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Abstract
Robustness remains a paramount concern in deep
reinforcement learning (DRL), with randomized
smoothing emerging as a key technique for en-
hancing this attribute. However, a notable gap ex-
ists in the performance of current smoothed DRL
agents, often characterized by significantly low
clean rewards and weak robustness. In response
to this challenge, our study introduces innovative
algorithms aimed at training effective smoothed
robust DRL agents. We propose S-DQN and S-
PPO, novel approaches that demonstrate remark-
able improvements in clean rewards, empirical
robustness, and robustness guarantee across stan-
dard RL benchmarks. Notably, our S-DQN and
S-PPO agents not only significantly outperform
existing smoothed agents by an average factor of
2.16× under the strongest attack, but also surpass
previous robustly-trained agents by an average
factor of 2.13×. This represents a significant
leap forward in the field. Furthermore, we in-
troduce Smoothed Attack, which is 1.89× more
effective in decreasing the rewards of smoothed
agents than existing adversarial attacks. Our code
is available at: https://github.com/Trustworthy-
ML-Lab/Robust HighUtil Smoothed DRL

1. Introduction
Deep Reinforcement Learning (DRL) has achieved remark-
able performance, surpassing human-level capabilities in
various game environments (Mnih et al., 2013; Silver et al.,
2016). However, recent studies have unveiled a significant
vulnerability within DRL – its susceptibility to adversarial
perturbations (Huang et al., 2017; Lin et al., 2017; Weng
et al., 2020). As a result, it is imperative to enhance the
robustness of DRL agents before deploying them in real-
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world applications, especially those involving safety-critical
tasks.

In response to this need, researchers have adapted tech-
niques from robust classifier training to bolster DRL agents’
resilience (Pattanaik et al., 2018; Zhang et al., 2020; Oikari-
nen et al., 2021). This includes employing adversarial train-
ing strategies (Pattanaik et al., 2018) and introducing meth-
ods that enhance robustness through the use of robustness
verification bounds (Zhang et al., 2020; Oikarinen et al.,
2021). Additionally, a focus has shifted towards enabling
certifiable robustness in DRL agents using Randomized
Smoothing (RS) (Wu et al., 2022; Kumar et al., 2022), trans-
forming agents into their ”smoothed” counterparts. How-
ever, this transformation traditionally occurs only during
testing, without additional training.

Unfortunately, despite the progress in enhancing DRL ro-
bustness, we found that existing smoothed agents (Wu et al.,
2022; Kumar et al., 2022) demonstrate a notable deficiency:
they yield substantially lower clean reward and show little
improvement in robustness compared to their non-smoothed
counterparts. This critical gap, which we will discuss in
Section 2 ”Failure in existing smoothed DRL agents”, has
been largely overlooked in previous research. This high-
lights the need for more effective strategies. Furthermore,
previous attack evaluations are ineffective at reducing the re-
wards of smoothed agents as discussed in section 3.1 Table
1, potentially creating an illusion of empirical robustness.

Driven by these challenges, our work aims to significantly
enhance the clean reward, robust reward, and robustness
guarantee of smoothed DRL agents. We also address the
overestimation of robustness in previous studies by introduc-
ing a novel smoothing strategy and a more effective attack
method. As a result, we present two innovative agents,
S-DQN and S-PPO, designed for both discrete and contin-
uous action spaces. Our proposed agents not only achieve
high clean rewards but also provide robustness certification,
setting new state-of-the-art across various standard RL en-
vironments, including Atari games (Mnih et al., 2013) and
continuous control tasks (Brockman et al., 2016).
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Figure 1. The clean reward and reward under attack for DQN and PPO agents. The presented reward is normalized and averaged across
environments. Our S-DQN and S-PPO agents (in the Red boxes) exhibit significantly improved clean reward and robustness in comparison
to the previous smoothed agents (in the Brown boxes) and the non-smoothed robust agents (in the Gray boxes).

Our contributions are two-fold:

1. We identify and address the shortcomings in existing
smoothed DRL agents, particularly concerning their
low clean rewards and limited robustness. To address
the limitation, we introduce the first robust DRL train-
ing algorithms utilizing Randomized Smoothing (RS)
for both discrete actions (S-DQN) and continuous ac-
tions (S-PPO). Additionally, we introduce new smooth-
ing strategies and a new attack (Smoothed Attack) to
fix the overestimation of robustness in the previous
works.

2. Our agents establish a new state-of-the-art record on
both robust reward and clean reward. Our S-DQN and
S-PPO achieve a 2.52× and 1.80× increase in reward
respectively, outperforming existing best smoothed
agents under the strongest attack. Notably, our S-DQN
and S-PPO also surpass previous best (non-smoothed)
robust agents by 2.70× and 1.58× increase in reward
respectively.

We structure our paper as follows: In Section 2, we discuss
the issue of low clean reward in existing smoothed DRL
agents. In Section 3, we introduce the main algorithms of
S-DQN and S-PPO. In Section, 4, we derive the robust-
ness certification for S-DQN and S-PPO. In Section 5, we
evaluate the performance of S-DQN and S-PPO in terms of
both robust reward and robustness guarantee. In Section 6,
we provide background information relevant to our work.
Finally, in Section 7, we summarize our work and discuss
potential future directions.

2. Failure in existing Smoothed DRL Agents
Randomized Smoothing (RS) is a known technique for en-
hancing robustness in Deep Reinforcement Learning (DRL).
However, our analysis reveals a critical drawback: the clean
reward of all previously studied smoothed agents is no-
tably low with no improvement on the robust reward
compared to the non-smoothed agents, as demonstrated
with the yellow boxes in Figure 1. In the DQN frame-
work, previous smoothed agents experience notable reward
degradation due to the noise from RS. This degradation per-
sists even under attack scenarios, where no improvement
in robust reward is observed. The same pattern is evident
with PPO agents: the previous smoothed agents display di-
minished clean rewards compared to their non-smoothed
versions, with only marginal enhancements on the robust
reward. For further context on these previous studies, please
refer to Section 6.

In contrast, our proposed S-DQN and S-PPO, highlighted
in Figure 1 with red boxes, outperform all the previous
smoothed agents (Wu et al., 2022; Kumar et al., 2022) and
non-smoothed robust agents (Zhang et al., 2020; Oikarinen
et al., 2021; Liang et al., 2022; Zhang et al., 2021; Sun et al.,
2022) in both robustness and clean reward. This suggests the
feasibility of mitigating the adverse effects of randomized
smoothing while significantly enhancing robustness. In the
following section, we introduce our novel approaches: S-
DQN for discrete actions and S-PPO for continuous actions.
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Figure 2. The overview of our framework. We propose new DRL training algorithms leveraging Randomized Smoothing, achieving strong
certifiable robustness, high clean reward, and high robust reward simultaneously.

3. Learning Robust DRL Agents with
Randomized Smoothing

In this section, we propose first training algorithms lever-
aging Randomized Smoothing (RS) to achieve certifiably
robust agents, solving the issues mentioned in Section 2 and
effectively boosting the robustness as shown in Figure 1.
The overview of our framework is shown in Figure 2. Our
primary focus centers on two representative RL algorithms:
DQN for discrete action space, and PPO for continuous
action space, which are the focus of prior works in robust
DRL literature (Zhang et al., 2020; Oikarinen et al., 2021;
Liang et al., 2022; Zhang et al., 2021; Sun et al., 2022; Wu
et al., 2022; Kumar et al., 2022).

3.1. S-DQN (Smoothed - Deep Q Network)

We describe the details of training, testing, and evaluating
S-DQN in the following paragraphs.

Training and loss function. The training process of S-
DQN is shown in Figure 3 (a), which involves two main
steps: collecting transitions and updating the networks.
First, we collect the transitions {st, at, rt, st+1} with noisy
states, which can be formulated as follows:

at =

{
argmaxa Q(D(s̃t; θ), a), with probability 1− ϵ

Random Action, with probability ϵ

(1)
where s̃t is the state with noise s̃t = st +N (0, σ2IN ), D
is the denoiser, Q is the pretrained Q-network, and σ is the
standard deviation of the Gaussian distribution. Here, we
introduce a denoiser D before the Q-network, aiming to
alleviate the side effects of the low clean reward resulting
from the noisy states. After collecting the transitions, they

are stored in the replay buffer. In the second stage, we sam-
ple some transitions from the replay buffer and update the
parameters of the denoiser D. The entire loss function is de-
signed with two parts, reconstruction loss LR and temporal
difference loss LTD:

L = λ1LR + λ2LTD, (2)

where λ1 and λ2 are the hyperparameters. Suppose the
sampled transition is {s, a, r, s′}, the reconstruction loss LR
is defined as:

LR =
1

N
||D(s̃; θ)− s||22, (3)

where s̃ = s + N (0, σ2IN ), and N is the dimension of
the state. The reconstruction loss is the mean square error
(MSE) between the original state and the output of the de-
noiser. This loss aims to train the denoiser D to effectively
reconstruct the original state. The temporal difference loss
LTD is defined as:

LTD =

{
1
2ζ η

2, if |η| < ζ

|η| − ζ
2 , otherwise

η = r + γmax
a′

Q(s′, a′)−Q(D(s̃; θ), a),

(4)

where ζ is set to 1. Our designed LTD is different from the
common temporal difference loss in the DQN learning: the
current Q-value is estimated with the denoised state (the
output of D) and the target Q-value remains clean without
noisy input. Note that the pretrained Q-network Q can be
replaced with robust agents such as RadialDQN (Oikari-
nen et al., 2021) and our S-DQN framework can also be
combined with adversarial training to further improve the
robustness. We will discuss this later in Section 5. The full
training algorithm can be found in Appendix A.1.1 Algo-
rithm 1.
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Figure 3. The flow chart of: (a) training process of S-DQN, (b) testing process of S-DQN, (c) our Smoothed Attack pipeline for smoothed
agents, which is much more effective than non-smoothed attack.

Testing with hard randomized smoothing. The testing
process of S-DQN is shown Figure 3 (b). In the testing stage,
we need to obtain the smoothed Q-values of S-DQN. We
leverage the hard Randomized Smoothing (hard RS) strategy
to enhance robustness, which will be further discussed in
Section 4. We first define the hard Q-value Qh as follows:

Qh(s, a) = 1{a=argmaxa′ Q(s,a′)} (5)

Note that the hard Q-value Qh is always in [0, 1]. Then, we
define the hard RS for S-DQN as follows:

Q̃(s, a) = Eδ∼N (0,σ2IN )Qh(D(s+ δ), a). (6)

In practice, we need to estimate the expectation to get Q̃,
which can be done by using Monte Carlo sampling. The
action is then selected by taking argmaxa Q̃(s, a). The full
algorithm is in Appendix A.1.2 Algorithm 2.

New attack framework: Smoothed attack. In (Wu et al.,
2022), they evaluated all the smoothed DQN agents with the
classic Projected Gradient Descent (PGD) attack. However,
we found that the classic PGD attack is ineffective in de-
creasing the reward of the smoothed DQN agents as shown
in Table 1. Hence, we propose a new attack framework
named Smoothed Attack, which is specifically designed for
the smoothed agents to evaluate our S-DQN. The pipeline
of Smoothed Attack is shown in Figure 3 (c). The objective
of Smoothed Attack is as follows:

min
∆s

log
expQ(D(s̃+∆s), a∗)

Σa expQ(D(s̃+∆s), a)
, s.t. ||∆s||p ≤ ϵ, (7)

where a∗ = argmaxa Q̃(s, a), Q̃(s, a) is defined in Eq.(6),
s̃ = s+N (0, σ2IN ), ϵ is the attack budget, and p = 2 or ∞
in our setting. In our Smoothed Attack, the state with per-
turbation is added with a noise sampled from Gaussian
distribution with the corresponding smoothing variance σ.

Table 1. The comparison between our smoothed attacks (S-PGD
and S-PA-AD) and the existing attacks. A lower reward means
the attack is stronger. Our S-PGD attack reduces 61.8% of the
reward of S-DQN on average, which is over 2.62× stronger than
23.6% of the classic PGD attack. Our S-PA-AD attack reduces
55.4% of the reward of S-DQN on average, which is over 1.15×
stronger than 48.1% of the original version of PA-AD attack. The
ℓ∞ budget is set to ϵ = 0.05 in all the attacks.
Agents Environments No Attack classic PGD Attack S-PGD Attack (Ours)

S-DQN Pong 20.4 ± 0.5 19.4 ± 2.1 18.4 ± 2.1
Freeway 34.0 ± 0.0 32.0 ± 1.4 6.6 ± 2.2
RoadRunner 47480 ± 8807 17740 ± 3718 0 ± 0

Agents Environments No Attack PA-AD S-PA-AD (Ours)

S-DQN Pong 20.4 ± 0.5 19.4 ± 0.8 18.6 ± 1.2
Freeway 34.0 ± 0.0 19.8 ± 1.5 13.0 ± 2.1
RoadRunner 47480 ± 8807 0 ± 0 0 ± 0

This setting can be integrated with various existing attacks,
such as PGD attack and PA-AD (Sun et al., 2022), by re-
placing the objective with the Smoothed Attack objective in
Eq.(7). The comparison of our Smoothed Attack (S-PGD
and S-PA-AD) against the PGD attack and PA-AD attack is
in Table 1. The full algorithm of our smoothed attack is in
Appendix A.1.3 Algorithm 3.

3.2. S-PPO (Smoothed - Proximal Policy Optimization)

The specifics of training, testing, and evaluating our pro-
posed S-PPO are outlined in the following paragraphs.

Training and loss function. PPO agents demonstrate en-
hanced tolerance to Gaussian noise in contrast to DQN
agents. This attribute allows us to directly employ RS for
training the PPO agents. The training process of S-PPO is
shown in Figure 4. Initially, we gather trajectories using the
smoothed policy and subsequently update both the value
network and the policy network. In the trajectory collection
phase, We use the Median Smoothing (Chiang et al., 2020)
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Figure 4. The training process of S-PPO.

strategy to smooth our agents. The median value has a nice
property: it is almost unaffected by the outliers. Hence,
Median Smoothing can give a better estimation of the expec-
tation than mean smoothing when the number of samples is
small. The smoothed policy of S-PPO is defined as follows:

π̃i(a|s) = N (M̃i, Σ̃
2
i ), ∀i ∈ {1, ..., Naction} (8)

where M̃i = sup{M ∈ R|Pδ∼N (0,σ2IN )[a
mean
i ≤ M ] ≤

p}, Σ̃i = sup{Σ ∈ R|Pδ∼N (0,σ2IN )[a
std
i ≤ Σ] ≤ p},

(amean
i , astd

i ) is the output of policy network given a state
with noise s + δ as input, which represents the mean and
standard deviation of the i-th coordinate of the action, Naction
is the dimension of the action, and p is the percentile.

Now, we define the loss function for S-PPO as follows:

Lπ̃(θ) = −Et[min(Rπ̃Ât, clip(Rπ̃, 1− ϵc, 1 + ϵc)Ât)],

Rπ̃ =
π̃(at|st; θ)
π̃(at|st; θold)

,

(9)
where Ât is the advantage, and ϵc is the clipping hyper-
parameter. This is the loss of the classic PPO algorithm
combined with RS. Note that our S-PPO can also be com-
bined with robust PPO algorithms such as SGLD (Zhang
et al., 2020), Radial (Oikarinen et al., 2021), or WocaR
(Liang et al., 2022).

Adversary training for S-PPO. In ATLA-PPO (Zhang
et al., 2021) and PA-ATLA-PPO (Sun et al., 2022), they
jointly train a policy network and an adversarial network to
robustify the PPO agents. Our S-PPO can also be combined
with these adversarial training methods by modifying the
adversarial policy and objective to align with the smoothed
one. The smoothed adversarial policy is defined as follows:

Ãi(∆p|s) = N (M̃i, Σ̃
2
i ), ∀i ∈ {1, ..., N∆p} (10)

where A is the adversary, ∆p is the attack direction,
M̃i = sup{M ∈ R|Pδ∼N (0,σ2IN )[∆pmean

i ≤ M ] ≤ p},
Σ̃i = sup{Σ ∈ R|Pδ∼N (0,σ2IN )[∆pstd

i ≤ Σ] ≤ p},
(∆pmean

i ,∆pstd
i ) is the output of the adversarial network

given a state with noise s+ δ as input, which represents the
mean and standard deviation of the i-th coordinate of the
perturbation, and N∆p is the dimension of ∆p.

The loss of training smoothed adversarial policy is defined
as follows, which is designed to minimize the surrogate
reward:

LÃ(θ) = Et[min(RÃÂt, clip(RÃ, 1− ϵc, 1 + ϵc)Ât)],

RÃ =
Ã(∆pt|st; θ)
Ã(∆pt|st; θold)

.

(11)
In ATLA, ∆p represents the direction of the state change
∆s used to perturb the state of the PPO agents. On the
other hand, in PA-ATLA, ∆p represents the direction of the
action change ∆a. To induce the PPO agents to undergo the
specified action change ∆a, a Fast Gradient Sign Method
(FGSM) attack is then executed to perturb the state. We
use S-FGSM, which is the Smoothed Attack, while using
the PA-ATLA algorithm to perform adversarial training for
S-PPO.

The full algorithm of training S-PPO is in Appendix A.2.1
Algorithm 4 and 5.

Testing. We also use Median Smoothing during testing to
obtain the smoothed policy. However, we use the smoothed
deterministic policy as follows:

π̃i,det(s) = M̃i, ∀i ∈ {1, ..., Naction}, (12)

where M̃i = sup{M ∈ R|Pδ∼N (0,σ2IN )[a
mean
i ≤ M ] ≤ p},

and amean
i is the output of policy network given a state with

noise s + δ as input (amean
i = πi,det(s + δ)) representing

the mean of the i-th coordinate of the action. Here we only
use the amean value of the output of the policy network for
smoothing.

Attack. To evaluate the performance of our S-PPO, we
use the Maximal Action Difference (MAD) Attack and Min-
imum Robust Sarsa (Min-RS) Attack proposed in Zhang
et al. (2020). Furthermore, We also evaluate our S-PPO
under the two strongest optimal adversaries (Zhang et al.,
2021; Sun et al., 2022). (Zhang et al., 2021) proposed the
Optimal Attack, employing an adversarial agent to perturb
the states. (Sun et al., 2022) proposed the state-of-the-art
PA-AD attack, where an adversarial agent determines a di-
rection and uses FGSM to perturb the states based on the
specified direction. In the PPO setting, we did not find a
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significant difference between the smoothed attack and the
non-smoothed attack (see Table 16 in Appendix A.14), and
hence, we used the original setting for every attack.

4. Robustness certification
The strength of the smoothed agents lies in their certifiable
robustness. However, previous literature (Wu et al., 2022;
Kumar et al., 2022) fails to give a good expression for the
certified radius of DQN agents and has not derived the ac-
tion bound for PPO agents. To make the study of certifiable
robustness more complete, we formally formulate the cer-
tified radius, action bound, and reward lower bound of our
S-DQN and S-PPO agents.

Certified Radius for S-DQN. The certified radius for our
S-DQN is defined as follows:

Rt =
σ

2
(Φ−1(Q̃(st, a1))− Φ−1(Q̃(st, a2))), (13)

where a1 is the action with the largest Q-value among all the
other actions, a2 is the ”runner-up” action, Rt is the certified
radius at time t, Φ is the CDF of normal distribution, σ is
the smoothing variance, and Q̃(s, a) is defined in Eq.(6). As
long as the ℓ2 perturbation is bounded by Rt, the action is
guaranteed to be the same.

Note that our expression of the certified radius is different
from the one proposed in CROP (Wu et al., 2022) since we
use hard RS. In CROP, they took the average of the output
samples, which is the mean smoothing strategy. However,
this might not lead to a precise estimation of the certified ra-
dius since it requires estimating the output range [Vmin, Vmax]
of the Q-network. The certified radius proposed in CROP is
shown as follows:

Rt =
σ

2
(Φ−1(

Q̃CROP(st, a1)−∆− Vmin

Vmax − Vmin
)

− Φ−1(
Q̃CROP(st, a2) + ∆− Vmin

Vmax − Vmin
)),

(14)

where Rt is the certified radius at time step t, QCROP : S ×
A → [Vmin, Vmax], Q̃CROP(s, a) =

1
mΣm

i=1QCROP(s+ δi, a),
δi ∼ N (0, σ2IN ), ∀i ∈ {1, ...,m}, a1 is the action with
the largest Q-value, a2 is the ”runner-up” action, ∆ =

(Vmax − Vmin)
√

1
2m ln 1

α , Φ is the CDF of standard normal
distribution, m is the number of the samples, and α is the
one-side confidence parameter. Based on this expression,
the output range of the Q-network [Vmin, Vmax] can signifi-
cantly affect the certified radius. The certified radius is small
when the output range of the Q-network [Vmin, Vmax] is large
(e.g. Suppose Q̃CROP(st, a1) = 3, Q̃CROP(st, a2) = −3,
σ = 0.1, m = 100, and α = 0.05. The certified radius
is only 0.007 under [Vmin, Vmax] = [−10, 10]. Instead, if

we narrow down the interval to [Vmin, Vmax] = [−3.5, 3.5],
the certified radius grows to 0.086). CROP estimated
[Vmin, Vmax] by sampling some trajectories and finding the
maximum and the minimum of the Q-values. However, if
the actual interval is much larger than the estimation (which
is likely to happen in practice since it is impossible to go
over all the states), the certified radius can be significantly
overestimated.

In contrast, our hard RS strategy eliminates the need for
estimating [Vmin, Vmax], resulting in a more precise estima-
tion of the certified radius. Moreover, based on Eq.(13),
the certified radius of our S-DQN is not influenced by the
out range of the Q-network [Vmin, Vmax], which gives a more
stable guarantee. Detailed experiments for the certified ra-
dius of our S-DQNs versus the CROP agents are provided
in Appendix A.8, demonstrating that our S-DQNs achieve a
larger radius. The proof of the certified radius for S-DQN
can be found in Appendix A.5.

Action Bound for S-PPO. Unfortunately, unlike the dis-
crete action setting, there is no guarantee that the action will
not change under a certain radius in the continuous action
setting. Hence, we derive the Action Bound, which bounds
the policy of S-PPO agents in a close region:

π̃det,p(st) ⪯ π̃det,p(st +∆s) ⪯ π̃det,p(st), s.t. ||∆s||2 ≤ ϵ,
(15)

where π̃i,det,p(s) = sup{ai ∈ R|Pδ∼N (0,σ2IN )[πi,det(s +
δ) ≤ ai] ≤ p}, ∀i ∈ {1, ..., Naction}, p = Φ(Φ−1(p) − ϵ

σ ),
p = Φ(Φ−1(p) + ϵ

σ ), and p is the percentile. We designed
a metric based on this action bound to evaluate the certified
robustness of S-PPO agents. See Appendix A.9 for more
details. The proof of the action bound can be found in
Appendix A.6.

Reward lower bound for smoothed agents. By view-
ing the whole trajectory as a function Fπ, we define Fπ :
RH×N → R that maps the vector of perturbations for the
whole trajectory ∆s = [∆s0, ...,∆sH−1]

⊤ to the cumula-
tive reward. Then, the reward lower bound is defined as
follows:

F̃π,p(∆s) ≥ F̃π,p(0), s.t. ||∆s||2 ≤ B, (16)

where F̃π,p(∆s) = sup{r ∈ R|Pδ∼N (0,σ2IH×N )[Fπ(δ +

∆s) ≤ r] ≤ p}, F̃π,p(0) = sup{r ∈
R|Pδ∼N (0,σ2IH×N )[Fπ(δ) ≤ r] ≤ p}, δ =

[δ0, ..., δH−1]
⊤, p = Φ(Φ−1(p)− B

σ ), H is the length of the
trajectory, and B is the ℓ2 attack budget for the entire trajec-
tory. If the attack budget of each state is ϵ, then B = ϵ

√
H .

This bound ensures that the reward will not fall below a
certain value while given any ℓ2 perturbation with budget B.
We will discuss the reward lower bound for all the smoothed
agents in Section 5. The proof of the reward lower bound
can be found in Appendix A.7.
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In practice, it is necessary to introduce the confidence in-
terval, which can change the bounds based on the sample
number, while estimating all the bounds introduced above.
The details of estimating the bounds are provided in Ap-
pendix A.4.

5. Experiment
Setup. We follow the previous robust DRL literature to
conduct experiments on Atari (Mnih et al., 2013) and Mu-
joco (Brockman et al., 2016) benchmarks. In our DQN
settings, the evaluations are done in three Atari environ-
ments — Pong, Freeway, and RoadRunner. We train the
denoiser D with different base agents and with adversarial
training. Our methods are listed as follows:

• S-DQN ({Base agent}): S-DQN combined with a cer-
tain base agents. {base agent} can be Radial (Oikari-
nen et al., 2021) or Vanilla (simple DQN).

• S-DQN (S-PGD): S-DQN (Vanilla) adversarially
trained with our proposed S-PGD.

We compare our S-DQN with the following baselines:

• Non-smoothed robust agents: WocaRDQN (Liang
et al., 2022), RadialDQN (Oikarinen et al., 2021),
SADQN (Zhang et al., 2020).

• Previous smoothed agents (Wu et al., 2022; Ku-
mar et al., 2022): WocaRDQN+RS, RadialDQN+RS,
SADQN+RS. We use {base agent}+RS to denote
them.

In our PPO settings, the evaluations are done on two contin-
uous control tasks in the Mujoco environments — Walker
and Hopper. We train each agent 15 times and report the
median performance as suggested in Zhang et al. (2020)
since the training variance of PPO algorithms is high. Our
methods are listed as follows:

• S-PPO ({base algorithm}): S-PPO combined with
a certain base algorithms. {base algorithm} can be
SGLD (Zhang et al., 2020), Radial (Oikarinen et al.,
2021), WocaR (Liang et al., 2022), or Vanilla (simple
PPO).

• S-PPO (S-ATLA), S-PPO (S-PA-ATLA): S-PPO with
smoothed adversarial training described in Section 3.2
”Adversary training for S-PPO”.

We compare our S-PPO with the following baselines:

• Non-smoothed robust agents: WocaRPPO (Liang et al.,
2022), PA-ATLAPPO (Sun et al., 2022), ATLAPPO
(Zhang et al., 2021), RadialPPO (Oikarinen et al.,
2021), SGLDPPO (Zhang et al., 2020).

• Previous smoothed agents: WocaRPPO+RS, PA-
ATLAPPO+RS, ATLAPPO+RS, RadialPPO+RS,
SGLDPPO+RS.

See Appendix A.3 for more details about our setting.

Robust reward and lower bound for S-DQN. The ro-
bust reward of our S-DQN under ℓ∞ PGD attack and PA-
AD attack (Sun et al., 2022) is shown in Table 2. The
presented rewards are first normalized and then averaged
across the three environments. Note that we use our stronger
S-PGD and S-PA-AD introduced in Section 3.1 to evaluate
all the smoothed agents. Our S-DQN (Radial), S-DQN (S-
PGD), and S-DQN (Vanilla) exhibit superior performance
compared to the state-of-the-art robust RadialDQN and
WocaRDQN. Notably, our S-DQN (Vanilla) already demon-
strates greater robustness than RadialDQN without further
combining with other robust agents. The poor performance
of rows (c) suggests that the previous smoothed agents strug-
gle to tolerate the Gaussian noise introduced by RS and fail
to enhance the reward under attack. More detailed exper-
iment results and discussion about the robust reward for
S-DQN can be found in Appendix A.10.

Figure 5 shows the reward lower bound of our S-DQNs.
Our S-DQNs exhibit high reward lower bounds compared
to the previous smoothed agents, indicating that our method
can enhance not only the empirical robustness but also the
robustness guarantee. More detailed experiment results for
the reward lower bound can be found in Appendix A.11.

Robust reward and lower bound for S-PPO. The robust
reward of our S-PPO under attacks is shown in Table 3. The
presented rewards are first normalized and then averaged
across the two environments. Our S-PPO agents constantly
outperform their counterparts (previous smoothed agents
and the SOTA robust agents) for all robust training algo-
rithms. Through comparing rows (b) and (c), the previ-
ous smoothed agents exhibit lower clean reward and only
marginal improvement on the reward under attacks, suggest-
ing that naively applying RS during the test time cannot
improve the robustness of PPO agents. In addition, our S-
PPO agents receive a much higher clean reward on average,
showing that our RS training approach can further boost
performance in the non-adversarial setting. More detailed
experiment results and discussion about the robust reward
for S-PPO can be found in Appendix A.12.

Our S-PPOs also exhibit higher reward lower bounds than
the previous smoothed PPO agents, which is shown in Fig-
ure 6. More detailed experiment results for the reward lower
bound can be found in Appendix A.13.
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Table 2. The average normalized reward of DQN agents under ℓ∞
PGD attack and PA-AD attack. Our S-DQNs achieve the highest
robust reward, especially under a large attack budget ϵ.
Avg normalized reward Clean PGD attack PA-AD attack

ϵ(ℓ∞) 0.01 0.02 0.03 0.04 0.05 0.05

(a) Ours:
S-DQN (Radial) 0.929 0.928 0.932 0.830 0.788 0.735 0.669
S-DQN (S-PGD) 0.945 0.945 0.886 0.775 0.700 0.450 0.552
S-DQN (Vanilla) 0.989 0.818 0.660 0.601 0.498 0.377 0.442

(b) SOTA robust agents:
RadialDQN 0.926 0.947 0.770 0.337 0.206 0.210 0.248
SADQN 0.949 0.825 0.302 0.205 0.207 0.185 0.224
WocaRDQN 0.865 0.617 0.218 0.204 0.208 0.216 0.210
VanillaDQN 1.000 0.000 0.000 0.000 0.000 0.000 0.000
(c) Previous smoothed agents:
RadialDQN+RS 0.310 0.295 0.281 0.264 0.271 0.240 0.265
SADQN+RS 0.345 0.316 0.331 0.231 0.219 0.227 0.230
WocaRDQN+RS 0.253 0.222 0.218 0.218 0.218 0.218 0.214
VanillaDQN+RS 0.424 0.000 0.000 0.000 0.000 0.000 0.000

Table 3. The average normalized reward of PPO agents under ℓ∞
attack. Our S-PPO ({base algorithm}) constantly achieves a much
higher worst reward compared to {base algorithm}PPO (row (b))
and {base algorithm}PPO+RS (row (c)), where {base algorithm}
represents various robust training algorithms.
Avg normalized reward Clean Reward MAD Min-RS Optimal PA-AD Worst Reward

(a) Ours:
S-PPO (SGLD) 0.840 0.837 0.745 0.617 0.604 0.604
S-PPO (Radial) 0.709 0.641 0.263 0.262 0.336 0.262
S-PPO (WocaR) 0.745 0.726 0.566 0.531 0.544 0.531
S-PPO (S-ATLA) 0.989 0.784 0.449 0.844 0.553 0.449
S-PPO (S-PA-ATLA) 0.935 0.753 0.481 0.234 0.296 0.234
S-PPO (Vanilla) 0.929 0.804 0.459 0.226 0.265 0.226

(b) SOTA robust agents:
SGLDPPO 0.800 0.760 0.384 0.418 0.266 0.266
RadialPPO 0.658 0.628 0.284 0.133 0.169 0.133
WocaRPPO 0.895 0.788 0.342 0.438 0.383 0.342
ATLAPPO 0.830 0.454 0.232 0.237 0.175 0.175
PA-ATLAPPO 0.720 0.609 0.206 0.220 0.274 0.206
VanillaPPO 0.870 0.595 0.166 0.136 0.132 0.132
(c) Previous smoothed agents:
SGLDPPO+RS 0.740 0.728 0.420 0.302 0.259 0.259
RadialPPO+RS 0.617 0.569 0.195 0.163 0.175 0.163
WocaRPPO+RS 0.869 0.797 0.280 0.466 0.336 0.280
ATLAPPO+RS 0.847 0.531 0.251 0.263 0.182 0.182
PA-ATLAPPO+RS 0.601 0.600 0.224 0.279 0.281 0.224
VanillaPPO+RS 0.783 0.585 0.181 0.138 0.151 0.138

6. Background and related works
Randomized smoothing (RS). Randomized Smoothing
(Cohen et al., 2019) has been proved to provide a robustness
guarantee to a smoothed classifier under ℓ2 perturbation
on input examples. The idea is to transform an arbitrary
base classifier into an L-Lipschitz smoothed classifier by
adding Gaussian noises to the input. This transformation
facilitates black-box robustness verification on the smoothed
classifier, which ensures the classification result remains
unchanged within the certified radius without the need to
know the model parameters. This can be formulated as
below. Given a base classifier f : Rd → Y , and let f̃ :
Rd → Y be the smoothed classifier (i.e., f after RS), f̃ can
be expressed as f̃(x) = argmaxc∈Y Pδ∼N (0,σ2I)[f(x +
δ) = c], where δ is a random vector following Gaussian
distribution N (0, σ2I). The smoothed classifier f̃ predicts
class cA with probability pA, and predicts the ”runner-up”

Figure 5. The certified reward lower bound of smoothed DQN
agents. Our S-DQNs achieve a much higher lower bound than all
the previous smoothed agents.

Figure 6. The certified reward lower bound of smoothed PPO
agents. Our S-PPOs demonstrate a much higher lower bound
compared to previous smoothed agents.

class cB with probability pB . The certified radius of f̃
is denoted as R such that f̃(x + ∆) = f̃(x), ∀||∆||2 ≤
R. R can be derived as R =

σ

2
(Φ−1(pA) − Φ−1(pB)),

where Φ−1 is the inversed Gaussian CDF. There have been
techniques improving the limitations of RS. For example,
(Salman et al., 2020) proposed to add a denoiser before
the original image classifier to remove the Gaussian noises
introduced by RS. This approach gives the classifier the
ability to tolerate large noises. Our method is the first work
leveraging Denoised Smoothing in the DRL setting.

Learning Robust DRL agents. There are several exist-
ing works of learning robust DRL agents through robust
training. These agents are non-smoothed DRL agents and
their performance is shown in Figure 1 (the grey boxes).
SA-RL (SADQN and SGLDPPO) (Zhang et al., 2020)
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Table 4. The comparison between our methods and other DRL agents. Our methods are desirable in both empirical robustness and
robustness guarantee.
Methods Empirical Robustness Robustness Guarantee

Clean Reward↑ Reward under Attack↑ Certified Radius (for DQN) Action bound (for PPO) Reward lower bound↑

Our methods:
S-DQN & S-PPO Highest Highest Yes Yes Highest

SOTA robust agents:
SA-RL & RADIAL-RL & WocaR-RL High High No No No
ATLAPPO & PA-ATLAPPO (PPO only) High High No DQN implementation No No
Previous smoothed agents:
CROP (DQN only) Low Medium Yes No PPO implementation Low
Policy Smoothing (PPO only) Medium Medium No DQN implementation No derivation Low

trained robust agents using a robust regularizer based on
the total variation distance and KL-divergence between the
perturbed policies and the original policies. RADIAL-RL
(Oikarinen et al., 2021) used the adversarial loss based on
the robustness verification bounds as a regularizer. WocaR-
RL (Liang et al., 2022) robustify agents through improving
the worst-case reward. ATLAPPO (Zhang et al., 2021)
proposed to use the optimal adversary for adversarial train-
ing. PA-ATLAPPO (Sun et al., 2022) improved ATLA
by separating the adversary into a RL-based director and a
non-RL actor.

Previous smoothed DRL agents. Recently, two works
proposed to smooth DRL agents in the test-time. CROP
(Wu et al., 2022) proposed the first framework using RS to
study the robustness certification of DRL agents. They
showed that the certified radius of a smoothed robustly
trained agent is generally larger compared to the smoothed
vanilla agents. Policy Smoothing (Kumar et al., 2022)
demonstrated that the robustness guarantee in the Super-
vised Learning setting cannot directly transfer to the RL
setting due to the non-static nature of RL. They provided
an alternative proof for the reward lower bound in the RL
setting. However, both approaches perform poorly as shown
in Figure 1 (the yellow boxes), suggesting that the previous
smoothed agents are not usable in practice, emphasizing the
necessity of applying our proposed methods.

The detailed comparison among our methods, the robust
DRL agents, and previous smoothed agents is shown in
Table 4.

7. Conclusion and future works
In this work, we have shown with extensive experiments
that our proposed S-DQN and S-PPO agents outperform
previous robust agents and smoothed agents in terms of
both robustness certificates and robust reward against the
current strongest attack, establishing the new state-of-the-art
in the field. In future work, we are planning to investigate
the idea of leveraging robustness certificates into training to
further strengthen the robustness of DRL agents.

Impact Statement
This paper investigates certifiably robust Deep Reinforce-
ment Learning (DRL) agents, with a close connection to
safety-critical continuous control domains. We hold the be-
lief that our proposed method has the potential to serve as a
foundation for constructing more reliable RL tools, thereby
positively influencing the broader societal landscape.
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A.1. Detailed algorithms of S-DQN

A.1.1. TRAINING ALGORITHM OF S-DQN

The training algorithm of S-DQN is shown in Algorithm 1. The algorithm includes all the details of the training procedure
introduced in Section 3.1. We first add a noise to the current state and take action with ϵ-greedy strategy, Then, store the
transitions {st, at, rt, st+1} into the replay buffer. Note that the state st we stored here is the clean state without noise.
When updating the denoiser D, we sample a batch of transitions from the replay buffer, add noise to the state again, and
compute the loss.

Algorithm 1 Train S-DQN
1: Input: smoothing variance σ, steps T , replay buffer B, Denoiser D, pretrained Q network Q
2: for t = 1 to T do
3: Sample a noise from the normal distribution and add to the state s̃t = st +N (0, σ2IN )
4: Select a random action at with probability ϵt, otherwise at = argmaxa Q(D(s̃t; θ), a)
5: Store the transition {st, at, rt, st+1} in B
6: Sample a batch of samples {s, a, r, s′} from B
7: Sample a noise from the normal distribution and add to the state s̃ = s+N (0, σ2IN )
8: Compute the reconstruction loss LR = MSE(D(s̃; θ), s)
9: Compute the temporal difference loss LTD = Huber(r + γmaxa′ Q(s′, a′)−Q(D(s̃; θ), a))

10: Total loss L = λ1LR + λ2LTD
11: Perform gradient descent to minimize loss L and update the parameters θ of the denoiser D
12: end for

A.1.2. TESTING ALGORITHM OF S-DQN

The testing algorithm of S-DQN is shown in Algorithm 2. The algorithm includes all the details of the testing procedure
introduced in Section 3.1. We use the hard randomized smoothing strategy to smooth our agent and do Monte Carlo sampling
to estimate the expectation. The definition of Qh is in Eq.(5).

Algorithm 2 Test S-DQN
1: Input: smoothing variance σ, number of samples M , number of the actions N , Denoiser D, pretrained Q network Q
2: while not end game do
3: Get state s from the environment
4: for m = 1 to M do
5: Sample a noise from the normal distribution and add to the state s̃m = sm +N (0, σ2IN )
6: Store the Qh value of all the actions [Qh(D(s̃m), a1), ..., Qh(D(s̃m), aN )] to the list
7: end for
8: Take the mean of the Qh value of each action Q̃(s, an) =

1
MΣM

m=1Qh(D(s̃m), an)

9: Choose the action with the maximum Q̃ value a∗ = argmaxan
Q̃(s, an)

10: Take action and get the reward
11: end while
12: Return the total reward

A.1.3. ATTACK ALGORITHM OF SMOOTHED ATTACK

The algorithm of our Smoothed Attack (S-PGD) is shown in Algorithm 3. The algorithm includes all the details of the
attack procedure introduced in Section 3.1. Note that our Smoothed Attack considers the noise introduced by randomized
smoothing.
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Algorithm 3 Smoothed Attack (S-PGD)
1: Input: number of iterations T , attack budget ϵ, smoothing variance σ, number of samples M , Denoiser D, pretrained Q

network Q
2: Get state s from the environment
3: ŝ = s
4: for t = 1 to T do
5: Sample a noise from the normal distribution and add to the state ˜̂s = ŝ+N (0, σ2IN )
6: Compute the cross-entropy loss

L = − log exp(Q(D(˜̂s),a∗))

Σa exp(Q(D(˜̂s),a))
,

where a∗ is the original optimal action decided by the agent
7: Calculate the gradient with respect to ŝ, and project to the ℓ2 or ℓ∞ norm ball
8: Update ŝ by adding the gradient
9: end for

10: Return the perturbed state ŝ
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A.2. Detailed algorithms of S-PPO

A.2.1. TRAINING ALGORITHM OF S-PPO

The training algorithm of S-PPO is shown in Algorithm 4 and 5. The algorithm includes all the details of the training
procedure introduced in Section 3.2. The algorithm of CollectTrajectories function used in step 1 of Algorithm 4 is shown in
Algorithm 5.

Algorithm 4 Train S-PPO
1: Input: smoothing variance σ, attack budget ϵ, number of samples M , iterations T , Policy network π, Value network V
2: for t = 1 to T do
3: // Step 1: Collect trajectories for policy training

{τk} = CollectTrajectories()
4: Compute cumulative reward R̂k,i for each step i in episode k with discount factor γ
5: // Step 2: Update the value network with loss

LV (θ) =
1

Σk|τk|ΣτkΣi(V (sk,i)− R̂k,i)
2

6: // Step 3: Update the policy network
7: for m = 1 to M do
8: Sample a noise from the normal distribution and add to the state s̃k,i,m = sk,i,m +N (0, σ2IN )
9: Store the output of the policy network (amean

k,i,m, astd
k,i,m) to the list, where N (amean

k,i,m, astd
k,i,m) = π(ak,i,m|s̃k,i,m)

10: end for
11: Take the median and obtain the smoothed policy

π̃(ak,i|sk,i) = N (median(amean
k,i,1, ..., a

mean
k,i,M ),median(astd

k,i,1, ..., a
std
k,i,M ))

12: Update the policy network with the S-PPO loss
L(θ) = − 1

Σk|τk|ΣτkΣi min(
π̃(ak,i|sk,i;θ)
π̃(ak,i|sk,i;θold)

Âk,i, clip( π̃(ak,i|sk,i;θ)
π̃(ak,i|sk,i;θold)

, 1− ϵclip, 1 + ϵclip)Âk,i),

where Âk,i is the advantage
13: end for

Algorithm 5 CollectTrajectories function
1: Input: number of trajectories K, smoothing variance σ, number of samples M , Policy network π
2: for k = 1 to K do
3: while not end game do
4: Get state s from the environment
5: for m = 1 to M do
6: Sample a noise from the normal distribution and add to the state s̃m = sm +N (0, σ2IN )
7: Store the mean and standard deviation of the action (amean

m , astd
m ) to the list, where N (amean

m , astd
m ) = π(a|s̃m)

8: end for
9: Take the median and obtain the smoothed policy π̃(a|s) = N (median(amean

1 , ..., amean
M ),median(astd

1 , ..., astd
M ))

10: Take action with the smoothed policy and collect the reward
11: end while
12: Store the trajectory τk
13: end for
14: Return the set of the trajectories {τk}
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A.3. Detailed settings for DQN and PPO

A.3.1. SETTINGS FOR DQN

Our DQN implementation is based on the SADQN (Zhang et al., 2020) and CROP (Wu et al., 2022). We use the DnCNN
structure proposed in Zhang et al. (2017) as the denoiser to train S-DQN. We train our S-DQN for 300, 000 frames in Pong,
Freeway, and RoadRunner. The training time of S-DQN is roughly 12 hours on our hardware, which is much faster than 40
hours of SADQN and 17 hours of RadialDQN. For WocaRDQN, the training is initialized with RadialDQN as we found the
training is unstable. The smoothing variance σ for S-DQN is set to 0.1 in Pong, 0.1 in Freeway, and 0.05 in RoadRunner.
All the experiment results under attack are obtained by taking the average of 5 episodes.

A.3.2. SETTINGS FOR PPO

Our PPO implementation is based on the SAPPO (Zhang et al., 2020), RadialPPO (Oikarinen et al., 2021), ATLAPPO
(Zhang et al., 2021), and PA-ATLAPPO (Sun et al., 2022). We train S-PPO for 2000000 steps in Walker and Hopper. We
use a simple MLP network for all the PPO algorithms. For the PA-ATLAPPO, we do not combine with SGLD unlike the
original paper, as we want to evaluate the true robustness of PA-ATLA algorithm. Note that there is high a variance between
the performance of each agent trained with the same algorithm. To get a fair and comparable result, we trained each agent
15 times and reported the median of the performance as suggested in Zhang et al. (2020). The median agent is selected by
considering the median of clean reward, reward under MAD attack, and reward under Min-RS attack from a pool of 15
agents. Subsequently, we conduct further evaluations on the median agents under the Optimal Attack and the PA-AD attack
since these evaluations involve high computational costs and are impractical to perform on the entire set of 15 agents. The
smoothing variance σ for S-PPO is set to 0.2 in all environments. The ℓ∞ attack budget for all the attacks for PPO (MAD,
Min-RS, Optimal Attack, PA-AD attack) is set to 0.075. All the experiment results under attack are obtained by taking the
average of 50 episodes.
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A.4. Details of estimating bounds

A.4.1. ESTIMATING THE CERTIFIED RADIUS FOR S-DQN

In practice, we use Monte Carlo sampling to estimate Q̃, which denotes as Q̃est. The estimation of the Certified Radius is
formulated as follows:

Rest,t =
σ

2
(Φ−1(Q̃est(st, a1)−∆)− Φ−1(Q̃est(st, a2) + ∆)), (17)

where Q̃est(s, a) =
1
mΣm

i=1Qh(D(s+ δi), a), δi ∼ N (0, σ2IN ), ∀i ∈ {1, ...,m}, ∆ =
√

1
2m ln 1

α , m is the number of the
samples (m = 100 in our setting), and α is the one-side confidence parameter (α = 0.05 in our setting). The proof of this
estimation can be found in Appendix A.5.

A.4.2. ESTIMATING THE ACTION BOUND FOR S-PPO

In practice, we use Monte Carlo sampling to estimate π̃det,p, which denotes as π̃det,pest . The estimation of the Action Bound
is formulated as follows:

π̃det,pest(st) ⪯ π̃det,pest(st +∆s) ⪯ π̃det,pest(st), s.t ||∆s||2 ≤ ϵ, (18)

where π̃i,det,pest(s) = max{ai ∈ R| |{x ∈ Si|x ≤ ai}| ≤ ⌈mpest⌉}, Si = {πi,det(s + δ1), ..., πi,det(s + δm)}, ∀i ∈
{1, ..., Naction}, δj ∼ N (0, σ2IN ), ∀j ∈ {1, ...,m}, pest = Φ(Φ−1(pest − ∆) − ϵ

σ ), pest = Φ(Φ−1(pest + ∆) + ϵ
σ ),

∆ =
√

1
2m ln 1

α , m is the number of the samples (m = 100 in our setting), and α is the one-side confidence parameter
(α = 0.05 in our setting). The proof of this estimation can be found in Appendix A.6.

A.4.3. ESTIMATING THE REWARD LOWER BOUND FOR SMOOTHED AGENTS

In practice, we use Monte Carlo sampling to estimate F̃π,p, which denotes as F̃π,pest . The estimation of the Reward Lower
Bound is formulated as follows:

F̃π,pest(∆s) ≥ F̃π,pest(0), s.t. ||∆s||2 ≤ B, (19)

where F̃π,pest(∆s) = max{r ∈ R||{x ∈ S|x ≤ r}| ≤ ⌈mτpest⌉}, S = {Fπ(δ1 + ∆s), ..., Fπ(δmτ
+ ∆s)}, δi ∼

N (0, σ2IH×N ), ∀i ∈ {1, ...,mτ}, pest = Φ(Φ−1(pest − ∆) − B
σ ), ∆ =

√
1

2mτ
ln 1

α , mτ is the number of sample
trajectories (mτ = 1000 in our setting), and α is the one-side confidence parameter (α = 0.05 in our setting). Note that in
this setting, each state is added with a noise. Therefore, m = 1. The proof of this estimation can be found in Appendix A.7.
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A.5. Proof of the certified radius for S-DQN

In this section, we give the formal proof of the certified radius introduced in Section 4. Our proof is based on the proof
proposed by Salman et al. (2019) in Appendix A. Recall that we have:

Rt =
σ

2
(Φ−1(Q̃(st, a1))− Φ−1(Q̃(st, a2))), (20)

where a1 is the action with the largest Q-value among all the other actions, a2 is the ”runner-up” action, Rt is the certified
radius at time t, Φ is the CDF of normal distribution, σ is the smoothing variance, and Q̃(s, a) is defined in Eq.(6).

We first go over the lemma needed for proof.

Lemma 1 For the function Qh : S ×A → [0, 1], the function Q̃ is
1

σ

√
2

π
-Lipschitz.

Proof. From the definition of Q̃, we have

Q̃(s, a) = (Qh ∗ N (0, σ2In))(D(s), a) =
1

(2π)n/2σn

∫
Rn

Qh(D(t), a) exp
(
− 1

2σ2
||s− t||22

)
dt. (21)

Take the gradient w.r.t. s, we have

∇sQ̃(s, a) =
1

(2π)n/2σn

∫
Rn

1

σ2
(s− t)Qh(D(t), a) exp

(
− 1

2σ2
||s− t||22

)
dt. (22)

For any unit direction u, we have

u · ∇sQ̃(s, a) ≤ 1

(2π)n/2σn

∫
Rn

1

σ2
|u · (s− t)| exp

(
− 1

2σ2
||s− t||22

)
dt

=
1

σ2

∫
Rn

1√
2πσ

|u · (s− t)| exp
(
− 1

2σ2
||s− t||22

)
dt

=
1

σ2

∫ +∞

−∞

1√
2πσ

|z| exp
(
− 1

2σ2
z2
)
dz

=
1

σ2
Ez∼N (0,σ2)[|z|]

=
1

σ

√
2

π
.

(23)

In fact, there is a stronger smoothness property for Q̃.

Lemma 2 For the function Qh : S ×A → [0, 1], the mapping s 7→ σΦ−1(Q̃(s, a)) is 1-Lipschitz.

Proof. Take the gradient of Φ−1(Q̃(s, a)) w.r.t. s, we have

∇Φ−1(Q̃(s, a)) =
∇Q̃(s, a)

Φ′(Φ−1(Q̃(s, a)))
. (24)

We intend to show that for any unit direction u,

u · σ∇Φ−1(Q̃(s, a)) ≤ 1

u · σ∇Q̃(s, a) ≤ Φ′(Φ−1(Q̃(s, a)))

u · σ∇Q̃(s, a) ≤ 1√
2π

exp
(
−1

2
(Φ−1(Q̃(s, a)))2

)
.

(25)

The left-hand side can be written as
1

σ
Eδ∼N (0,σ2In)[Qh(D(s+ δ), a)δ · u]. (26)
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We claim that the supremum of the above quantity over all functions Qh : S ×A → [0, 1], subject to E[Qh(D(s+ δ), a)] =

Q̃(s, a), is equal to

1

σ
E[(δ · u)1{δ · u ≥ −σΦ−1(Q̃(s, a))}] = 1√

2π
exp

(
−1

2
(Φ−1(Q̃(s, a)))2

)
. (27)

To prove the claim is true, note that h : δ 7→ 1{δ · u ≥ −σΦ−1(Q̃(s, a))} achieves equality. Assume by contradiction
that the maximum is reached by some function f : δ → [0, 1]. Consider the set Ω+ = {δ|h(δ) > f(δ)} and the set
Ω− = {δ|h(δ) < f(δ)}. Now construct the new function f ′ = f + (h − f)1{Ω+} − (f − h)1{Ω−}, which takes
value in [0, 1]. Since both h and f integrate to Q̃(s, a), we have

∫
Ω+(h − f)dδ =

∫
Ω−(f − h)dδ. This gives that f ′

also integrates to Q̃(s, a). By the definition of h, for any δ1 ∈ Ω+ and δ2 ∈ Ω−, we have δ1 · u > δ2 · u, and since∫
Ω+(h− f)dδ =

∫
Ω−(f − h)dδ, we have∫

Ω+

(δ · u)(h− f)(δ)dδ >

∫
Ω−

(δ · u)(f − h)(δ)dδ∫
(δ · u)f(δ)dδ <

∫
(δ · u)f(δ)dδ +

∫
Ω+

(δ · u)(h− f)(δ)dδ −
∫
Ω−

(δ · u)(f − h)(δ)dδ∫
(δ · u)f(δ)dδ <

∫
(δ · u)f ′(δ)dδ

(28)

Hence, the maximum is obtained at h. The claim holds, and hence, we have

u · σ∇Φ−1(Q̃(s, a)) ≤ 1. (29)

Now, we can prove the certified radius in Eq.(20).

Theorem 1 Let Qh : S × A → [0, 1], and Q̃(s, a) = Eδ∼N (0,σ2I)Qh(D(s + δ), a). At time step t with state st, the
certified radius is

Rt =
σ

2
(Φ−1(Q̃(st, a1))− Φ−1(Q̃(st, a2))), (30)

where a1 is the action with the largest Q-value among all the other actions, a2 is the ”runner-up” action, Rt is the certified
radius at time t, Φ is the CDF of normal distribution, and σ is the smoothing variance. The certified radius gives a lower
bound on the minimum ℓ2 adversarial perturbation required to change the policy from a1 to a2.

Proof. Let the perturbation be ∆s and able to change the action from a1 to a2. By lemma 2, we have

σΦ−1(Q̃(st, a1))− σΦ−1(Q̃(st +∆s, a1)) ≤ ||∆s||2 (31)

Since the perturbation can change the action, we have Q̃(st +∆s, a1) ≤ Q̃(st +∆s, a2), which leads to

σΦ−1(Q̃(st, a1))− σΦ−1(Q̃(st +∆s, a2)) ≤ ||∆s||2 (32)

By lemma 2 and Q̃(st +∆s, a2) ≥ Q̃(st, a2), we have

σΦ−1(Q̃(st +∆s, a2))− σΦ−1(Q̃(st, a2)) ≤ ||∆s||2 (33)

Combine Eq.(32) and Eq.(33), we have

||∆s||2 ≥ σ

2
(Φ−1(Q̃(st, a1))− Φ−1(Q̃(st, a2))), (34)

which gives us the certified radius

Rt =
σ

2
(Φ−1(Q̃(st, a1))− Φ−1(Q̃(st, a2))). (35)

Now, we prove the practical version of the certified radius introduced in Appendix A.4.1:
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Theorem 2 Let Qh : S ×A → [0, 1], and Q̃est(s, a) =
1
mΣm

i=1Qh(D(s+ δi), a), δi ∼ N (0, σ2IN ), ∀i ∈ {1, ...,m}. At
time step t with state st, the certified radius is

Rest,t =
σ

2
(Φ−1(Q̃est(st, a1)−∆)− Φ−1(Q̃est(st, a2) + ∆)), (36)

where ∆ =
√

1
2m ln 1

α , m is the number of the samples, α is the one-side confidence parameter, a1 is the action with the
largest Q-value among all the other actions, a2 is the ”runner-up” action, Rt is the certified radius at time t, Φ is the CDF of
normal distribution, and σ is the smoothing variance.

Proof. By Hoeffding’s Inequality, for any t ≥ 0, we have

P (Q̃est − Q̃ ≥ t) ≤ exp−2mt2 . (37)

Rearrange the inequality

P (Q̃est − Q̃ ≥
√

1

2m
ln

1

α
) ≤ α. (38)

Hence, a 1− α confidence lower bound Q̃ of Q̃ is

Q̃ = Q̃est −
√

1

2m
ln

1

α
= Q̃est −∆. (39)

Similarly, we have 1− α confidence upper bound Q̃ of Q̃

Q̃ = Q̃est +∆. (40)

Substitute Q̃(st, a1) with the lower bound and Q̃(st, a2) with the upper bound, we have

Rest,t =
σ

2
(Φ−1(Q̃est(st, a1)−∆)− Φ−1(Q̃est(st, a2) + ∆)) (41)
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A.6. Proof of the action bound for S-PPO

In this section, we give the formal proof of the action bound introduced in Section 4. Our proof is based on the proof
proposed by Chiang et al. (2020) in Appendix B. Recall that we have:

π̃det,p(st) ⪯ π̃det,p(st +∆s) ⪯ π̃det,p(st), s.t ||∆s||2 ≤ ϵ, (42)

where π̃i,det,p(s) = sup{ai ∈ R|Pδ∼N (0,σ2I)[πi,det(s + δ) ≤ ai] ≤ p}, ∀i ∈ {1, ..., Naction}, p = Φ(Φ−1(p) − ϵ
σ ),

p = Φ(Φ−1(p) + ϵ
σ ), Φ is the CDF of normal distribution, and σ is the smoothing variance.

Theorem 3 Let π : S → A be the policy network, and π̃i,det,p(s) = sup{ai ∈ R|Pδ∼N (0,σ2I)[πi,det(s + δ) ≤ ai] ≤
p}, ∀i ∈ {1, ..., Naction}. At time step t with state st, the action bound is

π̃det,p(st) ⪯ π̃det,p(st +∆s) ⪯ π̃det,p(st), s.t ||∆s||2 ≤ ϵ, (43)

where p = Φ(Φ−1(p)− ϵ
σ ), p = Φ(Φ−1(p) + ϵ

σ ), Φ is the CDF of a normal distribution, and σ is the smoothing variance.

Proof. Let Ei(st) = Eδ∼N (0,σ2IN )[1{πi,det(st + δ) ≤ π̃i,det,p(st)}], and we have Ei : RN → [0, 1], ∀i ∈ {1, ..., Naction}.
The mapping st 7→ σΦ−1(Ei(st)) is 1-Lipschitz, which can be proved by the similar technique used in Lemma 2. Since
Ei(st) = Pδ∼N (0,σ2IN )[πi,det(st + δ) ≤ π̃i,det,p(st)], given the perturbation ∆s, we have

σΦ−1(Pδ∼N (0,σ2IN )[πi,det(st + δ +∆s) ≤ π̃i,det,p(st)])−

σΦ−1(Pδ∼N (0,σ2IN )[πi,det(st + δ) ≤ π̃i,det,p(st)]) ≤ ||∆s||2.
(44)

Rearrange the inequality, we have

Φ−1(Pδ∼N (0,σ2IN )[πi,det(st + δ +∆s) ≤ π̃i,det,p(st)])

≤ Φ−1(Pδ∼N (0,σ2IN )[πi,det(st + δ) ≤ π̃i,det,p(st)]) +
||∆s||2

σ

≤ Φ−1(Pδ∼N (0,σ2IN )[πi,det(st + δ) ≤ π̃i,det,p(st)]) +
ϵ

σ

= Φ−1(p) +
ϵ

σ

= Φ−1(p).

(45)

By the monotonicity of Φ, we have

Pδ∼N (0,σ2IN )[πi,det(st + δ +∆s) ≤ π̃i,det,p(st)] ≤ p. (46)

Recall that π̃i,det,p(st +∆s) = sup{ai ∈ R|Pδ∼N (0,σ2IN )[πi,det(st + δ +∆s) ≤ ai] ≤ p}, ∀i ∈ {1, ..., Naction}, we have

π̃det,p(st) ⪯ π̃det,p(st +∆s). (47)

We can show that π̃det,p(st +∆s) ⪯ π̃det,p(st) for all ||∆s||2 ≤ ϵ with the similar technique. Combine the two bounds we
have

π̃det,p(st) ⪯ π̃det,p(st +∆s) ⪯ π̃det,p(st). (48)

Now, we prove the practical version of the action bound introduced in Appendix A.4.2:

Theorem 4 Let π : S → A be the policy network, and π̃i,det,pest(s) = max{ai ∈ R| |{x ∈ Si|x ≤ ai}| ≤ ⌈mpest⌉}, Si =
{πi,det(s+ δ1), ..., πi,det(s+ δm)}, ∀i ∈ {1, ..., Naction}, δj ∼ N (0, σ2IN ), ∀j = 1, ...,m. At time step t with state st, the
action bound is

π̃det,pest(st) ⪯ π̃det,pest(st +∆s) ⪯ π̃det,pest(st), s.t ||∆s||2 ≤ ϵ, (49)

where pest = Φ(Φ−1(pest −∆)− ϵ
σ ), pest = Φ(Φ−1(pest +∆)+ ϵ

σ ), ∆ =
√

1
2m ln 1

α , m is the number of the samples, α is
the one-side confidence parameter, Φ is the CDF of normal distribution, and σ is the smoothing variance.
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Proof. By Hoeffding’s Inequality, for any t ≥ 0, we have

P (pest − p ≥ t) ≤ exp−2mt2 . (50)

Rearrange the inequality

P (pest − p ≥
√

1

2m
ln

1

α
) ≤ α. (51)

Hence, a 1− α confidence lower bound p of p is

p = pest −
√

1

2m
ln

1

α
= pest −∆. (52)

Similarly, we have 1− α confidence upper bound p of p

p = pest +∆. (53)

Substitute Φ(Φ−1(p)− ϵ
σ ) with the lower bound, and Φ(Φ−1(p) + ϵ

σ ) with the upper bound, we have[
Φ(Φ−1(pest −∆)− ϵ

σ
), Φ(Φ−1(pest +∆) +

ϵ

σ

]
, (54)

which is the new upper bound and lower bound in the expression.
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A.7. Proof of the reward lower bound for smoothed agents

In this section, we give the formal proof of the reward lower bound introduced in Section 4. Our proof is based on the proof
proposed by Chiang et al. (2020) in Appendix B. Recall that we have:

F̃π,p(∆s) ≥ F̃π,p(0), s.t. ||∆s||2 ≤ B, (55)

where F̃π,p(∆s) = sup{r ∈ R|Pδ∼N (0,σ2IH×N )[Fπ(δ +∆s) ≤ r] ≤ p}, p = Φ(Φ−1(p) − B
σ ), and B is the ℓ2 attack

budget of the entire trajectory.

Theorem 5 Let Fπ : RH×N → R be the function mapping the perturbation to the total reward, and F̃π,p(∆s) = sup{r ∈
R|Pδ∼N (0,σ2IH×N )[Fπ(δ +∆s) ≤ r] ≤ p}. The reward lower bound is

F̃π,p(∆s) ≥ F̃π,p(0), s.t. ||∆s||2 ≤ B, (56)

where p = Φ(Φ−1(p)− B
σ ), B is the ℓ2 attack budget of the entire trajectory, Φ is the CDF of normal distribution, and σ is

the smoothing variance.

Proof. Let E(∆s) = Eδ∼N (0,σ2IH×N )[1{Fπ(δ + ∆s) ≤ F̃π,p(0)}], and we have E : RH×N → [0, 1]. The mapping

∆s 7→ σΦ−1(E(∆s)) is 1-Lipschitz by Lemma 2. Since E(∆s) = Pδ∼N (0,σ2IH×N )[Fπ(δ +∆s) ≤ F̃π,p(0)], given the
perturbation ∆s, we have

σΦ−1(Pδ∼N (0,σ2IH×N )[Fπ(δ +∆s) ≤ F̃π,p(0)])− σΦ−1(Pδ∼N (0,σ2IH×N )[Fπ(δ) ≤ F̃π,p(0)])

≤ ||∆s||2.
(57)

Rearrange the inequality, we have

Φ−1(Pδ∼N (0,σ2IH×N )[Fπ(δ +∆s) ≤ F̃π,p(0)])

≤ Φ−1(Pδ∼N (0,σ2IH×N )[Fπ(δ) ≤ F̃π,p(0)]) +
||∆s||2

σ

≤ Φ−1(Pδ∼N (0,σ2IH×N )[Fπ(δ) ≤ F̃π,p(0)]) +
B

σ

= Φ−1(p) +
B

σ

= Φ−1(p).

(58)

By the monotonicity of Φ, we have

Pδ∼N (0,σ2IH×N )[Fπ(δ +∆s) ≤ F̃π,p(0)] ≤ p. (59)

Recall that F̃π,p(∆s) = sup{r ∈ R|Pδ∼N (0,σ2IH×N )[Fπ(δ +∆s) ≤ r] ≤ p}, we have

F̃π,p(∆s) ≥ F̃π,p(0). (60)

Now, we prove the practical version of the reward lower bound introduced in Appendix A.4.3:

Theorem 6 Let Fπ : RH×N → R be the function mapping the perturbation to the total reward, and F̃π,pest(∆s) =
max{r ∈ R||{x ∈ S|x ≤ r}| ≤ ⌈mτpest⌉}, S = {Fπ(δ1 + ∆s), ..., Fπ(δmτ + ∆s)}, δi ∼ N (0, σ2IH×N ), ∀i =
{1, ...,mτ}. The reward lower bound is

F̃π,pest(∆s) ≥ F̃π,pest(0), s.t. ||∆s||2 ≤ B, (61)

where pest = Φ(Φ−1(pest−∆)− B
σ ), ∆ =

√
1

2mτ
ln 1

α , mτ is the number of sample trajectories, α is the one-side confidence
parameter, Φ is the CDF of normal distribution, and σ is the smoothing variance.
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Proof. By Hoeffding’s Inequality, for any t ≥ 0, we have

P (pest − p ≥ t) ≤ exp−2mτ t
2

. (62)

Rearrange the inequality

P (pest − p ≥
√

1

2mτ
ln

1

α
) ≤ α. (63)

Hence, a 1− α confidence lower bound p of p is

p = pest −
√

1

2mτ
ln

1

α
= pest −∆. (64)

Substitute Φ(Φ−1(p)− B
σ ) with the lower bound, we have

Φ(Φ−1(pest −∆)− B

σ
), (65)

which is the new lower bound in the expression.
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A.8. The certified radius of smoothed DQN agents

Table 5 presents the Certified Radius of our S-DQNs and CROP’s agents. Our S-DQN agents generally achieve higher
Certified Radius. It’s important to note that while the CROP framework used a sample number of m = 10000 for estimating
the Certified Radius, we used m = 100 here. Although a larger m can enhance confidence in estimating and result in a
larger Certified Radius, m = 10000 is not a practical setting. Our hard randomized smoothing strategy demonstrates the
capability to provide a large Certified Radius even with a small m.

Table 5. The Certified Radius of different smoothed DQN agents.

Methods Certified Radius (larger is better)

Pong Freeway RoadRunner

Ours (using hard randomized smoothing):
S-DQN (Radial) 0.1044 0.1134 0.0576
S-DQN (S-PGD) 0.0502 0.0766 0.0520
S-DQN (Vanilla) 0.0619 0.0774 0.0502
CROP (Wu et al., 2022) (using mean smoothing):
RadialDQN+RS 0.0000 0.0000 0.0000
SADQN+RS 0.0615 0.0665 0.0000
VanillaDQN+RS 0.0000 0.0000 0.0000
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A.9. The Action Divergence of smoothed PPO agents

We designed a metric based on the action bound in Section 4 to evaluate the certified robustness of the smoothed PPO agents.
We define the Action Divergence as follows:

ADIV = Es,ϵ

[ ||π̃det,pest(s)− π̃det,pest(s)||2
2ϵ

]
, (66)

where ϵ is the ℓ2 attack budget used in estimating the action bound, and the definition of pest and pest is in Appendix
A.4.2. We found that the ℓ2 norm of the difference between the upper and lower bound of the actions is proportional to
the magnitude of the ℓ2 budget ϵ, which makes

||π̃det,pest (s)−π̃det,pest (s)||2
2ϵ almost unchanged under different ϵ setting. Hence,

we take the expectation over the state s and the budget ϵ to estimate this fraction, which is the ADIV proposed here. We
estimate the ADIV by taking the average of 50 trajectories with three different ϵ settings (ϵ = 0.1, ϵ = 0.2, and ϵ = 0.3).

ADIV describes the worst-case stability of the actions of a smoothed PPO agent under any ℓ2 perturbation. The more this
value is, the more unstable the smoothed agent is under the ℓ2 attack. The result is shown in Table 6. Our S-PPO agents
exhibit lower ADIV compared to their naively smoothed counterparts. Notably, S-PPO (SGLD) and S-PPO (WocaR) have
the lowest ADIV, and they also demonstrate higher robustness under attacks compared to the others in our study.

Table 6. The Action Divergence of different smoothed PPO agents.

Methods Action Divergence (lower is better)

Walker Hopper

Ours:
S-PPO (SGLD) 1.401 0.656
S-PPO (Radial) 8.665 2.305
S-PPO (WocaR) 1.125 0.778
S-PPO (S-ATLA) 4.218 8.964
S-PPO (S-PA-ATLA) 3.899 8.432
S-PPO (Vanilla) 2.926 1.618
Previous smoothed agents:
SGLDPPO+RS 2.221 1.375
RadialPPO+RS 7.964 2.766
WocaRPPO+RS 2.431 1.466
ATLAPPO+RS 6.062 16.994
PA-ATLAPPO+RS 5.595 11.165
VanillaPPO+RS 5.030 4.187
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A.10. Detailed experiment results of robust reward for S-DQN

Table 7 shows the reward of DQN agents under ℓ∞ PGD attack and PA-AD attack. Note that we used our stronger S-PGD
attack and S-PA-AD to evaluate all the smoothed agents. Our S-DQN (Vanilla) already outperformed the state-of-the-art
robust agent, RadialDQN, in most of the settings except for RoadRunner. This problem was solved by introducing S-DQN
(Radial) and S-DQN (S-PGD). S-DQN (Radial) performs especially well under all attacks across various environments,
which suggests that our S-DQN can be further boosted by changing the base model to a robust agent.

Table 7. The reward of DQN agents under ℓ∞ PGD attack and PA-AD attack. The smoothing variance σ for the smoothed agents is set to
0.1 in Pong, 0.1 in Freeway, and σ = 0.05 in RoadRunner.
Pong Clean reward PGD or S-PGD PAAD or S-PAAD

ϵ(ℓ∞) 0.01 0.02 0.03 0.04 0.05 0.05

Ours:
S-DQN (Radial) 21.0±0.0 21.0±0.0 21.0±0.0 21.0±0.0 21.0±0.0 20.8±0.4 14.0±2.1
S-DQN (S-PGD) 20.6±0.5 20.8±0.4 20.0±1.1 15.6±4.3 13.8±4.8 1.6±4.2 11.0±2.6
S-DQN (Vanilla) 20.4±0.5 21.0±0.0 20.4±0.8 20.2±0.8 16.6±4.4 18.4±2.1 18.6±1.2
SOTA robust agents:
RadialDQN 21.0±0.0 21.0±0.0 20.0±2.0 −20.2±0.4 −20.6±0.5 −21.0±0.00 −21.0±0.00
SADQN 21.0±0.0 21.0±0.0 −19.4±0.8 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0
WocaRDQN 20.0±0.9 19.6±1.4 −20.4±0.8 −20.8±0.4 −21.0±0.00 −21.0±0.00 −21.0±0.00
VanillaDQN 21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0
Previous smoothed agents:
RadialDQN+RS −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0
SADQN+RS −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0
WocaRDQN+RS −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0
VanillaDQN+RS −20.8±0.4 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0

Freeway

Ours:
S-DQN (Radial) 33.0±0.0 33.0±0.0 32.6±0.5 32.6±0.5 31.6±0.5 32.0±1.1 32.0±1.1
S-DQN (S-PGD) 32.6±1.4 32.6±1.0 32.0±1.3 30.2±0.8 28.2±1.5 25.6±0.5 30.4±1.0
S-DQN (Vanilla) 34.0±0.0 33.0±0.9 31.4±1.0 28.0±1.4 20.4±1.9 6.6±2.2 13.0±2.1
SOTA robust agents:
RadialDQN 32.6±0.5 33.0±0.0 28.4±1.2 22.8±1.9 20.0±1.1 21.0±0.6 22.8±1.7
SADQN 30.0±0.0 30.0±0.0 27.2±1.2 20.4±0.5 20.8±1.0 18.8±1.3 21.0±1.8
WocaRDQN 32.2±1.2 29.0±1.3 21.8±2.0 20.6±0.8 21.2±1.0 22.0±0.0 21.4±1.6
VanillaDQN 34.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Previous smoothed agents:
RadialDQN+RS 22.2±2.2 22.2±2.2 22.2±2.2 22.2±2.2 22.2±2.2 22.2±2.2 21.8±1.2
SADQN+RS 22.2±2.2 22.2±2.2 22.2±2.2 22.2±2.9 21.6±1.7 22.8±0.8 22.6±1.2
WocaRDQN+RS 22.2±2.2 22.2±2.2 22.2±2.2 22.2±2.2 22.2±2.2 22.2±2.2 21.8±1.2
VanillaDQN+RS 22.2±2.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

RoadRunner

Ours:
S-DQN (Radial) 39380±4579 39360±4566 40480±8076 25640±3232 21060±2286 13020±4935 11220±4324
S-DQN (S-PGD) 42780±6316 42620±3953 35740±5420 27380±8896 21360±9340 2840±1756 0±0
S-DQN (Vanilla) 47480±8807 23320±3932 3460±5924 0±0 0±0 0±0 0±0
SOTA robust agents:
RadialDQN 39620±4821 43520±4081 24160±2604 15500±6466 1020±937 620±492 3560±488
SADQN 46680±7742 28580±2584 3240±1544 780±840 420±523 100±200 2640±1317
WocaRDQN 32480±5096 1580±2108 0±0 0±0 0±0 0±0 20±40
VanillaDQN 48320±5989 0±0 0±0 0±0 0±0 0±0 0±0
Previous smoothed agents:
RadialDQN+RS 13420±1955 11260±2504 9220±3080 6680±1705 7780±1900 3180±1326 7420±2604
SADQN+RS 18520±2510 14240±6013 16440±3817 1960±1323 1040±1074 560±973 1180±922
WocaRDQN+RS 5120±3319 560±647 0±0 0±0 0±0 0±0 0±0
VanillaDQN+RS 29640±5271 0±0 0±0 0±0 0±0 0±0 0±0
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A.11. Detailed experiment results of reward lower bound for S-DQN

Table 8 shows the details of the reward lower bound for smoothed DQN agents under different ℓ2 budget ϵ. We use the same
budget ϵ for every state, and hence, the total budget is B = ϵ

√
H , where H is the length of the trajectory. We set H = 2500

in Pong, Freeway, and RoadRunner. The reward lower bound of S-DQN (Vanilla) is comparable with the bound of S-DQN
(Radial) and S-DQN (S-PGD), suggesting that our S-DQN already achieves a high robustness guarantee without further
combining with other robust agents or leveraging adversarial training.

Table 8. The reward lower bound of smoothed DQN agents under different ℓ2 attack budgets. The smoothing variance σ for all the agents
is set to 0.1 in Pong, 0.1 in Freeway, and σ = 0.05 in RoadRunner.

Pong ℓ2 attack budget

ϵ(ℓ2) 0.001 0.002 0.003 0.004 0.005

Ours:
S-DQN (Radial) 20.0 20.0 19.0 18.0 18.0
S-DQN (S-PGD) 18.0 17.0 16.0 14.0 11.0
S-DQN (Vanilla) 18.0 17.0 16.0 15.0 14.0
Previous smoothed agents:
RadialDQN+RS −21.0 −21.0 −21.0 −21.0 −21.0
SADQN+RS −21.0 −21.0 −21.0 −21.0 −21.0
WocaRDQN+RS −21.0 −21.0 −21.0 −21.0 −21.0
VanillaDQN+RS −21.0 −21.0 −21.0 −21.0 −21.0

Freeway

Ours:
S-DQN (Radial) 31.0 30.0 29.0 28.0 28.0
S-DQN (S-PGD) 31.0 30.0 29.0 28.0 27.0
S-DQN (Vanilla) 31.0 30.0 29.0 29.0 28.0
Previous smoothed agents:
RadialDQN+RS 20.0 20.0 20.0 20.0 19.0
SADQN+RS 20.0 20.0 20.0 20.0 19.0
WocaRDQN+RS 20.0 20.0 20.0 20.0 19.0
VanillaDQN+RS 13.0 12.0 11.0 10.0 9.0

RoadRunner

Ours:
S-DQN (Radial) 36200 29400 21612 14163 14001
S-DQN (S-PGD) 33000 24483 19295 19104 19100
S-DQN (Vanilla) 32215 25097 21123 18067 18001
Previous smoothed agents:
RadialDQN+RS 9400 5497 2295 2104 2100
SADQN+RS 17900 15197 12623 9567 9501
WocaRDQN+RS 3300 1200 593 306 300
VanillaDQN+RS 500 100 0 0 0
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A.12. Detailed experiment results of robust reward for S-PPO

Table 9 shows the reward of PPO agents under different ℓ∞ attacks. Note that we trained each agent 15 times and reported
the median of the performance as suggested in Zhang et al. (2020) to get a fair and comparable result. Our S-PPO exhibits
high clean reward and robust reward under attacks in all environments, while the previous smoothed agents only achieve
similar performance compared to the original robust agents.

Table 9. The reward of PPO agents under different attacks. The smoothing variance σ for all the smoothed agents is set to 0.2 in Walker
and Hopper. The ℓ∞ attack budget is set to 0.075 in both environments.
Walker Clean reward MAD attack Min-RS attack Optimal attack PA-AD attack

Ours:
S-PPO (SGLD) 4566 4537 4241 4085 4026
S-PPO (Radial) 2117 2160 1028 915 689
S-PPO (WocaR) 4363 4360 3907 3920 3867
S-PPO (S-ATLA) 4897 4460 2170 5010 2980
S-PPO (S-PA-ATLA) 4407 4045 2379 144 372
S-PPO (Vanilla) 4552 4386 3203 944 1077
SOTA robust agents:
SGLDPPO 4329 4177 2376 2747 718
RadialPPO 2221 2230 1270 132 152
WocaRPPO 4110 3918 1950 2916 2067
ATLAPPO 3564 2567 672 818 263
PA-ATLAPPO 2548 1717 591 183 298
VanillaPPO 4301 2806 551 437 275
Previous smoothed agents:
SGLDPPO+RS 4290 4124 2739 1615 717
RadialPPO+RS 1804 1883 610 145 208
WocaRPPO+RS 4013 4160 1362 3211 1765
ATLAPPO+RS 4129 3348 894 1090 322
PA-ATLAPPO+RS 1325 1990 427 322 332
VanillaPPO+RS 3582 2892 592 440 401

Hopper

Ours:
S-PPO (SGLD) 2894 2896 2428 1579 1523
S-PPO (Radial) 3756 3205 1212 1285 2015
S-PPO (WocaR) 2335 2194 1328 1053 1189
S-PPO (S-ATLA) 3770 2557 1752 2595 1927
S-PPO (S-PA-ATLA) 3737 2631 1839 1655 1950
S-PPO (Vanilla) 3583 2765 1049 995 1190
SOTA robust agents:
SGLDPPO 2772 2587 1107 1087 1463
RadialPPO 3291 3056 1182 900 1161
WocaRPPO 3652 2993 1111 1112 1331
ATLAPPO 3577 1493 1245 1172 1124
PA-ATLAPPO 3508 3297 1110 1518 1842
VanillaPPO 3321 2375 834 695 789
Previous smoothed agents:
SGLDPPO+RS 2354 2386 1106 1059 1411
RadialPPO+RS 3298 2876 1011 1122 1165
WocaRPPO+RS 3535 2878 1084 1095 1208
ATLAPPO+RS 3278 1485 1220 1161 1129
PA-ATLAPPO+RS 3537 3027 1365 1861 1866
VanillaPPO+RS 3211 2238 920 707 840
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A.13. Detailed experiment results of reward lower bound for S-PPO

Table 10 shows the details of the reward lower bound for smoothed PPO agents under different ℓ2 budget ϵ. We use the same
budget ϵ for every state, and hence, the total budget B = ϵ

√
H , where H is the length of the trajectory. We set H = 1000 in

Walker and Hopper. Our S-PPOs exhibit higher reward lower bounds compared to their naively smoothed counterparts.

Table 10. The reward lower bound of smoothed PPO agents under different ℓ2 attack budgets. The smoothing variance σ for all the agents
is set to 0.2 in all environments.
Walker ℓ2 attack budget

ϵ(ℓ2) 0.002 0.004 0.006 0.008 0.01

Ours:
S-PPO (SGLD) 4496 4478 4460 4440 4420
S-PPO (Radial) 1648 1413 1159 817 550
S-PPO (WocaR) 4345 4333 4322 4308 4296
S-PPO (S-ATLA) 4781 4556 3571 2287 1746
S-PPO (S-PA-ATLA) 4364 4017 2526 1573 1100
S-PPO (Vanilla) 4585 4531 4476 4368 2189
Previous smoothed agents:
SGLDPPO+RS 4159 3703 2886 2236 1839
RadialPPO+RS 1160 987 821 654 420
WocaRPPO+RS 4235 4195 4130 3969 2178
ATLAPPO+RS 935 735 568 378 307
PA-ATLAPPO+RS 606 512 455 416 385
VanillaPPO+RS 1263 979 853 748 657

Hopper

Ours:
S-PPO (SGLD) 2783 2758 2732 2710 2661
S-PPO (Radial) 2865 2294 1925 1760 1574
S-PPO (WocaR) 1691 1573 1470 1397 1360
S-PPO (S-ATLA) 1935 1700 1456 1338 1217
S-PPO (S-PA-ATLA) 1883 1603 1438 1309 1176
S-PPO (Vanilla) 1959 1646 1447 1321 1206
Previous smoothed agents:
SGLDPPO+RS 1773 1534 1464 1361 1212
RadialPPO+RS 2073 1724 1479 1278 1146
WocaRPPO+RS 2076 1832 1696 1533 1473
ATLAPPO+RS 1293 1183 1095 1041 966
PA-ATLAPPO+RS 1750 1500 1319 1114 1040
VanillaPPO+RS 1300 1218 1046 970 895
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A.14. Additional experiments

Table 11. The reward of our S-PPO (Vanilla) under Humanoid, Ant, and Halfcheetah environments. Our S-PPO (Vanilla) outperforms the
previous smoothed agents significantly without further combining other robust training algorithms. The attack budget is set to 0.075 for
Humanoid and 0.15 for HalfCheetah and Ant.
Humanoid Clean reward MAD attack Min-RS attack Optimal attack PA-AD attack

S-PPO (Vanilla) 6956 6336 4620 6785 265
VanillaPPO+RS 4875 1581 1014 3350 153
VanillaPPO 4913 1766 1040 3074 153

Ant

S-PPO (Vanilla) 5654 4466 1437 871 474
VanillaPPO+RS 6106 942 378 −1560 −1817
VanillaPPO 6141 710 338 −1555 −1817

Halfcheetah

S-PPO (Vanilla) 5140 4171 3577 2703 2648
VanillaPPO+RS 5272 560 327 −490 −382
VanillaPPO 5371 527 207 −489 −412

Table 12. The reward of our S-DQN (Vanilla) with different smoothing variance σ. A higher σ usually leads to more robust S-DQN agents
but with a trade-off of decreasing the clean reward.
Pong Clean reward S-PGD

ϵ(ℓ∞) 0.01 0.02 0.03 0.04 0.05

S-DQN (Vanilla) σ = 0.01 21.0±0.0 8.0±4.0 −20.8±0.4 −20.8±0.4 −20.8±0.4 −20.8±0.4
S-DQN (Vanilla) σ = 0.05 21.0±0.0 20.8±0.4 20.6±0.5 18.6±2.2 −11.0±3.4 −20.6±0.5
S-DQN (Vanilla) σ = 0.1 20.4±0.5 21.0±0.0 20.4±0.8 20.2±0.8 16.6±4.4 18.4±2.1
S-DQN (Vanilla) σ = 0.15 18.8±1.5 19.6±1.2 17.8±3.2 17.6±1.9 14.6±3.2 14.4±3.0

Freeway

S-DQN (Vanilla) σ = 0.01 34.0±0.0 16.6±1.9 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
S-DQN (Vanilla) σ = 0.05 33.6±0.5 33.8±0.4 31.6±1.5 6.8±1.7 0.0±0.0 0.0±0.0
S-DQN (Vanilla) σ = 0.1 34.0±0.0 33.0±0.9 31.4±1.0 28.0±1.4 20.4±1.9 6.6±2.2
S-DQN (Vanilla) σ = 0.15 26.4±1.0 26.6±1.6 26.8±1.0 25.2±1.9 24.0±2.5 20.2±1.3

RoadRunner

S-DQN (Vanilla) σ = 0.01 45180±8944 840±869 0±0 0±0 0±0 0±0
S-DQN (Vanilla) σ = 0.05 47480±8807 23320±3932 3460±5924 0±0 0±0 0±0
S-DQN (Vanilla) σ = 0.1 39200±6156 19640±2263 11160±5644 620±1040 0±0 0±0
S-DQN (Vanilla) σ = 0.15 16860±1334 16540±671 11160±993 4680±5629 940±1830 20±40

Table 13. The reward of our S-PPO (Vanilla) with different smoothing variance σ. The best σ settings for Walker and Hopper are 0.2 and
0.3 respectively. However, we use σ = 0.2 in every environment for simplicity.
Walker Clean reward MAD attack Min-RS attack Optimal attack PA-AD attack

S-PPO (Vanilla) σ = 0.1 4798 4316 1598 2853 822
S-PPO (Vanilla) σ = 0.2 4552 4386 3203 944 1077
S-PPO (Vanilla) σ = 0.3 4207 4218 2098 744 915

Hopper

S-PPO (Vanilla) σ = 0.1 3392 2653 1014 569 918
S-PPO (Vanilla) σ = 0.2 3583 2765 1049 995 1190
S-PPO (Vanilla) σ = 0.3 3642 2864 1135 1366 2083
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Table 14. testing time cost and clean reward of S-DQN (Vanilla) and S-PPO (Vanilla) under different sample numbers m. We can see that
m = 5 is already sufficient to achieve high clean reward and the time cost is not high even with m = 100.
Pong m = 100 m = 10 m = 5 m = 1

S-DQN (Vanilla) test time (sec/step) 0.1154 0.0106 0.0092 0.0042
S-DQN (Vanilla) clean reward 21.0±0.0 20.6±0.5 20.4±0.5 18.2±3.2

Walker

S-PPO (Vanilla) test time (sec/step) 0.0094 0.0026 0.0022 0.0019
S-PPO (Vanilla) clean reward 4552±65 4442±86 4593±92 4654±168

Table 15. The ablation study of S-DQN (Vanilla) without Denoiser. It is hard to learn S-DQN agents without Denoiser.
Pong Clean reward S-PGD

ϵ(ℓ∞) 0.01 0.02 0.03 0.04 0.05

S-DQN (Vanilla) 20.4±0.5 21.0±0.0 20.4±0.8 20.2±0.8 16.6±4.4 18.4±2.1
S-DQN (Vanilla) w/o Denoiser −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0 −21.0±0.0

Freeway

S-DQN (Vanilla) 34.0±0.0 33.0±0.9 31.4±1.0 28.0±1.4 20.4±1.9 6.6±2.2
S-DQN (Vanilla) w/o Denosier 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

RoadRunner

S-DQN (Vanilla) 47480±8807 23320±3932 3460±5924 0±0 0±0 0±0
S-DQN (Vanilla) w/o Denoiser 960±0 0±0 0±0 0±0 0±0 0±0

Table 16. The comparison between the smoothed attack and the non-smoothed attack for the PPO setting. We use the prefix ”S-” to
denote the Smoothed Attack. Unlike the DQN setting, we did not observe a significant difference between the smoothed attack and the
non-smoothed attack.
Agents Environments MAD attack Min-RS attack Optimal attack PA-AD attack

S-PPO (Vanilla) Walker 4386 3203 944 1077
Hopper 2765 1049 995 1190

Agents Environments S-MAD attack S-Min-RS attack S-Optimal attack S-PA-AD attack

S-PPO (Vanilla) Walker 4637 3225 949 1224
Hopper 2910 1057 979 1114

Table 17. Addtional results for S-DQN (SADQN) and S-DQN (WocaR). Our S-DQN can also use SADQN and WocaRDQN as base
agents.
Pong Clean reward S-PGD

ϵ(ℓ∞) 0.01 0.02 0.03 0.04 0.05

S-DQN (SADQN) 21.0±0.0 21.0±0.0 20.6±0.8 20.0±1.1 17.0±5.0 13.4±2.1
S-DQN (WocaR) 19.8±1.6 19.8±1.2 19.0±2.6 20.6±0.5 20.0±0.9 15.6±4.9

Freeway

S-DQN (SADQN) 30.0±0.0 30.0±0.0 29.6±0.5 26.4±1.6 26.6±1.9 26.8±1.0
S-DQN (WocaR) 31.2±1.3 31.4±1.0 31.8±1.2 30.2±1.2 29.6±1.9 28.6±1.4

RoadRunner

S-DQN (SADQN) 44560±8724 41180±5618 37920±6478 36600±4994 32480±3803 27160±3287
S-DQN (WocaR) 39120±6430 36980±6978 18880±9335 7520±9212 20±40 2100±2417
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