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Abstract

We study zero-sum games in the space of probability distributions over the Euclidean space R?
with entropy regularization, in the setting when the interaction function between the players is
smooth and strongly convex-strongly concave. We prove an exponential convergence guarantee for
the mean-field min-max Langevin dynamics to compute the equilibrium distribution of the zero-
sum game. We also study the finite-particle approximation of the mean-field min-max Langevin
dynamics, both in continuous and discrete times. We prove biased convergence guarantees for the
continuous-time finite-particle min-max Langevin dynamics to the stationary mean-field equilib-
rium distribution with an explicit bias term which does not scale with the number of particles. We
also prove biased convergence guarantees for the discrete-time finite-particle min-max Langevin
algorithm to the stationary mean-field equilibrium distribution with an additional bias term which
scales with the step size and the number of particles. This provides an explicit iteration complexity
for the average particle along the finite-particle algorithm to approximately compute the equilib-
rium distribution of the zero-sum game.

Keywords: Zero-sum games, mean-field Langevin dynamics, finite-particle Langevin algorithm

1. Introduction

Many tasks in computer science, economics, and machine learning can be formulated as games in
which two or more agents compete to optimize their own objective functions. Examples include
Generative Adversarial Networks (GANs) (Goodfellow et al., 2020), adversarial learning (Madry
et al., 2018), reinforcement learning (Busoniu et al., 2008), and robust optimization (Rahimian and
Mehrotra, 2022). The solutions to these problems correspond to the Nash equilibria of these games.
Two-player zero-sum games, first studied by Borel (1921) and v. Neumann (1928), are arguably
the most fundamental and well-studied class of games in game theory. Unlike classical game the-
ory, where players are typically assumed to choose actions from a finite set, modern applications
— including those mentioned above — require players to select actions from a continuous set X,
introducing substantial new challenges in both the existence and tractability of Nash equilibria.
Given a zero-sum game over action sets X and ) with payoff function V: X x Y — R:

minmax V(z,y), 1
min max V(z, y) e))

the celebrated Minimax Theorem by v. Neumann (1928) guarantees the existence of a pure (Nash)
equilibrium (z*, y*) of this game if X and ) are compact convex sets, and V' (x, y) is convex in x
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and concave in y.! Unfortunately, when the payoff function is general, such a pure equilibrium need
not exist. This motivates us to consider the more general solution concept of a mixed (Nash) equi-
librium, which is a probability distribution over actions, and which is guaranteed to exist even for
general payoff functions (Glicksberg, 1952). The problem of finding mixed equilibria in game (1)
can be recast as finding pure equilibria in the lifted game over the spaces of probability distributions
P(X) and P(Y), where the payoff function is given by the expectation of the base payoff function:

pXIéI}DI(lX) pYHel%?y) E, xg,v [V(X,Y)]. ()

This has been studied in many works, including in (Hsieh et al., 2019) for GANs. The actions in
the lifted game (2) are probability distributions pX and p* over the base sets X and )/, so a pure
equilibrium for the lifted game (2) corresponds to a mixed equilibrium of the base game (1); we
refer to a pure equilibrium of the lifted game (2) as an equilibrium distribution.

Despite its universality, finding an equilibrium distribution for the game (2) may still be com-
putationally challenging, depending on the base function V. Recent works, including (Hsieh et al.,
2019; Domingo-Enrich et al., 2020; Ma and Ying, 2022; Lu, 2023; Ding et al., 2024; Kim et al.,
2024), have proposed regularizing the game by adding an entropy term to the payoff function with
some regularization parameter 7 > 0; this results in a game (3) that we study below. The hope is
that the entropy regularization makes the equilibrium distribution easier to compute, similar to what
happens in the finite-dimensional problem.

In the game theory literature, the equilibrium distribution of the regularized game (3) with en-
tropy regularization is known as the quantal response equilibrium (QRE) defined by McKelvey
and Palfrey (1995).> When the regularization parameter 7 > 0 is small, the QRE provides a good
approximation to the equilibrium distribution of the original game (2). We also observe that the
QRE is the solution to one step of the proximal method with entropy regularization to compute the
equilibrium distribution of the original game (2); therefore, if we can compute the QRE efficiently,
then we can hope to run the conceptual prox method (Nemirovski, 2004) which may have a good
convergence property to the true equilibrium distribution of the game (2).

In this paper, we study this question in the setting when the payoff function V is strongly convex-
strongly concave. Two remarks are in order. First, in this setting, a pure equilibrium, i.e., an equi-
librium distribution that is a point mass, of the game (2) exists and is tractable (Facchinei and Pang,
2003). However, these algorithms apply only to finite-dimensional settings, making them unsuitable
for finding the QRE, an infinite-dimensional object. Second, in the space of probability distribu-
tions under the Wasserstein metric, the payoff function of the regularized game (3) is geodesically
strongly convex-strongly concave. In finite dimensions, for a strongly convex-strongly concave
min-max optimization problem, the min-max gradient flow and its straightforward discretization —
the gradient descent-ascent algorithm — converge at an exponential rate (Facchinei and Pang, 2003,
Chapter 12.4.2); see also Section H for a review of the deterministic game. In our setting, the min-
max Wasserstein gradient flow in the space of distributions corresponds to the mean-field min-max
Langevin dynamics, arguably the most natural dynamics for solving the game. Unlike in the finite-
dimensional case, the convergence properties of this natural dynamics, along with its particle and
time discretizations, remain unknown and were listed as an open question in (Wang and Chizat,
2024). All existing results for finding the QRE are for different settings or require modifications to

1. The finite-action setting is captured by choosing X and ) as simplices and V' (z, y) as a bilinear function.
2. QRE is originally defined for finite action games. We study its natural extension to continuous games in this paper.
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the algorithms — see review below. This gap in our understanding motivates us to investigate the
following question:

Does the mean-field min-max Langevin dynamics converge for the regularized game (3)? If so,
what are the convergence rates of its particle approximation and its discrete-time implementation?

Related work Zero-sum games in the space of probability distributions have been studied in many
recent works, including (Hsieh et al., 2019; Domingo-Enrich et al., 2020; Cen et al., 2021; Wang
and Chizat, 2022; Ma and Ying, 2022; Lu, 2023; Kim et al., 2024; Lascu et al., 2023, 2024a,b;
Ding et al., 2024; Conger et al., 2024; An and Lu, 2025; Lu and Monmarché, 2025). We mention
a few works here, and refer the reader to Section A for further discussion. When the domains are
compact Riemannian manifolds, Domingo-Enrich et al. (2020) show that if the mean-field dynam-
ics converges, then it must converge to the equilibrium distribution. Ma and Ying (2022) and Lu
(2023) show the convergence of the continuous-time mean-field dynamics under timescale separa-
tion. Conger et al. (2024) study the more general setting of min-max and cooperative games in the
space of distributions. Notably, (Conger et al., 2024, Theorem 3.4) show that for zero-sum games
under strong convexity, the mean-field min-max Langevin dynamics has exponential convergence
to the equilibrium distribution; thus, they have answered the open question by (Wang and Chizat,
2024) in the continuous-time mean-field setting under strong convexity. In this work, we com-
plement the results by providing guarantees for the finite-particle dynamics and the discrete-time
algorithm. When the domains are Euclidean spaces, Kim et al. (2024) study zero-sum games with
entropy regularization with a more general convex-concave interaction functional using the mean-
field Langevin dynamics with a modified drift term replaced by the time average of the gradients;
they prove a continuous-time convergence rate, as well as a convergence analysis of the finite-
particle discrete-time algorithm. Ding et al. (2024) study a finite-particle discrete-time algorithm
that implements the mirror-prox primal-dual algorithm in the space of distributions, and show ex-
plicit convergence guarantees of the resulting algorithm, under the assumption that the base payoff
function is a bounded perturbation of a quadratic function.

1.1. Problem Setting

In this paper, we study zero-sum games in the space of probability distributions with interaction
term which is an expectation over a base interaction function, with entropy regularization. We work
on the unconstrained state space X = ) = R%, for some dimension d > 1. Our techniques and
results also generalize to X = R and ) = R% where dx =% dy, but here we set dx = dy = d
for simplicity. Let P (R?) denote the space of probability distributions over R? which are absolutely
continuous with respect to the Lebesgue measure and have a finite second moment. Let H(p) =
—IE,[log p] be the entropy functional.

Let V: R? x R? — R be a given base payoff function. We study the following min-max (or
zero-sum) game on the product space of probability distributions:

i F-(p%, 0" 3
Bl p B 77077 ?

where 7 > 0 is a regularization parameter, and the function F, : P(R%) x P(R?) — R is defined as:

Fr(p® p") =B pxg,v [V] = 7H(p™) + 7H(p"). 4)
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We say that a pair of probability distributions (7%, 7Y) € P(R?) x P(R?) is an equilibrium
distribution for the min-max game (3) if the following holds for all (p*, p¥') € P(R%) x P(R%):

Fo(o*,p7) < Fr (0%, 07) < Fr (0¥, 0Y). 5)
The duality gap DG: P(R?) x P(R?) — R of the min-max game (3) is defined by:

DG(p™,p") = F(p*,p")— min  F(5%,p"). 6
(7, p7) = mase  Frlp™pt) = min (0707 (6)

In the literature, this is also known as the Nikaido-Isoda error (Nikaido and Isoda, 1955). Note that
by construction, DG(p*X, p¥) > 0 for all pX, p¥ € P(R?), and furthermore, DG(p*X, p¥') = 0 if
and only if (p*, p¥) is an equilibrium distribution for the game (3).

We are interested in characterizing the existence and uniqueness of the equilibrium distribution,
as well as algorithms for approximately computing the equilibrium distribution in practice. We
study the case when the payoff function V' (x, y) is strongly convex in z, strongly concave in y, and
has bounded second derivatives, see Assumption 1. In this case, there exists a unique equilibrium
distribution (7%, 7¥); see Section 3.

We now provide details for the dynamics and algorithms we study.

(1) The mean-field dynamics: This is a pair of stochastic processes (X;);>0 and (Y;)¢>0 in R4
which evolve via the following mean-field min-max Langevin dynamics for all t > 0:

dX; = —E,y [V, V(X Vi) dt + V27 dW (7a)
dY; = E,x [V, V (X, V)| dt + V21 dW)” (7b)

where X; ~ pi* and Y; ~ p; , and where (W;X);>0 and (W});> are independent standard Brow-
nian motion in R%. This comes from running the gradient flow dynamics in the space of probability
distributions with the Wasserstein metric; see Section C.1 for derivation. The dynamics (7) is a
mean-field system because the evolution of X; depends on the distribution 5} , and similarly, the
evolution of Y; depends on p;. However, note the dependence is only via their expectation, so
in the mean-field system above, X; and Y; evolve independently. Therefore, if we initialize from
independent (X, Yo) ~ py ® py , then (X;,Y;) ~ pi* @ pY remains independent for all ¢ > 0.

Main Result 1: When the payoff function V is strongly concave-strongly convex, we show
the mean-field dynamics (p;X, p; ) converges to the equilibrium distribution (7, 7") expo-
nentially fast in terms of duality gap, KL divergence, and Wasserstein distance; see Theorem 3.

However, the mean-field system is an idealized algorithm that we cannot exactly implement due
to its mean-field dependence and continuous-time nature. Thus, we study its approximations.

(2) The particle dynamics: This is an approximation of the mean-field dynamics (7) by replacing
X; ~ pf and Y; ~ pY by N > 1 particles X; = (X}, ..., X}¥) ~ pXand Y, = (V,},...,V}V) ~
py in R4 which jointly evolve via the following, for all ¢ > 0 and for all i € [N] := {1,...,N}:
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. 1 o ‘
AX{ = —5 Y VaV(X{,Y7)dt + V27 aw; (82
J€EIN]
. 1 . )
aY; =~ 3 VWV (XL V) dt+ 2 dw) (8b)
J€EIN]

where (WtX’i)tzg and (Wty’i)tzo are independent standard Brownian motions in R?, for i € [N].
Note the above is not a mean-field system, but a standard system of interacting stochastic processes.
The distribution of Z; := (X, Y;) ~ pZ in R??V is in general not independent: pZ # pX @ pX.
Note that in the particle dynamics (8), we use the empirical mean from the N particles to approx-
imate the true expectation in the mean-field dynamics. Thus, as N — oo, we expect the particle
dynamics (8) to become closer to the mean-field dynamics. As ¢ — oo, the particle dynamics (8)
converges to a stationary distribution (X, Yoo) ~ pZ, which we expect to be close to the inde-
pendent product of the stationary mean-field distribution 7% = (7X)®N @ (7V)®V,

Main Result 2: For strongly convex-strongly concave and smooth V', we prove a biased con-
vergence guarantee of pZ along the finite-particle dynamics (8) to the stationary mean-field
distribution 7%, with a bias that is independent of the number of particles V; see Theorem 4.

(3) The particle algorithm: This is a time discretization of the particle dynamics (8), which
maintains a collection of particles x;, = (z},...,25) ~ py" and yx = (y},...,y2) ~ pl" in
RN and evolves them via the following discrete-time update, for all £ > 0 and for all i € [N]:

, , 1 o .
That = Tp =1 5 > VaViahul) + V2 G (9a)
JE[N]
, , 1 o .
Yhr =Wk T 5 D VoV (@) + V2 (9b)
JE[N]
where 17 > 0 is a fixed step size, and C,f’l, cee If’N, Ck’l, ceey (]’:’N ~ N(0, I) are independent stan-

dard Gaussian random variables in R¢. Similar to standard discretization of the Langevin dynamics,
this discrete-time algorithm is biased, i.e., as k — oo, the distribution of zy = (xx,yr) ~ pZ’”
converges to some distribution p%’ which is different from the stationary distribution pZ of the
continuous-time particle dynamics (8).

Main Result 3: For strongly convex-strongly concave and smooth V', we prove a biased con-
vergence guarantee for pz’" along the discrete-time algorithm (9) to the stationary mean-field
distribution 7%, with a bias that scales with step size 1 and the number of particles N; see The-
orem 6. This provides an explicit iteration complexity guarantee for the average particle of the
algorithm (9) to approximate the equilibrium distribution 7% for the game (3); see Corollary 8.
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Organization: We provide definitions and assumptions in Section 2. We discuss the properties of
the equilibrium distribution and the duality gap in Section 3. We discuss the convergence analysis
of the mean-field min-max Langevin dynamics in Section 4. We discuss the convergence analysis of
the continuous-time finite-particle min-max Langevin dynamics in Section 5, and the discrete-time
finite-particle min-max Langevin algorithm in Section 6. We conclude with discussion in Section 7.
We provide additional details and proofs in the appendix.

2. Preliminaries
2.1. Notation and Definitions

Let P(R?) denote the space of probability distributions p over R? which are absolutely continuous
with respect to the Lebesgue measure and which have finite second moment: E,[|| X ||?] < co. We
identify a probability distribution p € P(RY) with its probability density function (Radon-Nikodym
derivative) p: R? — (0, 00) with respect to the Lebesgue measure.

Let H: P(R%) — R be the entropy functional:

1(p) = ~Eyllozs] = = [ plw) og plo)
The Wasserstein W, distance between probability distributions p, v € P(R?) is defined by:
. 1/2
Wa(p,v) = inf E[|X -Y|? )
(o) = nf E[IX Y’
where the infimum is over all couplings between p and v, i.e., joint distributions of (X,Y) ~ ~
with the correct marginal distributions X ~ pand Y ~ v.
For probability distributions p, v € P(R?) with p < v (i.e., if v(x) = 0, then p(x) = 0), the
Kullback-Leibler (KL) divergence or the relative entropy of p with respect to v is defined by:
P p(z)
KL —E, [log 2| = / 1 dz.
(Plv) =B, [log 2] = | oa)ton 25 da
If p,v € P(R?) have differentiable density functions, then the relative Fisher information of p
with respect to v is defined by:
p(z)

Fi(o || v) = E, [Hwogim - /R o V(@)

We say a probability distribution v is a-strongly log-concave (a-SLC) for some o > 0 if the
negative log-density —log v: RY — R is a-strongly convex; if log v is twice differentiable, then
this is equivalent to —V?2log v(z) = o for all z € RY.

We say v satisfies a-log-Sobolev inequality («-LSI) for some o > 0 if for all probability distri-
bution p, the following inequality holds:

Filpllv) = 2aKL(p| V).

2
Vlog ‘ dx.

We say v satisfies a-Talagrand inequality (a-TI) for some « > 0 if for all probability distribu-
tion p, the following inequality holds:

«
KL(pl|v) = § Walp.v)*

We recall that if v is «-SLC, then v also satisfies a-LSI; furthermore, if v satisfies o-LSI, then
v also satisfies a-TI, see (Otto and Villani, 2000).
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2.2. Assumptions
Throughout this paper, we make the following assumption.

Assumption 1 The base interaction function V: R x R? — R is four-times continuously differ-
entiable, a-strongly convex in the first argument, «-strongly concave in the second argument, and
is L-smooth of the second order; for some 0 < a < L < oc. That is, for all x,y € R%:

V2 V(zy) =al, ~V2V(r,y)=al, and  |V?V(z,y)|ep < L.
In particular, (x,y) — V'V (x,y) is L-Lipschitz for all z,y € R

We note the assumption that V' be four-times differentiable is to ensure that our computations
below are justified, in particular when using integration by parts such as in the proof of Lemma 9.

3. Properties of the Equilibrium Distribution and Duality Gap
We define the best-response maps ®X: P(Y) — P(X) and &Y : P(X) — P(Y) by:
X (pY) =¥ and oY () =Y

for all pX, p¥ € P(RY), where vX, ¥ € P(RY) are distributions with density given by:

vX(z) o< exp (—TﬁlEPY V(z,Y)]), (10a)

vY (y) o exp (T_lpr V(X,y)]) . (10b)
Note that if we assume V is strongly convex-strongly concave, then the maps above are well-defined,
since the right-hand sides are integrable over R?. More generally, we need some growth condition
on V to ensure the above are well-defined. The term best-response is justified by the following
property. We provide the proof of Lemma 1 in Section B.1.

Lemma 1 Forall p*, p¥ € P(RY), withvX = ®X(p¥) and v¥ = &Y (pX), we have:

X - ~X Y
v* =arg min F(p7, )
L (7%, p")

Y X =~

v’ =arg max F ) .

g max (0™ p")

Furthermore, the duality gap is given by:
DG(p¥, p¥) = T KL(p™ %) + 7 KL(p" [[2").

Therefore, the equilibrium distribution (X, 7Y"), which minimizes the duality gap, is a fixed
point of the best-response maps:

X (V) =¥ and Y (7)) =0Y.

We have the following property, which guarantees that if we can minimize the duality gap, then we
also have convergence of the iterates to the equilibrium distribution, both in KL divergence and in
Wasserstein distance. The uniqueness of the equilibrium distribution follows from our convergence
guarantee of the mean-field dynamics presented in Theorem 3. The bound (11) below is the same
as stated in (Wang and Chizat, 2024, Eq. (4)) and (Kim et al., 2024, Lemma 3.5); the first inequality
in (11) follows from Talagrand’s inequality, and the second inequality follows from the optimality
property of the duality gap. We provide the proof of Lemma 2 in Section B.2.
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Lemma 2 Assume Assumption 1. Then there exists a unique equilibrium distribution (0~ |7 €
P(R?) x P(R?) for the game (3), and the distributions v~ and 0¥ are (a/T)-strongly log-concave.
Furthermore, for all (p~, p¥) € P(RY) x P(RY):

% (Walp™, 7%)? + Wa(p",77)?) <7 (KL(p™ | %) + KL(p" || #7)) < DG(p™,p"). (11)

4. Analysis of the Mean-Field Min-Max Langevin Dynamics

Given a pair of random variables X; ~ pX and Y; ~ p} in R%, we can define the joint random
variable Z; = (X;,Y;) € R?? which has an independent joint distribution Z; ~ p7 := piX ® py .
Define the independent product of the best-response distributions

vl = @n)
where 7X = ®X(p)’) and 7" = @Y (). We observe that if X; ~ p;* and Y; ~ p) evolve
following the mean-field min-max Langevin dynamics (7), then the joint variable Z; ~ p7 evolves

following the Langevin dynamics targeting its best-response distribution 7

dZy = 7V log 77 (Zy) dt + /27 dAWF (12)

where W7 = (W;X, W}') is the standard Brownian motion in R??. This follows from the definition
of the best-response distributions (10) and computing their score functions.

We have the following convergence results for the mean-field min-max Langevin dynamics. We
show that the relative Fisher information between the iterates and their best-response distributions
converges exponentially fast along the mean-field Langevin dynamics (Theorem 3 part (1)). This
is analogous to the result in the deterministic setting where the squared norm of the velocity vector
field converges exponentially fast along the min-max gradient flow (see Theorem 35 in Section H
for a review). For the mean-field min-max Langevin dynamics, which is the min-max Wasserstein
gradient flow, the squared Wasserstein norm of the velocity of pf is precisely the relative Fisher
information between p7 and its best-response distribution 77, which motivates our result below.
The convergence in relative Fisher information also implies the convergence in the duality gap or
KL divergence, by the log-Sobolev inequality (Theorem 3 part (2)).

Below, we write DG(p7) = DG(p;, p}’ ). We provide the proof of Theorem 3 in Section C.4.

Theorem 3 Assume Assumption 1. Suppose Z; ~ ﬁtZ evolves following the mean-field dynam-
ics (12) in the joint space R*¢ from Zg ~ ﬁg € P(R2?), and let 7 be the best-response distribution
as defined above. Then for all t > 0, we have the following properties:

1. Convergence in relative Fisher information:
FI(p7 (| 77) < e > FI(pF || %)-
2. Convergence in duality gap:

2
_ _ _ _ T _ _
DG(py') = 7 KL(5 || 7)) < e o~ FI(pg || 7).
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Let 77 := 7X @ 7 be the stationary distribution for the mean-field dynamics in the joint space
R24. Note that by the bound (11) from Lemma 2, the convergence rate in duality gap above also
implies the following convergence guarantees between the iterate 57 of the mean-field dynamics
and the stationary mean-field distribution 7%

2
o)) _ _ _ _ _ _ T _ _
§W2(PtZaVZ)2 < 7KL(p{ || 77) < DG(p{) < e QQt%Fl(Po 175). (13)

The bound above is in terms of the initial relative Fisher information of ﬁg to its best-response
distribution. When we choose a Gaussian initial distribution ﬁg = N(0, 2—22[ ), we can bound
FI(55 | 77) = O(%5"); see Lemma 11 in Section C.4.1.

We note that under Assumption 1, one can show that the mean-field dynamics (12) is in fact
an exponential contraction in the W5 distance, which implies Wo(p7, %)% < e 2% Wy (pf , v )2,
see (Conger et al., 2024, Proposition 7.3). We note that (Conger et al., 2024, Lemma 7.2) also shows
the exponential convergence of the dissipation functional, which is the same as the relative Fisher
information above in our setting. We provide a self-contained proof of Theorem 3 in Section C.4;
in particular, we derive an identity of the time derivative of the relative Fisher information along the
mean-field Langevin dynamics, see Lemma 9 in Section C.2.

5. Analysis of the Finite-Particle Min-Max Langevin Dynamics

Here we study a finite-particle approximation of the mean-field min-max Langevin dynamics (7)
where we replace each X; € R? and V; € R? with N > 1 particles X},..., X}V € R? and
Y, ..., YN € R? which evolve following the finite-particle system of dynamics (8) where we use
the empirical mean from the particles in place of the true expectation in the drift terms of (7).

We can write the finite-particle dynamics (8) in terms of the joint vectors X; = (X}, ..., X}V) €
RN and Yy = (YV}!,...,YV) € RV as:

dX; = bX(Xy, Yy) dt + V21 dWX (14a)
dY; = bY (X4, YY) dt +V2r dWY (14b)

where (WX)i>0 and (W,Y);>0 are independent standard Brownian motions in R%Y. In the above,
we have defined the vector fields bX: R¥ x RN — RN and bY : RV x RN — RN by, for all
x=(z',...,2V) e R andy = (¢, ...,y") € R:

bX(xlaY) _% ZjG[N] V.V (', y)

bX(X, y) — “ee = oo ‘ , (15a)
b (N, y) —% ZjE[N] VoV (@Y, )
Y (x,y") & Zjen VoV (@, y1)

bY(ij): — A . (15b)
bY(Xy?JN) % Zje[N] VyV(z:J,yN)

We can further write the finite-particle dynamics (14) in terms of the joint random variable
Z: = (X4, Yy) € R%N aq:

dZ; = b%(Z;) dt + V27 dW2 (16)
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where W2 = (WX, W,Y) is the standard Brownian motion in R?* and we have defined the vector
field b%: R2NV — R2IN by, forall z = (x,y) € R2*V:

X X
Ve (z) = (ZYEX§;> . (17)

5.1. Biased Convergence of Finite-Particle Dynamics to Stationary Mean-Field Distribution

Recall 77 = vX @Y € P(R??) is the stationary distribution for the base mean-field dynamics (7).
We define the tensorized stationary mean-field distribution:

72 = (%) @ (7V)ON ¢ p(R2N). (18)

We can show the biased convergence guarantee of the finite-particle dynamics (16) to the ten-
sorized mean-field stationary distribution (18) in Theorem 4. A key observation is that the drift
term in the finite-particle dynamics (16) is dissipative (see Lemma 12 in Section D.1); this allows
us to perform a synchronous coupling analysis against the stationary mean-field dynamics to show
a biased convergence guarantee in Wy distance, which we leverage to show a biased convergence
guarantee in KL divergence via a time derivative calculation along simultaneous diffusion pro-
cesses. A careful calculation shows that we can control the bias without dependence on the number
of particles N (see Lemma 15 in Section D.2). We provide the proof of Theorem 4 in Section E.1.

Theorem 4 Assume Assumption 1. Suppose Z; ~ pZ evolves following the finite-particle dynam-
ics (16) in R?MN from Zy ~ p& € P(R?N). Then for all t > 0:

2L* -
Wa(pf', %) < ™2 Wa(pf, 7%)? + =5 Var,2(2)

7 Z —at z -7y, 2L z 7o) , AL >
KL(p; [[77) < e KL (pg [ 7 )+?W2(P07V ) +EVarDz(Z).

By taking ¢ — oo, we obtain the following estimates on the bias of the stationary distribution
pZ of the finite-particle dynamics (16) from the tensorized stationary mean-field distribution 7%:

7 _7Z\2
Wa(poo, V7)< 5 Vargz(2),

KL(oZ || 7%) < =5~ Var,s(2).
We can bound the variance by Var,z(Z) < (27d)/a, see Lemma 24. Therefore, note that the bias
terms above do not scale with the number of particles N. When we consider the average particle
below, this implies a bias of order O(1/N), see Corollary 5.
We can also show the unbiased exponential convergence guarantees of the iterate pZ of the
finite-particle dynamics (16) to its stationary distribution pgo, see Theorem 33 in Section G.2.

5.2. Biased Convergence of the Average Particle of the Finite-Particle Dynamics

Suppose Z; = (X, Yy) = (X}, ..., XN, VL, ... YY) ~ pZ evolves following the finite-particle
dynamics (16) in R?%N . We define the average particle to be the random variable Z/ = (X}, Y}!) €

10
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R??, where I ~ Unif([N]) is a uniformly chosen random index. Note the distribution of the average

particle Z! ~ pZ*# (including the randomization over indices) is:

Zavg 1 Z
Pt N Pt
i€[N]

where p?*" is the marginal distribution of Z! = (X7, Y;!) € R2 from the joint vector Z; ~ pZ.
We have the following biased convergence guarantee of the average particle along the finite-
particle dynamics (16). We provide the proof of Corollary 5 in Section E.2.

Corollary 5 Assume Assumption 1. Suppose Z; ~ p? evolves following the finite-particle dynam-
ics (16) in R*N | and let ZF ~ ptZ Y& be the average particle as defined above. For all t > 0:

Z,avg || =7 1 —at Z | ~Z 217 Z -7\2 4L ~
KL(p ™% | 77) < 5 (KL (oF 17%) + =2 Walpff, 7)) + 7 Varya (2).

By taking ¢ — oo, we see that the limiting distribution pi;avg of the average particle satisfies:

4

3TN

KL(pZ™5 || 77) <~ Varys(2).

This shows that as N — oo and ¢ — oo, the average particle of the finite-particle dynamics (16) in-
deed converges to the stationary mean-field distribution 74, which is the equilibrium distribution for
the game (3) that we wish to compute. However, this is still in the idealized continuous-time setting.
To obtain a meaningful practical guarantee, we study the discrete-time algorithm in Section 6.

6. Analysis of the Discrete-Time Finite-Particle Min-Max Langevin Algorithm

We study a time discretization of the finite-particle dynamics (8) into the discrete-time algorithm (9).
We can write the algorithm (9) in terms of the joint vectors x; = (CL’}C, .. ,m]kv ) € RN and Vi =
(yi,...,y) € R¥ which follow the update:

Xpet1 = Xp + 00X (X, yi) + /270 G (19a)
Vi1 = Y +0bY (X, yi) + /20 ¢ (19b)

where 1 > 0 is step size, (j;, C,}C' ~ N (0, I) are independent standard Gaussian random variables in
RN and where we have used the same vector fields b* and bY as defined in (15).

We can further write the algorithm (19) in terms of the joint random variable z;, = (xx,yx) €
R24N which follows the update:

Zy1 = z), + 00 (zx) + /27 (F (20)

where n > 0 is step size, ¢f ~ N(0, ) is an independent standard Gaussian random variable in
R24N and where we have used the same vector field b% as defined in (17).

11
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6.1. Biased Convergence of Finite-Particle Algorithm to Stationary Mean-Field Distribution

We can prove the following biased convergence guarantees of the finite-particle algorithm (20) to
the tensorized stationary mean-field distribution 7% € P(R??V) defined in (18). Our technique is to
show a one-step biased contraction guarantee in W5 distance along the discrete-time algorithm (20),
using a continuous-time interpolation of each step of the algorithm (20) as the solution to a stochas-
tic process, and performing a synchronous coupling analysis against the stationary mean-field dy-
namics; see Lemma 22 in Section F.2.1. We leverage this to show a one-step biased contraction
guarantee in KL divergence along the algorithm (20), see Lemma 23 in Section F.2.2, and solve
the recursions to conclude the biased convergence guarantees stated in Theorem 6. We provide the
proof of Theorem 6 in Section F.3.

Note that the bias terms in Theorem 6 below match the continuous-time bias from Theorem 4,
with an additional bias term that scales with the step size 1 as well as the number of particles IV,
which comes from the dimension of the space R?*V where the algorithm operates. This additional
bias term that scales with 7 is consistent with the analysis of simple discretization of the Langevin
dynamics such as the Unadjusted Langevin Algorithm, see e.g., (Vempala and Wibisono, 2019).

Theorem 6 Assume Assumption 1. Suppose zj, ~ pz’n evolves via the finite-particle algorithm (20)
in R2IN with step size 0 < n < Girz fromzg ~ pg" € P(R24N). Then for all k > 0:

8L2 _
Wa(p2", %)% < e 298 Wy( 2 5%)? + — (Var,z(Z) 4+ 64 7ndN)

4514
asT

2
KL(pp" || 7%) < eon (KL(pg’" | 7%) + %Wz(pg’”, az)2> + (Varyz(Z) +55n7dN) .
As the finite-particle algorithm (20) is practically implementable, this provides a concrete al-
gorithm to approximately compute the stationary mean-field distribution, with an explicit iteration
complexity which we characterize in Corollary 8 below.
We can also show the unbiased exponential convergence guarantees of the iterate pZ’" of the
finite-particle algorithm (20) to its stationary distribution pay’, see Theorem 34 in Section G.3.

6.2. Biased Convergence of the Average Particle of the Finite-Particle Algorithm

Suppose z;, = (Xg, yk) = (Th, ... 20yt ..., yl) ~ pp" evolves following the finite-particle

algorithm (20) in R?¥Y . As before, we define the average particle to be the random variable z,ﬁ =

(zf,yl) € R%, where I ~ Unif([N]) is a uniformly chosen random index. The distribution of the
. ] z7777avg . . . . . . s .

average particle zj, ~ py (including the randomization over indices) is:

pzvn,avg _ % Z pim
1€[N]

where p;’"’i is the marginal distribution of z}, = (2%, y!) € R?® from the joint vector zy, ~ p}".
We have the following biased convergence guarantee of the average particle along the finite-
particle algorithm (20). We provide the proof of Corollary 7 in Section F.4.

Corollary 7 Assume Assumption 1. Suppose zj, ~ ,02’" evolves following the finite-particle algo-

rithm (20) in R2N with step size 0 < 1 < gz and let z,é ~ p;’n’avg be the average particle as

12
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defined above. Then for all k > 0:

—amk 4514 ndL4

a3TNVarﬁz (Z) 4 2475

z av, — € V4 — 9 _
L™ 19) < 5 (KL 152 )+ L g R) +

Z,1,avg

By taking k£ — oo, we see that the limiting distribution pz5 of the average particle satisfies:

A A
KL(pZmave || %) < 45 Var 22 (Z )+247577d
7‘

This shows that the average particle of the N-particle algorithm approximately converges to the
stationary mean-field distribution 77, up to a bias term which scales with step size 1 and inversely
with the number of particles 1/N. Thus, we can make the bias arbitrarily small by choosing a
sufficiently large number of particles N and a sufficiently small step size 7.

The result above implies the following iteration complexity guarantee for the average particle of
the finite-particle algorithm (20) to reach an arbitrary precision in KL divergence to the stationary
mean-field distribution 7% = 7% @ 7Y, which is the equilibrium distribution for the game (3) that
we wish to compute. We provide the proof of Corollary 8 in Section F.5.3.

Corollary 8 Assume Assumption 1. For any regularization parameter T > 0, and given any small
error threshold € > 0, suppose we do the following:

1. Run the min-max gradient descent algorithm (65) from Zy = (0,0) € R24 with step size

nep = 37z for
b > 4[/21 a3 2|2
[ O S —
6D = "2 08 Tgre

iterations, to obtain a final point m? = Zkep € R,

2. Define the Gaussian distribution v = N (m?, 71) on R, and initialize the algorithm (20)

fromzg = (24,...,20) € R2N where 28, ..., 28 ~~Z arei.id., sozy ~ pg" = (v7)®N.

3. Run the finite-particle algorithm (20) with step size and number of particles:

3 4
[xe’ N>27OdL '

T 7500dLA = caf
Then the average particle =i ~ pi™™® of the algorithm (20) satisfies KL(p;, "™ || #7) <  when-
ever the number of iterations k satisfies:

7500dL* | 684 dLS

k > I
- ot 8

cab

7. Discussion

In this paper, we study zero-sum games in the space of probability distributions over R¢ with en-
tropy regularization and a base interaction function which is smooth and strongly convex-strongly
concave. We show the exponential convergence guarantee of the mean-field min-max Langevin
dynamics to the equilibrium distribution in continuous time. We also show the biased convergence
guarantees for the finite-particle dynamics in continuous time, and the finite-particle algorithm in

13



CAI MITRA WANG WIBISONO

discrete time, to the equilibrium (stationary mean-field) distribution. We also provide an explicit
iteration complexity for the average particle of the finite-particle algorithm to approximately com-
pute the equilibrium distribution. We use standard tools from the analysis of stochastic processes
and their time discretization, which have been used for analyzing sampling algorithms.

Our results answer a special case of the open question posed by (Wang and Chizat, 2024) in the
simple setting of Euclidean case under strong convexity assumption. There are many directions one
can study toward the more general open question. It would be interesting to study how to extend
our results to weaken the strong convexity assumption, for example to allow weak convexity or
local non-convexity of the interaction function, or only assuming isoperimetry of the equilibrium
distribution. In our analysis, the strong convexity assumption is crucial to show the exponential con-
vergence guarantee of the mean-field dynamics and to provide biased convergence guarantees for
the finite-particle systems in W5 distance, which we leverage to obtain biased convergence guaran-
tees in KL divergence. It would also be interesting to study the more general setting of constrained
domains or the manifold setting without convexity assumptions. For constrained domains, we may
have to add a reflection or projection step to the Langevin dynamics; or we can try to adapt the idea
of the Proximal Sampler from sampling, see e.g., (Lee et al., 2021; Chen et al., 2022).

Acknowledgments

The authors thank Guillaume Wang, Daniel Lacker, and Manuel Arnese for valuable discussions.
A.W. thanks Tinsel W. for guidance. A.W. is supported by NSF Award CCF-2403391 and CCF-
2443097. Y.C. is supported by the NSF Award CCF-2342642.

References

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Jing An and Jianfeng Lu. Convergence of two-timescale gradient descent ascent dynamics: finite-
dimensional and mean-field perspectives. arXiv preprint arXiv:2501.17122, 2025.

Emile Borel. La théorie du jeu et les équations intégralesa noyau symétrique. Comptes rendus de
I’Académie des Sciences, 173(1304-1308):58, 1921.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent

reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews), 38(2):156-172, 2008.

Shicong Cen, Yuting Wei, and Yuejie Chi. Fast policy extragradient methods for competitive games
with entropy regularization. Advances in Neural Information Processing Systems, 34:27952—
27964, 2021.

Djalil Chafai. Entropies, convexity, and functional inequalities, On ®-entropies and ®-Sobolev
inequalities. Journal of Mathematics of Kyoto University, 2004.

Yongxin Chen, Sinho Chewi, Adil Salim, and Andre Wibisono. Improved analysis for a proximal
algorithm for sampling. In Conference on Learning Theory, pages 2984-3014. PMLR, 2022.

14



ON THE CONVERGENCE OF MIN-MAX LANGEVIN DYNAMICS AND ALGORITHM

Lauren Conger, Franca Hoffmann, Eric Mazumdar, and Lillian J Ratliff. Coupled Wasserstein
gradient flows for min-max and cooperative games. arXiv preprint arXiv:2411.07403v1, 2024.

Shihong Ding, Hanze Dong, Cong Fang, Zhouchen Lin, and Tong Zhang. PAPAL: A Provable
PArticle-based Primal-Dual ALgorithm for Mixed Nash Equilibrium. Journal of Machine Learn-
ing Research, 25(327):1-48, 2024.

Carles Domingo-Enrich, Samy Jelassi, Arthur Mensch, Grant Rotskoff, and Joan Bruna. A mean-
field analysis of two-player zero-sum games. Advances in Neural Information Processing Sys-
tems, 33:20215-20226, 2020.

Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational inequalities and comple-
mentarity problems. Springer, 2003.

Irving L Glicksberg. A further generalization of the kakutani fixed point theorem, with application
to nash equilibrium points. Proceedings of the American Mathematical Society, 3(1):170-174,
1952.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139-144, 2020.

Ya-Ping Hsieh, Chen Liu, and Volkan Cevher. Finding mixed Nash equilibria of Generative Adver-
sarial Networks. In International Conference on Machine Learning, pages 2810-2819. PMLR,
2019.

Juno Kim, Kakei Yamamoto, Kazusato Oko, Zhuoran Yang, and Taiji Suzuki. Symmetric mean-field
Langevin dynamics for distributional minimax problems. In The Twelfth International Confer-
ence on Learning Representations, 2024.

Daniel Lacker and Luc Le Flem. Sharp uniform-in-time propagation of chaos. Probability Theory
and Related Fields, 187(1-2):443-480, 2023.

Razvan-Andrei Lascu, Mateusz B Majka, and Lukasz Szpruch. Entropic mean-field min-max prob-
lems via best response flow. arXiv preprint arXiv:2306.03033, 2023.

Razvan-Andrei Lascu, Mateusz B. Majka, and Lukasz Szpruch. A Fisher-Rao gradient flow for
entropic mean-field min-max games. Transactions on Machine Learning Research, 2024a. ISSN
2835-8856.

Razvan-Andrei Lascu, Mateusz B Majka, and Lukasz Szpruch. Mirror descent-ascent for mean-field
min-max problems. arXiv preprint arXiv:2402.08106, 2024b.

Yin Tat Lee, Ruoqi Shen, and Kevin Tian. Structured logconcave sampling with a restricted Gaus-
sian oracle. In Mikhail Belkin and Samory Kpotufe, editors, Proceedings of Thirty Fourth Con-
ference on Learning Theory, volume 134 of Proceedings of Machine Learning Research, pages
2993-3050. PMLR, 8 2021.

Yulong Lu. Two-scale gradient descent ascent dynamics finds mixed Nash equilibria of continuous
games: A mean-field perspective. In International Conference on Machine Learning, pages
22790-22811. PMLR, 2023.

15



CAI MITRA WANG WIBISONO

Yulong Lu and Pierre Monmarché. Convergence of time-averaged mean field gradient descent
dynamics for continuous multi-player zero-sum games. arXiv preprint arXiv:2505.07642, 2025.

Chao Ma and Lexing Ying. Provably convergent quasistatic dynamics for mean-field two-player
zero-sum games. In International Conference on Learning Representations, 2022.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Richard D McKelvey and Thomas R Palfrey. Quantal response equilibria for normal form games.
Games and Economic Behavior, 10(1):6-38, 1995.

Arkadi Nemirovski. Prox-method with rate of convergence o (1/t) for variational inequalities with
lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 15(1):229-251, 2004.

Hukukane Nikaiddé and Kazuo Isoda. Note on non-cooperative convex game. Pacific Journal of
Mathematics, 5(5):807-815, 1955.

Felix Otto and Cédric Villani. Generalization of an inequality by Talagrand and links with the
logarithmic Sobolev inequality. Journal of Functional Analysis, 173(2):361-400, 2000.

Hamed Rahimian and Sanjay Mehrotra. Frameworks and results in distributionally robust optimiza-
tion. Open Journal of Mathematical Optimization, 3:1-85, 2022.

J v. Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295-320, 1928.

Santosh S. Vempala and Andre Wibisono. Rapid convergence of the Unadjusted Langevin Algo-
rithm: Isoperimetry suffices. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Cédric Villani. Optimal transport: Old and new, volume 338. Springer, 2009.

Guillaume Wang and Lénaic Chizat. An exponentially converging particle method for the mixed
Nash equilibrium of continuous games. arXiv preprint arXiv:2211.01280, 2022.

Guillaume Wang and Lénaic Chizat. Open problem: Convergence of single-timescale mean-field
Langevin descent-ascent for two-player zero-sum games. In Shipra Agrawal and Aaron Roth, ed-
itors, Proceedings of Thirty Seventh Conference on Learning Theory, volume 247 of Proceedings
of Machine Learning Research, pages 5345-5350. PMLR, 30 Jun—03 Jul 2024.

Andre Wibisono and Varun Jog. Convexity of mutual information along the Ornstein—Uhlenbeck
flow. In 2018 International Symposium on Information Theory and Its Applications (ISITA),
pages 55-59. IEEE, 2018.

16



ON THE CONVERGENCE OF MIN-MAX LANGEVIN DYNAMICS AND ALGORITHM

Contents

7

Introduction
1.1 Problem Setting . . . . . . . . . .

Preliminaries
2.1 Notation and Definitions . . . . . . . . . . . . ...
2.2 ASSUMPLIONS . . . . . o e e e e e e e

Properties of the Equilibrium Distribution and Duality Gap
Analysis of the Mean-Field Min-Max Langevin Dynamics

Analysis of the Finite-Particle Min-Max Langevin Dynamics
5.1 Biased Convergence of Finite-Particle Dynamics to Stationary Mean-Field Distri-
bution . . . . .. e e

5.2 Biased Convergence of the Average Particle of the Finite-Particle Dynamics . . . .

Analysis of the Discrete-Time Finite-Particle Min-Max Langevin Algorithm
6.1 Biased Convergence of Finite-Particle Algorithm to Stationary Mean-Field Distri-
bution . . . . .. e

6.2 Biased Convergence of the Average Particle of the Finite-Particle Algorithm . . . .

Discussion

References

A

B

Additional Related Work

Proofs for the Properties of Equilibrium Distribution and Duality Gap
B.1 Proof of Lemma 1 (Properties of the Best-Response Distribution) . . . . . . . . ..

B.2 Proof of Lemma 2 (Existence, Uniqueness of Equilibrium and Bound on Duality Gap)

Proofs for the Mean-Field Min-Max Langevin Dynamics
C.1 Derivation of the Mean-Field Dynamics . . . . . . ... ... ... ... .....

C.2 Time Derivative of Relative Fisher Information along Mean-Field Langevin Dynamics

C.3 Bound on the Second Moment Along the Mean-Field Dynamics . . . . ... ...

C.4 Proof of Theorem 3 (Convergence of the Mean-Field Min-Max Langevin Dynamics)

Technical Lemmas for the Finite-Particle Analysis

D.1 Properties of the Vector Fields . . . . . .. ... ... ... ... .........
D.2 Comparison Between the Vector Fields . . . . . . ... ... ... .........
D.3 Boundsonthe Vector Fields . . . .. ... ... ... ... ... . .......
D.4 Time Derivative of KL Divergence Along Fokker-Planck Equations . . . . . . . .

17

10

11

12
12

13

14

18



CAI MITRA WANG WIBISONO

E Proofs for the Finite-Particle Dynamics 46
E.1 Proof of Theorem 4 (Biased Convergence of the Finite-Particle Dynamics) . . . . . 46
E.2 Proof of Corollary 5 (Average Particle Along the Finite-Particle Dynamics) . . .. 49

F Proofs for the Finite-Particle Algorithm 49
F1 PreliminaryResults . . . . . . . . . . . . ... . ... . 49

FE2 One-Step Recurrence for the Biased Convergence of the Finite-Particle Algorithm . 52
E3  Proof of Theorem 6 (Biased Convergence of Finite-Particle Algorithm to Stationary

Mean-Field Distribution) . . . . . . . . . . . . . ... e 56

F4 Proof of Corollary 7 (Average Particle Along the Finite-Particle Algorithm) . . . . 58

F.5 Proofs for Iteration Complexity of the Finite-Particle Algorithm . . . .. ... .. 59

G Convergence of Finite-Particle Systems to Their Limiting Distributions 63
G.1 Preliminary Results . . . . . . . . . . . . . ... ... 63
G.2 Convergence of Finite-Particle Dynamics to Its Stationary Distribution . . . . . . . 67
G.3 Convergence of Finite-Particle Algorithm to Its Stationary Distribution . . . . . . . 68

H Deterministic Zero-Sum Game 71
H.1 Convergence of Min-Max GradientFlow . . . . . . . .. ... ... ... ..... 72
H.2 Convergence of Min-Max Gradient Descent . . . . . .. ... ... ... ..... 74

I Zero-Sum Game in the Space of Distributions Without Regularization 76

Appendix A. Additional Related Work

Zero-sum games in the space of probability distributions have been studied in many recent works,
including (Hsieh et al., 2019; Domingo-Enrich et al., 2020; Cen et al., 2021; Wang and Chizat,
2022; Ma and Ying, 2022; Lu, 2023; Kim et al., 2024; Lascu et al., 2023, 2024a,b; Ding et al.,
2024; Conger et al., 2024; An and Lu, 2025; Lu and Monmarché, 2025). Our main motivation in
this work comes from the open problem by Wang and Chizat (2024), who pose the question of
studying the convergence guarantees of the simple mean-field min-max Langevin dynamics and its
particle approximations for zero-sum games in the space of distributions, in particular without using
two timescales or modifying the dynamics or algorithm.

The question posed by Wang and Chizat (2024) is for a general setting on a manifold, without
convexity assumption on the interaction function. In this work, we contribute an answer to this ques-
tion for the simple case on the unconstrained Euclidean space with a strong convexity assumption
on the base interaction function. From the perspective of optimization on the space of probabil-
ity distributions under the Wasserstein metric, this makes the payoff function - in (4) a strongly
convex-strongly concave function, so it is natural to expect that the min-max gradient flow in the
space of distributions—which is exactly the mean-field min-max Langevin dynamics (7)—to con-
verge exponentially fast. However, precise results in this simple setting taking into account particle
approximation and time discretization seem to be previously unknown. We establish these results
in this paper to provide a baseline toward understanding the more general question posed by Wang
and Chizat (2024).

We review a few works that are the most related to our work; see also (Wang and Chizat, 2024)
and the references therein. Domingo-Enrich et al. (2020) study the setting when the domains are
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compact Riemannian manifolds, and show a conditional convergence result that if the mean-field
dynamics converges, then it converges to the equilibrium distribution of the game. Ma and Ying
(2022) and Lu (2023) also study the compact manifold setting with two-timescale dynamics. Ma
and Ying (2022) study the quasistatic regime where one player is always at optimality, and establish
the asymptotic convergence of the mean-field dynamics to the equilibrium distribution; they also
study the finite-particle and discrete-time approximation, without convergence analysis. Lu (2023)
study the two-timescale dynamics with finite timescale separation, and establish the exponential
convergence guarantees of the mean-field dynamics to the equilibrium distribution. In the compact
manifold setting, only smoothness assumptions on the interaction function are needed.

When the domains are Euclidean spaces, some convexity or integrability assumptions are needed.
Kim et al. (2024) consider a more general setting of zero-sum games with entropy regularization
where the interaction functional on the space of distributions is convex-concave (whereas in our
setting (3) the interaction functional is bilinear since it is an expectation over a base function); they
study a modified mean-field Langevin averaged-gradient dynamics where the drift term uses a time
average of the gradients over the iterates, and show a continuous-time convergence rate, as well as
a convergence analysis of the finite-particle discrete-time algorithm. Ding et al. (2024) consider
the setting when the base interaction function is a bounded perturbation of a quadratic function;
they study a finite-particle discrete-time algorithm that implements the mirror-prox primal-dual al-
gorithm in the space of distributions, which requires an inner loop running a sampling algorithm to
implement each iteration, and show explicit convergence guarantees of the resulting algorithm.

The work of Conger et al. (2024) study a very general setting of coupled Wasserstein gradi-
ent flows for min-max and cooperative games in the space of distributions, with payoff functionals
which include additional interaction energy terms, which are not present in our setting. They show
convergence guarantees of the mean-field dynamics in continuous time under convexity assump-
tions, utilizing the convexity structure in the Wasserstein space of distributions. A special setting of
their result (Conger et al., 2024, Theorem 3.4), for zero-sum games with a bilinear interaction func-
tional as in (3) with a strongly convex-strongly concave base interaction function, already shows the
exponential convergence guarantee of the mean-field dynamics to the equilibrium distribution, as in
our Theorem 3, and thus they have answered the open question by Wang and Chizat (2024) for the
mean-field setting with strongly convex interaction. However, Conger et al. (2024) focuses on the
continuous-time mean-field analysis, and in this work we complement the results by considering
finite-particle approximation and discrete-time analysis.

Appendix B. Proofs for the Properties of Equilibrium Distribution and Duality Gap

B.1. Proof of Lemma 1 (Properties of the Best-Response Distribution)

Proof We note the KL divergence between two distributions p, v € P(R?) can be decomposed as:
KL(p|lv) = / plogpdx — / p logvdr = —H(p) + E,[—log V]|
Rd Rd

where H is the negative entropy functional. For all pX, p¥" € P(R?), from the definitions (10) of
the distributions vX = ®X(p¥) and v¥ = &Y (p~), we have:

—logvX(z) =77 'E v [V(2,Y)] +1log C¥ (p"), (21a)
—logv" (y) = =7 'E x [V(X,y)] + log C¥ (p™) (21b)
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where CY (pY') and CX (pX) are the normalizing constants:
cY(pY) = /Rd exp (-7 'E,v [V(2,Y))) dx, (22a)
CX(pY) = /Rd exp (77'Ex [V(X,)]) dy. (22b)

Then from the definition (4) of the payoff function ., we can write:

Fr(p%,p") = Epxgpr [V(X,Y)] = TH(p™) + TH(p")
=7 (=H(pX)+E,x [ 'E,v [V(X,Y)]]) + TH(p")
=7 (-H )+ E,x [—log I/X] —log CY(pY)) +7H(pY)
= 7KL(p™ |v¥) = Tlog CY (p") + TH(p"). (23)
Then as a function of p, we see that p* +— F,(p*, p¥') is minimized when we set pX = v*:
X . ~X Y
v" =ar min F, , .
B min (p7p")
Similarly, we can also write:
Fr(p¥,p") = =KL [[v") +Tlog CX (p¥) — TH(p™). 24)
Then as a function of p¥’, we see that p¥ — F,(pX, p¥) is maximized when we set p¥ = v¥:
Y X =Y
v’ =arg max F, , .
g max (p™0")

The above computation also gives us:
min  F (5% pY) = —rlog Y (p¥) + TH(p") = Fr(p¥,0") — T KL(X [[v¥)
pXeP(RY)
_max Fr(p%, p¥) = 1logCX(p™) = 7H(p™) = F-(p%, p¥) + 7KLY || V).
pY eP(R?)

Therefore, we can write the duality gap as:

X Y\ _ X Y\ . ~X Y\ _ X X Y Y
DG(p™.p") = jmax Frlp™.p) — min  Fr(5".p ) =7 (KL(p™ [ %) + KL(p" | 7))

as desired. ]

B.2. Proof of Lemma 2 (Existence, Uniqueness of Equilibrium and Bound on Duality Gap)

Proof [Proof of Lemma 2] (1) Existence of equilibrium distribution: Suppose Z; ~ p¥ = pi* ®
pY in R?4 evolves following the mean-field dynamics (12) from Zy ~ ﬁOZ = ﬁé( ® ﬁOY € P(R%),
and let 77 = 7;X @} where ;X = ®X(p)) and 7}’ = ®Y (p}X) are the best-response distributions.
We show in Lemma 10 that p7 € P(R??) for all ¢ > 0. In particular, o7 is also in Py(R??), the
space of probability distributions over R?¢ with finite second moment (without requiring absolute
continuity with respect to the Lebesgue measure).
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Furthermore, we show in Theorem 3 that for all ¢ > 0:
Fi(p7 | 77) < e > FI(p{ || ).

We claim this implies (p7 )i>0 is a (continuous-time) Cauchy sequence in Po(R??) with the W
metric. Since Z; evolves following the dynamics (12), p7 evolves following the Fokker-Planck

-7 -7
equation: % =7V (ﬁtZ Vlog l’;—tz) , so its Wasserstein speed (norm of the velocity) is:
t

=7
HVlog[_)tZ

op?
H pt T]E*Z
P 7

211/
] = TR | 7)< et r FIEE || ).

Pt

Then using the definition of the Wasserstein distance as the shortest path length, we can estimate:

W 7 7 < i aﬁtZ di < Fl ~Z || 524\1/2 hi —at di < —ady Z Fl ~7Z || 52\1/2
2(PTy: PT,) < . ot < 7Fl(pg | 7)) . € > € o (o 7)™~
0 1 0

Pt

Therefore, for any 77 > Tg, we have Wo (ﬁ%o,ﬁ%) — 0 as Ty — oo. This shows that (57 );>0
is a Cauchy sequence in P2 (R??) with the W5 metric. Since Po(R??) with the W5 metric is a
complete metric space (Villani, 2009, Theorem 6.18), this implies (57 )t>0 must converge to a limit:
pZ = limy o p7 which is also in P(IR??). Since each pf = p;¥ ® p; is a product distribution,
the limit pZ, = pX ® pL must also be a product distribution.

Furthermore, since lim;_,o, FI(p7 || 7Z) = 0, the limiting distribution pZ, is a fixed point for
the best-response map, i.e., p2, = px ® pL. satisfies:

= 2% (pL), pao =0V (%)

Therefore, 5%, minimizes the duality gap: DG(pX, p¥.) = 0, and thus, (5, p¥.) is an equilibrium
distribution for the game (3), as defined in (5). Furthermore, from the definition of the best-response
maps (10), we see that pX = ®X(p¥) is (a/7)-SLC, since we assume V (x, ) is a-strongly convex
in 2. Similarly, pY, = ®Y (pX) is (a/7)-SLC, since we assume V (z,y) is a-strongly concave in y.

(2) Bound on duality gap: Let (7X,7") € P(R?) x P(RY) be an equilibrium distribution for

the game (3), which exists by the argument above (which we call (52, 5. ) above). Since 7~ is

(a/7)-SLC, it also satisfies (/7)-Talagrand inequality, which means for all pX € P(R?):
KL(o™ | %) > o= Wa(p™, )2,
2c
Similarly, since 7Y is (a/7)-SLC, it satisfies («/7)-Talagrand inequality, so for all p¥" € P(R?):
KL(pY [17) 2 5~ Wa(p¥, 7).
a

Adding the two bounds above gives the first inequality claimed in (11).
Next, since (7%, 7¥) is a fixed point of the best-response map, the identities from (21) become:

—log X (z) = 7B v [V (2, Y)] + log CY (7Y),
—log 7" (y) = =7 "Epx [V(X,y)] + log C* (¥)
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where CX,CY are the normalizing constants defined in (22). Then we can compute:

H(0™) =Epx [~ log 7] = 77 Epxgpv [V(X,Y)] + log C¥ (77)
H@Y) =Epy [~log?" ] = 7 'Epxgpv [V(X,Y)] + log CX (7).

Adding the two equations, we obtain:
H(@*) + H@Y) =log CY (7) + log CX (7%). (25)

Therefore, for all p*,pY € P(R?), from the definition of the duality gap, and using the rela-
tions (23) and (24), the identities 7X = ®X(7Y), 7¥ = &Y (7X), and the identity (25), we have:

DG(p™,p") = . Fr(p™,p") - T Fr(p*,p")
> Fr(ph,0") = Fr(0%,p")
= 7KL(pX || 7%) = Tlog CY (7Y) + TH(7Y)
— (-7 KL(pY || 7Y) + 7log CX (7)) — TH(ﬂX))
— KLY | 7%) + 7KLY || 7)

which is the second inequality claimed in (11).

(3) Uniqueness of equilibrium distribution: Suppose the contrary that we have two equilibrium
distributions (7%, 7Y) and (X, ") of the game (3). Then by using the second inequality in the
bound (11) with (pX, p¥) = (7%, 7"), we have:

KLY || %) + 7KL(EY || 7") < DG(Y, 7) = 0

where the last equality follows because (i, i¥) is an equilibrium distribution so it minimizes the
duality gap. Therefore, we must have KL(z~ || 7X) = 0, so z¥ = 7¥. Similarly, we must have
KL(" || 7¥) = 0, so i¥ = v¥". Therefore, the equilibrium distribution of the game (3) is unique.
|

Appendix C. Proofs for the Mean-Field Min-Max Langevin Dynamics
C.1. Derivation of the Mean-Field Dynamics

At an idealized continuous-time level, a natural strategy to compute the equilibrium distribution
of the game (3) is for each player to run the gradient flow dynamics in the space of probability
distributions to minimize their own objective function. Suppose we endow the space of probability
distribution P(R?) with the Wasserstein W5 metric. Then each player maintains a continuous-time
curve of probability distributions (57 );>0 and (p; )i>0, which they evolve via:
=X g
aa% = —grad,x Fr (5" 17 ) % = gradyy Fo(py 01 )-

In the above, grad ,x Fr(pX, pY) denotes the Wasserstein gradient of F,(p*, p¥’) with respect to
the first argument p, with the second argument p* fixed. Similarly, grad v Fr (pX, p¥) denotes
the Wasserstein gradient with respect to the second argument pY , with the first argument p* fixed.
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Following the computation rule for the Wasserstein gradient (Villani, 2009), the above system
of gradient flow dynamics corresponds to the following system of Fokker-Planck equations:

;- _X % _X
o T V- (Pt Egy [VxV(wYt)]) + TAp;
op; _y o g
o -V (Pt Esx [V V (X, )]) +TAp; .

In the above, V.V (z,y) and V,V (z,y) denote the gradient with respect to the first and second
argument, respectively, while keeping the other argument fixed. Here V- is the divergence (trace of
the Jacobian) of a vector field, and A is the Laplacian (trace of the Hessian) of a function.

The above system of Fokker-Planck equations can be realized as the continuity equations for
a pair of stochastic processes (X¢)¢>0 and (Y;)>0 in R? which evolve following the mean-field
min-max Langevin dynamics:

dX, = ~Ey [V V(Xy,Y))] dt + V271 dW;X
dY; = E,x [V, V (X, V)| dt + V21 dW)”

where (W;¥);>0 and (W}Y);>0 are independent standard Brownian motion in R%. The above is a
mean-field system because the evolution of X; depends on the distribution 5} of the other player,
while the evolution of Y; depends on the distribution p;X. However, note the dependence is only via
their expectations, so in the mean-field system above, X; and Y; evolve independently, i.e., they do
not interact at the level of random variables, only at the level of distributions. In particular, it does
not matter that we use independent Brownian motions for X; and Y;, we could also use the same
Brownian motion; we leave it as the above for convenience when writing the dynamics in the joint
form in Section 4.

C.2. Time Derivative of Relative Fisher Information along Mean-Field Langevin Dynamics

We show the following identity on the time derivative of the relative Fisher information between
the iterate of the mean-field min-max Langevin dynamics and its best-response distribution. In
Lemma 9 below, the first term on the right-hand side is the second-order relative Fisher information
between 57 and 77, and the second term is a weighted relative Fisher information.

We note the identity in Lemma 9 is formally identical to the time derivative identity of the
relative Fisher information Fl(p; || ) (or the second derivative of the KL divergence KL(p; || v))
when p; evolves along the Langevin dynamics to the target distribution v, using the Otto calculus
formula for the Hessian of KL divergence; see (Villani, 2009, Formula 15.7) or (Wibisono and Jog,
2018, Eq. (10) in Appendix A). Since the mean-field min-max Langevin dynamics is the min-max
Wasserstein gradient flow in the space of distributions, the identity in Lemma 9 can also be formally
derived via Otto calculus computation. We provide a proof of Lemma 9 via an explicit computation
below. See (Conger et al., 2024, Lemma 7.2) for an alternative proof for a similar result, and see also
the proof of Theorem 35 part (4) in Section H.1 for the finite-dimensional version of this identity.

We denote ||ul|} := u" Au and ||A||%g := Tr(AT A) for any u € R?? and A € R?¥x24,

Lemma9 Suppose Z; = (X;,Y;) ~ pf = pir @ p; evolves following the mean-field min-max
Langevin dynamics (12) in the joint space R??. Define its best-response distribution I?tZ = ﬁgX & DtY
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where X = ®X(p)) and v} = ®Y(p)X) as defined in (10). Then for all t > 0, we have the

identity:

de 7y z 2 A 7|’
%Fl(pt o) = —27E;2 HV 10g177 —27E;z HVIong RE
t IIHS t 1(=V2logvf?)
Proof For ease of notation, in this proof we write pf = p7 and v = 77, i.e., we drop the
superscript bar notation (which denotes distributions along mean-field dynamics). Similarly, we
write pi* = pi, pi = py and v =55, ) =) .
We define f; = —logpf and gy = —logv#, so fi,g:: R?® — R are separable functions, in

particular:

9:(2) = ge(x,y) = g1 () + g ()

where gi¥ = —log ;X and g) = —log v} . Recall from the definition (10) for v* = &% (p}") and
v) = ®Y(pi¥), we have:

Vo (@) =7 By [VoV(2,Y)] (26a)

Vo (y) = =7 'Ex[V,V(X,y)]. (26b)
This also implies:

Agi(x) =7 'Ey [AsV(2,Y)] (27a)

Agy (y) = =7 "B x [A,V(X,y)]. (27b)

The mean-field min-max Langevin dynamics (12) can be written as the SDE:
dZt = —Tvgt(Zt) dt + V2t th
Then pf = exp(— f;) evolves following the Fokker-Planck equation:

%—TV'(ZV )+ TApf (28)
ot Py VGt TR -

In particular, for the components p/ = pX ® p}”, we also have:

—8th—Tv-(XvX)jL ApX (29a)
ot Pt Vi TAP; a
00t G (Y VgY) +ripY (20b)
or Pt VG TR -
We will use the following relations for f; = — log p#:
i VI =~Vp! (30)
pi V2= =V2p] + o/ (VI)(V ) (30b)
Apf = —pf Afe+ o7 IV Sl (300)
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Then we can compute that f; = — log pf evolves following the equation:
1 0 1
O ft = apt =—— ( (Vo7 , Vi) + 1pf Age + TAp] )
¢ i
= 7(V 1, V1) — TAg: + TAf; — 7|V fil? 31)

We will also use the Bochner’s formula, which states that for smooth u : R2d _ R,
(Vu, VAu) = SA|Val? ~ [Vl s, (32)
By integration by parts, we can write the relative Fisher information as:
FIi(of [|v) = E,z [IV fi = Vaul’]
=E,z [IVfll* + Vel = 2V i, Var)]
=E,z [IVAI*] +E,z [[Val?] —2E,z [Agi]. (33)

We compute the time derivative of the three terms above separately, with explicit computation below,
color-coded for clarity for when we combine them.

(D) First term: The first term in (33) is the Fisher information of ptZ . We compute its time deriva-
tive using the Fokker-Planck equation (28) and the formula (31) to get:

do
SR VAP = [ @w?) VAl az+2 [ of (Vo vausds

_T/ v Vgt HVft||2dZ+T/de(APtZ) ||vft||2dz (34a)

+2T/RM o7 (V i, V((V [, V) — Agy)) dz (34b)

+27’/RQd ptZ <vft;V(Aft)> dZ—27‘/RQd ptZ <Vft,v”Vft||2> dz. (340)

We calculate the terms above one by one.

1. The first term in (34a) is, by integration by parts:
r [ GV VIR == [ o (Vo VORI iz
=2 [ o (Va (V1) V) d:
2. The second term in (34a) is, by integration by parts:
AR AN
R2d R2d

3. The term in (34b) is, by distributing the gradient,

2 [ o (V1T Ta) - Ag) d:

=97 /R?d PtZ (<Vft, (V2f) V) + (V i, V2q) V) — (V] VA%)) dz.
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4. The first term in (34c) is, by Bochner’s formula (32):
or [ o ORV@R) d =7 [ of ANz =2 [ o 9 s d
R2d R2d R2d
5. The second term in (34c¢) is, using relation (30b) and integration by parts:

_QT/RM p? (V [, VIV f]|?) dz = 27/ (VpZ V|V f]|?) dz = _QT/RM oZ AV fi2dz.

R2d

Combining the above, we see that the terms involving (Vg;, (V2f;) V f¢) and A||V f;||? vanish, so
we are left with:

d
%}Eptz [HVftllz] = —QTEpf [HVthHzHS} + QTEptZ [<vfta (VQQt)Vftﬂ - QTEpf [(V fi, VAg)] .
(35)

(IT) Second term: For the second term in (33), using the Fokker-Planck equation (28), we have:
d
Bz [IVaill?] = / (00 IV e* d= + 2/ o7 (Vg1,0:(Vgr)) dz
R2d RQd
—r [ Ve Vel ds 7 [ Ap7 Vil dz 36a)
R2d R2d
+2 /[R i (Ve 0/(Vg)) do + 2 /R P Ve, 0i(Val))dy  (36b)

where in the second line above we have used the fact that g;(x,y) = g;X () + g} (y) is separable,
and p7 = pi* ® p{ is independent. We calculate the terms above one by one.

1. The first term in (36a) is, by integration by parts:
Z 25 Z 2
v [V Ve Vel ds = =7 [ o (Vo V(I V0l dz
R2d R2d
= —27'/ pZ(Vgi, (Vi) Vi) dz.
R2d
2. The second term in (36a) is, by integration by parts and using relation (30a):
r LSNPz =7 [ oV IVal) d:
R2d R2d
=27 /de ptZ <Vft, (VQQt) Vgt> dz.
3. For the first term in (36b), we can compute using (26a) and (29b), and integration by parts:
Ve @) =" [ o )V () dy
= [ (7 (V) )+ Al () ViV dy

=— /Rd i (y) V2.V (z,y) Vg (y)dy + /Rd Py (Y)A, V.V (z,y) dy.
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Then, since p7 = p;* @ p; , we can compute:
2 [ o (V005 ) do
=2 [ ) (V@ [ o ) (VR @) Vol ) + A,V () dy ) da
= 2/de i (2,y) (Vg (x), =V, V(z,9) Vg (y) + 2y ViV (2,y)) dady
-9 /RM pf (Vgi*, =(Vo, V)Vl +A,V.V) dz.
4. For the second term in (36b), we can compute using (26b) and (29a), and integration by parts:
oV 0) =~ [ 0@, V(e g)da
- —/Rd (V- (p Ve (@) + Apit (2)) ViV (2, y) de
= [ @ VAV ) V@ de = [ ¥ @)A,T,V (@) da.

R4

Then, since p? = pX ® p} , we can compute:
2 [ o (Val 0Vl ) dy

_ 2/Rd l (y) <Vgty(y), /Rd pX () (V2,V (2,y) Vg () — AV, V (2, y)) dm> dy

2 [ o) (Val (), T,V (@9) Vo (2) = A9,V (@.) dody

- Q/RM pf (Vg (V2 V)VgX = AV, V) da.

Since ViyV = (szV)T, when we combine the calculations above, we see that the terms involving
Vg, Vi,V Vgi¥) cancel, so we get:

d .
%Eptz [Hv-ngQ] - EptZ [27— <vff - Vgtﬁ (VQQf)VgT> + 2<Vgixv AUVIV> - 2<v91}/* AIVUV>] :
(37)
(ITT) Third term: For the third term in (33), using the Fokker-Planck equation (28), we have:
d

= (—2E,7 [gi)) = —2/ (ep}’) Agr dz — 2/ pi 0(Agy) dz
R2d R2d

= 27 /R?d V- (pfVg) (Agy) dz — 27/ (Ap?) (Agy) dz (38a)

R2d
—2 /R P O(Dagy) dw — 2 /R Pt 0Dyl ) dy (38b)

where in the second line above we have used the fact that g;(z,y) = ;¥ () + g} (y) is separable,
and p# = p;* @ p}” is independent. We calculate the terms above one by one.
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1. The first term in (38a) is, by integration by parts:

—27'/ V- (ptZVgt) (Agy)dz = 27’/ ptZ<Vgt, VAg:)dz.
R2d R2d

2. The second term in (38a) is, by integration by parts and denoting z = (z1, ..., 224):

2d 82 2d 82
— Z — -
o [ 8oy gt =—2r [ ( 82pt<>> > gl | a

2

_— /R 5 Z: ( 505, >) <8z?azjgt(z)> dz

S / (V27 V2 s d
RQd

=27 /2d IotZ (<V2ft7 Vggt>HS - <Vft, (VQQt) Vft>) dz
R
where in the last step we have used relation (30b).

3. For the first term in (38b), we can compute using (27a) and (29b), and integration by parts:

oDagi* (@) =7 [ ol (1) AV () dy
= /Rd (V- (o' Vi) (9) + 201 (y) AV (z,y) dy

_ /Rd o (1) (Vg (1), VyAaV (2,)) + AyALV (2, y)) dy.

Therefore, since p? = pi* ® p}

9 / P 0(Dagl) do
Rd

2 / X () / o () (V) ), VyAaV (1)) — AyALV () dy da
Rd ]Rd

2 / 7 ((Vgl \VyAaV) — AyALV) dz.
R2d
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4. For the second term in (38b), we can compute using (27b) and (29a), and integration by parts:
o8 ) == [ 9@ AV () da
== | (- (V) (@) + A (@) AV () de
= [ 5@ (V@) Vab, Vi) = .8,V (@,0) da
Therefore, since p7 = pX ® p; :
- 2/ p 0i(Dyg) ) dy
Rd
=2 [ ) [ @) (V@) VA V) + AV () dody

= 2/ p? (—(VgX, VoA V) + A,AV) dz.
R2d

When we combine the calculations above, we see that the terms involving A, A,V = A A,V
cancel, so we get:

d

- ( 2,z [Ag@) —E,; [27(Vgr, VAG) + 27 (V2 £, Vg — 2 (V i, (Vig) V£i)]

+E,z [2(Vg, . VyALV) = 2(Vg', VA, V)] (39)
Combining the terms. Combining the calculations in (35), (37), and (39) below, we see that the

terms involving (Vgi*, AV, V), (Vg!', AV, V), and (V fi, (V2g;) Vf;) cancel. Then we can
rearrange the remaining terms to get:

d

= Flpf 1) =

dt i (28,7 (201)

d d
dt p [vatH } + E Z [Hth”Q] + dt
= 27Kz [HV2ftHHs] +27 Bz [(V i, (V21) Vi)] = 27 B,z [(V fi, VAg)]
+E,z [27 (Vi — Ve, (V29)Vge) + 2V, A, V. V) — 2(Vg) A, V, V)]
+E,z [27(V g, VAg) +27(V2 £, Vigihus — 27 (V fi, (V) V)]
+E,z [2(Vg], VyAV) = 2(Vg", VoA, V)]
2
= 2Bz [|V2fillhs] - 27 B,z (Vi VAge)]
+E,z 27 (Vfi = Var, (V290) Vi)
+E,z [27(Vgi, VAG) +27(V2 [, Vi) us]-

We then complete the squares to form the first two terms below, which are the good terms that we
want, and collect the rest in a remainder term:

d
SR 1) = ~2r Bz V2 = V2aillis) — 27 B,z [IV i = Varlikey, ] +27R()
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where we define the remainder term R(¢) as the difference of the two sides above (scaled by 27):

R(t) == _Eptz [<v2ft7v29t>H5] +Eptz {Hv%thI?—ls}
- Eptz [<Vft7 (VQQt)VQt” + Epg [(me (Vzgt)Vft)]
—E,z [(Vfi, VAg)] + E,z [(Vgr, VAg)]

We claim this remainder term is identically zero. Indeed, by relation (30a) and integration by parts,
we have:

Bye (VS (Va)V 1)) = = [ (VoF (V) Vi) dz

= /R2d ptZ (<VAgta vft> + (VZQt,Vth>HS) dz
=B,z [(VAg, Vi) + Vg, V2ft>HS} :

where in the above we have used the identity V - V2g; = VAg;. Similarly:

By (V50 (V0)¥a)] == | (Vf. (VPa1) V) dz

= /1%2(1 ptZ (<VAgt7 Vgt> + <v29t, V2gt>Hs) dz
=B,z [(VAg, Va0 + [ Varllis] -

Therefore, we see that all the terms in the remainder term cancel, so indeed R(¢) = 0. Thus, we
have shown the identity:

d 2
SRIE V) = =27 B (|3 = V2] - 20 B, [IV i = VarlZey,] -

C.3. Bound on the Second Moment Along the Mean-Field Dynamics

We show that along the mean-field dynamics (7), the distributions remain in P (R24V).

Lemma 10 Assume Assumption 1. Suppose Z; ~ pf evolves following the mean-field min-max
Langevin dynamics (7) in R*? from Zy ~ p¢ € P(R?*?). Then p? € P(R*?) forall t > 0.

Proof We note that 57 is absolutely continuous with respect to the Lebesgue measure on R??
by virtue of the Brownian motion component in the dynamics (7). We now show that the second
moment of pf remains finite for all ¢ > 0.

Under Assumption 1, recall from Theorem 35 (in Section H) that there exists a unique equilib-
rium point z* = (z*,y*) € R?? which satisfies VV/(2*) = 0. Define the vector field b7 : R?? —

R2? by, for all z = (x,7) € R?*%:
—V.V(z y))
b (z,y) = ’ .
wn= (S ve)
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Observe that bZ is the case N = 1 of the vector field bZ that we defined in (17) (in R24N = R2d),
Note bZ(z*) = 0, since V,V (z*) = V,V(2*) = 0. Lemma 12 in the next section guarantees that
—bZ is a-strongly monotone.

Since Z; = (X3, Y;) evolves following the mean-field dynamics (7), its density p7 = p7 @ p;
evolves following the Fokker-Planck equations:

i _x % _X
T V- (Pt Epf [va('vyt)]) + 7 Ap;
opy _ - _
==V (A B [V, V (X)) +7 A7)

Then we can compute, using integration by parts:

d v *

—Epx |1 X =)

_ 8[35((1’) a2
_/Rd 5 |z — a*||* dz

= [P (B V@ T (o2 1P) ) [ @A (e 1)
- /]Rd i () <Eﬁ$ [VaV (2, Y1), 2 — a:*> dx + 27d

= =2 [(Byy [VaV (X0, V), X, — 2*)] + 27
= —2E,; [(V.V (X, V), Xy — )] + 27d.

Similarly, we can also compute:

d _ _
B %= '] = 28,7 [(V,V (X0 ¥, Vi — )] + 274,

Adding the two identities above gives:

d

D (12— 21 1] = 2By [(VaV (0 V), %~ 0)] + 2By [(Vy V(X0 B, Vi )] 44

= 2B,z [(07(2), Zy — 2*)] + 47d
= QEﬁtZ [<bZ(Zt) — bZ(Z*), Zt - Z*>] +47d
< —QaEptz [HZt — z*’ﬂ +47d

where the inequality follows from the property that —bZ is a-strongly monotone. We can write the
differential inequality above equivalently as:

d «@ 7 * «
(B (12— =] ) < e*ara
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Integrating from O to ¢ and rearranging the result gives:

_ _ 1— —2at
By [12= =1 7] < B 12— 7] + S

2rd
i

27d
<By [120-=|] +

Since 7 € P(R™), Bz [[|Z0]|"| < 00,50 Bz [[120 — 2*1°] < 2B, [ Z6]°] + 20112 < oo.
Therefore, we also have for all £ > 0:

By [12:0°] < 2B (12— = |*] + 2012712

< 2Eﬁg [HZO — z*’ﬂ + 4;7d +2Hz*||2 < o0

which shows that 57 € P(R??). [ |

C.4. Proof of Theorem 3 (Convergence of the Mean-Field Min-Max Langevin Dynamics)

Proof [Proof of Theorem 3] By Assumption 1, both 7* and 7} are (a/7)-strongly log-concave,

which can be directly verified from the form of their log-density functions. Then 77 = 7 @ #}" is

also (a/7)-SLC, i.e., —V?log ¢ = (a/7)I. Then by the identity from Lemma 9, we have:

d 2

SRR | o) = ~27 B

~7
2 Pt Pt
o HV log = Vlog—ﬂtz

H .
Vy

2
] — 27 Eﬁz ]
‘ (—=V2logv?)

HS

IN

—27 Eﬁtz

2 ]
(—V2log?)

IN

—2« Eﬁf,z

= —2aFI(p{ || 7).

In the first inequality above, we drop the first term in the identity, which is the second-order relative
Fisher information. In the second inequality, we use the property that 77 is (a/7)-SLC. In the next
step, we recognize the term in the previous line as also equal to the relative Fisher information.
Integrating the differential inequality above implies the desired convergence rate:

FI(pr | 7) < e > FI(pg || 7).

Since 77 is (a/7)-SLC, it also satisfies (co/7)-LSI. Then by combining with the convergence

rate for relative Fisher information above, we get:
KL(f I|77) < o FIF || 9F) < o e FIof || 7).
e 2«

Multiplying both sides by 7 yields the desired convergence rate in duality gap. |
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C.4.1. BOUND ON RELATIVE FISHER INFORMATION TO THE BEST-RESPONSE DISTRIBUTION

We provide the following bound on the initial Fisher information FI(5% || 7¥) when p¢ is Gaussian
and DOZ is its best-response distribution. Under Assumption 1, recall from Theorem 35 (in Section H)
that there exists a unique equilibrium point z* = (2*,y*) € R?? which satisfies VV(z*) = 0, and
that VV is L-Lipschitz.

Lemma 11 Assume Assumption 1. Let ﬁé( = ﬁ%/ = N(0, Z—ifd), and ﬁg = ﬁéf ® ﬁ%/. Then:
L2 L2 ¥ 2
FI(p? || 7¢) < 2d <1 + 72> + ‘72”

Proof Recall that the best-response distributions are defined by:

7% o< exp <—7’71Ep())/ [V(m,Y)]) ,

7 o exp (1B V(X))
and 1/0 = VO & 1/0 Since both Po and VO are product distributions,
FIAE || 75) = Fl(p™ || 77%) + Fi(p" || 7).

Define g% = —log 7, so Vg (z) = T_lEﬁ(})f V.V (2,Y)]and Ag¥X (z) = T_lEl—%f [ALV (2, 7).
Since we assume V' (z,y) is a- strongly convex in z, we have AgX (x) > ad/T > 0 for all z € R,
Note also that for g5 = N(0, 22 I) on R%, we have

By (V1087 7] = S [1x07) = 22

Then by expanding the square and using integration by parts, we can write:
IR 1| 7 = By [V 10825 + Vo]
=By IV 10855 |°] - 2B, [A0%] + By [[96¥]]
L3d

| /\

+IEXNP [H Ty VoV (X, Y)] H ]

de

| /\

Eeny [TV V)]

By an identical argument, we can similarly show:

FI(p -Y<L2d lg VX, V)|?
B 17) < S + SEgray [IVVEVIP]-
Therefore,
o 2L%d 1
FIGE 176) < =55 + B pyany [IVaV XY+ 9,V (X, V)]

2Ld 1 )
= =2+ SEz [IVV2)?].
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Using VV (2*) = 0 and VV is L-Lipschitz, and since p§ = N(0, E—i[gd), we can bound:
Bz IVV(2)IP] =By [IVV(2) - WV (IP] < LBz (12 - 2] = 20+ L)

Plugging this in to our earlier calculation above, we obtain:

2L2d 1 L2 L2 *|2
FI(p8 1| 75) < 5t (27%d + L?||2*)|?) = 2d (1 + 72> + ”T’f;”

Appendix D. Technical Lemmas for the Finite-Particle Analysis

We collect some lemmas for our analysis of the finite-particle dynamics and algorithm. Here we
consider a particle discretization of the mean-field dynamics with N particles. This means we work
with a joint vector z = (x,y) = (z!,...,2V,y', ..., y"V) € R?N where each 27,7 € RY.

We recall some definitions. Recall 7% = 7% @ ¥ € P(R??) is the stationary distribution of
the mean-field dynamics (7) in R??. Let Var,z(Z) = E,z[||Z — E,z[Z]||?] be the variance of 7.
Recall under Assumption 1, 7% is (a/7)-SLC, so we can bound the variance by Var,z(Z) < 2;—‘[
(see Lemma 24 in Section F.5.1), but in our computations below, we will keep it as the variance.

Recall we defined in (18) the tensorized power of the stationary mean-field distribution:
DZ — (DX)®N ® (DY)®N c P(RZdN).

Recall we defined in (17) the vector field b%: R24N — R24N which is the drift term in the finite-
particle dynamics (16) and the finite-particle algorithm (20).
Let us also define a vector field b%: R2?N — R24N by, for all z = (x,y) € R4V,

b(z) — (Zﬁgg) (40)

where we define the vector fields bX: RN — R and bY: RN — RN by, for all x =
(..., 2V) e RW andy = (y!,...,y"V) e RV:

bX (1) E, v [-V.V(2!,Y)]
EX(X) = — e 7

b (zN) E v [-V.V (2N, Y)]
B by(yl) Eyx [VyV(X,yl)]
bY(y): e — e

bY(?/N) Epx [VyV(vaN)]

By the definition of 77 as the stationary distribution of the mean-field dynamics (7), so it is a fixed
point for the best-response distribution, we observe that the vector field bZ can be written as a scaled
version of the score function of the tensorized stationary mean-field distribution 7%:

b%(z) = 7V log 7% (z). (41)
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Finally, we also define the following stochastic process for Z; € R2#N with drift term b%:
dZ; = b%(Z;) dt + V21 dW2 (42)

where W7 is the standard Brownian motion in R2V. Observe that since bZ = 7V log 7%, the
stationary distribution of the process (42) is equal to 7. Therefore, we call the process (42) the ten-
sorized mean-field dynamics, since we can obtain it by replicating the base mean-field dynamics (7)
from R2? for N times. We will use the process (42) to compare the finite-particle dynamics (16)
and algorithm (20).

D.1. Properties of the Vector Fields

D.1.1. PROPERTIES OF THE FINITE-PARTICLE VECTOR FIELD

Lemma 12 Assume Assumption 1. Then:
1. The vector field b% defined in (17) is (2L)-Lipschitz, which means for all z,z € R24N .

|6%(2) — b%(2)|| < 2L|z — 2|

2. Furthermore, —bZ is a-strongly monotone, which means for all z,z € R**V
<bz(z) —b%(z),2 — z) < —aljz — z|°.

Proof Letz = (x,y) = (z',..., 2V, ¢}, ...,yM)and z = (x,y) = (z*,..., 2V, 7',...,7") €
R24N be given.

(1) We show bZ is (2L)-Lipschitz. Recall by assumption, (,y) — VV (x,y) is L-Lipschitz;
in particular, each component V.V (z,y) and V, V (x,y) is also L-Lipschitz. By definition,

62 (2) — b%(@)||” = |[PX (. y) = &, 9) || + 0¥ (k) — 0¥ (.9

We bound each term above separately. For the first term:

0%, y) — %%, 9)|

23 ety - e )
1€[N]
2
2\ ——Zvv zi +—Zvv
i€[N] JEIN] JE[N]

2

e L S (W ) - VoV @ )
]

—
w
=

1€[N] ||j€IN
4) o
< — Z Z V2V (2, y7) VIV(EZ,ZI]])HQ
zeN]]e[N
2 Vo V(e y?) — Vo V(@ o) + | VaV (@, ) — VoV, 7))
<23 (V@) - V@ )|+ [V @) - vV @ )|)
1€[N] jE[N]
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,\
INS

i€[N] j

212 ~ 212 ~

=5 2 =P S Yy -9
JE[N]

N A
1€[N]

212 . , . .

=2 (I =+ - #I")
€[N]

L

—
N

8) _ _
D212 (x— =2+ lly - 51?)
D oLz —z)2.

In the above, steps (1) and (2) are by definitions; in step (3) we pull the 1/N outside the square.
Step (4) follows from Cauchy-Schwarz inequality (|| 3=,y @ I?< N 2 jelN] lla;]|?). In step (5)
we introduce an intermediate term V.V (Z%, ) and use the inequality ||a + b||? < 2||a||? + 2|/b]|%.
In step (6) we use the property that V.V is L-Lipschitz, and note that in the first term the y7 part is
common, while in the second term the Z° part is common. In step (7) we write the previous terms in
vector notation. In step (8) we collect the terms inside the previous summation which are all equal.
In the last step (9) we use the definitions z = (x,y) and z = (X, y).

By a similar argument and using the L-Lipschitz property of V, V', we can show the second
term is also bounded by the same quantity:

6 (o, y) = 8¥ (=, 9)||” < 222 |}z — 2.
Combining the two bounds above, we obtain:
Z Z =\ 12 2 _12 2 2 2 12
Hb (z) —b (Z)H < 2L%||z—1z||"+2L° ||z — Z||” = 4L° ||z — Z||

which shows that bZ is (2L)-Lipschitz.
(2) We now show that —b% is a-strongly monotone. This is equivalent to showing that the
symmetrized Jacobian of bZ satisfies, for all z € R24V:

(Vﬂ@»mM:%<Vﬂ@)+V#@f>j—Mﬂ 3)

Indeed, if we have (43), then for all z,z € R24N by the mean-value theorem we can write:
1
(b%(z) — b%(2),2 — Z) = </ Vb2 (z;) (z — z) dt,z — z>
0
1
= / (z —2) Vb2 (z;) (z — ) dt
0

1
:/ﬁz—@Wv#@me@—@dt
0
1
g—a/yz—ﬂﬁﬁ
0
= —allz—z|”

where in the above we have defined z; := (1 — t)z + ¢z for 0 < ¢ < 1, and used the property that
ulAu=tu"(A+ AT )u=u" (Agym)u forall u € RP and A € RP*P,
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To show (43), we compute the Jacobian matrix VbZ(z) € R24V*24N 'which is a block matrix

with 2N blocks on each dimension, indexed by b 2l Yyt yN , with the following entries:
0 .
(Vb2 (2))[z!, 2] = axzbz( Z V2, Vie [N],
k:e[N]
. 0 . .
(Vo(2)[a", 2] = 5507 (2)[x'] = 0 Vi€ [N],
0 1 o
Z Z I v 2 i, .
(Vb%(2))[2",y'] = a7 (2)[2] NV V(@ y) Vi, j € [N],
0 .
(Vo2 (2)ly' '] = 5 b%(2) Z V2, Vie [N,
y ke [N]
S 0 . .
(Vb2 (2)ly', y’] = 5 =b%(2)[y'] = 0 Vi#je[N],
(V@)Y '] = 5 b4(@)ly] = 1 V3,V (@) Vi,j € [N].

Now for the symmetrized Jacobian (Vb%(z))sym, We can compute its block entries:

(Vbz( ))sym[‘r .%' = T Z V Vie []\q7
ke[N

(P @hanl ) =0 Vi je N
S (VP @)y + V@)l o)

"2
1 1o i L o i, d\T i
2 ‘vaxV(x,nynyV(w,y) =0 Vijen),

N
(Vbz(z))sym v, y Z V Vi€ [N],
ke[N]
(V0% (2))symly’, o] = 0 Vi#je[N],
(Vo @)yl 7] = 5 (VW (@)ly' 7] + VP a) o ]
= % <év§y\/(xj,y') - NVimV(:ﬂj,yi)T) =0 Vi,j €[N

Therefore, we see that the symmetrized Jacobian (VbZ(z))sym is block-diagonal, since all the off-
diagonal block entries are 0. Moreover, from the assumption that V' (z, y) is a-strongly convex in
and a-strongly concave in y, the block-diagonal entries satisfy, for all i € [N]:

(Vb2 (2))gymlz’, '] = —— Z v, ) =< —al
ke [N]
(Vbz( z))sym| v, y Z V ) = —al.
k:e[N
This shows that (Vb%(z))sym =< —al, and thus —b% is a-strongly monotone, as desired. [
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D.1.2. PROPERTIES OF THE MEAN-FIELD VECTOR FIELD

Lemma 13 Assume Assumption 1. Then:
1. The vector field b% defined in (40) is L-Lipschitz, which means for all z,z € R**N :
[6%(z) — b%(2)|| < Lz — 2.

2. Furthermore, —b% is a-strongly monotone, which means for all z,7z € R?4N :

(b%(z) — v%(2),2z — 2) < —a|jz — 2>

Proof Letz = (x,y) = (z!,...,2V,y',...,yM)andz = (x,y) = (z',..., 2V, ¢",...,9") €
R24N be given.

1. We first show b% is L-Lipschitz. By assumption, (z,y) ~ VV(x,y) is L-Lipschitz; in
particular, each component V.V (z,y) and V,V (z, y) is also L-Lipschitz. By definition,

6% (2) = b2(@)||” = [[p% () = X ) |” + 0¥ () - 0¥ 3|
We can bound the first term as:

[7Xx) X&) = 3 B [VaV (', V) — VoV (@, V)|

1€[N]
< 3 By [V V(@ Y) - vV (@, V)]
1€[N]
<12 Y By [[lof - 2T
1E€[N]

= 12 Jx — x|

where the first inequality is by Cauchy-Schwarz, and the second inequality is by the L-
Lipschitz property of V. V. Similarly, using the L-Lipschitz property of V, V', we can bound
the second term as:

. Y 112 _
0¥ () =¥ @)|" < L ly — 91
Combining the two bounds above gives:
. 712 _ _ _
6% (2) = 0% (2)||" < L? |x —x|* + L? |y — y]|* = L |z - 2|*
which shows that b% is L-Lipschitz.

2. We now show —bZ is a-strongly monotone. By assumption, for each y € R%, z +— V (z,y) is
a-strongly convex, so = — V,V (x,%) is a-strongly monotone. Similarly, for each 2 € RY,
y — V(x,y) is a-strongly concave, so y — —V,V(x,y) is a-strongly monotone. By
definition,

(b%(z) — b%(2),2 — Z) = (b*(x) — b%(%),x — %) + (b¥ (y) = 0¥ (¥).y — ¥) -
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We can bound the first term as:

(DX (x) =0 (%),x = %) = > (Bpr [~V V (2!, V)] + Epv [V, V (&, V)], 2" — 7°)

1€[N]
== Ep [(V.V(@'Y) -V, V(& V)2 — 1"
1€[N]
i =ill2
<-a Y B [ - ]
1€[N]
= —afx—

where the inequality above follows from the a-strong monotonicity of z +— V.V (z,Y).

Similarly, we can bound the second term as:

OY(y) = 0¥ (3)y —¥) = > (Eox [V, V(X,9)] - Epx [V, V(X, 7). 5 — )

1E€[N]
1€[N]
i |2
<—a Y Epx ||y = 7|’
1E€[N]
= —ally —y|?

where the inequality above follows from the a-strong monotonicity of y — —V, V (X, 7).

Combining the two bounds above gives:
(%(2) - %(2),2 — 2) < —alx — x| —aly - y]° = —alz - 2|’

which shows that —bZ is a-strongly monotone.

D.2. Comparison Between the Vector Fields

D.2.1. COMPARISON AT STATIONARY DISTRIBUTION

Lemma 14 Assume Assumption 1. Then the vector fields bZ defined in (17) and b% defined in (40)
satisfy:

E,z [HBZ(Z) - bZ(Z)H2] < L2Var,7(Z).

Proof LetZ = (X,Y) = (X',..., XV, V1, ... ,YN) ~ 0% = (0X)®N @ (7Y)®N, 50 all the

random variables X¢ ~ 7~ and Y7 ~ ©

¥ are independent, for all i, j € [N].

By definition, the quantity we wish to bound is:

Eys |[6%(Z) = b%(2)[*] = Eg | [%(X) = 0¥ (X, 0)|°] + Bpe [ [6¥ (V) = 0¥ X,V -
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We bound each term in the right-hand side separately.

We will use the following formula for variance: If U and U’ are independent random variables
with the same distribution p, then Var,(U) = E,[[|U — E,[U]||?] = 1E,,[|U — U’||*].

We bound the first term above. We introduce an independent random variable Y ~ Y. Then:

Bon [P0 KR D] ¥ 3 B [0 045 9]

r 2

DS By [|[Br [VV(XLT)] 4 1 Y VLV YY)
1€[N] i JEIN]

D5 Y B || 3 (VR — B [VV(XLT)))

i€[N] JEIN]
U 2 3 B [0V - V)]

zE[N]JE [N]

2 W Z Z EpzEpy [HV:::V(XiaYJ) VaV( XLy H }
i€[N] jE[N]

o o 5 Rk I
i€[N] j€[N]

) L2 Z Z Var,y (Y
i€[N] jE[N]

®) 12vary (7).

Above, in step (1) we use the definitions of b* and bX and split the squared norm across coordinates.
In step (2), we use the definitions of bX and bX. In step (3), we pull the 1/N outside the square.
In step (4), we expand the square and note the cross terms are zero since all the random variables
are independent; at this point, we recognize each term in the summation, conditioned on X", is the
variance of the random variable VIV()_( LYd ) where Y ~ Y. In step (5), we use the variance
formula by introducing an independent random variable Y ~ 7Y In step (6), we use the property
that y — V,V (z,y) is L-Lipschitz, which follows from the smoothness of V' from Assumption 1.
In step (7), we use the variance formula for the random variable Y ~ Y. In the last step (8), we
collect the terms in the double summation which are all the same.
By an identical argument, we can also bound the Y -component in the quantity above as:

E,z [HBY(Y) _ bY(X,Y)\ﬂ < L2 Var,x (X).
Combining the two calculations above, we obtain the desired bound:
E,z [HBZ(Z) - bZ(Z)m < L2Varyy (V) + L2 Var,x (X) = L*Var,z(Z)

where the last step follows from the fact that 7% = 7% ® 7" is a product distribution. |
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D.2.2. COMPARISON AT ARBITRARY DISTRIBUTION

Lemma 15 Assume Assumption 1. For any p% € P(R*N), the vector fields bZ defined in (17) and
bZ defined in (40) satisfy:

2 (1) ~ 12(@)|["] < 212 Wal ., 722 + 4L Varys (2).

Proof LetZ = (X,Y) = (X',..., XN Y1 ..., YN) ~ p% We first introduce some set up.

Let 01,...,0n: [N] — [N] be a collection of permutations such that o;(i) # o(7) for all
J # kand ¢ € [N]. For example, we can take 0(i) =4+ j (mod N).

We introduce new random variables Z',..., Z"Y € R2?V where each Z' = (Xi,\?i) =
(X XN YRt YN with X5 Y% € R? for each 4,5 € [N], with the following
structure of joint distribution:

* For each i € [N], Z' ~ 7% marginally, and (Z Z ) is jointly distributed as the optimal W5
coupling between pZ and 7%, so E[||Z — Z||?] = Wa(p%, v%)2.

* The random variables Z', ..., Z" are pairwise independent conditioned on Z. In particular,
this implies that for all 4,7,k € [N] with j # k: (1) Y?()-7 and Y+():F are independent
when conditioned on Z, since (i) # o(i); and similarly, (2) X% (- and X*():* are
independent when conditioned on Z.

By definition, the quantity we wish to bound is:
2 [15%(2) = 02(2)|*] =B, [ [55(X) = XX, V)] + B,z [|IPY (¥) - ¥ (X, V)]

We will bound each term in the right-hand side separately.
We bound the first term above. Below, we write [E to denote the expectation over the collective
joint distribution of the random variables (Z,Z', .. ., yA ) introduced above. We can bound:

2 [IPX) = XX, V)] = 3 B [ (X - ¥ (X, )]
1€[N]
2

i % 1 i v
> By ||Epopy [~V V(XL Y)] + v ’Z V. V(X' YY)
i€[N] J€[N]

2

1 S o
=13 2 B || D (VaV(X',Y9) 4 gy [~ VoV (X, 1))
1€[N] JE[N]
2

IN

% Z = Z (VxV(X",YJ) — vxv(xiyaj(i),j))
i€[N] FE[N]
2

2 N -
+ Y B[ (T m09) By [V T))
i€[N] J€[N]
= Err{ 4+ Erry. (44)
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In the above, we have used the inequality ||a + b||* < 2|/a|* + 2]|b]|%.
We can bound the first error term in (44) by:

2

Err{( = % Z E Z (Vﬂ/(}(@yi) _ va(Xi’YUj(i)J))
i€[N] JE[N]

<2 Z Y E “ V.V (X1, V) —va(Xi,Yfff@)vj)m
zE[N]jE[N
<3 ¥ 5l veod]
N emsem
-5 Y Yw[ -]
i[N] j€[N]
217 _ .
=5 2L E Iy =¥|°].
1€[N]

In the above, the first inequality is by Cauchy-Schwarz (|| 3¢ (v a5l1> < N 32 5c v llaj[[); the
next inequality is by the smoothness assumption on V'; the next step is by rearranging the permuta-
tion; and in the last step we rewrite the expression in terms of the vector form.

We can bound the second error term in (44) by:

2
9 o o
ErY = D E || D0 (VxV(XZ,YUJ'(Z)h’) Eg_v [VxV(XZ,Y)])
ieV] | |lsem
(1)

i 5 3 [T v By e D)

1€[N] jE[N]
= Nl S 3 EEpr [Hv V(X yo@d) - v, v(xi ‘)Hz]
i€[N] j€[N]
(3) 212 _ 12
< Y D EEpy [HY‘W YH }
i€[N] jEN]
i L Z Var,,y
zE[N]jE[N
Oy Varyy (V).

In the above, step (1) follows by expanding the square and noting the cross terms are zero; this
follows from our construction, since for each 4 and for each j # k, when conditioned on Z (which
includes X?), the random variables Y% () and Y7+ ()-* are independent (recall o'j (i) # o}, ()), and
each term in the summation has mean 0. The next step (2) follows by introducing an independent
random variable Y ~ 7" and using Cauchy-Schwarz inequality to pull the expectation outside the
square. The next step (3) follows from the smoothness assumption on V' from Assumption 1. The
next step (4) follows by recognizing each term in the double summation is a variance of Y ~ ¥
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(recall Y?i()J ~ 7Y also and is independent of Y). The last step (5) is by collecting the terms in
the double summation which are all equal.

Plugging in the two calculations above to (44), we can control the first term in the quantity we
wish to bound as:

_ 212 _ _
By [[[(X) — X V)| < == > B[y = Y°| + 422 Var, (7).
1€[N]

By an identical argument, we can control the second term in the quantity we wish to bound as:

_ 212 _ _
By [[[PY(Y) = oYX Y)|| < 5= 30 B [[[X = XF*] +4L2 Var,x (X).
1€[N]

Combining the two bounds above, and recalling that each (Z, Z*) has the optimal W5 coupling,
we obtain:

2
B, |[6%(Z) - v4(2)[] < % > E[[[Y = Y|P + 422 Var, (7)
1€[N]
2L2 ill2 S
oy L E [[[X = X7?] + 422 Var,x (X)
1€[N]
2
- % > E[[Z - Z|*] + 4L Var,# (2)
1€[N]
o

~ > Walp?,v%)? + AL? Var,z (Z)

1€[N]
= 2L Wy (p?, 9%)? + 412 Var,z(Z)

which is the desired bound. [ |

D.3. Bounds on the Vector Fields
D.3.1. BOUND ON THE MEAN-FIELD VECTOR FIELD UNDER MEAN-FIELD DISTRIBUTION

We bound the magnitude of the mean-field vector field under the stationary mean-field distribution,
which is proportional to the Fisher information.

Lemma 16 Assume Assumption 1. Then for the mean-field vector field b% defined in (40), under
the tensorized stationary mean-field distribution 0% defined in (18):

Eyz |[5%(2)|["] < 2raLn.

Proof Recall by construction, as stated in (41), that the mean-field vector field bZ is a scaled score
function of the tensorized stationary mean-field distribution 7%, i.e., b%(z) = 7V log % (z). Note
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from the definition (10), since V' is L-smooth, log 7% and log #¥" are (L /7)-smooth, and thus log 7%
is also (L /7)-smooth, i.e., log 7% (z) Hop < L/7 for all z € R?*V_ In particular,

Alog7%(z) = Tr (V2 log 7% (z )) < = -2dN.

e

Using integration by parts, where the boundary term is 0 since 7%(z)V log 7% (z) — 0 as ||z|| — oco:
By |[0%(2)]°] = 7B,z [||V 10g 7%(2) |’
= 72/ 7% (z) (Vlog 7% (z), Vlog ﬂz(z)> dz
R2dN
= -7 / <VU ), Vlog 7% (z ) dz
R2dN

= 7'2/ 72 (z) Alog 7% (z) dz
R2dN
< 27dLN.

D.3.2. BOUND ON THE FINITE-PARTICLE VECTOR FIELD UNDER MEAN-FIELD DISTRIBUTION

Lemma 17 Assume Assumption 1. Then for the finite-particle vector field b% defined in (17), and
for the tensorized stationary mean-field distribution (18):

Eye |[V4(2)|°] < 222 Var,s(Z) + 4rdLN.

Proof We can bound:
Bz [[02(@)]°] =B, [|9(2) - 72(2) + 7%(2) ]
< 2B, | [V2(Z) - b4(2)[] + 2B, |[%(2)|"]
< 2L2Var,z(Z) + 4rdLN.

In the above, we have introduced an intermediate term b%(Z), used the inequality ||a + b[|? <
2||al)? 2, and used the results from Lemma 14 and Lemma 16. |

D.3.3. BOUND ON THE FINITE-PARTICLE VECTOR FIELD UNDER ARBITRARY DISTRIBUTION

Lemma 18 Assume Assumption 1. Then for the finite-particle vector field b% defined in (17), and
for any distribution p% € P(R24N):

2 ||V4(2)|°] < 822 Wa(p®, %)% + 412 Var, 2 (Z) + 8rdLN.
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Proof Let Z ~ pZ and Z ~ % such that (Z, Z) has the optimal W5 coupling between p% and 7Z.
We use K to denote the expectation over this joint coupling. Then we can bound:

2 | [P @) = E |[%(2) - v*(2) + (@)
< 2R MbZ(Z) - bZ(Z)H |+ 255 [ 0%(2)]
<SL2E [||Z - Z|[°] +2 (2L Var,2(Z) + 47dLN)
= 8L2 Wy (p?, %) + 4L Var,z(Z) + 87dLN.

In the above, we introduce an additional term b%(Z) with the coupling defined above, and use the
inequality |a+b||? < 2||al|?+2||b]|. In the next step, we use the property that b% is (2L)-Lipschitz
from Lemma 12, and the bound from Lemma 17. In the last step, we use the fact that (Z, Z) has the
optimal W, coupling between p% and 7Z. |

D.4. Time Derivative of KL Divergence Along Fokker-Planck Equations

We have the following formula on the time derivative of KL divergence of two distributions which
evolve following their Fokker-Planck equations, which can have different drift terms, but with the
same diffusion term. This is a classical formula that has been used in many previous works, in-
cluding for analyzing stochastic interpolants (Albergo et al., 2023, Lemma 2.2) and for showing the
propagation of chaos in interacting particle systems (Lacker and Le Flem, 2023, Lemma 3.1).

Lemma 19 Suppose (p;)i>0 and (p;)i>o are probability distributions in P(RP) which evolve fol-
lowing the Fokker-Planck equations:

0

g = —V - (ptbs) + cApy
oo _

% = =V - (pbs) + cApy

for some time-dependent vector fields b, b;: RP — RP| and for some constant ¢ > 0. Then:

d _
gKL(Pt | pt) = —cFl(pt || pt) + Ep, KVlog @, by — bt>:| .
Pt
Proof We can compute by differentiating under the integral sign and using chain rule:

d d Pt
KLl pe) = dt/ Pt 10gfdl’

apt 1 1 8,5t
= 1 d ——dx — — 45
RD ot ©8 v /RD Pt pr Ot v /RD Pt pr Ot (45)

We compute each term above. For the first term in (45), by the Fokker-Planck equation and using
integration by parts, where all the boundary terms vanish:

Ope log @ dr = / (—=V - (ptbt) + cApy) log @ dx
RP Pt

ro Ot Pt
:/ <bt,V10g> dx —c/ Dt <Vlog,0t,V10gpt> dzx
RD P RD Pt
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where for the second term above we have used the identity that Ap; = V - Vp, = V - (p:V log py).
For the second term in (45), we can show it is equal to 0:

1dpt , opt , 0 _ 0.
/RDpptatd”’ oot at/RDPtdx =50 =0

For the third term in (45), by the Fokker-Planck equation and using integration by parts:
1 8ﬁt / _ 7 _\ Pt
— — = —V - (peb Apy) —d
/RDptf_’t ot oo (7Y (pibi) + cBpe) 5 da
Z—/ Pt <bt,V€t> d$+0/ pt<Vlogpt,V€t> dx
RD Pt RDP Pt
7 Pt _ Pt
:—/ pt<bt,Vlog> dx—l—c/ pt<Vlogpt,Vlog> dx
RD Pt RD Pt

where in the above we have used the identity that Ap; = V- (p:V log p;), and ﬁtV% = ptV log %.
Combining the three terms above in (45), we obtain:

d
ZKL(p¢ || 1) :/ pt<bt,v1og’ft> dx—c/ pt<v1ogpt,v1og’ft> dv
dt RD Pt RD Pt
7 Pt _ Pt
—/ Pt <bt,Vlog> dw—l—c/ o <Vlogpt,V10g > dx
RD Pt RD Pt

2
:/ pt<bt—bt,V10gpt> dw—c/ Pt
RD Pt RDP

dx
T Pt _
= E,, [<bt — b, Vlog ﬁt>:| —cFl(pt || pt)

V log @
Pt

as desired. [ |

Appendix E. Proofs for the Finite-Particle Dynamics
E.1. Proof of Theorem 4 (Biased Convergence of the Finite-Particle Dynamics)

Proof [Proof of Theorem 4] (1) Biased W5 convergence bound: We use the synchronous coupling
technique. Concretely, we consider (Z;);>0 and (Z¢)¢>0 in R24N where Z; ~ pZ evolves following
the finite-particle dynamics (16):

dZ; = b%(Z;) dt + V27 dW2
and where Z; ~ pZ = % evolves following the stationary tensorized mean-field dynamics (16):
dZ; = b2 (Zy) dt + V21 AW/

where we start from the stationary distribution ﬁg =%, 50 p? = v% for all t > 0. Suppose we run
the two stochastic processes above using the same standard Brownian motion (WZ);>q in R24",
Furthermore, suppose we start the two processes above from (Zg, Z) which has a joint distribution

which is the optimal W5 coupling between pg and ﬁg =2
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With the set up above, the difference Z; — Z; evolves via:
d(Zy — Zy) = (V%(Zy) — b%(Zy)) dt
where the Brownian motion terms cancel because they are equal in the two processes. Then we get:
d||Ze — Ze||* = 2(Zs — Zu, V2 (Z4) — VP(Z4)) dt.
Taking expectation over the joint distribution, we obtain:
SB[ - 2] = 28 (2 - 2, ¥A(2) - 4(20))
=2E [(Zy — Zy,b%(Zy) — b%(Zy))] + 2E [(Zy — Z¢,b%(Zy) — V2(Zy))]

where in the last step we have introduced an intermediate term E [<Zt — 7, b2 (Zt)>] .
We can bound the two terms above separately as follows. For the first term, recall from
Lemma 12 that —bZ is a-strongly monotone, so we can bound:

= = = 112
E[(Z - Zi, b%(Z)) — VA(Z0))] < —aE |20 - Z[*] -
For the second term, we use the inequality (a,b) < %|lal|* + 15|, and apply the bound from

Lemma 14 to get:

(07

E (2~ 2o VA(Z) - P(20)] < T [|2 - 2] + éE [15%(2) - (20|

IN

@
4
Plugging in these two bounds to the computation above, we obtain:

IN

B2z - Z°] + [jVaryz(Z).

d . 3o . 212 .
SE[|Z - 2] < - E[|1Z0 - Zi]*] + 2 Vara(2).

This is equivalent to:

d - 217 _
p (e%atE [HZt — Zt‘ﬂ) < ez0t TVarDz(Z)
Integrating from O to ¢ and rearranging yields:
. - —3at 2
E (|2 - 2] < e B [|120 - 2] + (1§> 2L \ary2(2)
2% @

A

34 - 2L2 -
e 3UE |20 - Zo|*] + T Vary(2)

212 _
= T2 Wl %) + 5 Var,z(2)

where in the second inequality above we drop the —¢~2° term and further bound % < 2, and in
the last step we use the fact that (Zo, Zo) has the optimal W5 coupling between pZ and Z. Finally,
since W distance is the infimum over all coupling, from the above inequality we conclude:

: 2L .
Wa(pf, 7%)* < ™2 Wa(pf, 7%) + =5 Var,2(2) (46)
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as desired.
(2) Biased convergence in KL divergence: We consider Z; ~ p# which evolves following the
finite-particle dynamics (16) in R2?V, so pZ evolves following the Fokker-Planck equation:

dp?
ot
We also consider Z; ~ pZ = % which evolves following the stationary tensorized mean-field

= -V - (pZ2b%) + AP

dynamics (42) from Zg ~ ﬁ% = 0%, 50 pZ satisfies the Fokker-Planck equation:
o0pZ 7 _
a—; =-V. (ptZ bz) + TApE.

(Note since pZ = %, both sides of the Fokker-Planck equation above are in fact equal to 0.)
Then using the formula from Lemma 19, we can compute:

d
ﬁKL( | 52) YR (7 1 PF) +E 2 [<Vlogp vz bz>}
t
(2) 1 _
< SR 177) + 5= |07 — 7]
(3) _
< —aKL (2 1 7F) + o By [[0% — 77

4) . 2L
S—ozKL(ptZHpt)JrfWg(pm z)? +7Varyz( Z)

-
(6) _s., L? 4L4 _
< —aKL (pf || p7) + e 2 TWQ(P(%;DZ)Q + EVarDz(Z).

(5) 212 (L? .
2 —akt (1) + e i Bt om + 2 (L) van2)

In the above, in step (1) we use the time derivative formula for KL divergence from Lemma 19. In

step (2), we apply the Cauchy-Schwarz inequality ((a, b) < Z||a]|? + 5=[|b[|?) to the second term. In

step (3), we use the fact that p% = % is (o/7T)-strongly log-concave by Lemma 2, so it also satisfies

(a/7)-LSI, which allows us to bound the relative Fisher information by KL divergence. In step (4),

we use the bound from Lemma 15. In step (5), we use the W5 biased convergence bound (46) that

we derived earlier, in the first part of this Theorem. In step (6), we bound 1 < L2 / a? since « < L.
Let us now substitute pZ = 7%. Then we can write the differential inequality above as:

d L? 4L4 _
o (UKL (pF | 7)) < €720 T Wapfl, %) 4 ¢! =5 Var,z(2),
Integrating from O to ¢ and rearranging yields:
KL (pf’ [|7%)
1
1—e 2%\ L? 1—e ot 4L* -

—at Z | -Z —at VAEN AV
e KL (pg || 7%) + e <;a> 7W2(PoaV )"+ <a> EVarpz(Z)

< e (KL (p? | v i2W 22 gv Z
<e (o 1 7%) + ) + 5 arpz(Z)

I\

2L2 414
< et (KL 17%) + 22 Wl o2 ) + 25 Vane (2)
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as desired. ]

E.2. Proof of Corollary 5 (Average Particle Along the Finite-Particle Dynamics)

Proof [Proof of Corollary 5] For Z; = (X, Y¢) = (X7, ..., XN, Y ..., Y/N) ~ pZ in RV let
p?" € P(R24) be the marginal distribution of the component Z = (X!, Y}) € R, for i € [N].
We rearrange the coordinates to write Z; = (Z},..., Z}V) for convenience, and still denote its
distribution by pZ. We introduce an independent product of the marginal distributions:

N Z,i
Ptz = Pt '
1€[N]

Since 7% = (7X)®N ® (7¥)®V is an independent product, after rearranging the coordinates as
above, we can write it as 7% = (7%)®N where 7% = X @ 0¥,
Then we can bound the KL divergence by:

Z
KL(p? || 7%) = E,z {log ’;tz} =E [logp ] +E,z [log (%N]

p? i
_ _ ¢
= EPtZ [log ﬁz] + Z Eptz,l [log I/Z]

t i€[N]
1)

— KL ZKL(Zz
i€[N]
> ZKL(pt

|77)
1€[N]

where the inequality follows by dropping the first term KL (ptZ I p}z) > 0, which is the multivariate
mutual information of Z,. Furthermore, since KL divergence is jointly convex in both arguments,
we can further bound the above by:

KL(pZ || %) > NZKL< '\|DZ)>N KL(Za"gHu>

1€[N]

using the definition p7*"¢ = =% Zle N pEt
Combining this with the bound for KL(pZ || 7%) from Theorem 4 gives the desired result. W

Appendix F. Proofs for the Finite-Particle Algorithm

F.1. Preliminary Results
F.1.1. BOUND IN ONE STEP OF THE FINITE-PARTICLE ALGORITHM

We present the following bound which will be useful in our subsequent analysis.
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Lemma 20 Assume Assumption 1. Let Zgy ~ poz for any pg c P(R2N). Fort > 0, define
Z; ~ pF by:

Z, = Zo + tb%(Zo) + V21t ¢

where ¢ ~ N (0,1) is an independent Gaussian random variable in R24N | and bZ is the vector field
defined in (17). If 0 <t < 1/(4L), then:

E [Hbz(zt) - bZ(Zo)\ﬂ < 1286214 Wa(pZ, 7%)% + 642L* Var, 7 (Z) + 647tdL2N.
Proof We can bound:
E | [[v%(Z0) - b%(Z0)| } 24K E|l1Zo - 2]
@ yr2E [thz Zo) + V27t c” ]

D 4212 [|6%(20)|*] + 8t E [|1¢)]

D 42128 (|07 (2o)||*] + 167012V

5 -
2 8212 [|47(20) - vA(Z0)|°] + P2 | |0%(Z) ] + 167edr?N

< SB [7(20) - 1720 ] + 8227 [|7(20'] + 1670ar?.

In the above, in step (1) we have used the property that bZ is (2L)-Lipschitz from Lemma 12. In
step (2), we plug in the definition of Z;. In step (3), we expand the square, and note the cross
term vanishes since ¢ is independent of Zy and E[¢] = 0. In step (4), we use the property that
E[|[¢]|?] = 2dN since ¢ ~ N(0,1) is a standard Gaussian in R?%Y. In step (5), we introduce
the term b%(Z;) again, and use the inequality ||a + b||? < 2||a||? + 2||b||%. In step (6), we use the
assumption that ¢t < 1/(4L), so 8t2L% < 1/2.

Rearranging the inequality above, we get:

(7)
B [[[p%(Z0) — t4(Z)|["| < 161212 B g [[[6%(20)|*] + 32rtd2N
(8) _
< 16t2L2 (8L* Wo(pZ, v%)% + AL Var,z(Z) + 87dLN) + 327tdL*N
©) 1282 LA Wa(p2, 7% + 6412 L4 Var, 2 (Z) + 32rtdL2 N (4L + 1)
(10)
< 1282 LA Wy (pZ, 7%)? + 64t2L* Var,z(Z) + 647tdL*N.

In the above, in step (7) we rearrange the inequality from step (6). In step (8), we use the bound
from Lemma 18 for the distribution pZ. In step (9), we collect the terms from the previous line. In
step (10), we again use the assumption that ¢ < 1/(4L). This gives us the desired bound. |
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F.1.2. FOKKER-PLANCK EQUATION FOR ONE-STEP INTERPOLATION OF FINITE-PARTICLE
ALGORITHM

We show the following continuous-time interpolation of one step of the finite-particle algorithm (20).
This is similar to the interpolation technique that has been used, for example, to analyze the mixing
time of the Unadjusted Langevin Algorithm for sampling (Vempala and Wibisono, 2019).

Lemma 21 Let Zo ~ p% for any p& € P(R?N). Fort > 0, define Z; ~ p? by:
Zi = Zo + tb%(Zo) + V2t1 ¢ (47)

where ¢ ~ N(0,1) is an independent standard Gaussian random variable in R*™N, and b is the
vector field defined in (17). Then the density pZ evolves following the Fokker-Planck equation:

% . ()22 ApZ
o (i ) + TAP
where we define the vector field b% : R24N 5 R2IN by for all z € R*N:

Z Z
bt (Z) = Epglt [b (Zg) ’ Zt = Z]
where pa . (- | 2) is the conditional distribution of Zy given Z; = z from the model (47).

Proof Let pgt be the joint distribution of (Zg, Z) following the model (47), which we can write in
terms of the marginal and conditional distributions as, for all zg, z; € [R24N .

poi (20, 2t) = pi (z0) plo(2e | 20) = pf(20) PGy (20 | 21).-
Notice that Z; as defined in (47) is the solution to the following stochastic process:
dZ; = b%(Zg) dt + V21 dWZ (48)

where (W/Z)>0 is the standard Brownian motion in R?¢" which is independent of Zo. We derive
the Fokker-Planck equation for pZ as follows. First, when we condition on a fixed Zo = zo, the
drift in the process (48) is a constant, so the conditional density ptZ|0(’ | zo) of Z; conditioned on
Zy = zg is given by the Fokker-Planck equation:

Op%y(- | 20)

= =V (0B (- | 20) VE(20)) + TAPE (- | 20)

where note that the divergence V- and Laplacian A operate on the z variable, not z.
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Then we can compute:

op? 0
= i [ R0 B 20 o

9pZy(- | 20)
= [ PR T
R2dN t

= [ ) (27 (20 ) + | 0))

—-v. ( [ ) ol zO>bZ<zO>dzo> A ( [ ) ol zO>dzO)
R2dN R2dN
(Ptz / poie(zo | ')bz(zo)dZ(J) +7Ap7f

R2dN

— V- (oFEz [v%(Z0) | Zi=]) + A7

as desired. [ |

F.2. One-Step Recurrence for the Biased Convergence of the Finite-Particle Algorithm
F.2.1. ONE-STEP RECURRENCE IN W5 DISTANCE

Lemma 22 Assume Assumption 1. Let zj, ~ p}" for any p" € P(R*™N), and let zj41 ~ py,

be one step of the finite-particle algorithm (20) with step size 0 < n < g7. Then:

8nL? -
Wa(p2,,0%)% < e 31 Wy(p2", 7%)? + 2 (Var,z(Z) + 64 77dN) .
Proof We consider a continuous-time interpolation of one step of the algorithm (20) as follows. Let
Zo ~ p& where we define pZ = p7"". We define (Z;)o<¢<, where Z; ~ pZ evolves following:

dZ; = b%(Zg) dt + V21 AWZ (49)

where (WZ);>0 is the standard Brownian motion in R?* which is independent of Zg. Then we

notice that the distribution of Z, ~ pg of the process (49) is equal to the distribution of the next

/-

iterate ;41 ~ p;', along the algorithm (20), i.e., p ), =

process (49) at time ¢ = 7 is:

pg. This is because the solution to the

Zy = Zo + th%(Zo) + V2r W2 L Zo + tb%(Zo) + V27t ¢

R2 dN

where ¢ ~ N (0, I) is an independent Gaussian random variable in , and 2 means equality in

distribution. This is the same update of the algorithm (20), so indeed Z,, 4 Zj+1, SO p,% = piZl.

We also consider (Zt)ogtgn where Z; ~ ﬁtZ = 72 evolves following the stationary tensorized
mean-field dynamics (16):

dZ; = b%(Z;) dt + V27 dW2 (50)
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starting from the stationary distribution ﬁg = v%, 50 p? = v% for all t > 0. Suppose we run

the stochastic processes (49) and (50) using the same standard Brownian motion (Wtz)tzo, which is

independent of Zq and Z,. Furthermore, suppose we start the processes (49) and (50) from (Zg, Zo)

which has a joint distribution which is the optimal W5 coupling between pg = pz’" and ﬁg = 4.

From the set up above, we have that the difference Z; — Z; satisfies:
d(Zy — Zs) = (b%(Zo) — b%(Zy)) dt
where the Brownian motion terms cancel because they are equal in the two processes. Therefore:
d||Zs — Z4||* = 2(Zs — Zy, V2 (Zo) — V2 (Zy)) dt.
Taking expectation over the joint distribution of all the variables, we obtain:
CB (|12~ 2] = 28 (2, - 2., 14(Z0) - A(2))]

= 2E [(Zy — Zy,b%(Zy) — b%(Zy)))
+2E [(Z¢ — Zs, b2 (Zo) — b2(Zy) + V2(Zy) — V2(Zy))] - 51

By Lemma 13, —bZ is a-strongly monotone, so we can bound the first term above by:
= = 5 112
E[(Z) - Z,b%(Z:) — V(Z0))] < —aE |20 - Zi||*].

We can bound the second term above by:

E [(Z; — Zi,b%(Zo) — b%(Zy) + V2(Zy) — b2 (Zy))]

1) r _ 97 2 _ Y

< SE[[|Z0 - Zd]]*| + SB[ [67(Z0) - b4(Z0) + b4(Z0) — b4(Z0)|”]

@) a_ — 2] 4 21 4 _ 7 = 112
< SE (20— Zel*) + —E [|6%(2Z0) — b4(Z0)[|*] + ZEpa [|[0%(Z0) - %(Z0) ||
3 - -

(g) %E 1Z0 — Ze||”| + g (128t°L* W (p?, v%)? + 64t°L* Var,z (Z) + 647tdL*N)

4 _
+ o L*Var,z(Z)

(4) <a 512t2 L4 2567tdL2N

(0%

<

8

(5) _ 2 B 2
< OB (12 - 2] + 22 Vare(2) + 20T

2
> E [Hzt - Zt\ﬂ + % (64¢2L* + 1) Var,z(Z) +

a

In the above, in step (1) we use the inequality (a,b) < %|lal®> + 2||b]|%. In step (2), we use the
inequality |la + b]|? < 2||al|? + 2||b||? to the second term. In step (3), we use the bound from
Lemma 20 to the second term (note t < n < 75 < ﬁ < ﬁ so the assumption in Lemma 20
is satisfied), and we use the bound from Lemma 14 to the third term. In step (4), we use the bound

Wa(p?, v%2)? <R [HZt — 7 HQ} which follows from the definition of the W5 distance. In step (5),

a 512¢2L4 < a.
« — 8

iz S0 in the first term, we also use the assumption
so in the second term, 64t2L% < 6%1 < 1; and we use ¢t < 7 in the third term.

we use the assumption t < 7 <

a 1
t§n§64L2§m’
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Plugging in the two bounds above to our earlier calculation (51), we obtain:

d _ 3o _ 8L2 _.  512tndL*N
B |12 - Zil| < —TE |||Z0 - Zd]]*] + == Vary (2) + =

We can write this differential inequality equivalently as:

a (e%atE [Hzt _ ZtHQ}) < g3t (8aL2 Var,z(Z) +

512rndL>N
dt ’

a

Integrating from ¢ = 0 to ¢ = n and rearranging yields:

_ B e ) i )
© [l ) <o iz 2l (P ) (5 v 2

pIa @

1 —e 297\ 8L2 _
eganWZ(pg,yz)Q—k( ; : )8 (Varyz(Z) + 64 1ndN)

P @
8nL>
[0

< e~30m Wo(pZ, 7%)? + (Varyz(Z) + 64 1ndN) .

In the second step above, we have used the assumption that (Zg, Zo) has the optimal W5 coupling
between pg and 7Z. In the last step, we use the inequality 1 — e~ < ¢, which holds for all
c= %om > 0. Using the definition of the W5 distance as the infimum over all coupling, from the
above, we conclude:

8nL?
L &nl?

Walpf, 7%)% < e 2 Wa(of, 7%) + =

(Varyz(Z) + 641ndN) .

Substituting back p& = p;" and pZ = ;]| gives us the desired bound. [ |

F.2.2. ONE-STEP RECURRENCE IN KL DIVERGENCE

Lemma 23 Assume Assumption 1. Let zj, ~ pi" for any p;" € P(R*N), and let zj1 ~ P

be one step of the finite-particle algorithm (20) with step size 0 < n < g7. Then:

3nL? 6nL>
KL (o2, || 7%) < e~ (KL (027 %) + %Wg(pi’n, VZ)2> + 882dL2N +

T

Var,z(Z).

Proof We consider a continuous-time interpolation of one step of the algorithm (20), as in the proof
of Lemma 22, but now we work with the Fokker-Planck equation, rather than the stochastic process.
Let Zy ~ p% where we define p¥ = p}"". For 0 < t < 5, we define Z; ~ pZ by:

Zi = Zo + th%(Zg) + V2tr ¢ (52)

where ¢ ~ A(0, 1) is an independent standard Gaussian random variable in R?¢Y. By the same
argument as in the proof of Lemma 22, the distribution of Z,, ~ p% is equal to the distribution of
the next iterate zg41 ~ pZ’L along the algorithm (20). Let pgt be the joint distribution of (Z, Z;)
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following the model (52), and let pg‘ ,(- | z) be the conditional distribution of Z¢ given Z; = z.
Define the vector field b%: R24N — R24N by, for all z € R24V:

V() =B [1A(Z0) | Zi =] = /R Rl | 2) VP (o) do,

Then by Lemma 21, we know that the density pZ evolves following the Fokker-Planck equation:

ot _

o =V (P2 %) + 7 ApE.

We also define Zf ~ p% = v?% which evolves following the stationary tensorized mean-field
dynamics (42) from Zg ~ ,5% = v%, s0 pZ satisfies the Fokker-Planck equation:

ot . (212 N
(Note since pZ = 2, both sides of the Fokker-Planck equation above are in fact equal to 0.)
Then using the formula from Lemma 19, we can compute:

DKL (2 1192) L —r P (o7 77) + B [<v10gp V) - () )

2 6 158 + B, [( Vo8 ). 54(20) — 540

1 _
< —SFLPP 1) + 5-Epg |[V%(Z0) —0%(20)|"]

(4) 1 -
< —aKL (o[ pF) + 3= By, [[[6%(20) — %(Z0)[°] - (53)

In the above, in step (1) we use the time derivative formula for KL divergence from Lemma 19. In
step (2), we plug in the definition b%(z) = E o2 [b%(Zo) | Z; = z], and use the tower property to
t

write the iterated expectation E zE ok as a joint expectation E pZ, Over (Zo,Z¢). In step (3), we
t

use the inequality (a,b) < §||a||2 = ]| to the second term. In step (4), we use the fact that
p% = % is (a/7)-strongly log-concave by Lemma 2, so it also satisfies («/7)-LSI, which allows
us to bound the relative Fisher information by KL divergence.

We can bound the second term above by:

5= B [1%(Z0) ~ 520

21 Por
() .
< LBy [I1(20) ~ P2|] + - B [0(20) — 1720 ]
(%)71_(128752L4W2(ptz, 2)? 4 64t>L* Var,z(Z) + 647tdL*N)

1 _
+ = (2L2 Wa(p?Z, 7%)? + 4L* Var,z(Z))

(7) L? 12 _
< L7 Wa(pZ,0%)? + L7 Var,z(Z) + 64tdL>N
T T
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®) 312 : tL? _ L? —
< 3L (e—éat Wo(pZ, %)% + 87 (Varyz(Z) + 64 Tth)> 42 Var,z(Z) 4 64tdL>N
T T
) L? 24nL* . L? .
3ot 37 Wo(pl, 7%)? + % (Var,z(Z) + 64 ndN) + 57 Var,z(Z) + 64ndL*N
(10) L2 12 _
< o dar 37 Wo(p,v%)? + 88 ndL*N + 6L7 Var,z(Z).
T T

In step (5), we introduce an intermediate term b%(Z;) and use the inequality ||a + b||?> < 2||al|? +
2|b||? to the second term. In step (6), we use the bound from Lemma 20 in the second term (note

t<n< gz <@ < ﬁ so the assumption in Lemma 20 is satisfied), and the bound from

Lemma 15 in the third term. In step (7), we use the assumption ¢t < n < ﬁ < ﬁ, so 1281214 <
L? and 64t2L* < L. In step (8), we apply the W> bound from Lemma 22, applied to pZ when
_a

considered as one step of the discrete-time algorithm (20) from pg with step size t <7 < g7=. In
step (9), we use the bound ¢ < 7 in the second and fourth terms. In step (10), we use the bound

n<g 4‘22, SO 24;’7_L4 -64TndN < 24ndL2N , and we also bound % < L;

Plugging in the bound above to the calculation in (53), we obtain:

d Z | =Z Z | =Z —2at 3L? 7 -7\2 2 6L° >
aKL(Pt ||Pt) S—QKL(Pt ||Pt)+€ 2 TW2(P'0=V )"+ 88ndL N+TVar,7z(Z).

We can write this differential inequality equivalently as:

3L2

(oot (o2 7)) < bt B

L? -
o WQ(pg,ﬂZ)2 + eat (88 77dL2N + GTVBI’DZ (Z)) .

Integrating from ¢ = 0 to ¢ = 7 and rearranging yields:

(&% T

1—e 1 L? -
+ <€> (88 ndL?N + 6Varl,z(Z)>
a T

_ o _ com [ 1—e7297\ 312 B
KL (% 117%) < e KL (58 | 7%) + e () 3L W Y
2

3nL?

6mL> _
Wa (o2, DZ)2> + 88 12dLAN + 2 Var,2 (2)
T

e (KL 1) +
where in the second step above we use the inequality 1 — e ¢ < cforc = %an in the second term,
and for ¢ = am in the third term. Substituting pg = pzm, p,% = pzﬁl, and ,5% = ,57Z, = % gives the
desired bound. |

F.3. Proof of Theorem 6 (Biased Convergence of Finite-Particle Algorithm to Stationary
Mean-Field Distribution)

Proof [Proof of Theorem 6] (1) Biased W, convergence: For simplicity, let Dy, := Wa(py", %)%

Recall from Lemma 22 we have the recurrence:

Dii1 < e 291Dy + C
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where C' := % (Varf,z (Z) + 64 Tnd N ) . Iterating this recurrence gives us:

k—1
Dy < e bk Dy + 03 b
i=0
3 C
< e 2% Dy + .
1—e 29
3 C
< G_EOmk Do+ —.
ar

— 3 : 3 : 3
In the second step above, we use the bound Zf:ol e 2 <N eT 2 =1/(1 — e 2). In
the last step, we use the inequality 1 — e~ ¢ > %c for 0 < ¢ = %an < 3, which holds since
n< gz < @ < %. Substituting the definition of Dy and C' gives the W5 convergence bound.

(2)Biased convergence in KL divergence: Let Hy, := KL (p}}, || %), and Dy, = Wa(pp", 7%)?
as before. Recall from Lemma 23 we have the recurrence:

3nL?

Hpp <e (Hk - Dk> +C’

where O’ := 88n%dL>N + %Varﬂz (Z). Iterating this recurrence gives us:

3 L2 k—1 ‘ k—1 A
o < ettty + LS e, 4 ory e 54
=0 1=0

By using the W, convergence bound we proved above, we can write:

k—1

k—1 8.
Z e—om(k—i)Di < Z e—om(k—i) <e—§am’ DO + >
] =0

i= 1
k—1 ) C k-1
_ e—ankDO e—iam' + = e—an(kz—i)
2

e~k D, . C e
T (1—ezom)  an(l—eom)
- 3e~k D, N 3C
- an 2a2n?

where in the last step we again use the bound 1 — e ¢ > %c for c = %om and ¢ = an, and we also
bound e~*7 < 1. Plugging in the value C' = % (Var,z(Z) + 64 7ndN ), the middle term in (54)
can be bounded by:

k—1 _
3nL? Z e—an(k=i) . < 3nL? (3e ank Dy 3 8nL?
Toor an 202n? o

(Var,z(Z) + 64 7'17dN)> )
1=0
L?D LA
_ emonk 922Dy 36
aT acT

(Varyz(Z) + 64 1ndN)
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For the last term in (54), we can bound:

/ ! 2 2
C’Ze—am’< C _ 3C" _ 132ndL N+9L

= Var,z(Z
T l—e T 2an « art arp2 (Z)

where again we use the bound 1 — e™¢ > %c. Plugging in these two bounds to (54), we obtain:

H, <e “FHy+e

9L*D,  36L* _ 132ndL*N  9L?
ek 2220 D2 (Varys (Z) + 6470dN) + ——— 4 " Var,s(Z)
aT o3 @ r

9L2 9L2 AL? _. . 6ndL>N L
— gmonk (Ho + Do> + = (1 + ) Varys (2) + ~1——= (22 + 3840;)

aT a? a

9L2 4514 =
< et (Ho + D0> 3 (VarDZ (Z) +55 anN)
a° T

where in the last step we use the bound 1 < to simplify the second and third terms, and bound
6 x (22 4 384) = 2436 < 2475 = 45 x 55. |

F.4. Proof of Corollary 7 (Average Particle Along the Finite-Particle Algorithm)
Proof [Proof of Corollary 7] The proof below follows identically as in the proof of Corollary 5.

For zj = (g, yk) = (€4, 2y, yhs o yp ) ~ pp in R*N et p™" € P(R*?) be the
marginal distribution of the component zi = (2%,y%) € R?J, for i € [N]. We rearrange the
coordinates to write z;, = (z},. . ., z,JCV ) for convenience, and still denote its distribution by p;". We

introduce an independent product of the marginal distributions:

L ZJ],Z'
Pr = ®Pk .

1€[N]

Since 7% = (7X)®N ® (7¥)®V is an independent product, after rearranging the coordinates as
above, we can write it as 7% = (7%)®N where 7% = X @ 0¥ .
Then we can bound the KL divergence by:
Z,17 Z,1) ~Z,7]
_Zy\ _ Pr_ | _ Pk Pk
‘V )— EPZW |:10g ]7Z :| = Epzy”l |:10g pA]ZC’n:| +Ep2777 |:10g WV]

7’,7Z
—Ezn[log Azn] ZEznzllogpk ]

1€[N]

KL(p}"

=KL (o 75" + 0 KL (0™ 157)
1€[N]
> 3 KL (g 1177)
i€[N]

where the inequality follows by dropping the first term KL (3" || p77) > 0, which is the mul-
tivariate mutual information of zZ. Furthermore, since KL dlvergence is jointly convex in both
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arguments, we can further bound the above by:

1 .
KL [[77) = N - D KL (p;”“ |17Z) > N KL (2" || 77)
1E[N]
using the definition p; "% = > ielN] pi’"’i

Combining this with the bound for KL(p;"" || #%) from Theorem 6 gives the desired result. M

F.5. Proofs for Iteration Complexity of the Finite-Particle Algorithm
F.5.1. PRELIMINARY RESULTS

Recall 7% = X @ pY is the stationary mean-field distribution, which is (a/7)-SLC and (L /7)-
smooth by Lemma 2, under Assumption 1. Recall by Theorem 35 (in Section H) that there exists a
unique pair of equilibrium points (z*,y*) € R2? that satisfies VV (z*,3*) = 0. We first show the
following.

Lemma 24 Assume Assumption 1. Then for Z ~ % in R*¢:

—. _27d
Var,z(Z) < iy
a

Proof Recall that since 77 is (a/7)-SLC, it also satisfies the (a/7)-Poincaré inequality (Villani,
2009), which means for all smooth functions ¢: R?¢ — R:

Varyz (8(2)) < ZEyz |[Vo(2)|] .

For each unit vector u € R2?, ||lu|| = 1, by applying the Poincaré inequality to the function ¢(z) =
(z,u), we get:

T = = T 2 T
_ = _ < _E._ ——
u" Covgs(Z)u = Varys ((Z,u)) < By [||u|| ] .

This shows that the covariance matrix Cov,z(Z) € R24*24 satisfies:

COVl—,Z (Z) j I.

T
a

Taking trace gives us the desired result: Var;z(Z) = Tr (Cov;2(Z)) < 2. [ |

«

Lemma 25 Assume Assumption 1. For Z ~ 0% in R*?, we have:
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Proof Define the vector field % : R?? — R? by, for all z = (z,y) € R?®:
V.V (z y)>
v (x,y) = ( v )
9= v,V (@)
Observe that bZ is the case N = 1 of the vector field bZ that we defined in (17) (in R?V = R29),

Note by definition, bZ(2*) = 0, since both V,V (z*) = V,V(z*) = 0. Recall by Lemma 12 that
—bZ is a-strongly monotone, so for all z € R?¢:

allz = 25 < (=b7(2) +b7(2%), 2 = &%) < [Ib7(2) = b7 ()] - |I= = 27|
where the second inequality is by Cauchy-Schwarz. Then we conclude that:
allz = 2| < [1b7(2) — b7 ()] = 167 (2)]]-

Therefore, for Z ~ v%:

2L Varyz() 4rdl. _ 47dL* 4rdL _ 8tdL?
+ < + <

Bz |2~ =[] < B [[0%(2)]] <

where the second inequality is by Lemma 17 for the case N = 1, the third inequality is by the bound
on the variance of 7% from Lemma 24, and the last inequality is by the bound 1 < é |

o? s o? s’

F.5.2. BOUND ON THE INITIAL RELATIVE FISHER INFORMATION

We have the following bounds on the distances from the stationary mean-field distribution from a
Gaussian starting distribution.

Lemma 26 Assume Assumption 1. Let pX = N (m*X ,71) and p¥ = N(mY

(m I) for arbitrary
m™X,mY € RY and let p? = p* ® p¥ = N(m?, 1 )wheremZ = (mX,m"

R24, Then:

Fi(p? | 77) < —B 5 [m? — 2|2
11dL* 12
KL 7 =Z < - * 12
(0" 177 < = +m||m — 2
- 227dL* 2L2
Wa(p?, V7)< o 4 T m” =

Proof Since p? = pX ® p¥ and 7?7 = vX ® v¥ are product distributions, we have
FI(p” | 77) = FI(p™ || %) + FI(p" [|77).

We will bound each term separately.

Define g% = —log 7%, 50 Vg* (z) = 77'E,v [V, V (2, Y)] and AgX (z) = 77 E, v [AV (z,Y)].
Since we assume V' (z, ) is a-strongly convex in z, we have Ag*X () > ad/T > 0 for all z € R,
Note also that for pX = N(m™, ZI) on RY, we have

Ld

T

< 1108 ] = Z5x 1 -] =
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Then by expanding the square and using integration by parts, we can write:
FI(p 1| 7%) = B [[[V10g o™ + Vo™
i Uh7bngHﬂ 2B, [Ag"] +Eyx [[[V|[]
< 2B Vo]
For the second term above, we can bound:
x [I1vg* 1]
s [y (VaV (X, )]
< B [[[VaV (X, V)]
< 2B g [[VaV(X,F) = VaV (@ V)] + 2B 5 gpr [[[ 92V (", V) = WV (2, y7) ]
<2L%E,x [|1X - 2" ] + 202 By [||Y - 7’|
__2L2<:L + [m¥ xﬂP>-+2L2EVY[HY>—yﬂF}
In the above, the first inequality follows by Cauchy-Schwarz. In the second inequality, we introduce
the additional term V.V (z*, Y') and use the inequality |la+b||? < 2|/a|>+2||6]|?, and also introduce
V.V (z* y*) = 0. In the third inequality, we use the property that V' is L-smooth, so V.V is

L-Lipschitz. The next step follows from the bias-variance decomposition. Combining the above
calculations, we obtain:

B 3Ld 2L . 2L° L2
I | 7%) < 225 4 S = 2P+ S B [V = 7]

By an identical argument, we can also bound:

3Ld 2L? 212 -
FIY 17%) < 225 4 S5 — o)+ S B [[1X - 27

Combining the two bounds above gives:

_ 6Ld 2L2
FI(p” |77) < == + 5 (Im™ =" I + [m” =y |I°)
212 _ _

+ 55 (Box [JIX =[] +Eov (|7 -]
Ld  2L? 2L _
= 20 2 — 4 2 e |12 - 2]
_ 6Ld 2L2H e 16dL*

-7 Tas
22dL* 20?2, ..,

< ok ?H — 2
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where the second inequality follows from Lemma 25, and in the last inequality we use the bound
1< é to simplify the result.
Since 77 is (a/7)-SLC, it also satisfies (o/7)-LSI and (a/7)-TI, so we have:

T _
—FI(p? || 77)

KL(p? || 7%) <
(p” || v )_2a

and 5
Wa(p?,77)? < ZKL(p? || 7).
(6%

Thus, the bounds for KL divergence and W, distance follow from the bound for relative Fisher
information above. |

F.5.3. PROOF OF COROLLARY 8 (ITERATION COMPLEXITY OF THE FINITE-PARTICLE
ALGORITHM)

Proof [Proof of Corollary 8] Fix any regularization parameter 7 > 0, and any small error threshold
€ > (0. We want to run the finite-particle algorithm (20) with a sufficiently small step size  and a
sufficiently large number of particles [V, for a sufficiently large number of iterations k, such that the
upper bound on the KL divergence for the average particle in Corollary 7 is less than €.

We choose the parameters to make each term in the bound from Corollary 7 less than %5. To do
s0, we can choose the step size to be:

3 dLA
-~ = 247575 < 2500

B ndL4 €
7500 dLA o a

% 3

Ui

We assume ¢ is small enough so that the choice of n above satisfies the assumption < &7 in

7500 dL?
64 o2

Recall the bound Var,z(Z) < % from Lemma 24. We choose the number of particles to be:

Corollary 7; this is ensured if € <

- 270 dL* N 4514 Var,2(Z) < 90 dL* -
_ ———Var;
cat a3 N v - AN —

w| ™

Next, suppose we run the min-max gradient descent algorithm (65) from Z, = (0, 0) € R?? with

||z ||
—arz—» so that by Corollary 37,

. . . 2
step size ngp = & for the number of iterations kgp > 4@% log
we obtain a final point m? := Zrep Which satisfies the guarantee:

dL?
Im? — 2| < T3

We consider the Gaussian distribution 72 := N (m?, 71). By the bound from Lemma 26, we have:

11dL*  L? 12dL*
KL Z | =Z < - Z %2 <
(N0 < — =+ m? = 2P < =
~ 227dL*  2L? . 24rdL*
Wa(y7, %)% < —5 T |[m?Z — 2*||> < 5
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Therefore,

912

~ ~ 12dL*  9L? 24rdL* dLb
KL(yZ || %) + ng(’yz, p7)? < +—"

< 228 —
— a6

ot art «

where in the last inequality we use the bound 1 < é to simplify the result, and 12 4 9 x 24 = 228.
We use this to initialize the finite-particle algorithm (20) from the product distribution where each
component is yZ:

zn . _ (,Z2\ON
P = (")
This means we start the algorithm from zg = (zé, .. ,zév ) € R24N where zé, ce zév ~ ’yZ are

ii.d. Since 7% = (7%)®V is also a product distribution, the KL divergence and W5 distance split:

S 9L? S _ 9L? _ dL"
(KL(/OOJI 17%) + ;Wﬂpo’n? VZ)2> = KL [|177) + ;W2(’YZ7 r7)? <228 PO

1
N

Therefore, we can choose the number of iterations & of the finite-particle algorithm (20) to be:

1. 3-228dL°  7500dL*  684dLS

k> —1 1 55
~ an RPN cal 8T a8 (55)
so that . )
e~ -z, 9L M 72 €
N (KL(PS TI7®) + ?Wﬂp(z)n’ v ) < 3
Combining all of the above, we conclude that if we run the finite-particle algorithm (20) with the
above choice of step size 1) and number of particles IV, from the initial distribution p" = ('yZ ) ®N,
then after k iterations given by (55), the average particle z} ~ p; 7" satisfies, by Corollary 7:
KL Z,7,avg =7 < E E E —
(py HV)_3+3+3 €
as desired. |

Appendix G. Convergence of Finite-Particle Systems to Their Limiting Distributions

We study the convergence guarantees of the finite-particle dynamics (16) and algorithm (20) to their
limiting stationary distributions.

G.1. Preliminary Results
G.1.1. TRANSFORMATION OF LSI CONSTANT
We recall the following classical result on how the LSI constant of a probability distribution changes

under a pushforward operation by a Lipschitz map.

Lemma 27 (Chafai, 2004, Remark 7) Suppose v € P(]RD ) satisfies a-LSI for some o« > 0. Let
T: RP — RP be a differentiable map which is M-Lipschitz for some 0 < M < oo. Then the
pushforward distribution 7 = Tyv satisfies (c./M?)-LSL.
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We also recall the following result on how the LSI constant changes under a convolution.

Lemma 28 Suppose v € P(RP) satisfies a-LSI for some o > 0. For t > 0, the probability
distribution v, == v x N'(0,tI) satisfies cv-LSI where oy = (L + )71,

Proof We recall by (Chafai, 2004, Corollary 3.1) that if p satisfies c,-LSI and v satisfies v, -LSI,

then the convolution p * v satisfies LSI with constant (a% + -L)~1. By assumption, v satisfies a-

ay

LSI. Since the Gaussian distribution N'(0, ¢I) is (1/t)-SLC, it satisfies (1/¢)-LSIL Then by the cited
result above, the convolution v; = v * N (0, 1) satisfies LSI with constant (i +t)~1, as claimed. B

We recall the following property that KL divergence is preserved under a deterministic map.

Lemma29 LetT: RP — RP be a deterministic, differentiable bijective map. For any probability
distributions p,v € P(RP):
KL(Typ | Tyv) = KL(p || ).

Proof This follows from a direct computation using the change-of-variable formula for 7% p and
Tv. Alternatively, this follows from two applications of the data processing inequality from infor-
mation theory, applied to the channels 7" and 7'

KL(Typ | Tyv) < KL(pllv) = KL(T ™) (Typ) | (T7)(Tpv)) < KL(Tpp | Tyv).

Hence, both inequalities above must be equality. |

G.1.2. CONTRACTION OF THE DETERMINISTIC STEP OF THE FINITE-PARTICLE ALGORITHM

The following shows that the deterministic step in the finite-particle algorithm is a contraction.
Lemma 30 Assume Assumption 1. Forn > 0, define the map G : R2¥N — RN py forz € R2N;
G(z) =z + nb*(2)

where bZ: R2N 5 R2IN s the vector field defined in (17). If n < 573 then G is M-Lipschitz,

where:

M := /1 —2na +4n2L2 € [0,1].

Proof For any z,z € R, we can compute:

_ _ _ _ _\[12
1G(z) — G@)|* = ||z — 2| + 20 (z — 2,0%(2) — b*(2)) + 1 [|V*(2) — b*(2)||
< |z —zl|* — 2na |z — 2l|* + 49 L? |z - z|*

= (1= 2na+4°L?) |z —2z|*.
In the above, in the first step we expand the square. In the second step, we use the properties from

Lemma 12 that bZ is (2L)-Lipschitz, and —bZ is a-strongly monotone. In the last step, we collect

the terms. Note that 1 — 2na + 4n?L? € [0, 1] from our assumption that < 577 < i [ |
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G.1.3. BOUNDS ON THE SECOND MOMENT ALONG THE FINITE-PARTICLE SYSTEMS

In this section, we show that along the finite-particle dynamics (16) and algorithm (20), the distri-
butions remain in P(R2V).

Under Assumption 1, recall from Theorem 35 (in Section H) that there exists a unique equilib-
rium point 2* = (z*,y*) € R?? which satisfies VV (2*) = 0. Define z* = (z*,..., 2", y*,...,y") €
R24N  Then by construction, bZ(z*) = 0, where bZ is the vector field defined in (17).

Lemma 31 Assume Assumption 1. Suppose Z; ~ ptZ evolves following the finite-particle dynam-
ics (16) in R?™N from Zo ~ p& € P(R?™N). Then pZ € P(R?*N) for all t > 0.

Proof We note that p? is absolutely continuous with respect to the Lebesgue measure on R4V
by virtue of the Brownian motion component in the dynamics (16). We now show that the second
moment of ptZ remains finite for all £ > 0. Since Z; evolves following the dynamics (16), its density
pZ evolves following the Fokker-Planck equation:

dp?

T -V (ptZ bZ) + 7 ApZ.

From this, we can compute, using integration by parts:

d *12| aptz(z) * (12
Lo [1m—w1] - [ B

= [ ) 6) 4 @)
=/ p%<z><bz(z>,v(uzz*||2)>dz+7/ (@) A |z — 2 |?) dz
R2dN

= / pf(z) (bV%(2z),z —2z") dz + T / pZ(z) (4dN) dz
R2dN

R2dN

= 2/ pZ(z) (v%(2) — b(2"),2 — 2") dz + 47dN
<20 [ B@)s -2 da+ardN
R2dN
= —20E,z [||Z; - 2|]*] + 4rdN
where the inequality above uses the property that —bZ is a-strongly monotone, from Lemma 12.

We can write the differential inequality above equivalently as:

d «
= (eQatEptz [||zt 7 ||2D < e2t 47dN.

Integrating from O to ¢ and rearranging the result gives:

%12 —2at %12 (1 _6_2at)
E,;z [”Zt _ 2| ] < e MR g [HZo — 2| } + A 27dN
21dN
* (12
<Ez [120—2|7) +
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Since pff € P(R2N), Bz [|1Z0]]?] < o0, s0 B,z |20 — 21| < 2B,z [1Z0]?] +2|27]* < .
Therefore, we also have for all ¢t > 0:
2 * (12 *
B,z [I1Z:0°] < 2Bz |12 — 2] + 20)2 |
4T7dN

< 2Bz (10— 2| + +2)2*|2 < o

which shows that pZ € P(R?Y), u

Lemma 32 Assume Assumption 1. Suppose z;, ~ pZ’n evolves via the finite-particle algorithm (20)
with step size 0 < n < 5% from zg ~ py" € P(R?*N). Then pi" € P(R*™N) for all k > 0.

Proof We note that pz’n is absolutely continuous with respect to the Lebesgue measure on R4V

since the update rule of the algorithm (20) adds an independent Gaussian random variable, which
corresponds to convolution with the Gaussian distribution. We now show that the second moment
of p}’" remains finite for all k > 0.

Define G': R2? — R2? by G(z) = z + nb%(z). By Lemma 30, we know G is M-Lipschitz
where M = /1 — 2na + 4n2L2, and note that 0 < M < 1 from the assumption 7 < 573 < i
Note also that by definition, G(z*) = z* since b%(z*) = 0. We have the update rule from (20):

Zii1 = 7k + b2 (1) + /270 G = G(z) + /271 ]
where ¢ ~ N (0, I) is independent of zj. Then we can compute:
2
E (21— 2°?] = E [HG(zw — G(z") + V27 ¢ ]
—E |G (z) — G(z")|*] + 20 E [|IEIP]

< M’E {sz - z*]ﬂ + 4tndN

where the inequality follows from the property that G is M -Lipschitz. Since 0 < M < 1, we can
iterate the recurrence above to obtain:

k—1
. 4tndN
(2 2% *||2 2 *|I1? d
E |2 - 2*|*] < M*E ||z - 2 ”}JrémdN;Ml < Bz 21| + 77

Since pg" € P(]RQdN),Epgm [Hzo||2] < 00,50 2 {Hzo — z*||2} < 2Kz [Honz} +2]|z*]|? < oo.
Therefore, we also have for all £ > 0:

2 %12 *
Eyen [l24]°] < 2B 2 [l — 2°1] + 2012
8TndN

T2 +2||z*||* < oo

* 12
< QEPS’n |:||Z0 — Z H } +

which shows that p’" € P(R?V). [ |
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G.2. Convergence of Finite-Particle Dynamics to Its Stationary Distribution

We show the following exponential convergence rates of the finite-particle dynamics (16) to its sta-
tionary distribution pZ in W, distance and in KL divergence. We note that the exponential conver-
gence rate in KL divergence guarantee below can be strengthened to hold for all Rényi divergence,
but we only present the result for KL divergence here for simplicity.

Theorem 33 Assume Assumption 1. There exists a unique stationary distribution p% € P(R?IV)
of the finite-particle dynamics (16), and it satisfies («/T)-LSI. Furthermore, suppose Z; ~ ptz
evolves following the finite-particle dynamics (16) in RN from pg € P(R2N). Forallt > 0:
Wa(pf, p%)? < e Wa(pf, p.)°
KL(pf || p%.) < e™* KL(pf || p5)-

Proof We showed in Lemma 31 that since pZ € P(R?¥), we have pZ € P(R?™) for all ¢ > 0.

(1) Exponential contraction in W, distance: Suppose we run two copies of the finite-particle
dynamics (20) from Zg ~ pg and Z ~ ﬁg, where (Z, ZO) has the joint distribution which is the
optimal W5 coupling between p? and pZ, to get Z; ~ pZ and Zy ~ pZ, fort > 0. We can write the
two stochastic processes using synchronous coupling:

dZ; = b%(Z;) dt + V21 dW2
dZ; = b%(Z¢) dt + V21 dW2
we use the same standard Brownian motion (W2);>¢ in R2¥N. Then we have:
d(Z; — Z,) = <bZ(Zt) - bZ(Zt)> dt

where the Brownian motion terms cancel because they are equal in the two processes. From this,
we get:

~ 112 - -
d Hzt - th —9 <zt 7, V2(Zy) — bZ(Zt)> dt.

Taking expectation over the joint distribution, we obtain:
d 5 || 7 17 Z (5 5 ||
~E Hzt - th —9F [<zt ~ Zy, bE(Zy) — b (zt)ﬂ < —2E Hzt - th

where in the last step we use the property from Lemma 12 that —bZ is a-strongly monotone. Inte-
grating the differential inequality above from 0 to ¢, and using the fact that (Zg, Z) has the optimal
Ws coupling gives:

ofla-af] < com oo mf] = et )

Using the definition of the W5 distance as the infimum over all coupling, we conclude that

2 2

Wa (p?, p2)" < e 2 Wa (pF, p5)" .
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This implies limy—.oo Wa (pZ, 53)2 = 0. Since this holds for any initial distributions pZ, g,
this shows that there must be a stationary distribution pgo of the dynamics, and it is unique by
the contraction property above. Then plugging in pZ = ﬁg = pZ yields the desired exponential
convergence guarantee in Ws distance.

(2) Isoperimetry of the stationary distribution: As n — 0, the finite-particle algorithm (20) with
step size 7 recovers the continuous-time finite-particle dynamics (16). In particular, as  — 0, the
stationary distribution p= of the finite-particle algorithm recovers the stationary distribution pZ. of
the finite-particle dynamics. We show in Theorem 34 below that p3' satisfies a;, = M—LSL
which implies pZ = lim,,_, pa' satisfies LSI with constant lim,,_,o a; = /7, as claimed.

(3) Exponential convergence in KL divergence: We run two copies of the finite-particle dynam-
ics (20) from Z¢ ~ pg and from the stationary distribution Zgy ~ ﬁg = pZ,to get Z; ~ p% and
Z; ~ pZ = pZ fort > 0. Then pZ and pZ evolve following the Fokker-Planck equations:

opZ

78; =-V. (ptz bz) + TAptZ
opZ . -
—6; =~V (p2b%) + 1 AP

Using the identity from Lemma 19, we can compute:

d - - -
S KUE |1 5E) = =m FIlof | 5F) < =20 KL(p{ || 57)

where in the second step we use the fact that 5% = pZ satisfies (a/7)-LSI. Integrating the differen-
tial inequality above from O to ¢ yields:

KL(pZ || pZ) < e 22t KL(pE || 52).

Substituting ﬁtz = ﬁg = pgo yields the desired exponential convergence rate in KL divergence. H

G.3. Convergence of Finite-Particle Algorithm to Its Stationary Distribution

We show the following exponential convergence rates of the finite-particle algorithm (20) to its
stationary limiting distribution pa;'. We note that the convergence in KL divergence below can be
strengthened to be an exponential convergence in all Rényi divergence, similar to the result for the
Unadjusted Langevin Algorithm shown in (Vempala and Wibisono, 2019); for simplicity, here we
only present the convergence results for W distance and KL divergence.

We also note that similar to the standard discretization of the Langevin dynamics as the Unad-
justed Langevin Algorithm which is biased, here the stationary distribution pa;’ of the finite-particle
algorithm (20) is not equal to the stationary distribution pZ of the continuous-time finite-particle
dynamics (16). We can also characterize the biased convergence of the finite-particle algorithm (20)
to the continuous-time stationary distribution pZ , but we skip this part because in principle we
do not actually care about the convergence to pZ, but only about the biased convergence to the
stationary mean-field distribution 7%, which we show in Theorem 6 in the main text of this paper.
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Theorem 34 Assume Assumption | and 0 < 1 < 575. Then there exists a unique stationary
distribution pZ;' € P(R2dN ) of the finite-particle algorithm (20) with step size 1, and psy' sat-
isfies ou)-LSI where o, = (a0 — 2nL?) /7. Furthermore, suppose zj ~ pzm evolves following
the finite-particle algorithm (20) with step size 0 < 1 < 575 from pg" € P(R?*N). Define
M = /1 —2na+4n2L2 € (0,1). Then for all k > 0:

Wz(pz’n, pﬁ;)”)Q < M2k Wz(pgm’ p&nﬁ
KL(px" | p%7) < M KL(pg" || 0%).-

Proof We showed in Lemma 32 that since pf”" € P(R?*¥), we have p;" € P(R?¥) forall k > 0.
Define G: R2? — R2? by G(z) = z + nb%(z). By Lemma 30, we know G is M-Lipschitz

where M = /1 — 2na + 4n2L2, and note that 0 < M < 1 from the assumption 7 < 573 < .

(1) Exponential contraction in W, distance: Suppose we run two copies of the finite-particle
algorithm (20) with step size 0 < 1 < 5% from zg ~ pg"” and zg ~ pg”", where (2o, zo) has the
joint distribution which is the optimal W5 coupling between p{™ and 5", to get z;, ~ p;" and
zj, ~ py", for k > 1. We can write the update of the algorithm (20) using synchronous coupling as:

21 = G(z) + /271 (ks (56a)
ik+1 = G(ik) + /271 Ck (56b)

where we use the same Gaussian noise ¢ ~ N (0, I) for both updates, independent of z; and Zj.
Then we can compute:

|2k 1 = 2 l® = 1G(zr) = G(@)|* < M?|lzg — 2|

where in the last step we have used the property that GG is M -Lipschitz, from Lemma 30. Taking
expectation over the joint distribution, this gives:

E [||2541 — Zra[?] < MZE [|l2x — 2]
Unrolling the recursion and using the fact that (zg, o) has the optimal W5 coupling, we get:
E [”Zk _ ikH2] < MQkE [”ZO . ZOHZ] — MQk WQ(PS’U7 /38777)2.
Using the definition of the W5 distance as the infimum over all coupling, this implies:
Wa(pp", pp™)? < M Wa(pg", "),

Since 0 < M < 1, this implies limy_,oc Wa(p};", pp")* = 0. Since this holds for any initial
distributions p{, p", this shows that there must be a stationary distribution pa2’ of the algorithm,
and it is unique by the contraction property above. Then plugging in o, = 5" = p&' gives us
the desired exponential convergence guarantee in Ws distance.

(2) Isoperimetry of the stationary distribution: We write each step of the finite-particle algo-
rithm (20) as a composition of a pushforward of the deterministic map G, followed by a Gaussian
convolution, so at each iteration k£ > 0, the next distribution is given by:

pZ’_ﬁl = (Gypy") « N(0,270I). (57)
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Suppose we run the algorithm (20) from p;” which satisfies 3p-LSI for some 0 < 3y < oo (for
example, a Gaussian distribution). Then inductively from the iteration above, for each k£ > 1, pZ’”
satisfies 35-LSI, where the constants (/x);>0 satisfy the recurrence:

Br1 = ! = B
TR oy M 42

(58)

Define o, by:
1— M? _a— 2nL?
217 N T

0517 =

and observe that 3, = «, is a fixed point of the recurrence (58). Furthermore, we can rewrite the
recurrence (58) as:

! _1:W+2T770477—1:W_W:M2<1_1>‘
Bry1 oy Br ap Br oy

Unrolling the recurrence, we get:

i 1 Ve ( 1 1 ) .

B Qp /BO Oy
As M? < 1, this shows that 1/, converges to 1/ oy, exponentially fast. Therefore, the stationary
distribution p2 = limy_,« py" satisfies LSI with constant limy,_,, 8 = cu, as desired.

(3) Exponential convergence in KL divergence: We run two copies of the finite-particle algo-
rithm (20) with step size 0 < 7 < 575 from zg ~ py"" and from the stationary distribution
zo ~ py = pal, to getzy, ~ pp" and z, ~ pp" = pd2'. We write one step of the algorithm
update as a pushforward followed by a Gaussian convolution, as in (57). We define the half-steps:

pk+1 —G#Pk ) ’Ok:+1 —G#p

Since G is a contraction (M -Lipschitz with M < 1), it is bijective, and so we know by Lemma 29:

KU, 1727, ) = KLGE7 172

Furthermore, since p; "7 = p2' satisfies a,-LSI, and G is M-Lipschitz, we know by Lemma 27 that
ﬁzz , satisfies (a,/M?)-LSI. Then we interpret the next half-step, the Gaussian convolution:
2

Pris = P:f% * N(0,2rn1), Prin = Pk’nl * N(0,2mnI),
as the solutions of the heat flow:
Ipt Ovy
9Pt _ A W _ A
ot Pt ot vt
starting from py := p?", and vy := p>",, for time t = 77, to get p, = pp, and vy, =
) k+1 ) kt+i° ’ l k+1 al
Pty Note since vg pk . satisfies ~yo- LSI with 79 = (a,,/M?), by Lemma 28, we know

v = v * N (0, 2t1) satisfies %—LSI where:

1 1d
0 ——log(1 + 27 t).

MT I T Tt 24
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Then by the formula from Lemma 19, we can compute:

d

KL ll) = =Fl(pe [ve) < =29 KL(pe || ).
Integrating from ¢ = 0 to t = 71 gives:

™ KL(po || o)
KL Vrp) < €xp <—2/ dt) KL W) = —.
(prn | vren) 0 Ve (po || vo) 1+ 27077
Note that by definition,
200,7TN) 1—M? 1
1+ 2y =1+ 2 =1+ 2 IR

Then substituting back the definitions of pr, po, and v, v gives us:

KL{p Py >
~Z,1) < k+ H _ M2 KL Z,n ~Z,7] = ]\42 KL Z,1 || ~Z,M
(karl || ,Ok+1) — 1+ 2707_77 p]H_l H pk‘-{—% ( || ) .

Iterating this recursion and substituting pk’jl = pk’?7 = pay! gives:

KL (o 1| p57) < MPFKL (o5 || p2)

as desired. |

Appendix H. Deterministic Zero-Sum Game

We review the properties of the deterministic finite-dimensional zero-sum game:

min max V(z,y) (59)
z€R? yeR4
where V: R? x R? — R satisfies Assumption 1. In particular, for each « € R?, we have
max, cga V(2,y) < oo, and similarly, for each y € R9, we have min, ga V(z,y) > —oc0, so
all the quantities we discuss below are finite.
Recall we say that (z*,y*) € R?4 is an equilibrium point (or a Nash equilibrium) for the
game (59) if for all z, y € RY, the following holds:

V(" y) <V("y") <Vie,y). (60)
We recall the duality gap DG: RY x R? — R of the game (59) is defined by:
DG(zx,y) = V(x,y') — min V(2 y).
(2, y) max (z,9) = min V(a',y)

Note that DG(x,y) > 0 for all (z,y) € R??, and DG(x,y) = 0 if and only if (z,y) = (z*,y*)
is an equilibrium point. Under Assumption 1, there exists a unique equilibrium point (z*,y*);
furthermore, the duality gap is bounded by the squared gradient norm, see Theorem 35 below.

In this section, we review the exponential convergence guarantees of the continuous-time min-
max gradient flow in Section H.1, and the discrete-time min-max gradient descent in Section H.2.

In Section I, we review the zero-sum game (2) in the space of distributions without entropy
regularization. Under the same assumptions on V', we show that the unique equilibrium distribution
of the game (2) is a pure equilibrium, i.e., a point mass (0=, d,+ ), where (z*, y*) is the equilibrium
point of the deterministic game from this section.
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H.1. Convergence of Min-Max Gradient Flow

We consider the min-max gradient flow which is the dynamics for (X, ¥;)¢>0 in R24 which evolves
following:

X = -V, V(X, V)
Yt = vyV(Xt,YZ)-
In terms of the joint variable Z; = (X;,Y;) € R2?, we can write this as:
Zy = b%(Z) (61)

where we have defined the vector field b% : R?? — R?? by, for all z = (x,y) € R?®:

v (z,y) = (‘vvy Vv(fy?) - (62)

Observe that bZ is the case N = 1 of the vector field bZ that we defined in (17) (in R24N = R2d),
In particular, the guarantees that we proved for bZ also apply to bZ when we specialize to N = 1.
Below, for z = (z,y) € R??, we also write VV (2) = VV (z,v), and DG(z) = DG(z, y).

Theorem 35 Assume Assumption 1. Then we have the following properties:
1. There exists a unique equilibrium point z* = (z*,y*) € R?%, and it satisfies VV (2*) = 0.

2. Forall z = (z,y) € R, the duality gap is bounded by the squared gradient norm:
1
DG(2) < o - [VV(2)II*. (63)

3. Suppose (Z;)i>o evolves following the min-max gradient flow (61) in R24. Forallt > 0:
1Z; — 2 ||> < 72 || Zo — 2*|? (64a)
2aDG(Z;) < [[VV(Z)|? < e |[VV(Z0)|? (64b)

Proof (1) Bound in duality gap: For each y € RY, since z + V(x,%) is a-strongly convex by
assumption, it also satisfies a-gradient domination, i.e.,

. 1
V(z,y) — min V(2 y) < —||VxV(:L‘,y)HQ.
' €R4 2

Similarly, for each z € RY, since y — —V(z,y) is a-strongly convex by assumption, it also
satisfies a-gradient domination, i.e.,

1
/ 2
max Viw,y') = V(e,y) < o IVyV (@, 9)]"

Summing the two inequalities above gives:

DG(z,y) = max V(z,y") — min V(a/,
(z,y) max V(w,y') — min, (=',y)

1 2 2 1 2
< _— = —
< 5o (I9V@ I + 19,V @ 9)l?) = 5 IVV (@9l
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as claimed in (63).

(2) Exponential convergence in distance and existence of stationary point: Suppose we run two
copies of the min-max gradient flow (61) from Zj, Zj e R?4, to get Z;, ARS R% for t > 0, so they
satisfy: Z; = b%(Z;) and Z] = b#(Z!). Then we can compute:

d
e 2| = 202 = Z{,6(Zy) — b(Zy)) < —2aZ; — Z4)°

where the inequality follows from the property that —bZ is a-strongly monotone, by Lemma 12.
Integrating the differential inequality above gives:

1Ze = Zi||* < e | Zo — Zg)*.

Therefore, lim¢_,« || Z; — Z{||? = 0. Since this holds for any initial points Z, Z{, this means there
must be a stationary point z*, and furthermore, this stationary point z* is unique by the contraction
property above. Plugging in Z;, = Z| = z* to the guarantee above gives the desired exponential
convergence rate in distance (64a).

*

(3) Stationary point is an equilibrium point: Since z* = (z*, y*) is stationary for the min-max
gradient flow (61), it makes the vector field vanish: b%(z*) = 0, which means V,V (z*,y*) = 0
and V, V(z*,y*) = 0, so indeed VV (z*,y*) = 0.

Furthermore, since x — V' (z,y*) is strongly convex by assumption, V.V (z*,y*) = 0 means
¥ = argmingega V(z,9*), so V(z*,y*) < V(z,y*) for all z € RY Similarly, since y
V(z*,y) is strongly concave by assumption, V, V' (z*,y*) = 0 means y* = arg max,cga V (2", y),
so V(z*,y*) > V(x*,y) for all y € R, This shows that z* = (2*,4*) is an equilibrium point as
defined in (60).

(4) Exponential convergence in gradient norm: Observe that [[bZ(Z,)? = ||V.V (X4, Y2)||? +
|V, V(Xe, V2)||2 = |[VV (X4, Y2)||% so it suffices to prove the exponential convergence of ||b% (Z;)]|.
We can compute:

S0 (20| = 2% (2), YV (20) 22)
V% (Z4), V2 (Z0) b2 (Z4))

7 (Zy), (VO (Zy))sym b7 (Z4))

2
2

where the last step follows since u' Au = u' (Agym)u for all u € R?? and A € R%¥*24 where
Agym = 3(A+ AT). Recall from Lemma 12 part (2), we have shown that (V% (Z;))sym =< —al
(which is equivalent to the property that —bZ is a-strongly monotone). Then from the computation
above, we can bound:

d
@HbZ(Zt)H2 < —2a|[b7(Z)|.
Integrating this differential inequality gives:

I67(Z0)1? < 72 b (Zo)|I*
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as claimed in the second inequality in (64b). Combining this with the bound for the duality gap (63)
yields:

20DG(Zy) < |VV(Z)|? < e |[VV (Z0)|?

as desired. [ |

H.2. Convergence of Min-Max Gradient Descent

We consider the min-max gradient descent with step size n > 0, which maintains the iterates
(ks Yk k>0 In R24 which evolves following the update:

Tpg1 = T — NV V (T, Yi)
Yer1 = Uk + 10V V (T, yk)-
In terms of the joint variable z; = (x,yx) € R??, we can write this as:
Zpa1 = 2 + b7 (2) (65)

where b7 is the vector field defined in (62).

Theorem 36 Assume Assumption 1. Let z* = (z*,y*) € R?? be the unique equilibrium point.
Suppose (zi) >0 evolves following the min-max gradient descent (65) in R2% with step size n > 0.

Ifn < 47z, then for all k > 0:

2 = 2*|I* < ™ |20 — 2*|1%. (66)

Furthermore, if n < 16‘“?, then we also have for all k > 0:

2aDG(z,) < |[VV (zp)||? < e 7 ||V V (20) % (67)

Proof (1) Exponential convergence in distance: Let G: R?? — R2?? be G(z) = z + nb?(z).
Recall we show in Lemma 30 (with IV = 1) that G is M -Lipschitz, where

M = /1= 2na+ 4212 < /T —na < e 2"

where the first bound above follows from the assumption < ;77, and the second from the inequal-

ity 1 —c < e~ “for ¢ > 0. We can write the min-max gradient descent update (65) as z;11 = G(zx),
and note z* = G(z") is a fixed point. Then we can compute:

lzke1 = 2°I1* = |G ar) = G < M? ||y, — ="
where the inequality follows from the property that GG is M -Lipschitz. Iterating this bound gives:
Iz — 2" < M flz0 — 2% < 7™ |20 — 2*|?

where the last inequality follows from the bound for M above.
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(2) Exponential convergence in gradient norm: We consider a continuous-time interpolation of
one step of the min-max gradient descent (65) as:

Zy = Zy + th? (Zy)
so that if Zy = 2, then Z,, = Zy + nb?(Zo) = 2, + nb?(2) = z41. We can first bound:
167(Z2) — b*(Zo)|I* < AL* (| Z¢ — Zo|®
= 42L* ||v”(Zo)|*
< 8L b7 (Ze) — b7 (Zo)|* + 8t°L? |67 (Z4) |
1

< 5 I67(20) = b%(Zo)1* + 84212 b7 (Z) |
where the first inequality follows from the property that b is (2L)-Lipschitz from Lemma 12. In the
second inequality we introduce the term b% (Z;) and use the inequality ||a + b||? < 2||a||? + 2||b]|>.

In the third inequality we use the assumption ¢ < 7 < ;25 < /-, so 8t2L? < 1. Rearranging the
above and taking square-root gives us:

167(Ze) — b7 (Zo)|| < 4L |17 (Z4)]. (68)

Next, we can compute along the continuous-time interpolation, where Z; = b%(Z), for 0 < t < n:

S (2|2 = 2007 (22), V¥ (2 ¥ (20)
20%(20), VY20V (Z0)) + 207(20), WV (20) (7 () ~ V(20)
bZ

2067 (Z0), (V67 (Z0))syn V7 (24)) + 2067 (Z4), V0P (Z1) (b7 (Zo) — b7 (Z1)))

< —2a|[b7(Zy)|P +AL67(Z) || - (167 (Zo) — b%(Z0) |
< 20|67 (Z0)|* + 16tL7||b7 (Z0)|®
< —alb?(Zy)|I*.

In the first inequality above, we use the properties from Lemma 12 that (VbZ(Z;))sym = —al
(equivalent to —b? is a-strongly monotone), and b% is (2L)-Lipschitz. In the second inequality,
we use the bound on ||b%(Z;) — b%(Zp)|| from (68). In the third inequality, we use the assumption
t <n < s S0 16tL? < «. Integrating the differential inequality above fromt = O to ¢t = 7
gives:

167 Gz 1) 1P = 1167 (Zy) 12 < e 167 (Zo) [P = e~ 0% () ||
Iterating the recurrence above and recalling |67 (2)|| = ||[VV (2)]| gives us:
IVV (z)|? = 1167 (2112 < e @™ 07 (20)1 = e [V V (20)

as claimed in the second inequality in (67). Finally, combining this bound with the bound for the
duality gap (63) yields:

20 DG (1) < [VV ()| < ™™ [VV (20)

as desired. |
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H.2.1. COROLLARY ON ITERATION COMPLEXITY OF MIN-MAX GRADIENT DESCENT
Corollary 37 Given any € > 0, if we run the min-max gradient descent algorithm (65) from

z0 = (0,0) € R*@ with step size n = 1%, then we have ||z, — 2*||* < € for all

& !!2
k> log
a?

Proof This follows from the bound (66) from Theorem 36:

2
ok
2 — 2*IP < exp (—amk) |=*]” = exp (—)

where the last inequality follows from our choice of k. |

Appendix I. Zero-Sum Game in the Space of Distributions Without Regularization

Consider the zero-sum game in the space of probability distributions without entropy regularization:

<Ry Bk Fror 1V )

where V: R? x R? — R satisfies Assumption 1. This is the same game (2) as in Section 1.
We say that a pair of probability distributions (7%, 7Y) € P(R?) x P(R?) is an equilibrium
distribution for the game (69) if the following holds for all (p*, p¥) € P(RY) x P(R%):

E9X®pY V] < Ejx gy V] < pr®,;y V]. (70)

Under Assumption 1, there exists a unique equilibrium distribution, which is the point mass (85« , 6+ ),
where (z*,y*) is the equilibrium point of the deterministic game (59), see Theorem 38 below.

We consider the mean-field min-max gradient flow which is the dynamics for random variables
Zy = (X4, Y;) ~ piX @ pf = p# in R?? which evolves via:

Xi = —Ey[V.V (X, Y3)] (71a)
Vi =B, x [V, V(Xy, V)], (71b)

We also consider the mean-field min-max gradient descent algorithm with step size 7 > 0 which
maintains random variables 2, = (1, y) ~ pp" ® pi" = p;" in R?? with the update rule:

Tyt = Tk — NEpa VoV (2k, yi)] (72a)
Yk = Yk + 0 Eyrn [VyV (zk, yp)]- (72b)
We have the following convergence guarantees.

Theorem 38 Assume Assumption 1. Let z* = (z*,y*) € R?? be the unique equilibrium point for
the deterministic game (59). Then:

1. There exists a unique equilibrium distribution for the game (69), which is the point mass
distribution: (8z+, 0y~ ).
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2. Suppose Z; = (X4, Yi) ~ pfX @ pi = pf evolves via the mean-field min-max gradient
flow (71) in R?%, and let §,« = 6, ® Oy+. Forall t > 0:

Wa(p?,0.+)% < e Wy(pf, 0.0 )>. (73)

3. Suppose z, = (Tk,yr) ~ pi’n ® p%’n = pZ’n evolves following the mean-field min-max

gradient descent (72) in R?® with step size 0 < 1 < 112+ Then for all k > 0:

Wa(pp", 620)% < e Wa(pg", 6:+)°. (74)

Proof (1) Equilibrium distribution: Recall since (z*,y*) € R?? is an equilibrium point for the
deterministic game (59), it satisfies the property (60) that for all z,y € R%:

V(z®,y) <V(a",y") < V(z,y).
Then for any probability distributions p*, p¥ € P(RY), with X ~ pX and Y ~ pY’, we have:

Ev[V(@"Y)] < V(2" y") <E x[V(X,y")]

We can write this equivalently as the condition (70):
Es,.0or V] < Es,05,. [V] < Epxgs, . [V]-

This shows that (6,+, d,+) is an equilibrium distribution of the game (59).

Furthermore, note that any equilibrium distribution of the game (59) is a stationary distribution
for the mean-field min-max gradient flow (71). Then the uniqueness of the equilibrium follows
from the convergence guarantee (73) that we will prove below, which shows that along the mean-
field min-max gradient flow (71), any starting distribution pZ converges to 0.+ = &+ ® G-

(2) Convergence of mean-field min-max gradient flow: Let b7 : R?? — R?¢ be the vector field
defined in (62). Recall from Lemma 12 that —b7 is a-strongly monotone. Recall that 5% (z*) = 0.
Let Z; = (X4, Y;) ~ pi¥ @ p = p# evolve via the mean-field min-max gradient flow (71) in
R?¢. Then we can compute:
D%~ = 20X, - 2t K
— —z*||* = -
P t ) At
= —2(X; - " By [VaV (X0, Y1) )
= _QEPE/ [ <Xt - $*, VJ;V(Xt, Y%)) ] .

Taking expectation over X; ~ p; and writing p/ = p;X ® p} gives:

d . .
e [1X: = 2*|°] = =2E,z [ (X¢ — %, VoV (X4, Y0)) ]

Similarly, we can also compute:

d . .
B (¥ =y 7] = 2B,z [ (Vi =", VyV (X3, Y2)) ]
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Adding the two identities above gives:

d

ZEz 12— 2] = ZEx 1% — 27|12 + 2By (1Y — o7l

dt P
= ZEPtZ [ (<Xt — l‘*, —VIV(Xt, Yt)> + <th - y*, VyV(Xt, Yt)>)]
=2E 7 [(Z: — 25,b7(Z)) ]

=98, (7 — 0 (Z) — V() ]

where the inequality follows from the property that —b% is a-strongly monotone. Integrating the
differential inequality above from O to ¢, and noting the special formula for the W5 distance to a
point mass d,+ yields the desired convergence guarantee:

Walp?, 627 = Bz [12 = 2717] < e E 2 120 — 27|17] = €72 Wa(pF, 6202,

(3) Convergence of mean-field min-max gradient descent: Let G: R?? — R?? be G(z) =
z + nb?(z). Note that G(z*) = z*. Recall from Lemma 30 that G is M-Lipschitz, where

M :=+/1—2na + 42L2 < Jl—nage*%”a

where the bound above follows from the assumption 17 < ;75 and the inequality 1 —c < e™°.

From the update of mean-field min-max gradient descent (72), we can compute:
2
Ejen [[[og1 —2*|?] = Ejen [ka =B [VeV (2, yi)] — mH ]

S Epen [HU% —n VoV (2r, yr) — 95*||2]

where the inequality follows from Cauchy-Schwarz and using p;”" = p;”" @ p%"". Similarly, we can
compute:

2
b ] =B o 5t
< Bz [Hyk + 0 VyV(xk, yr) — y*HZ} :
Adding the two bounds above, and using G(z) = z + nb?(z) and G(z*) = z*, we can bound:
Eyor (21 = 217 < B [1G (k) = G| < e B |24 — 2711

1

where the last inequality follows from the property that G is M -Lipschitz with M < e™ 2%, Iterat-
ing the bound above gives:

Wa(p}", 02 = Epen |2k = 21| < e R By [[l20 = 2*1°] = " Wa(p3", 8.1)?

as desired. [ ]
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