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Abstract—Deep learning recommendation models (DLRMs)
are widely used in industry, and their memory capacity require-
ments reach the terabyte scale. Tiered memory architectures
provide a cost-effective solution but introduce challenges in
embedding-vector placement due to complex embedding-access
patterns. We propose RecMG, a machine learning (ML)-guided
system for vector caching and prefetching on tiered memory.
RecMG accurately predicts accesses to embedding vectors with
long reuse distances or few reuses. The design of RecMG focuses
on making ML feasible in the context of DLRM inference by
addressing unique challenges in data labeling and navigating
the search space for embedding-vector placement. By employing
separate ML models for caching and prefetching, plus a novel dif-
ferentiable loss function, RecMG narrows the prefetching search
space and minimizes on-demand fetches. Compared to state-
of-the-art temporal, spatial, and ML-based prefetchers, RecMG
reduces on-demand fetches by 2.2×, 2.8×, and 1.5×, respectively.
In industrial-scale DLRM inference scenarios, RecMG effectively
reduces end-to-end DLRM inference time by up to 43%.

I. INTRODUCTION

Deep learning recommendation models (DLRM) are widely
used in industry [18], [54]. The DLRM inference takes 80% of
total AI inference cycles at some data centers [41]. The DLRM
processes continuous features with compute-intensive deep
neural networks and categorical features with data-intensive
embedding operators [24], [94] to generate recommendation
results. GPUs have been widely used to deploy DLRM in-
ferences. Massive categorical features stored as embedding
tables (EMBs) creates deployment challenges - due to the
sheer size of EMBs, which is proportional to the cardinality of
categorical features and dimensionality of the latent space, the
DLRM is often too large to fit onto a single device memory.

The existing work deploys EMBs on tiered memory [4]:
a small portion of frequently accessed embedding vectors in
EMBs are cached in GPU memory, while the rest embedding
vectors are placed in host CPU memory or SSD which
is much slower to access than GPU’s local memory. On-
demand fetching of embedding vectors from the host CPU
memory/SSD to GPU memory causes up to O(10µs) latency.
However, large-scale DLRM inferences often have to achieve
latency-related Service-Level Agreements (SLA). In the real-
world, the SLA target is in an order of up to a few hundreds
of ms [4]. Hence, the efficient management of limited GPU
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memory for EMBs to minimize the violation of the SLA target
is the key to the success of DLRM inferences.

Existing work on performance optimization of recommen-
dation models [3], [68], [81] and our observations with real
production inference traces show that embedding vector ac-
cesses in DLRM inferences follow a power law distribution.
With such a distribution, a portion of embedding vectors
(about 20%) takes about 80% of accesses to EMBs. This
memory access pattern provides opportunities for traditional
LRU-like caching mechanisms to manage a buffer on GPU
memory. However, this method faces two challenges. First, a
significant portion of embedding vector accesses still occur on
external memory, causing on-demand data fetching. Although
these vectors are not frequently reused individually, their ac-
cumulated accesses constitute a large portion of total memory
accesses. These vectors cannot be held in a traditional LRU-
cache due to the lack of temporal locality.

Second, some embedding vectors have long reuse distances.
Based on datasets from production environments, we observe
that 20% of embedding vector accesses have a reuse distance
larger than 220. Such long reuse distances can exceed the size
of most software-managed GPU buffers in production, reduc-
ing the effectiveness of traditional fully-associative caching.

In this paper, we explore the feasibility of using machine
learning (ML) to address these data locality issues difficult to
be solved by the existing method to manage GPU buffer for
DLRM (i.e., the LRU-like caching). ML has been successful
in enhancing cache-line prefetchers [32], [71], [74] and page
prefetchers in heterogeneous memory tiers [22], [23]. ML
can learn implicit memory access patterns from the sequence
of memory accesses, enabling the prediction of irregular or
streaming memory access patterns for prefetching, which are
difficult to handle with traditional approaches.

The feasibility of using ML to cache and prefetch em-
bedding vectors in the GPU buffer stems from the strong
correlation in user access behaviors, both across users and for
individual users [48], [80]. This correlation leads to implicit
relationships between consecutive vector accesses, making the
access patterns learnable and predictable. Importantly, the
ability of ML to learn and exploit these correlations is not
constrained by the presence of long reuse distances or irreg-
ular memory access patterns [19], [71], which are common
in DLRM inference workloads. This property enables the
development of effective ML-based caching and prefetching



strategies tailored to embedding vector access patterns.
However, using ML for GPU buffer management presents

unique challenges not encountered in existing ML-based
prefetching problems. First, the prefetch model must make
predictions in a large search space consisting of billions
of vectors from embedding tables. Vector accesses within
such a large search space have different characteristics than
memory accesses in a large address space. Traditional memory
prefetchers [32], [71], [74], [95], [96] target memory accesses
that are sparsely distributed in the address space [32], allowing
for a delta-based approach that predicts the address difference
between two contiguous memory accesses. This approach can
narrow down the search space because the sparse distribution
leads to a limited number of deltas. In contrast, the dense
distribution of vectors in the search space results in a large
number of deltas, invalidating the effectiveness of the delta-
based approach. Moreover, two deltas with the same value
can be calculated from different EMBs, representing different
semantics and memory access patterns. Hence, simply using
deltas loses feature distinctiveness, an ML property required
for accurate prediction.

Second, using ML for prefetching faces a data-labeling
problem. To train the ML model, one must label training
dataset to establish ground truth: within the search space of
model prediction, the model learns which memory address (or
embedding vector in the context of DLRM) will be accessed.
Given the large search space, the number of labels is huge,
causing high complexity in the ML model to enable high
prediction accuracy and coverage. Existing solutions, such
as Voyager [71], address this problem by decomposing the
memory address into page address and offset, and predicting
them separately, significantly reducing the number of labels
(especially for offsets). However, this decomposition method
cannot work in DLRM because there are still a large number of
offsets (or vectors) within an embedding table when mapping
the idea of offset to the context of DLRM. Furthermore,
existing work [6] classifying memory access patterns into a
handful of categories to reduce the number of labels cannot
work either, because of random nature in memory accesses.

To address the above challenges, we introduce RecMG,
a GPU buffer management system customized for DLRM
inferences. RecMG introduces a novel approach that employs
two separate neural models, unlike the unified neural modeling
used in existing prefetching techniques [32], [71], [74]. The
first model focuses on prefetching embedding vectors with
few reuses or long reuse distances, while the second model
targets caching, emphasizing temporal locality and effective
eviction of embedding vectors. The caching model (the second
model), once trained with endless user data, provides the
flexibility to outperform LRU-like models in terms of caching
effectiveness, thereby more effectively reducing the search
space for the prefetch model. By using two separate models,
RecMG effectively improves prediction accuracy.

To address the data labeling problem, RecMG transforms
the embedding-vector prediction problem into a binary clas-
sification problem for the caching model. Given a sequence

of prior accesses as input, the caching model predicts which
vectors should be kept in the cache, requiring only two labels.
This significantly reduces the complexity of the data labeling
process. Furthermore, RecMG’s prefetcher outputs a sequence
of embedding-vector indices for prefetching, differing from
traditional ML-based memory prefetchers that predict only the
next address. By prefetching a sequence of vectors [32], [74],
RecMG aims to improve the chance of prefetch hits in the
GPU buffer. The prefetched embedding vectors remain valid
in the buffer for a time duration, expecting hits in the near
future.

Using the prefetch model introduces a challenge in design-
ing the loss function for optimization during prefetch model
training. To improve prefetch effectiveness, we extend the
length of the evaluation window used for deciding prefetch
hits. However, this extension introduces a mismatch between
the evaluation window length and the model-output sequence
length, making it difficult to create a differentiable loss func-
tion that quantifies prediction error without introducing bias
into the model output. To address this challenge, RecMG
introduces a loss function based on the Chamfer Measure [13].

This paper makes the following contributions:
• We study the patterns of embedding vector accesses

in DLRM inferences and reveal the inability of using
traditional LRU-like caching to buffer embedding vectors
effectively;

• We propose an ML approach to learn vector access
patterns for caching and prefetching, and introduce tech-
niques centering around reducing the search space of ML
and improving accuracy;

• Compared with state-of-the-art prefetchers, including a
temporal prefetcher (Domino [8]), a spatial prefetcher
(Bingo [10]), and an ML-based prefetcher (Trans-
Fetch [96]), RecMG outperforms by 190×, 400×, and
27× respectively in terms of prefetch sequence prediction
correctness, and reduces the on-demand fetches by 2.2×,
2.8×, and 1.5×, respectively. We also demonstrate that
existing ML-based prefetchers (Voyager and TransFetch)
cannot work effectively for DLRM inferences due to high
model training and inference overhead.

• Evaluating RecMG on a production-like platform with
five datasets, we show that our approach reduces end-
to-end DLRM inference time by 31% on average (up to
43%), outperforming LRU caching in production.

II. BACKGROUND

DLRM architecture. Figure 1 presents major components
of an industry-scale DLRM [54]. A DLRM input (an inference
query) is composed of categorical and continuous features. The
categorical features are sparse, representing categorical data
(such as what subject a user is interested in). The continuous
features are dense, representing user information (such as a
user’s age). A categorical feature is represented as a one-hot
or multi-hot binary vector where one or multiple positions in
the vector corresponding to one or multiple categories are 1
and others are 0. Hence, the representation of the categorical



Fig. 1. DLRM architecture on tiered memory. Embeddings map the categor-
ical features into dense representations.

Fig. 2. Embedding tables and pooling factor.

features is sparse. Different categorical features have varying
cardinality. The categorical features can have big cardinalities
in the scale of billions [40], [97]. Given the input features,
DLRM predicts the probability that a user will interact with
a particular piece of content. Such a probability is referred to
as the click-through-rate (CTR).

DLRM often has two major components: embeddings and
interaction, shown in Figure 1. Embeddings map the categor-
ical features into dense representations. Interaction aggregates
the continuous features and dense representation of categor-
ical features by dot-product summation concatenation, and
then captures their interaction by top multi-layer perceptrons
(MLP). There is also a bottom MLP which processes the dense
inputs to reproject the continuous features to dense ones.

Embeddings are based on embedding tables (EMBs) that
map categorical features from a high-dimensional, sparse
space to a low-dimensional, dense space. In essence, EMBs
act as large lookup tables, where each row functions as a latent
vector encoding of a category (i.e., a sparse-feature value). The
input categorical features activate specific categories, which
are used as indices to gather one or more embedding vectors
from the EMBs, as depicted in Figure 2. These embedding
vectors are gathered (or pooled) on a per-EMB basis. The

TABLE I
EXTRA OVERHEAD OF EMBEDDING-VECTOR ACCESSES IN THE DLRM

INFERENCE. “CACHING RATIO” DENOTES THE PROPORTION OF
EMBEDDING VECTORS STORED IN THE GPU BUFFER.

# emb
tables

#
accesses

# unique
indices

batch
size

caching
ratio

emb
access

overhead

DS1 24 20.1M 2.2M 6K 100% 0%
DS2 24 20.1M 2.2M 6K 20% 52.7%
DS3 192 191.4M 6.4M 6K 7% 30.1%
DS4 192 191.4M 6.4M 18K 7% 58.7%

gather operation, often using summation or concatenation, is
called feature pooling.

EMBs are large: a single EMB in a production-scale DLRM
can be at the scale of 100s of GB; the total memory capacity
of EMBs can be at the scale of multi-TB. Because of large
memory consumption of EMBs, GPU memory is often a
bottleneck. Using tiered memory (i.e., GPU memory tier plus
CPU memory tier) is a solution.

The DLRM inference is different from the DLRM training
in terms of EMBs accesses. In DLRM inference, a batch of
items (i.e., categories) is accessed simultaneously, resulting
in a more diverse pooling factor. In contrast, DLRM training
focuses on learning from individual items and their specific
interactions, accessing one item at a time. Furthermore, in
training, the dataset and memory accesses are predetermined,
allowing for well-planned prefetching [12], [68], while the
inference does not have such luxury. Therefore, embedding
vector prefetching is more challenging in DLRM inference
compared to training.

Limitations of existing data caching and prefetching
techniques for DLRM inferences. To reduce EMB accesses
outside of GPU memory, the PyTorch Library [58] maintains
a software-managed buffer inside GPU memory for caching
frequently accessed embedding vectors using an LRU policy
(detailed in Section VII-E). However, even with this optimiza-
tion, embedding-vector accesses remains expensive. We study
execution time of DLRM inference [27] with various datasets
using NVIDIA A100 GPU. Table I shows the results. When
all embedding vectors fit into the GPU buffer (DS1), there
is no extra overhead for embedding vector accesses. As the
number of EMB tables/indices/batch size increases and the
caching ratio decreases, the embedding vector accesses takes
larger overhead (up to 58.7% of the total execution time). Such
overhead comes from the access misses in GPU buffer (leading
to CPU memory accesses).

Prefetch has been employed to mitigate the performance
impact of accessing embedding vectors in memory with the
PyTorch library [58], [59] using Unified Virtual Memory
(UVM). However, it lacks guidance on which embedding vec-
tors to prefetch and when to prefetch them. Furthermore, our
evaluation in Section VII-B demonstrates that many existing
rule-based prefetchers [2], [9], [11], [51], [70], [75] struggle
to capture the irregular nature of embedding accesses, which
exhibit extremely low spatial locality and limited temporal
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Fig. 3. Reuse distance of embedding-vector accesses in 856 sparse features.

locality. Also, ML-based prefetchers [32], [44], [45], [66],
[69], [73], [74], [95] fail to handle the extremely large search
space (i.e., tens of billions of unique indices) and hence incur
large decision-making overheads, making them impractical in
production environment. As shown in Section VII-B, existing
rule-based and ML-based prefetchers only achieve prefetch
accuracy of less than 1%.

III. STUDY OF SPARSE FEATURES ACCESSES

Sparse features represent categorical data. The categorical
feature space can be arbitrarily large. During a DLRM in-
ference, the values of the input categorical feature indicate
or activate some categories in the feature space as indices,
and indices are used to access sparse features (i.e., EMBs
and their embedding vectors). We characterize the accesses
to sparse features using sixteen datasets from Meta [26]
and each includes over 400 million accesses to 856 sparse
features. There are 62-million unique embedding vectors in
each dataset. These datasets represent memory access patterns
in production recommendation workloads, and studying such
datasets is unprecedented.

Reuse distance analysis. We measure the reuse distance of
embedding vectors in EMBs. The reuse distance is a metric
for locality analysis [21], [67]. In the context of DLRM,
the reuse distance defines the number of distinct embedding-
vectors accessed between two consecutive references to the
same vector. Reuse distance quantifies the likelihood of a
cache hit for an embedding vector access in a fully associative
LRU cache. If the reuse distance of a vector access is larger
than the cache size, then the latter access (reuse) is likely to
cause a cache miss. Figure 3 shows the reuse distance for 410
million embedding vector accesses. We have two observations.

(1) The reuse distance of 20% accesses is larger than 220,
which is larger than the capacity of a typical GPU buffer
(hosting embedding-vectors at the scale of O(100, 000)), and
hence invalidates the effectiveness of the traditional LRU
cache. Given the large number of accesses with long reuse-
distance, there is a strong need to reduce on-demand fetches.

(2) There is room to improve the efficiency of the LRU
cache. We compare the hit rate of a fully associative LRU
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cache with the optimal hit rate collected from the Belady
algorithm [14]. The results show that to achieve an 80% hit
rate, the optimal cache requires only 1/16 of the capacity of
the LRU cache. This motivates us to introduce new caching
and prefetching algorithms to reduce cache misses during
DLRM inference. This approach is expected to outperform
the traditional LRU cache with the same capacity as ours.

Pooling factor. The previous work [4] reveals that the av-
erage pooling factor during DLRM inferences in a production
environment varies a lot across DLRM inference queries (in
the range of 1 to hundreds). Such a wide distribution of pool
factor calls for effective handling of input sequences.

IV. OVERVIEW

RecMG aims to learn correlations between consecutive
embedding-vectors accessed by prior DLRM inferences to
predict the embedding-vector accesses by future DLRM in-
ferences. Similar to the traditional temporal prefetching [8],
[34], [72], [82], [83], this learning task can be formulated
as a probabilistic prediction problem: Given a sequence of
historical accesses (vec1, vec2, ..., veck, called input features)
up to k embedding-vectors, predicts the probability that an
embedding vector will be accessed.

P (vec|vec1, vec2, .., veck) (1)

RecMG aims to achieve both high prediction accuracy and
high coverage. The coverage is defined as follows. Given
a sequence of embedding-vector accesses as ground truth
(denoted as vec seqgt), a prefetcher outputs a sequence of
embedding-vector accesses, denoted as vec seqout, where
both vec seqgt and vec seqout can have repeated vector
accesses. The coverage is about unique vectors in vec seqgt
and vec seqout.

coverage =
|vec seqout ∩ vec seqgt|

|vec seqgt|
(2)
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Having high coverage is important in the context of DLRM
inferences, because some embedding vectors may not be
accessed often, but should be covered in order to minimize
the violation of SLA.

RecMG uses a combination of a caching model and a
prefetch model (Section V). The caching model makes predic-
tion based on temporal locality and reduces the search space
of the prefetch model; The prefetch model makes prediction
for irregular accesses. Both models are sequential models with
an attention mechanism to concentrating on key correlations
between embedding-vector accesses (even if they are far away
from each other).

Figure 4 illustrates the workflow of RecMG. Offline training
of the two models in RecMG uses DLRM inference traces and
their theoretically optimal caching analysis as training data.
During online DLRM inference, the caching model generates
a 1-bit priority for each embedding, guiding the eviction
of embedding vectors (Section V-A), while the prefetching
model predicts which embeddings will be accessed, enabling
the insertion of embedding vectors (Section V-B). Section VI
discusses the deployment of RecMG in production systems.

V. LEARNED PLACEMENT OF EMBEDDING VECTORS

Figure 5 shows the caching and prefetch model architecture
in RecMG. The backbone of both models is sequence-to-
sequence (seq2seq) LSTM model with attention mechanism.
Each model takes a sequence of prior accesses as input. The
order of the embedding-vector accesses within the sequence
matters to the prediction accuracy, and the sequence reveals
implicit correlations between the accesses. The LSTM has
been utilized for handling this type of sequence [5], [7], [17],
making it a natural choice in our scenario.

Each LSTM stack includes a pair of an encoder and a
decoder. The pair naturally generates a dense representation
of embedding vectors in a continuous space and captures the
relationship between different embedding vectors within the
same input sequence. The caching model in RecMG consists

of a single LSTM stack with 37K learnable parameters, while
the prefetch model comprises two LSTM stacks with a total
of 74K learnable parameters (details in Table III).

Moreover, we introduce an attention mechanism into both
models, which is able to learn the relationship between input
sequences, even when the accesses to the same embedding
vectors across DLRM inference requests are far apart. The
attention mechanism assigns higher weights to the relevant
embedding vectors from distant input sequences, enabling the
model to effectively capture long-range dependencies.

Recent works [15], [20], [39], [77] show that transform-
ers are powerful for handling long sequences because of
their high computational parallelism. However, when deploy-
ing transformer-based RecMG for memory management in
production, we find a lack of extra computation cycles on
the GPU, making it challenging to leverage transformers’
parallelism effectively. Therefore, we use CPU for RecMG
deployment. We choose LSTM (instead of transformers) as
the bone structure because LSTMs are more CPU-friendly
and still provide good model accuracy. This choice allows
RecMG to be deployed in resource-constrained environments
while maintaining effective memory management, making it a
practical solution.

A. Caching Model

We introduce a caching model to capture temporal locality
and enable effective eviction of embedding vectors.

Model input. The input to the caching model is a sequence
of embedding vector accesses, consisting of a list of row IDs
and their corresponding table IDs.

RecMG truncates the sequence of prior vector accesses into
a set of fix-sized shorter sequences to handle DLRM inferences
with wide distribution of pooling factor. Each shorter sequence
is a chunk and serves as the basic unit of input for the caching
model. This indicates that an input sequence may come from
the same or multiple inference queries. We do not impose an
requirement that the embedding-vector accesses must come
from the same DLRM inference query, such that the input
sequence can include correlation information between queries,
which is useful for improving model accuracy.

Model output. The output of the caching model is a binary
sequence with the same length as the input sequence of the
caching model. Each element of the output sequence indicates
whether the corresponding element in the input sequence
should have higher priority to stay in the GPU buffer than
other elements (“1” means higher priority and “0” indicates
otherwise). The priority of an embedding vector is used to
decide whether a vector should be eliminated out of the buffer
when the buffer size is not enough for fetching new vectors
(see Section VI).

Model training. We use the cross entropy loss as the loss
function to train the caching model, since the caching model
works on a classification task (deciding high or low priority).
The cross entropy loss uses a sigmoid function to estimate the
binary probability distribution of candidate labels, predicting
whether or not an event is likely to happen.



B. Prefetch Model

The prefetch model aims to prefetch embedding vectors
with few reuse or long reuse distance into the GPU buffer.
It uses the same input as the caching model.

Model output. The output of the prefetch model is a
sequence of embedding vectors to be accessed. The sequence
length of the output is smaller than that of the input, in order
to improve prefetch accuracy.

Model structure. The prefetch model also uses a seq2seq
LSTM model. Different from the caching model that in
essence works on a classification problem with the output
of a binary sequence, the prefetch model predicts embedding
vectors to be accessed in a large search space. As a result,
the prefetch model has an output embedding layer (i.e., fully
connected and projection layer) after the attention layer to
convert the attention vectors into the indices of embedding
vectors as the output. See Figure 5 for model structure.

Model training. To train the prefetch model, we must
calculate the difference between the model output and ground-
truth in order to calculate the gradient. We decide the ground-
truth based on how the output of the prefetch model is used
for managing the GPU buffer. Specifically, the ground-truth
represents the optimal prefetch decisions that would minimize
cache misses in the GPU buffer for the next batch of DLRM
inference requests.

In particular, the prefetch-model output (named PO, which
is a sequence of embedding vectors to be accessed with a
length of |PO|) will be fetched into the GPU buffer, but can
stay longer than the next |PO| embedding vectors referenced
by DLRM inference queries. There are two reasons why the
prefetched vectors stay longer. First, we aim to maximize the
benefits of prefetching. If there is any mismatch between the
|PO| prefetched vectors and the next |PO| vectors referenced
by DLRM inference queries, we do not immediately replace
the prefetched vectors. Instead, we expect them to be accessed
in the near future. Second, prefetching the vectors from CPU
memory takes time. During the prefetch process, the DLRM
inference queries can access embedding vectors in parallel.
This indicates that the prefetch may not be useful for the
immediately next N vector accesses from DLRM inference
queries, but rather for accesses in the near future, where N
is the number of vector accesses that take the same time as
fetching PO embedding vectors.

Based on the above observation, when deciding the ground-
truth for an output of the prefetch model, we look at a sequence
of embedding vector accesses from DLRM inference queries
as ground truth, and the sequence (named W ) has a length of
|W | (where |W | > |PO|). We compare the difference between
vectors in PO and vectors in W . The training objective is to
minimize the difference between PO and W . We formulate
the objective function of the prefetch model in Equation 3.

f : min|dist(PO,W )| (3)

where dist() quantifies the distance. dist() can be con-
structed as a function that counts the number of non-
overlapped vectors between PO and W . However, this func-

tion is not differentiable needed by optimization of the objec-
tive function (i.e., AI models using such an objective function
cannot be trained.

Hence, we introduce the Chamfer Measure [13] (CM) to
build dist(). Given two sets of data points S1 and S2, CM is
defined in Equation 4 and differentiable.

dCM (S1, S2) =
∑
x∈S1

min
y∈S2

|x− y| (4)

With CM, each point in x ∈ S1 finds its closet point in S2.
In the context of the prefetch model, S1 and S2 are PO and W
respectively. However, using CM introduces shortcuts in the
prefetch training, and the prediction result (the output of the
prefetch model) tends to have the same value in all elements
in PO. For example, during the training process, assume that
PO={1, 2, 3} and W={2, 6, 7, 8}. “2” in W tends to be chosen
to minimize the distance from each point in x ∈ PO, which
leads to a uniform value in all elements of PO during DLRM
inference. This problem comes from the fact that CM loses
locality information.

To address the above problem, we introduce two CMs in-
stead of one, defined in Equation 5. Compared with Equation 4
using dCM (PO,W ), Equation 5 adds a term dCM (W,PO).
Using Equation 5, minimizing the object function requires
that not only each point in PO finds the closet point in
W , but also each point in W finds the closet point in PO,
which prevents the locality problem in Equation 4. Also,
Equation 5 normalizes the first and second terms by 1

|PO|
and 1

|W | respectively to enable meaningful comparison across
training iterations for optimization.

dist(PO,W ) = α× 1

|PO|
× dCM (PO,W ) +

(1− α)× 1

|W |
× dCM (W,PO)

(5)

Equation 5 introduces a hyperparameter, α (α ∈ (0, 1)). α
balances the contributions of the two terms to dist(PO,W ).
Since the first term directly minimizes the distance from PO
to W , we put more weight to it (α = 0.7). Given the length of
the prefetch model output |PO|, the ratio |W |/|PO| is a user-
specified hyperparameter. With this ratio, W is determined. We
evaluate the sensitivity of model accuracy to this ratio.

VI. RECMG IN PRACTICE

A. Model Offline Training

The caching and prefetch models use the same training
data but different ground-truth during offline training due to
their distinct goals for memory optimization.To generate the
ground-truth labels, we first collect traces of embedding-vector
accesses from DLRM inferences. Each trace is then fed into
optgen [35], which determines what would have been cached
if Belady’s algorithm [14] were used for caching, providing the
minimum miss ratio when temporal locality is optimally ex-
ploited. optgen generates a new trace (called a caching trace)
based on a user-specified buffer size, where each element is
either “1” or “0”, indicating if the corresponding vector should



stay in the buffer. We set the buffer size in optgen to 80% of
the GPU buffer capacity to ensure sufficient space for placing
prefetched embedding vectors. The caching trace serves as
the ground-truth for training the caching model. The prefetch
trace, derived from the caching trace, consists of embedding
vectors leading to cache misses, which serves as the ground-
truth for prefetch model training.

In practice, we periodically retrain the caching and prefetch
models when the DLRM requires retraining, which typically
happens when embedding tables are updated in production
because of the changes in content popularity across different
domains or time periods.

B. Model Deployment

We implement RecMG based on TorchRec [58], leveraging
its software-managed cache buffer to bring high thread-level
parallelism for processing of embedding vectors. We change
TorchRec’s buffer management policy from LRU/LFU to the
policies generated by our caching and prefetch models. Specif-
ically, the GPU buffer is co-managed by the two ML models.
Each buffer entry is an embedding vector accompanied by
metadata indicating the element’s status, which enables effi-
cient buffer management and elimination. The caching model
handles embedding-vector eviction, while the prefetch model
guides the insertion of embedding vectors.

At the end of each batch of DLRM inference, the
load_embeddings() function (Algorithm 1) is executed.
When a chunk of embedding vectors is accessed, their indices
form a sequence that serves as input to the caching and
prefetch models. The caching model assigns either high or low
priority to each vector based on its output (Lines 4-7 in Al-
gorithm 1). Simultaneously, the prefetching model prefetches
each vector in its output into the GPU buffer (Lines 9-13) and
sets its priority to high (Line 14) to prevent premature eviction.
If necessary, gpu_buffer_populate() is called to ensure
sufficient space for prefetching.

The metadata priority (Line 5 in Algorithm 1) reuses
the metadata space in TorchRec without incurring extra space
overhead. The priority is determined by eviction_speed,
which balances the impact of the caching and prefetch-
ing models on eviction. In our evaluation, we set the
eviction_speed to 4, inspired by the RRIP hardware
prefetcher algorithm [38]. A larger eviction_speed value
allows the prefetched embeddings to stay longer in the GPU
buffer, while those placed by the caching model are evicted
sooner. Although the eviction_speed does not affect the
accuracy of the caching and prefetching models, it influences
the overall system hit rate.

Algorithm 2 shows the embedding vector eviction algorithm
based on the priorities generated in the caching model.

C. System Implementation

We integrate the caching and prefetch models to a DLRM
implementation from Meta [49], [50], [58]. To save GPU
cycles for DLRM inferences and avoid throughput loss, the
two models are executed on CPU. When a batch of DLRM

Algorithm 1 : function load_embeddings
1: Input: Caching model output C, prefetch model output P , and

the most recently accessed trunk T .
2:
3: //set the priority for the rows in T
4: for i = 0 to sizeof(T ) do
5: priority[T[i]] = C[i] + eviction speed
6: end for
7:
8: //prefetching
9: for i = 0 to sizeof(P ) do

10: if the buffer is full then
11: gpu buffer populate()
12: end if
13: fetch(P[i])
14: priority[P[i]] = eviction speed
15: end for

Algorithm 2 : function gpu_buffer_populate
1: Input: Cached embedding trunk T , and its priority array

priority.
2:
3: evict id = 0
4: for i = 0 to sizeof(T ) do
5: if priority[T[i]] < priority[T [evict id]] then
6: evict id = i
7: end if
8: priority[T [i]] = max(0, priority[T [i]]− 1)
9: end for

10: T [evict id] is evicted
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Fig. 6. Applying the caching and prefetch models to the DLRM inference.

inference requests arrives, the caching and prefetch models
take them as input, outputting (1) the caching priority for the
embeddings fetched in the current batch and (2) embeddings
to prefetch for the subsequent inference batches, respectively.
The output information is then appended to the fetched embed-
dings and sent to the GPU, where it will be used in the GPU
buffer for loading and evicting embedding vectors, as detailed
in Section VI-B. The additional communication from CPU to
GPU is minimal because the caching state is represented by
only one bit per embedding vector. Since DLRM processes
millions of embeddings, the communication volume is just a
few hundred KB. Figure 6 shows the workflow.

The major challenge of our system implementation lies in
reducing the performance impact of the inferences of the two
models on DLRM inference. We use: (1) pipeline execution
and less synchronization between CPU and GPU, (2) maxi-
mizing thread-level parallelism on CPU, and (3) quantization.



1 4 8 16 32 48 64
Number of Threads

0k

10k

20k

30k

40k

50k

60k

70k
Th

ro
ug

hp
ut

 (I
dx

/s
)

Throughput
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With the pipeline execution, the DLRM serves the DLRM
inference batch i on GPU, while the caching and prefetch
models infer the results for the future DLRM inference batch
i+ 1 on CPU. The executions of the two models and DLRM
are overlapped. In the case that the inference time of the two
models on CPU is longer than the DLRM inference time
on GPU for a batch i, the DLRM inference does not wait
for the CPU completion. Instead, GPU moves on to the next
DLRM inference batch i+ 1, and CPU moves on to infer for
the future DRLM inference batch i + 2. This design results
in less synchronization between GPU and CPU. As a result,
the states of some cached items cannot be updated by the
two models. But this does not impact the effectiveness of the
original caching policy for the GPU buffer.

We maximize thread-level parallelism of the two models
on CPU. This is implemented by wrapping up a batch of
DLRM inference requests into n inference requests, and send-
ing them to CPU (where n is the number of idle CPU cores).
Each request is served by one thread and the n requests are
served in parallel. Alternatively, we can use multiple threads to
serve each inference request in parallel and use less inference
requests on CPU. But we do not find performance benefits
when doing so, comparing with using one thread per inference
request. This may be because of the lack of instruction-level
parallelism and frequent thread launch overhead.

Based on the throughput results in the Figure 7, it becomes
evident why using one thread per inference request is more
beneficial than using multiple threads to serve each request.
The near-linear increase in throughput as the number of
threads increases indicates that the system effectively handles
thread-level parallelism without significant overhead. Using
idle CPU cores and reducing unnecessary overhead, this
approach maximizes throughput for inference tasks.

Besides the above techniques, we aggressively employ vec-
torization based on AVX512 instructions and use C++ for
implementation. Overall, we get more than 10× performance
improvement, compared with no optimization.

VII. EVALUATION

A. Methodology

Datasets. We evaluate RecMG with five datasets [26]. Each
includes 856 embedding tables and records more than 500
million accesses to the embedding tables, which represent
memory access patterns in Meta production. The datasets

differ in terms of embedding table IDs and row IDs which
are most frequently accessed. Such differences in datasets
reflect variations in user behavior and content popularity across
different domains or time periods.

Baseline Strategies. We compare RecMG against six
caching policies including rule-based caching LRU, LFU,
SRRIP, adaptive policy DRRIP [38], and reuse distance pre-
diction based caching policies including Mockingjay [69]
and Hawkeye [36]. We further compare RecMG against
seven prefetchers, including spatial prefetcher Bingo [1], [10],
temporal prefetcher Domino [8], ML-based prefetchers Voy-
ager [71], which is built on LSTM layers, and TransFetch [96],
which is built on transformer layers, and state-of-the-art
delta-based prefetcher Berti [55], offset-based prefetcher Best
Offset Prefetcher (BOP) [52], and reinforcement learning
based prefetcher coordinator Micro-Armed Bandit (MAB) [30]
which orchestrates multiple simple prefetchers. To evaluate
these policies, we treat each embedding-vector index as a
memory address and use the access sequence of embedding-
vector indices as memory access traces. Some strategies lever-
age Program Counter (PC) or Instruction Pointer (IP) to distin-
guish memory accesses and capture implicit semantic locality
for improving prediction accuracy. Since DLRM inference
operations lack PC information, we use embedding table IDs
as proxies for PC/IP when evaluating these localization-based
prediction policies.

GPU buffer. The GPU buffer size significantly impacts
the evaluation results of caching and prefetching. For a fair
comparison, unless otherwise specified, we consistently set the
GPU buffer size to 20% of the unique embedding vectors in
each dataset. This setting aligns with the power law distri-
bution of embedding vector accesses [4], ensuring that most
frequently accessed embedding vectors have opportunities to
be cached in GPU buffer.

Default configurations of RecMG. Unless indicated other-
wise, the lengths of the input and output sequences are 15 and
5, respectively, and the evaluation window size is 15; there is
one LSTM stack in the caching model, and two LSTM stacks
in the prefetch model.

Evaluation platform. We use a server equipped with a 48-
core Intel Xeon Gold 5318Y CPU@2.10GHz with 1.2TB host
memory and an NVIDIA A100 GPU with 40GB memory.
Given the CPU memory constraint, we evaluate 256 EMBs
consuming 900GB memory.

B. Model Evaluation

Caching model. We first study the effectiveness of the
caching model. We compare the number of cache hits using
five datasets with different caching policies, including fully-
associative LRU, 32-way LRU, 32-way LFU, and an approxi-
mation of the optimal caching policy optgen [14]. Both 32-
way LRU and LFU are commonly used in production DLRM
embedding vector caching policies. Figure8 shows the results.

Figure 8 indicates that the optimal caching policy provides,
on average, 67% more cache hits than LRU or LFU caching
policies. However, the optimal caching policy cannot be used
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Fig. 8. Comparison in terms of cache hits between LRU, RecMG, and optgen.

online since it requires information about future accesses. Our
caching model achieves an accuracy of 83%. As a result, the
caching model increases the number of cache hits by at least
38% on all five datasets compared to using LRU or LFU with
various associativities. The outstanding performance of the
caching model comes from its training process, which uses the
optimal caching decision (optgen) as ground truth, allowing
the model to approximate the optimal policy.

Prefetch model. We study the quality of the prefetch model
with 25-million records of embedding vector accesses in the
five datasets. We first compare prefetch sequence prediction
correctness, which measures the percentage of prefetched
embeddings (output sequences) that will be needed within
the evaluation window size of future accesses. Voyager uses
one-hot vector to label the prefetch address where the vector
length is the total number of unique embedding vectors in the
datasets. Using one-hot vector works well in the context of
labeling address offsets within a page, because the number of
offsets is small, but cannot work in the context of labeling
embedding vectors, because the length of one-hot vector is at
the scale of millions and training Voyager using this vector
as output leads to out-of-memory (even on CPU with 512GB
DDR). So we compare the prefetch model with Bingo, Domino
and TransFetch.

Figure 9 shows the prediction correctness results. The
correctness of the spatial prefetcher (Bingo) is less than
0.1%, which is aligned with our observation that there is
few spatial locality in the embedding-table accesses during
DLRM inferences. The temporal prefetcher (Domino) records
cache miss history with multiple streams to capture multiple
prefetch targets. Those multiple streams are called metadata.
We set the metadata memory overhead as 10% of the unique
indices accessed, which is large enough for Domino to record
history information for prefetching. Nevertheless, the prefetch
accuracy of Domino is only 0.3%. The ML-based prefetcher
(TransFetch) achieves 10% on average accuracy because it
cannot handle a large amount of embedding vectors within
one embedding table. In contrast, the accuracy of our prefetch
model is 37% on average for the five datasets, significantly
larger than that of all baseline solutions. Our prefetch accuracy
metric focuses on prediction quality and does not directly
reflect runtime performance benefits as it does not account
for cache behavior. For a more comprehensive evaluation, we
analyze the actual cache and prefetch hits compared to baseline

approaches, with results shown in Figure 14.
We further compare Bingo, Domino, TransFetch and our

prefetch model in terms of coverage, which is defined in Equa-
tion 2. See Figure 10. Our prefetch model largely outperforms
Bingo and Domino by 400x and 190x on average, respectively,
because of the ability of the attention mechanism in the
prefetch model to capture implicit correlations between vectors
(even though they are not accessed often). RecMG outperforms
TransFetch by 10% on average for model coverage, although
both RecMG and TransFetch are good at predicting embedding
vectors to be accessed in the near future.
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Fig. 9. Comparison in terms of prefetch accuracy between Bingo, Domino,
TransFetch, and RecMG.
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TABLE II
AVERAGE COST OF PREDICTING NEXT WILL BE ACCESS EMBEDDING

VECTOR

Bingo Domino Voyager Tranfetch RecMG

Cost 32µs 100µs 1521µs 1052µs 92µs

We further evaluate the cost of predicting the next embed-
ding vector for all the baselines. Table II shows the results. The
rule-based prefetcher Bingo can generate a prediction in just
32 µs, while Domino, which needs to scan historical access
information, takes 100 µs. To enable a fair comparison, we use
CPU to generate all predictions (i.e., using CPU for ML-based
prefetch inference). ML-based prefetchers are more expensive
to use, with Voyager and TransFetch requiring 16× and 10.6×
longer than the prefetch model in RecMG to generate one
prediction. This is because Voyager has a large search space,
and TransFetch is based on a transformer, which requires much
more computation compared to RecMG. The evaluation results
show the prefetch model in RecMG strikes a good balance
between cost and accuracy in predicting the next accessed
embedding vector.



Fig. 11. Evaluating the effectiveness of using the
decoupling design and Chamfer measure.

TABLE III
TRAINING TIME, MODEL SIZE, AND ACCURACY OF USING VARIOUS NUMBER OF LSTM STACKS.
RECMG USES ONE AND TWO LSTM STACKS FOR CACHING PREFETCH MODEL RESPECTIVELY.

Caching Model Prefetch Model

#
LSTM
Stack

Training
Time

(mins)

Model
Size

(# of params)
Acc

Training
Time

(mins)

Model
Size

(# of params)
Acc

1 429 37,055 80% 765 38,290 39%
2 603 45,055 82% 962 74,290 50%
3 745 63,055 83% 1,059 110,290 50%

C. Ablation Study

In the prefetch model, RecMG decouples the evaluation
window from the output of the prefetch model to improve
the prefetch hit rate, and uses customized loss function. We
evaluate the effectiveness of this design. We compare the
prefetch model with a baseline using the L2 loss and the
evaluation window length equal to the output length. Figure 11
shows the results using the dataset0 which has 100 million
records of embedding table accesses. With the baseline, the
training loss does not decrease after 10 training steps. With
RecMG, the training loss continuously decreases with more
training samples, which shows the effectiveness of our design.

D. Sensitivity Study

Number of LSTM stacks. The backbone of the caching
model and prefetch model are seq2seq LSTM stacks with
attention. We evaluate how the model accuracy is sensitive to
the number of LSTM stacks with dataset-0. Table III shows
the results. As the number of LSTM stacks increases, the
accuracy of the cache model slightly increases (less than 5%).
In contrast, the prefetch model is sensitive to the number of
LSTM stacks. By increasing the number of LSTM stacks, the
accuracy of the prefetch model increases by 11%.

Although adding more LSTM stacks is helpful to improve
model accuracy, they are not free - adding them leads to a
larger model and longer training time. We report the training
time and model sizes for caching and prefetch models with
various number of LSTM stacks in Table III. As the caching
model adds one LSTM stack, the number of parameters in
the caching model increases by at least 21%, and the training
time increases by 24%. As the prefetch model adds one
LSTM stack, the number of parameters in the prefetch model
increases by at least 48%, and the training time increase by
21%. Considering both model training/deploy overhead and
model accuracy, we use one LSTM stack for the caching
model, and two LSTM stacks for the prefetch model.

Evaluation of window size. We evaluate how the accuracy
of the prefetch model is sensitive to the evaluation window
size with dataset-0. We change the evaluation window size.
Figure 12 shows the results. Compared with the case of
evaluation window size equal to the output sequence length,
increasing the evaluation window size increases the model
accuracy by at least 39%. In contrast, as the evaluation window
size is larger than 3 times of the output sequence length, the
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Fig. 12. Evaluating the sensitivity of prefetch model accuracy to the evaluation
window size.

prediction coverage does not increase. Hence, RecMG sets the
evaluation window size equal to 3 times of the output sequence
length to achieve both high accuracy and coverage.
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Evaluation of GPU buffer size. We evaluate the access
hit rate with RecMG, RecMG without prefetch model, fully
associative LRU, and optgen (the Belady’s algorithm) with
various GPU buffer sizes. We set the GPU buffer size to 1% to
30% of unique embedding-vectors in the dataset-0. We use a
GPU buffer emulator (a tool to play various caching algorithms
to evaluate the functionality of buffer management). Figure 13
shows the result. We observe that RecMG outperforms LRU
and RecMG without prefetch when the cache size is above
10%, and is close to the optimal when the cache size is above
15%. However, the prefetch model is not very helpful when
the cache size is too small (e.g., less than 10%), because the
caching model (guiding the frequently accessed embedding-
vectors) largely dominates the performance.

E. Using Caching Model and Prefetch Model Together

We evaluate how embedding vectors are accessed, and
compare with Domino, Bingo, TransFetch and LRU+PF (i.e.,
the fully associative LRU plus our prefetch model). LRU+PF is



a case of using a single ML model (instead of two) for memory
optimization. We perform the evaluation on the GPU buffer
emulator. The buffer size is set as 20% of unique embedding-
vectors referenced by DLRM. We break down the accesses
to the GPU buffer(s) into three components: (1) buffer hit
because of the caching policy (i.e., LRU or the caching model);
(2) buffer hit because of the prefetch model (not the caching
policy); and (3) on-demand fetches from CPU memory.
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Fig. 14. Embedding vector accesses breakdown for Domino, Bingo, Trans-
Fetch, LRU+PF, and RecMG.

Figure 14 shows the results. RecMG reduces the number of
access misses on the critical path by 4.5×, 4.8×, 2.8× and
2.7× on average, compared to Domino, Bingo, TransFetch and
LRU+PF, respectively. We observe that the caching model in
RecMG significantly improves the access hit rate by 2.2×,
2.8×, 1.45× and 1.45× on average, compared with the
caching mechanisms in Domino, Bingo, TransFetch and LRU,
respectively. Moreover, the prefetch model in RecMG brings
additional improvements. It boasts a 1.9× increase in the
access hit rate, compared to LRU+PF.

RecMG’s prefetch model is particularly effective at the use
of resource. Unlike Domino, which consumes excessive GPU
buffer capacity for metadata recording, RecMG utilizes all
available buffer space for embedding vectors, improving the
number of access hit by 283×. Also, the prefetch model in
RecMG significantly outperforms the spatial prefetcher Bingo,
increasing the access hit by 16, 000× on average, due to
lacking of spatial locality in embedding vector accesses.
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Comparison with advanced caching and prefetching

strategies. Leveraging Champsim [31], we further compare
RecMG with advanced cache replacement strategies (SR-
RIP, DRRIP [38], and Mockingjay [69], Hawkeye [36]) and
prefetchers (Berti [55], Best offset prefetcher (BOP) [52],
and Micro-Armed-Bandit (MAB) [30]). To apply the above
existing works to DLRM inferences traces, we treat each
access as a read operation. We map the embedding table
ID to Program Counter (PC) or Instruction Pointer (IP), and
map embedding vector to the address targeted by the load
instruction. The embedding vectors, typically larger than tradi-
tional cache lines, are treated as atomic units for replacement
decisions. Using ChampSim configured with a 32-way set-
associative cache, we compare hit rates across strategies for
various GPU buffer sizes. Baseline prefetchers (Berti, BOP,
MAB) are evaluated with 32-way LRU or caching model as
the underlying cache replacement policy. Figure 15 shows the
geometric mean performance across dataset-0, dataset-1, and
dataset-2.

At 1% buffer size, LRU, SRRIP and caching model achieve
similar performance. More complex caching strategies like
Hawkeye and Mockingjay show significantly lower perfor-
mance. This aligns with the short-term skewed nature of
embedding table accesses during DLRM inferences, where
access patterns are primarily determined by ad-hoc user behav-
iors rather than code structure. PC/IP-independent strategies
like LRU, SRRIP, and caching model prove more effective
in this scenario. Furthermore, all prefetchers (Berti+LRU,
BOP+LRU, and MAB+LRU) achieve lower hit rates than basic
LRU at this small buffer size. This suggests that prefetching
approaches, regardless of their prediction mechanisms, are less
effective at small buffer sizes due to short-term skewed nature
of embedding table accesses.

As buffer size increases from 5% to 15%, caching strategies
can better leverage long-term structured patterns in the em-
bedding table accesses. Such patterns emerge when multiple
users sharing interests access related features across differ-
ent embedding tables. Therefore, all caching strategies show
improved hit rates. Specifically, SRRIP outperforms LRU by
14% on geomean across different buffer sizes, demonstrating
the effectiveness of PC/IP-independent replacement policies.
At larger buffer sizes (10% and 15%), Hawkeye also shows
improved performance. Hawkeye achieves 10% higher hit rates
than LRU at 15% buffer size. Caching model demonstrates
superior performance, achieving 29% higher hit rate than LRU
and 30% higher than SRRIP on geomean.

Prefetching strategies show varied effectiveness when com-
pared to their underlying cache strategies when buffer sizes
increase. BOP+LRU shows the best scaling among traditional
prefetchers, achieving 3% higher hit rate than LRU at 15%
buffer size. However, Berti+LRU and Mab+LRU demonstrate
limited benefits over LRU. This is because Berti’s delta-based
prefetching and MAB’s reinforcement learning coordination of
traditional prefetchers are both designed for regular program
patterns, making them less effective for the dynamic, user-
driven patterns of embedding accesses. Meanwhile, a simpler
single global offset design in BOP capture the coarse-grained



spatial locality better when given sufficient buffer space. In
general, RecMG consistently outperforms all baselines across
different GPU buffer sizes. As the buffer size is 15%, RecMG
outperforms other baselines by 20% - 425%, across three
datasets, which is attributed to its two ML models that
efficiently capture the needs of both immediate and far-future
accesses to embedding tables.

We further quantify prefetcher effectiveness with three met-
rics: prefetch utilization rate, total prefetches, and prefetch hits.
Prefetch utilization rate measures useful embedding prefetches
to total prefetches issued. Prefetch hits measures number
of successful cache accesses to prefetched embeddings. For
evaluation, Berti and Mab only use 32-way LRU as their
underlying cache replacement policy, and BOP are evaluated
with both 32-way LRU and caching model. Table IV shows
prefetcher statistics across three datasets. RecMG achieves
the highest buffer hit rate by combining efficient prefetching
(35% utilization rate) with selective prefetch issuance (2
million prefetches), resulting in 1 million prefetch hits. While
BOP+LRU shows higher buffer hit rate than LRU, BOP+CM
underperforms compared to caching model alone, which is
reflected in the prefetch statistics. Although BOP maintains
similar total prefetches (3M) with both policies, its prefetch
hits drop substantially from 0.7M with LRU to 0.3M with
caching model, and its utilization rate decreases from 12%
to 9%, indicating BOP’s prefetching strategy conflicts with
CM’s replacement decisions. Berti and Mab perform worse
than baseline LRU because their aggressive and inefficient
prefetching issues 10M to 12M prefetches with very low
utilization rates between 5% and 6%, causing significant cache
pollution.

TABLE IV
PREFETCHER STATISTICS. “CM” AND “PM” ARE SHORT FOR CACHING

MODEL AND PREFETCHING MODEL, RESPECTIVELY.

Strategy Utilization Rate
(geomean)

Total Prefetches
(arith mean)

Prefetch Hits
(arith mean)

Berti + LRU 6% 12M 0.8M
Mab + LRU 5% 10M 0.6M
BOP + LRU 12% 3M 0.7M
BOP + CM 9% 3M 0.3M
RecMG 35% 2M 1M

F. Speedup of End-to-End DLRM Inference

Real-world DLRM performance evaluation. We evaluate
the inference time of DLRM using different buffer manage-
ment solutions. We set the DLRM inference batch size to
512, involving over 600K embedding vectors in one batch.
The buffer holds 2.3 million embedding vectors, which are
approximately 18% of the unique embedding vectors involved
in the inferences. “LRU” is a 32-way set-associative LRU
cache. “CM” is RecMG using the caching model alone. We
break down the execution time, including (1) the time to
send embedding vectors and caching priority according to the
caching and prefetch models (labeled as “embedding copy to
GPU”), (2) GPU computation, (3) GPU buffer management

overhead (including on-demand fetches of embedding vectors),
and (4) others (e.g., synchronization within FBGEMM). Fig-
ure 16 shows the result.
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Fig. 16. Performance breakdown for DLRM inference for one inference batch.
“CM” is short for caching model.

In general, RecMG effectively reduces the inference time.
Compared with the LRU, RecMG reduces the inference time
by 31% on average (up to 43%). The major performance
benefit comes from the reduction of on-demand fetches during
the buffer management: RecMG reduces it by 29.8% on
average, compared to the LRU. The prefetch model, targeting
accesses to embedding-vectors difficult to predict, reduces
the inference time by up to 16%, compared to using the
caching model alone. RecMG effectively increases the number
of access hit on the GPU buffer (not shown in Figure 16).
Across all datasets (geometric mean), RecMG outperforms the
LRU by 49.9%. Without the prefetch model, RecMG shows
a geometric mean improvement of 41.6% over LRU across
datasets.
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Fig. 17. Normalized DLRM inference time when using RecMG with various
GPU buffer sizes. The buffer size is defined in terms of percentage of unique
embedding-vectors in the dataset. “CM” is short for caching model.

Figure 17 shows the normalized DLRM inference time
on dataset-0 across different buffer sizes. All results are
normalized to the execution time when using RecMG with
15% buffer size. The performance benefit of RecMG includes
two components. The benefit from the caching model is shown
as the difference between LRU and using caching model only
(CM), while the benefit from the prefetch model is represented
by the difference between CM and RecMG. The buffer size is
small (e.g., 0.1%), the prefetching model contributes 67.5% of
the performance benefit in RecMG, while the caching model
accounts for only 32.5%. This is because with limited buffer
space, prefetching is more crucial for reducing memory access
latency. As the GPU buffer size increases from 0.1% to 15%,
the caching model’s contribution to RecMG’s benefit grows



to 72.3%. This is because the larger buffer size allows the
caching model to retain more frequently accessed embeddings,
reducing the need of costly CPU memory accesses. The impact
of improved caching is evident in the significant reduction of
GPU buffer management time. Specifically, when the GPU
buffer size increases from 0.1% to 15%, the GPU buffer
management time reduces by 2.79 × and 2.91 × in using
caching model only and RecMG, respectively.
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Fig. 18. A performance model captures the linear relationship between
DLRM inference time (ms) and cache hit rate. The model is validated using
LRU and RecMG cache policies across five different datasets (n=5).

Model based performance analysis. To quantitatively
understand the impact of caching on DLRM inference latency,
we develop a performance model. Specifically, we construct
multiple synthetic traces from dataset-0, each containing 10M
access records derived from reordering 10,000 unique embed-
ding vectors, with each trace designed to achieve a cache hit
rate between 0-100%. The orange dots in Figure 18 show
the measured DLRM inference time under different cache
hit rates, and the blue line represents our linear performance
model. The averaged root mean square error (RMSE) between
the performance model and the measured performance is less
than 3.75 ms, which is only 1.7% difference. To further
validate the correctness of the performance model, we evaluate
it using DLRM’s default 32-way LRU cache policy and
RecMG, testing each policy with 5 different datasets (shown
as green and red marks in Figure 18). Validation results from
LRU and RecMG show less than 3.6% deviation from model
predictions, demonstrating the robustness and generality of the
performance model.
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Fig. 19. Estimated DLRM inference latency across ten caching/prefetch
strategies on three datasets. The dashed line shows inference time with 32-
way LRU caching, the default solution for DLRM embeddings. “CM” denotes
caching model only.

We apply our performance model to estimate DLRM in-
ference time for various cache replacement and prefetching

strategies, using their measured cache hit rates under the same
buffer size (15% of unique embedding vectors). As shown in
Figure 19, compared to the default GPU buffer management
solution of 32-way LRU (red dashed line), approaches includ-
ing SRRIP, Hawkeye, caching model only, BOP+LRU, and
RecMG improve performance by 7%, 5.8%, 24%, 1.4% and
31%, on average across three datasets with geometric mean. In
contrast, DRRIP, Mockingjay, Berti (with LRU) and Mab (with
LRU) show comparable or slightly worse performance than
LRU, with performance degradation of 8.7%, 3.9%, 2% and
6% respectively. Among these strategies, BOP is promising to
complement caching mechanisms with prefetching. We further
study the impact of BOP by combining it with different
caching strategies (BOP+LRU and BOP+CM). Compared to
baseline LRU, BOP+LRU and BOP+CM achieve 1.4% and
7% performance improvements respectively, averaged across
three datasets using geometric mean.

Note that our performance model reflects the best-case
performance for most baseline strategies, as it does not account
for their additional decision-making overheads. For example,
Mockingjay, Hawkeye, Berti and BOP require both extra
metadata storage space and lookup time. Given the limited
tiered memory capacity in DLRM inference scenario, these
metadata storage and lookup overheads can significantly im-
pact performance.

VIII. RELATED WORK

Memory optimization for DLRM. Existing works propose
various techniques to mitigate the memory capacity challenges
posed by EMBs in DLRM, including hierarchical caching [4],
[12], [25], [37], [53], [68], [81], [90], tensor train compres-
sion [93], mixed precision embedding [90], compiler-based
acceleration [57], and domain-specific approximation [42].
Specifically, RecShard [68] and cDLRM [12]) target DLRM
training. They profile the embedding-table access traces and
collect statistical features from the traces to systematically plan
embedding table partitioning and caching in memory tiers.
However, DLRM inferences do not have information on the
accesses of the embedding table in advance.

RecMG is different from the above efforts from multiple
perspectives. First, RecMG is for DLRM inferences, unlike
some efforts that focus on DLRM training [12], [25], [28],
[43], [53], [68], [79], [90], [93], which makes offline memory
profiling infeasible. Second, most of existing efforts [25], [37],
[53], [81] focus on hot embedding vectors with high reuse, and
cannot effectively handle sparse accesses or accesses with long
reuse distance to other embedding vectors. Third, RecMG does
not change DLRM model, and hence does not impact model
accuracy. Finally, in contrast to DLRM inference optimizations
on CPU [37], which focus on small caches (tens of MBs) and
rely on the power-law distribution of embedding accesses for
easier prefetching, RecMG targets DLRM inference on GPU,
dealing with higher computation speeds and the challenge of
timely data prefetching for long reuse distances.

AutoScratch [29] uses a cache replacement strategy for
GPU L2 cache for ML inference, leveraging predictable and



TABLE V
COMPARISON OF VARIOUS CACHING/PREFETCHING TECHNIQUES

Usage scenario Scalability concerns Algorithmic prefetcher PC/IP indication

RRIP [38], BOP [52] General N N N
Bingo [11], Prodigy [76] General N N Y
HawkEye [36], Mockingjay [69] General Y N Y
Berti [55], Helper Thread [16], Domino [9] General Y N Y
AutoScratch [29] DL inference Y Y N
PrefEdge [56] Graph Y Y N
RecMG DLRM Inference N Y N

invariant access patterns interleaved between weights and
activations. AutoScratch cannot be used for prefetching in
DLRM, because of variant access patterns in EMBs.

Data prefetchers. Rule-based data prefetchers [9], [11],
[51], [70], [75] predict memory accesses with temporal or
spatial relations. However, rule-based data prefetchers are not
efficient in predicting irregular data accesses.

To address this limitation, ML-based prefetchers [32], [44],
[45], [66], [69], [73], [74], [95] leverage machine learning
techniques to learn complex relations between memory ac-
cesses. Existing works have explored various problem formu-
lations, such as treating cache-line prefetch as a classification
problem [32], [71] or a regression problem [44], [95]. While
these approaches have shown promising results in improving
prefetch accuracy, most of them do not fully consider the
practical challenges of deploying the ML models in real-world
systems with limited resources.

Table V compares RecMG with a set of representative
efforts. We make the comparison from multiple perspectives.
RecMG leverages limited “algorithm” knowledge that there
are implicit correlations between embedding vector accesses
between users. This “algorithm” knowledge is different from
the algorithm knowledge in the existing work, such as node
connectivity in a graph as in PrefEdge [56] or program
semantics as in Prodigy [76]. DLRM does not offer structural
data or program semantics that can be leveraged by prefetch.

Many existing efforts [9], [11], [36], [55], [69], [76] rely
on PC as an indicator of future memory accesses. This makes
sense in the context of regular programs, but does not make
sense in the context of DLRM, because the embedding vector
accesses in DLRM are related to the user behavior of DLRM
(e.g., following the trending news), not the DLRM program
itself. Using table ID as PC, we can apply those existing
efforts, but such a “PC” does not show the tendency to access
the same addresses or have a predictable address delta.

Existing efforts [11], [36] store historical memory access
traces in a lookup table to guide prefetching. Such a table-
based approach may not be scalable when applied to embed-
ding vector accesses, because of the tadeoff between memory
consumption and prefetch effectiveness.

Tiered memory. Tiered memory systems [33], [46], [47],
[60]–[65], [78], [84]–[89], [91], [92] manage multiple memory
components with different properties (e.g., latency, cost, and
capacity). In essence, RecMG is a memory tiering solution.

RecMG is the first ML-guided memory tiering solution for
DLRM.

IX. CONCLUSIONS

In this paper, we use ML for prefetching and caching of
embedding vectors based on modeling of implicit correlations
between consecutive accesses to embedding vectors. RecMG
largely reduces the on-demand fetches.
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