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Abstract—Graph Neural Networks (GNNs) have demonstrated
outstanding results in many graph-based deep-learning tasks.
However, training GNNs on a large graph can be difficult due
to memory capacity limitations. To address this problem, we can
divide the graph into multiple partitions. However, this strategy
faces a memory explosion problem. This problem stems from a
long tail in the degree distribution of graph nodes. This strategy
also suffers from time-consuming graph partitioning, difficulty in
estimating the memory consumption of each partition, and time-
consuming data preparation (e.g., block generation). To address
the above problems, we introduce Buffalo, a GNN training
system. Buffalo enables flexible mapping between the nodes and
partitions to address the memory explosion problem, and enables
fast graph partitioning based on node bucketing. Buffalo also in-
troduces lightweight analytical modeling for memory estimation,
and reduces block generation time by leveraging graph sampling.
Evaluating large-scale real-world datasets (including billion-
scale datasets), we show that Buffalo effectively addresses the
memory capacity limitation, enabling scalable GNN training and
outperforming prior works in the compute-vs-memory efficiency
Pareto frontier. With a limited memory budget, Buffalo achieves
an end-to-end reduction of training time by 70.9% on average,
compared to state-of-the-art (DGL [73], PyG [12]], and Betty [93]).

I. INTRODUCTION

Graph neural network (GNN) frameworks such as DGL [34]]
and Pytorch Geometric [12]] have been widely adopted for
GNN training. These frameworks let users write GNN training
programs using a set of graph-neighborhood aggregation oper-
ators and deep learning (DL) operators without worrying about
the implementation of low-level message-passing primitives
and their interactions with DL models.

Problems. Although current frameworks provide numerous
operators and optimizations for training GNNs, training ad-
vanced GNNs over large-scale graphs is still quite challenging
because the memory complexity of aggregation scales expo-
nentially with the depth of GNNs. This makes them inefficient
for several important use cases: (i) GNN training that exploits
multi-hop information [42], [[76], [103]], and (ii) GNN training
that explores advanced aggregators [16]. Unfortunately, the
most common way to overcome the complexity of memory
consumption is via sampling. Systems such as DGL [73]
and Pytorch Geometric [|12f], provide sampling-based methods,
where a graph is sampled and used in each training iteration.
However, using a low sampling rate can lead to biased results
and loss of the GNN model accuracy [70]. Also, sampling
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Fig. 1. The degree frequency of all nodes in the OGBN-products dataset.

cannot be applied to certain datasets and tasks. For example,
in molecule structure prediction, dropping connections in
between atoms would lead to completely different molecules.
Furthermore, batch-based training that utilizes sampling can
still encounter out-of-memory (OOM) issues. To tackle the
GPU memory capacity problem, another strategy in addition
to sampling is to divide the input graph into multiple partitions.
Each partition fits into the GPU memory, and the GPU
processes the partitions in order. However, the partition-based
approach faces multiple problems.

First, the partition-based approach can suffer from a so-
called bucket explosion problem. We observe that the num-
ber of nodes with various degrees often follows a power-
law distribution, which is characterized by a long tail. This
problem is commonly seen in many datasets (e.g., OGBN-
papers [29]], MAG [21], IGB [29], and others [78], [[104]).
Figure [I] shows the degree frequency of all nodes (i.e., for a
specific node-degree, the number of nodes with that degree).
This figure, using the OGBN-products dataset, supports the
above observation. When bucketing the nodes according to
their degrees for efficient processing (called degree bucketing),
as the existing system does [73|], the distribution with such a
long tail can lead to a large bucket that accommodates the
long tail. This bucket is much larger than the other buckets,
which not only causes load imbalance across buckets but also
invalidates the effectiveness of the partition-based approach to
reduce memory consumption.

Second, the graph partitioning can be time-consuming.
Existing efforts employ either graph-level partitioning [74],
[101] or batch-level partitioning [4], [84], [93]], both of which
commonly employ METIS [26]. METIS iteratively simplifies,
partitions, and refines the graph. This process is slow and com-
putationally intensive, because it explores how to exchange
nodes between partitions based on repeated analysis of node
dependency across partitions. To accelerate the METIS-based
partitioning, Betty [93]] applies METIS to a smaller graph
of output nodes rather than the larger graph of input nodes



as other solutions [[12], [90], [101]]. However, Betty must
explicitly embed node-dependency information into the graph
of output nodes in order to minimize redundancy across the
partitions. This embedding process can take a few minutes
for a billion-scale graph (e.g., OGBN-papers). In general,
the METIS-based graph partitioning is time-consuming. As
a result, the graph partitioning must happen offline before the
GNN training.

Third, estimating the memory consumption of each partition
to avoid underutilization of GPU memory or memory overflow
is challenging. The memory estimation for each partition must
consider the variance of degree across nodes, data dependen-
cies, and complex graph topology. As a result, the memory
consumption of a partition is not a simple linear relationship
to the number of nodes, which is challenging to predict.

Fourth, the block generation needed by the GNN training
is time-consuming. A block in a GNN framework represents
a structure that summarizes the connectivity and features of
a subset of nodes and edges from the graph. Using blocks
can enhance the training process because each block bundles
connectivity information into a single object, enabling efficient
data transfer. To generate the block, node connectivity must
be examined from one node to another and from one GNN
layer to another following a specific order. During training,
the neighbors of a node can change across iterations be-
cause of node sampling in each iteration. Without sampling,
node neighbors remain unchanged, risking overfitting in GNN
training. Thus, we need to assess node connectivity in each
iteration, which is time-consuming.

Solutions. To address the above problems, we introduce
Buffalo, an online GNN training system. Buffalo does not
change GNN. With Buffalo, the GNN convergence result is
exactly the same as that when sufficient GPU memory is
provided to accommodate the whole graph. Buffalo is general
and supports full-batch and mini-batch training, because it
allows a batch to be partitioned to fit into GPU memory.

To address the bucket explosion problem, Buffalo splits and
groups buckets into bucket groups. Each group is a list of
small-sized buckets with varying degrees of nodes or a portion
of a large-sized degree-bucket. This bucket re-organization
enables a flexible mapping between nodes and the partitions.

Buffalo performs graph partitioning based on buckets (i.e.,
bucket-level partitioning), which is much faster than using
METIS. Using bucket-level partitioning effectively exploits
the clustering structure of the graph, hence avoiding repeated
analysis on node dependency and significantly saving time. In
particular, the real-world graph typically exhibits clustering
characteristics, where the nodes with similar degrees are
clustered together [2f], [[15], [28], [S0], [79] , which aligns
with the principle of degree bucketing. Since there are fewer
connections across clusters (compared with nodes within each
cluster), using bucket-level partitioning, there are fewer con-
nections across partitions. Hence, the bucket-level partitioning
does not need to check node dependency across partitions, but
simply splits and groups buckets, which is lightweight.

Buffalo introduces lightweight analytical modeling to esti-

mate memory consumption of each partition. The modeling
uses graph characteristics (e.g., the degree of the buckets
and average clustering coefficient) to quantify the redundancy
across partitions and efficiently predict memory consumption.

To reduce block generation time, Buffalo samples all neigh-
bors of the center nodes in the subgraph (after sampling),
thereby avoiding repeated connection checks to confirm which
neighbors are selected from the original graph (before sam-
pling). Also, the neighborhood checks occur in parallel at the
node level. As a result, Buffalo significantly decreases block
generation time by 10x, making online training feasible.

Besides the above solutions, Buffalo is featured with a
scheduling algorithm to improve load balance across parti-
tions. The algorithm minimizes the number of bucket groups
by modeling the bucket-level partitioning as a knapsack prob-
lem and employing a greedy search algorithm. The analytical
modeling is used to estimate memory consumption, ensuring
that the bucket group does not violate the GPU memory
constraint. Buffalo significantly enhances the efficiency and
feasibility of training large-scale graphs on individual GPUs.

Results. We evaluate Buffalo on a wide range of datasets
with representative GNN models and compare it with state-of-
the-art GNN systems (DGL [73]], PyG [12], and Betty [93])).
Our results show that Buffalo can successfully address the
OOM issue from bucket explosion, compared to DGL and
PyG. Buffalo achieves up to 70.9% speedup compared to Betty
under the same memory budget. Besides, we demonstrate
Buffalo’s ability to enable the training of complex GNN
models and large datasets: it achieves a 74.4% speedup for
GNN models with an aggregation depth of 2 and a hidden size
of 1,024 on the OBGN-arxiv dataset. Additionally, it attains
a 72.5% speedup for models with an aggregation depth of 2
and hidden size 128 on the OGBN-products dataset. Notably,
Buffalo also trains on the billion-scale OGBN-papers dataset in
just tens of seconds per iteration with a single GPU, drastically
cutting the time taken by state-of-the-art methods [40], [69],
[93] that typically require minutes to tens of minutes.

II. BACKGROUND AND PRELIMINARIES
A. GNN Memory Overhead

GNNs have demonstrated success in many traditional graph
analytic tasks [3], [32], [62], [66], [80], [102]. Unlike DNNs5s,
GNNss take graphs as inputs, consisting of nodes (entities with
feature vectors) and edges (relationships between nodes). Each
layer performs two major operations: message-passing (i.e.,
neighborhood aggregation) and permutation-invariant function
(i.e., DNN compute).

Except the input features of large-scale graphs [5], [[7]], [93]],
message passing also can result in huge memory overload,
especially with multi-hop aggregation and memory-intensive
aggregators (e.g., LSTM). To see the problem, we analyze
the memory consumption of a widely-used GNN model,
GraphSAGE [16] using two million-scale datasets (OGBN-
product and OGBN-arxiv [17]). We use a server with an
NVIDIA RTX6000 GPU (24GB memory) and 192GB CPU
memory. Section has more details about the hardware
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Fig. 2. Large-scale GNN training is memory intensive and can easily lead to
OOMs. The figure shows the memory consumption of training GraphSAGE
over OGBN-products and OGBN-arxiv.

setup. Figure |2 reveals that scaling GNNs easily hits the GPU
memory capacity limit, resulting in OOMs with either (a) more
advanced aggregators (e.g., from Pool to LSTM), (b) more
aggregation depths (e.g., from 2-hop to 3-hop aggregation),
(c) larger hidden dimensions (e.g., from 256 to 512), or with
(d) a larger sampling rate (e.g., from 15 to 20). In general,
memory capacity is a major bottleneck preventing scientists
and practitioners from exploring more advanced GNN training.

B. GNN Framework

Multiple GNN frameworks have been created to mitigate
the huge memory overhead of GNN training via distributed
training (Table[). A common approach is the graph-level par-
titioning using METIS [25]] to reduce communication between
nodes, employed by DGL [101]], PyG [12], AliGraph [91]], and
others [45]], [47], [90], [97]]. ParGNN [35]l, GLISP [104]], and
others [[14], [22], [23], [71]) also use balanced workload parti-
tioning and pipelining. Buffalo improves memory efficiency on
individual GPUs via fine-grained bucketing-level partitioning
and scheduling, and hence complements the existing efforts.

Existing works, such as BGL [40] and cuGraph [11]], focus
on reducing I/O and sampling overhead in GNN training. In
contrast, our work addresses the memory bottleneck while
maintaining computational efficiency. Unlike the complex
disk-based design [69], both Betty [93] and Buffalo work
for individual GPUs. Different from Betty, Buffalo solves the
bucket explosion problem and enables online training.

C. Zero Padding via Degree Bucketing

Degree bucketing, aka bucketization, is a technique com-
monly employed by GNN frameworks (e.g., DGL [34] and
DEMO-Net [81]) to make massage passing more efficiently. In
particular, to exploit hardware efficiency, DNN operators often
take a batch of inputs to execute in parallel. Since batched
inputs require input shape to be identical, DNN operators often
presume fixed-sized inputs. However, this assumption cannot
always hold in GNN, as the size of GNN inputs can vary
significantly. In GNN, each input comprises a group of nodes,
and the input size reflects the number of neighboring nodes
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Fig. 3. An illustration of degree bucketing. The nodes with the degrees of 1-3
are grouped into three degree-buckets according to their degrees. The nodes
with the degrees of 4 and 5 are grouped into another degree bucket. These
four degree-buckets are fed to GNN for training.

Algorithm 1: Degree-bucketing based Training Itera-
tion.
Input :

A batch (i.e., a sampling subgraph): G;
Aggregation depth (layer): L;
GNN model weights: W;
Output: Updated GNN weights: W’
degree_buckets — {};
blocks « {};
for [ < 1 to L do
blocks|l] <« BlockGenerate ( G, [);
degree_buckets|l] « Bucketing ( blocks[l], ]);
foreach bucket b € degree_buckets[l] do
hidden; «— Aggregate(blocks|l], b);
hidden; < Update(hidden;, W)

(770 SOV SR

ESIEN

8 loss <« Loss (hiddeny, labels) ;

9 Compute gradients w.r.t. model parameters W
10 W’ « Optimizer.step(), Update W;

11 return W’

connected to the group of nodes. A solution to address the
above problem is to pad all nodes to match the maximum de-
gree of neighbors. However, this brings in significant memory
overhead and redundant computation on wasted padding.

To minimize the padding overhead, existing frameworks
group nodes possessing identical degree into so-called degree
bucket. The degree bucketing efficiently handles large, diverse
graph datasets, and is crucial for memory-intensive aggregators
(e.g., LSTM [16]], transformer [36], [98]], and MLP [18]], [60]).

With degree bucketing, if a node’s degree is less than F (i.e.,
the cut-off degree), then this node and other nodes with the
same degree are grouped into the same bucket. The nodes with
a larger degree than F are grouped together into a single bucket
(called the degree-F bucket). The above bucketing strategy
effectively groups nodes. F is usually determined by the user.
Figure [3] illustrates the concept of degree bucketing.

Algorithm |1| depicts GNN training based on degree buck-
eting. At each training iteration, the algorithm processes a
subgraph to produce a list of buckets for each GNN layer
(or each aggregator layer). See Line [I] The training proceeds
through L GNN layers (where L is the aggregation depth) at
a layer-by-layer basis. At each layer, GNN performs message-
passing to aggregate node-neighbor information, and updates
node representations. Once all layers have been processed, the
algorithm calculates the loss, back-propagates the gradients,
and the optimizer states to update the GNN model parameters.
The training iteration repeats until the GNN converges.
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Fig. 5. Time comparison of different execution phases. Each horizontal bar
shows the total time for partitioning, block generation, and GPU compute in
one iteration. We use two datasets, OGBN-arxiv and OGBN-products.

III. MOTIVATION

We conduct preliminary analysis on the memory capacity
challenges faced by GNN training to motivate our study.

Bucket explosion on large-scale graphs. When the size of
a batch (i.e., sampling subgraph) is small, the max degree in a
batch is typically limited, and the number of nodes in a bucket
(i.e., the bucket volume) is relatively balanced across buckets.
See the degree distribution of the Cora dataset in Figure f]a as
an example. However, as the graph scales up in size, the bucket
volume becomes significantly skewed across buckets, leading
to the so-called bucket explosion problem. Figure f]b depicts
the bucket explosion problem on the OGBN-arxiv dataset with
F=10. Because of the long-tail distribution of degrees, nodes
whose degrees are equal or higher than F are all gathered into
the same bucket, leading to an explosion of the last bucket.

Memory-inefficiency from bucket explosion. Bucket ex-
plosion reduces memory efficiency because the explosion
bucket not only has a high volume, but nodes within that
bucket also have more neighbor embeddings involved in
message passing which further increases GPU memory usage.

much larger than any other bucket. The reason is that bucket
explosion is tightly related to the long tail distribution of node
degrees, whereas a batch-level partitioned subgraph still has
long tail distribution, mitigating but not eliminating the bucket
explosion problem. The bucket explosion can further introduce
load imbalance across micro-batches, shown in Figure |4; the
memory cost of micro-batch 1 exceeds that of micro-batch
0 by 20%. Such load imbalance largely comes from the
imbalance between the last buckets in the two micro-batches.

Graph partitioning is time-consuming per training it-
eration. Graph partitioning usually takes tens of seconds
to minutes to finish [40], [47], [58], [90], which makes it
infeasible to be used for online training. Integrating the graph
partitioning into the training process — essentially enabling
online partitioning — brings the benefits of being adaptive to
changes in the graph structure during training.

To study the overhead of graph partitioning, we apply the
METIS-based partitioning to the subgraph in each training
iteration. Figure [3 illustrates execution times of different
execution phases (i.e., partitioning, block generation, and GPU
compute) on two datasets. The results indicate that the METIS-
based partitioning method requires significantly more time
than GPU compute. For instance, partitioning OGBN-products
takes 33.36 seconds, while GPU compute time for training
takes only 3.43 seconds, shown in Figure [5]b.

Data preparation time is non-negligible for micro-batch
generation. One challenge often missed in the existing work is
the data preparation cost after partitioning. Data preparation is
needed to create micro-batches. Such data preparation gener-
ates block representations for micro-batches [6]]. To generate a
block, we must track the neighbor dependencies of that block,
which would be extremely time-consuming, given that the
dependencies between nodes/edges are complicated in large
graphs. Figure [5] shows that the block generation accounts for
non-trivial amount of overhead (54.3%). As one increases the
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Fig. 7. Scheduling of bucket groups with Buffalo.

number of micro-batches, the overhead of block generation
increases. Without reducing this overhead, the computing
efficiency of batch-level partitioning is low.

IV. DESIGN

A. Overview

Buffalo aims to enable large-scale GNN-training using a
single GPU. To achieve this, Buffalo introduces an effective
bucketization method, which provides fine-grained control of
buckets to mitigate the memory-inefficiency issue caused by
the bucket explosion problem. Figure [6] provides a design
overview of Buffalo. Different from the normal GNN training
with bucketing, Buffalo introduces two transformation opera-
tions at the bucket level: bucket split and grouping. The split
operation partitions a bucket (i.e., a degree-bucket), e.g., the
bucket that causes the bucket explosion problem, into smaller
degree-buckets (called micro-buckets). The grouping operation
allows one to combine micro-buckets and the non-split degree-
buckets into bucket groups. Figure [7| shows how the graph in
Figure 3] represented as {1: {9}, 2: {0, 1, 3, 6, 7, 10}, 3: {11},
4: {4, 8}, 5: {2, 5}}, is partitioned into two bucket groups and
how the two groups are scheduled during GNN training.

Each bucket group is then transformed into a GNN micro-
batch, where Buffalo provides a highly efficient implementa-
tion to collect all dependent nodes/edges for a given bucket
group to construct a micro-batch. To maximize the usage of
GPU memory and minimize the number of bucket groups, we
formulate the grouping problem into a knapsack problem, and
introduce a greedy search algorithm to find the solution, which
is lightweight and works surprisingly well in practice.

Additionally, we introduce analytical models for memory
estimation. The models consider the impact of graph charac-
teristics (e.g., the average clustering coefficient and the average

node-degree of the graph) and node redundancy between
bucket groups, and they help determine whether any grouping
plan violates the GPU memory constraint. The analytical
models are lightweight and accurate in comparison to profiling
from actual GPU training.

B. Bucket-Level Partitioning

Challenge: Complexity of computation dependency.
Since the GNN bucketing mechanism faces a bucket explosion
issue, which we aim to mitigate this issue during GNN
computation. While splitting the graph into independent micro-
batches is straightforward for DNNs (due to the 1:1 corre-
spondence of inputs and labels), scheduling buckets is com-
plex(using “splitting” and “grouping” of buckets, depicted in
Section [IV-CT)). This complexity arises from the neighborhood
aggregation operation, which samples neighboring nodes, cre-
ating dependencies among partitioned buckets. Consequently,
depending on at which layer we schedule the degree buckets,
we have different schedule complexity. We use Figure (8| as an
example to explain the above problem.

Figure [8la shows the computation dependency in a multi-
layer aggregation graph. Each degree-bucket at a layer depends
on a list of buckets with varying degrees in its previous
layer, to perform neighborhood aggregation. For example, the
degree-5 bucket in Layer 1 has neighbors in the buckets of
degree-1, degree-3, and degree-5 in Layer 0. This means that
each node in the degree-5 bucket’ has 5 neighbors to perform
neighborhood aggregation in Layer 1, such as the neighbor
nodes vy, v2, v3, v4, and vs. Node v has only one neighbor
involved in neighborhood aggregation in Layer 0. Nodes v,
and v3, each of which has three neighbors, are placed in the
degree-3 bucket. Meanwhile, the nodes v4 and vs5 both have 5
neighbors, hence the two nodes belong to the degree-5 bucket.
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Fig. 8. An example of bucket partitioning at a non-output layer (Layer 1).

In the example of Figure [§] assuming that we aim to
partition all degree buckets into two partitions, we must decide
which layer to partition. If we partition buckets at the non-
output layer, e.g., Layer 1, it can generate two partitions shown
in Figure [8]b and Figure [8]c, respectively. With the Layer 1-
based partitioning, in the partition 0, the degree-8 bucket’” in
Layer 2 misses a dependency (i.e., the degree-7 bucket’ in
Layer 1); in the partition 1, the degree-7 bucket”” in Layer
2 also misses dependencies (i.e., the degree-5 bucket’ and
degree-6 bucket’ in Layer 1). These missing dependencies
prevent GNN training from doing gradient accumulation and
releasing activation memory.

Solution: Buffalo partitions the degree buckets at the
output layer. The output layer relies on the information from
the previous layer for its computations but does not serve as a
dependency for any subsequent layers, as it is the final layer.
As such, the loss calculation (Line @ in Algorithm |I| can be
done at a micro-batch level (i.e., a subset of output nodes and
their dependencies). In the example of Figure[§] if we partition
at Layer 2 (the output layer), each partition no longer has
dependencies on other partitions, and all activation memory
associated with one partition can be released after gradient
calculation has been done. Hence, the partition at Layer 2 is
better than at Layer 1.

In Buffalo, we partition the hierarchical aggregation graph
into K subgraphs, where the nodes at the output layer of
these subgraphs are disjoint sets. With this partition, we extend
the traditional degree-bucketing algorithm (Algorithm [I). The
major extension is highlighted in blue in Algorithm 2] With
the extended algorithm, after bucket groups are generated by
the Buffalo Scheduler (Section [[V-C), Buffalo loads individual
bucket groups from the host memory to the GPU memory, and
gradients are generated after each bucket groups is processed.
The gradients then get accumulated across consecutive bucket
groups; the GNN parameters are updated once all bucket
groups have been processed. This method makes the Buffalo
training as effective as the original training because it does
not impact the training convergence. In the next subsection,
we describe how the Buffalo Scheduler works.
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Fig. 9. The schedule of degree buckets for Figure Eka).

Algorithm 2: Degree-bucketing based Training with
Buffalo. The algorithm extension is highlighted in blue.

Input : A batch (i.e., a sampling subgraph): G;
The aggregation depth: L;
Memory constraint: M
GNN model weights: W;
Output: Updated GNN weights: W’
1 Gi, G3,...Gk < Buffalo_Scheduler (G, L, M.,);
2 partitioned_degree_buckets — {{}} ;
3 for k — 1 to K do
4 for | — [/ to L do
blocky; «— BlockGenerate (Gi, ) ;
partitioned_degree_buckets[k][l] «
Bucketing (blockyy, 1) ;
7 foreach bucket b €
partitioned_degree_buckets[k][l] do
8 L hiddeny; < Aggregate(blockyy, b);
9

5
6

hiddeny; < Update(blocky;, Wp);

10 partial_loss < Loss (hiddenyy, label_groups[k]) ;
11 Backward pass, compute gradients w.r.t.model parameters;
12 AccunmulatePartialGradients (M);

13 W’ « Optimizer.step(), Update W;
14 return W’

C. Buffalo Scheduling

1) Background: Scheduling a degree-bucket list into bucket
groups performs two operations. (1) Splitting degree buckets
into micro-buckets. When Buffalo performs this operation,
each micro-bucket must be small enough to fit into the
GPU memory. However, they must not be too small to fully
utilize GPU resources (including GPU memory and thread-
level parallelism). (2) Grouping micro-buckets and non-split
degree-buckets. The grouping results are bucket groups. Based
on the bucket groups, we build micro-batches, each including



Algorithm 3: Buffalo Scheduler

Algorithm 4: MemBalancedGrouping

Input : A batch (i.e., a sampling subgraph): G;

The aggregation depth: L;

Memory constraint: M

Sampling size (cut-off degree): F;

Output: A list of subgraphs corresponding to K micro-batches: Gy,

G2, GK
1 degree_bucketsy <« DegreeBucketing (G, L) ;
2 K « 1;
3 while K < K;;;4x do
4 if bucket explosion detected then
5 degree_bucketsp[F:F+K — 1] «
SplitExplosionBucket (degree_bucketsy|[F],
K);
6 success, By, By,...Bg «—
MemBalancedGrouping (degree_bucketsy, K, My,
F);
7 if success then
| break;
9 else
10 | K—K+1;

11 Gi,...Gk < MicroBatchGenerator (B, 8,,...,.8k);
12 return G|, G»,..., Gk

a bucket group plus the group’s node dependencies.

Figure [9] gives an example to show the results after schedul-
ing (using splitting and grouping). These results correspond to
the graph (the dataset OGBN-arxiv) shown in Figure @b. In
this example (shown in Figure [O]a), the degree-10 bucket is
split; the non-split degree-{2,3,4,5} buckets, along with the
first micro-bucket of the split degree-10 bucket, form group 0,
while the non-split degree-{1,6,7,8,9} buckets, along with the
second micro-bucket of the split degree-10 bucket, constitute
group 1. After the scheduling, each group generates one micro-
batch. Figure [O]b shows the corresponding memory cost of the
micro-batches of the two groups.

To maximize the benefits of bucket scheduling, we must
consider the possibility of grouping the micro-buckets with
non-split degree-buckets. However, the solution space for
grouping the micro-buckets and degree buckets is large, mak-
ing it challenging to find an optimal solution. Assuming Kyp
is the number of micro-buckets and Kpg is the number of non-
split buckets, there are Kyp - Kpg!/(Kpg — KmB)! possible
solutions in this space. We introduce an algorithm for the
splitting and grouping operations.

2) Scheduling Algorithm: The algorithm accepts three in-
put variables: a subgraph representing a training batch, the
aggregation depth, and a GPU memory constraint, as shown in
Algorithm [3] The algorithm output is K micro-batches. Each
micro-batch respects the constraint of GPU memory capac-
ity. The memory consumption is balanced across the micro-
batches to avoid the waste of GPU memory. The algorithm
also minimizes K in order to reduce the overhead of data
preparation and loading.

The scheduling algorithm is generally depicted in Algo-
rithm [3] Following the degree bucketization process (Line [I]
in Algorithm [3), which generates a bucket list for the output
layer, Buffalo uses a bucket-group plan generator, shown in
Lines in Algorithm [3] to generate a list of bucket groups

Input : Degree bucket list of the output layer:
degree_bucketsy ;
Bucket group size: K;
Memory constraint: M;
Sampling size (cut-off degree): F';
Output: success or fail;
Bucket groups: B, B,,...,8k;
(31, Bz,...,BK — {},
Ms; — BucketMemEstimator(degree_bucketsy);
Mg _sorted < sort(Mest, descending);
while Mc.st_sorted # 0 do
cur_bucket « Meg_sorted-POPO;
M, M,,...Mkg < RedundancyAwareMemEstimator (8,
B,...8K);
find the bucket group B with the lowest memory estimation;
Byr..add(cur_bucket);

N I IR ST

® 2

u if any My > M, then
12 \ return fail, _

13 else
4|
15 end

return success, By, B,..., Bk

By, B, .., Bk. The group generation includes splitting (Line [5)
and grouping (Line [6), which are described in more details
below. Once the bucket group plan is generated, Buffalo
uses a RedundancyAwareMemEstimator (more details
in Section to estimate the memory consumption of
each bucket group (M, M>, ..., Mg). If any bucket group’s
memory consumption exceeds the memory capacity, Buffalo
increments K by one and repeats the process until a valid set
of K subgraphs is found. In the particular case, where the total
estimated memory of the entire buckets (e.g., K = 1) is less
than the memory constraint, we do not do anything and treat
the original subgraph (&) as the micro-batch.

SplitExplosionBucket (Line [5|in Algorithm [3) evenly splits
a degree bucket into micro-buckets when a degree bucket faces
the bucket explosion problem. As a result, each micro-bucket
has roughly the same number of output nodes after splitting.

In addition to splitting the explosion bucket into micro-
buckets, Buffalo also supports flexibly regrouping micro-
buckets and non-split buckets to form bucket groups. Specif-
ically, Buffalo formulates the degree-bucket grouping into
a load-balanced bin packing problem [67] and utilizes a
MemBalancedGrouping algorithm (Line [f] in Algorithm
to group micro-buckets and non-split buckets into memory-
balanced bucket groups. The load-balanced bin packing prob-
lem consists of packing items of different sizes into a finite
number of bins, achieving well-balanced packing while mini-
mizing the number of used bins.

In our approach, we treat each bucket as an item and have its
value equal to its weight. Both the weight and value of the item
equate to the estimated memory of the corresponding bucket.
This is intuitive because the goal here is to ensure that the
cumulative weight of the items, i.e., the memory consumption
of a group of buckets, does not surpass the bin’s capacity, i.e.,
the GPU memory constraint. The load needs to be balanced so



there is no waste of GPU memory, and we reduce the overhead
of data preparation and loading by minimizing the number of
bins (i.e., bucket groups).

we introduce a greedy approximation method to solve the
bucket grouping. At the beginning, we sort the buckets, includ-
ing both micro-buckets and non-split buckets, in descending
order by their memory estimation from BucketMemEstimator()
(Line [3] in Algorithm [). Then, starting from the bucket with
the largest memory estimation, the algorithm iterates through
the sorted micro-buckets and non-split buckets and places
the bucket in the bucket group that has the lowest memory
estimation so far. The memory estimation for the bucket group
is provided by RedundancyAwareMemEstimator(), which we
discuss in more details in the next section. This method ensures
that the most valuable item (the largest bucket) is considered
first, in order to accelerate the solution-finding process. During
the iteration, Buffalo accumulates the memory consumption of
the buckets. If any of the bucket groups has an accumulated
memory size larger than the GPU memory constraint, the
grouping algorithm returns a fail status, where a larger K
will be tested by the Buffalo scheduler in the next iteration.
Otherwise, Buffalo returns a list of bucket groups using the
accumulated buckets (Line [I4] in Algorithm [).

D. Memory Estimation

Challenges of memory estimation. Existing memory es-
timation techniques, like the one in [93], can reasonably
estimate the working memory of individual buckets during
GNN training. However, estimating the overall GNN memory
consumption is complex because simply summing the memory
estimates of individual buckets does not accurately predict the
actual consumption of a bucket group, which we call the non-
linear relationship. The non-linear relationship incurs major
challenges for Buffalo’s grouping algorithm. If the memory
estimation of a bucket group is inaccurate, then a proposed
bucket-group partition plan may still lead to OOM or under-
utilized GPU memory during actual training.

The core reason for this non-linear relationship in GNN
memory consumption is because of node redundancy across
micro-batches built from bucket groups. When a micro-batch
i loads target nodes and their neighbors into GPU memory,
some of these neighbors may be required by another micro-
batch j, which creates duplication for memory estimation
when the micro-batch j loads neighbors. Such duplication
happens more often in the L-hop aggregation layer than (L-
1)-hop layer because neighbors tend to grow exponentially as
the hop increases. This redundancy problem commonly exists
in many GNN training methods [93]], [[104].

To illustrate this non-linear relationship, we train a Graph-
SAGE model with an LSTM aggregator and an aggregation
depth 2 on the OGBN-arxiv dataset. The cut-off degree (F
degree) for the 1-hop neighbors and 2-hop neighbors are 25
and 10 respectively. The hidden size of the LSTM aggregator
is 128. Without bucket splitting and grouping, the memory
consumption of a batch is 13.68 GB. When splitting the batch
across the 1-hop and 2-hop buckets to generate two micro-

batches, the overall memory consumption of each micro-
batch is 8.57GB and 10.95GB, which is 25% and 60% larger
than half of the memory consumption of the original batch
(6.84GB). This example highlights how node redundancy
across micro-batches leads to a non-linear increase in memory
consumption. We propose a lightweight memory-estimation
method that accounts for redundancy.

Quantifying redundancy is the core of the memory es-
timation, represented by a redundancy-aware grouping ratio
Rgroup in Buffalo. Rg,,p quantifies the impacts of node
connections in a bucket group on the memory consumption
of a micro-batch after grouping. The grouping ratio Rg,oup
is calculated by considering how input nodes are related to
output nodes, how many connections each node has within
a bucket, and how interconnected the nodes are within the
buckets. Hence, Rg;oup is related to the number of input nodes
(1), the number of output nodes (O), the neighbor degree of
the bucket (D), and the average clustering coefficient (C, a
metric to quantify the node clustering of the input graph, which
is discussed later). A higher Ry, indicates a closer to the
linear relationship of memory consumption when merging two
buckets, and vice versa.A larger O, D, or C leads to a lower
grouping ratio. In contrast, a larger / leads to a higher grouping
ratio. The grouping ratio should be at most 1 (which means a
perfect linear relationship).

Based on the above discussion, we define the grouping ratio
for a given bucket i in Equation [I]

. . I;
Rgroup [i] = min(1, m) (h
Given n entities (including micro-buckets and non-split buck-
ets) for grouping and their degrees ({i1, 2, ..,in}€ {1,2,...,
F,F+1,...,F+K}), the memory estimation of a bucket group
is calculated with the following equation.

D Mest[i] X Reroupli] 2

i=i|

Note that when Rg, o, [i] equals 1, the memory consump-
tion of a bucket group becomes the linear addition of the
memory estimation of individual buckets. However, given that
Rgroup[i] is most likely less than 1, the memory consumption
of a bucket group is usually much smaller than the sum of
individual buckets in that group. Next, we discuss why I, O,
D, and C are related to the redundancy ratio as follows.

About I and O. A higher ratio of input nodes (/) to output
nodes (O) within a bucket indicates a more significant number
of input nodes associated with the output nodes in the bucket.
Hence, the bucket tends to have more overlap with other
buckets in terms of nodes, leading to high redundancy.

About D. The redundancy ratio is divided by degree (D).
The rationale behind this is as follows: D is related to node
dependency. Grouping buckets introduces node redundancy
because of the existence of node dependencies. D quantifies
the potential of the node redundancy.



TABLE II
THE INFORMATION FOR THE TRAINING DATASETS AND THEIR
CHARACTERISTICS.

Dataset gﬁ: Nodes Edges g‘;g Ié:;%f PLO;V;r
Cora 1433 2.7K 10K 3.9 0.24 X
Pubmed 500 19K 88K 8.9 0.06 X
Reddit 602 0.2M 114.6M | 492 | 0.579 v
OGBN-arxiv 128 0.16M 2.31M 13.7 | 0.226 v
OGBN-products 100 245M | 61.86M | 50.5 | 0.411 v
OGBN_papers 128 111.1M 1.6B 29.1 | 0.085 v

About C. C is a term borrowed from the graph theory and
used to quantify how closely connected a node’s neighbors
are, which reflects the tendency of nodes to form clusters. A
higher C signifies a well-connected graph with many clusters,
while a lower C suggests a more sparsely connected and less
clustered graph. In the context of a degree bucket with the
degree of cut-off, especially in cases where there is bucket
explosion, C of the bucket that stores nodes with the degree of
cut-off closely resembles that of the original input graph. This
observation suggests that as the subgraph grows large enough,
C becomes a reasonable representation of the entire graph’s
characteristics. Hence, C is an essential parameter to estimate
the actual number of input nodes after grouping buckets. To get
the actual number of input nodes in the input layer, we need
to eliminate the redundancy within the input layer. Hence, we
divide C to estimate the grouping ratio.

I, O and D can be obtained during the micro-batch genera-
tion. C is a graph characteristic and can be obtained by offline
graph analysis, utilizing the equation presented on page 142
of reference [27]]. Hence, obtaining I, O, D, and C do not
bring any computation overhead. Our method is general and
applicable to any aggregators in GNN.

E. Data Preparation

To reduce the data preparation time required for micro-
batch generation from the subgraph (the subgraph is gener-
ated by sampling of the original graph as in the traditional
approaches), we accelerate block generation using two tech-
niques. (1) We track all neighbors of the center nodes in
the subgraph following the sampling order, hence avoiding
repeated connection check in the subgraph for block gen-
eration. (2) Tracking neighbors happens in parallel at the
node level instead of micro-batch level, hence offering more
parallelism. In particular, before block generation, we use
a Compressed Sparse Row (CSR) matrix to represent the
adjacency relationships of a subgraph after sampling. For
each CSR row, neighbor sampling for the center nodes is
performed in parallel, which involves concurrent operations
to gather the required neighbors for some center nodes in
a micro-batch. As the CSR matrices provide efficient row
accesses and parallel processing allows simultaneous sampling
of neighbors, we significantly reduce the overall time needed
for data preparation.

V. EVALUATION

Implementation. We implement Buffalo in DGL [[73]], which
is an open-source state-of-the-art GNN library. We choose
DGL due to its excellent performance from various opti-
mizations against single-GPU efficiency, such as fused mes-
sage passing kernels, shared-memory graph store, and many
more [73|]. DGL shows superior performance compared to
other frameworks. For example, for a 2-layer GCN model with
the dataset Reddit on an NVIDIA P100 GPU, the training
throughput of DGL is 2x better than PyG [10]. Hence, DGL
provides a high bar for studying performance and memory
saving.

Platform. We use a machine equipped with two Intel(R)
Xeon(R) Gold 6126 CPU @ 2.60GHz, RAM 192GB, each
with 24 cores. The machine has an NVIDIA Quadro RTX
6000 GPU with 24GB memory. We use another machine
equipped with two Intel(R) Xeon(R) Platinum 8380 CPU @
2.30GHz, RAM 512GB, each with 24 cores. This machine has
an NVIDIA A100GPU with 80GB memory. We use CUDA
12.1, cuDNN 8.9, Python 3.10, and PyTorch [52] 2.1.0.
Workloads. We use five datasets from DGL benchmarks [73]],
each representing a distinct input graph. Table [[I] summa-
rizes these datasets. Due to disk space limitations, we are
unable to test the IGB [29] dataset. We employ GNN models
GraphSAGE [16] and GAT [68]], which are commonly used
in existing work [39]], [46], [51], [99].

We choose shallow GNNs (2-5 layers) from DGL bench-
marks [73]] because they are commonly used in both research
and production to avoid issues like over-smoothing in deeper
models, as highlighted by recent studies and practices at
companies like Pinterest and Twitter [9]], [59], [94]-[96].
Baseline. We use DGL, PyG, and Betty for performance
comparison. We choose DGL and PyG because they are widely
used GNN training frameworks. We choose Betty because it
achieves memory-efficient training of GNNs on a single GPU.
We also look into cuGraph [11f]. Although cuGraph is an
effective tool for accelerating GNN training, we cannot use it
as a baseline or to speed up our data preprocessing because of
the following reasons: First, cuGraph’s cuGraphSAGEConv
is limited to basic aggregation functions, including mean,
sum, min, and max, and does not accommodate memory-
intensive advanced aggregators like LSTM, Meta [24], [33]
. However, these advanced aggregators are necessary for
developing advanced GNN models. Second, these large-scale
graphs formatted in cuGraph for GNN training cannot be
accommodated by individual GPUs.

A. Improvements of Compute-vs-Memory Efficiency

We evaluate compute-vs-memory efficiency. We control the
availability of GPU memory and measure the end-to-end time
per training iteration. The time includes data preparation time,
data transfer time (from CPU memory to GPU memory), and
training time on GPU. Figure [I0] shows the results. The figure
shows that Buffalo excels DGL, PyG, obtaining better Pareto
frontier in terms of compute-vs-memory efficiency. While
DGL and PyG achieve lower execution time on the small
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dataset Cora, they both suffer from OOM when training on
the large data sets Reddit, OGBN-arxiv, and OGBN-products
on tested models and configs. In contrast, Betty and Buffalo
do not have the OOM issue. Compared with Betty, Buffalo
reduces the iteration time by 70.9% on average. This large per-
formance benefit comes from Buffalo’s bucket-level splitting
and grouping mechanism with various optimizations, which
effectively mitigate the bucket explosion problem on large
datasets while achieving better compute-vs-memory efficiency
without incurring the expensive graph partitioning overhead.

B. Execution Time Breakdown

Figure [TT] shows how different components contribute to the
end-to-end training time of Betty and Buffalo across various
datasets and micro-batch sizes. We report the end-to-end time
per epoch, which includes the following components: (1) Buf-
falo scheduling: the execution time of Buffalo scheduler, (2)
REG construction: Betty’s process for embedding node redun-
dancy information into the graph, (3) METIS partition: Betty’s
graph partitioning a given graph (REG) using METIS [25],
(4) connection check: tracking dependencies between nodes
and these nodes’ neighbors, (5) block construction: generating
blocks based on the connection check, (6) data loading: the
transfer time of data from CPU to GPU, and (7) training
time on GPU: the time spent on forward, backward, and step
functions. We do not report the time for DGL and PyG, as
they do not use graph partition on individual GPUs.

We make several observations. First, as the graph size in-
creases, the training per iteration time also increases, as larger
graphs often have bigger batch sizes. On average, Buffalo
reduces the end-to-end training time by 70.9%, compared with
Betty. The improvement mostly comes from avoiding the ex-
pensive graph partitioning, e.g., REG construction and METIS
partition, which takes 46.8% of the end-to-end training
time on average in Betty. In contrast, Buffalo does not have

Betty. Each horizontal bar represents the block generation in one iteration.
We use two datasets, OGBN-arxiv, and OGBN-products.

this time cost, and Buffalo scheduling only incurs minimal
overhead. Other improvement comes from the optimization of
block generation implemented with C++ (see Section [V-C).

Second, as graph size increases, we see an interesting shift
of performance bottlenecks. For smaller graphs like Cora and
Pubmed, the GPU compute time dominates overall training
time. However, for larger graphs such as Reddit and OGBN-
arxiv, graph partitioning overhead becomes the main contrib-
utor to execution time. Here, Buffalo significantly reduces
execution time compared to Betty by avoiding costly graph
partitioning. As the graph moves to a million scale, e.g.,
OGBN-products, the overhead from connection checks and
block construction rises sharply. This is because Betty must
partition a batch into more micro-batches in order to fit each
micro-batch to the device’s memory. Additionally, Betty does
not support block generation for billion-scale OGBN-papers
because Betty cannot process nodes with zero in-edges (shown
as no data in Figure [TT] for OGBN-papers).

C. Optimization of Block Generation

We compare the block generation performance of Buffalo
and Betty. Figure [12] shows that Buffalo takes significantly
less time than Betty for block generation, up to 8 times faster.
For instance, Betty requires 5.21 seconds to generate blocks
for OGBN-arxiv to produce 16 micro-batches, while Buffalo
takes only 0.70 seconds, as illustrated in Figure [T2]b.

D. Reduction of Peak Memory Consumption

We re-evaluate the cases presented in Figure 2| using Buf-
falo. Figure shows the results. With Buffalo, we suc-
cessfully address all OOM issues. Shown in Figure [[3]a,
Buffalo enables a sophisticated aggregator (LSTM) using fif-
teen micro-batches. Additionally, Buffalo allows us to execute
GNN models with more layers (3 and 4 layers, using 2 and 5
micro-batches, respectively). Moreover, Buffalo allows us to
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execute GNN models with larger hidden sizes, such as 512,
using 2 micro-batches. Notably, we achieve this while also
increasing the fanout to 20 and 800 using 2 and 13 micro-
batches, respectively. This demonstrate the effectiveness of
Buffalo in overcoming the memory capacity wall.

E. Load Balance after Applying Buffalo

We measure the memory consumption of each micro-
batch after using Buffalo. Figure shows the result for
three datasets — OGBN-arxiv (split into 4 micro-batches),
OGBN-products (12 micro-batches), and OGBN-papers (8
micro-batches). For each dataset, the memory consumption of
micro-batches is almost the same. The difference in memory
consumption across micro-batches is only 4%-6%.

FE. Sensitivity Analysis for Memory Budget and Bucket Size

We examine how the memory budget is related to the bucket
group size (i.e., the number of output nodes in a bucket group).
To assess performance with various bucket group sizes, we
utilize four different GPU memory budgets: 16GB, 24GB,
48GB, and 80GB, along with OGBN-products. We perform
our analysis using a 2-layer GraphSAGE model with an LSTM
aggregator. Figure [I5] shows the performance of this model
with different GPU memory budgets and bucket group sizes.
We use NVIDIA GPU A100. The data points labeled 2, 4,
12, and 18 in the figure indicate the number of micro-batches
generated. Given a GPU memory budget of 80GB, the training
memory cost is 76.65GB, and the end-to-end time is 9.37
seconds. In general, as the GPU memory budget increases, the
size of the bucket group increases, resulting in shorter training
times. This implies that the GNN operates more efficiently
when more GPU memory is available.

G. Performance on Multi-GPU

To employ Buffalo on multiple GPUs, we create micro-
batches using Buffalo scheduling with the consideration of
GPU memory capacity on each GPU. Then, we use data
parallelism to train GNN. We repeat the evaluation in Figure
[15] using two A100 GPUs in a machine connected by PCle
instead of one GPU. The CUDA memory budget per GPU
is still 16GB, 24GB, 48GB, and 80GB. With two GPUs, the
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iteration times are reduced slightly by 3%-5%. This happens
because each iteration includes both the time to generate
micro-batches and the time for training. The training time is
making up only 9%-12% of the total time. While multiple
GPUs can speed up training, the time for generating micro-
batches stays the same. Additionally, the extra communication
time between the GPUs adds 0.9%-1.2% to the total time,
leading to a small overall reduction in iteration time.

H. Computation Efficiency

We evaluate the computation efficiency of Buffalo. The
computation efficiency is defined as the total number of nodes
across all micro-batches divided by the end-to-end training
time per training iteration. In this evaluation, we also compare
Buffalo with several alternative batch-level partitioning strate-
gies: Random, Range, METIS, and Betty. These four partition
strategies are applied on the subgraph only contains output
nodes. The Range partition method sequentially and evenly
splits the 1D space of output nodes, whereas the Random
partition method does so evenly but randomly. For example,
given the indices of output node {10, 35, 46, 79, 105, 123,
254, 328}, when split into two partitions, the Range partition
results in {10, 35, 46, 79} and {105, 123, 254, 328}. In
contrast, the Random partition might yield {328, 79, 35, 123}
and {254, 105, 10, 46}. Buffalo completes training using
12 micro-batches(Figure 14.b), while the Random and Range
requires 14 micro-batches. The Random and Range methods
don’t effectively reduce redundancy, which leads to larger
partition sizes than Buffalo. METIS divides output nodes via
partitioning the graph. , while Betty first transforms the graph
to a new graph including node-redundancy information before
using METIS. Figure [T shows that computation efficiency
remains stable for Range, Random, METIS, and Betty as
the number of micro-batches increases. However, Buffalo
outperforms the best of these by 36.4%, indicating Buffalo
can handle more node computations per epoch.

1. Evaluation of Memory Estimation

Table shows the memory estimation error of Buffalo
on all datasets, using GraphSAGE with LSTM and mean
aggregator. GraphSAGE has a hidden size of 256 and 2 layers.
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TABLE III
MEMORY ESTIMATION ERROR FOR LSTM AND MEAN AGGREGATOR.
LSTM mean
Dataset Cut-off # batch Error # batch Error
rate % rate%
Cora 10,25 4 43 4 10.02
Pubmed 10,25 4 5.7 4 5.16
Reddit 10,25 4 0.16 4 0.29
OGBN-arxiv 10,25 4 0.5 4 1.82
OGBN-products 10,25 16 7.6 8 0.34
OGBN-papers 10,25 16 4.1 8 3.6
TABLE IV
TRAINING WITH DGL V.S. TRAINING WITH BUFFALO
[ Dataset [ Model [ DGL/Loss [ Buffalo/ Loss |
Cora SAGE | 0.0017 £ 0.0010 | 0.0018 + 0.0011
GAT 1.8931 + 0.0100 | 1.9005 + 0.0097
Pubmed SAGE | 0.0003 + 0.0001 | 0.0003 + 0.0001
GAT 1.0916 + 0.0067 | 1.0911 + 0.0045
Reddit SAGE OOM 0.2107 £ 0.0044
GAT OOM 2.7091 £ 0.0027
OGBN-arxiv SAGE | 0.9786 + 0.0043 | 0.9691 + 0.0039
GAT OOM 3.0569 + 0.0010
OGBN-products | SAGE OOM 0.3519 + 0.0088
OGBN-papers SAGE OOM 1.4548 + 0.0036
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Our estimation exhibits a low error rate: in all cases, the rate
is below 10.02%.

J. Training Convergence and Loss

We examine model convergence with Buffalo. Figure
presents the convergence curve for GraphSAGE on OGBN-
arxiv, comparing batch and micro-batch training across three
batch sizes with identical hyperparameters. The curves are
closely aligned, indicating that the model convergence is not
impacted by Buffalo and micro-batch training. Using all other
datasets, we see the same trend.

Table presents the training loss of DGL with batch
(sampling subgraph) training and Buffalo using micro-batch

training. Overall, the training loss of Buffalo is almost the
same as that of DGL. This is because Buffalo only changes
the schedule of training at the micro-batch level and the
micro-batch training is mathematically equivalent to the batch
(sampling subgraph) training.

VI. RELATED WORK

Joint optimization for graph data and operations. GN-
NAdvisor [77] focuses on optimizing data patterns from the
graph structure, utilizing both the graph’s inherent structure
and model-specific information simultaneously to enhance
performance. WiseGraph [[19] is designed to optimize both
the partitioning of graph data and GNN operations concur-
rently. ByteGNN [100] focuses on locality-aware partitioning
and partial code execution to minimize data movement and
copying overhead. GraphPart [44] emphasizes the selection of
representative nodes within graph partitions for active learning.
Kim et al. [31] leverage a performance model to guide
data division and introduce locality-aware neighbor sampling
to reduce data movement during training. Song et al. [[63]]
introduce a locality-aware neighbor sampling technique to
further minimize data movement overhead.

Data-preprocessing for graph analysis. There are many
data-preprocessing techniques, including [1], [8[l, [30], [40],
[65], [89], [97]. Our approach differs from them because of
the fine-grained partitioning method to address the bucket
explosion problem.

Load balance for graph analysis. There are many load-
balance efforts for graph analysis, including [13]], [41]], [48],
[49], [61], [64], [72]]. However, those efforts focus on the
balance of number of nodes across partitions, not the balance
of memory consumption like Buffalo. Hence, Buffalo makes
more effective usage of GPU memory.

Memory tiering. Memory tiering [20], [37], [38[, [43],
(5301581, [750, [82], [83[l, [8S]—[88[l, [92]] combines multiple
memory components to address memory capacity problems.
Buffalo is a solution to leverage tiered memory.

VII. CONCLUSION

In this paper, we reveal a bucket explosion problem that
leads to OOM and limits the effectiveness of existing methods
to train GNN on single GPUs. We introduce Buffalo, a system
addressing the bucket explosion and enabling load balancing
between graph partitions for GNN training. Our comprehen-
sive evaluation demonstrates that Buffalo significantly im-
proves compute-vs-memory efficiency, successfully mitigates
out-of-memory challenges, reduces end-to-end training time
by 70.9%, and outperforms existing methods by 36.4% in
terms of computation efficiency, advancing the capability of
GNN training on a single GPU.
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APPENDIX
A. Abstract

This artifact includes source codes and expected experimen-
tal data to replicate the evaluations in this paper.

We used Figure 2] to denote the OOM situation of the
current advanced GNN training, and Figure [I3] to illustrate
how Buffalo breaks the memory wall. Figure [6] presents our
estimate of memory consumption during the workflow of
Buffalo. Figure shows the trend for maximum memory
consumption and training time per epoch as the number of
micro-batches increases. Finally, Figure |17 provides evidence
that model convergence is not affected by Buffalo, confirming
the effectiveness of micro-batch training. .

The framework of Buffalo is developed based on DGL
(pytorch backend). The requirements are as follows: Pytorch
>= 2.1, and DGL >= 2.2. The other software dependency
includes sortedcontainers, pyvis, pynvml, tqdm, pymetis, and
seaborn.

The results of our experiments, as presented in the paper,
were obtained using a machine equipped with an RTX 6000
GPU (24 GB memory) and an Intel® Xeon® Gold 6126 CPU
@ 2.60 GHz. You can use a different configuration as long as
it includes at least one GPU.

B. Artifact check-list (meta-information)

o Model: In artifact evaluation, we use primarily the GraphSAGE
model to show the performance of Buffalo.

o Data set: The datasets used are ogbn-arxiv and ogbn-products,
which can be downloaded directly from the Open Graph Bench-
mark(OGB) website.

o Runtime environment: Ubuntu20.04, CUDA 12.1 pytorch >=
2.1, and DGL >= 2.2. Details can be found in the github
repo https://github.com/PASAUCMerced/Butfalo.git. Python 3.9
is just one option in the requirement. You can also use another
Python version, e.g., Python3.11, but you need to configure the
corresponding PyTorch and DGL versions.

o Hardware: At least one GPU.

e Metrics: GPU memory usage and execution time.

o Experiments: To save time, we choose Figure 10, 11, 2&13,
17 to denote that Buffalo can effectively reduce the maximum
memory consumption without changing the training conver-
gence.

o How much disk space required (approximately)?: 60GB.

e How much time is needed to prepare workflow (approxi-
mately)?: 1 hour.

o How much time is needed to complete experiments (approx-

imately)?: a few hours.

Publicly available?: Yes.

Code licenses (if publicly available)?: Apache-2.0 license.

Data licenses (if publicly available)?: MIT License.

Archived (provide DOI)?:10.5281/zenod0.14676525

C. Description

1) How to access.: You can obtain the artifact from
https://github.com/PASAUCMerced/Buftalo.git.

2) Hardware dependencies.: The results presented were
collected from a machine equipped with a single RTX6000
GPU (24 GB memory). If you use a GPU with different mem-
ory capacity, the problem of out-of-memory (OOM) during
mini-batch training may vary. Running the benchmark requires

/

== Buffalo

m— Figures
pytorch
README.md

Requirements.sh

= dataset

Fig. 18. Directory structure of the artifact.

up to 60 GB of disk space. Aside from this, there is no other
special hardware requirement.

3) Software dependencies.: Ubuntu20.04, CUDA 12.1,
Python 3.9, PyTorch 2.1 or higher, and DGL 2.2 or higher.
The main software include DGL, PyTorch, sortedcontainers,
pyvis, pynvml, tqdm, and pymetis. The software might have
compatibility issues, so please be cautious when installing
software.

4) Data sets.: The datasets (OGBN-arxiv and OGBN-
products) we used in the artifact can be downloaded from
Open Graph Benchmark(OGB) Dataset.

5) Models. : The model used in artifact is GraphSAGE with
different aggregators, number of layers, hidden size, and fan
out size.

D. Installation

Obtain the artifact (see Section [CI)), and extract the archive
files.

Next, download the benchmarks and generate the
full batch data into the folder /dataset/. You can
execute the bash file gen_data.sh located in the folder
/Buffalo/pytorch/micro_batch_train/ with
fanout 10 and 25. After this, you will find the folder
/dataset/fan_out_10,25 containing the pickle files of
the full batch data after sampling.

E. Experiment Workflow

We present the directory structure of our artifact in Fig-
ure [I8] The directory pytorch contains all necessary files
for the micro-batch training and mini-batch training. In
the folder bucketing/, bucket_partitioner.py in-
cludes our implementation of the degree-bucket scheduler.
bucket_dataloader.py is designed to construct the
micro-batch based on the scheduling results of Buffalo. The
folder Figures/ contains important figures for analysis and
performance evaluation. In Section [, we explain how these
scripts replicate the results shown in those figures to evaluate
the performance.

F. Evaluation and Expected Results

We select scripts for certain figures to replicate the
evaluation, and the commands that need to be executed
are located in the folder Figures/. For example, in
Figure [LO)/, you can execute the bash file to get the
results for full batch size as well as 2, 4, 8, 16, and


https://github.com/PASAUCMerced/Buffalo.git
https://doi.org/10.5281/zenodo.14676525
https://github.com/PASAUCMerced/Buffalo.git
https://github.com/PASAUCMerced/Buffalo.git
https://ogb.stanford.edu/docs/nodeprop/

32 micro-batches. The results will be saved in the folder
/Buffalo/Figures/Figure [L0J/log/. After that, run
data_collection.py to summarize the maximum mem-
ory and time consumption data of micro-batches training.
These data are stored in a table shown in README.md in
Figure [10).

The output of the execution will be stored in 1og/ folder
in each figure folder. The logs of expected results are stored in
log/bak/ folder, and the figures and/or tables of expected
results are displayed in each figure folder.

More details can be found in the README . md file.
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