
Proceedings of Machine Learning Research vol 291:1–78, 2025 38th Annual Conference on Learning Theory

On the Convergence of Min-Max Langevin Dynamics and Algorithm

Yang Cai YANG.CAI@YALE.EDU

Siddharth Mitra SIDDHARTH.MITRA@YALE.EDU

Xiuyuan Wang XIUYUAN.WANG@YALE.EDU

Andre Wibisono ANDRE.WIBISONO@YALE.EDU

Department of Computer Science, Yale University, New Haven, CT, USA

Editors: Nika Haghtalab and Ankur Moitra

Abstract
We study zero-sum games in the space of probability distributions over the Euclidean space Rd

with entropy regularization, in the setting when the interaction function between the players is
smooth and strongly convex-strongly concave. We prove an exponential convergence guarantee for
the mean-field min-max Langevin dynamics to compute the equilibrium distribution of the zero-
sum game. We also study the finite-particle approximation of the mean-field min-max Langevin
dynamics, both in continuous and discrete times. We prove biased convergence guarantees for the
continuous-time finite-particle min-max Langevin dynamics to the stationary mean-field equilib-
rium distribution with an explicit bias term which does not scale with the number of particles. We
also prove biased convergence guarantees for the discrete-time finite-particle min-max Langevin
algorithm to the stationary mean-field equilibrium distribution with an additional bias term which
scales with the step size and the number of particles. This provides an explicit iteration complexity
for the average particle along the finite-particle algorithm to approximately compute the equilib-
rium distribution of the zero-sum game.
Keywords: Zero-sum games, mean-field Langevin dynamics, finite-particle Langevin algorithm

1. Introduction

Many tasks in computer science, economics, and machine learning can be formulated as games in
which two or more agents compete to optimize their own objective functions. Examples include
Generative Adversarial Networks (GANs) (Goodfellow et al., 2020), adversarial learning (Madry
et al., 2018), reinforcement learning (Busoniu et al., 2008), and robust optimization (Rahimian and
Mehrotra, 2022). The solutions to these problems correspond to the Nash equilibria of these games.

Two-player zero-sum games, first studied by Borel (1921) and v. Neumann (1928), are arguably
the most fundamental and well-studied class of games in game theory. Unlike classical game the-
ory, where players are typically assumed to choose actions from a finite set, modern applications
– including those mentioned above – require players to select actions from a continuous set X ,
introducing substantial new challenges in both the existence and tractability of Nash equilibria.

Given a zero-sum game over action sets X and Y with payoff function V : X × Y → R:

min
x∈X

max
y∈Y

V (x, y), (1)

the celebrated Minimax Theorem by v. Neumann (1928) guarantees the existence of a pure (Nash)
equilibrium (x∗, y∗) of this game if X and Y are compact convex sets, and V (x, y) is convex in x
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and concave in y.1 Unfortunately, when the payoff function is general, such a pure equilibrium need
not exist. This motivates us to consider the more general solution concept of a mixed (Nash) equi-
librium, which is a probability distribution over actions, and which is guaranteed to exist even for
general payoff functions (Glicksberg, 1952). The problem of finding mixed equilibria in game (1)
can be recast as finding pure equilibria in the lifted game over the spaces of probability distributions
P(X ) and P(Y), where the payoff function is given by the expectation of the base payoff function:

min
ρX∈P(X )

max
ρY ∈P(Y)

EρX⊗ρY [V (X,Y )]. (2)

This has been studied in many works, including in (Hsieh et al., 2019) for GANs. The actions in
the lifted game (2) are probability distributions ρX and ρY over the base sets X and Y , so a pure
equilibrium for the lifted game (2) corresponds to a mixed equilibrium of the base game (1); we
refer to a pure equilibrium of the lifted game (2) as an equilibrium distribution.

Despite its universality, finding an equilibrium distribution for the game (2) may still be com-
putationally challenging, depending on the base function V . Recent works, including (Hsieh et al.,
2019; Domingo-Enrich et al., 2020; Ma and Ying, 2022; Lu, 2023; Ding et al., 2024; Kim et al.,
2024), have proposed regularizing the game by adding an entropy term to the payoff function with
some regularization parameter τ > 0; this results in a game (3) that we study below. The hope is
that the entropy regularization makes the equilibrium distribution easier to compute, similar to what
happens in the finite-dimensional problem.

In the game theory literature, the equilibrium distribution of the regularized game (3) with en-
tropy regularization is known as the quantal response equilibrium (QRE) defined by McKelvey
and Palfrey (1995).2 When the regularization parameter τ > 0 is small, the QRE provides a good
approximation to the equilibrium distribution of the original game (2). We also observe that the
QRE is the solution to one step of the proximal method with entropy regularization to compute the
equilibrium distribution of the original game (2); therefore, if we can compute the QRE efficiently,
then we can hope to run the conceptual prox method (Nemirovski, 2004) which may have a good
convergence property to the true equilibrium distribution of the game (2).

In this paper, we study this question in the setting when the payoff function V is strongly convex-
strongly concave. Two remarks are in order. First, in this setting, a pure equilibrium, i.e., an equi-
librium distribution that is a point mass, of the game (2) exists and is tractable (Facchinei and Pang,
2003). However, these algorithms apply only to finite-dimensional settings, making them unsuitable
for finding the QRE, an infinite-dimensional object. Second, in the space of probability distribu-
tions under the Wasserstein metric, the payoff function of the regularized game (3) is geodesically
strongly convex-strongly concave. In finite dimensions, for a strongly convex-strongly concave
min-max optimization problem, the min-max gradient flow and its straightforward discretization –
the gradient descent-ascent algorithm – converge at an exponential rate (Facchinei and Pang, 2003,
Chapter 12.4.2); see also Section H for a review of the deterministic game. In our setting, the min-
max Wasserstein gradient flow in the space of distributions corresponds to the mean-field min-max
Langevin dynamics, arguably the most natural dynamics for solving the game. Unlike in the finite-
dimensional case, the convergence properties of this natural dynamics, along with its particle and
time discretizations, remain unknown and were listed as an open question in (Wang and Chizat,
2024). All existing results for finding the QRE are for different settings or require modifications to

1. The finite-action setting is captured by choosing X and Y as simplices and V (x, y) as a bilinear function.
2. QRE is originally defined for finite action games. We study its natural extension to continuous games in this paper.
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the algorithms – see review below. This gap in our understanding motivates us to investigate the
following question:

Does the mean-field min-max Langevin dynamics converge for the regularized game (3)? If so,
what are the convergence rates of its particle approximation and its discrete-time implementation?

Related work Zero-sum games in the space of probability distributions have been studied in many
recent works, including (Hsieh et al., 2019; Domingo-Enrich et al., 2020; Cen et al., 2021; Wang
and Chizat, 2022; Ma and Ying, 2022; Lu, 2023; Kim et al., 2024; Lascu et al., 2023, 2024a,b;
Ding et al., 2024; Conger et al., 2024; An and Lu, 2025; Lu and Monmarché, 2025). We mention
a few works here, and refer the reader to Section A for further discussion. When the domains are
compact Riemannian manifolds, Domingo-Enrich et al. (2020) show that if the mean-field dynam-
ics converges, then it must converge to the equilibrium distribution. Ma and Ying (2022) and Lu
(2023) show the convergence of the continuous-time mean-field dynamics under timescale separa-
tion. Conger et al. (2024) study the more general setting of min-max and cooperative games in the
space of distributions. Notably, (Conger et al., 2024, Theorem 3.4) show that for zero-sum games
under strong convexity, the mean-field min-max Langevin dynamics has exponential convergence
to the equilibrium distribution; thus, they have answered the open question by (Wang and Chizat,
2024) in the continuous-time mean-field setting under strong convexity. In this work, we com-
plement the results by providing guarantees for the finite-particle dynamics and the discrete-time
algorithm. When the domains are Euclidean spaces, Kim et al. (2024) study zero-sum games with
entropy regularization with a more general convex-concave interaction functional using the mean-
field Langevin dynamics with a modified drift term replaced by the time average of the gradients;
they prove a continuous-time convergence rate, as well as a convergence analysis of the finite-
particle discrete-time algorithm. Ding et al. (2024) study a finite-particle discrete-time algorithm
that implements the mirror-prox primal-dual algorithm in the space of distributions, and show ex-
plicit convergence guarantees of the resulting algorithm, under the assumption that the base payoff
function is a bounded perturbation of a quadratic function.

1.1. Problem Setting

In this paper, we study zero-sum games in the space of probability distributions with interaction
term which is an expectation over a base interaction function, with entropy regularization. We work
on the unconstrained state space X = Y = Rd, for some dimension d ≥ 1. Our techniques and
results also generalize to X = RdX and Y = RdY where dX ̸= dY , but here we set dX = dY = d
for simplicity. Let P(Rd) denote the space of probability distributions over Rd which are absolutely
continuous with respect to the Lebesgue measure and have a finite second moment. Let H(ρ) =
−Eρ[log ρ] be the entropy functional.

Let V : Rd × Rd → R be a given base payoff function. We study the following min-max (or
zero-sum) game on the product space of probability distributions:

min
ρX∈P(Rd)

max
ρY ∈P(Rd)

Fτ (ρ
X , ρY ) (3)

where τ > 0 is a regularization parameter, and the function Fτ : P(Rd)×P(Rd) → R is defined as:

Fτ (ρ
X , ρY ) := EρX⊗ρY [V ]− τH(ρX) + τH(ρY ). (4)
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We say that a pair of probability distributions (ν̄X , ν̄Y ) ∈ P(Rd) × P(Rd) is an equilibrium
distribution for the min-max game (3) if the following holds for all (ρX , ρY ) ∈ P(Rd)× P(Rd):

Fτ (ν̄
X , ρY ) ≤ Fτ (ν̄

X , ν̄Y ) ≤ Fτ (ρ
X , ν̄Y ). (5)

The duality gap DG : P(Rd)× P(Rd) → R of the min-max game (3) is defined by:

DG(ρX , ρY ) := max
ρ̃Y ∈P(Rd)

Fτ (ρ
X , ρ̃Y )− min

ρ̃X∈P(Rd)
Fτ (ρ̃

X , ρY ). (6)

In the literature, this is also known as the Nikaido-Isoda error (Nikaidô and Isoda, 1955). Note that
by construction, DG(ρX , ρY ) ≥ 0 for all ρX , ρY ∈ P(Rd), and furthermore, DG(ρX , ρY ) = 0 if
and only if (ρX , ρY ) is an equilibrium distribution for the game (3).

We are interested in characterizing the existence and uniqueness of the equilibrium distribution,
as well as algorithms for approximately computing the equilibrium distribution in practice. We
study the case when the payoff function V (x, y) is strongly convex in x, strongly concave in y, and
has bounded second derivatives, see Assumption 1. In this case, there exists a unique equilibrium
distribution (ν̄X , ν̄Y ); see Section 3.

We now provide details for the dynamics and algorithms we study.

(1) The mean-field dynamics: This is a pair of stochastic processes (X̄t)t≥0 and (Ȳt)t≥0 in Rd

which evolve via the following mean-field min-max Langevin dynamics for all t ≥ 0:

dX̄t = −Eρ̄Yt
[∇xV (X̄t, Ȳt)] dt+

√
2τ dWX

t (7a)

dȲt = Eρ̄Xt
[∇yV (X̄t, Ȳt)] dt+

√
2τ dW Y

t (7b)

where X̄t ∼ ρ̄Xt and Ȳt ∼ ρ̄Yt , and where (WX
t )t≥0 and (W Y

t )t≥0 are independent standard Brow-
nian motion in Rd. This comes from running the gradient flow dynamics in the space of probability
distributions with the Wasserstein metric; see Section C.1 for derivation. The dynamics (7) is a
mean-field system because the evolution of X̄t depends on the distribution ρ̄Yt , and similarly, the
evolution of Ȳt depends on ρ̄Xt . However, note the dependence is only via their expectation, so
in the mean-field system above, X̄t and Ȳt evolve independently. Therefore, if we initialize from
independent (X̄0, Ȳ0) ∼ ρ̄X0 ⊗ ρ̄Y0 , then (X̄t, Ȳt) ∼ ρ̄Xt ⊗ ρ̄Yt remains independent for all t ≥ 0.

Main Result 1: When the payoff function V is strongly concave-strongly convex, we show
the mean-field dynamics (ρ̄Xt , ρ̄Yt ) converges to the equilibrium distribution (ν̄X , ν̄Y ) expo-
nentially fast in terms of duality gap, KL divergence, and Wasserstein distance; see Theorem 3.

However, the mean-field system is an idealized algorithm that we cannot exactly implement due
to its mean-field dependence and continuous-time nature. Thus, we study its approximations.

(2) The particle dynamics: This is an approximation of the mean-field dynamics (7) by replacing
X̄t ∼ ρ̄Xt and Ȳt ∼ ρ̄Yt by N ≥ 1 particles Xt = (X1

t , . . . , X
N
t ) ∼ ρXt and Yt = (Y 1

t , . . . , Y
N
t ) ∼

ρYt in RdN , which jointly evolve via the following, for all t ≥ 0 and for all i ∈ [N ] := {1, . . . , N}:
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dX i
t = − 1

N

∑
j∈[N ]

∇xV (Xi
t , Y

j
t ) dt+

√
2τ dWX,i

t (8a)

dY i
t =

1

N

∑
j∈[N ]

∇yV (Xj
t , Y

i
t ) dt+

√
2τ dW Y,i

t (8b)

where (WX,i
t )t≥0 and (W Y,i

t )t≥0 are independent standard Brownian motions in Rd, for i ∈ [N ].
Note the above is not a mean-field system, but a standard system of interacting stochastic processes.
The distribution of Zt := (Xt,Yt) ∼ ρZt in R2dN is in general not independent: ρZt ̸= ρXt ⊗ ρYt .
Note that in the particle dynamics (8), we use the empirical mean from the N particles to approx-
imate the true expectation in the mean-field dynamics. Thus, as N → ∞, we expect the particle
dynamics (8) to become closer to the mean-field dynamics. As t → ∞, the particle dynamics (8)
converges to a stationary distribution (X∞,Y∞) ∼ ρZ∞, which we expect to be close to the inde-
pendent product of the stationary mean-field distribution ν̄Z = (ν̄X)⊗N ⊗ (ν̄Y )⊗N .

Main Result 2: For strongly convex-strongly concave and smooth V , we prove a biased con-
vergence guarantee of ρZt along the finite-particle dynamics (8) to the stationary mean-field
distribution ν̄Z, with a bias that is independent of the number of particles N ; see Theorem 4.

(3) The particle algorithm: This is a time discretization of the particle dynamics (8), which
maintains a collection of particles xk = (x1k, . . . , x

N
k ) ∼ ρx,ηk and yk = (y1k, . . . , y

N
k ) ∼ ρy,ηk in

RdN and evolves them via the following discrete-time update, for all k ≥ 0 and for all i ∈ [N ]:

xik+1 = xik − η · 1

N

∑
j∈[N ]

∇xV (xik, y
j
k) +

√
2τη ζx,ik (9a)

yik+1 = yik + η · 1

N

∑
j∈[N ]

∇yV (xjk, y
i
k) +

√
2τη ζy,ik (9b)

where η > 0 is a fixed step size, and ζx,1k , . . . , ζx,Nk , ζy,1k , . . . , ζx,Nk ∼ N (0, I) are independent stan-
dard Gaussian random variables in Rd. Similar to standard discretization of the Langevin dynamics,
this discrete-time algorithm is biased, i.e., as k → ∞, the distribution of zk = (xk,yk) ∼ ρz,ηk

converges to some distribution ρz,η∞ which is different from the stationary distribution ρZ∞ of the
continuous-time particle dynamics (8).

Main Result 3: For strongly convex-strongly concave and smooth V , we prove a biased con-
vergence guarantee for ρz,ηk along the discrete-time algorithm (9) to the stationary mean-field
distribution ν̄Z, with a bias that scales with step size η and the number of particles N ; see The-
orem 6. This provides an explicit iteration complexity guarantee for the average particle of the
algorithm (9) to approximate the equilibrium distribution ν̄Z for the game (3); see Corollary 8.
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Organization: We provide definitions and assumptions in Section 2. We discuss the properties of
the equilibrium distribution and the duality gap in Section 3. We discuss the convergence analysis
of the mean-field min-max Langevin dynamics in Section 4. We discuss the convergence analysis of
the continuous-time finite-particle min-max Langevin dynamics in Section 5, and the discrete-time
finite-particle min-max Langevin algorithm in Section 6. We conclude with discussion in Section 7.
We provide additional details and proofs in the appendix.

2. Preliminaries

2.1. Notation and Definitions

Let P(Rd) denote the space of probability distributions ρ over Rd which are absolutely continuous
with respect to the Lebesgue measure and which have finite second moment: Eρ[∥X∥2] < ∞. We
identify a probability distribution ρ ∈ P(Rd) with its probability density function (Radon-Nikodym
derivative) ρ : Rd → (0,∞) with respect to the Lebesgue measure.

Let H : P(Rd) → R be the entropy functional:

H(ρ) = −Eρ[log ρ] = −
∫
Rd

ρ(x) log ρ(x) dx.

The Wasserstein W2 distance between probability distributions ρ, ν ∈ P(Rd) is defined by:

W2(ρ, ν) = inf
γ∈Π(ρ,ν)

E
[
∥X − Y ∥2

]1/2
,

where the infimum is over all couplings between ρ and ν, i.e., joint distributions of (X,Y ) ∼ γ
with the correct marginal distributions X ∼ ρ and Y ∼ ν.

For probability distributions ρ, ν ∈ P(Rd) with ρ ≪ ν (i.e., if ν(x) = 0, then ρ(x) = 0), the
Kullback-Leibler (KL) divergence or the relative entropy of ρ with respect to ν is defined by:

KL(ρ ∥ ν) = Eρ

[
log

ρ

ν

]
=

∫
Rd

ρ(x) log
ρ(x)

ν(x)
dx.

If ρ, ν ∈ P(Rd) have differentiable density functions, then the relative Fisher information of ρ
with respect to ν is defined by:

FI(ρ ∥ ν) = Eρ

[∥∥∥∇ log
ρ

ν

∥∥∥2] = ∫
Rd

ρ(x)

∥∥∥∥∇ log
ρ(x)

ν(x)

∥∥∥∥2 dx.

We say a probability distribution ν is α-strongly log-concave (α-SLC) for some α > 0 if the
negative log-density − log ν : Rd → R is α-strongly convex; if log ν is twice differentiable, then
this is equivalent to −∇2 log ν(x) ⪰ αI for all x ∈ Rd.

We say ν satisfies α-log-Sobolev inequality (α-LSI) for some α > 0 if for all probability distri-
bution ρ, the following inequality holds:

FI(ρ ∥ ν) ≥ 2αKL(ρ ∥ ν).
We say ν satisfies α-Talagrand inequality (α-TI) for some α > 0 if for all probability distribu-

tion ρ, the following inequality holds:

KL(ρ ∥ ν) ≥ α

2
W2(ρ, ν)

2.

We recall that if ν is α-SLC, then ν also satisfies α-LSI; furthermore, if ν satisfies α-LSI, then
ν also satisfies α-TI, see (Otto and Villani, 2000).
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2.2. Assumptions

Throughout this paper, we make the following assumption.

Assumption 1 The base interaction function V : Rd × Rd → R is four-times continuously differ-
entiable, α-strongly convex in the first argument, α-strongly concave in the second argument, and
is L-smooth of the second order, for some 0 < α ≤ L < ∞. That is, for all x, y ∈ Rd:

∇2
xxV (x, y) ⪰ αI, −∇2

yyV (x, y) ⪰ αI, and ∥∇2V (x, y)∥op ≤ L.

In particular, (x, y) 7→ ∇V (x, y) is L-Lipschitz for all x, y ∈ Rd.

We note the assumption that V be four-times differentiable is to ensure that our computations
below are justified, in particular when using integration by parts such as in the proof of Lemma 9.

3. Properties of the Equilibrium Distribution and Duality Gap

We define the best-response maps ΦX : P(Y) → P(X ) and ΦY : P(X ) → P(Y) by:

ΦX(ρY ) = νX and ΦY (ρX) = νY

for all ρX , ρY ∈ P(Rd), where νX , νY ∈ P(Rd) are distributions with density given by:

νX(x) ∝ exp
(
−τ−1EρY [V (x, Y )]

)
, (10a)

νY (y) ∝ exp
(
τ−1EρX [V (X, y)]

)
. (10b)

Note that if we assume V is strongly convex-strongly concave, then the maps above are well-defined,
since the right-hand sides are integrable over Rd. More generally, we need some growth condition
on V to ensure the above are well-defined. The term best-response is justified by the following
property. We provide the proof of Lemma 1 in Section B.1.

Lemma 1 For all ρX , ρY ∈ P(Rd), with νX = ΦX(ρY ) and νY = ΦY (ρX), we have:

νX = arg min
ρ̃X∈P(Rd)

Fτ (ρ̃
X , ρY ),

νY = arg max
ρ̃Y ∈P(Rd)

Fτ (ρ
X , ρ̃Y ).

Furthermore, the duality gap is given by:

DG(ρX , ρY ) = τ KL(ρX ∥ νX) + τ KL(ρY ∥ νY ).

Therefore, the equilibrium distribution (ν̄X , ν̄Y ), which minimizes the duality gap, is a fixed
point of the best-response maps:

ΦX(ν̄Y ) = ν̄X and ΦY (ν̄X) = ν̄Y .

We have the following property, which guarantees that if we can minimize the duality gap, then we
also have convergence of the iterates to the equilibrium distribution, both in KL divergence and in
Wasserstein distance. The uniqueness of the equilibrium distribution follows from our convergence
guarantee of the mean-field dynamics presented in Theorem 3. The bound (11) below is the same
as stated in (Wang and Chizat, 2024, Eq. (4)) and (Kim et al., 2024, Lemma 3.5); the first inequality
in (11) follows from Talagrand’s inequality, and the second inequality follows from the optimality
property of the duality gap. We provide the proof of Lemma 2 in Section B.2.
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Lemma 2 Assume Assumption 1. Then there exists a unique equilibrium distribution (ν̄X , ν̄Y ) ∈
P(Rd)×P(Rd) for the game (3), and the distributions ν̄X and ν̄Y are (α/τ)-strongly log-concave.
Furthermore, for all (ρX , ρY ) ∈ P(Rd)× P(Rd):

α

2

(
W2(ρ

X , ν̄X)2 +W2(ρ
Y , ν̄Y )2

)
≤ τ

(
KL(ρX ∥ ν̄X) + KL(ρY ∥ ν̄Y )

)
≤ DG(ρX , ρY ). (11)

4. Analysis of the Mean-Field Min-Max Langevin Dynamics

Given a pair of random variables X̄t ∼ ρ̄Xt and Ȳt ∼ ρ̄Yt in Rd, we can define the joint random
variable Z̄t = (X̄t, Ȳt) ∈ R2d which has an independent joint distribution Z̄t ∼ ρ̄Zt := ρ̄Xt ⊗ ρ̄Yt .
Define the independent product of the best-response distributions

ν̄Zt := ν̄Xt ⊗ ν̄Yt

where ν̄Xt = ΦX(ρ̄Yt ) and ν̄Yt = ΦY (ρ̄Xt ). We observe that if X̄t ∼ ρ̄Xt and Ȳt ∼ ρ̄Yt evolve
following the mean-field min-max Langevin dynamics (7), then the joint variable Z̄t ∼ ρ̄Zt evolves
following the Langevin dynamics targeting its best-response distribution ν̄Zt :

dZ̄t = τ∇ log ν̄Zt (Z̄t) dt+
√
2τ dWZ

t (12)

where WZ
t = (WX

t ,W Y
t ) is the standard Brownian motion in R2d. This follows from the definition

of the best-response distributions (10) and computing their score functions.
We have the following convergence results for the mean-field min-max Langevin dynamics. We

show that the relative Fisher information between the iterates and their best-response distributions
converges exponentially fast along the mean-field Langevin dynamics (Theorem 3 part (1)). This
is analogous to the result in the deterministic setting where the squared norm of the velocity vector
field converges exponentially fast along the min-max gradient flow (see Theorem 35 in Section H
for a review). For the mean-field min-max Langevin dynamics, which is the min-max Wasserstein
gradient flow, the squared Wasserstein norm of the velocity of ρ̄Zt is precisely the relative Fisher
information between ρ̄Zt and its best-response distribution ν̄Zt , which motivates our result below.
The convergence in relative Fisher information also implies the convergence in the duality gap or
KL divergence, by the log-Sobolev inequality (Theorem 3 part (2)).

Below, we write DG(ρ̄Zt ) ≡ DG(ρ̄Xt , ρ̄Yt ). We provide the proof of Theorem 3 in Section C.4.

Theorem 3 Assume Assumption 1. Suppose Z̄t ∼ ρ̄Zt evolves following the mean-field dynam-
ics (12) in the joint space R2d from Z̄0 ∼ ρ̄Z0 ∈ P(R2d), and let ν̄Zt be the best-response distribution
as defined above. Then for all t ≥ 0, we have the following properties:

1. Convergence in relative Fisher information:

FI(ρ̄Zt ∥ ν̄Zt ) ≤ e−2αt FI(ρ̄Z0 ∥ ν̄Z0 ).

2. Convergence in duality gap:

DG(ρ̄Zt ) = τ KL(ρ̄Zt ∥ ν̄Zt ) ≤ e−2αt τ
2

2α
FI(ρ̄Z0 ∥ ν̄Z0 ).
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Let ν̄Z := ν̄X ⊗ ν̄Y be the stationary distribution for the mean-field dynamics in the joint space
R2d. Note that by the bound (11) from Lemma 2, the convergence rate in duality gap above also
implies the following convergence guarantees between the iterate ρ̄Zt of the mean-field dynamics
and the stationary mean-field distribution ν̄Z :

α

2
W2(ρ̄

Z
t , ν̄

Z)2 ≤ τ KL(ρ̄Zt ∥ ν̄Z) ≤ DG(ρ̄Zt ) ≤ e−2αt τ
2

2α
FI(ρ̄Z0 ∥ ν̄Z0 ). (13)

The bound above is in terms of the initial relative Fisher information of ρ̄Z0 to its best-response
distribution. When we choose a Gaussian initial distribution ρ̄Z0 = N (0, τ2

L2 I), we can bound
FI(ρ̄Z0 ∥ ν̄Z0 ) = O(dL

2

τ2
); see Lemma 11 in Section C.4.1.

We note that under Assumption 1, one can show that the mean-field dynamics (12) is in fact
an exponential contraction in the W2 distance, which implies W2(ρ̄

Z
t , ν̄

Z)2 ≤ e−2αtW2(ρ̄
Z
0 , ν̄

Z)2,
see (Conger et al., 2024, Proposition 7.3). We note that (Conger et al., 2024, Lemma 7.2) also shows
the exponential convergence of the dissipation functional, which is the same as the relative Fisher
information above in our setting. We provide a self-contained proof of Theorem 3 in Section C.4;
in particular, we derive an identity of the time derivative of the relative Fisher information along the
mean-field Langevin dynamics, see Lemma 9 in Section C.2.

5. Analysis of the Finite-Particle Min-Max Langevin Dynamics

Here we study a finite-particle approximation of the mean-field min-max Langevin dynamics (7)
where we replace each X̄t ∈ Rd and Ȳt ∈ Rd with N ≥ 1 particles X1

t , . . . , X
N
t ∈ Rd and

Y 1
t , . . . , Y

N
t ∈ Rd, which evolve following the finite-particle system of dynamics (8) where we use

the empirical mean from the particles in place of the true expectation in the drift terms of (7).
We can write the finite-particle dynamics (8) in terms of the joint vectors Xt = (X1

t , . . . , X
N
t ) ∈

RdN and Yt = (Y 1
t , . . . , Y

N
t ) ∈ RdN as:

dXt = bX(Xt,Yt) dt+
√
2τ dWX

t (14a)

dYt = bY(Xt,Yt) dt+
√
2τ dWY

t (14b)

where (WX
t )t≥0 and (WY

t )t≥0 are independent standard Brownian motions in RdN . In the above,
we have defined the vector fields bX : RdN ×RdN → RdN and bY : RdN ×RdN → RdN by, for all
x = (x1, . . . , xN ) ∈ RdN and y = (y1, . . . , yN ) ∈ RdN :

bX(x,y) =

 bX(x1,y)
· · ·

bX(xN ,y)

 :=

− 1
N

∑
j∈[N ]∇xV (x1, yj)

· · ·
− 1

N

∑
j∈[N ]∇xV (xN , yj)

 , (15a)

bY(x,y) =

 bY (x, y1)
· · ·

bY (x, yN )

 :=

 1
N

∑
j∈[N ]∇yV (xj , y1)

· · ·
1
N

∑
j∈[N ]∇yV (xj , yN )

 . (15b)

We can further write the finite-particle dynamics (14) in terms of the joint random variable
Zt = (Xt,Yt) ∈ R2dN as:

dZt = bZ(Zt) dt+
√
2τ dWZ

t (16)

9
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where WZ
t = (WX

t ,WY
t ) is the standard Brownian motion in R2dN , and we have defined the vector

field bZ : R2dN → R2dN by, for all z = (x,y) ∈ R2dN :

bZ(z) =

(
bX(x,y)
bY(x,y)

)
. (17)

5.1. Biased Convergence of Finite-Particle Dynamics to Stationary Mean-Field Distribution

Recall ν̄Z = ν̄X ⊗ ν̄Y ∈ P(R2d) is the stationary distribution for the base mean-field dynamics (7).
We define the tensorized stationary mean-field distribution:

ν̄Z := (ν̄X)⊗N ⊗ (ν̄Y )⊗N ∈ P(R2dN ). (18)

We can show the biased convergence guarantee of the finite-particle dynamics (16) to the ten-
sorized mean-field stationary distribution (18) in Theorem 4. A key observation is that the drift
term in the finite-particle dynamics (16) is dissipative (see Lemma 12 in Section D.1); this allows
us to perform a synchronous coupling analysis against the stationary mean-field dynamics to show
a biased convergence guarantee in W2 distance, which we leverage to show a biased convergence
guarantee in KL divergence via a time derivative calculation along simultaneous diffusion pro-
cesses. A careful calculation shows that we can control the bias without dependence on the number
of particles N (see Lemma 15 in Section D.2). We provide the proof of Theorem 4 in Section E.1.

Theorem 4 Assume Assumption 1. Suppose Zt ∼ ρZt evolves following the finite-particle dynam-
ics (16) in R2dN from Z̄0 ∼ ρZ0 ∈ P(R2dN ). Then for all t ≥ 0:

W2(ρ
Z
t , ν̄

Z)2 ≤ e−
3
2
αtW2(ρ

Z
0 , ν̄

Z)2 +
2L2

α2
Varν̄Z (Z̄)

KL(ρZt ∥ ν̄Z) ≤ e−αt

(
KL
(
ρZ0 ∥ ν̄Z

)
+

2L2

ατ
W2(ρ

Z
0 , ν̄

Z)2
)
+

4L4

α3τ
Varν̄Z (Z̄).

By taking t → ∞, we obtain the following estimates on the bias of the stationary distribution
ρZ∞ of the finite-particle dynamics (16) from the tensorized stationary mean-field distribution ν̄Z:

W2(ρ
Z
∞, ν̄Z)2 ≤ 2L2

α2
Varν̄Z (Z̄),

KL(ρZ∞ ∥ ν̄Z) ≤ 4L4

α3τ
Varν̄Z (Z̄).

We can bound the variance by Varν̄Z (Z̄) ≤ (2τd)/α, see Lemma 24. Therefore, note that the bias
terms above do not scale with the number of particles N . When we consider the average particle
below, this implies a bias of order O(1/N), see Corollary 5.

We can also show the unbiased exponential convergence guarantees of the iterate ρZt of the
finite-particle dynamics (16) to its stationary distribution ρZ∞, see Theorem 33 in Section G.2.

5.2. Biased Convergence of the Average Particle of the Finite-Particle Dynamics

Suppose Zt = (Xt,Yt) = (X1
t , . . . , X

N
t , Y 1

t , . . . , Y
N
t ) ∼ ρZt evolves following the finite-particle

dynamics (16) in R2dN . We define the average particle to be the random variable ZI
t = (XI

t , Y
I
t ) ∈

10
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R2d, where I ∼ Unif([N ]) is a uniformly chosen random index. Note the distribution of the average
particle ZI

t ∼ ρZ,avgt (including the randomization over indices) is:

ρZ,avgt =
1

N

∑
i∈[N ]

ρZ,it

where ρZ,it is the marginal distribution of Zi
t = (Xi

t , Y
i
t ) ∈ R2d from the joint vector Zt ∼ ρZt .

We have the following biased convergence guarantee of the average particle along the finite-
particle dynamics (16). We provide the proof of Corollary 5 in Section E.2.

Corollary 5 Assume Assumption 1. Suppose Zt ∼ ρZt evolves following the finite-particle dynam-
ics (16) in R2dN , and let ZI

t ∼ ρZ,avgt be the average particle as defined above. For all t ≥ 0:

KL(ρZ,avgt ∥ ν̄Z) ≤ 1

N
e−αt

(
KL
(
ρZ0 ∥ ν̄Z

)
+

2L2

ατ
W2(ρ

Z
0 , ν̄

Z)2
)
+

4L4

α3τN
Varν̄Z (Z̄).

By taking t → ∞, we see that the limiting distribution ρZ,avg∞ of the average particle satisfies:

KL(ρZ,avg∞ ∥ ν̄Z) ≤ 4L4

α3τN
Varν̄Z (Z̄).

This shows that as N → ∞ and t → ∞, the average particle of the finite-particle dynamics (16) in-
deed converges to the stationary mean-field distribution ν̄Z , which is the equilibrium distribution for
the game (3) that we wish to compute. However, this is still in the idealized continuous-time setting.
To obtain a meaningful practical guarantee, we study the discrete-time algorithm in Section 6.

6. Analysis of the Discrete-Time Finite-Particle Min-Max Langevin Algorithm

We study a time discretization of the finite-particle dynamics (8) into the discrete-time algorithm (9).
We can write the algorithm (9) in terms of the joint vectors xk = (x1k, . . . , x

N
k ) ∈ RdN and yk =

(y1k, . . . , y
N
k ) ∈ RdN which follow the update:

xk+1 = xk + ηbX(xk,yk) +
√

2τη ζxk (19a)

yk+1 = yk + ηbY(xk,yk) +
√

2τη ζyk (19b)

where η > 0 is step size, ζxk , ζ
y
k ∼ N (0, I) are independent standard Gaussian random variables in

RdN , and where we have used the same vector fields bX and bY as defined in (15).
We can further write the algorithm (19) in terms of the joint random variable zk = (xk,yk) ∈

R2dN which follows the update:

zk+1 = zk + ηbZ(zk) +
√

2τη ζzk (20)

where η > 0 is step size, ζzk ∼ N (0, I) is an independent standard Gaussian random variable in
R2dN , and where we have used the same vector field bZ as defined in (17).

11
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6.1. Biased Convergence of Finite-Particle Algorithm to Stationary Mean-Field Distribution

We can prove the following biased convergence guarantees of the finite-particle algorithm (20) to
the tensorized stationary mean-field distribution ν̄Z ∈ P(R2dN ) defined in (18). Our technique is to
show a one-step biased contraction guarantee in W2 distance along the discrete-time algorithm (20),
using a continuous-time interpolation of each step of the algorithm (20) as the solution to a stochas-
tic process, and performing a synchronous coupling analysis against the stationary mean-field dy-
namics; see Lemma 22 in Section F.2.1. We leverage this to show a one-step biased contraction
guarantee in KL divergence along the algorithm (20), see Lemma 23 in Section F.2.2, and solve
the recursions to conclude the biased convergence guarantees stated in Theorem 6. We provide the
proof of Theorem 6 in Section F.3.

Note that the bias terms in Theorem 6 below match the continuous-time bias from Theorem 4,
with an additional bias term that scales with the step size η as well as the number of particles N ,
which comes from the dimension of the space R2dN where the algorithm operates. This additional
bias term that scales with η is consistent with the analysis of simple discretization of the Langevin
dynamics such as the Unadjusted Langevin Algorithm, see e.g., (Vempala and Wibisono, 2019).

Theorem 6 Assume Assumption 1. Suppose zk ∼ ρz,ηk evolves via the finite-particle algorithm (20)
in R2dN with step size 0 < η ≤ α

64L2 from z0 ∼ ρz,η0 ∈ P(R2dN ). Then for all k ≥ 0:

W2(ρ
z,η
k , ν̄Z)2 ≤ e−

3
2
αηk W2(ρ

z,η
0 , ν̄Z)2 +

8L2

α2

(
Varν̄Z (Z̄) + 64 τηdN

)
KL(ρz,ηk ∥ ν̄Z) ≤ e−αηk

(
KL(ρz,η0 ∥ ν̄Z) + 9L2

ατ
W2(ρ

z,η
0 , ν̄Z)2

)
+

45L4

α3τ

(
Varν̄Z (Z̄) + 55 ητdN

)
.

As the finite-particle algorithm (20) is practically implementable, this provides a concrete al-
gorithm to approximately compute the stationary mean-field distribution, with an explicit iteration
complexity which we characterize in Corollary 8 below.

We can also show the unbiased exponential convergence guarantees of the iterate ρz,ηk of the
finite-particle algorithm (20) to its stationary distribution ρz,η∞ , see Theorem 34 in Section G.3.

6.2. Biased Convergence of the Average Particle of the Finite-Particle Algorithm

Suppose zk = (xk,yk) = (x1k, . . . , x
N
k , y1k, . . . , y

N
k ) ∼ ρz,ηk evolves following the finite-particle

algorithm (20) in R2dN . As before, we define the average particle to be the random variable zIk =
(xIk, y

I
k) ∈ R2d, where I ∼ Unif([N ]) is a uniformly chosen random index. The distribution of the

average particle zIk ∼ ρz,η,avgk (including the randomization over indices) is:

ρz,η,avgk =
1

N

∑
i∈[N ]

ρz,η,ik

where ρz,η,ik is the marginal distribution of zik = (xik, y
i
k) ∈ R2d from the joint vector zk ∼ ρz,ηk .

We have the following biased convergence guarantee of the average particle along the finite-
particle algorithm (20). We provide the proof of Corollary 7 in Section F.4.

Corollary 7 Assume Assumption 1. Suppose zk ∼ ρz,ηk evolves following the finite-particle algo-
rithm (20) in R2dN with step size 0 < η ≤ α

64L2 , and let zIk ∼ ρz,η,avgk be the average particle as

12
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defined above. Then for all k ≥ 0:

KL(ρz,η,avgk ∥ ν̄Z) ≤ e−αηk

N

(
KL(ρz,η0 ∥ ν̄Z) + 9L2

ατ
W2(ρ

z,η
0 , ν̄Z)2

)
+

45L4

α3τN
Varν̄Z (Z̄) + 2475

ηdL4

α3
.

By taking k → ∞, we see that the limiting distribution ρz,η,avg∞ of the average particle satisfies:

KL(ρz,η,avg∞ ∥ ν̄Z) ≤ 45
L4

α3τN
Varν̄Z (Z̄) + 2475

ηdL4

α3
.

This shows that the average particle of the N -particle algorithm approximately converges to the
stationary mean-field distribution ν̄Z , up to a bias term which scales with step size η and inversely
with the number of particles 1/N . Thus, we can make the bias arbitrarily small by choosing a
sufficiently large number of particles N and a sufficiently small step size η.

The result above implies the following iteration complexity guarantee for the average particle of
the finite-particle algorithm (20) to reach an arbitrary precision in KL divergence to the stationary
mean-field distribution ν̄Z = ν̄X ⊗ ν̄Y , which is the equilibrium distribution for the game (3) that
we wish to compute. We provide the proof of Corollary 8 in Section F.5.3.

Corollary 8 Assume Assumption 1. For any regularization parameter τ > 0, and given any small
error threshold ε > 0, suppose we do the following:

1. Run the min-max gradient descent algorithm (65) from z̃0 = (0, 0) ∈ R2d with step size
ηGD = α

4L2 for

kGD ≥ 4L2

α2
log

α3∥z∗∥2

τdL2

iterations, to obtain a final point mZ = z̃kGD ∈ R2d.

2. Define the Gaussian distribution γZ = N (mZ , τ
LI) on R2d, and initialize the algorithm (20)

from z0 = (z10 , . . . , z
N
0 ) ∈ R2dN where z10 , . . . , z

N
0 ∼ γZ are i.i.d., so z0 ∼ ρz,η0 = (γZ)⊗N .

3. Run the finite-particle algorithm (20) with step size and number of particles:

η =
ε α3

7500 dL4
, N ≥ 270 dL4

ε α4
.

Then the average particle zIk ∼ ρz,η,avgk of the algorithm (20) satisfies KL(ρz,η,avgk ∥ ν̄Z) ≤ ε when-
ever the number of iterations k satisfies:

k ≥ 7500 dL4

ε α4
log

684 dL6

ε α6
.

7. Discussion

In this paper, we study zero-sum games in the space of probability distributions over Rd with en-
tropy regularization and a base interaction function which is smooth and strongly convex-strongly
concave. We show the exponential convergence guarantee of the mean-field min-max Langevin
dynamics to the equilibrium distribution in continuous time. We also show the biased convergence
guarantees for the finite-particle dynamics in continuous time, and the finite-particle algorithm in

13
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discrete time, to the equilibrium (stationary mean-field) distribution. We also provide an explicit
iteration complexity for the average particle of the finite-particle algorithm to approximately com-
pute the equilibrium distribution. We use standard tools from the analysis of stochastic processes
and their time discretization, which have been used for analyzing sampling algorithms.

Our results answer a special case of the open question posed by (Wang and Chizat, 2024) in the
simple setting of Euclidean case under strong convexity assumption. There are many directions one
can study toward the more general open question. It would be interesting to study how to extend
our results to weaken the strong convexity assumption, for example to allow weak convexity or
local non-convexity of the interaction function, or only assuming isoperimetry of the equilibrium
distribution. In our analysis, the strong convexity assumption is crucial to show the exponential con-
vergence guarantee of the mean-field dynamics and to provide biased convergence guarantees for
the finite-particle systems in W2 distance, which we leverage to obtain biased convergence guaran-
tees in KL divergence. It would also be interesting to study the more general setting of constrained
domains or the manifold setting without convexity assumptions. For constrained domains, we may
have to add a reflection or projection step to the Langevin dynamics; or we can try to adapt the idea
of the Proximal Sampler from sampling, see e.g., (Lee et al., 2021; Chen et al., 2022).
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Appendix A. Additional Related Work

Zero-sum games in the space of probability distributions have been studied in many recent works,
including (Hsieh et al., 2019; Domingo-Enrich et al., 2020; Cen et al., 2021; Wang and Chizat,
2022; Ma and Ying, 2022; Lu, 2023; Kim et al., 2024; Lascu et al., 2023, 2024a,b; Ding et al.,
2024; Conger et al., 2024; An and Lu, 2025; Lu and Monmarché, 2025). Our main motivation in
this work comes from the open problem by Wang and Chizat (2024), who pose the question of
studying the convergence guarantees of the simple mean-field min-max Langevin dynamics and its
particle approximations for zero-sum games in the space of distributions, in particular without using
two timescales or modifying the dynamics or algorithm.

The question posed by Wang and Chizat (2024) is for a general setting on a manifold, without
convexity assumption on the interaction function. In this work, we contribute an answer to this ques-
tion for the simple case on the unconstrained Euclidean space with a strong convexity assumption
on the base interaction function. From the perspective of optimization on the space of probabil-
ity distributions under the Wasserstein metric, this makes the payoff function Fτ in (4) a strongly
convex-strongly concave function, so it is natural to expect that the min-max gradient flow in the
space of distributions—which is exactly the mean-field min-max Langevin dynamics (7)—to con-
verge exponentially fast. However, precise results in this simple setting taking into account particle
approximation and time discretization seem to be previously unknown. We establish these results
in this paper to provide a baseline toward understanding the more general question posed by Wang
and Chizat (2024).

We review a few works that are the most related to our work; see also (Wang and Chizat, 2024)
and the references therein. Domingo-Enrich et al. (2020) study the setting when the domains are
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compact Riemannian manifolds, and show a conditional convergence result that if the mean-field
dynamics converges, then it converges to the equilibrium distribution of the game. Ma and Ying
(2022) and Lu (2023) also study the compact manifold setting with two-timescale dynamics. Ma
and Ying (2022) study the quasistatic regime where one player is always at optimality, and establish
the asymptotic convergence of the mean-field dynamics to the equilibrium distribution; they also
study the finite-particle and discrete-time approximation, without convergence analysis. Lu (2023)
study the two-timescale dynamics with finite timescale separation, and establish the exponential
convergence guarantees of the mean-field dynamics to the equilibrium distribution. In the compact
manifold setting, only smoothness assumptions on the interaction function are needed.

When the domains are Euclidean spaces, some convexity or integrability assumptions are needed.
Kim et al. (2024) consider a more general setting of zero-sum games with entropy regularization
where the interaction functional on the space of distributions is convex-concave (whereas in our
setting (3) the interaction functional is bilinear since it is an expectation over a base function); they
study a modified mean-field Langevin averaged-gradient dynamics where the drift term uses a time
average of the gradients over the iterates, and show a continuous-time convergence rate, as well as
a convergence analysis of the finite-particle discrete-time algorithm. Ding et al. (2024) consider
the setting when the base interaction function is a bounded perturbation of a quadratic function;
they study a finite-particle discrete-time algorithm that implements the mirror-prox primal-dual al-
gorithm in the space of distributions, which requires an inner loop running a sampling algorithm to
implement each iteration, and show explicit convergence guarantees of the resulting algorithm.

The work of Conger et al. (2024) study a very general setting of coupled Wasserstein gradi-
ent flows for min-max and cooperative games in the space of distributions, with payoff functionals
which include additional interaction energy terms, which are not present in our setting. They show
convergence guarantees of the mean-field dynamics in continuous time under convexity assump-
tions, utilizing the convexity structure in the Wasserstein space of distributions. A special setting of
their result (Conger et al., 2024, Theorem 3.4), for zero-sum games with a bilinear interaction func-
tional as in (3) with a strongly convex-strongly concave base interaction function, already shows the
exponential convergence guarantee of the mean-field dynamics to the equilibrium distribution, as in
our Theorem 3, and thus they have answered the open question by Wang and Chizat (2024) for the
mean-field setting with strongly convex interaction. However, Conger et al. (2024) focuses on the
continuous-time mean-field analysis, and in this work we complement the results by considering
finite-particle approximation and discrete-time analysis.

Appendix B. Proofs for the Properties of Equilibrium Distribution and Duality Gap

B.1. Proof of Lemma 1 (Properties of the Best-Response Distribution)

Proof We note the KL divergence between two distributions ρ, ν ∈ P(Rd) can be decomposed as:

KL(ρ ∥ ν) =
∫
Rd

ρ log ρ dx−
∫
Rd

ρ log ν dx = −H(ρ) + Eρ[− log ν]

where H is the negative entropy functional. For all ρX , ρY ∈ P(Rd), from the definitions (10) of
the distributions νX = ΦX(ρY ) and νY = ΦY (ρX), we have:

− log νX(x) = τ−1EρY [V (x, Y )] + logCY (ρY ), (21a)

− log νY (y) = −τ−1EρX [V (X, y)] + logCX(ρX) (21b)
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where CY (ρY ) and CX(ρX) are the normalizing constants:

CY (ρY ) :=

∫
Rd

exp
(
−τ−1EρY [V (x, Y )]

)
dx, (22a)

CX(ρX) :=

∫
Rd

exp
(
τ−1EρX [V (X, y)]

)
dy. (22b)

Then from the definition (4) of the payoff function Fτ , we can write:

Fτ (ρ
X , ρY ) = EρX⊗ρY [V (X,Y )]− τH(ρX) + τH(ρY )

= τ
(
−H(ρX) + EρX

[
τ−1EρY [V (X,Y )]

])
+ τH(ρY )

= τ
(
−H(ρX) + EρX

[
− log νX

]
− logCY (ρY )

)
+ τH(ρY )

= τ KL(ρX ∥ νX)− τ logCY (ρY ) + τH(ρY ). (23)

Then as a function of ρX , we see that ρX 7→ Fτ (ρ
X , ρY ) is minimized when we set ρX = νX :

νX = arg min
ρ̃X∈P(Rd)

Fτ (ρ̃
X , ρY ).

Similarly, we can also write:

Fτ (ρ
X , ρY ) = −τ KL(ρY ∥ νY ) + τ logCX(ρX)− τH(ρX). (24)

Then as a function of ρY , we see that ρY 7→ Fτ (ρ
X , ρY ) is maximized when we set ρY = νY :

νY = arg max
ρ̃Y ∈P(Rd)

Fτ (ρ
X , ρ̃Y ).

The above computation also gives us:

min
ρ̃X∈P(Rd)

Fτ (ρ̃
X , ρY ) = −τ logCY (ρY ) + τH(ρY ) = Fτ (ρ

X , ρY )− τ KL(ρX ∥ νX)

max
ρ̃Y ∈P(Rd)

Fτ (ρ
X , ρ̃Y ) = τ logCX(ρX)− τH(ρX) = Fτ (ρ

X , ρY ) + τ KL(ρY ∥ νY ).

Therefore, we can write the duality gap as:

DG(ρX , ρY ) = max
ρ̃Y ∈P(Rd)

Fτ (ρ
X , ρ̃Y )− min

ρ̃X∈P(Rd)
Fτ (ρ̃

X , ρY ) = τ
(
KL(ρX ∥ νX) + KL(ρY ∥ νY )

)
as desired.

B.2. Proof of Lemma 2 (Existence, Uniqueness of Equilibrium and Bound on Duality Gap)

Proof [Proof of Lemma 2] (1) Existence of equilibrium distribution: Suppose Z̄t ∼ ρ̄Zt = ρ̄Xt ⊗
ρ̄Yt in R2d evolves following the mean-field dynamics (12) from Z̄0 ∼ ρ̄Z0 = ρ̄X0 ⊗ ρ̄Y0 ∈ P(R2d),
and let ν̄Zt = ν̄Xt ⊗ ν̄Yt where ν̄Xt = ΦX(ρ̄Yt ) and ν̄Yt = ΦY (ρ̄Xt ) are the best-response distributions.
We show in Lemma 10 that ρ̄Zt ∈ P(R2d) for all t ≥ 0. In particular, ρ̄Zt is also in P2(R2d), the
space of probability distributions over R2d with finite second moment (without requiring absolute
continuity with respect to the Lebesgue measure).
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Furthermore, we show in Theorem 3 that for all t ≥ 0:

FI(ρ̄Zt ∥ ν̄Zt ) ≤ e−2αt FI(ρ̄Z0 ∥ ν̄Z0 ).

We claim this implies (ρ̄Zt )t≥0 is a (continuous-time) Cauchy sequence in P2(R2d) with the W2

metric. Since Z̄t evolves following the dynamics (12), ρ̄Zt evolves following the Fokker-Planck
equation: ∂ρ̄Zt

∂t = τ∇ ·
(
ρ̄Zt ∇ log

ρ̄Zt
ν̄Zt

)
, so its Wasserstein speed (norm of the velocity) is:

∥∥∥∥∂ρ̄Zt∂t
∥∥∥∥
ρ̄Zt

= τ Eρ̄Zt

[∥∥∥∥∇ log
ρ̄Zt
ν̄Zt

∥∥∥∥2
]1/2

= τ FI(ρ̄Zt ∥ ν̄Zt )1/2 ≤ e−αt τ FI(ρ̄Z0 ∥ ν̄Z0 )1/2.

Then using the definition of the Wasserstein distance as the shortest path length, we can estimate:

W2(ρ̄
Z
T0
, ρ̄ZT1

) ≤
∫ T1

T0

∥∥∥∥∂ρ̄Zt∂t
∥∥∥∥
ρ̄Zt

dt ≤ τ FI(ρ̄Z0 ∥ ν̄Z0 )1/2
∫ T1

T0

e−αt dt ≤ e−αT0
τ

α
FI(ρ̄Z0 ∥ ν̄Z0 )1/2.

Therefore, for any T1 > T0, we have W2(ρ̄
Z
T0
, ρ̄ZT1

) → 0 as T0 → ∞. This shows that (ρ̄Zt )t≥0

is a Cauchy sequence in P2(R2d) with the W2 metric. Since P2(R2d) with the W2 metric is a
complete metric space (Villani, 2009, Theorem 6.18), this implies (ρ̄Zt )t≥0 must converge to a limit:
ρ̄Z∞ = limt→∞ ρ̄Zt which is also in P2(R2d). Since each ρ̄Zt = ρ̄Xt ⊗ ρ̄Yt is a product distribution,
the limit ρ̄Z∞ = ρ̄X∞ ⊗ ρ̄Y∞ must also be a product distribution.

Furthermore, since limt→∞ FI(ρ̄Zt ∥ ν̄Zt ) = 0, the limiting distribution ρ̄Z∞ is a fixed point for
the best-response map, i.e., ρ̄Z∞ = ρ̄X∞ ⊗ ρ̄Y∞ satisfies:

ρ̄X∞ = ΦX(ρ̄Y∞), ρ̄Y∞ = ΦY (ρ̄X∞).

Therefore, ρ̄Z∞ minimizes the duality gap: DG(ρ̄X∞, ρ̄Y∞) = 0, and thus, (ρ̄X∞, ρ̄Y∞) is an equilibrium
distribution for the game (3), as defined in (5). Furthermore, from the definition of the best-response
maps (10), we see that ρ̄X∞ = ΦX(ρY∞) is (α/τ)-SLC, since we assume V (x, y) is α-strongly convex
in x. Similarly, ρ̄Y∞ = ΦY (ρX∞) is (α/τ)-SLC, since we assume V (x, y) is α-strongly concave in y.

(2) Bound on duality gap: Let (ν̄X , ν̄Y ) ∈ P(Rd) × P(Rd) be an equilibrium distribution for
the game (3), which exists by the argument above (which we call (ρ̄X∞, ρ̄Y∞) above). Since ν̄X is
(α/τ)-SLC, it also satisfies (α/τ)-Talagrand inequality, which means for all ρX ∈ P(Rd):

KL(ρX ∥ ν̄X) ≥ τ

2α
W2(ρ

X , ν̄X)2.

Similarly, since ν̄Y is (α/τ)-SLC, it satisfies (α/τ)-Talagrand inequality, so for all ρY ∈ P(Rd):

KL(ρY ∥ ν̄Y ) ≥ τ

2α
W2(ρ

Y , ν̄Y )2.

Adding the two bounds above gives the first inequality claimed in (11).
Next, since (ν̄X , ν̄Y ) is a fixed point of the best-response map, the identities from (21) become:

− log ν̄X(x) = τ−1Eν̄Y [V (x, Y )] + logCY (ν̄Y ),

− log ν̄Y (y) = −τ−1Eν̄X [V (X, y)] + logCX(ν̄X)
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where CX , CY are the normalizing constants defined in (22). Then we can compute:

H(ν̄X) = Eν̄X
[
− log ν̄X

]
= τ−1Eν̄X⊗ν̄Y [V (X,Y )] + logCY (ν̄Y )

H(ν̄Y ) = Eν̄Y
[
− log ν̄Y

]
= −τ−1Eν̄X⊗ν̄Y [V (X,Y )] + logCX(ν̄X).

Adding the two equations, we obtain:

H(ν̄X) +H(ν̄Y ) = logCY (ν̄Y ) + logCX(ν̄X). (25)

Therefore, for all ρX , ρY ∈ P(Rd), from the definition of the duality gap, and using the rela-
tions (23) and (24), the identities ν̄X = ΦX(ν̄Y ), ν̄Y = ΦY (ν̄X), and the identity (25), we have:

DG(ρX , ρY ) = max
ρ̃Y ∈P(Rd)

Fτ (ρ
X , ρ̃Y )− min

ρ̃X∈P(Rd)
Fτ (ρ̃

X , ρY )

≥ Fτ (ρ
X , ν̄Y )−Fτ (ν̄

X , ρY )

= τ KL(ρX ∥ ν̄X)− τ logCY (ν̄Y ) + τH(ν̄Y )

−
(
−τ KL(ρY ∥ ν̄Y ) + τ logCX(ν̄X)− τH(ν̄X)

)
= τ KL(ρX ∥ ν̄X) + τ KL(ρY ∥ ν̄Y )

which is the second inequality claimed in (11).

(3) Uniqueness of equilibrium distribution: Suppose the contrary that we have two equilibrium
distributions (ν̄X , ν̄Y ) and (µ̄X , µ̄Y ) of the game (3). Then by using the second inequality in the
bound (11) with (ρX , ρY ) = (µ̄X , µ̄Y ), we have:

τ KL(µ̄X ∥ ν̄X) + τ KL(µ̄Y ∥ ν̄Y ) ≤ DG(µ̄X , µ̄Y ) = 0

where the last equality follows because (µ̄X , µ̄Y ) is an equilibrium distribution so it minimizes the
duality gap. Therefore, we must have KL(µ̄X ∥ ν̄X) = 0, so µ̄X = ν̄X . Similarly, we must have
KL(µ̄Y ∥ ν̄Y ) = 0, so µ̄Y = ν̄Y . Therefore, the equilibrium distribution of the game (3) is unique.

Appendix C. Proofs for the Mean-Field Min-Max Langevin Dynamics

C.1. Derivation of the Mean-Field Dynamics

At an idealized continuous-time level, a natural strategy to compute the equilibrium distribution
of the game (3) is for each player to run the gradient flow dynamics in the space of probability
distributions to minimize their own objective function. Suppose we endow the space of probability
distribution P(Rd) with the Wasserstein W2 metric. Then each player maintains a continuous-time
curve of probability distributions (ρ̄Xt )t≥0 and (ρ̄Yt )t≥0, which they evolve via:

∂ρ̄Xt
∂t

= −gradρX Fτ (ρ̄
X
t , ρ̄Yt ),

∂ρ̄Yt
∂t

= gradρY Fτ (ρ̄
X
t , ρ̄Yt ).

In the above, gradρXFτ (ρ
X , ρY ) denotes the Wasserstein gradient of Fτ (ρ

X , ρY ) with respect to
the first argument ρX , with the second argument ρY fixed. Similarly, gradρY Fτ (ρ

X , ρY ) denotes
the Wasserstein gradient with respect to the second argument ρY , with the first argument ρX fixed.
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Following the computation rule for the Wasserstein gradient (Villani, 2009), the above system
of gradient flow dynamics corresponds to the following system of Fokker-Planck equations:

∂ρ̄Xt
∂t

= ∇ ·
(
ρ̄Xt Eρ̄Yt

[∇xV (·, Ȳt)]
)
+ τ∆ρ̄Xt

∂ρ̄Yt
∂t

= −∇ ·
(
ρ̄Yt Eρ̄Xt

[∇yV (X̄t, ·)]
)
+ τ∆ρ̄Yt .

In the above, ∇xV (x, y) and ∇yV (x, y) denote the gradient with respect to the first and second
argument, respectively, while keeping the other argument fixed. Here ∇· is the divergence (trace of
the Jacobian) of a vector field, and ∆ is the Laplacian (trace of the Hessian) of a function.

The above system of Fokker-Planck equations can be realized as the continuity equations for
a pair of stochastic processes (X̄t)t≥0 and (Ȳt)t≥0 in Rd which evolve following the mean-field
min-max Langevin dynamics:

dX̄t = −Eρ̄Yt
[∇xV (X̄t, Ȳt)] dt+

√
2τ dWX

t

dȲt = Eρ̄Xt
[∇yV (X̄t, Ȳt)] dt+

√
2τ dW Y

t

where (WX
t )t≥0 and (W Y

t )t≥0 are independent standard Brownian motion in Rd. The above is a
mean-field system because the evolution of X̄t depends on the distribution ρ̄Yt of the other player,
while the evolution of Ȳt depends on the distribution ρ̄Xt . However, note the dependence is only via
their expectations, so in the mean-field system above, X̄t and Ȳt evolve independently, i.e., they do
not interact at the level of random variables, only at the level of distributions. In particular, it does
not matter that we use independent Brownian motions for X̄t and Ȳt, we could also use the same
Brownian motion; we leave it as the above for convenience when writing the dynamics in the joint
form in Section 4.

C.2. Time Derivative of Relative Fisher Information along Mean-Field Langevin Dynamics

We show the following identity on the time derivative of the relative Fisher information between
the iterate of the mean-field min-max Langevin dynamics and its best-response distribution. In
Lemma 9 below, the first term on the right-hand side is the second-order relative Fisher information
between ρ̄Zt and ν̄Zt , and the second term is a weighted relative Fisher information.

We note the identity in Lemma 9 is formally identical to the time derivative identity of the
relative Fisher information FI(ρt ∥ ν) (or the second derivative of the KL divergence KL(ρt ∥ ν))
when ρt evolves along the Langevin dynamics to the target distribution ν, using the Otto calculus
formula for the Hessian of KL divergence; see (Villani, 2009, Formula 15.7) or (Wibisono and Jog,
2018, Eq. (10) in Appendix A). Since the mean-field min-max Langevin dynamics is the min-max
Wasserstein gradient flow in the space of distributions, the identity in Lemma 9 can also be formally
derived via Otto calculus computation. We provide a proof of Lemma 9 via an explicit computation
below. See (Conger et al., 2024, Lemma 7.2) for an alternative proof for a similar result, and see also
the proof of Theorem 35 part (4) in Section H.1 for the finite-dimensional version of this identity.

We denote ∥u∥2A := u⊤Au and ∥A∥2HS := Tr(A⊤A) for any u ∈ R2d and A ∈ R2d×2d.

Lemma 9 Suppose Z̄t = (X̄t, Ȳt) ∼ ρ̄Zt = ρ̄Xt ⊗ ρ̄Yt evolves following the mean-field min-max
Langevin dynamics (12) in the joint space R2d. Define its best-response distribution ν̄Zt = ν̄Xt ⊗ ν̄Yt
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where ν̄Xt = ΦX(ρ̄Yt ) and ν̄Yt = ΦY (ρ̄Xt ) as defined in (10). Then for all t ≥ 0, we have the
identity:

d

dt
FI(ρ̄Zt ∥ ν̄Zt ) = −2τ Eρ̄Zt

[∥∥∥∥∇2 log
ρ̄Zt
ν̄Zt

∥∥∥∥2
HS

]
− 2τ Eρ̄Zt

[∥∥∥∥∇ log
ρ̄Zt
ν̄Zt

∥∥∥∥2
(−∇2 log ν̄Zt )

]
.

Proof For ease of notation, in this proof we write ρZt ≡ ρ̄Zt and νZt ≡ ν̄Zt , i.e., we drop the
superscript bar notation (which denotes distributions along mean-field dynamics). Similarly, we
write ρXt ≡ ρ̄Xt , ρYt ≡ ρ̄Yt , and νXt ≡ ν̄Xt , νYt ≡ ν̄Yt .

We define ft = − log ρZt and gt = − log νZt , so ft, gt : R2d → R are separable functions, in
particular:

gt(z) = gt(x, y) = gXt (x) + gYt (y)

where gXt = − log νXt and gYt = − log νYt . Recall from the definition (10) for νXt = ΦX(ρYt ) and
νYt = ΦY (ρXt ), we have:

∇gXt (x) = τ−1EρYt
[∇xV (x, Y )] (26a)

∇gYt (y) = −τ−1EρXt
[∇yV (X, y)]. (26b)

This also implies:

∆gXt (x) = τ−1EρYt
[∆xV (x, Y )] (27a)

∆gYt (y) = −τ−1EρXt
[∆yV (X, y)] . (27b)

The mean-field min-max Langevin dynamics (12) can be written as the SDE:

dZ̄t = −τ∇gt(Z̄t) dt+
√
2τ dWt

Then ρZt = exp(−ft) evolves following the Fokker-Planck equation:

∂ρZt
∂t

= τ∇ ·
(
ρZt ∇gt

)
+ τ∆ρZt . (28)

In particular, for the components ρZt = ρXt ⊗ ρYt , we also have:

∂ρXt
∂t

= τ∇ ·
(
ρXt ∇gXt

)
+ τ∆ρXt (29a)

∂ρYt
∂t

= τ∇ ·
(
ρYt ∇gYt

)
+ τ∆ρYt . (29b)

We will use the following relations for ft = − log ρZt :

ρZt ∇ft = −∇ρZt (30a)

ρZt ∇2ft = −∇2ρZt + ρZt (∇ft)(∇ft)
⊤ (30b)

∆ρZt = −ρZt ∆ft + ρZt ∥∇ft∥2. (30c)
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Then we can compute that ft = − log ρZt evolves following the equation:

∂tft = − 1

ρZt

∂ρZt
∂t

= − 1

ρZt

(
τ⟨∇ρZt ,∇gt⟩+ τρZt ∆gt + τ∆ρZt

)
= τ⟨∇ft,∇gt⟩ − τ∆gt + τ∆ft − τ∥∇ft∥2 (31)

We will also use the Bochner’s formula, which states that for smooth u : R2d → R,

⟨∇u,∇∆u⟩ = 1

2
∆∥∇u∥2 − ∥∇2u∥2HS. (32)

By integration by parts, we can write the relative Fisher information as:

FI(ρZt ∥ νZt ) = EρZt

[
∥∇ft −∇gt∥2

]
= EρZt

[
∥∇ft∥2 + ∥∇gt∥2 − 2⟨∇ft,∇gt⟩

]
= EρZt

[
∥∇ft∥2

]
+EρZt

[
∥∇gt∥2

]
− 2EρZt

[∆gt]. (33)

We compute the time derivative of the three terms above separately, with explicit computation below,
color-coded for clarity for when we combine them.

(I) First term: The first term in (33) is the Fisher information of ρZt . We compute its time deriva-
tive using the Fokker-Planck equation (28) and the formula (31) to get:

d

dt
EρZt

[
∥∇ft∥2

]
=

∫
R2d

(∂tρ
Z
t ) ∥∇ft∥2 dz + 2

∫
R2d

ρZt ⟨∇ft,∇∂tft⟩ dz

= τ

∫
R2d

∇ · (ρZt ∇gt) ∥∇ft∥2 dz + τ

∫
R2d

(∆ρZt ) ∥∇ft∥2 dz (34a)

+ 2τ

∫
R2d

ρZt ⟨∇ft,∇(⟨∇ft,∇gt⟩ −∆gt)⟩ dz (34b)

+ 2τ

∫
R2d

ρZt ⟨∇ft,∇(∆ft)⟩ dz − 2τ

∫
R2d

ρZt ⟨∇ft,∇∥∇ft∥2⟩ dz. (34c)

We calculate the terms above one by one.

1. The first term in (34a) is, by integration by parts:

τ

∫
R2d

∇ · (ρZt ∇gt) ∥∇ft∥2 dz = −τ

∫
R2d

ρZt ⟨∇gt, ∇(∥∇ft∥2)⟩ dz

= −2τ

∫
R2d

ρZt ⟨∇gt, (∇2ft)∇ft⟩ dz.

2. The second term in (34a) is, by integration by parts:

τ

∫
R2d

(∆ρZt ) ∥∇ft∥2 dz = τ

∫
R2d

ρZt ∆∥∇ft∥2 dz.

3. The term in (34b) is, by distributing the gradient,

2τ

∫
R2d

ρZt ⟨∇ft,∇(⟨∇ft,∇gt⟩ −∆gt)⟩ dz

= 2τ

∫
R2d

ρZt
(
⟨∇ft, (∇2ft)∇gt⟩+ ⟨∇ft, (∇2gt)∇ft⟩ − ⟨∇ft, ∇∆gt⟩

)
dz.

25



CAI MITRA WANG WIBISONO

4. The first term in (34c) is, by Bochner’s formula (32):

2τ

∫
R2d

ρZt ⟨∇ft,∇(∆ft)⟩ dz = τ

∫
R2d

ρZt ∆∥∇ft∥2 dz − 2τ

∫
R2d

ρZt ∥∇2ft∥2HS dz.

5. The second term in (34c) is, using relation (30b) and integration by parts:

−2τ

∫
R2d

ρZt ⟨∇ft,∇∥∇ft∥2⟩ dz = 2τ

∫
R2d

⟨∇ρZt ,∇∥∇ft∥2⟩ dz = −2τ

∫
R2d

ρZt ∆∥∇ft∥2dz.

Combining the above, we see that the terms involving ⟨∇gt, (∇2ft)∇ft⟩ and ∆∥∇ft∥2 vanish, so
we are left with:

d

dt
EρZt

[
∥∇ft∥2

]
= −2τ EρZt

[∥∥∇2ft
∥∥2
HS

]
+ 2τEρZt

[
⟨∇ft, (∇2gt)∇ft⟩

]
− 2τEρZt

[⟨∇ft, ∇∆gt⟩] .
(35)

(II) Second term: For the second term in (33), using the Fokker-Planck equation (28), we have:

d

dt
EρZt

[
∥∇gt∥2

]
=

∫
R2d

(∂tρ
Z
t )∥∇gt∥2 dz + 2

∫
R2d

ρZt ⟨∇gt, ∂t(∇gt)⟩ dz

= τ

∫
R2d

∇ · (ρZt ∇gt) ∥∇gt∥2 dz + τ

∫
R2d

∆ρZt ∥∇gt∥2 dz (36a)

+ 2

∫
Rd

ρXt ⟨∇gXt , ∂t(∇gXt )⟩ dx+ 2

∫
Rd

ρYt ⟨∇gYt , ∂t(∇gYt )⟩ dy (36b)

where in the second line above we have used the fact that gt(x, y) = gXt (x) + gYt (y) is separable,
and ρZt = ρXt ⊗ ρYt is independent. We calculate the terms above one by one.

1. The first term in (36a) is, by integration by parts:

τ

∫
R2d

∇ · (ρZt ∇gt) ∥∇gt∥2 dz = −τ

∫
R2d

ρZt ⟨∇gt,∇(∥∇gt∥2)⟩ dz

= −2τ

∫
R2d

ρZt ⟨∇gt, (∇2gt)∇gt⟩ dz.

2. The second term in (36a) is, by integration by parts and using relation (30a):

τ

∫
R2d

∆ρZt ∥∇gt∥2 dz = τ

∫
R2d

ρZt ⟨∇ft, ∇∥∇gt∥2⟩ dz

= 2τ

∫
R2d

ρZt ⟨∇ft, (∇2gt)∇gt⟩ dz.

3. For the first term in (36b), we can compute using (26a) and (29b), and integration by parts:

∂t(∇gXt (x)) = τ−1

∫
Rd

∂tρ
Y
t (y)∇xV (x, y) dy

=

∫
Rd

(
∇ ·
(
ρYt ∇gYt

)
(y) + ∆ρYt (y)

)
∇xV (x, y) dy

= −
∫
Rd

ρYt (y)∇2
yxV (x, y)∇gYt (y) dy +

∫
Rd

ρYt (y)∆y∇xV (x, y) dy.
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Then, since ρZt = ρXt ⊗ ρYt , we can compute:

2

∫
Rd

ρXt ⟨∇gXt , ∂t(∇gXt )⟩ dx

= 2

∫
Rd

ρXt (x)

〈
∇gXt (x),

∫
Rd

ρYt (y)
(
−∇2

yxV (x, y)∇gYt (y) + ∆y∇xV (x, y)
)
dy

〉
dx

= 2

∫
R2d

ρZt (x, y)
〈
∇gXt (x), −∇2

yxV (x, y)∇gYt (y) + ∆y∇xV (x, y)
〉
dx dy

= 2

∫
R2d

ρZt
〈
∇gXt , −(∇2

yxV )∇gYt +∆y∇xV
〉
dz.

4. For the second term in (36b), we can compute using (26b) and (29a), and integration by parts:

∂t(∇gYt (y)) = −τ−1

∫
Rd

∂tρ
X
t (x)∇yV (x, y) dx

= −
∫
Rd

(
∇ ·
(
ρXt ∇gXt

)
(x) + ∆ρXt (x)

)
∇yV (x, y) dx

=

∫
Rd

ρXt (x)∇2
xyV (x, y)∇gXt (x) dx−

∫
Rd

ρXt (x)∆x∇yV (x, y) dx.

Then, since ρZt = ρXt ⊗ ρYt , we can compute:

2

∫
Rd

ρYt ⟨∇gYt , ∂t(∇gYt )⟩ dy

= 2

∫
Rd

ρYt (y)

〈
∇gYt (y),

∫
Rd

ρXt (x)
(
∇2

xyV (x, y)∇gXt (x)−∆x∇yV (x, y)
)
dx

〉
dy

= 2

∫
R2d

ρZt (x, y)
〈
∇gYt (y), ∇2

xyV (x, y)∇gXt (x)−∆x∇yV (x, y)
〉
dx dy

= 2

∫
R2d

ρZt
〈
∇gYt , (∇2

xyV )∇gXt −∆x∇yV
〉
dz.

Since ∇2
xyV = (∇2

yxV )⊤, when we combine the calculations above, we see that the terms involving
⟨∇gYt ,∇2

xyV ∇gXt ⟩ cancel, so we get:

d

dt
EρZt

[
∥∇gt∥2

]
= EρZt

[
2τ ⟨∇ft −∇gt, (∇2gt)∇gt⟩+ 2⟨∇gXt ,∆y∇xV ⟩ − 2⟨∇gYt ,∆x∇yV ⟩

]
.

(37)

(III) Third term: For the third term in (33), using the Fokker-Planck equation (28), we have:

d

dt

(
−2EρZt

[∆gt]
)
= −2

∫
R2d

(∂tρ
Z
t )∆gt dz − 2

∫
R2d

ρZt ∂t(∆gt) dz

= −2τ

∫
R2d

∇ · (ρZt ∇gt) (∆gt) dz − 2τ

∫
R2d

(∆ρZt ) (∆gt) dz (38a)

− 2

∫
Rd

ρXt ∂t(∆xg
X
t ) dx− 2

∫
Rd

ρYt ∂t(∆yg
Y
t ) dy (38b)

where in the second line above we have used the fact that gt(x, y) = gXt (x) + gYt (y) is separable,
and ρZt = ρXt ⊗ ρYt is independent. We calculate the terms above one by one.
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1. The first term in (38a) is, by integration by parts:

−2τ

∫
R2d

∇ · (ρZt ∇gt) (∆gt) dz = 2τ

∫
R2d

ρZt ⟨∇gt, ∇∆gt⟩ dz.

2. The second term in (38a) is, by integration by parts and denoting z = (z1, . . . , z2d):

−2τ

∫
R2d

(∆ρZt ) (∆gt) dz = −2τ

∫
R2d

(
2d∑
i=1

∂2

∂z2i
ρZt (z)

)  2d∑
j=1

∂2

∂z2j
gt(z)

 dz

= −2τ

∫
R2d

2d∑
i,j=1

(
∂2

∂z2i
ρZt (z)

) (
∂2

∂z2j
gt(z)

)
dz

= −2τ

∫
R2d

2d∑
i,j=1

ρZt (z)

(
∂4

∂z2i ∂z
2
j

gt(z)

)
dz

= −2τ

∫
R2d

2d∑
i,j=1

(
∂2

∂zi ∂zj
ρZt (z)

)(
∂2

∂zi ∂zj
gt(z)

)
dz

= −2τ

∫
R2d

⟨∇2ρZt ,∇2gt⟩HS dz

= 2τ

∫
R2d

ρZt
(
⟨∇2ft,∇2gt⟩HS −

〈
∇ft, (∇2gt)∇ft

〉)
dz

where in the last step we have used relation (30b).

3. For the first term in (38b), we can compute using (27a) and (29b), and integration by parts:

∂t(∆xg
X
t (x)) = τ−1

∫
Rd

∂tρ
Y
t (y)∆xV (x, y) dy

=

∫
Rd

(
∇ ·
(
ρYt ∇gYt

)
(y) + ∆ρYt (y)

)
∆xV (x, y) dy

=

∫
Rd

ρYt (y)
(
−⟨∇gYt (y),∇y∆xV (x, y)⟩ + ∆y∆xV (x, y)

)
dy.

Therefore, since ρZt = ρXt ⊗ ρYt :

− 2

∫
Rd

ρXt ∂t(∆xg
X
t ) dx

= 2

∫
Rd

ρXt (x)

∫
Rd

ρYt (y)
(
⟨∇gYt (y),∇y∆xV (x, y)⟩ − ∆y∆xV (x, y)

)
dy dx

= 2

∫
R2d

ρZt
(
⟨∇gYt ,∇y∆xV ⟩ − ∆y∆xV

)
dz.
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4. For the second term in (38b), we can compute using (27b) and (29a), and integration by parts:

∂t(∆gYt (y)) = −τ−1

∫
Rd

∂tρ
X
t (x)∆yV (x, y) dx

= −
∫
Rd

(
∇ ·
(
ρXt ∇gXt

)
(x) + ∆ρXt (x)

)
∆yV (x, y) dx

=

∫
Rd

ρXt (x)
(
⟨∇gXt (x),∇x∆yV (x, y)⟩ − ∆x∆yV (x, y)

)
dx.

Therefore, since ρZt = ρXt ⊗ ρYt :

− 2

∫
Rd

ρYt ∂t(∆yg
Y
t ) dy

= 2

∫
Rd

ρYt (y)

∫
Rd

ρXt (x)
(
−⟨∇gXt (x),∇x∆yV (x, y)⟩ + ∆x∆yV (x, y)

)
dx dy

= 2

∫
R2d

ρZt
(
−⟨∇gXt ,∇x∆yV ⟩ + ∆x∆yV

)
dz.

When we combine the calculations above, we see that the terms involving ∆x∆yV = ∆y∆xV
cancel, so we get:

d

dt

(
−2EρZt

[∆gt]
)
= EρZt

[
2τ⟨∇gt, ∇∆gt⟩+ 2τ⟨∇2ft,∇2gt⟩HS − 2τ

〈
∇ft, (∇2gt)∇ft

〉]
+EρZt

[
2⟨∇gYt ,∇y∆xV ⟩ − 2⟨∇gXt ,∇x∆yV ⟩

]
. (39)

Combining the terms. Combining the calculations in (35), (37), and (39) below, we see that the
terms involving ⟨∇gXt ,∆y∇xV ⟩, ⟨∇gYt ,∆x∇yV ⟩, and

〈
∇ft, (∇2gt)∇ft

〉
cancel. Then we can

rearrange the remaining terms to get:

d

dt
FI(ρZt ∥ νZt ) =

d

dt
EρZt

[
∥∇ft∥2

]
+

d

dt
EρZt

[
∥∇gt∥2

]
+

d

dt

(
−2EρZt

[∆gt]
)

= −2τ EρZt

[∥∥∇2ft
∥∥2
HS

]
+ 2τ EρZt

[
⟨∇ft, (∇2gt)∇ft⟩

]
− 2τ EρZt

[⟨∇ft, ∇∆gt⟩]

+EρZt

[
2τ ⟨∇ft −∇gt, (∇2gt)∇gt⟩+ 2⟨∇gXt ,∆y∇xV ⟩ − 2⟨∇gYt ,∆x∇yV ⟩

]
+EρZt

[
2τ⟨∇gt, ∇∆gt⟩+ 2τ⟨∇2ft,∇2gt⟩HS − 2τ

〈
∇ft, (∇2gt)∇ft

〉]
+EρZt

[
2⟨∇gYt ,∇y∆xV ⟩ − 2⟨∇gXt ,∇x∆yV ⟩

]
= −2τ EρZt

[∥∥∇2ft
∥∥2
HS

]
− 2τ EρZt

[⟨∇ft, ∇∆gt⟩]

+EρZt

[
2τ ⟨∇ft −∇gt, (∇2gt)∇gt⟩

]
+EρZt

[
2τ⟨∇gt, ∇∆gt⟩+ 2τ⟨∇2ft,∇2gt⟩HS

]
.

We then complete the squares to form the first two terms below, which are the good terms that we
want, and collect the rest in a remainder term:

d

dt
FI(ρZt ∥ νZt ) = −2τ EρZt

[∥∥∇2ft −∇2gt
∥∥2
HS

]
− 2τ EρZt

[
∥∇ft −∇gt∥2∇2gt

]
+ 2τR(t)
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where we define the remainder term R(t) as the difference of the two sides above (scaled by 2τ ):

R(t) := −EρZt

[
⟨∇2ft,∇2gt⟩HS

]
+ EρZt

[∥∥∇2gt
∥∥2
HS

]
− EρZt

[
⟨∇ft, (∇2gt)∇gt⟩

]
+ EρZt

[
⟨∇ft, (∇2gt)∇ft⟩

]
− EρZt

[⟨∇ft, ∇∆gt⟩] + EρZt
[⟨∇gt, ∇∆gt⟩]

We claim this remainder term is identically zero. Indeed, by relation (30a) and integration by parts,
we have:

EρZt

[
⟨∇ft, (∇2gt)∇ft⟩

]
= −

∫
R2d

⟨∇ρZt , (∇2gt)∇ft⟩ dz

=

∫
R2d

ρZt
(
⟨∇∆gt,∇ft⟩+ ⟨∇2gt,∇2ft⟩HS

)
dz

= EρZt

[
⟨∇∆gt,∇ft⟩+ ⟨∇2gt,∇2ft⟩HS

]
.

where in the above we have used the identity ∇ · ∇2gt = ∇∆gt. Similarly:

EρZt

[
⟨∇ft, (∇2gt)∇gt⟩

]
= −

∫
R2d

⟨∇ρZt , (∇2gt)∇gt⟩ dz

=

∫
R2d

ρZt
(
⟨∇∆gt,∇gt⟩+ ⟨∇2gt,∇2gt⟩HS

)
dz

= EρZt

[
⟨∇∆gt,∇gt⟩+

∥∥∇2gt
∥∥2
HS

]
.

Therefore, we see that all the terms in the remainder term cancel, so indeed R(t) = 0. Thus, we
have shown the identity:

d

dt
FI(ρZt ∥ νZt ) = −2τ EρZt

[∥∥∇2ft −∇2gt
∥∥2
HS

]
− 2τ EρZt

[
∥∇ft −∇gt∥2∇2gt

]
.

C.3. Bound on the Second Moment Along the Mean-Field Dynamics

We show that along the mean-field dynamics (7), the distributions remain in P(R2dN ).

Lemma 10 Assume Assumption 1. Suppose Z̄t ∼ ρ̄Zt evolves following the mean-field min-max
Langevin dynamics (7) in R2d from Z̄0 ∼ ρ̄Z0 ∈ P(R2d). Then ρ̄Zt ∈ P(R2d) for all t ≥ 0.

Proof We note that ρ̄Zt is absolutely continuous with respect to the Lebesgue measure on R2d

by virtue of the Brownian motion component in the dynamics (7). We now show that the second
moment of ρ̄Zt remains finite for all t ≥ 0.

Under Assumption 1, recall from Theorem 35 (in Section H) that there exists a unique equilib-
rium point z∗ = (x∗, y∗) ∈ R2d which satisfies ∇V (z∗) = 0. Define the vector field bZ : R2d →
R2d by, for all z = (x, y) ∈ R2d:

bZ(x, y) =

(
−∇xV (x, y)
∇yV (x, y)

)
.
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Observe that bZ is the case N = 1 of the vector field bZ that we defined in (17) (in R2dN = R2d).
Note bZ(z∗) = 0, since ∇xV (z∗) = ∇yV (z∗) = 0. Lemma 12 in the next section guarantees that
−bZ is α-strongly monotone.

Since Z̄t = (X̄t, Ȳt) evolves following the mean-field dynamics (7), its density ρ̄Zt = ρ̄Zt ⊗ ρ̄Yt
evolves following the Fokker-Planck equations:

∂ρ̄Xt
∂t

= ∇ ·
(
ρ̄Xt Eρ̄Yt

[∇xV (·, Ȳt)]
)
+ τ ∆ρ̄Xt

∂ρ̄Yt
∂t

= −∇ ·
(
ρ̄Yt Eρ̄Xt

[∇yV (X̄t, ·)]
)
+ τ ∆ρ̄Yt .

Then we can compute, using integration by parts:

d

dt
Eρ̄Xt

[∥∥X̄t − x∗
∥∥2]

=

∫
Rd

∂ρ̄Xt (x)

∂t
∥x− x∗∥2 dx

=

∫
Rd

(
∇ ·
(
ρ̄Xt Eρ̄Yt

[∇xV (·, Ȳt)]
)
(x) + τ ∆ρ̄Xt (x)

)
∥x− x∗∥2 dx

= −
∫
Rd

ρ̄Xt (x)
〈
Eρ̄Yt

[∇xV (x, Ȳt)],∇
(
∥x− x∗∥2

)〉
dx+ τ

∫
Rd

ρ̄Xt (x)∆
(
∥x− x∗∥2

)
dx

= −2

∫
Rd

ρ̄Xt (x)
〈
Eρ̄Yt

[∇xV (x, Ȳt)], x− x∗
〉
dx+ 2τd

= −2Eρ̄Xt

[〈
Eρ̄Yt

[∇xV (X̄t, Ȳt)], Xt − x∗
〉]

+ 2τd

= −2Eρ̄Zt

[〈
∇xV (X̄t, Ȳt), X̄t − x∗

〉]
+ 2τd.

Similarly, we can also compute:

d

dt
Eρ̄Yt

[∥∥Ȳt − y∗
∥∥2] = 2Eρ̄Zt

[〈
∇yV (X̄t, Ȳt), Ȳt − y∗

〉]
+ 2τd.

Adding the two identities above gives:

d

dt
Eρ̄Zt

[∥∥Z̄t − z∗
∥∥2] = −2Eρ̄Zt

[〈
∇xV (X̄t, Ȳt), X̄t − x∗

〉]
+ 2Eρ̄Zt

[〈
∇yV (X̄t, Ȳt), Ȳt − y∗

〉]
+ 4τd

= 2Eρ̄Zt

[〈
bZ(Z̄t), Z̄t − z∗

〉]
+ 4τd

= 2Eρ̄Zt

[〈
bZ(Z̄t)− bZ(z∗), Z̄t − z∗

〉]
+ 4τd

≤ −2αEρ̄Zt

[∥∥Z̄t − z∗
∥∥2]+ 4τd

where the inequality follows from the property that −bZ is α-strongly monotone. We can write the
differential inequality above equivalently as:

d

dt

(
e2αt Eρ̄Zt

[∥∥Z̄t − z∗
∥∥2]) ≤ e2αt 4τd.
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Integrating from 0 to t and rearranging the result gives:

Eρ̄Zt

[∥∥Z̄t − z∗
∥∥2] ≤ e−2αt Eρ̄Z0

[∥∥Z̄0 − z∗
∥∥2]+ (1− e−2αt)

α
2τd

≤ Eρ̄Z0

[∥∥Z̄0 − z∗
∥∥2]+ 2τd

α
.

Since ρ̄Z0 ∈ P(R2d), Eρ̄Z0

[∥∥Z̄0

∥∥2] < ∞, so Eρ̄Z0

[∥∥Z̄0 − z∗
∥∥2] ≤ 2Eρ̄Z0

[∥∥Z̄0

∥∥2]+ 2∥z∗∥2 < ∞.
Therefore, we also have for all t ≥ 0:

Eρ̄Zt

[∥∥Z̄t

∥∥2] ≤ 2Eρ̄Zt

[∥∥Z̄t − z∗
∥∥2]+ 2∥z∗∥2

≤ 2Eρ̄Z0

[∥∥Z̄0 − z∗
∥∥2]+ 4τd

α
+ 2∥z∗∥2 < ∞

which shows that ρ̄Zt ∈ P(R2d).

C.4. Proof of Theorem 3 (Convergence of the Mean-Field Min-Max Langevin Dynamics)

Proof [Proof of Theorem 3] By Assumption 1, both ν̄Xt and ν̄Yt are (α/τ)-strongly log-concave,
which can be directly verified from the form of their log-density functions. Then ν̄Zt = ν̄Xt ⊗ ν̄Yt is
also (α/τ)-SLC, i.e., −∇2 log ν̄Zt ⪰ (α/τ)I. Then by the identity from Lemma 9, we have:

d

dt
FI(ρ̄Zt ∥ ν̄Zt ) = −2τ Eρ̄Zt

[∥∥∥∥∇2 log
ρ̄Zt
ν̄Zt

∥∥∥∥2
HS

]
− 2τ Eρ̄Zt

[∥∥∥∥∇ log
ρ̄Zt
ν̄Zt

∥∥∥∥2
(−∇2 log ν̄Zt )

]

≤ −2τ Eρ̄Zt

[∥∥∥∥∇ log
ρ̄Zt
ν̄Zt

∥∥∥∥2
(−∇2 log ν̄Zt )

]

≤ −2αEρ̄Zt

[∥∥∥∥∇ log
ρ̄Zt
ν̄Zt

∥∥∥∥2
]

= −2α FI(ρ̄Zt ∥ ν̄Zt ).

In the first inequality above, we drop the first term in the identity, which is the second-order relative
Fisher information. In the second inequality, we use the property that ν̄Zt is (α/τ)-SLC. In the next
step, we recognize the term in the previous line as also equal to the relative Fisher information.
Integrating the differential inequality above implies the desired convergence rate:

FI(ρ̄Zt ∥ ν̄Zt ) ≤ e−2αt FI(ρ̄Z0 ∥ ν̄Z0 ).

Since ν̄Zt is (α/τ)-SLC, it also satisfies (α/τ)-LSI. Then by combining with the convergence
rate for relative Fisher information above, we get:

KL(ρ̄Zt ∥ ν̄Zt ) ≤
τ

2α
FI(ρ̄Zt ∥ ν̄Zt ) ≤

τ

2α
e−2αt FI(ρ̄Z0 ∥ ν̄Z0 ).

Multiplying both sides by τ yields the desired convergence rate in duality gap.
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C.4.1. BOUND ON RELATIVE FISHER INFORMATION TO THE BEST-RESPONSE DISTRIBUTION

We provide the following bound on the initial Fisher information FI(ρ̄Z0 ∥ ν̄Z0 ) when ρ̄Z0 is Gaussian
and ν̄Z0 is its best-response distribution. Under Assumption 1, recall from Theorem 35 (in Section H)
that there exists a unique equilibrium point z∗ = (x∗, y∗) ∈ R2d which satisfies ∇V (z∗) = 0, and
that ∇V is L-Lipschitz.

Lemma 11 Assume Assumption 1. Let ρ̄X0 = ρ̄Y0 = N (0, τ2

L2 Id), and ρ̄Z0 = ρ̄X0 ⊗ ρ̄Y0 . Then:

FI(ρ̄Z0 ∥ ν̄Z0 ) ≤ 2d

(
1 +

L2

τ2

)
+

L2∥z∗∥2

τ2
.

Proof Recall that the best-response distributions are defined by:

ν̄X0 ∝ exp
(
−τ−1EρY0

[V (x, Y )]
)
,

ν̄Y0 ∝ exp
(
τ−1Eρ̄X0

[V (X, y)]
)
,

and ν̄Z0 = ν̄X0 ⊗ ν̄Y0 . Since both ρ̄Z0 and ν̄Z0 are product distributions,

FI(ρ̄Z0 ∥ ν̄Z0 ) = FI(ρX ∥ ν̄X) + FI(ρY ∥ ν̄Y ).

Define gX = − log ν̄X0 , so ∇gX(x) = τ−1Eρ̄Y0
[∇xV (x, Y )] and ∆gX(x) = τ−1Eρ̄Y0

[∆xV (x, Ȳ )].
Since we assume V (x, y) is α-strongly convex in x, we have ∆gX(x) ≥ αd/τ ≥ 0 for all x ∈ Rd.
Note also that for ρ̄X0 = N (0, τ2

L2 I) on Rd, we have

Eρ̄X0

[∥∥∇ log ρ̄X0
∥∥2] = L4

τ4
Eρ̄X0

[
∥X∥2

]
=

L2d

τ2
.

Then by expanding the square and using integration by parts, we can write:

FI(ρ̄X0 ∥ ν̄X0 ) = Eρ̄X0

[∥∥∇ log ρ̄X0 +∇gX
∥∥2]

= Eρ̄X0

[∥∥∇ log ρ̄X0
∥∥2]− 2Eρ̄X0

[
∆gX

]
+ Eρ̄X0

[∥∥∇gX
∥∥2]

≤ L2d

τ2
+ EX∼ρ̄X0

[∥∥∥τ−1EY∼ρ̄Y0
[∇xV (X,Y )]

∥∥∥2]
≤ L2d

τ2
+

1

τ2
Eρ̄X0 ⊗ρ̄Y0

[
∥∇xV (X,Y )∥2

]
.

By an identical argument, we can similarly show:

FI(ρ̄Y0 ∥ ν̄Y0 ) ≤ L2d

τ2
+

1

τ2
Eρ̄X0 ⊗ρ̄Y0

[
∥∇yV (X,Y )∥2

]
.

Therefore,

FI(ρ̄Z0 ∥ ν̄Z0 ) ≤
2L2d

τ2
+

1

τ2
Eρ̄X0 ⊗ρ̄Y0

[
∥∇xV (X,Y )∥2 + ∥∇yV (X,Y )∥2

]
=

2Ld

τ
+

1

τ2
Eρ̄Z0

[
∥∇V (Z)∥2

]
.
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Using ∇V (z∗) = 0 and ∇V is L-Lipschitz, and since ρ̄Z0 = N (0, τ2

L2 I2d), we can bound:

Eρ̄Z0

[
∥∇V (Z)∥2

]
= Eρ̄Z0

[
∥∇V (Z)−∇V (z∗)∥2

]
≤ L2Eρ̄Z0

[
∥Z − z∗∥2

]
= 2τ2d+ L2∥z∗∥2.

Plugging this in to our earlier calculation above, we obtain:

FI(ρ̄Z0 ∥ ν̄Z0 ) ≤
2L2d

τ2
+

1

τ2
(
2τ2d+ L2∥z∗∥2

)
= 2d

(
1 +

L2

τ2

)
+

L2∥z∗∥2

τ2
.

Appendix D. Technical Lemmas for the Finite-Particle Analysis

We collect some lemmas for our analysis of the finite-particle dynamics and algorithm. Here we
consider a particle discretization of the mean-field dynamics with N particles. This means we work
with a joint vector z = (x,y) = (x1, . . . , xN , y1, . . . , yN ) ∈ R2dN , where each xi, yj ∈ Rd.

We recall some definitions. Recall ν̄Z = ν̄X ⊗ ν̄Y ∈ P(R2d) is the stationary distribution of
the mean-field dynamics (7) in R2d. Let Varν̄Z (Z̄) = Eν̄Z [∥Z̄ − Eν̄Z [Z̄]∥2] be the variance of ν̄Z .
Recall under Assumption 1, ν̄Z is (α/τ)-SLC, so we can bound the variance by Varν̄Z (Z̄) ≤ 2τd

α
(see Lemma 24 in Section F.5.1), but in our computations below, we will keep it as the variance.

Recall we defined in (18) the tensorized power of the stationary mean-field distribution:

ν̄Z = (ν̄X)⊗N ⊗ (ν̄Y )⊗N ∈ P(R2dN ).

Recall we defined in (17) the vector field bZ : R2dN → R2dN , which is the drift term in the finite-
particle dynamics (16) and the finite-particle algorithm (20).

Let us also define a vector field b̄Z : R2dN → R2dN by, for all z = (x,y) ∈ R2dN :

b̄Z(z) =

(
b̄X(x)
b̄Y(y)

)
(40)

where we define the vector fields b̄X : RdN → RdN and b̄Y : RdN → RdN by, for all x =
(x1, . . . , xN ) ∈ RdN and y = (y1, . . . , yN ) ∈ RdN :

b̄X(x) =

 b̄X(x1)
· · ·

b̄X(xN )

 :=

Eν̄Y [−∇xV (x1, Ȳ )]
· · ·

Eν̄Y [−∇xV (xN , Ȳ )]

 ,

b̄Y(y) =

 b̄Y (y1)
· · ·

b̄Y (yN )

 :=

Eν̄X [∇yV (X̄, y1)]
· · ·

Eν̄X [∇yV (X̄, yN )]

 .

By the definition of ν̄Z as the stationary distribution of the mean-field dynamics (7), so it is a fixed
point for the best-response distribution, we observe that the vector field b̄Z can be written as a scaled
version of the score function of the tensorized stationary mean-field distribution ν̄Z:

b̄Z(z) = τ∇ log ν̄Z(z). (41)
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Finally, we also define the following stochastic process for Z̄t ∈ R2dN with drift term b̄Z:

dZ̄t = b̄Z(Z̄t) dt+
√
2τ dWZ

t (42)

where WZ
t is the standard Brownian motion in R2dN . Observe that since b̄Z = τ∇ log ν̄Z, the

stationary distribution of the process (42) is equal to ν̄Z. Therefore, we call the process (42) the ten-
sorized mean-field dynamics, since we can obtain it by replicating the base mean-field dynamics (7)
from R2d for N times. We will use the process (42) to compare the finite-particle dynamics (16)
and algorithm (20).

D.1. Properties of the Vector Fields

D.1.1. PROPERTIES OF THE FINITE-PARTICLE VECTOR FIELD

Lemma 12 Assume Assumption 1. Then:

1. The vector field bZ defined in (17) is (2L)-Lipschitz, which means for all z, z̄ ∈ R2dN :∥∥bZ(z)− bZ(z̄)
∥∥ ≤ 2L∥z− z̄∥.

2. Furthermore, −bZ is α-strongly monotone, which means for all z, z̄ ∈ R2dN :〈
bZ(z)− bZ(z̄), z− z̄

〉
≤ −α∥z− z̄∥2.

Proof Let z = (x,y) = (x1, . . . , xN , y1, . . . , yN ) and z̄ = (x̄, ȳ) = (x̄1, . . . , x̄N , ȳ1, . . . , ȳN ) ∈
R2dN be given.

(1) We show bZ is (2L)-Lipschitz. Recall by assumption, (x, y) 7→ ∇V (x, y) is L-Lipschitz;
in particular, each component ∇xV (x, y) and ∇yV (x, y) is also L-Lipschitz. By definition,∥∥bZ(z)− bZ(z̄)

∥∥2 = ∥∥bX(x,y)− bX(x̄, ȳ)
∥∥2 + ∥∥bY(x,y)− bY(x̄, ȳ)

∥∥2 .
We bound each term above separately. For the first term:∥∥bX(x,y)− bX(x̄, ȳ)

∥∥2
(1)
=
∑
i∈[N ]

∥∥bX(xi,y)− bX(x̄i, ȳ)
∥∥2

(2)
=
∑
i∈[N ]

∥∥∥∥∥∥− 1

N

∑
j∈[N ]

∇xV (xi, yj) +
1

N

∑
j∈[N ]

∇xV (x̄i, ȳj)

∥∥∥∥∥∥
2

(3)
=

1

N2

∑
i∈[N ]

∥∥∥∥∥∥
∑
j∈[N ]

(∇xV (xi, yj)−∇xV (x̄i, ȳj))

∥∥∥∥∥∥
2

(4)

≤ 1

N

∑
i∈[N ]

∑
j∈[N ]

∥∥∇xV (xi, yj)−∇xV (x̄i, ȳj)
∥∥2

(5)

≤ 2

N

∑
i∈[N ]

∑
j∈[N ]

(∥∥∇xV (xi, yj)−∇xV (x̄i, yj)
∥∥2 + ∥∥∇xV (x̄i, yj)−∇xV (x̄i, ȳj)

∥∥2)
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(6)

≤ 2L2

N

∑
i∈[N ]

∑
j∈[N ]

(∥∥xi − x̄i
∥∥2 + ∥∥yj − ȳj

∥∥2)
(7)
=

2L2

N

∑
j∈[N ]

∥x− x̄∥2 + 2L2

N

∑
i∈[N ]

∥y − ȳ∥2

(8)
= 2L2

(
∥x− x̄∥2 + ∥y − ȳ∥2

)
(9)
= 2L2 ∥z− z̄∥2 .

In the above, steps (1) and (2) are by definitions; in step (3) we pull the 1/N outside the square.
Step (4) follows from Cauchy-Schwarz inequality (∥

∑
j∈[N ] aj∥2 ≤ N

∑
j∈[N ] ∥aj∥2). In step (5)

we introduce an intermediate term ∇xV (x̄i, yj) and use the inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2.
In step (6) we use the property that ∇xV is L-Lipschitz, and note that in the first term the yj part is
common, while in the second term the x̄i part is common. In step (7) we write the previous terms in
vector notation. In step (8) we collect the terms inside the previous summation which are all equal.
In the last step (9) we use the definitions z = (x,y) and z̄ = (x̄, ȳ).

By a similar argument and using the L-Lipschitz property of ∇yV , we can show the second
term is also bounded by the same quantity:∥∥bY(x,y)− bY(x̄, ȳ)

∥∥2 ≤ 2L2 ∥z− z̄∥2 .

Combining the two bounds above, we obtain:∥∥bZ(z)− bZ(z̄)
∥∥2 ≤ 2L2 ∥z− z̄∥2 + 2L2 ∥z− z̄∥2 = 4L2 ∥z− z̄∥2

which shows that bZ is (2L)-Lipschitz.
(2) We now show that −bZ is α-strongly monotone. This is equivalent to showing that the

symmetrized Jacobian of bZ satisfies, for all z ∈ R2dN :

(∇bZ(z))sym :=
1

2

(
∇bZ(z) +∇bZ(z)⊤

)
⪯ −αI. (43)

Indeed, if we have (43), then for all z, z̄ ∈ R2dN , by the mean-value theorem we can write:

〈
bZ(z)− bZ(z̄), z− z̄

〉
=

〈∫ 1

0
∇bZ(zt) (z− z̄) dt, z− z̄

〉
=

∫ 1

0
(z− z̄)⊤∇bZ(zt) (z− z̄) dt

=

∫ 1

0
(z− z̄)⊤(∇bZ(zt))sym (z− z̄) dt

≤ −α

∫ 1

0
∥z− z̄∥2 dt

= −α ∥z− z̄∥2

where in the above we have defined zt := (1 − t)z + tz̄ for 0 ≤ t ≤ 1, and used the property that
u⊤Au = 1

2u
⊤(A+A⊤)u = u⊤(Asym)u for all u ∈ RD and A ∈ RD×D.
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To show (43), we compute the Jacobian matrix ∇bZ(z) ∈ R2dN×2dN , which is a block matrix
with 2N blocks on each dimension, indexed by x1, . . . , xN , y1, . . . , yN , with the following entries:

(∇bZ(z))[xi, xi] =
∂

∂xi
bZ(z)[xi] = − 1

N

∑
k∈[N ]

∇2
xxV (xi, yk) ∀ i ∈ [N ],

(∇bZ(z))[xi, xj ] =
∂

∂xj
bZ(z)[xi] = 0 ∀ i ̸= j ∈ [N ],

(∇bZ(z))[xi, yj ] =
∂

∂yj
bZ(z)[xi] = − 1

N
∇2

yxV (xi, yj) ∀ i, j ∈ [N ],

(∇bZ(z))[yi, yi] =
∂

∂yi
bZ(z)[yi] =

1

N

∑
k∈[N ]

∇2
yyV (xk, yi) ∀ i ∈ [N ],

(∇bZ(z))[yi, yj ] =
∂

∂yj
bZ(z)[yi] = 0 ∀ i ̸= j ∈ [N ],

(∇bZ(z))[yi, xj ] =
∂

∂xj
bZ(z)[yi] =

1

N
∇2

xyV (xj , yi) ∀ i, j ∈ [N ].

Now for the symmetrized Jacobian (∇bZ(z))sym, we can compute its block entries:

(∇bZ(z))sym[x
i, xi] = − 1

N

∑
k∈[N ]

∇2
xxV (xi, yk) ∀ i ∈ [N ],

(∇bZ(z))sym[x
i, xj ] = 0 ∀ i ̸= j ∈ [N ],

(∇bZ(z))sym[x
i, yj ] =

1

2

(
∇bZ(z)[xi, yj ] +∇bZ(z)[yj , xi]⊤

)
=

1

2

(
− 1

N
∇2

yxV (xi, yj) +
1

N
∇2

xyV (xi, yj)⊤
)

= 0 ∀ i, j ∈ [N ],

(∇bZ(z))sym[y
i, yi] =

1

N

∑
k∈[N ]

∇2
yyV (xk, yi) ∀ i ∈ [N ],

(∇bZ(z))sym[y
i, yj ] = 0 ∀ i ̸= j ∈ [N ],

(∇bZ(z))sym[y
i, xj ] =

1

2

(
∇bZ(z)[yi, xj ] +∇bZ(z)[xj , yi]⊤

)
=

1

2

(
1

N
∇2

xyV (xj , yi)− 1

N
∇2

yxV (xj , yi)⊤
)

= 0 ∀ i, j ∈ [N ].

Therefore, we see that the symmetrized Jacobian (∇bZ(z))sym is block-diagonal, since all the off-
diagonal block entries are 0. Moreover, from the assumption that V (x, y) is α-strongly convex in x
and α-strongly concave in y, the block-diagonal entries satisfy, for all i ∈ [N ]:

(∇bZ(z))sym[x
i, xi] = − 1

N

∑
k∈[N ]

∇2
xxV (xi, yk) ⪯ −αI

(∇bZ(z))sym[y
i, yi] =

1

N

∑
k∈[N ]

∇2
yyV (xk, yi) ⪯ −αI.

This shows that (∇bZ(z))sym ⪯ −αI , and thus −bZ is α-strongly monotone, as desired.
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D.1.2. PROPERTIES OF THE MEAN-FIELD VECTOR FIELD

Lemma 13 Assume Assumption 1. Then:

1. The vector field b̄Z defined in (40) is L-Lipschitz, which means for all z, z̄ ∈ R2dN :∥∥b̄Z(z)− b̄Z(z̄)
∥∥ ≤ L∥z− z̄∥.

2. Furthermore, −b̄Z is α-strongly monotone, which means for all z, z̄ ∈ R2dN :〈
b̄Z(z)− b̄Z(z̄), z− z̄

〉
≤ −α∥z− z̄∥2.

Proof Let z = (x,y) = (x1, . . . , xN , y1, . . . , yN ) and z̄ = (x̄, ȳ) = (x̄1, . . . , x̄N , ȳ1, . . . , ȳN ) ∈
R2dN be given.

1. We first show b̄Z is L-Lipschitz. By assumption, (x, y) 7→ ∇V (x, y) is L-Lipschitz; in
particular, each component ∇xV (x, y) and ∇yV (x, y) is also L-Lipschitz. By definition,∥∥b̄Z(z)− b̄Z(z̄)

∥∥2 = ∥∥b̄X(x)− b̄X(x̄)
∥∥2 + ∥∥b̄Y(y)− b̄Y(ȳ)

∥∥2 .
We can bound the first term as:∥∥b̄X(x)− b̄X(x̄)

∥∥2 = ∑
i∈[N ]

∥∥Eν̄Y [∇xV (xi, Ȳ )−∇xV (x̄i, Ȳ )]
∥∥2

≤
∑
i∈[N ]

Eν̄Y
[∥∥∇xV (xi, Ȳ )−∇xV (x̄i, Ȳ )

]∥∥2
≤ L2

∑
i∈[N ]

Eν̄Y
[∥∥xi − x̄i

]∥∥2
= L2 ∥x− x̄∥2

where the first inequality is by Cauchy-Schwarz, and the second inequality is by the L-
Lipschitz property of ∇xV . Similarly, using the L-Lipschitz property of ∇yV , we can bound
the second term as: ∥∥b̄Y(y)− b̄Y(ȳ)

∥∥2 ≤ L2 ∥y − ȳ∥2 .

Combining the two bounds above gives:∥∥b̄Z(z)− b̄Z(z̄)
∥∥2 ≤ L2 ∥x− x̄∥2 + L2 ∥y − ȳ∥2 = L2 ∥z− z̄∥2

which shows that b̄Z is L-Lipschitz.

2. We now show −b̄Z is α-strongly monotone. By assumption, for each y ∈ Rd, x 7→ V (x, y) is
α-strongly convex, so x 7→ ∇xV (x, y) is α-strongly monotone. Similarly, for each x ∈ Rd,
y 7→ V (x, y) is α-strongly concave, so y 7→ −∇yV (x, y) is α-strongly monotone. By
definition,〈

b̄Z(z)− b̄Z(z̄), z− z̄
〉
=
〈
b̄X(x)− b̄X(x̄),x− x̄

〉
+
〈
b̄Y(y)− b̄Y(ȳ),y − ȳ

〉
.

38



ON THE CONVERGENCE OF MIN-MAX LANGEVIN DYNAMICS AND ALGORITHM

We can bound the first term as:〈
b̄X(x)− b̄X(x̄),x− x̄

〉
=
∑
i∈[N ]

〈
Eν̄Y [−∇xV (xi, Ȳ )] + Eν̄Y [∇xV (x̄i, Ȳ )], xi − x̄i

〉
= −

∑
i∈[N ]

Eν̄Y
[〈
∇xV (xi, Ȳ )−∇xV (x̄i, Ȳ ), xi − x̄i

〉]
≤ −α

∑
i∈[N ]

Eν̄Y

[∥∥xi − x̄i
∥∥2]

= −α ∥x− x̄∥2

where the inequality above follows from the α-strong monotonicity of x 7→ ∇xV (x, Ȳ ).

Similarly, we can bound the second term as:〈
b̄Y(y)− b̄Y(ȳ),y − ȳ

〉
=
∑
i∈[N ]

〈
Eν̄X [∇yV (X̄, yi)]− Eν̄X [∇yV (X̄, ȳi)], yi − ȳi

〉
=
∑
i∈[N ]

Eν̄X
[〈
∇yV (X̄, yi)−∇yV (X̄, ȳi), yi − ȳi

〉]
≤ −α

∑
i∈[N ]

Eν̄X

[∥∥yi − ȳi
∥∥2]

= −α ∥y − ȳ∥2

where the inequality above follows from the α-strong monotonicity of y 7→ −∇yV (X, ȳ).

Combining the two bounds above gives:〈
b̄Z(z)− b̄Z(z̄), z− z̄

〉
≤ −α ∥x− x̄∥2 − α ∥y − ȳ∥2 = −α ∥z− z̄∥2

which shows that −b̄Z is α-strongly monotone.

D.2. Comparison Between the Vector Fields

D.2.1. COMPARISON AT STATIONARY DISTRIBUTION

Lemma 14 Assume Assumption 1. Then the vector fields bZ defined in (17) and b̄Z defined in (40)
satisfy:

Eν̄Z

[∥∥b̄Z(Z̄)− bZ(Z̄)
∥∥2] ≤ L2 Varν̄Z (Z̄).

Proof Let Z̄ = (X̄, Ȳ) = (X̄1, . . . , X̄N , Ȳ 1, . . . , Ȳ N ) ∼ ν̄Z = (ν̄X)⊗N ⊗ (ν̄Y )⊗N , so all the
random variables X̄i ∼ ν̄X and Ȳ j ∼ ν̄Y are independent, for all i, j ∈ [N ].

By definition, the quantity we wish to bound is:

Eν̄Z

[∥∥b̄Z(Z̄)− bZ(Z̄)
∥∥2] = Eν̄Z

[∥∥b̄X(X̄)− bX(X̄, Ȳ)
∥∥2]+ Eν̄Z

[∥∥b̄Y(Ȳ)− bY(X̄, Ȳ)
∥∥2] .
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We bound each term in the right-hand side separately.
We will use the following formula for variance: If U and U ′ are independent random variables

with the same distribution ρ, then Varρ(U) = Eρ[∥U − Eρ[U ]∥2] = 1
2Eρ⊗ρ[∥U − U ′∥2].

We bound the first term above. We introduce an independent random variable Ȳ ∼ ν̄Y . Then:

Eν̄Z

[∥∥b̄X(X̄)− bX(X̄, Ȳ)
∥∥2] (1)

=
∑
i∈[N ]

Eν̄Z

[∥∥b̄X(X̄i)− bX(X̄i, Ȳ)
∥∥2]

(2)
=
∑
i∈[N ]

Eν̄Z

∥∥∥∥∥∥Eν̄Y
[
−∇xV (X̄i, Ȳ )

]
+

1

N

∑
j∈[N ]

∇xV (X̄i, Ȳ j)

∥∥∥∥∥∥
2

(3)
=

1

N2

∑
i∈[N ]

Eν̄Z

∥∥∥∥∥∥
∑
j∈[N ]

(
∇xV (X̄i, Ȳ j)− Eν̄Y

[
∇xV (X̄i, Ȳ )

])∥∥∥∥∥∥
2

(4)
=

1

N2

∑
i∈[N ]

∑
j∈[N ]

Eν̄Z

[∥∥∇xV (X̄i, Ȳ j)− Eν̄Y
[
∇xV (X̄i, Ȳ )

]∥∥2]
(5)
=

1

2N2

∑
i∈[N ]

∑
j∈[N ]

Eν̄ZEν̄Y

[∥∥∇xV (X̄i, Ȳ j)−∇xV (X̄i, Ȳ )
∥∥2]

(6)

≤ L2

2N2

∑
i∈[N ]

∑
j∈[N ]

Eν̄ZEν̄Y

[∥∥Ȳ j − Ȳ j
∥∥2]

(7)
=

L2

N2

∑
i∈[N ]

∑
j∈[N ]

Varν̄Y (Ȳ )

(8)
= L2 Varν̄Y (Ȳ ).

Above, in step (1) we use the definitions of bX and b̄X and split the squared norm across coordinates.
In step (2), we use the definitions of bX and b̄X . In step (3), we pull the 1/N outside the square.
In step (4), we expand the square and note the cross terms are zero since all the random variables
are independent; at this point, we recognize each term in the summation, conditioned on X̄i, is the
variance of the random variable ∇xV (X̄i, Ȳ j) where Ȳ j ∼ ν̄Y . In step (5), we use the variance
formula by introducing an independent random variable Ȳ ∼ ν̄Y . In step (6), we use the property
that y 7→ ∇xV (x, y) is L-Lipschitz, which follows from the smoothness of V from Assumption 1.
In step (7), we use the variance formula for the random variable Ȳ ∼ ν̄Y . In the last step (8), we
collect the terms in the double summation which are all the same.

By an identical argument, we can also bound the Y -component in the quantity above as:

Eν̄Z

[∥∥b̄Y(Ȳ)− bY(X̄, Ȳ)
∥∥2] ≤ L2 Varν̄X (X̄).

Combining the two calculations above, we obtain the desired bound:

Eν̄Z

[∥∥b̄Z(Z̄)− bZ(Z̄)
∥∥2] ≤ L2 Varν̄Y (Ȳ ) + L2 Varν̄X (X̄) = L2 Varν̄Z (Z̄)

where the last step follows from the fact that ν̄Z = ν̄X ⊗ ν̄Y is a product distribution.
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D.2.2. COMPARISON AT ARBITRARY DISTRIBUTION

Lemma 15 Assume Assumption 1. For any ρZ ∈ P(R2dN ), the vector fields bZ defined in (17) and
b̄Z defined in (40) satisfy:

EρZ

[∥∥b̄Z(Z)− bZ(Z)
∥∥2] ≤ 2L2W2(ρ

Z, ν̄Z)2 + 4L2 Varν̄Z (Z̄).

Proof Let Z = (X,Y) = (X1, . . . , XN , Y 1, . . . , Y N ) ∼ ρZ. We first introduce some set up.
Let σ1, . . . , σN : [N ] → [N ] be a collection of permutations such that σj(i) ̸= σk(i) for all

j ̸= k and i ∈ [N ]. For example, we can take σj(i) = i+ j (mod N).
We introduce new random variables Z̄1, . . . , Z̄N ∈ R2dN , where each Z̄i = (X̄i, Ȳi) =

(X̄i,1, . . . , X̄i,N , Ȳ i,1, . . . , Ȳ i,N ) with X̄i,j , Ȳ i,j ∈ Rd for each i, j ∈ [N ], with the following
structure of joint distribution:

• For each i ∈ [N ], Z̄i ∼ ν̄Z marginally, and (Z, Z̄i) is jointly distributed as the optimal W2

coupling between ρZ and ν̄Z, so E[∥Z− Z̄i∥2] = W2(ρ
Z, ν̄Z)2.

• The random variables Z̄1, . . . , Z̄N are pairwise independent conditioned on Z. In particular,
this implies that for all i, j, k ∈ [N ] with j ̸= k: (1) Ȳ σj(i),j and Ȳ σk(i),k are independent
when conditioned on Z, since σj(i) ̸= σk(i); and similarly, (2) X̄σj(i),j and X̄σk(i),k are
independent when conditioned on Z.

By definition, the quantity we wish to bound is:

EρZ

[∥∥b̄Z(Z)− bZ(Z)
∥∥2] = EρZ

[∥∥b̄X(X)− bX(X,Y)
∥∥2]+ EρZ

[∥∥b̄Y(Y)− bY(X,Y)
∥∥2] .

We will bound each term in the right-hand side separately.
We bound the first term above. Below, we write E to denote the expectation over the collective

joint distribution of the random variables (Z,Z1, . . . ,ZN ) introduced above. We can bound:

EρZ

[∥∥b̄X(X)− bX(X,Y)
∥∥2] = ∑

i∈[N ]

EρZ

[∥∥b̄X(Xi)− bX(Xi,Y)
∥∥2]

=
∑
i∈[N ]

EρZ

∥∥∥∥∥∥EȲ∼ν̄Y [−∇xV (Xi, Ȳ )] +
1

N

∑
j∈[N ]

∇xV (Xi, Y j)

∥∥∥∥∥∥
2

=
1

N2

∑
i∈[N ]

EρZ

∥∥∥∥∥∥
∑
j∈[N ]

(
∇xV (Xi, Y j) + EȲ∼ν̄Y [−∇xV (Xi, Ȳ )]

)∥∥∥∥∥∥
2

≤ 2

N2

∑
i∈[N ]

E

∥∥∥∥∥∥
∑
j∈[N ]

(
∇xV (Xi, Y j)−∇xV (Xi, Ȳ σj(i),j)

)∥∥∥∥∥∥
2

+
2

N2

∑
i∈[N ]

E

∥∥∥∥∥∥
∑
j∈[N ]

(
∇xV (Xi, Ȳ σj(i),j)− EȲ∼ν̄Y [∇xV (Xi, Ȳ )]

)∥∥∥∥∥∥
2

=: ErrX1 + ErrX2 . (44)
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In the above, we have used the inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2.
We can bound the first error term in (44) by:

ErrX1 :=
2

N2

∑
i∈[N ]

E

∥∥∥∥∥∥
∑
j∈[N ]

(
∇xV (Xi, Y j)−∇xV (Xi, Ȳ σj(i),j)

)∥∥∥∥∥∥
2

≤ 2

N

∑
i∈[N ]

∑
j∈[N ]

E
[∥∥∥∇xV (Xi, Y j)−∇xV (Xi, Ȳ σj(i),j)

∥∥∥2]

≤ 2L2

N

∑
i∈[N ]

∑
j∈[N ]

E
[∥∥∥Y j − Ȳ σj(i),j

∥∥∥2]

=
2L2

N

∑
i∈[N ]

∑
j∈[N ]

E
[∥∥Y j − Ȳ i,j

∥∥2]
=

2L2

N

∑
i∈[N ]

E
[∥∥Y − Ȳi

∥∥2] .
In the above, the first inequality is by Cauchy-Schwarz (∥

∑
j∈[N ] aj∥2 ≤ N

∑
j∈[N ] ∥aj∥2); the

next inequality is by the smoothness assumption on V ; the next step is by rearranging the permuta-
tion; and in the last step we rewrite the expression in terms of the vector form.

We can bound the second error term in (44) by:

ErrX2 :=
2

N2

∑
i∈[N ]

E

∥∥∥∥∥∥
∑
j∈[N ]

(
∇xV (Xi, Ȳ σj(i),j)− EȲ∼ν̄Y [∇xV (Xi, Ȳ )]

)∥∥∥∥∥∥
2

(1)
=

2

N2

∑
i∈[N ]

∑
j∈[N ]

E
[∥∥∥∇xV (Xi, Ȳ σj(i),j)− EȲ∼ν̄Y [∇xV (Xi, Ȳ )]

∥∥∥2]
(2)

≤ 2

N2

∑
i∈[N ]

∑
j∈[N ]

EEȲ∼ν̄Y

[∥∥∥∇xV (Xi, Ȳ σj(i),j)−∇xV (Xi, Ȳ )
∥∥∥2]

(3)

≤ 2L2

N2

∑
i∈[N ]

∑
j∈[N ]

EEȲ∼ν̄Y

[∥∥∥Ȳ σj(i),j − Ȳ
∥∥∥2]

(4)
=

4L2

N2

∑
i∈[N ]

∑
j∈[N ]

Varν̄Y (Ȳ )

(5)
= 4L2 Varν̄Y (Ȳ ).

In the above, step (1) follows by expanding the square and noting the cross terms are zero; this
follows from our construction, since for each i and for each j ̸= k, when conditioned on Z (which
includes Xi), the random variables Ȳ σj(i),j and Ȳ σk(i),k are independent (recall σj(i) ̸= σk(i)), and
each term in the summation has mean 0. The next step (2) follows by introducing an independent
random variable Ȳ ∼ ν̄Y and using Cauchy-Schwarz inequality to pull the expectation outside the
square. The next step (3) follows from the smoothness assumption on V from Assumption 1. The
next step (4) follows by recognizing each term in the double summation is a variance of Ȳ ∼ ν̄Y
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(recall Ȳ σj(i),j ∼ ν̄Y also and is independent of Ȳ ). The last step (5) is by collecting the terms in
the double summation which are all equal.

Plugging in the two calculations above to (44), we can control the first term in the quantity we
wish to bound as:

EρZ

[∥∥b̄X(X)− bX(X,Y)
∥∥2] ≤ 2L2

N

∑
i∈[N ]

E
[∥∥Y − Ȳi

∥∥2]+ 4L2 Varν̄Y (Ȳ ).

By an identical argument, we can control the second term in the quantity we wish to bound as:

EρZ

[∥∥b̄Y(Y)− bY(X,Y)
∥∥2] ≤ 2L2

N

∑
i∈[N ]

E
[∥∥X− X̄i

∥∥2]+ 4L2 Varν̄X (X̄).

Combining the two bounds above, and recalling that each (Z, Z̄i) has the optimal W2 coupling,
we obtain:

EρZ

[∥∥b̄Z(Z)− bZ(Z)
∥∥2] ≤ 2L2

N

∑
i∈[N ]

E
[∥∥Y − Ȳi

∥∥2]+ 4L2 Varν̄Y (Ȳ )

+
2L2

N

∑
i∈[N ]

E
[∥∥X− X̄i

∥∥2]+ 4L2 Varν̄X (X̄)

=
2L2

N

∑
i∈[N ]

E
[∥∥Z− Z̄i

∥∥2]+ 4L2 Varν̄Z (Z̄)

=
2L2

N

∑
i∈[N ]

W2(ρ
Z, ν̄Z)2 + 4L2 Varν̄Z (Z̄)

= 2L2W2(ρ
Z, ν̄Z)2 + 4L2 Varν̄Z (Z̄)

which is the desired bound.

D.3. Bounds on the Vector Fields

D.3.1. BOUND ON THE MEAN-FIELD VECTOR FIELD UNDER MEAN-FIELD DISTRIBUTION

We bound the magnitude of the mean-field vector field under the stationary mean-field distribution,
which is proportional to the Fisher information.

Lemma 16 Assume Assumption 1. Then for the mean-field vector field b̄Z defined in (40), under
the tensorized stationary mean-field distribution ν̄Z defined in (18):

Eν̄Z

[∥∥b̄Z(Z̄)∥∥2] ≤ 2τdLN.

Proof Recall by construction, as stated in (41), that the mean-field vector field b̄Z is a scaled score
function of the tensorized stationary mean-field distribution ν̄Z, i.e., b̄Z(z) = τ∇ log ν̄Z(z). Note
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from the definition (10), since V is L-smooth, log ν̄X and log ν̄Y are (L/τ)-smooth, and thus log ν̄Z

is also (L/τ)-smooth, i.e.,
∥∥∇2 log ν̄Z(z)

∥∥
op

≤ L/τ for all z ∈ R2dN . In particular,

∆ log ν̄Z(z) = Tr
(
∇2 log ν̄Z(z)

)
≤ L

τ
· 2dN.

Using integration by parts, where the boundary term is 0 since ν̄Z(z)∇ log ν̄Z(z) → 0 as ∥z∥ → ∞:

Eν̄Z

[∥∥b̄Z(Z̄)∥∥2] = τ2 Eν̄Z

[∥∥∇ log ν̄Z(Z̄)
∥∥2]

= τ2
∫
R2dN

ν̄Z(z)
〈
∇ log ν̄Z(z), ∇ log ν̄Z(z)

〉
dz

= −τ2
∫
R2dN

〈
∇ν̄Z(z), ∇ log ν̄Z(z)

〉
dz

= τ2
∫
R2dN

ν̄Z(z)∆ log ν̄Z(z) dz

≤ 2τdLN.

D.3.2. BOUND ON THE FINITE-PARTICLE VECTOR FIELD UNDER MEAN-FIELD DISTRIBUTION

Lemma 17 Assume Assumption 1. Then for the finite-particle vector field bZ defined in (17), and
for the tensorized stationary mean-field distribution (18):

Eν̄Z

[∥∥bZ(Z̄)∥∥2] ≤ 2L2 Varν̄Z (Z̄) + 4τdLN.

Proof We can bound:

Eν̄Z

[∥∥bZ(Z̄)∥∥2] = Eν̄Z

[∥∥bZ(Z̄)− b̄Z(Z̄) + b̄Z(Z̄)
∥∥2]

≤ 2Eν̄Z

[∥∥bZ(Z̄)− b̄Z(Z̄)
∥∥2]+ 2Eν̄Z

[∥∥b̄Z(Z̄)∥∥2]
≤ 2L2 Varν̄Z (Z̄) + 4τdLN.

In the above, we have introduced an intermediate term b̄Z(Z̄), used the inequality ∥a + b∥2 ≤
2∥a∥2 + 2∥b∥2, and used the results from Lemma 14 and Lemma 16.

D.3.3. BOUND ON THE FINITE-PARTICLE VECTOR FIELD UNDER ARBITRARY DISTRIBUTION

Lemma 18 Assume Assumption 1. Then for the finite-particle vector field bZ defined in (17), and
for any distribution ρZ ∈ P(R2dN ):

EρZ

[∥∥bZ(Z)∥∥2] ≤ 8L2W2(ρ
Z, ν̄Z)2 + 4L2 Varν̄Z (Z̄) + 8τdLN.
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Proof Let Z ∼ ρZ and Z̄ ∼ ν̄Z such that (Z, Z̄) has the optimal W2 coupling between ρZ and ν̄Z.
We use E to denote the expectation over this joint coupling. Then we can bound:

EρZ

[∥∥bZ(Z)∥∥2] = E
[∥∥bZ(Z)− bZ(Z̄) + bZ(Z̄)

∥∥2]
≤ 2E

[∥∥bZ(Z)− bZ(Z̄)
∥∥2]+ 2Eν̄Z

[∥∥bZ(Z̄)∥∥2]
≤ 8L2 E

[∥∥Z− Z̄
∥∥2]+ 2

(
2L2 Varν̄Z (Z̄) + 4τdLN

)
= 8L2W2(ρ

Z, ν̄Z)2 + 4L2 Varν̄Z (Z̄) + 8τdLN.

In the above, we introduce an additional term bZ(Z̄) with the coupling defined above, and use the
inequality ∥a+b∥2 ≤ 2∥a∥2+2∥b∥2. In the next step, we use the property that bZ is (2L)-Lipschitz
from Lemma 12, and the bound from Lemma 17. In the last step, we use the fact that (Z, Z̄) has the
optimal W2 coupling between ρZ and ν̄Z.

D.4. Time Derivative of KL Divergence Along Fokker-Planck Equations

We have the following formula on the time derivative of KL divergence of two distributions which
evolve following their Fokker-Planck equations, which can have different drift terms, but with the
same diffusion term. This is a classical formula that has been used in many previous works, in-
cluding for analyzing stochastic interpolants (Albergo et al., 2023, Lemma 2.2) and for showing the
propagation of chaos in interacting particle systems (Lacker and Le Flem, 2023, Lemma 3.1).

Lemma 19 Suppose (ρt)t≥0 and (ρ̄t)t≥0 are probability distributions in P(RD) which evolve fol-
lowing the Fokker-Planck equations:

∂ρt
∂t

= −∇ · (ρtbt) + c∆ρt

∂ρ̄t
∂t

= −∇ · (ρ̄tb̄t) + c∆ρ̄t

for some time-dependent vector fields bt, b̄t : RD → RD, and for some constant c ≥ 0. Then:

d

dt
KL(ρt ∥ ρ̄t) = −cFI(ρt ∥ ρ̄t) + Eρt

[〈
∇ log

ρt
ρ̄t
, bt − b̄t

〉]
.

Proof We can compute by differentiating under the integral sign and using chain rule:

d

dt
KL(ρt ∥ ρ̄t) =

d

dt

∫
RD

ρt log
ρt
ρ̄t

dx

=

∫
RD

∂ρt
∂t

log
ρt
ρ̄t

dx+

∫
RD

ρt
1

ρt

∂ρt
∂t

dx−
∫
RD

ρt
1

ρ̄t

∂ρ̄t
∂t

. (45)

We compute each term above. For the first term in (45), by the Fokker-Planck equation and using
integration by parts, where all the boundary terms vanish:∫

RD

∂ρt
∂t

log
ρt
ρ̄t

dx =

∫
RD

(−∇ · (ρtbt) + c∆ρt) log
ρt
ρ̄t

dx

=

∫
RD

ρt

〈
bt,∇ log

ρt
ρ̄t

〉
dx− c

∫
RD

ρt

〈
∇ log ρt,∇ log

ρt
ρ̄t

〉
dx
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where for the second term above we have used the identity that ∆ρt = ∇ ·∇ρt = ∇ · (ρt∇ log ρt).
For the second term in (45), we can show it is equal to 0:∫

RD

ρt
1

ρt

∂ρt
∂t

dx =

∫
RD

∂ρt
∂t

dx =
∂

∂t

∫
RD

ρt dx =
∂

∂t
(1) = 0.

For the third term in (45), by the Fokker-Planck equation and using integration by parts:

−
∫
RD

ρt
1

ρ̄t

∂ρ̄t
∂t

= −
∫
RD

(
−∇ · (ρ̄tb̄t) + c∆ρ̄t

) ρt
ρ̄t

dx

= −
∫
RD

ρ̄t

〈
b̄t,∇

ρt
ρ̄t

〉
dx+ c

∫
RD

ρ̄t

〈
∇ log ρ̄t,∇

ρt
ρ̄t

〉
dx

= −
∫
RD

ρt

〈
b̄t,∇ log

ρt
ρ̄t

〉
dx+ c

∫
RD

ρt

〈
∇ log ρ̄t,∇ log

ρt
ρ̄t

〉
dx

where in the above we have used the identity that ∆ρ̄t = ∇· (ρ̄t∇ log ρ̄t), and ρ̄t∇ρt
ρ̄t

= ρt∇ log ρt
ρ̄t

.
Combining the three terms above in (45), we obtain:

d

dt
KL(ρt ∥ ρ̄t) =

∫
RD

ρt

〈
bt,∇ log

ρt
ρ̄t

〉
dx− c

∫
RD

ρt

〈
∇ log ρt,∇ log

ρt
ρ̄t

〉
dx

−
∫
RD

ρt

〈
b̄t,∇ log

ρt
ρ̄t

〉
dx+ c

∫
RD

ρt

〈
∇ log ρ̄t,∇ log

ρt
ρ̄t

〉
dx

=

∫
RD

ρt

〈
bt − b̄t,∇ log

ρt
ρ̄t

〉
dx− c

∫
RD

ρt

∥∥∥∥∇ log
ρt
ρ̄t

∥∥∥∥2 dx

= Eρt

[〈
bt − b̄t,∇ log

ρt
ρ̄t

〉]
− cFI(ρt ∥ ρ̄t)

as desired.

Appendix E. Proofs for the Finite-Particle Dynamics

E.1. Proof of Theorem 4 (Biased Convergence of the Finite-Particle Dynamics)

Proof [Proof of Theorem 4] (1) Biased W2 convergence bound: We use the synchronous coupling
technique. Concretely, we consider (Zt)t≥0 and (Z̄t)t≥0 in R2dN , where Zt ∼ ρZt evolves following
the finite-particle dynamics (16):

dZt = bZ(Zt) dt+
√
2τ dWZ

t

and where Z̄t ∼ ρ̄Zt = ν̄Z evolves following the stationary tensorized mean-field dynamics (16):

dZ̄t = b̄Z(Z̄t) dt+
√
2τ dWZ

t

where we start from the stationary distribution ρ̄Z0 = ν̄Z, so ρ̄Zt = ν̄Z for all t ≥ 0. Suppose we run
the two stochastic processes above using the same standard Brownian motion (WZ

t )t≥0 in R2dN .
Furthermore, suppose we start the two processes above from (Z0, Z̄0) which has a joint distribution
which is the optimal W2 coupling between ρZ0 and ρ̄Z0 = ν̄Z.
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With the set up above, the difference Zt − Z̄t evolves via:

d(Zt − Z̄t) =
(
bZ(Zt)− b̄Z(Z̄t)

)
dt

where the Brownian motion terms cancel because they are equal in the two processes. Then we get:

d
∥∥Zt − Z̄t

∥∥2 = 2
〈
Zt − Z̄t, b

Z(Zt)− b̄Z(Z̄t)
〉
dt.

Taking expectation over the joint distribution, we obtain:

d

dt
E
[∥∥Zt − Z̄t

∥∥2] = 2E
[〈
Zt − Z̄t, b

Z(Zt)− b̄Z(Z̄t)
〉]

= 2E
[〈
Zt − Z̄t, b

Z(Zt)− bZ(Z̄t)
〉]

+ 2E
[〈
Zt − Z̄t, b

Z(Z̄t)− b̄Z(Z̄t)
〉]

,

where in the last step we have introduced an intermediate term E
[〈
Zt − Z̄t, b

Z(Z̄t)
〉]

.
We can bound the two terms above separately as follows. For the first term, recall from

Lemma 12 that −bZ is α-strongly monotone, so we can bound:

E
[〈
Zt − Z̄t, b

Z(Zt)− bZ(Z̄t)
〉]

≤ −αE
[∥∥Zt − Z̄t

∥∥2] .
For the second term, we use the inequality ⟨a, b⟩ ≤ α

4 ∥a∥
2 + 1

α∥b∥
2, and apply the bound from

Lemma 14 to get:

E
[〈
Zt − Z̄t, b

Z(Z̄t)− b̄Z(Z̄t)
〉]

≤ α

4
E
[∥∥Zt − Z̄t

∥∥2]+ 1

α
Eν̄Z

[∥∥bZ(Z̄t)− b̄Z(Z̄t)
∥∥2]

≤ α

4
E
[∥∥Zt − Z̄t

∥∥2]+ L2

α
Varν̄Z (Z̄).

Plugging in these two bounds to the computation above, we obtain:

d

dt
E
[∥∥Zt − Z̄t

∥∥2] ≤ −3α

2
E
[∥∥Zt − Z̄t

∥∥2]+ 2L2

α
Varν̄Z (Z̄).

This is equivalent to:

d

dt

(
e

3
2
αt E

[∥∥Zt − Z̄t

∥∥2]) ≤ e
3
2
αt 2L

2

α
Varν̄Z (Z̄).

Integrating from 0 to t and rearranging yields:

E
[∥∥Zt − Z̄t

∥∥2] ≤ e−
3
2
αt E

[∥∥Z0 − Z̄0

∥∥2]+(1− e−
3
2
αt

3
2α

)
2L2

α
Varν̄Z (Z̄)

≤ e−
3
2
αt E

[∥∥Z0 − Z̄0

∥∥2]+ 2L2

α2
Varν̄Z (Z̄)

= e−
3
2
αtW2(ρ

Z
0 , ν̄

Z)2 +
2L2

α2
Varν̄Z (Z̄)

where in the second inequality above we drop the −e−
3
2
αt term and further bound 4

3 ≤ 2, and in
the last step we use the fact that (Z0, Z̄0) has the optimal W2 coupling between ρZ0 and ν̄Z. Finally,
since W2 distance is the infimum over all coupling, from the above inequality we conclude:

W2(ρ
Z
t , ν̄

Z)2 ≤ e−
3
2
αtW2(ρ

Z
0 , ν̄

Z)2 +
2L2

α2
Varν̄Z (Z̄) (46)
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as desired.

(2) Biased convergence in KL divergence: We consider Zt ∼ ρZt which evolves following the
finite-particle dynamics (16) in R2dN , so ρZt evolves following the Fokker-Planck equation:

∂ρZt
∂t

= −∇ ·
(
ρZt bZ

)
+ τ∆ρZt .

We also consider Z̄t ∼ ρ̄Zt = ν̄Z which evolves following the stationary tensorized mean-field
dynamics (42) from Z̄0 ∼ ρ̄Z0 = ν̄Z, so ρ̄Zt satisfies the Fokker-Planck equation:

∂ρ̄Zt
∂t

= −∇ ·
(
ρ̄Zt b̄Z

)
+ τ∆ρ̄Zt .

(Note since ρ̄Zt = ν̄Z, both sides of the Fokker-Planck equation above are in fact equal to 0.)
Then using the formula from Lemma 19, we can compute:

d

dt
KL
(
ρZt ∥ ρ̄Zt

) (1)
= −τ FI

(
ρZt ∥ ρ̄Zt

)
+ EρZt

[〈
∇ log

ρZt
ρ̄Zt

, bZ − b̄Z
〉]

(2)

≤ −τ

2
FI
(
ρZt ∥ ρ̄Zt

)
+

1

2τ
EρZt

[∥∥bZ − b̄Z
∥∥2]

(3)

≤ −αKL
(
ρZt ∥ ρ̄Zt

)
+

1

2τ
EρZt

[∥∥bZ − b̄Z
∥∥2]

(4)

≤ −αKL
(
ρZt ∥ ρ̄Zt

)
+

L2

τ
W2(ρ

Z
t , ν̄

Z)2 +
2L2

τ
Varν̄Z (Z̄)

(5)

≤ −αKL
(
ρZt ∥ ρ̄Zt

)
+ e−

3
2
αt L

2

τ
W2(ρ

Z
0 , ν̄

Z)2 +
2L2

τ

(
L2

α2
+ 1

)
Varν̄Z (Z̄)

(6)

≤ −αKL
(
ρZt ∥ ρ̄Zt

)
+ e−

3
2
αt L

2

τ
W2(ρ

Z
0 , ν̄

Z)2 +
4L4

α2τ
Varν̄Z (Z̄).

In the above, in step (1) we use the time derivative formula for KL divergence from Lemma 19. In
step (2), we apply the Cauchy-Schwarz inequality (⟨a, b⟩ ≤ τ

2∥a∥
2+ 1

2τ ∥b∥
2) to the second term. In

step (3), we use the fact that ρ̄Zt = ν̄Z is (α/τ)-strongly log-concave by Lemma 2, so it also satisfies
(α/τ)-LSI, which allows us to bound the relative Fisher information by KL divergence. In step (4),
we use the bound from Lemma 15. In step (5), we use the W2 biased convergence bound (46) that
we derived earlier, in the first part of this Theorem. In step (6), we bound 1 ≤ L2/α2 since α ≤ L.

Let us now substitute ρ̄Zt = ν̄Z. Then we can write the differential inequality above as:

d

dt

(
eαtKL

(
ρZt ∥ ν̄Z

))
≤ e−

1
2
αt L

2

τ
W2(ρ

Z
0 , ν̄

Z)2 + eαt
4L4

α2τ
Varν̄Z (Z̄).

Integrating from 0 to t and rearranging yields:

KL
(
ρZt ∥ ν̄Z

)
≤ e−αt KL

(
ρZ0 ∥ ν̄Z

)
+ e−αt

(
1− e−

1
2
αt

1
2α

)
L2

τ
W2(ρ

Z
0 , ν̄

Z)2 +

(
1− e−αt

α

)
4L4

α2τ
Varν̄Z (Z̄)

≤ e−αt

(
KL
(
ρZ0 ∥ ν̄Z

)
+

2L2

ατ
W2(ρ

Z
0 , ν̄

Z)2
)
+

4L4

α3τ
Varν̄Z (Z̄)

≤ e−αt

(
KL
(
ρZ0 ∥ ν̄Z

)
+

2L2

ατ
W2(ρ

Z
0 , ν̄

Z)2
)
+

4L4

α3τ
Varν̄Z (Z̄)
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as desired.

E.2. Proof of Corollary 5 (Average Particle Along the Finite-Particle Dynamics)

Proof [Proof of Corollary 5] For Zt = (Xt,Yt) = (X1
t , . . . , X

N
t , Y 1

t , . . . , Y
N
t ) ∼ ρZt in R2dN , let

ρZ,it ∈ P(R2d) be the marginal distribution of the component Zi
t = (Xi

t , Y
i
t ) ∈ R2d, for i ∈ [N ].

We rearrange the coordinates to write Zt = (Z1
t , . . . , Z

N
t ) for convenience, and still denote its

distribution by ρZt . We introduce an independent product of the marginal distributions:

ρ̂Zt :=
⊗
i∈[N ]

ρZ,it .

Since ν̄Z = (ν̄X)⊗N ⊗ (ν̄Y )⊗N is an independent product, after rearranging the coordinates as
above, we can write it as ν̄Z = (ν̄Z)⊗N where ν̄Z = ν̄X ⊗ ν̄Y .

Then we can bound the KL divergence by:

KL(ρZt ∥ ν̄Z) = EρZt

[
log

ρZt
ν̄Z

]
= EρZt

[
log

ρZt
ρ̂Zt

]
+ EρZt

[
log

ρ̂Zt
(ν̄Z)⊗N

]
= EρZt

[
log

ρZt
ρ̂Zt

]
+
∑
i∈[N ]

E
ρZ,i
t

[
log

ρZ,it

ν̄Z

]

= KL
(
ρZt ∥ ρ̂Zt

)
+
∑
i∈[N ]

KL
(
ρZ,it ∥ ν̄Z

)
≥
∑
i∈[N ]

KL
(
ρZ,it ∥ ν̄Z

)

where the inequality follows by dropping the first term KL
(
ρZt ∥ ρ̂Zt

)
≥ 0, which is the multivariate

mutual information of Zt. Furthermore, since KL divergence is jointly convex in both arguments,
we can further bound the above by:

KL(ρZt ∥ ν̄Z) ≥ N · 1

N

∑
i∈[N ]

KL
(
ρZ,it ∥ ν̄Z

)
≥ N · KL

(
ρZ,avgt ∥ ν̄Z

)

using the definition ρZ,avgt = 1
N

∑
i∈[N ] ρ

Z,i
t .

Combining this with the bound for KL(ρZt ∥ ν̄Z) from Theorem 4 gives the desired result.

Appendix F. Proofs for the Finite-Particle Algorithm

F.1. Preliminary Results

F.1.1. BOUND IN ONE STEP OF THE FINITE-PARTICLE ALGORITHM

We present the following bound which will be useful in our subsequent analysis.

49



CAI MITRA WANG WIBISONO

Lemma 20 Assume Assumption 1. Let Z0 ∼ ρZ0 for any ρZ0 ∈ P(R2dN ). For t ≥ 0, define
Zt ∼ ρZt by:

Zt = Z0 + tbZ(Z0) +
√
2τt ζ

where ζ ∼ N (0, I) is an independent Gaussian random variable in R2dN , and bZ is the vector field
defined in (17). If 0 ≤ t ≤ 1/(4L), then:

E
[∥∥bZ(Zt)− bZ(Z0)

∥∥2] ≤ 128t2L4W2(ρ
Z
t , ν̄

Z)2 + 64t2L4 Varν̄Z (Z̄) + 64τtdL2N.

Proof We can bound:

E
[∥∥bZ(Z0)− bZ(Zt)

∥∥2] (1)

≤ 4L2 E
[
∥Z0 − Zt∥2

]
(2)
= 4L2 E

[∥∥∥tbZ(Z0) +
√
2τt ζ

∥∥∥2]
(3)
= 4t2L2 E

[∥∥bZ(Z0)
∥∥2]+ 8τtL2 E

[
∥ζ∥2

]
(4)
= 4t2L2 E

[∥∥bZ(Z0)
∥∥2]+ 16τtdL2N

(5)

≤ 8t2L2 E
[∥∥bZ(Z0)− bZ(Zt)

∥∥2]+ 8t2L2 E
[∥∥bZ(Zt)

∥∥2]+ 16τtdL2N

(6)

≤ 1

2
E
[∥∥bZ(Z0)− bZ(Zt)

∥∥2]+ 8t2L2 E
[∥∥bZ(Zt)

∥∥2]+ 16τtdL2N.

In the above, in step (1) we have used the property that bZ is (2L)-Lipschitz from Lemma 12. In
step (2), we plug in the definition of Zt. In step (3), we expand the square, and note the cross
term vanishes since ζ is independent of Z0 and E[ζ] = 0. In step (4), we use the property that
E[∥ζ∥2] = 2dN since ζ ∼ N (0, I) is a standard Gaussian in R2dN . In step (5), we introduce
the term bZ(Zt) again, and use the inequality ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2. In step (6), we use the
assumption that t ≤ 1/(4L), so 8t2L2 ≤ 1/2.

Rearranging the inequality above, we get:

E
[∥∥bZ(Z0)− bZ(Zt)

∥∥2] (7)

≤ 16t2L2 EρZt

[∥∥bZ(Zt)
∥∥2]+ 32τtdL2N

(8)

≤ 16t2L2
(
8L2W2(ρ

Z
t , ν̄

Z)2 + 4L2 Varν̄Z (Z̄) + 8τdLN
)
+ 32τtdL2N

(9)
= 128t2L4W2(ρ

Z
t , ν̄

Z)2 + 64t2L4 Varν̄Z (Z̄) + 32τtdL2N(4tL+ 1)

(10)

≤ 128t2L4W2(ρ
Z
t , ν̄

Z)2 + 64t2L4 Varν̄Z (Z̄) + 64τtdL2N.

In the above, in step (7) we rearrange the inequality from step (6). In step (8), we use the bound
from Lemma 18 for the distribution ρZt . In step (9), we collect the terms from the previous line. In
step (10), we again use the assumption that t ≤ 1/(4L). This gives us the desired bound.
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F.1.2. FOKKER-PLANCK EQUATION FOR ONE-STEP INTERPOLATION OF FINITE-PARTICLE

ALGORITHM

We show the following continuous-time interpolation of one step of the finite-particle algorithm (20).
This is similar to the interpolation technique that has been used, for example, to analyze the mixing
time of the Unadjusted Langevin Algorithm for sampling (Vempala and Wibisono, 2019).

Lemma 21 Let Z0 ∼ ρZ0 for any ρZ0 ∈ P(R2dN ). For t ≥ 0, define Zt ∼ ρZt by:

Zt = Z0 + tbZ(Z0) +
√
2tτ ζ (47)

where ζ ∼ N (0, I) is an independent standard Gaussian random variable in R2dN , and bZ is the
vector field defined in (17). Then the density ρZt evolves following the Fokker-Planck equation:

∂ρZt
∂t

= −∇ ·
(
ρZt bZt

)
+ τ∆ρZt

where we define the vector field bZt : R2dN → R2dN by, for all z ∈ R2dN :

bZt (z) = EρZ
0|t

[
bZ(Z0) | Zt = z

]
where ρZ0|t(· | z) is the conditional distribution of Z0 given Zt = z from the model (47).

Proof Let ρZ0t be the joint distribution of (Z0,Zt) following the model (47), which we can write in
terms of the marginal and conditional distributions as, for all z0, zt ∈ R2dN :

ρZ0t(z0, zt) = ρZ0 (z0) ρ
Z
t|0(zt | z0) = ρZt (zt) ρ

Z
0|t(z0 | zt).

Notice that Zt as defined in (47) is the solution to the following stochastic process:

dZt = bZ(Z0) dt+
√
2τ dWZ

t (48)

where (WZ
t )t≥0 is the standard Brownian motion in R2dN which is independent of Z0. We derive

the Fokker-Planck equation for ρZt as follows. First, when we condition on a fixed Z0 = z0, the
drift in the process (48) is a constant, so the conditional density ρZt|0(· | z0) of Zt conditioned on
Z0 = z0 is given by the Fokker-Planck equation:

∂ρZt|0(· | z0)
∂t

= −∇ ·
(
ρZt|0(· | z0) b

Z(z0)
)
+ τ∆ρZt|0(· | z0)

where note that the divergence ∇· and Laplacian ∆ operate on the z variable, not z0.
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Then we can compute:

∂ρZt
∂t

=
∂

∂t

∫
R2dN

ρZ0 (z0) ρ
Z
t|0(· | z0) dz0

=

∫
R2dN

ρZ0 (z0)
∂ρZt|0(· | z0)

∂t
dz0

=

∫
R2dN

ρZ0 (z0)
(
−∇ ·

(
ρZt|0(· | z0) b

Z(z0)
)
+ τ∆ρZt|0(· | z0)

)
dz0

= −∇ ·
(∫

R2dN

ρZ0 (z0) ρ
Z
t|0(· | z0) b

Z(z0) dz0

)
+ τ∆

(∫
R2dN

ρZ0 (z0) ρ
Z
t|0(· | z0) dz0

)
= −∇ ·

(
ρZt

∫
R2dN

ρZ0|t(z0 | ·) b
Z(z0) dz0

)
+ τ∆ρZt

= −∇ ·
(
ρZt EρZ

0|t

[
bZ(Z0) | Zt = ·

])
+ τ∆ρZt

= −∇ ·
(
ρZt bZt

)
+ τ∆ρZt ,

as desired.

F.2. One-Step Recurrence for the Biased Convergence of the Finite-Particle Algorithm

F.2.1. ONE-STEP RECURRENCE IN W2 DISTANCE

Lemma 22 Assume Assumption 1. Let zk ∼ ρz,ηk for any ρz,ηk ∈ P(R2dN ), and let zk+1 ∼ ρz,ηk+1

be one step of the finite-particle algorithm (20) with step size 0 < η ≤ α
64L2 . Then:

W2(ρ
z,η
k+1, ν̄

Z)2 ≤ e−
3
2
αη W2(ρ

z,η
k , ν̄Z)2 +

8ηL2

α

(
Varν̄Z (Z̄) + 64 τηdN

)
.

Proof We consider a continuous-time interpolation of one step of the algorithm (20) as follows. Let
Z0 ∼ ρZ0 where we define ρZ0 = ρz,ηk . We define (Zt)0≤t≤η where Zt ∼ ρZt evolves following:

dZt = bZ(Z0) dt+
√
2τ dWZ

t (49)

where (WZ
t )t≥0 is the standard Brownian motion in R2dN which is independent of Z0. Then we

notice that the distribution of Zη ∼ ρZη of the process (49) is equal to the distribution of the next
iterate xk+1 ∼ ρz,ηk+1 along the algorithm (20), i.e., ρz,ηk+1 = ρZη . This is because the solution to the
process (49) at time t = η is:

Zt = Z0 + tbZ(Z0) +
√
2τ WZ

t
d
= Z0 + tbZ(Z0) +

√
2τt ζ

where ζ ∼ N (0, I) is an independent Gaussian random variable in R2dN , and d
= means equality in

distribution. This is the same update of the algorithm (20), so indeed Zη
d
= zk+1, so ρZη = ρz,ηk+1.

We also consider (Z̄t)0≤t≤η where Z̄t ∼ ρ̄Zt = ν̄Z evolves following the stationary tensorized
mean-field dynamics (16):

dZ̄t = b̄Z(Z̄t) dt+
√
2τ dWZ

t (50)
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starting from the stationary distribution ρ̄Z0 = ν̄Z, so ρ̄Zt = ν̄Z for all t ≥ 0. Suppose we run
the stochastic processes (49) and (50) using the same standard Brownian motion (WZ

t )t≥0, which is
independent of Z0 and Z̄0. Furthermore, suppose we start the processes (49) and (50) from (Z0, Z̄0)
which has a joint distribution which is the optimal W2 coupling between ρZ0 = ρz,ηk and ρ̄Z0 = ν̄Z.

From the set up above, we have that the difference Zt − Z̄t satisfies:

d
(
Zt − Z̄t

)
=
(
bZ(Z0)− b̄Z(Z̄t)

)
dt

where the Brownian motion terms cancel because they are equal in the two processes. Therefore:

d
∥∥Zt − Z̄t

∥∥2 = 2
〈
Zt − Z̄t, b

Z(Z0)− b̄Z(Z̄t)
〉
dt.

Taking expectation over the joint distribution of all the variables, we obtain:

d

dt
E
[∥∥Zt − Z̄t

∥∥2] = 2E
[〈
Zt − Z̄t, b

Z(Z0)− b̄Z(Z̄t)
〉]

= 2E
[〈
Zt − Z̄t, b

Z(Zt)− bZ(Z̄t)
〉]

+ 2E
[〈
Zt − Z̄t, b

Z(Z0)− bZ(Zt) + bZ(Z̄t)− b̄Z(Z̄t)
〉]

. (51)

By Lemma 13, −bZ is α-strongly monotone, so we can bound the first term above by:

E
[〈
Zt − Z̄t, b

Z(Zt)− bZ(Z̄t)
〉]

≤ −αE
[∥∥Zt − Z̄t

∥∥2] .
We can bound the second term above by:

E
[〈
Zt − Z̄t, b

Z(Z0)− bZ(Zt) + bZ(Z̄t)− b̄Z(Z̄t)
〉]

(1)

≤ α

8
E
[∥∥Zt − Z̄t

∥∥2]+ 2

α
E
[∥∥bZ(Z0)− bZ(Zt) + bZ(Z̄t)− b̄Z(Z̄t)

∥∥2]
(2)

≤ α

8
E
[∥∥Zt − Z̄t

∥∥2]+ 4

α
E
[∥∥bZ(Z0)− bZ(Zt)

∥∥2]+ 4

α
Eν̄Z

[∥∥bZ(Z̄t)− b̄Z(Z̄t)
∥∥2]

(3)

≤ α

8
E
[∥∥Zt − Z̄t

∥∥2]+ 4

α

(
128t2L4W2(ρ

Z
t , ν̄

Z)2 + 64t2L4 Varν̄Z (Z̄) + 64τtdL2N
)

+
4

α
L2 Varν̄Z (Z̄)

(4)

≤
(
α

8
+

512t2L4

α

)
E
[∥∥Zt − Z̄t

∥∥2]+ 4L2

α

(
64t2L2 + 1

)
Varν̄Z (Z̄) +

256τtdL2N

α

(5)

≤ α

4
E
[∥∥Zt − Z̄t

∥∥2]+ 8L2

α
Varν̄Z (Z̄) +

256τηdL2N

α
.

In the above, in step (1) we use the inequality ⟨a, b⟩ ≤ α
8 ∥a∥

2 + 2
α∥b∥

2. In step (2), we use the
inequality ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2 to the second term. In step (3), we use the bound from
Lemma 20 to the second term (note t ≤ η ≤ α

64L2 ≤ 1
64L ≤ 1

4L so the assumption in Lemma 20
is satisfied), and we use the bound from Lemma 14 to the third term. In step (4), we use the bound
W2(ρ

Z
t , ν̄

Z)2 ≤ E
[∥∥Zt − Z̄t

∥∥2] which follows from the definition of the W2 distance. In step (5),

we use the assumption t ≤ η ≤ α
64L2 , so in the first term, 512t2L4

α ≤ α
8 ; we also use the assumption

t ≤ η ≤ α
64L2 ≤ 1

64L , so in the second term, 64t2L2 ≤ 1
64 ≤ 1; and we use t ≤ η in the third term.
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Plugging in the two bounds above to our earlier calculation (51), we obtain:

d

dt
E
[∥∥Zt − Z̄t

∥∥2] ≤ −3α

2
E
[∥∥Zt − Z̄t

∥∥2]+ 8L2

α
Varν̄Z (Z̄) +

512τηdL2N

α
.

We can write this differential inequality equivalently as:

d

dt

(
e

3
2
αtE

[∥∥Zt − Z̄t

∥∥2]) ≤ e
3
2
αt

(
8L2

α
Varν̄Z (Z̄) +

512τηdL2N

α

)
.

Integrating from t = 0 to t = η and rearranging yields:

E
[∥∥Zη − Z̄η

∥∥2] ≤ e−
3
2
αη E

[∥∥Z0 − Z̄0

∥∥2]+(1− e−
3
2
αη

3
2α

)(
8L2

α
Varν̄Z (Z̄) +

512τηdL2N

α

)

= e−
3
2
αη W2(ρ

Z
0 , ν̄

Z)2 +

(
1− e−

3
2
αη

3
2α

)
8L2

α

(
Varν̄Z (Z̄) + 64 τηdN

)
≤ e−

3
2
αη W2(ρ

Z
0 , ν̄

Z)2 +
8ηL2

α

(
Varν̄Z (Z̄) + 64 τηdN

)
.

In the second step above, we have used the assumption that (Z0, Z̄0) has the optimal W2 coupling
between ρZ0 and ν̄Z. In the last step, we use the inequality 1 − e−c ≤ c, which holds for all
c = 3

2αη ≥ 0. Using the definition of the W2 distance as the infimum over all coupling, from the
above, we conclude:

W2(ρ
Z
η , ν̄

Z)2 ≤ e−
3
2
αη W2(ρ

Z
0 , ν̄

Z)2 +
8ηL2

α

(
Varν̄Z (Z̄) + 64 τηdN

)
.

Substituting back ρZ0 = ρz,ηk and ρZη = ρz,ηk+1 gives us the desired bound.

F.2.2. ONE-STEP RECURRENCE IN KL DIVERGENCE

Lemma 23 Assume Assumption 1. Let zk ∼ ρz,ηk for any ρz,ηk ∈ P(R2dN ), and let zk+1 ∼ ρz,ηk+1

be one step of the finite-particle algorithm (20) with step size 0 < η ≤ α
64L2 . Then:

KL
(
ρz,ηk+1 ∥ ν̄

Z
)
≤ e−αη

(
KL
(
ρz,ηk ∥ ν̄Z

)
+

3ηL2

τ
W2(ρ

z,η
k , ν̄Z)2

)
+ 88η2dL2N +

6ηL2

τ
Varν̄Z (Z̄).

Proof We consider a continuous-time interpolation of one step of the algorithm (20), as in the proof
of Lemma 22, but now we work with the Fokker-Planck equation, rather than the stochastic process.
Let Z0 ∼ ρZ0 where we define ρZ0 = ρz,ηk . For 0 ≤ t ≤ η, we define Zt ∼ ρZt by:

Zt = Z0 + tbZ(Z0) +
√
2tτ ζ (52)

where ζ ∼ N (0, I) is an independent standard Gaussian random variable in R2dN . By the same
argument as in the proof of Lemma 22, the distribution of Zη ∼ ρZη is equal to the distribution of
the next iterate zk+1 ∼ ρz,ηk+1 along the algorithm (20). Let ρZ0t be the joint distribution of (Z0,Zt)
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following the model (52), and let ρZ0|t(· | z) be the conditional distribution of Z0 given Zt = z.
Define the vector field bZt : R2dN → R2dN by, for all z ∈ R2dN :

bZt (z) = EρZ
0|t

[
bZ(Z0) | Zt = z

]
=

∫
R2dN

ρZ0|t(z0 | z) b
Z(z0) dz0.

Then by Lemma 21, we know that the density ρZt evolves following the Fokker-Planck equation:

∂ρZt
∂t

= −∇ ·
(
ρZt bZt

)
+ τ∆ρZt .

We also define Z̄t ∼ ρ̄Zt = ν̄Z which evolves following the stationary tensorized mean-field
dynamics (42) from Z̄0 ∼ ρ̄Z0 = ν̄Z, so ρ̄Zt satisfies the Fokker-Planck equation:

∂ρ̄Zt
∂t

= −∇ ·
(
ρ̄Zt b̄Z

)
+ τ∆ρ̄Zt .

(Note since ρ̄Zt = ν̄Z, both sides of the Fokker-Planck equation above are in fact equal to 0.)
Then using the formula from Lemma 19, we can compute:

d

dt
KL
(
ρZt ∥ ρ̄Zt

) (1)
= −τ FI

(
ρZt ∥ ρ̄Zt

)
+ EρZt

[〈
∇ log

ρZt
ρ̄Zt

, bZt (Zt)− b̄Z(Zt)

〉]
(2)
= −τ FI

(
ρZt ∥ ρ̄Zt

)
+ EρZ0t

[〈
∇ log

ρZt
ρ̄Zt

(Zt), b
Z(Z0)− b̄Z(Zt)

〉]
(3)

≤ −τ

2
FI
(
ρZt ∥ ρ̄Zt

)
+

1

2τ
EρZ0t

[∥∥bZ(Z0)− b̄Z(Zt)
∥∥2]

(4)

≤ −αKL
(
ρZt ∥ ρ̄Zt

)
+

1

2τ
EρZ0t

[∥∥bZ(Z0)− b̄Z(Zt)
∥∥2] . (53)

In the above, in step (1) we use the time derivative formula for KL divergence from Lemma 19. In
step (2), we plug in the definition bZt (z) = EρZ

0|t

[
bZ(Z0) | Zt = z

]
, and use the tower property to

write the iterated expectation EρZt
EρZ

0|t
as a joint expectation EρZ0t

over (Z0,Zt). In step (3), we

use the inequality ⟨a, b⟩ ≤ τ
2∥a∥

2 + 1
2τ ∥b∥

2 to the second term. In step (4), we use the fact that
ρ̄Zt = ν̄Z is (α/τ)-strongly log-concave by Lemma 2, so it also satisfies (α/τ)-LSI, which allows
us to bound the relative Fisher information by KL divergence.

We can bound the second term above by:

1

2τ
EρZ0t

[∥∥bZ(Z0)− b̄Z(Zt)
∥∥2]

(5)

≤ 1

τ
EρZ0t

[∥∥bZ(Z0)− bZ(Zt)
∥∥2]+ 1

τ
EρZt

[∥∥bZ(Zt)− b̄Z(Zt)
∥∥2]

(6)

≤ 1

τ

(
128t2L4W2(ρ

Z
t , ν̄

Z)2 + 64t2L4 Varν̄Z (Z̄) + 64τtdL2N
)

+
1

τ

(
2L2W2(ρ

Z
t , ν̄

Z)2 + 4L2 Varν̄Z (Z̄)
)

(7)

≤ 3L2

τ
W2(ρ

Z
t , ν̄

Z)2 +
5L2

τ
Varν̄Z (Z̄) + 64tdL2N
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(8)

≤ 3L2

τ

(
e−

3
2
αtW2(ρ

Z
0 , ν̄

Z)2 +
8tL2

α

(
Varν̄Z (Z̄) + 64 τtdN

))
+

5L2

τ
Varν̄Z (Z̄) + 64tdL2N

(9)

≤ e−
3
2
αt 3L

2

τ
W2(ρ

Z
0 , ν̄

Z)2 +
24ηL4

ατ

(
Varν̄Z (Z̄) + 64 τηdN

)
+

5L2

τ
Varν̄Z (Z̄) + 64ηdL2N

(10)

≤ e−
3
2
αt 3L

2

τ
W2(ρ

Z
0 , ν̄

Z)2 + 88 ηdL2N +
6L2

τ
Varν̄Z (Z̄).

In step (5), we introduce an intermediate term bZ(Zt) and use the inequality ∥a + b∥2 ≤ 2∥a∥2 +
2∥b∥2 to the second term. In step (6), we use the bound from Lemma 20 in the second term (note
t ≤ η ≤ α

64L2 ≤ 1
64L ≤ 1

4L so the assumption in Lemma 20 is satisfied), and the bound from
Lemma 15 in the third term. In step (7), we use the assumption t ≤ η ≤ α

64L2 ≤ 1
64L , so 128t2L4 ≤

L2 and 64t2L4 ≤ L2. In step (8), we apply the W2 bound from Lemma 22, applied to ρZt when
considered as one step of the discrete-time algorithm (20) from ρZ0 with step size t ≤ η ≤ α

64L2 . In
step (9), we use the bound t ≤ η in the second and fourth terms. In step (10), we use the bound
η ≤ α

64L2 , so 24ηL4

ατ · 64τηdN ≤ 24ηdL2N , and we also bound 24ηL4

ατ ≤ L2

τ .
Plugging in the bound above to the calculation in (53), we obtain:

d

dt
KL
(
ρZt ∥ ρ̄Zt

)
≤ −αKL

(
ρZt ∥ ρ̄Zt

)
+ e−

3
2
αt 3L

2

τ
W2(ρ

Z
0 , ν̄

Z)2 + 88 ηdL2N +
6L2

τ
Varν̄Z (Z̄).

We can write this differential inequality equivalently as:

d

dt

(
eαt KL

(
ρZt ∥ ρ̄Zt

))
≤ e−

1
2
αt 3L

2

τ
W2(ρ

Z
0 , ν̄

Z)2 + eαt
(
88 ηdL2N +

6L2

τ
Varν̄Z (Z̄)

)
.

Integrating from t = 0 to t = η and rearranging yields:

KL
(
ρZη ∥ ρ̄Zη

)
≤ e−αη KL

(
ρZ0 ∥ ρ̄Z0

)
+ e−αη

(
1− e−

1
2
αη

1
2α

)
3L2

τ
W2(ρ

Z
0 , ν̄

Z)2

+

(
1− e−αη

α

)(
88 ηdL2N +

6L2

τ
Varν̄Z (Z̄)

)
≤ e−αη

(
KL
(
ρZ0 ∥ ρ̄Z0

)
+

3ηL2

τ
W2(ρ

Z
0 , ν̄

Z)2
)
+ 88 η2dL2N +

6ηL2

τ
Varν̄Z (Z̄)

where in the second step above we use the inequality 1− e−c ≤ c for c = 1
2αη in the second term,

and for c = αη in the third term. Substituting ρZ0 = ρz,ηk , ρZη = ρz,ηk+1, and ρ̄Z0 = ρ̄Zη = ν̄Z gives the
desired bound.

F.3. Proof of Theorem 6 (Biased Convergence of Finite-Particle Algorithm to Stationary
Mean-Field Distribution)

Proof [Proof of Theorem 6] (1) Biased W2 convergence: For simplicity, let Dk := W2(ρ
z,η
k , ν̄Z)2.

Recall from Lemma 22 we have the recurrence:

Dk+1 ≤ e−
3
2
αη Dk + C
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where C := 8ηL2

α

(
Varν̄Z (Z̄) + 64 τηdN

)
. Iterating this recurrence gives us:

Dk ≤ e−
3
2
αηk D0 + C

k−1∑
i=0

e−
3
2
αηi

≤ e−
3
2
αηk D0 +

C

1− e−
3
2
αη

≤ e−
3
2
αηk D0 +

C

αη
.

In the second step above, we use the bound
∑k−1

i=0 e−
3
2
αηi ≤

∑∞
i=0 e

− 3
2
αηi = 1/(1 − e−

3
2
αη). In

the last step, we use the inequality 1 − e−c ≥ 2
3c for 0 ≤ c = 3

2αη ≤ 3
4 , which holds since

η ≤ α
64L2 ≤ 1

64α ≤ 1
8α . Substituting the definition of Dk and C gives the W2 convergence bound.

(2)Biased convergence in KL divergence: Let Hk := KL
(
ρz,ηk+1 ∥ ν̄

Z
)
, and Dk = W2(ρ

z,η
k , ν̄Z)2

as before. Recall from Lemma 23 we have the recurrence:

Hk+1 ≤ e−αη

(
Hk +

3ηL2

τ
Dk

)
+ C ′

where C ′ := 88η2dL2N + 6ηL2

τ Varν̄Z (Z̄). Iterating this recurrence gives us:

Hk ≤ e−αηkH0 +
3ηL2

τ

k−1∑
i=0

e−αη(k−i)Di + C ′
k−1∑
i=0

e−αηi. (54)

By using the W2 convergence bound we proved above, we can write:

k−1∑
i=0

e−αη(k−i)Di ≤
k−1∑
i=0

e−αη(k−i)

(
e−

3
2
αηiD0 +

C

αη

)

= e−αηkD0

k−1∑
i=0

e−
1
2
αηi +

C

αη

k−1∑
i=0

e−αη(k−i)

≤ e−αηkD0

(1− e−
1
2
αη)

+
C

αη

e−αη

(1− e−αη)

≤ 3e−αηkD0

αη
+

3C

2α2η2

where in the last step we again use the bound 1− e−c ≥ 2
3c for c = 1

2αη and c = αη, and we also
bound e−αη ≤ 1. Plugging in the value C = 8ηL2

α

(
Varν̄Z (Z̄) + 64 τηdN

)
, the middle term in (54)

can be bounded by:

3ηL2

τ

k−1∑
i=0

e−αη(k−i)Di ≤
3ηL2

τ

(
3e−αηkD0

αη
+

3

2α2η2

(
8ηL2

α

(
Varν̄Z (Z̄) + 64 τηdN

)))
= e−αηk 9L2D0

ατ
+

36L4

α3τ

(
Varν̄Z (Z̄) + 64 τηdN

)
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For the last term in (54), we can bound:

C ′
k−1∑
i=0

e−αηi ≤ C ′

1− e−αη
≤ 3C ′

2αη
=

132ηdL2N

α
+

9L2

ατ
Varν̄Z (Z̄)

where again we use the bound 1− e−c ≥ 2
3c. Plugging in these two bounds to (54), we obtain:

Hk ≤ e−αηkH0 + e−αηk 9L
2D0

ατ
+

36L4

α3τ

(
Varν̄Z (Z̄) + 64 τηdN

)
+

132ηdL2N

α
+

9L2

ατ
Varν̄Z (Z̄)

= e−αηk

(
H0 +

9L2

ατ
D0

)
+

9L2

ατ

(
1 +

4L2

α2

)
Varν̄Z (Z̄) +

6ηdL2N

α

(
22 + 384

L2

α2

)
≤ e−αηk

(
H0 +

9L2

ατ
D0

)
+

45L4

α3τ

(
Varν̄Z (Z̄) + 55 ητdN

)
where in the last step we use the bound 1 ≤ L2

α2 to simplify the second and third terms, and bound
6× (22 + 384) = 2436 ≤ 2475 = 45× 55.

F.4. Proof of Corollary 7 (Average Particle Along the Finite-Particle Algorithm)

Proof [Proof of Corollary 7] The proof below follows identically as in the proof of Corollary 5.
For zk = (xk,yk) = (x1k, . . . , x

N
k , y1k, . . . , y

N
k ) ∼ ρz,ηk in R2dN , let ρz,η,ik ∈ P(R2d) be the

marginal distribution of the component zik = (xik, y
i
k) ∈ R2d, for i ∈ [N ]. We rearrange the

coordinates to write zk = (z1k, . . . , z
N
k ) for convenience, and still denote its distribution by ρz,ηk . We

introduce an independent product of the marginal distributions:

ρ̂z,ηk :=
⊗
i∈[N ]

ρz,η,ik .

Since ν̄Z = (ν̄X)⊗N ⊗ (ν̄Y )⊗N is an independent product, after rearranging the coordinates as
above, we can write it as ν̄Z = (ν̄Z)⊗N where ν̄Z = ν̄X ⊗ ν̄Y .

Then we can bound the KL divergence by:

KL(ρz,ηk ∥ ν̄Z) = Eρz,ηk

[
log

ρz,ηk

ν̄Z

]
= Eρz,ηk

[
log

ρz,ηk

ρ̂z,ηk

]
+ Eρz,ηk

[
log

ρ̂z,ηk

(ν̄Z)⊗N

]
= Eρz,ηk

[
log

ρz,ηk

ρ̂z,ηk

]
+
∑
i∈[N ]

E
ρz,η,ik

[
log

ρz,η,ik

ν̄Z

]

= KL
(
ρz,ηk ∥ ρ̂z,ηk

)
+
∑
i∈[N ]

KL
(
ρz,η,ik ∥ ν̄Z

)
≥
∑
i∈[N ]

KL
(
ρz,η,ik ∥ ν̄Z

)
where the inequality follows by dropping the first term KL

(
ρz,ηk ∥ ρ̂z,ηk

)
≥ 0, which is the mul-

tivariate mutual information of zηk. Furthermore, since KL divergence is jointly convex in both
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arguments, we can further bound the above by:

KL(ρz,ηk ∥ ν̄Z) ≥ N · 1

N

∑
i∈[N ]

KL
(
ρz,η,ik ∥ ν̄Z

)
≥ N · KL

(
ρz,η,avgk ∥ ν̄Z

)
using the definition ρz,η,avgk = 1

N

∑
i∈[N ] ρ

z,η,i
k .

Combining this with the bound for KL(ρz,ηk ∥ ν̄Z) from Theorem 6 gives the desired result.

F.5. Proofs for Iteration Complexity of the Finite-Particle Algorithm

F.5.1. PRELIMINARY RESULTS

Recall ν̄Z = ν̄X ⊗ ν̄Y is the stationary mean-field distribution, which is (α/τ)-SLC and (L/τ)-
smooth by Lemma 2, under Assumption 1. Recall by Theorem 35 (in Section H) that there exists a
unique pair of equilibrium points (x∗, y∗) ∈ R2d that satisfies ∇V (x∗, y∗) = 0. We first show the
following.

Lemma 24 Assume Assumption 1. Then for Z̄ ∼ ν̄Z in R2d:

Varν̄Z (Z̄) ≤ 2τd

α
.

Proof Recall that since ν̄Z is (α/τ)-SLC, it also satisfies the (α/τ)-Poincaré inequality (Villani,
2009), which means for all smooth functions ϕ : R2d → R:

Varν̄Z (ϕ(Z̄)) ≤ τ

α
Eν̄Z

[∥∥∇ϕ(Z̄)
∥∥2] .

For each unit vector u ∈ R2d, ∥u∥ = 1, by applying the Poincaré inequality to the function ϕ(z) =
⟨z, u⟩, we get:

u⊤Covν̄Z (Z̄)u = Varν̄Z (⟨Z̄, u⟩) ≤ τ

α
Eν̄Z

[
∥u∥2

]
=

τ

α
.

This shows that the covariance matrix Covν̄Z (Z̄) ∈ R2d×2d satisfies:

Covν̄Z (Z̄) ⪯ τ

α
I.

Taking trace gives us the desired result: Varν̄Z (Z̄) = Tr
(
Covν̄Z (Z̄)

)
≤ 2τd

α .

Lemma 25 Assume Assumption 1. For Z̄ ∼ ν̄Z in R2d, we have:

Eν̄Z

[∥∥Z̄ − z∗
∥∥2] ≤ 8τdL2

α3
.
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Proof Define the vector field bZ : R2d → R2d by, for all z = (x, y) ∈ R2d:

bZ(x, y) =

(
−∇xV (x, y)
∇yV (x, y)

)
.

Observe that bZ is the case N = 1 of the vector field bZ that we defined in (17) (in R2dN = R2d).
Note by definition, bZ(z∗) = 0, since both ∇xV (z∗) = ∇yV (z∗) = 0. Recall by Lemma 12 that
−bZ is α-strongly monotone, so for all z ∈ R2d:

α∥z − z∗∥2 ≤ ⟨−bZ(z) + bZ(z∗), z − z∗⟩ ≤ ∥bZ(z)− bZ(z∗)∥ · ∥z − z∗∥

where the second inequality is by Cauchy-Schwarz. Then we conclude that:

α∥z − z∗∥ ≤ ∥bZ(z)− bZ(z∗)∥ = ∥bZ(z)∥.

Therefore, for Z̄ ∼ ν̄Z :

Eν̄Z

[∥∥Z̄ − z∗
∥∥2] ≤ 1

α2
Eν̄Z

[∥∥bZ(Z̄)
∥∥2] ≤ 2L2Varν̄Z (Z̄)

α2
+

4τdL

α2
≤ 4τdL2

α3
+

4τdL

α2
≤ 8τdL2

α3

where the second inequality is by Lemma 17 for the case N = 1, the third inequality is by the bound
on the variance of ν̄Z from Lemma 24, and the last inequality is by the bound 1 ≤ L

α .

F.5.2. BOUND ON THE INITIAL RELATIVE FISHER INFORMATION

We have the following bounds on the distances from the stationary mean-field distribution from a
Gaussian starting distribution.

Lemma 26 Assume Assumption 1. Let ρX = N (mX , τ
LI) and ρY = N (mY , τ

LI) for arbitrary
mX ,mY ∈ Rd, and let ρZ = ρX ⊗ ρY = N (mZ , τ

LI) where mZ = (mX ,mY ) ∈ R2d. Then:

FI(ρZ ∥ ν̄Z) ≤ 22dL4

τα3
+

2L2

τ2
∥mZ − z∗∥2

KL(ρZ ∥ ν̄Z) ≤ 11dL4

α4
+

L2

τα
∥mZ − z∗∥2

W2(ρ
Z , ν̄Z)2 ≤ 22τdL4

α5
+

2L2

α2
∥mZ − z∗∥2.

Proof Since ρZ = ρX ⊗ ρY and ν̄Z = ν̄X ⊗ ν̄Y are product distributions, we have

FI(ρZ ∥ ν̄Z) = FI(ρX ∥ ν̄X) + FI(ρY ∥ ν̄Y ).

We will bound each term separately.
Define gX = − log ν̄X , so ∇gX(x) = τ−1Eν̄Y [∇xV (x, Ȳ )] and ∆gX(x) = τ−1Eν̄Y [∆xV (x, Ȳ )].

Since we assume V (x, y) is α-strongly convex in x, we have ∆gX(x) ≥ αd/τ ≥ 0 for all x ∈ Rd.
Note also that for ρX = N (mX , τ

LI) on Rd, we have

EρX

[∥∥∇ log ρX
∥∥2] = L2

τ2
EρX

[∥∥X −mX
∥∥2] = Ld

τ
.
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Then by expanding the square and using integration by parts, we can write:

FI(ρX ∥ ν̄X) = EρX

[∥∥∇ log ρX +∇gX
∥∥2]

= EρX

[∥∥∇ log ρX
∥∥2]− 2EρX

[
∆gX

]
+ EρX

[∥∥∇gX
∥∥2]

≤ Ld

τ
+ EρX

[∥∥∇gX
∥∥2] .

For the second term above, we can bound:

τ2 EρX

[∥∥∇gX
∥∥2]

= EρX

[∥∥Eν̄Y [∇xV (X, Ȳ )]
∥∥2]

≤ EρX⊗ν̄Y

[∥∥∇xV (X, Ȳ )
∥∥2]

≤ 2EρX⊗ν̄Y

[∥∥∇xV (X, Ȳ )−∇xV (x∗, Ȳ )
∥∥2]+ 2EρX⊗ν̄Y

[∥∥∇xV (x∗, Ȳ )−∇xV (x∗, y∗)
∥∥2]

≤ 2L2EρX

[
∥X − x∗∥2

]
+ 2L2 Eν̄Y

[∥∥Ȳ − y∗
∥∥2]

= 2L2

(
τd

L
+ ∥mX − x∗∥2

)
+ 2L2 Eν̄Y

[∥∥Ȳ − y∗
∥∥2]

In the above, the first inequality follows by Cauchy-Schwarz. In the second inequality, we introduce
the additional term ∇xV (x∗, Ȳ ) and use the inequality ∥a+b∥2 ≤ 2∥a∥2+2∥b∥2, and also introduce
∇xV (x∗, y∗) = 0. In the third inequality, we use the property that V is L-smooth, so ∇xV is
L-Lipschitz. The next step follows from the bias-variance decomposition. Combining the above
calculations, we obtain:

FI(ρX ∥ ν̄X) ≤ 3Ld

τ
+

2L2

τ2
∥mX − x∗∥2 + 2L2

τ2
Eν̄Y

[∥∥Ȳ − y∗
∥∥2] .

By an identical argument, we can also bound:

FI(ρY ∥ ν̄Y ) ≤ 3Ld

τ
+

2L2

τ2
∥mY − y∗∥2 + 2L2

τ2
Eν̄X

[∥∥X̄ − x∗
∥∥2] .

Combining the two bounds above gives:

FI(ρZ ∥ ν̄Z) ≤ 6Ld

τ
+

2L2

τ2
(
∥mX − x∗∥2 + ∥mY − y∗∥2

)
+

2L2

τ2

(
Eν̄X

[∥∥X̄ − x∗
∥∥2]+ Eν̄Y

[∥∥Ȳ − y∗
∥∥2])

=
6Ld

τ
+

2L2

τ2
∥mZ − z∗∥2 + 2L2

τ2
Eν̄Z

[∥∥Z̄ − z∗
∥∥2]

≤ 6Ld

τ
+

2L2

τ2
∥mZ − z∗∥2 + 16dL4

τα3

≤ 22dL4

τα3
+

2L2

τ2
∥mZ − z∗∥2
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where the second inequality follows from Lemma 25, and in the last inequality we use the bound
1 ≤ L

α to simplify the result.
Since ν̄Z is (α/τ)-SLC, it also satisfies (α/τ)-LSI and (α/τ)-TI, so we have:

KL(ρZ ∥ ν̄Z) ≤ τ

2α
FI(ρZ ∥ ν̄Z)

and

W2(ρ
Z , ν̄Z)2 ≤ 2τ

α
KL(ρZ ∥ ν̄Z).

Thus, the bounds for KL divergence and W2 distance follow from the bound for relative Fisher
information above.

F.5.3. PROOF OF COROLLARY 8 (ITERATION COMPLEXITY OF THE FINITE-PARTICLE

ALGORITHM)

Proof [Proof of Corollary 8] Fix any regularization parameter τ > 0, and any small error threshold
ε > 0. We want to run the finite-particle algorithm (20) with a sufficiently small step size η and a
sufficiently large number of particles N , for a sufficiently large number of iterations k, such that the
upper bound on the KL divergence for the average particle in Corollary 7 is less than ε.

We choose the parameters to make each term in the bound from Corollary 7 less than 1
3ε. To do

so, we can choose the step size to be:

η =
ε α3

7500 dL4
⇒ 2475

ηdL4

α3
≤ 2500

ηdL4

α3
=

ε

3
.

We assume ε is small enough so that the choice of η above satisfies the assumption η ≤ α
64L2 in

Corollary 7; this is ensured if ε ≤ 7500
64

dL2

α2 .
Recall the bound Varν̄Z (Z̄) ≤ 2τd

α from Lemma 24. We choose the number of particles to be:

N ≥ 270 dL4

ε α4
⇒ 45L4

α3τN
Varν̄Z (Z̄) ≤ 90 dL4

α4N
≤ ε

3
.

Next, suppose we run the min-max gradient descent algorithm (65) from z̃0 = (0, 0) ∈ R2d with
step size ηGD = α

4L2 for the number of iterations kGD ≥ 4L2

α2 log α3∥z∗∥2
τdL2 , so that by Corollary 37,

we obtain a final point mZ := z̃kGD which satisfies the guarantee:

∥mZ − z∗∥2 ≤ τdL2

α3
.

We consider the Gaussian distribution γZ := N (mZ , τ
LI). By the bound from Lemma 26, we have:

KL(γZ ∥ ν̄Z) ≤ 11dL4

α4
+

L2

τα
∥mZ − z∗∥2 ≤ 12dL4

α4

W2(γ
Z , ν̄Z)2 ≤ 22τdL4

α5
+

2L2

α2
∥mZ − z∗∥2 ≤ 24τdL4

α5
.
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Therefore,

KL(γZ ∥ ν̄Z) + 9L2

ατ
W2(γ

Z , ν̄Z)2 ≤ 12dL4

α4
+

9L2

ατ
· 24τdL

4

α5
≤ 228

dL6

α6

where in the last inequality we use the bound 1 ≤ L
α to simplify the result, and 12 + 9× 24 = 228.

We use this to initialize the finite-particle algorithm (20) from the product distribution where each
component is γZ :

ρz,η0 :=
(
γZ
)⊗N

.

This means we start the algorithm from z0 = (z10 , . . . , z
N
0 ) ∈ R2dN where z10 , . . . , z

N
0 ∼ γZ are

i.i.d. Since ν̄Z = (ν̄Z)⊗N is also a product distribution, the KL divergence and W2 distance split:

1

N

(
KL(ρz,η0 ∥ ν̄Z) + 9L2

ατ
W2(ρ

z,η
0 , ν̄Z)2

)
= KL(γZ ∥ ν̄Z) + 9L2

ατ
W2(γ

Z , ν̄Z)2 ≤ 228
dL6

α6
.

Therefore, we can choose the number of iterations k of the finite-particle algorithm (20) to be:

k ≥ 1

αη
log

3 · 228 dL6

ε α6
=

7500 dL4

ε α4
log

684 dL6

ε α6
(55)

so that
e−αηk

N

(
KL(ρz,η0 ∥ ν̄Z) + 9L2

ατ
W2(ρ

z,η
0 , ν̄Z)2

)
≤ ε

3
.

Combining all of the above, we conclude that if we run the finite-particle algorithm (20) with the
above choice of step size η and number of particles N , from the initial distribution ρz,η0 =

(
γZ
)⊗N ,

then after k iterations given by (55), the average particle zIk ∼ ρz,η,avgk satisfies, by Corollary 7:

KL(ρz,η,avgk ∥ ν̄Z) ≤ ε

3
+

ε

3
+

ε

3
= ε

as desired.

Appendix G. Convergence of Finite-Particle Systems to Their Limiting Distributions

We study the convergence guarantees of the finite-particle dynamics (16) and algorithm (20) to their
limiting stationary distributions.

G.1. Preliminary Results

G.1.1. TRANSFORMATION OF LSI CONSTANT

We recall the following classical result on how the LSI constant of a probability distribution changes
under a pushforward operation by a Lipschitz map.

Lemma 27 (Chafaı̈, 2004, Remark 7) Suppose ν ∈ P(RD) satisfies α-LSI for some α > 0. Let
T : RD → RD be a differentiable map which is M -Lipschitz for some 0 < M < ∞. Then the
pushforward distribution ν̃ = T#ν satisfies (α/M2)-LSI.
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We also recall the following result on how the LSI constant changes under a convolution.

Lemma 28 Suppose ν ∈ P(RD) satisfies α-LSI for some α > 0. For t > 0, the probability
distribution νt := ν ∗ N (0, tI) satisfies αt-LSI where αt = ( 1α + t)−1.

Proof We recall by (Chafaı̈, 2004, Corollary 3.1) that if ρ satisfies αρ-LSI and ν satisfies αν-LSI,
then the convolution ρ ∗ ν satisfies LSI with constant ( 1

αρ
+ 1

αν
)−1. By assumption, ν satisfies α-

LSI. Since the Gaussian distribution N (0, tI) is (1/t)-SLC, it satisfies (1/t)-LSI. Then by the cited
result above, the convolution νt = ν ∗N (0, tI) satisfies LSI with constant ( 1α + t)−1, as claimed.

We recall the following property that KL divergence is preserved under a deterministic map.

Lemma 29 Let T : RD → RD be a deterministic, differentiable bijective map. For any probability
distributions ρ, ν ∈ P(RD):

KL(T#ρ ∥T#ν) = KL(ρ ∥ ν).

Proof This follows from a direct computation using the change-of-variable formula for T#ρ and
T#ν. Alternatively, this follows from two applications of the data processing inequality from infor-
mation theory, applied to the channels T and T−1:

KL(T#ρ ∥T#ν) ≤ KL(ρ ∥ ν) = KL((T−1)#(T#ρ) ∥ (T−1)#(T#ν)) ≤ KL(T#ρ ∥T#ν).

Hence, both inequalities above must be equality.

G.1.2. CONTRACTION OF THE DETERMINISTIC STEP OF THE FINITE-PARTICLE ALGORITHM

The following shows that the deterministic step in the finite-particle algorithm is a contraction.

Lemma 30 Assume Assumption 1. For η > 0, define the map G : R2dN → R2dN by, for z ∈ R2dN :

G(z) = z+ ηbZ(z)

where bZ : R2dN → R2dN is the vector field defined in (17). If η ≤ α
2L2 , then G is M -Lipschitz,

where:
M :=

√
1− 2ηα+ 4η2L2 ∈ [0, 1].

Proof For any z, z̄ ∈ R2dN , we can compute:

∥G(z)−G(z̄)∥2 = ∥z− z̄∥2 + 2η
〈
z− z̄, bZ(z)− bZ(z̄)

〉
+ η2

∥∥bZ(z)− bZ(z̄)
∥∥2

≤ ∥z− z̄∥2 − 2ηα ∥z− z̄∥2 + 4η2L2 ∥z− z̄∥2

= (1− 2ηα+ 4η2L2) ∥z− z̄∥2 .

In the above, in the first step we expand the square. In the second step, we use the properties from
Lemma 12 that bZ is (2L)-Lipschitz, and −bZ is α-strongly monotone. In the last step, we collect
the terms. Note that 1− 2ηα+ 4η2L2 ∈ [0, 1] from our assumption that η ≤ α

2L2 ≤ 1
2α .
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G.1.3. BOUNDS ON THE SECOND MOMENT ALONG THE FINITE-PARTICLE SYSTEMS

In this section, we show that along the finite-particle dynamics (16) and algorithm (20), the distri-
butions remain in P(R2dN ).

Under Assumption 1, recall from Theorem 35 (in Section H) that there exists a unique equilib-
rium point z∗ = (x∗, y∗) ∈ R2d which satisfies ∇V (z∗) = 0. Define z∗ = (x∗, . . . , x∗, y∗, . . . , y∗) ∈
R2dN . Then by construction, bZ(z∗) = 0, where bZ is the vector field defined in (17).

Lemma 31 Assume Assumption 1. Suppose Zt ∼ ρZt evolves following the finite-particle dynam-
ics (16) in R2dN from Z0 ∼ ρZ0 ∈ P(R2dN ). Then ρZt ∈ P(R2dN ) for all t ≥ 0.

Proof We note that ρZt is absolutely continuous with respect to the Lebesgue measure on R2dN

by virtue of the Brownian motion component in the dynamics (16). We now show that the second
moment of ρZt remains finite for all t ≥ 0. Since Zt evolves following the dynamics (16), its density
ρZt evolves following the Fokker-Planck equation:

∂ρZt
∂t

= −∇ ·
(
ρZt bZ

)
+ τ ∆ρZt .

From this, we can compute, using integration by parts:

d

dt
EρZt

[
∥Zt − z∗∥2

]
=

∫
R2dN

∂ρZt (z)

∂t
∥z− z∗∥2 dz

=

∫
R2dN

(
−∇ ·

(
ρZt bZ

)
(z) + τ ∆ρZt (z)

)
∥z− z∗∥2 dz

=

∫
R2dN

ρZt (z)
〈
bZ(z),∇

(
∥z− z∗∥2

)〉
dz+ τ

∫
R2dN

ρZt (z)∆
(
∥z− z∗∥2

)
dz

= 2

∫
R2dN

ρZt (z)
〈
bZ(z), z− z∗

〉
dz+ τ

∫
R2dN

ρZt (z) (4dN) dz

= 2

∫
R2dN

ρZt (z)
〈
bZ(z)− bZ(z∗), z− z∗

〉
dz+ 4τdN

≤ −2α

∫
R2dN

ρZt (z) ∥z− z∗∥2 dz+ 4τdN

= −2αEρZt

[
∥Zt − z∗∥2

]
+ 4τdN

where the inequality above uses the property that −bZ is α-strongly monotone, from Lemma 12.
We can write the differential inequality above equivalently as:

d

dt

(
e2αt EρZt

[
∥Zt − z∗∥2

])
≤ e2αt 4τdN.

Integrating from 0 to t and rearranging the result gives:

EρZt

[
∥Zt − z∗∥2

]
≤ e−2αt EρZ0

[
∥Z0 − z∗∥2

]
+

(1− e−2αt)

α
2τdN

≤ EρZ0

[
∥Z0 − z∗∥2

]
+

2τdN

α
.
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Since ρZ0 ∈ P(R2dN ), EρZ0

[
∥Z0∥2

]
< ∞, so EρZ0

[
∥Z0 − z∗∥2

]
≤ 2EρZ0

[
∥Z0∥2

]
+ 2∥z∗∥2 < ∞.

Therefore, we also have for all t ≥ 0:

EρZt

[
∥Zt∥2

]
≤ 2EρZt

[
∥Zt − z∗∥2

]
+ 2∥z∗∥2

≤ 2EρZ0

[
∥Z0 − z∗∥2

]
+

4τdN

α
+ 2∥z∗∥2 < ∞

which shows that ρZt ∈ P(R2dN ).

Lemma 32 Assume Assumption 1. Suppose zk ∼ ρz,ηk evolves via the finite-particle algorithm (20)
with step size 0 < η < α

2L2 from z0 ∼ ρz,η0 ∈ P(R2dN ). Then ρz,ηk ∈ P(R2dN ) for all k ≥ 0.

Proof We note that ρz,ηk is absolutely continuous with respect to the Lebesgue measure on R2dN

since the update rule of the algorithm (20) adds an independent Gaussian random variable, which
corresponds to convolution with the Gaussian distribution. We now show that the second moment
of ρz,ηk remains finite for all k ≥ 0.

Define G : R2d → R2d by G(z) = z + ηbZ(z). By Lemma 30, we know G is M -Lipschitz
where M =

√
1− 2ηα+ 4η2L2, and note that 0 < M < 1 from the assumption η < α

2L2 ≤ 1
2α .

Note also that by definition, G(z∗) = z∗ since bZ(z∗) = 0. We have the update rule from (20):

zk+1 = zk + ηbZ(zk) +
√

2τη ζzk = G(zk) +
√
2τη ζzk

where ζzk ∼ N (0, I) is independent of zk. Then we can compute:

E
[
∥zk+1 − z∗∥2

]
= E

[∥∥∥G(zk)−G(z∗) +
√

2τη ζzk

∥∥∥2]
= E

[
∥G(zk)−G(z∗)∥2

]
+ 2τη E

[
∥ζzk∥

2
]

≤ M2 E
[
∥zk − z∗∥2

]
+ 4τηdN

where the inequality follows from the property that G is M -Lipschitz. Since 0 < M < 1, we can
iterate the recurrence above to obtain:

E
[
∥zk − z∗∥2

]
≤ M2k E

[
∥z0 − z∗∥2

]
+ 4τηdN

k−1∑
i=0

M2i ≤ E
[
∥z0 − z∗∥2

]
+

4τηdN

1−M2
.

Since ρz,η0 ∈ P(R2dN ), Eρz,η0

[
∥z0∥2

]
< ∞, so Eρz,η0

[
∥z0 − z∗∥2

]
≤ 2Eρz,η0

[
∥z0∥2

]
+2∥z∗∥2 < ∞.

Therefore, we also have for all k ≥ 0:

Eρz,ηk

[
∥zk∥2

]
≤ 2Eρz,ηk

[
∥zk − z∗∥2

]
+ 2∥z∗∥2

≤ 2Eρz,η0

[
∥z0 − z∗∥2

]
+

8τηdN

1−M2
+ 2∥z∗∥2 < ∞

which shows that ρz,ηk ∈ P(R2dN ).
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G.2. Convergence of Finite-Particle Dynamics to Its Stationary Distribution

We show the following exponential convergence rates of the finite-particle dynamics (16) to its sta-
tionary distribution ρZ∞ in W2 distance and in KL divergence. We note that the exponential conver-
gence rate in KL divergence guarantee below can be strengthened to hold for all Rényi divergence,
but we only present the result for KL divergence here for simplicity.

Theorem 33 Assume Assumption 1. There exists a unique stationary distribution ρZ∞ ∈ P(R2dN )
of the finite-particle dynamics (16), and it satisfies (α/τ)-LSI. Furthermore, suppose Zt ∼ ρZt
evolves following the finite-particle dynamics (16) in R2dN from ρZ0 ∈ P(R2dN ). For all t ≥ 0:

W2(ρ
Z
t , ρ

Z
∞)2 ≤ e−2αtW2(ρ

Z
0 , ρ

Z
∞)2

KL(ρZt ∥ ρZ∞) ≤ e−2αt KL(ρZ0 ∥ ρZ∞).

Proof We showed in Lemma 31 that since ρZ0 ∈ P(R2dN ), we have ρZt ∈ P(R2dN ) for all t ≥ 0.

(1) Exponential contraction in W2 distance: Suppose we run two copies of the finite-particle
dynamics (20) from Z0 ∼ ρZ0 and Z̃0 ∼ ρ̃Z0 , where (Z0, Z̃0) has the joint distribution which is the
optimal W2 coupling between ρZ0 and ρ̃Z0 , to get Zt ∼ ρZt and Z̃t ∼ ρ̃Zt , for t ≥ 0. We can write the
two stochastic processes using synchronous coupling:

dZt = bZ(Zt) dt+
√
2τ dWZ

t

dZ̃t = bZ(Z̃t) dt+
√
2τ dWZ

t

we use the same standard Brownian motion (WZ
t )t≥0 in R2dN . Then we have:

d(Zt − Z̃t) =
(
bZ(Zt)− bZ(Z̃t)

)
dt

where the Brownian motion terms cancel because they are equal in the two processes. From this,
we get:

d
∥∥∥Zt − Z̃t

∥∥∥2 = 2
〈
Zt − Z̃t, b

Z(Zt)− bZ(Z̃t)
〉
dt.

Taking expectation over the joint distribution, we obtain:

d

dt
E
[∥∥∥Zt − Z̃t

∥∥∥2] = 2E
[〈

Zt − Z̃t, b
Z(Zt)− bZ(Z̃t)

〉]
≤ −2αE

[∥∥∥Zt − Z̃t

∥∥∥2]
where in the last step we use the property from Lemma 12 that −bZ is α-strongly monotone. Inte-
grating the differential inequality above from 0 to t, and using the fact that (Z0, Z̃0) has the optimal
W2 coupling gives:

E
[∥∥∥Zt − Z̃t

∥∥∥2] ≤ e−2αt E
[∥∥∥Z0 − Z̃0

∥∥∥2] = e−2αtW2

(
ρZ0 , ρ̃

Z
0

)2
.

Using the definition of the W2 distance as the infimum over all coupling, we conclude that

W2

(
ρZt , ρ̃

Z
t

)2 ≤ e−2αtW2

(
ρZ0 , ρ̃

Z
0

)2
.
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This implies limt→∞W2

(
ρZt , ρ̃

Z
t

)2
= 0. Since this holds for any initial distributions ρZ0 , ρ̃

Z
0 ,

this shows that there must be a stationary distribution ρZ∞ of the dynamics, and it is unique by
the contraction property above. Then plugging in ρ̃Zt = ρ̃Z0 = ρZ∞ yields the desired exponential
convergence guarantee in W2 distance.

(2) Isoperimetry of the stationary distribution: As η → 0, the finite-particle algorithm (20) with
step size η recovers the continuous-time finite-particle dynamics (16). In particular, as η → 0, the
stationary distribution ρz,η∞ of the finite-particle algorithm recovers the stationary distribution ρZ∞ of
the finite-particle dynamics. We show in Theorem 34 below that ρz,η∞ satisfies αη = (α−2ηL2)

τ -LSI,
which implies ρZ∞ = limη→0 ρ

z,η
∞ satisfies LSI with constant limη→0 αη = α/τ , as claimed.

(3) Exponential convergence in KL divergence: We run two copies of the finite-particle dynam-
ics (20) from Z0 ∼ ρZ0 and from the stationary distribution Z̃0 ∼ ρ̃Z0 = ρZ∞, to get Zt ∼ ρZt and
Z̃t ∼ ρ̃Zt = ρZ∞, for t ≥ 0. Then ρZt and ρ̃Zt evolve following the Fokker-Planck equations:

∂ρZt
∂t

= −∇ ·
(
ρZt bZ

)
+ τ ∆ρZt

∂ρ̃Zt
∂t

= −∇ ·
(
ρ̃Zt bZ

)
+ τ ∆ρ̃Zt .

Using the identity from Lemma 19, we can compute:

d

dt
KL(ρZt ∥ ρ̃Zt ) = −τ FI(ρZt ∥ ρ̃Zt ) ≤ −2αKL(ρZt ∥ ρ̃Zt )

where in the second step we use the fact that ρ̃Zt = ρZ∞ satisfies (α/τ)-LSI. Integrating the differen-
tial inequality above from 0 to t yields:

KL(ρZt ∥ ρ̃Zt ) ≤ e−2αt KL(ρZ0 ∥ ρ̃Z0 ).

Substituting ρ̃Zt = ρ̃Z0 = ρZ∞ yields the desired exponential convergence rate in KL divergence.

G.3. Convergence of Finite-Particle Algorithm to Its Stationary Distribution

We show the following exponential convergence rates of the finite-particle algorithm (20) to its
stationary limiting distribution ρz,η∞ . We note that the convergence in KL divergence below can be
strengthened to be an exponential convergence in all Rényi divergence, similar to the result for the
Unadjusted Langevin Algorithm shown in (Vempala and Wibisono, 2019); for simplicity, here we
only present the convergence results for W2 distance and KL divergence.

We also note that similar to the standard discretization of the Langevin dynamics as the Unad-
justed Langevin Algorithm which is biased, here the stationary distribution ρz,η∞ of the finite-particle
algorithm (20) is not equal to the stationary distribution ρZ∞ of the continuous-time finite-particle
dynamics (16). We can also characterize the biased convergence of the finite-particle algorithm (20)
to the continuous-time stationary distribution ρZ∞, but we skip this part because in principle we
do not actually care about the convergence to ρZ∞, but only about the biased convergence to the
stationary mean-field distribution ν̄Z, which we show in Theorem 6 in the main text of this paper.
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Theorem 34 Assume Assumption 1 and 0 < η < α
2L2 . Then there exists a unique stationary

distribution ρz,η∞ ∈ P(R2dN ) of the finite-particle algorithm (20) with step size η, and ρz,η∞ sat-
isfies αη-LSI where αη = (α − 2ηL2)/τ . Furthermore, suppose zk ∼ ρz,ηk evolves following
the finite-particle algorithm (20) with step size 0 < η < α

2L2 from ρz,η0 ∈ P(R2dN ). Define
M =

√
1− 2ηα+ 4η2L2 ∈ (0, 1). Then for all k ≥ 0:

W2(ρ
z,η
k , ρz,η∞ )2 ≤ M2k W2(ρ

z,η
0 , ρz,η∞ )2

KL(ρz,ηk ∥ ρz,η∞ ) ≤ M2k KL(ρz,η0 ∥ ρz,η∞ ).

Proof We showed in Lemma 32 that since ρz,η0 ∈ P(R2dN ), we have ρz,ηk ∈ P(R2dN ) for all k ≥ 0.
Define G : R2d → R2d by G(z) = z + ηbZ(z). By Lemma 30, we know G is M -Lipschitz

where M =
√
1− 2ηα+ 4η2L2, and note that 0 < M < 1 from the assumption η < α

2L2 ≤ 1
2α .

(1) Exponential contraction in W2 distance: Suppose we run two copies of the finite-particle
algorithm (20) with step size 0 < η < α

2L2 from z0 ∼ ρz,η0 and z̃0 ∼ ρ̃z,η0 , where (z0, z̃0) has the
joint distribution which is the optimal W2 coupling between ρz,η0 and ρ̃z,η0 , to get zk ∼ ρz,ηk and
z̃k ∼ ρ̃z,ηk , for k ≥ 1. We can write the update of the algorithm (20) using synchronous coupling as:

zk+1 = G(zk) +
√

2τη ζk, (56a)

z̃k+1 = G(z̃k) +
√

2τη ζk (56b)

where we use the same Gaussian noise ζk ∼ N (0, I) for both updates, independent of zk and z̃k.
Then we can compute:

∥zk+1 − z̃k+1∥2 = ∥G(zk)−G(z̃k)∥2 ≤ M2∥zk − z̃k∥2

where in the last step we have used the property that G is M -Lipschitz, from Lemma 30. Taking
expectation over the joint distribution, this gives:

E
[
∥zk+1 − z̃k+1∥2

]
≤ M2E

[
∥zk − z̃k∥2

]
.

Unrolling the recursion and using the fact that (z0, z̃0) has the optimal W2 coupling, we get:

E
[
∥zk − z̃k∥2

]
≤ M2k E

[
∥z0 − z̃0∥2

]
= M2k W2(ρ

z,η
0 , ρ̃z,η0 )2.

Using the definition of the W2 distance as the infimum over all coupling, this implies:

W2(ρ
z,η
k , ρ̃z,ηk )2 ≤ M2k W2(ρ

z,η
0 , ρ̃z,η0 )2.

Since 0 < M < 1, this implies limk→∞W2(ρ
z,η
k , ρ̃z,ηk )2 = 0. Since this holds for any initial

distributions ρz,η0 , ρ̃z,η0 , this shows that there must be a stationary distribution ρz,η∞ of the algorithm,
and it is unique by the contraction property above. Then plugging in ρ̃z,ηk = ρ̃z,η0 = ρz,η∞ gives us
the desired exponential convergence guarantee in W2 distance.

(2) Isoperimetry of the stationary distribution: We write each step of the finite-particle algo-
rithm (20) as a composition of a pushforward of the deterministic map G, followed by a Gaussian
convolution, so at each iteration k ≥ 0, the next distribution is given by:

ρz,ηk+1 = (G#ρ
z,η
k ) ∗ N (0, 2τηI). (57)
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Suppose we run the algorithm (20) from ρz,η0 which satisfies β0-LSI for some 0 < β0 < ∞ (for
example, a Gaussian distribution). Then inductively from the iteration above, for each k ≥ 1, ρz,ηk

satisfies βk-LSI, where the constants (βk)k≥0 satisfy the recurrence:

βk+1 =
1

M2

βk
+ 2τη

=
βk

M2 + 2τηβk
. (58)

Define αη by:

αη :=
1−M2

2τη
=

α− 2ηL2

τ

and observe that βk = αη is a fixed point of the recurrence (58). Furthermore, we can rewrite the
recurrence (58) as:

1

βk+1
− 1

αη
=

M2

βk
+

2τηαη − 1

αη
=

M2

βk
− M2

αη
= M2

(
1

βk
− 1

αη

)
.

Unrolling the recurrence, we get:

1

βk
=

1

αη
+M2k

(
1

β0
− 1

αη

)
.

As M2 < 1, this shows that 1/βk converges to 1/αη exponentially fast. Therefore, the stationary
distribution ρz,η∞ = limk→∞ ρz,ηk satisfies LSI with constant limk→∞ βk = αη, as desired.

(3) Exponential convergence in KL divergence: We run two copies of the finite-particle algo-
rithm (20) with step size 0 < η < α

2L2 from z0 ∼ ρz,η0 and from the stationary distribution
z̃0 ∼ ρ̃z,η0 = ρz,η∞ , to get zk ∼ ρz,ηk and z̃k ∼ ρ̃z,ηk = ρz,η∞ . We write one step of the algorithm
update as a pushforward followed by a Gaussian convolution, as in (57). We define the half-steps:

ρz,η
k+ 1

2

= G#ρ
z,η
k , ρ̃z,η

k+ 1
2

= G#ρ̃
z,η
k .

Since G is a contraction (M -Lipschitz with M < 1), it is bijective, and so we know by Lemma 29:

KL

(
ρz,η
k+ 1

2

∥∥ ρ̃z,η
k+ 1

2

)
= KL

(
ρz,ηk ∥ ρ̃z,ηk

)
.

Furthermore, since ρ̃z,ηk = ρz,η∞ satisfies αη-LSI, and G is M -Lipschitz, we know by Lemma 27 that
ρ̃z,η
k+ 1

2

satisfies (αη/M
2)-LSI. Then we interpret the next half-step, the Gaussian convolution:

ρz,ηk+1 = ρz,η
k+ 1

2

∗ N (0, 2τηI), ρ̃z,ηk+1 = ρ̃z,η
k+ 1

2

∗ N (0, 2τηI),

as the solutions of the heat flow:
∂ρt
∂t

= ∆ρt,
∂νt
∂t

= ∆νt

starting from ρ0 := ρz,η
k+ 1

2

and ν0 := ρ̃z,η
k+ 1

2

, for time t = τη, to get ρτη = ρz,ηk+1 and ντη =

ρ̃z,ηk+1. Note since ν0 = ρ̃z,η
k+ 1

2

satisfies γ0-LSI with γ0 := (αη/M
2), by Lemma 28, we know

νt = ν0 ∗ N (0, 2tI) satisfies γt-LSI where:

γt =
1

1
γ0

+ 2t
=

γ0
1 + 2γ0 t

=
1

2

d

dt
log(1 + 2γ0 t).
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Then by the formula from Lemma 19, we can compute:

d

dt
KL(ρt ∥ νt) = −FI(ρt ∥ νt) ≤ −2γt KL(ρt ∥ νt).

Integrating from t = 0 to t = τη gives:

KL(ρτη ∥ ντη) ≤ exp

(
−2

∫ τη

0
γt dt

)
KL(ρ0 ∥ ν0) =

KL(ρ0 ∥ ν0)
1 + 2γ0τη

.

Note that by definition,

1 + 2γ0τη = 1 +
2αητη

M2
= 1 +

1−M2

M2
=

1

M2
.

Then substituting back the definitions of ρτη, ρ0, and ντη, ν0 gives us:

KL
(
ρz,ηk+1 ∥ ρ̃

z,η
k+1

)
≤

KL

(
ρz,η
k+ 1

2

∥∥ ρ̃z,η
k+ 1

2

)
1 + 2γ0τη

= M2 KL

(
ρz,η
k+ 1

2

∥∥ ρ̃z,η
k+ 1

2

)
= M2 KL

(
ρz,ηk ∥ ρ̃z,ηk

)
.

Iterating this recursion and substituting ρ̃z,ηk+1 = ρ̃z,ηk = ρz,η∞ gives:

KL
(
ρz,ηk ∥ ρz,η∞

)
≤ M2k KL

(
ρz,η0 ∥ ρz,η∞

)
as desired.

Appendix H. Deterministic Zero-Sum Game

We review the properties of the deterministic finite-dimensional zero-sum game:

min
x∈Rd

max
y∈Rd

V (x, y) (59)

where V : Rd × Rd → R satisfies Assumption 1. In particular, for each x ∈ Rd, we have
maxy∈Rd V (x, y) < ∞, and similarly, for each y ∈ Rd, we have minx∈Rd V (x, y) > −∞, so
all the quantities we discuss below are finite.

Recall we say that (x∗, y∗) ∈ R2d is an equilibrium point (or a Nash equilibrium) for the
game (59) if for all x, y ∈ Rd, the following holds:

V (x∗, y) ≤ V (x∗, y∗) ≤ V (x, y∗). (60)

We recall the duality gap DG : Rd × Rd → R of the game (59) is defined by:

DG(x, y) = max
y′∈Rd

V (x, y′)− min
x′∈Rd

V (x′, y).

Note that DG(x, y) ≥ 0 for all (x, y) ∈ R2d, and DG(x, y) = 0 if and only if (x, y) = (x∗, y∗)
is an equilibrium point. Under Assumption 1, there exists a unique equilibrium point (x∗, y∗);
furthermore, the duality gap is bounded by the squared gradient norm, see Theorem 35 below.

In this section, we review the exponential convergence guarantees of the continuous-time min-
max gradient flow in Section H.1, and the discrete-time min-max gradient descent in Section H.2.

In Section I, we review the zero-sum game (2) in the space of distributions without entropy
regularization. Under the same assumptions on V , we show that the unique equilibrium distribution
of the game (2) is a pure equilibrium, i.e., a point mass (δx∗ , δy∗), where (x∗, y∗) is the equilibrium
point of the deterministic game from this section.
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H.1. Convergence of Min-Max Gradient Flow

We consider the min-max gradient flow which is the dynamics for (Xt, Yt)t≥0 in R2d which evolves
following:

Ẋt = −∇xV (Xt, Yt)

Ẏt = ∇yV (Xt, Yt).

In terms of the joint variable Zt = (Xt, Yt) ∈ R2d, we can write this as:

Żt = bZ(Zt) (61)

where we have defined the vector field bZ : R2d → R2d by, for all z = (x, y) ∈ R2d:

bZ(x, y) =

(
−∇xV (x, y)
∇yV (x, y)

)
. (62)

Observe that bZ is the case N = 1 of the vector field bZ that we defined in (17) (in R2dN = R2d).
In particular, the guarantees that we proved for bZ also apply to bZ when we specialize to N = 1.

Below, for z = (x, y) ∈ R2d, we also write ∇V (z) ≡ ∇V (x, y), and DG(z) ≡ DG(x, y).

Theorem 35 Assume Assumption 1. Then we have the following properties:

1. There exists a unique equilibrium point z∗ = (x∗, y∗) ∈ R2d, and it satisfies ∇V (z∗) = 0.

2. For all z = (x, y) ∈ R2d, the duality gap is bounded by the squared gradient norm:

DG(z) ≤ 1

2α
∥∇V (z)∥2. (63)

3. Suppose (Zt)t≥0 evolves following the min-max gradient flow (61) in R2d. For all t ≥ 0:

∥Zt − z∗∥2 ≤ e−2αt ∥Z0 − z∗∥2 (64a)

2αDG(Zt) ≤ ∥∇V (Zt)∥2 ≤ e−2αt ∥∇V (Z0)∥2 (64b)

Proof (1) Bound in duality gap: For each y ∈ Rd, since x 7→ V (x, y) is α-strongly convex by
assumption, it also satisfies α-gradient domination, i.e.,

V (x, y)− min
x′∈Rd

V (x′, y) ≤ 1

2α
∥∇xV (x, y)∥2.

Similarly, for each x ∈ Rd, since y 7→ −V (x, y) is α-strongly convex by assumption, it also
satisfies α-gradient domination, i.e.,

max
y′∈Rd

V (x, y′)− V (x, y) ≤ 1

2α
∥∇yV (x, y)∥2.

Summing the two inequalities above gives:

DG(x, y) = max
y′∈Rd

V (x, y′)− min
x′∈Rd

V (x′, y)

≤ 1

2α

(
∥∇xV (x, y)∥2 + ∥∇yV (x, y)∥2

)
=

1

2α
∥∇V (x, y)∥2
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as claimed in (63).

(2) Exponential convergence in distance and existence of stationary point: Suppose we run two
copies of the min-max gradient flow (61) from Z0, Z

′
0 ∈ R2d, to get Zt, Z

′
t ∈ R2d for t ≥ 0, so they

satisfy: Żt = bZ(Zt) and Ż ′
t = bZ(Z ′

t). Then we can compute:

d

dt
∥Zt − Z ′

t∥2 = 2⟨Zt − Z ′
t, b(Zt)− b(Z ′

t)⟩ ≤ −2α∥Zt − Z ′
t∥2

where the inequality follows from the property that −bZ is α-strongly monotone, by Lemma 12.
Integrating the differential inequality above gives:

∥Zt − Z ′
t∥2 ≤ e−2αt ∥Z0 − Z ′

0∥2.

Therefore, limt→∞ ∥Zt − Z ′
t∥2 = 0. Since this holds for any initial points Z0, Z

′
0, this means there

must be a stationary point z∗, and furthermore, this stationary point z∗ is unique by the contraction
property above. Plugging in Z ′

t = Z ′
0 = z∗ to the guarantee above gives the desired exponential

convergence rate in distance (64a).

(3) Stationary point is an equilibrium point: Since z∗ = (x∗, y∗) is stationary for the min-max
gradient flow (61), it makes the vector field vanish: bZ(z∗) = 0, which means ∇xV (x∗, y∗) = 0
and ∇yV (x∗, y∗) = 0, so indeed ∇V (x∗, y∗) = 0.

Furthermore, since x 7→ V (x, y∗) is strongly convex by assumption, ∇xV (x∗, y∗) = 0 means
x∗ = argminx∈Rd V (x, y∗), so V (x∗, y∗) ≤ V (x, y∗) for all x ∈ Rd. Similarly, since y 7→
V (x∗, y) is strongly concave by assumption, ∇yV (x∗, y∗) = 0 means y∗ = argmaxy∈Rd V (x∗, y),
so V (x∗, y∗) ≥ V (x∗, y) for all y ∈ Rd. This shows that z∗ = (x∗, y∗) is an equilibrium point as
defined in (60).

(4) Exponential convergence in gradient norm: Observe that ∥bZ(Zt)∥2 = ∥∇xV (Xt, Yt)∥2 +
∥∇yV (Xt, Yt)∥2 = ∥∇V (Xt, Yt)∥2, so it suffices to prove the exponential convergence of ∥bZ(Zt)∥.
We can compute:

d

dt
∥bZ(Zt)∥2 = 2⟨bZ(Zt),∇bZ(Zt) Żt⟩

= 2⟨bZ(Zt),∇bZ(Zt) b
Z(Zt)⟩

= 2⟨bZ(Zt), (∇bZ(Zt))sym bZ(Zt)⟩

where the last step follows since u⊤Au = u⊤(Asym)u for all u ∈ R2d and A ∈ R2d×2d, where
Asym = 1

2(A + A⊤). Recall from Lemma 12 part (2), we have shown that (∇bZ(Zt))sym ⪯ −αI
(which is equivalent to the property that −bZ is α-strongly monotone). Then from the computation
above, we can bound:

d

dt
∥bZ(Zt)∥2 ≤ −2α ∥bZ(Zt)∥2.

Integrating this differential inequality gives:

∥bZ(Zt)∥2 ≤ e−2αt ∥bZ(Z0)∥2
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as claimed in the second inequality in (64b). Combining this with the bound for the duality gap (63)
yields:

2αDG(Zt) ≤ ∥∇V (Zt)∥2 ≤ e−2αt ∥∇V (Z0)∥2

as desired.

H.2. Convergence of Min-Max Gradient Descent

We consider the min-max gradient descent with step size η > 0, which maintains the iterates
(xk, yk)k≥0 in R2d which evolves following the update:

xk+1 = xk − η∇xV (xk, yk)

yk+1 = yk + η∇yV (xk, yk).

In terms of the joint variable zk = (xk, yk) ∈ R2d, we can write this as:

zk+1 = zk + ηbZ(zk) (65)

where bZ is the vector field defined in (62).

Theorem 36 Assume Assumption 1. Let z∗ = (x∗, y∗) ∈ R2d be the unique equilibrium point.
Suppose (zk)k≥0 evolves following the min-max gradient descent (65) in R2d with step size η > 0.
If η ≤ α

4L2 , then for all k ≥ 0:

∥zk − z∗∥2 ≤ e−αηk ∥z0 − z∗∥2. (66)

Furthermore, if η ≤ α
16L2 , then we also have for all k ≥ 0:

2αDG(zk) ≤ ∥∇V (zk)∥2 ≤ e−αηk ∥∇V (z0)∥2. (67)

Proof (1) Exponential convergence in distance: Let G : R2d → R2d be G(z) = z + ηbZ(z).
Recall we show in Lemma 30 (with N = 1) that G is M -Lipschitz, where

M :=
√

1− 2ηα+ 4η2L2 ≤
√
1− ηα ≤ e−

1
2
ηα

where the first bound above follows from the assumption η ≤ α
4L2 , and the second from the inequal-

ity 1−c ≤ e−c for c ≥ 0. We can write the min-max gradient descent update (65) as zk+1 = G(zk),
and note z∗ = G(z∗) is a fixed point. Then we can compute:

∥zk+1 − z∗∥2 = ∥G(zk)−G(z∗)∥2 ≤ M2 ∥zk − z∗∥2

where the inequality follows from the property that G is M -Lipschitz. Iterating this bound gives:

∥zk − z∗∥2 ≤ M2k ∥z0 − z∗∥2 ≤ e−αηk ∥z0 − z∗∥2

where the last inequality follows from the bound for M above.
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(2) Exponential convergence in gradient norm: We consider a continuous-time interpolation of
one step of the min-max gradient descent (65) as:

Zt = Z0 + tbZ(Z0)

so that if Z0 = zk, then Zη = Z0 + ηbZ(Z0) = zk + ηbZ(zk) = zk+1. We can first bound:

∥bZ(Zt)− bZ(Z0)∥2 ≤ 4L2 ∥Zt − Z0∥2

= 4t2L2 ∥bZ(Z0)∥2

≤ 8t2L2 ∥bZ(Zt)− bZ(Z0)∥2 + 8t2L2 ∥bZ(Zt)∥2

≤ 1

2
∥bZ(Zt)− bZ(Z0)∥2 + 8t2L2 ∥bZ(Zt)∥2

where the first inequality follows from the property that bZ is (2L)-Lipschitz from Lemma 12. In the
second inequality we introduce the term bZ(Zt) and use the inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2.
In the third inequality we use the assumption t ≤ η ≤ α

16L2 ≤ 1
4L , so 8t2L2 ≤ 1

2 . Rearranging the
above and taking square-root gives us:

∥bZ(Zt)− bZ(Z0)∥ ≤ 4tL ∥bZ(Zt)∥. (68)

Next, we can compute along the continuous-time interpolation, where Żt = bZ(Z0), for 0 ≤ t ≤ η:

d

dt
∥bZ(Zt)∥2 = 2⟨bZ(Zt),∇bZ(Zt) b

Z(Z0)⟩

= 2⟨bZ(Zt),∇bZ(Zt) b
Z(Zt)⟩+ 2⟨bZ(Zt),∇bZ(Zt) (b

Z(Z0)− bZ(Zt))⟩
= 2⟨bZ(Zt), (∇bZ(Zt))sym bZ(Zt)⟩+ 2⟨bZ(Zt),∇bZ(Zt) (b

Z(Z0)− bZ(Zt))⟩
≤ −2α∥bZ(Zt)∥2 + 4L∥bZ(Zt)∥ · ∥bZ(Z0)− bZ(Zt)∥
≤ −2α∥bZ(Zt)∥2 + 16tL2∥bZ(Zt)∥2

≤ −α∥bZ(Zt)∥2.

In the first inequality above, we use the properties from Lemma 12 that (∇bZ(Zt))sym ⪯ −αI
(equivalent to −bZ is α-strongly monotone), and bZ is (2L)-Lipschitz. In the second inequality,
we use the bound on ∥bZ(Zt) − bZ(Z0)∥ from (68). In the third inequality, we use the assumption
t ≤ η ≤ α

16L2 , so 16tL2 ≤ α. Integrating the differential inequality above from t = 0 to t = η
gives:

∥bZ(zk+1)∥2 = ∥bZ(Zη)∥2 ≤ e−αη ∥bZ(Z0)∥2 = e−αη ∥bZ(zk)∥2.

Iterating the recurrence above and recalling ∥bZ(z)∥ = ∥∇V (z)∥ gives us:

∥∇V (zk)∥2 = ∥bZ(zk)∥2 ≤ e−αηk ∥bZ(z0)∥2 = e−αηk ∥∇V (z0)∥2

as claimed in the second inequality in (67). Finally, combining this bound with the bound for the
duality gap (63) yields:

2αDG(zk) ≤ ∥∇V (zk)∥2 ≤ e−αηk ∥∇V (z0)∥2

as desired.
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H.2.1. COROLLARY ON ITERATION COMPLEXITY OF MIN-MAX GRADIENT DESCENT

Corollary 37 Given any ε > 0, if we run the min-max gradient descent algorithm (65) from
z0 = (0, 0) ∈ R2d with step size η = α

4L2 , then we have ∥zk − z∗∥2 ≤ ε for all

k ≥ 4L2

α2
log

(
∥z∗∥2

ε

)
.

Proof This follows from the bound (66) from Theorem 36:

∥zk − z∗∥2 ≤ exp (−αηk) ∥z∗∥2 = exp

(
−α2k

4L2

)
∥z∗∥2 ≤ ε

where the last inequality follows from our choice of k.

Appendix I. Zero-Sum Game in the Space of Distributions Without Regularization

Consider the zero-sum game in the space of probability distributions without entropy regularization:

min
ρX∈P(Rd)

max
ρY ∈P(Rd)

EρX⊗ρY [V ] (69)

where V : Rd × Rd → R satisfies Assumption 1. This is the same game (2) as in Section 1.
We say that a pair of probability distributions (ν̄X , ν̄Y ) ∈ P(Rd) × P(Rd) is an equilibrium

distribution for the game (69) if the following holds for all (ρX , ρY ) ∈ P(Rd)× P(Rd):

Eν̄X⊗ρY [V ] ≤ Eν̄X⊗ν̄Y [V ] ≤ EρX⊗ν̄Y [V ]. (70)

Under Assumption 1, there exists a unique equilibrium distribution, which is the point mass (δx∗ , δy∗),
where (x∗, y∗) is the equilibrium point of the deterministic game (59), see Theorem 38 below.

We consider the mean-field min-max gradient flow which is the dynamics for random variables
Zt = (Xt, Yt) ∼ ρXt ⊗ ρYt = ρZt in R2d which evolves via:

Ẋt = −EρYt
[∇xV (Xt, Yt)] (71a)

Ẏt = EρXt
[∇xV (Xt, Yt)]. (71b)

We also consider the mean-field min-max gradient descent algorithm with step size η > 0 which
maintains random variables zk = (xk, yk) ∼ ρx,ηk ⊗ ρy,ηk = ρz,ηk in R2d with the update rule:

xk+1 = xk − η Eρy,ηk
[∇xV (xk, yk)] (72a)

yk+1 = yk + η Eρx,ηk
[∇yV (xk, yk)]. (72b)

We have the following convergence guarantees.

Theorem 38 Assume Assumption 1. Let z∗ = (x∗, y∗) ∈ R2d be the unique equilibrium point for
the deterministic game (59). Then:

1. There exists a unique equilibrium distribution for the game (69), which is the point mass
distribution: (δx∗ , δy∗).
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2. Suppose Zt = (Xt, Yt) ∼ ρXt ⊗ ρYt = ρZt evolves via the mean-field min-max gradient
flow (71) in R2d, and let δz∗ = δx∗ ⊗ δy∗ . For all t ≥ 0:

W2(ρ
Z
t , δz∗)

2 ≤ e−2αtW2(ρ
Z
0 , δz∗)

2. (73)

3. Suppose zk = (xk, yk) ∼ ρx,ηk ⊗ ρy,ηk = ρz,ηk evolves following the mean-field min-max
gradient descent (72) in R2d with step size 0 < η ≤ α

4L2 . Then for all k ≥ 0:

W2(ρ
z,η
k , δz∗)

2 ≤ e−αηk W2(ρ
z,η
0 , δz∗)

2. (74)

Proof (1) Equilibrium distribution: Recall since (x∗, y∗) ∈ R2d is an equilibrium point for the
deterministic game (59), it satisfies the property (60) that for all x, y ∈ Rd:

V (x∗, y) ≤ V (x∗, y∗) ≤ V (x, y∗).

Then for any probability distributions ρX , ρY ∈ P(Rd), with X ∼ ρX and Y ∼ ρY , we have:

EρY [V (x∗, Y )] ≤ V (x∗, y∗) ≤ EρX [V (X, y∗)].

We can write this equivalently as the condition (70):

Eδx∗⊗ρY [V ] ≤ Eδx∗⊗δy∗ [V ] ≤ EρX⊗δy∗
[V ].

This shows that (δx∗ , δy∗) is an equilibrium distribution of the game (59).
Furthermore, note that any equilibrium distribution of the game (59) is a stationary distribution

for the mean-field min-max gradient flow (71). Then the uniqueness of the equilibrium follows
from the convergence guarantee (73) that we will prove below, which shows that along the mean-
field min-max gradient flow (71), any starting distribution ρZ0 converges to δz∗ = δx∗ ⊗ δy∗ .

(2) Convergence of mean-field min-max gradient flow: Let bZ : R2d → R2d be the vector field
defined in (62). Recall from Lemma 12 that −bZ is α-strongly monotone. Recall that bZ(z∗) = 0.

Let Zt = (Xt, Yt) ∼ ρXt ⊗ ρYt = ρZt evolve via the mean-field min-max gradient flow (71) in
R2d. Then we can compute:

d

dt
∥Xt − x∗∥2 = 2⟨Xt − x∗, Ẋt⟩

= −2
〈
Xt − x∗,EρYt

[∇xV (Xt, Yt)]
〉

= −2EρYt

[
⟨Xt − x∗,∇xV (Xt, Yt)⟩

]
.

Taking expectation over Xt ∼ ρXt and writing ρZt = ρXt ⊗ ρYt gives:

d

dt
EρXt

[
∥Xt − x∗∥2

]
= −2EρZt

[
⟨Xt − x∗,∇xV (Xt, Yt)⟩

]
.

Similarly, we can also compute:

d

dt
EρYt

[
∥Yt − y∗∥2

]
= 2EρZt

[
⟨Yt − y∗,∇yV (Xt, Yt)⟩

]
.
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Adding the two identities above gives:

d

dt
EρZt

[
∥Zt − z∗∥2

]
=

d

dt
EρXt

[
∥Xt − x∗∥2

]
+

d

dt
EρYt

[
∥Yt − y∗∥2

]
= 2EρZt

[
(⟨Xt − x∗,−∇xV (Xt, Yt)⟩+ ⟨Yt − y∗,∇yV (Xt, Yt)⟩)

]
= 2EρZt

[ 〈
Zt − z∗, bZ(Zt)

〉 ]
= 2EρZt

[ 〈
Zt − z∗, bZ(Zt)− bZ(z∗)

〉 ]
≤ −2αEρZt

[
∥Zt − z∗∥2

]
where the inequality follows from the property that −bZ is α-strongly monotone. Integrating the
differential inequality above from 0 to t, and noting the special formula for the W2 distance to a
point mass δz∗ yields the desired convergence guarantee:

W2(ρ
Z
t , δz∗)

2 = EρZt

[
∥Zt − z∗∥2

]
≤ e−2αt EρZ0

[
∥Z0 − z∗∥2

]
= e−2αtW2(ρ

Z
0 , δz∗)

2.

(3) Convergence of mean-field min-max gradient descent: Let G : R2d → R2d be G(z) =
z + ηbZ(z). Note that G(z∗) = z∗. Recall from Lemma 30 that G is M -Lipschitz, where

M :=
√

1− 2ηα+ 4η2L2 ≤
√
1− ηα ≤ e−

1
2
ηα

where the bound above follows from the assumption η ≤ α
4L2 and the inequality 1− c ≤ e−c.

From the update of mean-field min-max gradient descent (72), we can compute:

Eρx,ηk

[
∥xk+1 − x∗∥2

]
= Eρx,ηk

[∥∥∥xk − η Eρy,ηk
[∇xV (xk, yk)]− x∗

∥∥∥2]
≤ Eρz,ηk

[
∥xk − η∇xV (xk, yk)− x∗∥2

]
where the inequality follows from Cauchy-Schwarz and using ρz,ηk = ρx,ηk ⊗ ρy,ηk . Similarly, we can
compute:

Eρy,ηk

[
∥yk+1 − y∗∥2

]
= Eρy,ηk

[∥∥∥yk + η Eρx,ηk
[∇yV (xk, yk)]− y∗

∥∥∥2]
≤ Eρz,ηk

[
∥yk + η∇yV (xk, yk)− y∗∥2

]
.

Adding the two bounds above, and using G(z) = z + ηbZ(z) and G(z∗) = z∗, we can bound:

Eρz,ηk

[
∥zk+1 − z∗∥2

]
≤ Eρz,ηk

[
∥G(zk)−G(z∗)∥2

]
≤ e−αη Eρz,ηk

[
∥zk − z∗∥2

]
where the last inequality follows from the property that G is M -Lipschitz with M ≤ e−

1
2
αη. Iterat-

ing the bound above gives:

W2(ρ
z,η
k , δz∗)

2 = Eρz,ηk

[
∥zk − z∗∥2

]
≤ e−αηk Eρz,η0

[
∥z0 − z∗∥2

]
= e−αηk W2(ρ

z,η
0 , δz∗)

2

as desired.
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