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Abstract

Prompted by the rise of artificial intelligence (AI) or machine learn-
ing (ML), more serverless workloads demand efficient GPU support.
Recent years have witnessed a shift of interest from weak isolation-
based methods, such as Multi-Process Service (MPS), to strong
isolation-based methods, such as Multi-Instance GPU (MIG), for
GPU support on serverless platforms, thanks to concerns about
performance interference and security. The current MIG-based so-
lution for serverless computing is, however, subject to severe GPU
resource fragmentation and under-utilization. This paper identifies
the reason as the gap between current MIG supports in server-
less computing and the rigid constraints in MIG (re)configurations.
It proposes FluidFaaS, a solution that enables flexible MIG man-
agement for serverless computing. Through a novel programming
system support, FluidFaaS enables fine-grained resource assign-
ment to the components within a serverless function, based on
which, it equips the invokers with runtime support that constructs
pipelines on MIGs on the fly for a serverless function. The inno-
vations, along with a hotness-aware eviction-based time sharing
of MIG slices, significantly reduce GPU resource fragmentation
and enhance system throughput. Evaluations demonstrate that
FluidFaaS outperforms the state-of-the-art solutions by 25%-75%
in throughput while achieving up to 90% higher SLO hit rates in
various workloads.
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Figure 1: Current MIG support in serverless computing can-
not make serverless function “instance D” utilize idle re-
sources fragmented into multiple MIGs.
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1 Introduction

Recent years have witnessed an increasing interest in providing
efficient Graphic Processing Unit (GPU) support for serverless com-
puting. It is motivated largely by the popular demands for ser-
vices based on Al and ML capabilities, for which, GPU is essential
for delivering high performance and throughput. Serverless plat-
form is appealing for hosting such services, thanks to the ease
of programming and maintenance, autoscaling, and pay-as-you-
go billing [17, 20, 23, 25-27, 36, 50, 52, 55, 56]. However, effective
supporting the use of GPU on serverless remains an open problem.

There have been some recent research efforts trying to nar-
row the gap. A large portion of them, however, are about how to
best leverage NVIDIA Multi-Process Service (MPS) [1] to facilitate
GPU sharing across different function instances [23, 27, 45, 55, 57].
However, context sharing in MPS makes it subject to performance
interference and security concerns due to its weak isolation. To
overcome these limitations, recent studies [32, 36] and industry
container orchestration systems (e.g., Kubernetes) [12] shift the
focus to Multi-Instance GPU (MIG) technology [13].

MIG offers strong isolation. When a GPU is configured into
multiple MIGs, the resource partition between MIGs is thorough,
from processing units to cache, memory, and even data paths. The
strong isolation avoids both performance interference between
MIGs and security hazards, the two fundamental concerns of MPS.
An important catch, though: the configuration is hard to change at
runtime. After the MIG partition for a GPU is configured and gets
deployed, it would take several minutes to change the configuration.

Due to the lack of methods to gracefully deal with the rigid re-
striction on MIG reconfiguration, the previously proposed supports
of MIG in serverless computing are subject to severe GPU resource
underutilization. ESG [32], a state-of-the-art work on serverless
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MIGs, demands 167% more than the required resource on average,
as detailed in Section 4. The root reason is that the previous solu-
tions view a serverless function as a fixed monolithic unit in GPU
usage. In those solutions, for a given serverless function, all the GPU
kernels inside it are assumed to run on the same MIG instance (or
an entire GPU). The MIG instance size, hence, must be greater than
the peak GPU memory required by the serverless function. This
monolithic view causes severe GPU under-utilization, unnecessary
costs, and long waiting times.

The intuition is illustrated in Figure 1. MIG 1.2 on GPU-1 is
occupied by a serverless function (instance A), and MIG 2.1 and
MIG 2.3 on GPU-2 are occupied by instance B and C. Even though
the total idle resources on either GPU is sufficient for instance
D, the idle resources on both GPUs are held in two separate MIG
instances—there is no single MIG instance that is large enough to
hold it. Because quick MIG reconfiguration is impossible, instance D
has to wait for existing instances to complete and a large MIG (MIG
1.2 in this example) becomes available. The consequences are multi-
fold: (i) the long waiting time of instance D, (ii) the fragmentation
of the GPU resource, (iii) the under-utilization of the GPU, and (iv)
the high unnecessary cost.

In this paper, we introduce FluidFaaS, a solution that bridges
the gap between the rigid configuration of MIGs and serverless ML
workloads. The central idea is to enable efficient pipelined use of
different MIG instances by different components of a serverless
function.

Rather than treating an entire serverless function as a single unit
for resource configuration, we introduce FluidFaa$ function, a new
form of serverless function that allows the runtime to automatically
split a serverless function into stages. These stages are assigned to
available fragmented MIG slices, creating a pipeline that utilizes
these slices to serve requests, thereby improving overall GPU uti-
lization. For instance, in Figure 1, application instance D could be
divided into two functions: the first requiring 2vGPU-20GB mem-
ory, and the second requiring 1vGPU-10GB memory. This division
allows for the employment of fragmented MIG slices 1.1 and 1.3 for
accommodating instance D.

To materialize the idea into efficient serverless support, there
are several challenges. (i) The serverless programming model, in
conjunction with resource scheduling, lacks mechanisms for dy-
namically constructing functions based on available fragmented
resources. Existing serverless models require users to develop ap-
plications as static functions, which are then encapsulated within
containers. These systems allocate resources to deploy instances
from these predefined containers, disallowing the dynamic con-
struction of pipeline functions and containers. (ii) Data movement
and communication overhead is another challenge. Due to the
strong isolation between MIGs, the communications between two
pipeline stages on separate MIGs cannot happen on GPU memory
directly. They have to go through CPU memory, incurring extra
time. (iii) Efficient use of the possibly multiple instances of a server-
less function introduces additional scheduling challenges. Instances
may need to time-share resources or utilize different resources and
pipeline partitions to construct the pipeline. These instances exhibit
varied latency and throughput. How to effectively schedule requests
and auto-scale to optimize resource utilization while meeting SLOs
presents complex, multi-dimensional challenges.
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We propose a solution named FluidFaaS, a flexible serverless
platform for ML inference on MIGs. FluidFaaS enables the new ca-
pability of a serverless programming model by providing program-
ming and runtime support that enables the dynamic construction of
pipelines within a container. To address the inherent complexities
of scheduling, we equip FluidFaaS with a scheme for hotness-aware
eviction-based time sharing of MIG slices. This approach moves
away from the rigid one-to-one instance-to-MIG slice binding, in-
troducing a dynamic binding model facilitated by eviction. This
model allows multiple instances to time-share a single MIG slice
based on requests. By continuously assessing recent instance usage,
our system can strategically evict and reload instances to optimize
the utilization of an MIG slice while still meeting SLOs.

Overall, this work makes the following major contributions:

e It identifies the fundamental reason for severe GPU resource
under-utilization, the gap between current MIG supports in
serverless computing and rigid MIG configurations.

e It proposes a novel form of serverless function named Flu-
idFaaS$ function, and its programming models and runtime
support to enable on-the-fly pipeline construction within a
serverless function for it to leverage fragmented MIGs on
GPU.

o It equips FluidFaaS with a scheme for hotness-aware eviction-
based time sharing of MIG slices.

e It empirically confirms the effectiveness of FluidFaas, out-
performing the state-of-the-art work by 25%-75% in system
throughput while achieving up to 90% higher SLO hit rates
in various workloads.

2 Background
2.1 Serverless Platform

Figure 2 illustrates a typical architecture of a serverless platform,
such as OpenWhisk, Knative, OpenLambda, or OpenFaaS [3, 4, 7-
11, 31]. These platforms consist of centralized control modules,
including the Controller and load balancer, that accept function
invocations and distribute them to various nodes. The controller
reacts to the rate of incoming requests. If there is a surge in demand,
the controller will spawn more instances to handle the increased
load. Conversely, it will scale down and remove instances during
periods of low demand.

Controller

Request Load balancer

Node 1 Invoker Node 2 Invoker

Container 1 Container 2 Container 3 Container 4
P I BITME ITMe |
req resp reresp ‘ req tesp req resp ‘

Function Function i ! | Function Function

Figure 2: Overview of existing serverless platforms.

Within each node, an invoker module is tasked with initializing
instances and executing functions. Each invoker manages a pool of
function instances. Upon receiving a request from the controller,
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Table 1: Comparison of FluidFaaS with related works.

INFless [55] | Protean[19] | Miso [36] | ESG[32] | StreamBox [52] | FaaSwap [57] | Antman [54] | TGS [51] Orion [48] FluidFaaS
serverless framework v v X v X X X v
GPU sharing v v v v X v X v M
Sharing Mechanism MPS MIG+MPS MIG MIG CUDA stream N/A MPS N/A CUDA stream MIG
Strong isolation X X v v v X v X v
High GPU utlization v v X X v v v v v
Fragmentation-aware X X X X N/A X N/A X v

Table 2: Complete list of MIG profile on an A100 GPU

Slice Compute  Memory Max Count
7g.80gb 7GPC 80gb 1
4g.40gb 4GPC 40gb 1
3g.40gb 3GPC 40gb 2
2g.20gb 2GPC 20gb 3
1g.10gb 1GPC 10gb 7

the invoker directs the request to an available instance. It continues
routing to the next available instance once the current one reaches
its capacity.

Taking Knative [7, 9] as an example, it is an open-source platform
that extends Kubernetes to support serverless workloads. Each
container has a job queue, allowing it to handle multiple requests
sequentially. This queuing mechanism ensures that requests are
managed effectively, reducing the immediate need for container
scaling and optimizing resource utilization across the platform.

2.2 GPU Resource Sharing

GPU sharing allows multiple processes to share a single GPU for
their executions. Modern GPUs support time sharing (one after the
other) and spatial sharing. However, time sharing cannot address
the challenge of the GPU underutilization. Spatial sharing is essen-
tial for ML inferences because an inference by an ML model often
uses only a fraction of the massive parallel computing capacity of a
GPU [1, 13]. Allowing multiple processes to execute concurrently
on a GPU is essential for turning its computing power into through-
put. Modern GPUs from NVIDIA offer two mechanisms for spatial
sharing, Multi-Process Service (MPS) [1] and Multi-Instance GPU
(MIG) [14]. MPS shares a single GPU context across multiple pro-
cesses, which can result in resource contention and pose security
risks. This approach is unsuited for serverless computing, where
isolated execution environments and strong security are essential.

Multi-Instance GPU (MIG) partitions a single GPU into multiple
hardware-isolated instances, providing better performance isolation
and security. NVIDIA A100 and H100 Tensor Core GPUs support
MIG mode. This paper uses the A100 (80GB) as our example. On
an A100 GPU, its streaming multi-processors (SM) consist of seven
graphics processing clusters (GPC); it is common to regard each
GPC as a vGPU in serverless platforms [32]. In MIG mode, a slice
(used interchangeably with MIG instance) contains one or more
GPCs and a certain amount of GPU memory. We list the full MIG
slice profiles in Table 2. The ‘max count’ indicates the maximum
number of slices of the same type that can coexist on a single
GPU. The slice-type notation specifies the number of GPCs and the
corresponding amount of GPU memory.

Unlike the MPS approach, arbitrary MIG partitions are not sup-
ported due to hardware restrictions. A full A100 GPU can be parti-
tioned only into specific combinations of MIG slices. For example,
both (4g.40gb, 2g.20gb, 1g.10gb) and (4g.40gb, 3g.40gb) are valid

partitioning options. There are only 18 MIG configurations on an
A100 GPU [15].

Dynamic reconfiguration of the MIG partition during runtime is
impractical for the serverless platform due to the significant time
overhead. Reconfiguring MIG requires several minutes to check-
point, re-partition, and resume execution [36]. This delay is par-
ticularly problematic in serverless environments, where functions
are expected to be highly responsive and scale rapidly to handle
fluctuating workloads. The lengthy reconfiguration process could
introduce unacceptable latencies, disrupting the seamless execution
of serverless functions and diminishing the overall efficiency of the
platform.

3 Related Work

There are two kinds of GPU sharing, time-sharing and spatial shar-
ing. Effisha [21] by Chen and others pioneered software approaches
for enabling efficient preemptive scheduling of GPU for flexible
time sharing. Zhu and others [61] first studied co-run scheduling
with power cap on integrated CPU-GPU systems. A later work,
TGS [51], intercepts system calls from containers to GPUs so that
it can regulate the dequeuing rates of tasks to production deep
learning (DL) training (performance is critical) and tasks to op-
portunistic DL training, which helps ensure the performance of
the former while allowing the latter still benefit from the GPU re-
sources. FaaSwap [57] is an example of time sharing for serverless
computing. It keeps models in main memory and swaps them onto
GPUs on demand, allowing many inference functions to share a
GPU simultaneously while each function utilizes the full GPU.

Time-sharing cannot address the problem of GPU under-utilization
when one job cannot fully utilize the entire GPU. For spatial shar-
ing, the mechanisms are through CUDA streams, MPS, and MIG
(or the equivalent schemes in other vendors’ GPUs). Many prior
studies concentrate on GPU sharing on standalone servers or clus-
ters [28, 29, 39, 49, 51, 53, 54, 58]. AntMan [54] is an example of
using MPS in a cluster. It employs an application-level method,
modifying DNN frameworks so that multiple DL training jobs can
share a GPU effectively. Miso [36] explores using MIG to support
multi-tenant ML applications in data centers. It predefines the MIG
slices and determines application co-location based on profiling
data, offering no dynamic adaptation to the dynamic changes of
workload or systems.

Serverless computing differs from computing on a standalone
server or a cluster in many aspects, from programming models to
the levels of control from users, the execution models, the expected
performance, and security guarantees. Recent years have witnessed
an increasing interest in GPU spatial sharing in serverless comput-
ing. INFless [55], Protean [19], and Llama [45] are examples that
use MPS to allow multiple ML containers spatially share a GPU in
serverless settings. A significant challenge facing those works is
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how to mitigate the performance interferences caused by the weak
isolation of MPS between co-located jobs. They have attempted var-
ious methods to address that, from profiling to building slowdown
models and workload classifications. These solutions impose cer-
tain applicable conditions (e.g., existence of both compute-intensive
and memory-intensive jobs), and even with them, they still cannot
fully address the interference concerns or offer strong performance
or security guarantees that are essential to serverless computing.
Orion [48] and Streambox [52] employ GPU streams for sharing
among the components within a workflow. Although they demon-
strate the usefulness of GPU streams in reducing communication
overhead and improve resource utilization, strong isolation through
MIG is still indispensable for general serverless computing plat-
forms where many serverless workflows from many users come
and go and share the same set of resources.

Due to those reasons, recent research [32, 36] and industry con-
tainer orchestration systems (e.g., Kubernetes) [12] have shifted
the focus to MIG-based GPU sharing for serverless computing. The
state-of-the-art solution, ESG [32], is a representative. It is the work
closest to this current study. ESG assumes MIG-based GPU sharing,
and concentrates on task scheduling at the serverless controller.
Its main contribution is combining A*-search and a novel dual-
blade pruning to prune the space of task scheduling dramatically.
It, however, takes a monolithic view of a serverless function in MIG
assignment and usage, as we have explained in Section 1, causing
serious resource underutilization and fragmentation. This current
study aims to address the limitation. Table 1 summarizes the differ-
ences between this work and the most relevant prior studies.

4 Motivation

This section presents our analysis of the underutilization of GPU
MIGs in serverless computing environments. Prior studies have
analyzed GPU underutilization in traditional cloud computing se-
tups for ML inference. However, our work identifies distinct factors
causing the underutilization of GPU MIGs in serverless frameworks,
including resource fragmentation and exclusive keep-alive.

We conducted empirical studies on workflows involving ML in-
ferences within real-world serverless scenarios using ESG [32], a
state-of-the-art serverless platform that integrates MIG. Our anal-
ysis utilizes DNN applications with invocation frequencies and
intervals as the traces from Azure’s serverless functions [47] (de-
tails in Section 6). A server node includes eight A100_PCIE_80GB
GPUs. For lack of space, we show only the observations when each
GPU is partitioned into three MIG slices (4g.40gb, 2g.20gb, and
1g.10gb); the conclusions hold on other partitions (confirmed in
Section 7).

One important feature of serverless computing is its capabil-
ity for auto-scaling, which dynamically adjusts resources based
on the current request load. We analyze GPU utilization and the
required GPU resources through empirical studies, as depicted in
Figure 3 (a). In ESG, a GPU is considered utilized if one MIG is
processing requests. The required GPU resource reflects the ideal
resource consumption necessary to manage fluctuating request
volumes. Our results indicate that ESG requires substantially more
resources than the ideal consumption levels. For instance, at the

Hui et al.

— ESG ~——— Required GPU resource

©

SO GPUL  ZT GPUS
slice ¥ GPU2 BN GPUG

7S GPU3 Y] GPU7

o
B VR
«Q <
S =
=}
<
=3

| 14g.40gb
| | slice

Number of GPUs
N EN

. UL

|
0 16 33 50 66 83 100 |
Time (s) |

o

(@) ()

Figure 3: (a) GPU utilization in ESG and the required GPU
resources. For ESG, a GPU is considered utilized if it is pro-
cessing requests. (b) MIG usage at the 83rd second.

83rd second, ESG’s resource demand exceeds the required resource
by 167%.

Further analysis of the utilization of MIGs is presented in Fig-
ure 3 (b). We observe that only the 4g.40gb MIG slices are actively
utilized, while the 1g.10gb and 2g.20gb MIG slices remain idle under
high workload conditions. This underutilization is caused by the
rigid partitioning inherent in MIG, combined with the scheduling
algorithms used in ESG and other serverless studies, which all treat
the entire serverless function as a single unit for resource con-
figuration. These algorithms estimate the necessary resources for
functions to meet SLOs and memory requirements. Although the
aggregate resources of the 1g.10gb and 2g.20gb MIG slices are ade-
quate, individually, an individual slice fails to meet requirements,
leading to their idleness and the underutilization of the GPU. We
refer to such underutilization as resource fragmentation.
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7 7]
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Figure 4: Illustration of GPU resource fragmentation

Resource Fragmentation. We extend our analysis to demonstrate
resource fragmentation within a GPU and across multiple GPUs.
The system initially allocates two GPUs: GPU 1 utilizes one 4g.40gb
MIG and one 1g.10gb MIG, and one 1g.10gb MIG on GPU 2 is in
use, as illustrated in Figure 4 (a). When a new function instance
requires a 4g.40gb, GPU 2, despite having sufficient total resources,
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cannot accommodate the instance due to its MIG partitions. In
addition, although the combined resources of GPU 1 and GPU
2 are adequate, the separation across two GPUs prevents their
unified allocation to the new instance to meet SLOs. Such resource
fragmentation requires the allocation of an additional GPU to meet
the new instance’s requirement, leading to GPU underutilization
in serverless systems.
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Figure 5: The occupied and actively used GPU percentage.

Exclusive Keep-alive. In addition to resource fragmentation, the
underutilization of allocated MIGs is exacerbated by the common
exclusive keep-alive policy, which keeps a model active within an
MIG slice and precludes its resources from being used by other func-
tion instances. Figure 5 illustrates the occupied rates and actively
used rates of MIGs across GPUs 1-8 in production trace [47], where
the average active percentage is 16.1%, and these MIGs operate at
less than 35% percentage for 90% of the time. The exclusive keep-
alive policy hinders the reassignment of computational resources
to other instances, exacerbating GPU underutilization.

Approaches for Addressing Problems. We propose two approaches:

pipeline-based instance construction and eviction-based time shar-
ing, to mitigate the problems of resource fragmentation and the
exclusive keep-alive policy.

The pipeline-based instance construction allows the automatic
construction of a Directed Acyclic Graph (DAG) that represents
the internal components of a function and enables the runtime to
allocate MIG slices to the pipeline. This approach facilitates the
formation of a processing pipeline that effectively connects and
utilizes fragmented MIG slices. For instance, an instance requiring
4g.40gb slice could be built into a two-stage pipeline utilizing a com-
bination of 3g.40gb and 1g.10gb MIG slices, as shown in Figure 4(c),
or two 2g.20gb MIG slices, as depicted in Figure 4 (d).

The eviction-based time sharing approach allows the time shar-
ing of a MIG slice by multiple instances, thereby decoupling the
rigid one-to-one binding of instances to MIG slices and enabling dy-
namic rebinding of models. Although eviction introduces overhead,
it is a viable solution given that MIGs operate below 35% capacity
for 90% of the time, as illustrated in Figure 5. An appropriate design
for eviction-based time sharing can improve utilization and reduce
costs. Importantly, this method maintains the security principle
of exclusive MIG slice usage by allowing only one instance to ac-
cess a MIG slice at any given time, ensuring secure and isolated
computational environments.

5 Design of FluidFaaS

This section introduces the design of FluidFaaS on how to improve
the GPU resource utilization under the resource fragmentation and
exclusive keep-alive caused by MIG.
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Figure 6: Overview of FluidFaaS.

The serverless functions we target in this work consist of multi-
ple Deep Neural Network (DNN) models structured as a Directed
Acyclic Graph (DAG), a common practice in serverless ML appli-
cations [24, 34, 37, 41, 45, 59, 60]. Although some work assumes
each DNN model is made into a serverless function, recent studies
advocate putting the entire workflow of an ML application as a
serverless function, for the significantly smaller overhead in com-
munications and cold starts [18, 33, 37, 38, 40-42, 46], and the over
95% reduction of memory usage for avoidance of duplicated GPU
runtime [52]. It is what our serverless functions are.

5.1 Overview

We introduce FluidFaaS$ (FFS) to effectively support pipeline-based
instance construction and eviction-based time sharing. FFS com-
prises two primary components: programming support and the
FluidFaaS scheduling system.

We propose a new form of serverless function called FluidFaaS
function. As depicted in Figure 6 (a), the FluidFaaS programming
support enables the automatic configuration of a pipelined DAG,
based on available resources and profiling results. The selected
FluidFaaS (FFS) function has several stages, allowing the runtime to
allocate MIG slices to different stages efficiently. The FFS runtime
and Invoker use one instance to manage different stages on different
MIG slices and the data transfer between them. Details about the
programming support are presented in Section 5.2.

We design the FluidFaaS scheduling system to implement hotness-
aware eviction-based time sharing and scheduling of function in-
stances. This system incorporates multi-level keep-alive states
and corresponding state transitions to materialize hotness-aware
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eviction-based time sharing in the FFS invoker. Various keep-alive
states and different pipelines for the same function create the het-
erogeneity of instances, imposing significant scheduling challenges
as they have different latencies and throughputs. To address these,
we co-designed keep-alive state transitions with a heterogeneity-
aware traffic routing algorithm in the FFS load balancer and the FFS
invoker. This approach aims to meet SLOs and improve resource
utilization. Details are discussed in Section 5.3.

5.2 Automatic Pipeline Instance Construction

When scaling up requires launching a new instance, the construc-
tion of that instance should be flexible and adaptive based on
available resources. For example, depending on resource availabil-
ity, the function might be divided into a two-stage or three-stage
pipeline, or configured as a non-pipeline process. However, the
rigid, hard-coded nature of serverless functions typically limits
dynamic pipeline construction. To address this limitation, we pro-
vide programming support that ensures MIG instance usage is both
transparent to users and adaptable at runtime. Transparency here
refers to an interface that abstracts the complexities of MIG man-
agement away from the serverless function developer. It is essential
for both ease of use and performance due to the unpredictable
availability of GPU resources.

5.2.1 Programming Support. In existing serverless function plat-
forms, a serverless function is regarded as a monolithic unit to
invokers. The key to enable flexible MIG-based GPU resource map-
ping and utilization is to make each component in a serverless
function a unit manageable at runtime on invokers. The manage-
ment includes decisions on what size of the MIG slice and which
specific slide is assigned to each component. The design shall also
ensure the executions of the serverless function indeed execute
each of its components on the MIG slice as specified by the invoker.

Our solution is FluidFaa$S function. This new form of serverless
function extends the current serverless function with a module
named FluidFaaS. A serverless function written with FluidFaaS
(FFS) APIs will be equipped with a DAG, called FFS DAG, which
represents the components in the function as nodes and dataflows
among them as edges. Please note that this DAG differs from task
DAGs in existing serverless computing: The former captures the
computation flows within a serverless function, while the latter is
about relations among serverless functions. After DAG construction,
each node in the FFS DAG will carry a performance profile of the size
of the required memory and the running speeds of the component
on each size of MIG.

When an FFS function is being launched by an invoker, based
on the FFS DAG, the invoker will first find out the appropriate
assignment of MIG slices to the components in the DAG, writes the
assignment into the configuration layer of the FFS function, and
then launches the FFS function.

The FFS function is structured such that its execution will be
done through a FluidFaaS class (a core element in the FluidFaaS
module), which ensures that the execution will put each component
onto the MIG slice as specified in the configuration layer, construct
efficient communication channels among them, and execute the
FluidFaa$ function efficiently.
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import FluidFaas$ as FFS

class model1(FFS.Module):
... # define DNN model1 as defining a Torch DNN model

.. #definition of other DNN models

class MyFFaaS (FFS.FFaaS):
def _init__(self, event, context):
super().__init__(self, event, context, mode)

... #other initialization operations as needed

def defDAG(self, x, y): # define self.dag
x1=model1.reg(self, x)
x2 =model2.reg(self, x)
x3 = model3.reg(self, x1,x2)
x4 = model4.reg(self, x3)
x5 = model5.reg(self, x4, y)

# entry point of a Serverless Function in normal execution
def MyHandler_run (event, context):
fluidFaaS = MyFFaa$ (event, context, RUN)
fluidFaaS.run()

# entry point of a Serverless Function for DAG construction and profiling
def MyHandler_buildDAG (event, context, BUILDDAG):

fluidFaaS = MyFFaa$ (event, context, BUILDDAG)

profiles = MyFFaaS.profile()

Figure 7: Illustration of the programming of a FFaa$ function.

Programming Interface. Figure 7 gives an example showing how
the programming interface of FluidFaaS can be used in writing a
serverless function. FFaaS module contains two most important
classes. (i) The first one is FluidFaaS.Module, which is a thin wrapper
of the DNN model class, nn.Module, in PyTorchl. The definitions
of DNN models in a PyTorch program do not need to be modified
except that the superclass is changed from nn.Module to Fluid-
FaaS.Module. Each of the five DNN models in the example is made
into a subclass of FluidFaaS.Module. One of the main extensions of
FluidFaaS.Module over nn.Module is that it includes a method "reg’,
which registers the model in the FFS DAG along with the types
and shapes of the model’s inputs and outputs (see the DAG defi-
nition function "defDAG"). (ii) The second important component
in FluidFaaS module is the FFaaS class, which offers most of the
functions that are essential for the serverless function to execute
each of its components based on the MIG mapping specified by
the invoker, such as build DAG, import the MIG assignments and
the structure of the pipeline determined by the invoker. FFaas$ also
includes functions to profile each component. The initialization of
a FFaaS object has two modes. In the "BUILDDAG" mode, it calls
"defDAG" to build the DAG, while in the "RUN" mode, from the
configuration layer, it imports the DAG, along with the MIG configs
and stage configs that the invoker has put onto the configuration
layer.

Runtime Support of FFaas$. Listing 1 shows the implementation of
FluidFaaS.run() to explain how a FluidFaaS function gets executed.
As this is "RUN" mode, the __init__() function already retrieves the
DAG and the MIG assignments and pipeline configurations. The
run() function creates a separate process for each MIG, establishes
shared memory for data transfer, and sets up queues to trigger
the execution of subsequent stages. The module _run_inference()

'We use PyTorch as a representation; FluidFaa$ is extensible to other ML frameworks.
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represents the execution process for each stage. In this function, the
input tensor is retrieved from shared memory, model inference is
performed, and the resulting output tensor is written back to shared
memory for use in the next stage. This interface is designed for
simplicity, requiring only the DAG registration. The function _ter-
minate_processes() monitors changes in instance states and adjusts
the states of MIGs (Section 5.2.2). It also responds to termination
signals from the serverless platform by stopping the processes on
the MIG slices.

Unlike the default serverless function, where each function is
hosted by a process that starts execution upon receiving a trigger
event, FluidFaaS conducts the execution running on a dedicated
MIG instance with a separate process. These pipeline components
communicate through the shared memory of the host system. The
predecessor process writes its output tensor to the shared memory,
as shown in the module _write_to_shared_memory(), and successor

process reads output tensor using module _get_from_shared_memory()

as its input tensor, facilitating efficient data flow between pipeline
stages. This approach streamlines execution.

The use of shared memory on the host for communications helps
keep the communication overhead low. We further discuss the data
communication overhead associated with this design in Section 7.3,
where we analyze its impact on overall system performance and
efficiency.

5.2.2  Runtime Support in Invoker. The programming interface in-
troduced by the FluidFaaS module makes each component in a
serverless function a unit in the FFS DAG. Based on it, the runtime
support in the invoker figures out the appropriate MIG resource
assignment to each of the components and outlines the appropriate
pipeline for the serverless function.

Leaving these functionalities to the runtime of invokers is an
important design decision of FluidFaaS. It is essential for FluidFaaS
to work efficiently despite the dynamic nature of serverless environ-
ments. Workloads and system conditions can change dramatically
and unpredictably; predefined pipelines for a specific application
cannot suit the needs. An unbalanced pipeline can lead to inefficient
resource utilization, causing bottlenecks and increased latency as
certain stages may become overburdened while others remain un-
derutilized. This solution takes into account both pipeline balance
and current resource availability to ensure high performance.

This runtime support is implemented on each invoker, where
it functions as a local scheduler. As the workflow depicted in Fig-
ure 6 (a), the invoker is responsible for constructing the pipeline
and allocating MIG slices based on current resource availability
and application knowledge which is the profile information. This
decentralized approach allows the scheduler to efficiently build
pipelines and allocate resources, adapting to the invoker’s current
conditions to ensure efficiency and responsiveness to fluctuating
workloads. Notably, this runtime system can be integrated into ex-
isting serverless architectures without requiring any modifications
to the central controller, making it practical and easy to implement.

Balance is key to building a pipeline, which is crucial for per-
formance. To accomplish this, the DAG is divided into several
self-contained and balanced groups. Several studies have explored
methods for partitioning DAG [32, 37]. Our method is based on the
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class FFaaS:
if (mode == 'RUN'):
self.dag = self.importDAG()
self.migs = self.importMIGs ()
self.stages = self.importStages()
self.eviction = [False] * len(self.migs)
elif (mode == 'BUILDDAG'):

def init__(self, event, context, mode):

def _load_models(self, DAG):
#load models for all stages
def _run_inference(self, stage, queue, next_queue, shared_data
, nextShdata):
device = torch.device("cuda")
while True:
input = self._get_from_shared_memory(shared_data).to(
device)
if input not empty:
# Run all components in stage based on the DAG
output = model(input)
self._write_to_shared_memory(nextShdata, output)
next_queue.put ()
# Placeholder for actual eviction condition
if self.eviction[stagel
model. cpu()
del model
def _get_from_shared_memory(self, shared_data):
#get data from shared memory
def _write_to_shared_memory(self, shared_data, data):
#write data back to shared memory
def _start_processes(self):
#start a process for each stage in one mig
for i in range(len(self.stages)):
os.environ["CUDA_VISIBLE_DEVICES"] = self.migs[i]
torch.cuda.init()
p = mp.Process(
target=self._run_inference,
args=(self.stages[i], self.queues[i], self.queues[
i+1], self.shared_datal[il], self.shared_datal[i+1])
)
self.processes.append(p)
p.start()
def _terminate_processes(self):
#terminate processes when eviction happens
#By modify self.eviction to True
def profile(self):

def _initialize_shared_memory_and_queues(self):
#initialize shared memory and job queues
def run(self):
self._initialize_shared_memory_and_queues ()
self._load_models ()
self._start_processes ()
self._terminate_processes()
# Cleanup shared memory

Listing 1: Implementation of the core runtime support FFaa$

dominator-based method from ESG [32] but extends it with selec-
tion with a coefficient of variation (CV). It evaluates all possible
partitions of the DAG by calculating the coefficient of variation
(CV) [16] to measure pipeline balance. For simplicity, consider a
sequential DAG with five models: [1, 2, 3, 4, 5]. There are 24 possi-
ble consecutive partitions, each representing a different pipeline
configuration. For instance, one configuration could be [[1], [2, 3],
[4, 5]], which forms three distinct stages. The CV is determined
by dividing the standard deviation of the execution times of these
stages by their mean, as shown in Equation 1, where t, denotes the
execution time of stage n. If a stage involves multiple MIGs running
in parallel, we use the maximum execution time among them as
the stage’s execution time.
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CV = std(t1, t, ..., tp) /mean(ty, t2, ..., tn) (1)

After calculating and sorting the CVs for all possible pipeline
configurations, which is done once and offline for each application
(thus avoiding any runtime overhead), the next step is to assign a
pipeline to the available MIGs within the invoker. We rank pipelines
based on their CVs: lower CVs represent better balanced configura-
tions. The pipelines are then evaluated in order with the profiles,
against the available MIG resources. If a given pipeline can be sup-
ported by the available resources, the invoker records the pipeline
configuration and corresponding MIGs on the configuration layer
of the serverless function and then proceeds to launch the instance
with that configuration. If the resources are insufficient, it moves to
the next pipeline in the ranked list. This process continues until a
suitable pipeline is found and deployed. By following this approach,
we ensure that the most balanced pipeline is selected based on the
available MIGs, leading to optimized performance and efficiency.

5.2.3 Programming Efforts for Using FluidFaaS. The efforts needed
from developers is minimum. They only need to import FluidFaaS
and construct FluidFaa$ functions as shown in Figure 7. Specifically,
during function construction, they use a FluidFaaS.Module class
to encapsulate each ML model and all related data processing, and
register them and the data flow among them in the defDAG function.
The trigger events are defined as in standard serverless function
conventions.

FluidFaasS is designed to support a wide range of ML applications,
from traditional deep learning models to more complex large lan-
guage model (LLM) inference. Since FluidFaasS treats each module as
an independent, manageable unit, it can efficiently handle different
inference patterns, including sequential, parallel, or hybrid execu-
tion across GPU resources. For LLM inference, where multi-stage
processing (e.g., tokenization, model execution, and response gen-
eration) is required, our framework seamlessly maps these stages to
the appropriate GPU resources, ensuring efficient utilization while
maintaining low latency. The ability to flexibly allocate and manage
GPU resources at runtime makes our solution well-suited for both
latency-sensitive applications and high-throughput workloads.

5.3 Hotness-aware Eviction-based Time Sharing

Current serverless computing platforms manage CPU resources
efficiently by handling cold and warm states. However, this strategy
underperforms GPU resources due to its early binding of compu-
tational resources and memory. Specifically, keeping a model in a
warm state within a Multi-Instance GPU (MIG) slice precludes the
use of its computational resources by another instance, resulting in
the underutilization of MIGs.

Multi-level Keep-Alive States. To optimize the utilization of warm-
keeping MIG slices, we propose a hotness-aware eviction-based
time sharing approach. We propose interleaved usage of the MIG
slice through eviction to improve overall efficiency. Crucial to this
method is the selection of which instance to evict, as frequent
evictions and reloads between GPU and CPU memory undermine
performance gain from this method. We define two different in-
stance states based on request loads to identify which instances are
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suitable for eviction, optimizing the eviction process and improving
performance.

Exclusive Hot State. An instance that has a high request load will
be tagged as an exclusive hot state. An instance in this state keeps
all necessary data for the instance resides exclusively within a MIG
slice. Instances in this state are exempt from eviction. This policy
prevents unnecessary evictions for high-load instances, improv-
ing the effectiveness of eviction-based time sharing. All pipeline
instances are in the exclusive hot state to simplify scheduling.
Time Sharing State. This state is proposed for instances that are
not actively busy (i.e., utilization below 30%). An instance in this
state indicates that its MIG can be shared with other instances. The
data for such an instance may reside in either MIG memory or CPU
memory. Instances classified under this time sharing state share
MIG resources, which is aimed at enhancing the overall utilization
of MIG slices.

We reuse warm and cold states in CPU. If part or all of the data
is evicted from MIG memory, the data are first moved to the CPU,
entering a warm state for this instance. In this scenario, when a
new request arrives, the data can be retrieved from the CPU and
transferred back to MIG memory, reducing loading time compared
to fetching the model from remote storage. If there are no requests
for this instance for 10 minutes, this instance is terminated, termed
as a cold state.

Resource allocation and eviction processes operate as follows:
Each instance in the exclusive hot state fully occupies a MIG slice
without being subject to eviction. Instances in the time sharing
state share one or more MIG slices. Requests assigned to these
instances are queued according to deadlines subtracted by estimated
execution and instance load times and are processed in ascending
order of these values. When the FFS Invoker schedules a request,
if the corresponding time sharing state instance is already on an
MIG, the request is executed directly. Otherwise, the FFS Invoker
selects the least-recently-used (LRU) instance for eviction, reloads
the pertinent instance, and fulfills the request. The number of MIG
slices allocated to time sharing state instances increases if they are
overloaded (i.e., unable to meet SLOs), or decreases if their average
utilization falls below a threshold, similar to auto-scale policy in

prior serverless work.
o Time sharing state
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Figure 8: Instance state transition.

viction

Figure 8 illustrates the state transition details. Upon receiving the
initial request, the FFS invoker creates an instance and designates
it as a time sharing state instance @ . As the request volume in-
creases and the instance’s utilization exceeds a specified threshold,
it transitions to an exclusive hot state @ . Conversely, a decrease
in request volume reverts the instance to the time sharing state @ .
Notably, each serverless function is restricted to a maximum of one
instance in the time sharing state. In this state, the instance may be
evicted to CPU memory, termed as the warm state @ . If there is no
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demand for ten minutes, the instance is terminated, transitioning
to a cold state @ .

Request Routing. The introduction of multi-level keep-alive states
and pipeline functions adds complexity to serverless scheduling, as
instances for the same function exhibit varying execution latencies
and throughputs. To manage this complexity, we have redesigned
the heterogeneity-aware request routing in the FFS load balancer.
Our approach optimizes utilization and ensure SLOs by prioritizing
request routing based on adjusted deadlines subtracted by estimated
execution and instance load times. Requests are then routed in
ascending order of these values. The routing begins with exclusive
hot state instances, utilizing both non-pipeline and pipeline types.
For the exclusive hot state instances for a function, urgent requests
are directed to the instance with the lowest latency until its serving
capacity is reached. Subsequent requests are routed to the next
lowest latency instance, and so forth. Then the remaining requests
are routed to the time sharing state instance. This strategy not
only maximizes the utilization of exclusive hot state instances but
also alleviates the load on time sharing instances. This request
routing algorithm reduces the complexities associated with resource
sharing and improves overall system performance.

Pipeline migration. To further enhance performance and adapt
dynamically to changes in system resources, FluidFaaS implements
a pipeline instance migration strategy that migrates pipeline in-
stances to non-pipeline instances when large MIG slices become
available. When a large MIG slice becomes available, the invoker
establishes a new non-pipeline instance on this slice. This new in-
stance, once operational, begins handling incoming requests. Con-
currently, existing pipeline instances continue to process ongoing
requests until completion. Following the fulfillment of these resid-
ual requests, the original pipeline instance is gracefully retired. The
newly created instance may operate in either an exclusive or a time-
sharing state. This migration approach utilizes available resources
and avoids pipelines if unnecessary, improving system performance
by dynamically responding to resource availability.

6 Evaluation Methodology

Baseline. Our baseline for comparison is the state-of-the-art server-
less ML solution supporting MIG, ESG [32]. It has been compared
with other representative serverless computing works, INFless [55],
FaST-GShare [27], Orion [41], and Aquatope [60], consistently
showed a high SLO hit rate with a similar or less cost. ESG as-
signs functions to specific MIGs based on resource configurations
determined by the Controller, which selects the most resource-
efficient option that meets the SLO. Besides ESG, we also integrate
MIG support into INFless [55] and include it as an additional base-
line. As demonstrated in previous work, INFless is one of the most
competitive alternatives to ESG.

Table 3: Experimental hardware configuration on each node

CPU device 4* AMD EPYC 7763 64-Core Processors
CPU Mhz 2445.404
CPU memory 1440GB
GPU device 8 * NVIDIA A100 80GB
GPU memory 80GB

SLO Latency Requirement. SLO latency is an important require-
ment on a serverless workload. It defines the acceptable latency
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for the platform to give a response to a request. Let ¢ be the time
needed by the application to complete its entire workflow when
it runs alone with a unit CPU and the minimum MIG instances,
as shown in Table 5. We use SLO scale when describing the SLO
latency of a workload. It is defined as the ratio between the SLO
latency and t. By default, we set the SLO to be 1.5x (SLO scale=1.5),
which refers to the case where the acceptable maximal latency is
1.5 times of t. For different workload variants as shown in Table 5,
the t is different.

Table 4: Applications

Applications Composition

Super resolution [35] ->Segmentation [6, 22]

->Classification [2, 30]

Deblur [5] ->Super resolution

->Depth recognization [44]

Background elimination Super resolution ->Deblur

(App 2) ->Background removal [43]

Expanded image Deblur ->(if low resolution: ->Super resolution; else: pass)
lassification (App 3) ->Background removal ->Segmentation ->Classification

Image classification (App 0)

Depth recognition (App 1)

We use the following metrics to examine the performance.

SLO Hit Rate. SLO hit rate is defined as the fraction of requests
whose latencies (from the request arrives at the serverless platform
and the time when the result is produced) are below the required
SLO latency.
GPU time and MIG time GPU time refers to the total time the
entire GPU is active, even if only one slice is used. In contrast, MIG
time specifically measures the active time of individual MIG slice.
Evaluation environment. The runtime of FluidFaaS is imple-
mented in the invoker node. We have two nodes and each invoker
node contains eight A100_PCIE_80GB GPUs. Table 3 reports the
node configuration. The MIG partition for each GPU is 1g.10gb,
2g.20gb, and 4g.40gb by default. We test other partitions in the
sensitive study in Section 7.4.

Table 5: Application variants and MIG slices to run

L. . MIG to run MIG to run
Application Variants (Baseline) (FluidFaaS)
small >1g.10gb >1g.10gb
Image .
claset ﬁcgation medium  >2g.20gb >1g,10gb
large >3g.40gb >2g.20gb
small >1g.10gb >1g.10gb
rec?ﬂ::‘ion medium  >2g.20gb > 1g.10gb
& large >3g.40gb >2g.20gb
small >1g.10gb >1g.10gb
fﬁ:‘f;::;’: medium  >2g.20gb >1g.10gb
large >3g.40gb >2g.20gb
Expanded small > 2g.20gb >1g.10gb
image medium >4g.40gb >1g.10gb
classification large NULL NULL

Applications and Workloads. For an apple-to-apple comparison,
we use the four applications used in ESG [32], with each composed
of multiple DNN inferences, as shown in Table 4. Three applica-
tions are in a sequence, and one (Expanded image classification) is
extended with two branches to form a DAG.

Each application is available in three variants—small, medium,
and large—determined by memory requirements and batch size.
These variants require different sizes of MIG slices to avoid running
into out-of-memory errors, as shown in Table 5. Thanks to the
pipeline construction of FluidFaa$, the minimum MIG slice needed
to run each variant is smaller compared to the Baseline. Notably,
the 4g.40gb configuration cannot support the large variant of the
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Figure 9: SLO hit rate in different workloads for each application.
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Figure 10: Throughput in different workloads.
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Figure 11: End-to-end latency distribution in the heavy workloads for each application.
0.95 0.95 0.95 0.95
0.8 0.8 0.8 0.8
w 0.6 0.6 0.6 0.6
© 04 —— INFless 0.4 —— INFless 0.4 —— INFless 0.4 —— INFless
0.2 — ESG 0.2 — ESG 0.2 — ESG 0.2 — ESG
—— FluidFaaS —— FluidFaaS —— FluidFaaS —— FluidFaas
0 0 0 0
0 4 8 0 2 4 0 4 8 0 4 8
Latency (s) Latency (s) Latency (s) Latency (s)
(a) AppO (b) Appl () App2 (d) App3

Figure 12: End-to-end latency distribution in the medium workloads for all applications.

Table 6: Resource cost comparison, where the result of Fluid-
FaaS$ is normalized to 1. The lower, the better. INF is INFless
and Fluid is FluidFaas.

expanded image classification application in the Baseline, so this
variant is excluded from our study. We evaluate three different
workloads, light, medium, and heavy, where each application is in
small, medium, and large size respectively.

Traces. Following the prior work [32], we use the real-world traces
from Azure Functions [47] to set the invocation frequencies and
intervals of the serverless applications.

7 Evaluation Results

This section evaluates (i) the end-to-end performance of FluidFaas,
compared with the state-of-the-art ESG and INFless method; (ii) its

throughput and resource utilization improvement; (iii) the sensitive
study for FluidFaaS with different MIG partitions.

‘Workload Light workload Medium workload Heavy workload
Method INF | ESG | Fluid | INF | ESG | Fluid | INF | ESG | Fluid
MIG )05 | 096 | 1 093 | 099 | 1 094 | 097 | 1 7.1 End-to-End Performance
Norm. | time
gll;l: 108 | 107 | 1 106 | 105 | 1 17 | o | 1 Figure 9 shows SLO hit rates across various workloads. It proves that

FluidFaa$S improves the SLO hit rate by 90% in medium workloads
and 61% in heavy workloads across all applications while achieving
a similar SLO hit rate as ESG in light workloads. ESG and INFLess
adopt the non-pipeline execution model and delivery the similar
performance in the medium and heavy workload. ESG outperforms
INFLess 14% in SLO hit rates average in the light workload due to
the advanced scheduling algorithm, as proven in ESG.

Table 6 shows the normalized GPU time and MIG time, as we
introduced in Section 6, for all applications. FluidFaaS achieves
these SLO hit rates improvements with lower GPU time as shown
in Table 6, saving 6-17% than INFless and up to 6% saving than
ESG accross various worklaods. The MIG time remains comparable,
with a maximum difference of 7%. Since ESG and INFless share the
same non-pipeline execution model, and ESG outperforms INFless,
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Figure 13: End-to-end latency distribution in the light workloads for all applications.
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we use ESG as the baseline for detailed analysis to better illustrate
throughput and utilization.

Figure 10 illustrates system throughput across different work-
loads. FluidFaaS achieves a 75% higher throughput in heavy work-
loads and a 25% increase in medium workloads while maintaining
similar throughput in light workloads. This higher throughput al-
lows FluidFaaS to significantly reduce end-to-end latency, as shown
in Figure 11, which illustrates the Cumulative Distribution Function
(CDF) across all application in the heavy workload. We can see that
FluidFaaS achieves 83.3% reduction in P95 tail latency for depth
recognition in heavy workloads compared to ESG and INFless. For
other applications, it achieves at least a 50% reduction in the P95th
tail latency. Specifically, FluidFaaS improves the P95 tail latency by
up to 81% in heavy workloads and 70% in medium workloads while
maintaining similar latency in light workloads, detailed latency cdf
for medium workloads and light workloads are shown as Figure 12
and Figure 13.

7.2 Detailed Analysis

As described in Sec.6, each GPU is divided into 4g.40gb, 2g.20gb,
and 1g.10gb slices. In a light workload, all slices can host func-
tions, resulting in similar performance between FluidFaaS and ESG.
In medium workloads, ESG cannot utilize the 1g.10gb slices due
to memory limitations, whereas FluidFaa$S can leverage all slices
thanks to its DAG partitioning and pipeline construction. In heavy
workloads, ESG can only use the 4g.40gb slices, while FluidFaaS
utilizes both the 4g.40gb and 2g.20gb slices.

Figure 16 shows the GPU utilization in the different workloads.
As illustrated in Figure 16 (c), FluidFaaS improves GPU utilization by
75% compared to ESG during task bursts, which enables the higher
throughput observed in Figure 10 (c). In this scenario, FluidFaaS can
utilize a total of 7g.70gb, while ESG is limited to 4g.40gb, resulting
in a 75% increase in throughput. In the medium workload, the ESG
is limited to using 4g.40gb and 2g.20gb slices, while FluidFaaS can
utilize all available slices, resulting in a 25% increase in throughput.
The throughput is similar in the light workload scenario because
each GPU has a comparable utilization level.

The high throughput allows FluidFaaS to complete all tasks 10%
faster in medium workloads and 17% faster in heavy workloads
compared to ESG, as shown in Figure 10(b) and (c). Thus, the earlier
finish time leads to the GPU time saving. Additionally, this increased
throughput results in shorter queuing times, as indicated in Table6,
positively impacting both end-to-end latency and SLO hit rates.

7.3 Breakdown

Figure 14 illustrates the time breakdown of various workloads for
ESG (left) and FluidFaaS (right). In the light workload, both Fluid-
Faa$S and ESG perform similarly, with execution times within the
SLO limit for each application. However, in the medium and heavy
workloads, FluidFaaS demonstrates up to 2.36 times lower latency
than ESG. This reduction in latency for FluidFaa$ leads to higher
SLO hit rates, while the longer latency experienced by ESG in these
workloads results in lower SLO compliance, as shown in Table 6.
It is evident that FluidFaa$S consistently experiences a slightly
longer data transfer overhead—ranging from 10ms to 40ms—due to
communication between pipeline stages, compared to ESG’s 1-5ms.

Hui et al.

Table 7: Different MIG partition

Name Partition

*[1g.10gb *7]

* [2g.20gb*3+1g.10gb]

* [3g.40gb+4g.40gb]

* [4g.40gb+2g.20gb+1g.10gb]
* [4g.40gb+2g.20gb+1g.10gb]
* [3g.40gb+2g.20gb+2g.20gb]

Hybrid

P1
P2

I

Nevertheless, this overhead is offset by FluidFaaS’s significantly
shorter queuing times. ESG incurs much longer queuing times than
FluidFaa$S, with delays up to three times longer, ranging from hun-
dreds to thousands of milliseconds, as depicted in Table 6. Therefore,
the data transfer overhead introduced by the pipeline in FluidFaaS
is marginal compared to the substantial benefits it brings in re-
ducing overall latency and improving performance under heavier
workloads.

7.4 Sensitive Study

In this section, we evaluate how FluidFaaS performs under differ-
ent MIG partitions. In the above evaluations, each GPU is parti-
tioned into one 4g.40gb instance, one 2g.20gb instance, and one
1g.10gb instance. We also experimented with a hybrid partitioning
scheme—where each GPU has different partitions—and an alterna-
tive uniform partitioning scheme that divides each GPU into one
3g.40gb instance and two 2g.20gb instances, as detailed in Table 7.

As shown in Table 6, both FluidFaaS and ESG perform well under
light workloads. However, under heavy workloads, FluidFaaS lever-
ages fragmented resources to achieve better performance. Our sensi-
tivity study demonstrates that FluidFaaS outperforms ESG not only
in a single partition but across multiple partitions, especially when
system resources are underutilized. Figure 15 illustrates that Fluid-
FaaS surpasses ESG across all partitioning schemes. Specifically, in
the hybrid partition, FluidFaa$S achieves 70% higher throughput; in
partitioning scheme P1, it achieves 75% higher; and in scheme P2,
it reaches 78% higher throughput. These improvements stem from
the fragmented small MIG slices that cannot be utilized by ESG but
are effectively employed in pipelines by FluidFaaS.

8 Conclusion

This paper proposes FluidFaaS, the first solution that enables flexible
GPU MIG management of the components within a serverless ML
function while minimizing resource fragmentation and underuti-
lization. It features novel programming system support, on-the-fly
pipeline construction, and GPU-aware function state management.
It demonstrates significant improvements in system throughput and
SLO hit rates compared to existing solutions, underscoring the im-
portance of considering GPU-specific characteristics in serverless
computing environments. It opens new opportunities for flexible
resource management in GPU-based serverless platforms.

Acknowledgments

This material is based upon work supported by the National Science
Foundation (NSF) under Grants No. CNS-2312207. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of NSF.



FluidFaaS: A Dynamic Pipelined Solution for Serverless Computing with Strong Isolation-based GPU Sharing

References

(1]
(2]

[13]
[14]
[15]
[16]

[17

(18]

[19

2012. NVIDIA Multi-Process Service (MPS). https://docs.nvidia.com/deploy/mps/
index.html.

2015.  ResNet50.
resnet50/.

2016. Apache OpenWhisk. How OpenWhisk works. https://github.com/apache/
openwhisk/blob/master/docs/about.md#how-openWhisk-works.

2016. OpenWhisk. Open Source Serverless Cloud Platform. https://openwhisk.
apache.org/.

2017. DeblurGAN. https://github.com/pablodz/DeblurGAN.

2017. DEEPLABV3.  https://pytorch.org/hub/pytorch_vision_deeplabv3_
resnet101/.

2017. Fission: Open source Kubernetes-native Serverless Framework. https:
//fission.io/.

2017. OpenFaas. https://www.openfaas.com/.

https://pytorch.org/hub/nvidia_deeplearningexamples_

] 2018. Knative. https://knative.dev/docs/.
] 2018. KNative Serving Activator. https://github.com/knative/serving/tree/main/

pkg/activator.

2018. KNative Serving Autoscaler. https://github.com/knative/serving/tree/main/
pkg/autoscaler.

2018. NVIDIA k8s-device-plugin. https://github.com/NVIDIA/k8s-device-

plugin/.

2020. NVIDIA Multi-Instance GPU. https://www.nvidia.com/en-us/technologies/
multi-instance-gpu/.

2020. NVIDIA Multi-Instance GPU (MIG). https://www.nvidia.com/en-us/
technologies/multi-instance-gpu/.

2020. NVIDIA Multi-Instance GPU User Guide.
datacenter/tesla/mig-user- guide/index.html.

Hervé Abdi. 2010. Coefficient of variation. Encyclopedia of research design 1, 5
(2010), 169-171.

Lixiang Ao, Liz Izhikevich, Geoffrey M Voelker, and George Porter. 2018. Sprocket:
A serverless video processing framework. In Proceedings of the ACM Symposium
on Cloud Computing. 263-274.

David Bermbach, Ahmet-Serdar Karakaya, and Simon Buchholz. 2020. Using
application knowledge to reduce cold starts in Faa$S services. In Proceedings of
the 35th annual ACM symposium on applied computing. 134-143.

Vivek M Bhasi, Aakash Sharma, Rishabh Jain, Jashwant Raj Gunasekaran,
Ashutosh Pattnaik, Mahmut Taylan Kandemir, and Chita Das. 2024. Towards
SLO-Compliant and Cost-Effective Serverless Computing on Emerging GPU
Architectures. In Proceedings of the 25th International Middleware Conference.
211-224.

https://docs.nvidia.com/

[20] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Ra Katz.

[21

[22]

[23]

[24]

[26]

[27]

[28]

[29

2019. Cirrus: A serverless framework for end-to-end ml workflows. In Proceedings
of the ACM Symposium on Cloud Computing. 13-24.

Guoyang Chen, Yue Zhao, Xipeng Shen, and Huiyang Zhou. 2017. EffiSha: A
Software Framework for Enabling Efficient Preemptive Scheduling of GPU. In The
22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPOPP).

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. 2017.
Rethinking atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587 (2017).

Junguk Cho, Diman Zad Tootaghaj, Lianjie Cao, and Puneet Sharma. 2022. Sla-
driven ml inference framework for clouds with heterogeneous accelerators. Pro-
ceedings of Machine Learning and Systems 4 (2022), 20-32.

Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and
Torsten Hoefler. 2021. Sebs: A serverless benchmark suite for function-as-a-
service computing. In Proceedings of the 22nd International Middleware Conference.
64-78.

Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes
Grohmann, Nikolas Herbst, Cristina L Abad, and Alexandru Iosup. 2020. A review
of serverless use cases and their characteristics. arXiv preprint arXiv:2008.11110
(2020).

Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii Ustiugov, Yu-
vraj Patel, and Luo Mai. 2024. ServerlessLLM: Low-Latency Serverless Inference
for Large Language Models. In 18th USENLX Symposium on Operating Systems
Design and Implementation (OSDI 24). 135-153.

Jianfeng Gu, Yichao Zhu, Puxuan Wang, Mohak Chadha, and Michael Gerndt.
2023. FaST-GShare: Enabling Efficient Spatio-Temporal GPU Sharing in Serverless
Computing for Deep Learning Inference. arXiv preprint arXiv:2309.00558 (2023).
Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir
Vigfusson, and Jonathan Mace. 2020. Serving DNNs like clockwork: Performance
predictability from the bottom up. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). 443-462.

Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. 2022. Microsecond-
scale preemption for concurrent GPU-accelerated DNN inferences. In 16th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
22). 539-558.

[30

[31

[32

@
&

(34

[35

[36

w®
=)

[38

[39

[40

N
furg

[42

[43

(44

[48

[49

[50]

HPDC ’25, July 20-23, 2025, Notre Dame, IN, USA

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkatara-
mani, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2016. Serverless
computation with OpenLambda. In 8th USENIX workshop on hot topics in cloud
computing (HotCloud 16).

Xinning Hui, Yuanchao Xu, Zhishan Guo, and Xipeng Shen. 2024. ESG: Pipeline-
Conscious Efficient Scheduling of DNN Workflows on Serverless Platforms with
Shareable GPUs. In Proceedings of the 33rd International Symposium on High-
Performance Parallel and Distributed Computing. 42-55.

Zhipeng Jia and Emmett Witchel. 2021. Nightcore: efficient and scalable serverless
computing for latency-sensitive, interactive microservices. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 152-166.

Jeongchul Kim and Kyungyong Lee. 2019. Functionbench: A suite of workloads
for serverless cloud function service. In 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD). IEEE, 502-504.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang, et al. 2017. Photo-realistic single image super-resolution using a generative
adversarial network. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 4681-4690.

Baolin Li, Tirthak Patel, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari.
2022. Miso: exploiting multi-instance gpu capability on multi-tenant gpu clusters.
In Proceedings of the 13th Symposium on Cloud Computing. 173-189.

Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jiagan Cheng, Wenli Zheng, and
Minyi Guo. 2022. FaaSFlow: enable efficient workflow execution for function-as-
a-service. In Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. 782-796.

Zijun Li, Chuhao Xu, Quan Chen, Jieru Zhao, Chen Chen, and Minyi Guo. 2023.
DataFlower: Exploiting the Data-flow Paradigm for Serverless Workflow Orches-
tration. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 4. 57-72.
Gangmuk Lim, Jeongseob Ahn, Wencong Xiao, Youngjin Kwon, and Myeongjae
Jeon. 2021. Zico: Efficient GPU memory sharing for concurrent DNN training. In
2021 USENIX Annual Technical Conference (USENIX ATC 21). 161-175.

Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic, Somali Chaterji,
and Saurabh Bagchi. 2021. SONIC: Application-aware data passing for chained
serverless applications. In USENIX Annual Technical Conference (USENIX ATC).
Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh Elnikety, Somali
Chaterji, and Saurabh Bagchi. 2022. ORION and the three rights: Sizing, bundling,
and prewarming for serverless DAGs. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). 303-320.

Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan Minocha, Sameh
Elnikety, Saurabh Bagchi, and Somali Chaterji. 2022. WISEFUSE: Workload
Characterization and DAG Transformation for Serverless Workflows. Proceedings
of the ACM on Measurement and Analysis of Computing Systems 6, 2 (2022), 1-28.
Xuebin Qin, Zichen Zhang, Chenyang Huang, Masood Dehghan, Osmar Zaiane,
and Martin Jagersand. 2020. U2-Net: Going Deeper with Nested U-Structure for
Salient Object Detection. Pattern Recognition 106, 107404.

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun.
2020. Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-
shot Cross-dataset Transfer. arXiv:1907.01341

Francisco Romero, Mark Zhao, Neeraja ] Yadwadkar, and Christos Kozyrakis.
2021. Llama: A heterogeneous & serverless framework for auto-tuning video
analytics pipelines. In Proceedings of the ACM symposium on cloud computing.
1-17.

Trever Schirmer, Joel Scheuner, Tobias Pfandzelter, and David Bermbach. 2024.
FUSIONIZE ++: Improving Serverless Application Performance Using Dynamic
Task Inlining and Infrastructure Optimization. IEEE Transactions on Cloud Com-
puting (2024).

Mohammad Shahrad, Rodrigo Fonseca, Ifiigo Goiri, Gohar Chaudhry, Paul Ba-
tum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and
Ricardo Bianchini. 2020. Serverless in the wild: Characterizing and optimizing the
serverless workload at a large cloud provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 205-218.

Foteini Strati, Xianzhe Ma, and Ana Klimovic. 2024. Orion: Interference-aware,
Fine-grained GPU Sharing for ML Applications. In Proceedings of the Nineteenth
European Conference on Computer Systems. 1075-1092.

Guanhua Wang, Kehan Wang, Kenan Jiang, Xiangjun Li, and Ion Stoica. 2021.
Wavelet: Efficient DNN training with tick-tock scheduling. Proceedings of Machine
Learning and Systems 3 (2021), 696-710.

Hao Wang, Di Niu, and Baochun Li. 2019. Distributed machine learning with
a serverless architecture. In IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 1288-1296.


https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://pytorch.org/hub/nvidia_deeplearningexamples_resnet50/
https://pytorch.org/hub/nvidia_deeplearningexamples_resnet50/
https://github.com/apache/openwhisk/blob/master/docs/about.md##how-openWhisk-works
https://github.com/apache/openwhisk/blob/master/docs/about.md##how-openWhisk-works
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://github.com/pablodz/DeblurGAN
https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/
https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/
https://fission.io/
https://fission.io/
https://www.openfaas.com/
https://knative.dev/docs/
https://github.com/knative/serving/tree/main/pkg/activator
https://github.com/knative/serving/tree/main/pkg/activator
https://github.com/knative/serving/tree/main/pkg/autoscaler
https://github.com/knative/serving/tree/main/pkg/autoscaler
https://github.com/NVIDIA/k8s-device-plugin/
https://github.com/NVIDIA/k8s-device-plugin/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://arxiv.org/abs/1907.01341

HPDC ’25, July 20-23, 2025, Notre Dame, IN, USA

[51] Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin. 2023. Trans-
parent GPU sharing in container clouds for deep learning workloads. In 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 23).
69-85.

[52] Hao Wu, Yue Yu, Junxiao Deng, Shadi Ibrahim, Song Wu, Hao Fan, Ziyue Cheng,

and Hai Jin. 2024. StreamBox: A Lightweight GPU SandBox for Serverless

Inference Workflow. In 2024 USENIX Annual Technical Conference (USENIX ATC

24). 59-73.

Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,

Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu

Zhang, et al. 2018. Gandiva: Introspective cluster scheduling for deep learning. In

13th USENIX Symposium on Operating Systems Design and Implementation (OSDI

18). 595-610.

Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yihui

Feng, Wei Lin, and Yangqing Jia. 2020. AntMan : Dynamic scaling on GPU clusters

for deep learning. In 14th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 20). 533-548.

[55] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang Zhao,

Xingzhen Chen, and Keqiu Li. 2022. INFless: a native serverless system for low-

latency, high-throughput inference. In Proceedings of the 27th ACM International

Conference on Architectural Support for Programming Languages and Operating

Systems. 768-781.

Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi, and Qun

Li. 2017. Lavea: Latency-aware video analytics on edge computing platform. In

[53

[54

[56

[57

[58

[59

[61

Hui et al.

Proceedings of the Second ACM/IEEE Symposium on Edge Computing. 1-13.
Minchen Yu, Ao Wang, Dong Chen, Haoxuan Yu, Xiaonan Luo, Zhuohao Li, Wei
Wang, Ruichuan Chen, Dapeng Nie, and Haoran Yang. 2023. FaaSwap: SLO-
Aware, GPU-Efficient Serverless Inference via Model Swapping. arXiv preprint
arXiv:2306.03622 (2023).

Peifeng Yu and Mosharaf Chowdhury. 2020. Fine-grained GPU sharing primitives
for deep learning applications. Proceedings of Machine Learning and Systems 2
(2020), 98-111.

Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Zigian Lu, Pingchao
Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing serverless plat-
forms with serverlessbench. In Proceedings of the 11th ACM Symposium on Cloud
Computing. 30-44.

Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou. 2023. AQUATOPE:
QoS-and-Uncertainty-Aware Resource Management for Multi-stage Serverless
Workflows. In Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Volume 1.
1-14.

Qi Zhu, Bo Wu, Xipeng Shen, Li Shen, and Zhiying Wang. 2017. Co-Run Schedul-
ing with Power Cap on Integrated CPU-GPU Systems. In 31st IEEE International
Parallel and Distributed Processing Symposium (IPDPS). Orlando, FL.

Received 6 February 2025; accepted 6 April 2025



	Abstract
	1 Introduction
	2 Background
	2.1 Serverless Platform
	2.2 GPU Resource Sharing

	3 Related Work
	4 Motivation
	5 Design of FluidFaaS
	5.1 Overview
	5.2 Automatic Pipeline Instance Construction
	5.3 Hotness-aware Eviction-based Time Sharing

	6 Evaluation Methodology
	7 Evaluation Results
	7.1 End-to-End Performance
	7.2 Detailed Analysis
	7.3 Breakdown
	7.4 Sensitive Study

	8 Conclusion
	Acknowledgments
	References

