYNAOPT: Reward Update with
Contextual Multi-armed Bandits.

Contextual multi-armed bandits (CMABs) are a
class of decision-making algorithms that incorpo-
rate contextual information to optimize action se-
lection. In contrast to traditional MABs, which rely
solely on historical performance, contextual MABs
utilize additional context to make more informed
and adaptive choices in various scenarios (Cortes,
2018; Agarwal et al., 2014).

We extend the DYNAOPT algorithm by using con-
textual MABs (Burtini et al., 2015a; Bietti et al.,
2021) instead of non-contextual MABs. We use
Vowpal Wabbit’s algorithm1 to replace the Exp3
bandit and provide the current reward weights Wt

and average RL dev set reward for each reward
function as context to the bandit algorithm.

4. Datasets

4.1. Datasets
We use two counselor re昀氀ection datasets during
our experiments.

1Vowpal Wabbit https://vowpalwabbit.org

Algorithm 1 DYNAOPT Optimization

Input: # of rewards N , # of train steps ntrain, # of RL
validation steps roundbandit Initial policy p0, Initial Dis-
tribution of reward weights, W (uniform distribution
over N )

1: Make a copy pθ of initial policy p0.
2: Initialize Exp3 bandit B with N + 1 arms.
3: Initialize weights w0,i over i ∈ [1, 2, · · · , N + 1] as

uniform distribution.
4: a← chooseArm(B) ▷ Eqn 1
5: W ← UpdateRewardWeight(W,Bw, a, 1) ▷

Eqns 2,3
6: i← 0
7: while i < ntrain do
8: train_responses← Sample(pθ, train_data)
9: rtrain ← ComputeReward(train_responses, W )

10: Optimize pθ with Rtrain, p0 ▷ Eqn 5
11: if i % roundbandit == 0 then
12: dev_responses← Sample(pθ, dev_data)
13: rbandit ← ComputeReward(dev_responses,

uniform weights)
14: r ← ComputeBanditReward(rbandit) ▷ Eqn 4
15: UpdateBandit(B, a, r) ▷ Eqns 2,3
16: a← chooseArm(B)
17: W ← UpdateRewardWeight(W,Bw, a, 1) ▷

Eqns 2,3
18: end if
19: i← i+ 1
20: end while

PAIR Dataset. PAIR (Min et al., 2022) contains
interactions between clients and counselors con-
sisting of single-turn exchanges. The data col-
lection process involved a combination of expert
and crowdsource annotations. Expert annotations
were employed for the re昀氀ection category while
crowd sourced annotations were utilized to obtain
examples of non-re昀氀ective language. Following
the Motivational Interviewing Treatment Integrity
(MITI) (Moyers et al., 2016) scheme, the current
gold standard in Motivational Interviewing litera-
ture, each counselor’s response was categorized
as Complex Re昀氀ection (CR), Simple Re昀氀ection
(SR), or Non-Re昀氀ection (NR). Examples illustrat-
ing these categories can be found in the bottom
three rows of Table 3. Complex Re昀氀ections (CRs)
are deemed as preferred responses in comparison
to Simple Re昀氀ections (SRs), which, in turn, are
rated higher than Non-Re昀氀ections (NRs).

CounselChat and Reddit Dataset. The dataset
compiled by Welivita and Pu (2023) comprises
conversations extracted from online peer support
forums, such as CounselChat and Reddit. The di-
alogues feature a mixture of counseling conform-
ing and non-conforming responses, re昀氀ecting the
diverse nature of peer support interactions. This
dataset also used MITI to categorize counselor re-
sponse types at the utterance-level. We process
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the dialogs in the dataset to extract only client
prompt and counselor responses where the coun-
selor responses are either Simple (SR) or Complex
re昀氀ections (CR), based on the MITI annotations.

Table 1 shows statistics for each dataset.

Statistics PAIR Welivita and Pu (2023)

# of Exchange Pairs 2,544 1,184
Avg # of Words 32.39 36.92
# of Complex Re昀氀ections 636 768
# of Simple Re昀氀ections 318 416
# of Non-Re昀氀ections 1,590 0

Table 1: Counselor re昀氀ection dataset statistics.

4.2. Counselor Re昀氀ection Generation
Counselor re昀氀ection generation is the task of au-
tomatically generating empathetic responses that
mirror and affirm a client’s thoughts and feelings,
fostering a therapeutic and collaborative dialogue.
While multiple counseling strategies are available,
we follow the Motivational Interviewing strategy.
Speci昀椀cally, we aim to generate counselor re昀氀ec-
tions (Complex and Simple) given client prompts
about issues such as drug cessation, weight loss,
or health problems.

We evaluate our proposed approaches, DY-
NAOPT and C-DYNAOPT in generating counselor re-
昀氀ections, alongside with the following baselines:

• Cross Entropy: This model is trained using stan-
dard supervised learning methods. It serves as
a warm-start model for all the RL-trained models,
providing an initial reference point for compari-
son.

• Round: Within the ALTERNATE category, the
Round baseline employs a 昀椀xed round-robin
strategy, cyclically switching between reward
functions. Each reward function is allocated a
round size of 20 steps. This approach represents
a simplistic but systematic way of alternating be-
tween di昀昀erent rewards during training.

• Uniform Weighted: Falling under the COMBINE
class, the Uniform Weighted baseline employs
a straightforward uniform weighting scheme to
average the reward metrics.

• DORB: We implement the Single Multi-armed
Bandit (SM) DORB method proposed in Pa-
sunuru et al. (2020)’s. We focus on the sin-
gle bandit version of DORB since previous stud-
ies have shown on par or superior performance
to more complex hierarchical models (Pasunuru
et al., 2020). Moreover, we avoid the additional
overhead required while evaluating and tuning
the controller bandit.

4.2.1. Evaluation

Reward Metrics. We use three main metrics to
measure the quality of generated counselor re昀氀ec-
tions in terms of counseling style, 昀氀uency and co-
herence.

• Re昀氀ection Score (Min et al., 2022): This metric
quanti昀椀es the quality and relevance of generated
counselor re昀氀ections, ensuring that the model
produces responses that are contextually appro-
priate and meaningful within a counseling con-
text. It is computed by a RoBERTa scoring model
that was pretrained using the PAIR dataset. We
use the original weights trained by Min et al.
(2022).

• Fluency: Fluency is assessed to evaluate the
smoothness and coherence of generated re昀氀ec-
tions, ensuring that they read naturally and co-
herently. We implement our 昀氀uency reward as
the inverse of the perplexity of the generated re-
sponses, following (Sharma et al., 2021).

• Coherence: Coherence evaluates the logical
昀氀ow and consistency of the generated counselor
re昀氀ections. We implement the coherence re-
ward by training a RoBERTa classi昀椀er trained
to detect coherent and incoherent client prompt
and counselor response pairs, where incoherent
pairs are created by matching prompts to ran-
domly sampled responses (Sharma et al., 2021).

Evaluation Metrics. In our evaluation, we ex-
tend our assessment beyond the reward metrics
and delve into two additional linguistic-based met-
rics.

• Diversity (dist-2) (Li et al., 2016a): This metric
gauges the linguistic diversity of the generated
counselor re昀氀ections. It measures the variety
and richness of language used in the model’s re-
sponses.

• The Levenshtein edit rate (Edit Rate): This quan-
ti昀椀es the extent to which the model successfully
avoids verbatim repetition of client words. This
aspect of the evaluation ensures that the gen-
erated counselor re昀氀ections strike a balance be-
tween maintaining consistency and avoiding ex-
cessive repetition, aligning with the principles of
e昀昀ective counseling within MI (Lord et al., 2014).

Human Evaluation. In addition to automated
evaluation, we conducted human annotation of
100 randomly sampled generated re昀氀ections from
four models (DORB, Uniform Weighted, DYNAOPT,
C-DYNAOPT) to assess generation quality. Two
motivational interviewing experts collaborated as
consultants, rating generations on a 3-level scale.
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Then, the ratings were normalized to [0, 1]. The
guidelines for the human annotators are included
below:

ANNOTATION GUIDELINES: Use the following
guidelines to evaluate responses as either 0
(Non-Re昀氀ection), 1( Simple Re昀氀ection), or 2
(Complex Re昀氀ection):
Non-Re昀氀ection (0): A response is considered
a non-re昀氀ection when it does not engage with
the client’s input or the task at hand. It may be
o昀昀-topic, irrelevant, or simply fail to address
the client’s query.
Simple Re昀氀ection (1): A response is catego-
rized as a simple re昀氀ection when it acknowl-
edges the client’s input or question without
adding substantial depth or insight. It might
repeat or rephrase the client’s words, showing
understanding but not extending the conver-
sation signi昀椀cantly. Simple re昀氀ections demon-
strate basic engagement with the client’s
query.
Complex Re昀氀ection (2): A response is iden-
ti昀椀ed as a complex re昀氀ection when it goes
beyond mere acknowledgment and engages
deeply with the client’s input or question. It
demonstrates an understanding of the client’s
thoughts, feelings, or concerns and provides
a thoughtful, insightful, or elaborate response.
Complex re昀氀ections contribute to the conver-
sation by expanding upon the client’s ideas or
by o昀昀ering new perspectives and information.

When evaluating responses, choose the
most appropriate category (0, 1, or 2) based
on these criteria. Keep in mind that responses
may vary in complexity, and your judgment
should be guided by the degree to which they
re昀氀ect upon the client’s prompt.

Coherence. Rate the coherence of the coun-
selor on a scale of 0 to 2 (0=not coherent
at all, 1=somewhat coherent, 2=very coher-
ent). Coherent counselor responses should
e昀昀ectively address the client’s concerns and
maintain a logical 昀氀ow of conversation.

Fluency. Assess the linguistic naturalness
and smoothness of the counselor’s re-
sponses. Responses are rated on a scale
from 0 to 2, where 0 indicates responses
that lack 昀氀uency, 1 signi昀椀es somewhat 昀氀uent
responses, and 2 represents responses that
are highly 昀氀uent and natural in their expres-
sion. Fluent counselor responses should
convey information in a clear and easily
understandable manner, ensuring e昀昀ective
communication with the client.

4.3. Experimental Setup

During our experiments, we employ the k-Self-
Critical Sequence Training (k-SCST) (Laban et al.,
2021), an RL algorithm known for its simplicity
and e昀昀ectiveness. In the k-SCST technique, k

(≥ 2) samples are generated, and then their re-
wards RS1 , · · · , RSk , alongside the average re-
ward achieved by the samples, RS , which serves
as the baseline.

We use a KL-divergence loss between the initial
policy p0 and trained policy pθ to prevent the model
from deviating from the original model and gen-
erating unnatural text (Ramamurthy* et al., 2023).
Thus, our RL training objective is as follows:

LRL =
1

k

k
∑

j=1

[(R
S
−RSj ) log pθ(·|c)

−β KL(pθ(·|c)∥p0(·|c))]
(5)

where c is the prompt, · is the generated sequence
conditioned on c, β is the KL divergence coeffi-
cient.

Additionally, we train and test the pretrained
t5-base model (Ra昀昀el et al., 2020) on Nvidia’s
GeForce GTX 2080 GPUs, and use a batch size
of 10, which is also the k parameter for the k-
SCST algorithm. We tune our hyperparameters
on the validation set. During our evaluations we
combine and shu昀툀e the datasets and use a split
of 50%/10%/40% for the train/dev/test split. We re-
port the averaged results of 5 di昀昀erent runs for our
automated evaluations.

5. Results and Analyses

5.1. Overall Results

Not All Multi-reward Optimization Methods Are
E昀昀ective for Counselor Re昀氀ection Generation.
In our experiments, methods within the COMBINE
class exhibit superior performance compared to
the ALTERNATE methods (Table 2). We note that
COMBINE methods such as DORB or Round failed
to improve over the Cross Entropy baselines in au-
tomated re昀氀ection evaluation. This result is in con-
trast to Pasunuru et al. (2020)’s experiments on
data-to-text generation and question generation
tasks, which showed that their ALTERNATE-based
bandit method DORB was able to achieve improve-
ments in overall metrics. This stresses the ab-
sence of a universally optimal method for multi-
reward optimization, highlighting the nuanced na-
ture of reward combinations and the in昀氀uence
of task speci昀椀cs on the efficacy of di昀昀erent ap-
proaches.
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Models Re昀氀ection (↑) Fluency (↑) Coherence (↑) Edit Rate (↑) Diversity-2 (↑)

Round -5.02% 11.36% 5.51% -8.75% -0.20%
Uniform Weighted 4.48% 8.13% 5.36% -6.28% -0.23%

DORB (Pasunuru et al., 2020) -3.03% 9.54% 5.42% -7.00% -0.08%
DYNAOPT 7.80% 7.03% 5.02% -4.90% -0.63%

C-DYNAOPT 6.14% 8.73% 5.02% -5.75% -0.46%

Table 2: Automated evaluation results on the counselor re昀氀ection generation task. We compute the
average measurements of 5 di昀昀erent runs and report relative change over the Cross Entropy baseline.
Green indicates the model achieved improvement over all reward metrics.

Client Prompt: I’m a teenager. My entire family needs family therapy, and more than likely individual therapy.
My parents refuse to take action, and I’m tired of it. Is there any way I can get out of this myself?

Automatic Generation

Uniform Weighted Your parents are telling you that family therapy is needed for your entire family. You’re
worried that as a teenager, it’s getting too overwhelming and overwhelming.

DORB (2020) Your parents are fed up with what they see as a lack of action from your part of the
family.

DYNAOPT You’re questioning whether or not you can get help for your entire family.

C-DYNAOPT You’re questioning if there’s any way you can get out of this situation.

Expert Ground Truth

Complex Re昀氀ection You’re frustrated that your parents are hesitant to take action, and you’re wondering if
there’s a way for you to address these concerns on your own.

Simple Re昀氀ection You’re tired of your parents not taking action.

Non-Re昀氀ection Have you talked to your parents about how you’re feeling?

Table 3: Sample re昀氀ection generations of di昀昀erent models on the counselor re昀氀ection generation task.

Uniform
Weighted

DORB
(2020) DYNAOPT C-DYNAOPT

Re昀氀ection (↑) 69.44 64.16 73.50 74.10
Fluency (↑) 45.65 47.40 46.27 46.58

Coherence (↑) 86.49 86.86 86.37 86.40
Edit Rate (↑) 83.79 83.11 85.52 85.08

Diversity-2 (↑) 92.07 92.35 91.41 91.80

Table 4: Automated evaluation results on the coun-
selor re昀氀ection generation task (run seed = x).

Uniform
Weighted

DORB
(2020) DynaOpt C-DYNAOPT

Re昀氀ection 28.29 25.30 32.10 29.93
Fluency 60.31 55.85 59.38 58.91

Coherence 62.48 62.79 63.62 63.68

Table 5: Human evaluation results on the coun-
selor re昀氀ection dataset.

Comparative Advantage of Our Methods. Our
results show that DYNAOPT and C-DYNAOPT out-
perform not only the ALTERNATE methods but also
the Uniform Weighted baseline in terms of both au-
tomatic and human re昀氀ection levels while achiev-

ing similar levels in other metrics (Tables 2, 5).
Speci昀椀cally, while the bandit-based DORB training
leads to degraded performance over automated
re昀氀ection, our methods show consistent improve-
ment over all reward metrics.

5.2. Automated Evaluation
In the Counselor Re昀氀ection Generation experi-
ment (see Table 2), we observe that the COM-
BINE methods over performed the ALTERNATE mod-
els. While the COMBINE and ALTERNATE models
achieve similar levels of Fluency and Coherence,
the COMBINE models exhibit notable improvements
over the Cross Entropy baseline in terms of Re昀氀ec-
tion measurements. In contrast, the ALTERNATE
models show degraded performance in the Re昀氀ec-
tion metric. Interestingly, DORB achieves higher
re昀氀ection levels compared to the Round approach.

Furthermore, in contrast to the bandit-based
models, the Round approach exhibits higher over-
all variance over random runs (re昀氀ection variance
of 3.59 vs 1.43 & 1.29 of our methods), indicating
less stability in the training process. This further
suggests that in certain settings, the bandit ap-
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Figure 3: Reward weight trajectory of DYNAOPT
on the counselor re昀氀ection generation task.

Figure 4: Bandit arm weight history of DYNAOPT
on the counselor re昀氀ection generation task.

proach may contribute to a more stable and adapt-
able training process by dynamically adjusting re-
ward weights and optimizing multiple rewards as
training progresses.

5.3. Human Evaluation
The results of our human evaluation are pre-
sented in Table 5, with sample-generated re昀氀ec-
tions shown in Table 3. In this evaluation, we com-
pared DORB, DYNAOPT, and C-DYNAOPT, with the
Uniform Weighted model. For human evaluation,
we utilized the models trained in a single run (au-
tomated evaluations are shown in Table 4).

The evaluation results con昀椀rm the trends ob-
served in our automated evaluation. Speci昀椀-
cally, the COMBINE models outperform the Uniform
Weighted model, which falls within the ALTERNATE
class. Among the COMBINE models, our proposed
approaches (DYNAOPT and C-DYNAOPT) outper-
form the Uniform Weighted baseline in achieved
re昀氀ection. We also see that in terms of human-
evaluated 昀氀uency and coherence, our models
slightly outperform DORB despite having lower au-
tomated results. This could be attributed to the
higher re昀氀ection levels contributing to the overall
naturalness of the generated responses of ALTER-
NATE models. Our human evaluation reaffirms the
e昀昀ectiveness of our bandit-based methods, partic-
ularly in terms of enhancing re昀氀ection quality in
counselor responses.

5.4. Bandit Visualization
To understand the dynamics of bandit-based re-
ward adjustment for DYNAOPT we visualized the
trajectory of reward weights over the RL develop-
ment set throughout training.2 Notably, we ob-

2For all our visualizations we use the same random
seed run used for results reported in Tables 4 and 5

serve that the relative importance of each reward
dynamically changes over time, underscoring the
adaptive nature of our bandit-based control of re-
ward weights. This dynamic adjustment allows the
model to optimize multiple rewards e昀昀ectively as
training progresses.

We also plot the history of the probability distribu-
tion of each arm during training in Figure 4, where
”Do Nothing” corresponds to the action of not up-
dating the reward weight distribution. We note that
the trajectory of the reward weight history can be
understood by tracking the evolution of bandit arm
probabilities. For example, the increase of coher-
ence reward weight around round #40 coincides
with the corresponding increase of the coherence
arm weight, the decline of re昀氀ection and 昀氀uency
weights, as well as the rapid boost in the ”Do Noth-
ing” arm.

6. Conclusion

Our study addressed the problem of optimizing
multiple linguistic rewards in reinforcement learn-
ing in the context of counselor re昀氀ection gen-
eration in motivational interviewing (MI). We ex-
plored two primary optimization strategies, the AL-
TERNATE and COMBINE approaches, and also pre-
sented bandit-augmented versions of the latter
class. Our two novel bandit methods, DYNAOPT
and C-DYNAOPT, operate by dynamically adjusting
reward weights during training using multi-armed
bandits. Based on our empirical assessments, we
observed that previous naive and bandit-based ap-
proaches to multi-reward optimization fail to im-
prove response generations over the reward met-
rics. In addition, our proposed techniques, DY-
NAOPT and C-DYNAOPT, outperform existing base-
lines in the counselor response generation task,
demonstrating their potential for enhancing the RL
step of training language models.
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7. Limitations

There are limitations in our study that suggest di-
rections for future investigation. First, we have
yet to examine whether the trajectory of rewards
during training in昀氀uences holistic model behavior,
especially when ALTERNATE and COMBINE mod-
els achieve similar performance metrics after op-
timization. In addition, our study’s focus on
moderate-scale language models overlooks the
implications of applying our approach to larger
models with billions of parameters, such as Llama
2 (Touvron et al., 2023).

Also, although our method is independent of
speci昀椀c RL optimization algorithms, we have not
conducted experiments with popular RL algo-
rithms such as proximal policy optimization (Schul-
man et al., 2017). Addressing these limitations in
future research will help provide a more compre-
hensive understanding of the applicability and effi-
cacy of our approach in a wider range of contexts
and settings.

Finally, we emphasize that in this study our prior-
ity was to explore and compare di昀昀erent strategies
for optimizing re昀氀ection generators with reinforce-
ment learning, rather than creating state-of-the-art
models.

8. Ethical Considerations

The datasets used in our study include motiva-
tional interviewing conversations between coun-
selors and patients. We ensured that the source
datasets processed the dialogues so that person-
ally identi昀椀able information was redacted. In addi-
tion, we stress that we do not advocate for the de-
ployment of our models in clinical or mental health
settings, both because human understanding and
communication are vital in these domains and the
behavior of language models is not fully under-
stood. We recommend that current MI and coun-
seling systems are best considered as tools that
are best used for training and coaching learning
practitioners.
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A. Appendix

A.1. DORB Bandit Reward Computation
Following Graves et al. (2017), Pasunuru et al.
(2020) de昀椀nes the bandit reward at time t as a
mean of scaled rewards:

r̂t =











0 if Rt < qlot

1 if Rt > qhit
Rt−qlot
qhi
t −qlot

otherwise
(6)

where Rt = is the history of unscaled rewards at
time t and qlot , qhit are the lower and upper quan-
tiles of Rt.

A.2. Experiment Hyperparameters
We include the hyperparameter values we used in
Table 6. We optimize the learning rate, the bandit
coefficient γ, and the parameters of the contextual
bandit exploration’s online cover by conducting a
grid search based on the criterion of average re-
ward maximization.

B. Evaluation Results in Absolute
Number

We include the automated evaluation results in ab-
solute values and also include the standard devia-

Supervised Learning (Cross Entropy model)

Language Model t5-base
Training epochs 5
Learning Rate 1e-4

Reinforcement Learning (k-SCST)

Language Model t5-base
Learning Rate 1e-4
Sampling Temperature 1.0
Testing Temperature 0.5
k 10
KL weight β 0.05
ntrain 1000
nbandit 200
roundbandit 10
bandit coefficient γ 0.07
Bandit History Size H 200
Contextual Bandit Exploration Online Cover = 3

Table 6: Experiment models & parameters.

tion over the 昀椀ve di昀昀erent runs (Table 7).
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Models Re昀氀ection (↑) Fluency (↑) Coherence (↑) Edit Rate (↑) Diversity-2 (↑)

Cross Entropy 68.46 43.08 82.14 89.66 92.26
Round 65.03 ± 3.59 47.97± 0.94 86.67± 0.20 81.81± 1.56 92.08± 0.42

Uniform Weighted 71.53± 1.86 46.58± 0.69 86.55± 0.14 84.03± 1.04 92.05± 0.08
DORB (Pasunuru et al., 2020) 66.39± 1.84 47.18± 0.41 86.59± 0.25 83.38± 0.21 92.19± 0.21

DYNAOPT 73.80± 1.43 46.11± 0.42 86.27± 0.31 85.27± 0.70 91.69± 0.30
C-DYNAOPT 72.66± 1.29 46.84± 0.67 86.27± 0.21 84.50± 0.81 91.84± 0.38

Table 7: Automated evaluation results on the counselor re昀氀ection generation task. We compute the
average and standard deviation measurements of 5 di昀昀erent runs. Alternate model resuts are highlighted
in Cyan. Combine model resuts are highlighted in Red.


