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STUDY OF UNCERTAINTY IN THE PREDICTION OF CISLUNAR
TRAJECTORIES USING A LOW-COMPLEXITY ALGORITHM

Brian Baker-McEvilly; David Canales’ and Sirani M. Perera*

Predicting orbital trajectories presents significant challenges, not only due to
computational constraints but also because of uncertainties and perturbations in
state measurements. In our previous work, the low-complexity algorithm (LCA)
demonstrated its capability to predict trajectories within the three-body problem
while significantly minimizing computational complexity. However, it executes
exclusively on predefined measurements. This raises questions on the impact of
state measurements subjected to perturbations or inaccuracies. In this paper, the
potential of the LCA to efficiently determine orbital trajectories while analyzing
the impact of such perturbations on state measurements is studied. Thus, the LCA
framework is adapted to incorporate uncertainty from perturbations considering
interpolated trajectories. This analysis defines a boundary for all trajectories pre-
dicted by the LCA under perturbed measurements and characterizes how uncer-
tainties of these state measurements are transformed into trajectories.

INTRODUCTION

In recent history, a renewed focus on the Cislunar region has developed, as seen by the grow-
ing list of Lunar missions chartered for the region. Over thirty missions are planned to travel into
the region by 2030.!:2 These missions originated from large-scale, government-funded Lunar pro-
grams, such as the United States’ Artemis program, Russia’s Luna program, and China’s Chang’E
program. The commercial industry is further contributing to Cislunar traffic through programs such
as commercial Lunar payload services (CLPS)? and other independent ventures that are sending
payloads to the Moon for profit. Companies such as Astrobotics and Intuitive Machines are already
adding to the flight heritage of their Lunar landers through missions such as TO2-IM and T02-AB.
Furthermore, Cislunar traffic will continue to be perpetuated in the future through the resupplies re-
quired at the Artemis Lunar base and other established bases. The growing interest and investment
in Cislunar space underscore its importance for scientific, commercial, and military applications.

Modeling the dynamics of Cislunar space requires the consideration of the Earth’s and Moon’s
gravitational influence, and in applications requiring a level of higher fidelity, the Sun’s influence.
Examples of common Earth-Moon system dynamical models include the circular restricted three-
body problem (CR3BP)' to represent the gravitational influence of the Earth and Moon upon a
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spacecraft, and the bi-circular restricted four-body problem (BCR4BP)*? to represent the gravita-
tional influence of the Earth, Moon, and Sun. These dynamical models are highly nonlinear, sensi-
tive, and do not currently have closed-form solutions. As a result, applications using these models
often turn to numerical methods and differential correction tools.®!! However, these numerical
methods are computationally expensive due to their iterative nature and lack of analytical solutions.
The high computational cost of numerical methods may not be viable for the computational band-
width of every system, or occupy bandwidth that may be utilized by other, more important tasks.
To effectively address the challenge of utilizing computationally efficient numerical methods for
calculating spacecraft trajectories in the CR3BP, it is essential to realize low-complexity and best-fit
algorithms.!? 13

In astrodynamics, there is a history of using higher-order polynomial interpolation to accurately
determine orbital trajectories. Karepova and Kornienko!* present an introductory analysis of the ef-
fect of varying higher-degree polynomials on the accuracy of the Lagrange interpolation method, the
traditional method used by global navigation satellite systems. This analysis contains a useful sum-
mary of leveraging available state information of a satellite into the interpolation process. Horemuz
and Andersson'> demonstrate using polynomial interpolation between GPS satellite ephemerides,
analyzing the accuracy of polynomials of different orders across different time spans. The analysis
demonstrated for polynomials of the twelfth order, interpolating over a few hours, a centimeter-level
accuracy is achieved between GPS ephemerides. Grzegorz!'® further investigated the use of poly-
nomials in generating trajectories between GPS ephemerides by comparing the accuracy of Bessel,
Everett, Stirling, and Newton’s interpolation methods. The analysis demonstrated that when predict-
ing across GPS ephemerides separated by 15 minutes, only Stirling, Bessel, and Newton retained
millimeter-level accuracy when using a tenth-order polynomial. Grzegorz also demonstrates that the
more accurate methods, i.e. Newton and Lagrange, take longer to execute. Despite advancements
in these methods, there remains a significant gap in the development of low-complexity spacecraft
trajectory generation algorithms.'> !> This gap is primarily associated with the reliance on computa-
tionally intensive polynomial interpolation techniques and the unique boundary conditions derived
from state measurements.

It is important to note that the majority of the work on polynomial interpolation is within the
near-Earth applications, where trajectories will generally resemble two-body Keplerian trajectories
with the consideration of slight perturbations. All of these interpolation algorithms have yet to be
tested in a meaningful way on the periodic trajectories presented in the CR3BP that possess unique
geometries vastly different than conic sections.” Previous work by the authors!? began to investigate
this topic through the developed low-complexity algorithm (LCA) using polynomial interpolation
followed by the boundary conditions to accurately determine orbital trajectories in the CR3BP. The
LCA demonstrated its ability to replicate CR3BP trajectories to reasonable accuracy when given
states separated by many hours of time. Notably, the algorithm reduced computation time by at
least 50% compared to traditional numerical integrators for the trajectory generation in all shown
cases. Proving to be a potentially viable, computationally efficient, interpolation method within
multi-body dynamics when provided with appropriate trajectory data.

This manuscript aims to expand the understanding of the LCA’s functionality by investigating the
effect of implementing perturbations and uncertainty in the state measurements on the algorithm’s
stability and capability to produce trajectories. In orbit prediction, state measurements used in the
interpolation of a spacecraft’s trajectory often contain some form of noise or measurement error that
perturbs the anticipated trajectory from its true path.!”-!® Thus, it is paramount to the real-world



application of the LCA to understand how the algorithm handles these uncertainties compared to
previous analyses that only considered pre-defined measurements. Implementing perturbations into
the LCA further provides insight into stability of the algorithm, demonstrating if small disturbances
greatly perturbs the determined trajectory. To lay the foundation of the analysis, the required back-
ground on the CR3BP and LCA is provided. Then, the perturbation theory of the LCA is formulated
and the setup of the analysis is described. The results of the perturbation analysis are then presented,
followed by a discussion of their implications for the stability of the LCA under perturbations. Fi-
nally, the work will be completed with a summary of the key results and conclusions.

METHODOLOGY
The Circular Restricted Three-Body Problem

There are many methods of representing motion in the Earth-Moon system, including model-
ing the influence of the Sun,!” or coupling attitude and translational dynamics.?>?! A model that
includes the gravitational influence of Earth and Moon is a suitable level of fidelity to represent
Cislunar space for the purpose of this work. Thus, the CR3BP is utilized. The CR3BP is comprised
of three bodies: a large primary (Earth), a smaller primary (Moon), and a spacecraft of negligible
mass. The primaries move about a common barycenter in circular orbits, in which the barycenter is
defined using the mass parameter of the system:

p= (1)

mg + muy

where m is the mass and the subscripts E and M refer to the Earth and Moon, respectively. In
this manuscript, the equations of motion for the CR3BP are presented in the nondimensionalized
Earth-Moon rotating frame. The origin is at the barycenter, with the +Z-axis pointing toward the
Moon, the +Z2-axis out of the orbital plane, and the f-axis completing the right-handed system.
The system is nondimensionalized using the average Earth-Moon distance for characteristic length,
characteristic time ensuring mean motion equals unity, and the combined mass of Earth and Moon
for characteristic mass. The nondimensional state of the spacecraft is defined by position r =
[x,7, 2]T and velocity i = [&, 5, 2]T. As a result, the equations of motion are:

ou* ou* ou*
e P o s _ >
in which U™ is the pseudo-potential function of the system given by:
1-— 1
Ut = r L@+ 3)
HiE—s/cH ||£M—s/c|| 2

whererp_, /. andr,_, . are the position vector from the Earth and Moon to the spacecraft, respec-

tively, and || - || denotes the magnitude of the vector-valued quantities.!:® Out of these equations, a
constant of integration exists, referred to as the Jacobi constant (JC):

JCO =2U" — (x + 9y + 2). 4)

The JC is related to the energy of an object in the CR3BP, and will be used to identify specific
trajectories within an orbit family. Finally, five equilibrium solutions exist in the CR3BP, referred
to as libration points and denoted L1 — Ls. A schematic of the CR3BP is provided in Figure 1.
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Figure 1: Schematic of the Earth-Moon CR3BP system.

The Low-Complexity Algorithm'?

The LCA is formulated such that the polynomial satisfies position (r(t;) = [x(t;), y(t;), ()] D),
velocity (7(t;) = [#(t;), y(t;), 2(t;)]T), and acceleration (#(t;) = [#(t;), ii(t;), 2(t;)]T) of a space-

craft at distinct time ¢;, where i = 0,1,--- ,n, in space of R3. The trajectory of the spacecraft is
defined over n state measurements, described by a set of continuous piecewise functions operating
on each interval I, = [tg,tg+1], where kK = 0,1,--- ,n — 1. The algorithm begins by taking the

vectors 7(t;),7(t;),7(t;) € R3 in the non-dimensional form such that z(t),4(¢),#(t) € R, and
subsequently executes the algorithm in each dimension. Utilizing the fundamental theorem of La-
grange interpolation, a fifth-degree polynomial is presented satisfying the state measurements, i.e.,
position, velocity, and acceleration based on the boundary at each interval: I = [tg,tr11]. The
polynomial in 1D over the interval I, is defined as:

Gr(z(t)) = gog + g1.ut + goxt® + g3 ut + gant + g5 t® Q)

and the corresponding velocity and acceleration functions of the spacecraft on interval [}, respec-
tively, are denoted via

Gr(x(t) = gue+ 202kt + 3g3kt> + 4gapt® + 5gs it”,
Gr(z(t)) = 292k + 6g3xt + 1294 1t” + 20gs 11’ (6)
where t, <t < tgy1,and go g, g1k, , g5,k are the polynomial coefficients that implicitly depend

on the position, velocity, and acceleration of the spacecraft on the boundaries of the interval I. To
determine the coefficients of these polynomials in each interval, and hence to determine the trajec-
tories of the spacecraft over I, the known state measurements at ¢; are employed as the boundary
conditions of each interval at ¢ and ¢x,.1. This relationship is summarized as

Gr(z(ty) = z(tx) Gr(@(tgr1)) = o(tgtr)
Gr(z(ty)) = d(tr) Gr(x(ter1)) = @ter)
Gr(z(ty) = #(t) Gr(x(ter)) = F(te), (7



where x(tr), ©(t), and Z(¢)) are position, velocity, and acceleration quantities, respectively. Fol-
lowing the system of the equations on interval I, an equation using Eq. (5)-(7) is determined s.t.
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where Ay, is the coefficient matrix, g, s the vector consisting of the coefficients of the polynomials,
i.e., solution of the LCA, and b, is the vector of boundary conditions. By solving Eq. (8), a
polynomial that characterizes the trajectories of a spacecraft as it navigates between two boundary
conditions, dictated by state measurements, within the interval I}, is found. The LCA executes with
a low cost to solve the Eq. (8) while comparing with the brute-force system solving algorithm with
O(n3) complexity. Further information on the computational efficiency of the LCA, i.e. O(n?)
complexity, is elaborated upon and demonstrated in our previous work.!> The LCA achieves its
efficiency through the decomposition of the matrix Ay, into sparse lower bi-diagonal matrices (L)

and an upper triangular matrix (Uy). This decomposition is given via:

5
Urg, = by, where by = (H Lk) by )
r=1

where ék is the transformed boundary condition vector. The lower bi-diagonal matrices fmk €
R6x6 » = 1,2,..,5 and the upper triangular matrix U} are given in the appendix. The vector
of polynomial coefficients is then subsequently solved using the backward substitution through
Ui.. After the LCA is executed for each dimension in a time interval across all time intervals, a
continuous piecewise trajectory of the spacecraft is determined. Pseudo-code for the LCA given an
open trajectory (i.e. not a closed loop or no periodic boundary conditions), is in Algorithm 1.

Algorithm 1 LCA pseudo-code for an open trajectory

1: Collect n known state measurements

2: Break n measurements to k = n — 1 intervals, each containing two boundary conditions that
are shared with neighboring intervals

3: for k intervals do

4: for Each dimension of the conditions do

5: Pre-compute [ir’k and U} matrix entries

6: Store entries into Iir’k and U, matrices

7: Compute bidiagonal matrix-vector product, i.e., ﬁk
8: Solve for g, using backward substitution

9: end for
10: end for

The conditions required of the system to achieve the shown sparse decomposition are: increments
of time that are not approaching zero and chronologically sequenced; and the correct system formu-
lation of two points using position, velocity, and acceleration. The system formulation is required as



the entire decomposition is based on the specifically selected linear system structure, while proper
time increments ensure sequential progression of a trajectory in time and avoids singularities in the
dy, term. Under these conditions, sparse decomposition is guaranteed.

The LCA is unique from other decomposition techniques in that the structure of the system pro-
duces sparse L matrices whose manipulation results in lower arithmetic complexities. The sparse
decomposition does not exist for any number of points considered when forming a single polyno-
mial over an interval, or any combination of the state order (i.e. position, velocity, acceleration,
jerk, etc.). For example, considering four points for a single interval where position and velocity are
known, does not necessarily lead to a system that may be decomposed into sparse matrices. How-
ever, there is potential to derive other lower complexity algorithms that factor into sparse diagonal
matrices, but this will not always occur.

LOW-COMPLEXITY ALGORITHM PERTURBATION THEORY

Spacecraft state measurements frequently include errors such as noise, perturbations, or other
inaccuracies that deviate measurements from the true state. In this scenario, the aim is to analyze
the impact of noisy measurements on spacecraft trajectory generation using the LCA. To conduct a
quantitative analysis of state measurements, begin by examining the noisy data pertaining to posi-
tion, velocity, and acceleration, respectively,

f(tz) = [-f(tz)ayj(ti)aé(tz)]rra
?tz) = [j(ti)vgz(tz)vé(ti)]Ta
and 7(t;) = [2(t:),y(t:), 2(t:)]" (10)
at distinct times ¢; forz = 0,1, --- , n. Note that
Bt) = r(t) +or(t),
£(ti) = £(ti) + 67 (ta),
and 7(t;) = #(t;) + 0F(t;) (11

are, respectively, the measured state quantities with perturbed position, velocity, and acceleration
data given via 0r(t;), 67(t;), and 67(t;). Given that the LCA relies exclusively on the information
from state measurements to determine trajectories, any noise present in these measurements directly
impact the generation of the spacecraft trajectory. Thus, the presence of perturbed state measure-
ments, i.e, Eq. (10) with (11), significantly impacts the boundary conditions of the LCA, leading to
noisy boundary measurements ék expressed as

by, = by, + by, (12)

for each interval I;;. This results in a distinct polynomial characterized by noisy coefficients g, ,
which correspond to the perturbed state measurements 0b,. Thus, variations in the polynomial
coefficients cause shifts from the desired path, producing a trajectory that diverges from the original,
which can be denoted in R by

Gr(E(1) = Gok + GLat + Goxt? + Gant® + Gaxt + g5 ut°, (13)

where G, represents the interpolated polynomial influenced by variations in state measurements,
and go k., 91k, - - » g5,k are the new constants determining G'.. In realistic applications that involve



uncertainty, it is crucial to grasp how variations in the boundary conditions ék influence the result-
ing polynomial G;. This understanding is essential for establishing the accuracy of the spacecraft
trajectory generation proposed via the LCA.

Using the perturbed boundary conditions derived from the noisy state measurements in Eq.(10) -
(12), the matrix equation in Eq. (8) may be perceived as a perturbation of the corresponding linear
system given via:

A (g, +9g,) = b+, (14)

where 6g .. 1s the perturbation of the solution as opposed to the solution obtained via LCA. The ma-
trix equations associated with the LCA (i.e. Axg p = b, and Eq. (14)) illustrates that the trajectory

generation of the spacecraft is subject to perturbations, expressed as dg p = A;lé b,.. This indicates
that any alterations in the boundary conditions lead to proportional adjustments in the coefficients
of the polynomial, thereby affecting the solution or the spacecraft’s trajectories. In conclusion, by
adopting the perturbation theory in [22], the perturbed solution of the system & 9y in each interval
I}, is bounded by

Cnllgl < ag, )1 < o' g, (15)
where r = ||A|| |4, || is a constant and so-called the condition number of the system in each
interval,?3 g, is the solution of the LCA, and || - [| denotes the norm. If e, := Il‘liikl‘ll is defined as the
relative error in the boundary conditions or state measurements, then the relative error in the system
is represented by ‘l‘f;i’“”" . Thus, the deviation of the LCA coefficients from those produced with noise
in the state measurements is described as follows:

1ol (16)
K g,

Since the LCA interpolation method is calculated based on two boundary conditions for each in-
terval, and these conditions are represented as vector-valued quantities, the perturbation of these
quantities also become vector-valued, provided the norm as indicated in Eq. (15) is disregarded.
Thus, the impact of vector-valued quantities are to be investigated, particularly focusing on how the
direction of vector-valued perturbation quantities in each boundary condition affects the resulting
polynomial. For example, consider a perturbation in position in the Z-direction of 5 m applied to the
initial and final boundaries. If these perturbations shift the boundary conditions toward each other,
the resulting polynomial will differ from the one obtained if the boundary conditions are pushed
apart. The numerical analysis of arbitrary state measurement perturbations at both initial and fi-
nal boundaries reveals that the most severe perturbation occurs when the position and acceleration
changes align in the same direction, while the velocity changes operate in opposing directions.

PERTURBATIONS IN THE BOUNDARY CONDITIONS ANALYSIS

In real-world applications, the state measurements provided to the LCA contain noise or uncer-
tainty that alters the states from their true values. These perturbed measurements implemented into
the LCA perturb the coefficients of the polynomial, and thus the trajectory generated by the LCA.
Therefore, this analysis distinctly investigates the variations in polynomial coefficients as well as
the variations in the spatial trajectories as a result of perturbed measurements. The LCA’s response



to a set of perturbations also implies its numerical stability, in which a numerically stable LCA with
a disturbance in the boundary conditions will lead to a proportionally small change in polynomial
coefficients. With these goals in mind, perturbations are applied to the boundary conditions of the
LCA. In this analysis, trajectories from previous work!>!® are utilized as their functionality with
the LCA is well-reviewed and understood. This includes a distant retrograde orbit (DRO) with a
Jacobi Constant of 2.9337, an L4 axial orbit with a Jacobi constant of 2.0941, and an Lo southern
near-rectilinear halo orbit (NRHO) with a Jacobi constant of 3.0455. Additionally, from previous
analysis, it is generally understood that the accuracy of the LCA diminishes in dynamically sensitive
regions, or when the jerk of a trajectory is large.

Variations in Coefficients

Equation (16) establishes limits on the perturbation of boundary conditions in relation to the pre-
defined conditions, depending on whether the orbital trajectory generation system is well-conditioned
or ill-conditioned. Assume the system is well-conditioned and satisfies Equation (16), how the
perturbations in the boundary conditions influence the solution of the system may be analyzed.
Therefore, this investigation aims to validate the boundary conditions in Eq. (16), and gain an un-
derstanding of the resulting perturbation to the polynomial coefficients and orbital trajectory caused
by the variation in the state measurements. To achieve this goal, an arc along the L4 Axial orbit and
the NRHO are considered (Figure 2). The L4 Axial arc is selected since it is a section that the LCA
interpolates efficiently, while the NRHO arc is selected as it poses more of a challenge for the LCA.
It is known that the resulting coefficient perturbations (d¢g) pose a dependency on which entries in
the boundary conditions (b) are perturbed. That is, a pertarbation in initial and final position yields
a different perturbation in coefficients than a perturbation in initial and final velocity. To accom-
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Figure 2: The selected sections of the L4 Axial and NRHO sampled for analysis on the impact of
perturbations on the LCA coefficients.



modate this effect in the analysis, three different perturbations profiles are analyzed. These profiles
are comprised of scenarios perturbing only either position, velocity, or acceleration. For simplicity,
the perturbation magnitude is also evenly distributed between the initial and final conditions. Using
these different boundary condition perturbations (db), the relative error of the coefficients described
in Eq. (16) is determined and shown in Figure 3 for the two selected arcs. For these cases, it is seen
that there are slight variations in this analysis across the three dimensions of the trajectory. Thus,
for the sake of brevity, only the analysis in the z-direction is shown. The z-direction is selected as
both trajectories possess significant motion in the z-component.

The results validate the boundary defined by Eq. (16), demonstrating that for these two arcs, the
system is well-conditioned. This implies that a small perturbation in the measurements results in a
proportional perturbative response. When observing each perturbation case across the selected arcs,
perturbations in velocity result in the largest relative coefficient error, followed by acceleration,
and finally position perturbation. This indicates that the velocity possesses the most significant
influence over the coefficients than any other parameter. Additionally, the LCA reaches instability
faster due to increasing variations in velocity. Regardless, each case is sufficiently encompassed
by the bounds determined in Eq. (16). When comparing the two arcs, it is generally seen that,
given a perturbation, the NRHO arc yields a higher relative coefficient error than the Axial arc. This
pattern further solidifies the conclusion drawn in previous work!? that the LCA struggles to handle
trajectories that are rapidly changing or dynamically sensitive. As in this case, the dynamically
milder L4 Axial arc yields a smaller relative coefficient error compared to the dynamically more
sensitive NRHO arc.

The conditioning of the system for the LCA is dependent upon the initial and final time of the
LCA arcs, as they are what form A in Eq. (8). The analysis presented in Figure 3 examines an
arc over a specific time, which could inherently result in a well-conditioned system. To ensure
that shifts in the arc’s duration do not result in a serious shift from the results shown in Figure 3,
further analysis is required. Consider the same arcs in Figure 2, except now the initial boundary
condition of the arc remains unchanged, while a new final boundary condition is established based
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on a specified period for the arc. Analyzing only the z-direction across this new arc, a perturbation
magnitude (||0b,||) of 10~ is selected, as 10™* is a reasonably small perturbation and produced
well-behaved results in Figure 3. The resulting coefficient boundary and relative coefficient error
due to different arc time spans are shown in Figure 4. It is seen that the boundaries of the coefficients
become tighter as the time span increases.

The cause of the tighter boundary is either the result of the boundary condition norm (||, ||) be-
coming larger and causing the perturbation (||db,||) to have less of an impact, or the conditional
number of the system becomes larger. Both possibilities must affect the size of the boundary, but
the conditional number growing is the dominant effect since as the time span shrinks, the LCA
approaches the singularity in the dj, and the system will become ill-conditioned. Furthermore, the
behavior persists across the simulated orbits, and the boundary condition norm does not always in-
crease when the duration of the arc is shrunk. To demonstrate this, the boundary condition norm
for the L, axial and NRHO for each arc duration is shown in Figure 5. In Figure 5a, even while
the relative boundary condition error of the axial orbit is growing and shrinking, the relative co-
efficient error boundary in Figure 4a is becoming larger as the time span shrinks. However, the
plots demonstrate that no unprecedented behavior occurs when changing the time span of the arc,
but caution over the conditioning of the system must be used when shrinking an arc’s time span
significantly. Variations in the coefficient boundary and relative error occur, but not in a manner to
warrant concern over different time spans of an LCA arc.

In conjunction, this perturbation analysis investigating the error in coefficients, along with the
accuracy analysis shown in previous work,'? demonstrates the numerical stability of the LCA. The
perturbation analysis worked to prove that given a reasonable time span of an arc, the LCA is a well-
conditioned system in which a small perturbation yields a small variation in response. Furthermore,
the accuracy analysis in previous work!? demonstrates that the LCA may accurately reproduce an
arc of interest, relative to the overall span of the arc. Naturally, there are limitations to this stabil-
ity. Trajectories that are not sampled appropriately during rapidly changing sections will produce
unreasonable errors, as seen along the perilune example of the NRHO. Additionally, introductions

10%5 15
= Upper & Lower Bounda 10 i ‘ : ‘ : ‘
— pp . : gt —— Upper & Lower Boundary
o 1010 Position Perturbation 5 10 = :
= —_— . X 10 Position Perturbation
l.tl i el = A = = \Velocity Perturbation
= 10° Acceleration Rerfurhation '.u: 105 IN Acceleration Perturbation
] = < o T e e S R
T 10° e D = K o e
“— s
(] _s5 “G_J
8 10 o 10—5
o 10 =
= 10 g 10-10
5 o B
QG:J 10 D 10—15
o
0 4 8 12 16 20 0 2 4 6 8 10
Arc Time Span [hrs] Arc Time Span [hrs]

(a) L4 Axial relative error in z-coefficients with varia- (b) NRHO relative error in z-coefficients with
tion in time span. variation in time span.

Figure 4: The relative coefficient error for the selected arcs due to variations in the time span of the

generated arc, where ||6b, || = 1074,

10



_ 108.00+— DI T . 5.0
u:: .... .’.. uél 45 ., .
S 107.95 5
= T 40
g 107.90r ¢ S
> ',' -" = 35 ._‘..
© 3
2 107.85fs ) =
8 3 'o‘ [e] 3.0 ’u‘.
@ i o
¢ 107.80¢ K 225 |
® o
£ 107.75 “ 20
) 4 8 12 16 20 "0 2 4 6 8 10
Arc Time Span [hrs] Arc Time Span [hrs]

(a) Ly Axial relative error in z-boundary conditions (b) NRHO relative error in z-boundary condition
with variation in time span. with variation in time span.

Figure 5: The relative boundary condition error (e = l180.11/5.||) for the selected arcs due to varia-
tions in the time span of the generated arc, where ||0b, || = 1074

of perturbations that are much larger than the norm of the boundary condition yield significantly
perturbed coefficients. However, for a well-posed interpolation problem, the LCA behaves in a
numerically stable manner.

Variations in Spatial Trajectories

Previously, the perturbation analysis only considers the variation in the norm of the polynomial
coefficients due to the introduction of perturbations in the state measurements. This provides context
on the general impact of perturbations on the algorithm’s ability to determine the polynomial coef-
ficients, but no insight into how a change in coefficients then transform into a physically perturbed
trajectory is demonstrated. Each coefficient holds an influence over the trajectory and perturbations
uniquely effect these coefficients in different manners. Therefore, the following analysis aims to
relate a perturbation in state measurements to a physical perturbation in the LCA generated trajec-
tory. Specifically, the analysis will define a boundary in which under a perturbation, all potential
trajectories abiding by the perturbation shall remain within. To achieve this, consider a small piece
of a DRO that spans slightly over 21 hours, shown in Figure 6. This arc acts as a simple planar
case such that the conclusions drawn from this arc may expand to more complex trajectories.

Perturbations for the selected initial and final boundary conditions are now determined. Position
and velocity perturbations are chosen based on magnitudes that are appropriate for the respective
parameters and that yield informative results. The acceleration perturbation is determined using the
CR3BP equations of motion, implementing the true and perturbed position and velocity quantities
at the initial and final time. These conditions are plugged into the CR3BP and a resulting change
in acceleration is calculated. The perturbations are expressed as an ellipse about the true quantity.
For simplicity, the minor and major axis are determined by the perturbation magnitude along the
z-axis and y-axis. The chosen perturbation magnitudes in this analysis are shown in Table 1. It is
important to note that the effect of the perturbations on the arc generated by the LCA is determined
by the perturbation magnitudes, direction, and the interaction of different magnitude and direction
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Table 1: Perturbation magnitudes for initial and final points.

Point 6z [m] v, [] Sy [m] dvy [F]

Initial 500 80 800 60
Final 800 60 500 80

selections at the initial and final measurement.

To obtain an initial understanding of the effect perturbations have on the LCA, the initial and
final measurements of the DRO arc are perturbed according to the values shown in Table 1. For
both initial and final points, the state measurements are perturbed in a random direction, by a random
magnitude. The direction determines the maximum allowed magnitude, outlined by the perturbation
ellipse previously stated. The LCA then determines the the trajectory using the perturbed state mea-
surements. This process is repeated numerous times, producing many perturbed trajectories. From
the previous work,'? it is generally seen that an LCA trajectory deviates the most from the refer-
ence at the mid-point of the arc’s time span. Therefore, to analyze a snapshot of all the perturbed
trajectories at the likely worst-case scenario, the states of the perturbed trajectories are determined
at the mid-point of the selected arc’s timespan (= 10 hours). These states are subsequently shown
in Figure 7, shifted such that the position of the unperturbed LCA at this instance in time is at the
origin. Since the LCA decouples the coordinate systems and interpolates the polynomial in a sin-
gle dimension at a time, the perturbations applied to the state measurements are also be decoupled.
This means that a perturbation in a given dimension directly determines the perturbation from the
reference trajectory in that same dimension. Hence, in Figure 7, a shift in the x-axis and y-axis
from the origin directly correlates to (dx, dv,, da,) and (6y, dvy, day), respectively. It is clear from
the distribution of points that some boundary exists in the simulation that encompasses all of the
perturbed trajectories. However, the perturbed trajectories will not simply be defined by the worst
case perturbation to position, velocity, or acceleration as the interaction between the perturbations at
the initial and final point also play a role. Thus, to determine the explicit boundary of the perturbed
trajectories using the LCA, the effect of each perturbation on the trajectory is investigated.

— | CA

= == Reference Trajectory
O Initial Condition -—— -
A End of LCA Arc il ~

Figure 6: Reference trajectory of a DRO and the section of DRO that is later perturbed.
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The relationship between initial and final perturbations, as well as their magnitude, are analyzed
by determining the resulting change in a trajectory due to variations in each parameter. Since the
dimensions are decoupled within the LCA, the analysis is further broken down into the interactions
of the initial and final z-perturbations and y-perturbations. The same analysis is conducted once
more, perturbing the arc’s initial and final states, based upon magnitudes discussed in Table 1. The
perturbations are shifted across a single variable at a time, that is only perturbing either position,
velocity, and acceleration in each simulation. Furthermore, the perturbations between initial and
final measurements are varied. The position of the perturbed trajectory is recorded at the mid-point
of the time interval, and the error is determined from the unperturbed trajectory. The results of this
analysis are summarized in Figure 8 where z-perturbations are shown with a yellow-green gradient
and y-perturbations are shown with a cyan-purple gradient.

An explicit boundary for the analyzed set of perturbations is present within Figure 8. In terms
of perturbation magnitude, the boundary is formed using the largest available perturbation, as such
magnitude correspond to the largest error. In terms of perturbation direction, the boundary requires
a different combination of perturbation directions within position, velocity, and acceleration. For
position, the maximum error occurs when the initial and final perturbations are perturbed in the same
direction, either positively or negatively. Although the evolution of the error varies, this maximum
error occurring at similarly signed position perturbations is consistent across z-perturbation and y-
perturbation cases. Looking to the velocity, it is apparent that the maximum error occur when the
initial and final velocity are perturbed in opposite directions. Once again, the complete map of error
magnitude varies between x-perturbations and y-perturbations, but the maximum error occurring
at opposite velocity directions is consistent. Finally, the acceleration is similar to the position in
that the maximum error occurs when the initial and final acceleration perturbations are in the same
direction. It shall also be noted that there is a straight cut through the data shown in Figure 8,
where there is no perturbation from the unperturbed LCA, even under perturbed initial and final
quantities. This is because these plots are only snapshots of the middle of the time interval. So

15 [ I
—
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= 05] °§;,
n? o
2 0 Lemee - o
= (6x, dvy, bay,)
> 05
10}
-1.5¢ . j . . . . .
2.0 -1.0 0 1.0 2.0

X-axis [km]

Figure 7: Position of the perturbed trajectories at the middle of the time interval (= 10 hours),
where the unperturbed trajectory is at the origin.
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Figure 8: Deviation from reference LCA trajectory due to varying the perturbations applied to initial
and final measurements, analyzed at the mid-point of the time interval.
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there are combinations of perturbations that produce the same position as the unperturbed arc at this
instance in time, but the arcs evolve differently throughout the sections of trajectory not shown.

The combination of perturbations that lead to the maximum error describes the boundary that
contains any potential trajectories produced from combinations of perturbations. Therefore, in this
simulation, the boundary is described by an LCA trajectory that is generated using the largest per-
turbations, in which the initial and final perturbations have opposite velocity directions and similar
position and acceleration directions. In other words, the boundary is defined by the LCA arcs gen-
erated using the set of perturbations given by:

xBoundary = i[(sxo—maxv 5xf—m(zma 5vx07maza _5sz—maac7 6a$0—maz7 6a$f—ma,m}7

YBoundary — i[éyo—maa:a 5yffma:r7 5’Uy0,m,m, _5ny_mam7 5ay0,maz, 5ayf_m(n]- a7

To demonstrate the boundary determined by Eq. (17), consider the results shown in Figure 7. In
this work, the perturbations are described as an ellipse around the initial and final state respectively.
The evolution of this boundary, according to Eq. (17), encompasses all potential trajectories that
adhere to these perturbations.

The LCA decouples the evolution of each dimension, ensuring that as these elliptical boundaries
progress along the trajectory, rotation is not possible. This implies that a point at a certain angle
about the initial perturbation ellipse shall map to the same point at the same angle in the final per-
turbation ellipse. Furthermore, each set of mapped points along the ellipse boundary possesses a
unique maximum perturbation for position, velocity, and acceleration. Thus, the boundary com-
prised of mapped points evolves in its totality according to each respective arc generated by the
LCA when the perturbations of each set of mapped points follow Eq. (17). To demonstrate this,
consider a boundary that evolves in this manner, and its form in the middle of the time interval
for the selected DRO arc. The boundary is formed according to each LCA arc generated between
respective mapped points, and is shown in Figure 9. As anticipated, the boundary encompasses all
of the perturbed trajectories. Through closer analysis of this simulation, this explicit boundary is
demonstrated to be true for the entire duration of the arc. Figure 10 exhibits the evolution of the
boundary, sample perturbed trajectories, and unperturbed trajectories for the entire time span of the
arc. Overall, this method to determine a boundary of trajectories generated by the LCA given a
set of perturbations is valid for other arcs and trajectories. The process for then extending this re-
sult into three-dimensional trajectories is simple as, once again, the LCA handles every dimension
independently. Therefore, the boundary perturbations in Eq. (17) is extended to include the new
dimension and the LCA trajectories that describe the boundary will now be ran for the additional
dimension.

One of the weaknesses of the LCA is that it does not directly take into the consideration the
dynamical model governing the motion of the trajectory. The algorithm takes only measurements,
decouples the dimensions, and interpolates accordingly at a lower cost. Thus, the LCA is unable
to properly incorporate statistical distributions of measurements, sometimes expressed as perturba-
tion, that are non-deterministic and are physically coupled through the dynamics. Throughout the
analysis shown in this work, the perturbations are deterministic, bounded, and decoupled. Con-
sequently, the results and conclusions may not be directly applicable to trajectories derived from
measurements that exhibit statistical variability, such as those from onboard GNC systems. Despite
the limitation in application to realistic measurements, the analysis demonstrates that under pertur-
bations, the LCA is a stable and well-conditioned algorithm. A conclusion that is still vital to the
understanding of the LCA’s functionality and a key take-away of this work.
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Figure 9: Position of the perturbed trajectories and explicit perturbation boundary at the middle of
the time interval (= 10 hours), where the unperturbed trajectory is at the origin.
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Figure 10: Demonstration of boundary satisfaction for perturbed trajectories throughout the ana-
lyzed arc within a DRO, presented in the Earth-Moon rotating frame.

CONCLUSION

In most applications, spacecraft state measurements are subject to uncertainties that deviate them
from the true or mean state. Since the LCA predicts a trajectory using only information on state
measurements, changes in these measurements directly impact the LCA’s trajectory generation ca-
pabilities. Therefore, understanding the effect of perturbations and uncertainties in the LCA is
paramount to understanding its application and stability. Two investigations are conducted: first,
looking into the effect of perturbations on the polynomial coefficients generated by the LCA; and
second, exploring how the perturbed coefficients impact the spatial trajectories themselves. Ob-
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serving the effect of perturbation on the coefficients shows the algorithm is well-conditioned, as the
relative coefficient error remained within the described bounds and a change in boundary conditions
yielded some proportional change in coefficient error. Thus, a small perturbation in boundary con-
ditions leads to a small change in coefficients. The velocity is also demonstrated to have the heaviest
weight in the perturbation of the polynomial coefficients. The investigation into the perturbation of
physical trajectories determined that for a set of known perturbations, a boundary may be formed
that encompasses all potential trajectories. Each piece of this boundary then evolves from the initial
to the final boundary condition according to the LCA arc generated using the perturbations listed in
Eq. 17.

The perturbation results suggest that the LCA is a well-conditioned algorithm where a small
perturbation results in a minor change in the solution vector, or the polynomial coefficients that
describe a trajectory. In conjunction with the sufficient accuracy results in previous work,!? it may
be said that the LCA is a stable algorithm. Furthermore, it is important to note that the perturbation
conclusions may only extend to the subject of stability for the LCA, and not to the physical evolution
of the perturbations. This is primarily because the uncertainty of real measurements, represented as
perturbations, is statistical and interconnected through the dynamics of the system. The LCA is not
able to express this transformation of statistical variation from initial to final boundary conditions
as it decouples the dimensions without regard to the dynamical model.
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APPENDIX

In order to complete the matrix vector product (]_[ff:l iw,k)bk = L5 Elék and backwards
substitution through the system Uyg, = by, the pre-computed matrix entries of L, j and Uy must

be defined. The matrices L, € R6*6, = 1,2, ... 5 and U}, are given via

1 - r1 -
—dy dy 1
~ _ 1 = di —dy,
Ll,k - _dk dk ) L2,k - 1 )
1 dp  —dg
i —di  d] I 1]
1 - "1 -
1 1
= 1 = 1
L3,k‘ - —Qdk; dk: ) L4,k‘ - 1 )
1 3dp,  —dy,
L —2dy,  dp i 1
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1 2 2my,
L —2dy,  di i 2 |
where the pre-computed entries are given by
4 = —
U1 — tk
ik = lg+1 +tk,
Cok = tiyr +terate + 87,
3k = tppr + it + ety + 8],
ok = iy + b + it} + b+t
etk = tky1+ 2,
ear = tiq+ 2tepaty + 33,
esr = liq+ 200 itk + 3tpiaty + 4t3,
fre = 3thq + 4ty + 3t3,
mg = 2t + 3tk (19)
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