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Abstract

Given a causal graph representing the data-
generating process shared across different
domains/distributions, enforcing sufficient
graph-implied conditional independencies
can identify domain-general (non-spurious)
feature representations. For the standard
input-output predictive setting, we categorize
the set of graphs considered in the literature
into two distinct groups: (i) those in which
the empirical risk minimizer across training
domains gives domain-general representations
and (ii) those where it does not. For the
latter case (ii), we propose a novel framework
with regularizations, which we demonstrate
are sufficient for identifying domain-general
feature representations without a priori
knowledge (or proxies) of the spurious
features. Empirically, our proposed method
is effective for both (semi) synthetic and
real-world data, outperforming other state-of-
the-art methods in average and worst-domain
transfer accuracy.

1 Introduction

A key feature of machine learning is its capacity to
generalize across new domains. When these domains
present different data distributions, the algorithm must
leverage shared structural concepts to achieve out-of-
distribution (OOD) or out-of-domain generalization.
This capability is vital in numerous important real-
world machine learning applications. For example, in
safety-critical settings such as autonomous driving, a
lack of resilience to unfamiliar distributions could lead

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

to human casualties. Likewise, in the healthcare sector,
where ethical considerations are critical, an inability to
adjust to shifts in data distribution can result in unfair
biases, manifesting as inconsistent performance across
different demographic groups.

An influential approach to domain generalization is
Invariant Causal Prediction (ICP; [Peters et al., 2016]).
ICP posits that although some aspects of data distri-
butions (like spurious or non-causal mechanisms [Pearl,
2010]) may change across domains, certain causal mech-
anisms remain constant. ICP suggests focusing on
these invariant mechanisms for prediction. However,
the estimation method for these invariant mechanisms
suggested by [Peters et al., 2016] struggles with scala-
bility in high-dimensional feature spaces. To overcome
this, Arjovsky et al. [2019] introduced Invariant Risk
Minimization (IRM), designed to identify these invari-
ant mechanisms by minimizing an objective. However,
requires strong assumptions for identifying the desired
domain-general solutions [Ahuja et al., 2021, Rosen-
feld et al., 2022]; for instance, observing a number of
domains proportional to the spurious features’ dimen-
sions is necessary, posing a significant challenge in these
high-dimensional settings.

Subsequent variants of IRM have been developed with
improved capabilities for identifying domain-general so-
lutions [Ahuja et al., 2020, Krueger et al., 2021, Robey
et al., 2021, Wang et al., 2022, Ahuja et al., 2021].
Additionally, regularizers for Distributionally Robust
Optimization with subgroup shift have been proposed
(GroupDRO) [Sagawa et al., 2019]. However, despite
their solid theoretical motivation, empirical evidence
suggests that these methods may not consistently de-
liver domain-general solutions in practice Gulrajani
and Lopez-Paz [2020], Kaur et al. [2022], Rosenfeld
et al. [2022].

Kaur et al. [2022] demonstrated that regularizing di-
rectly for conditional independencies implied by the
generative process can give domain-general solutions,
including conditional independencies beyond those con-
sidered by IRM. However, their experimental approach
involves regularization terms that require direct obser-
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vation of spurious features, a condition not always fea-
sible in real-world applications. Our proposed method-
ology also leverages regularizers inspired by the condi-
tional independencies indicated by causal graphs but,
crucially, it does so without necessitating prior knowl-
edge (or proxies) of the spurious features.

1.1 Contributions

In this work,

• we outline sufficient properties to uniquely identify
domain-general predictors for a general set of gen-
erative processes that include domain-correlated
spurious features,

• we propose regularizers to implement these con-
straints without independent observations of the
spurious features, and

• finally, we show that the proposed framework out-
performs the state-of-the-art on semi-synthetic and
real-world data.

The code for our proposed method is provided at
https://github.com/olawalesalaudeen/tcri.

Notation: Capital letters denote random variables,
and corresponding lowercase letters denote their value.
Unless otherwise stated, we represent latent domain-
general features as Zdg ∈ Zdg ≡ Rm and spurious
latent features as Zspu ∈ Zspu ≡ Ro. Let X ∈ X ≡ Rd

be the observed feature space and the output space
of an invertible function Γ : Zdg × Zspu 7→ X and
Y ∈ Y ≡ {0, 1, . . . ,K − 1} be the observed label space
for a K-class classification task. We then define fea-
ture extractors aimed at identifying latent features
Φdg : X 7→ Rm, Φspu : X 7→ Ro so that Φ : X 7→
Rm+o

(
that is Φ(x) = [Φdg(x); Φspu(x)]∀x ∈ X

)
. We

define e as a discrete random variable denoting domains
and E = {P e(Zdg, Zspu, X, Y ) : e = 1, 2, . . .} to be the
set of possible domains. Etr ⊂ E is the set of observed
domains available during training.

2 Related Work

The source of distribution shift can be isolated to com-
ponents of the joint distribution. One special case of
distribution shift is covariate shift [Shimodaira, 2000,
Zadrozny, 2004, Huang et al., 2006, Gretton et al.,
2009, Sugiyama et al., 2007, Bickel et al., 2009, Chen
et al., 2016, Schneider et al., 2020], where only the
covariate distribution P (X) changes across domains.
Ben-David et al. [2009] give upper-bounds on target er-
ror based on the H-divergence between the source and
target covariate distributions, which motivates domain

alignment methods like the Domain Adversarial Neural
Networks [Ganin et al., 2016] and others [Long et al.,
2015, Blanchard et al., 2017]. Others have followed up
on this work with other notions of covariate distance for
domain adaptation, such as mean maximum discrep-
ancy (MMD) [Long et al., 2016], Wasserstein distance
[Courty et al., 2017], etc. However, Kpotufe and Mar-
tinet [2018] show that these divergence metrics fail to
capture many important properties of transferability,
such as asymmetry and non-overlapping support. Fur-
thermore, Zhao et al. [2019] shows that even with the
alignment of covariates, large distances between label
distributions can inhibit transfer; they propose a label
conditional importance weighting adjustment to ad-
dress this limitation. Other works have also proposed
conditional covariate alignment [des Combes et al.,
2020, Li et al., 2018c,b].

Another form of distribution shift is label shift, where
only the label distribution changes across domains.
Lipton et al. [2018] propose a method to address this
scenario. Schrouff et al. [2022] illustrate that many
real-world problems exhibit more complex ’compound’
shifts than just covariate or label shifts alone.

One can leverage domain adaptation to address distri-
bution shifts; however, these methods are contingent on
having access to unlabeled or partially labeled samples
from the target domain during training. When such
samples are available, more sophisticated domain adap-
tation strategies aim to leverage and adapt spurious
feature information to enhance performance Liu et al.
[2021], Zhang et al. [2021], Kirichenko et al. [2022].
However, domain generalization, as a problem, does
not assume access to such samples [Muandet et al.,
2013].

To address the domain generalization problem, Invari-
ant Causal Predictors (ICP) leverage shared causal
structure to learn domain-general predictors [Peters
et al., 2016]. Previous works, enumerated in the intro-
duction (Section 1), have proposed various algorithms
to identify domain-general predictors. Arjovsky et al.
[2019]’s proposed invariance risk minimization (IRM)
and its variants motivated by domain invariance:

min
w,Φ

1

|Etr|
∑
e∈Etr

Re(w ◦ Φ) s.t. w ∈ argmin
w̃

Re(w̃ · Φ),

∀e ∈ Etr,

where Re(w ◦Φ) = E
[
ℓ(y, w ·Φ(x))

]
, with loss function

ℓ, feature extractor Φ, and linear predictor w. This
objective aims to learn a representation Φ such that
predictor w that minimizes empirical risks on average
across all domains also minimizes within-domain em-
pirical risk for all domains. However, Rosenfeld et al.
[2020], Ahuja et al. [2020] showed that this objective
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requires unreasonable constraints on the number of ob-
served domains at train times, e.g., observing distinct
domains on the order of the rank of spurious features.
Follow-up works have attempted to improve these lim-
itations with stronger constraints on the problem –
enumerated in the introduction section.

Our method falls under domain generalization; how-
ever, unlike the domain-general solutions previously
discussed, our proposed solution leverages different
conditions than domain invariance directly, which we
show may be more suited to learning domain-general
representations.

3 Causality and Domain
Generalization

We often represent causal relationships with a causal
graph. A causal graph is a directed acyclic graph
(DAG), G = (V,E), with nodes V representing random
variables and directed edges E representing causal re-
lationships, i.e., parents are causes and children are
effects. A structural equation model (SEM) provides
a mathematical representation of the causal relation-
ships in its corresponding DAG. Each variable Y ∈ V
is given by Y = fY (X) + εY , where X denotes the
parents of Y in G, fY is a deterministic function, and
εY is an error capturing exogenous influences on Y .
The main property we need here is that fY is invariant
to interventions to V \{Y } and is consequently invari-
ant to changes in P (V ) induced by these interventions.
Interventions refer to changes to fZ , Z ∈ V \{Y }.

In this work, we focus on domain-general predictors
dg that are linear functions of features with domain-
general mechanisms, denoted as gdg := w ◦ Φdg, where
w is a linear predictor and Φdg identifies features with
domain-general mechanisms. We use domain-general
rather than domain-invariant since domain-invariance
is strongly tied to the property: Y ⊥⊥ e |Zdg [Arjovsky
et al., 2019]. As shown in the subsequent sections,
this work leverages other properties of appropriate
causal graphs to obtain domain-general features. This
distinction is crucial given the challenges associated
with learning domain-general features through domain-
invariance methods Rosenfeld et al. [2020].

Given the presence of a distribution shift, it’s essen-
tial to identify some common structure across domains
that can be utilized for out-of-distribution (OOD) gen-
eralization. For example, Shimodaira [2000] assume
P (Y |X) is shared across all domains for the covari-
ate shift problem. In this work, we consider a setting
where each domain is composed of observed features
and labels, X ∈ X , Y ∈ Y, where X is given by an
invertible function Γ of two latent random variables:

e Zdg

Zspu

Y

X

Figure 1: Partial Ancestral Graph representing all non-
trivial and valid generative processes (DAGs); dashed
edges indicate that an edge may or may not exist.

domain-general Zdg ∈ Zdg and spurious Zspu ∈ Zspu.
By construction, the conditional expectation of the
label Y given the domain-general features Zdg is the
same across domains, i.e.,

Eei [Y |Zdg = zdg] = Eej [Y |Zdg = zdg] (1)
∀zdg ∈ Zdg, ∀ei ̸= ej ∈ E .

Conversely, this robustness to e does not necessarily
extend to spurious features Zspu; in other words, Zspu
may assume values that could lead a predictor relying
on it to experience arbitrarily high error rates. Then, a
sound strategy for learning a domain-general predictor
– one that is robust to distribution shifts – is to iden-
tify the latent domain-general Zdg from the observed
features X.

The approach we take to do this is motivated by the Re-
ichenbach Common Cause Principle, which claims that
if two events are correlated, there is either a causal
connection between the correlated events that is re-
sponsible for the correlation or there is a third event,
a so-called (Reichenbachian) common cause, which
brings about the correlation [Hitchcock and Rédei,
2021, Rédei, 2002]. This principle allows us to posit
the class of generative processes or causal mechanisms
that give rise to the correlated observed features and
labels, where the observed features are a function of
domain-general and spurious features. We represent
these generative processes as causal graphs. Impor-
tantly, the mapping from a node’s causal parents to
itself is preserved in all distributions generated by the
causal graph (Equation 1), and distributions can vary
arbitrarily so long as they preserve the conditional in-
dependencies implied by the DAG (Markov Property
[Pearl, 2010]).

We now enumerate DAGs that give observe features
with spurious correlations with the label.

Valid DAGs. We consider generative processes, where
both latent features, Zspu, Zdg, and observed X are
correlated with Y , and the observed X is a function of
only Zdg and Zspu (Figure 1).

Given this setup, there is an enumerable set of valid
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generative processes. Such processes are (i) without
cycles, (ii) are feature complete – including edges from
Zdg and Zspu to X, i.e., Zdg → X ← Zspu, and (iii)
where the observed features mediate domain influence,
i.e., there is no direct domain influence on the label
e ̸→ Y . We discuss this enumeration in detail in Ap-
pendix B. The result of our analysis is identifying a
representative set of DAGs that describe valid gen-
erative processes – these DAGs come from orienting
the partial ancestral graph (PAG) in Figure 1. We
compare the conditional independencies implied by the
DAGs defined by Figure 1 as illustrated in Figure 2,
resulting in three canonical DAGs in the literature (see
Appendix B for further discussion). Other DAGs that
induce spurious correlations are outside the scope of
this work.

e Zdg

Zspu

Y

X

(a) Causal Arjovsky et al. [2019].

e Zdg

Zspu

Y

X

(b) Anticausal Rosenfeld et al. [2020].

e Zdg

Zspu

Y

X

(c) Fully Informative Causal Ahuja
et al. [2021].

Figure 2: Generative Processes. Graphical models
depicting the structure of possible data-generating pro-
cesses – shaded nodes indicate observed variables. X
represents the observed features, Y represents observed
targets, and e represents domain influences (domain
indexes in practice). There is an explicit separation of
domain-general Zdg and domain-specific Zspu features;
they are combined to generate observed X. Dashed
edges indicate the possibility of an edge.

Conditional independencies implied by identi-
fied DAGs (Figure 2).

Fig. 2a: Zdg ⊥⊥ Zspu | {Y, e}; Y ⊥⊥ e |Zdg.

This causal graphical model implies that the map-
ping from Zdg to its causal child Y is preserved
and consequently, Equation 1 holds [Pearl, 2010,
Peters et al., 2016]. As an example, consider the
task of predicting the spread of a disease. Fea-
tures may include causes (vaccination rate and
public health policies) and effects (public behavior
changes such as increased mask-wearing or social
distancing).

Fig. 2b: Zdg ⊥⊥ Zspu | {Y, e}; Zdg ⊥⊥ Zspu |Y ;
Y ⊥⊥ e |Zdg, Zdg ⊥⊥ e.

The causal graphical model does not directly im-
ply that Zdg → Y is preserved across domains.
However, in this work, it represents the setting
where the inverse of the causal direction is pre-
served (inverse: Zdg → Y ), and thus Equation 1
holds. A context where this setting is relevant is
in healthcare where medical conditions (Y ) cause
symptoms (Zdg), but the prediction task is often
predicting conditions from symptoms, and this
mapping Zdg → Y , opposite of the causal direc-
tion, is preserved across distributions.

Fig. 2c: Y ⊥⊥ e |Zdg; Zdg ⊥⊥ e.

Similar to Figure 2a, this causal graphical model
implies that the mapping from Zdg to its causal
child Y is preserved, so Equation 1 holds [Pearl,
2010, Peters et al., 2016]. This setting is espe-
cially interesting because it represents a Fully
Informative Invariant Features setting, that
is Zspu ⊥⊥ Y |Zdg [Ahuja et al., 2021]. As an exam-
ple of this, we can consider the task of predicting
hospital readmission rates. Features may include
the severity of illness, which is a direct cause of
readmission rates, and also include the length of
stay, which is also caused by the severity of ill-
ness. However, length of stay may not be a cause
of readmission; the correlation between the two
would be a result of the confounding effect of a
common cause, illness severity.

We call the condition Y ⊥⊥ e |Zdg the domain in-
variance property. This condition is common to
all the DAGs in Figure 2. We call the condition
Zdg ⊥⊥ Zspu | {Y, e} the target conditioned representa-
tion independence (TCRI) property. This condition is
common to the DAGs in Figure 2a, 2b. In the settings



Olawale Salaudeen, Sanmi Koyejo

Table 1: Generative Processes and Sufficient Conditions
for Domain-Generality

Graphs in Figure 2
(a) (b) (c)

Zdg ⊥⊥ Zspu | {Y, e} ✓ ✓ ✗

Identifying Zdg is necessary ✓ ✓ ✗

considered in this work, the TCRI property is equiva-
lently Zdg ⊥⊥ Zspu |Y∀e ∈ E since e will simply index
the set of empirical distributions available at training.

Domain generalization with conditional indepen-
dencies. Kaur et al. [2022] showed that sufficiently
regularizing for the correct conditional independencies
described by the appropriate DAGs can give domain-
general solutions, i.e., identifies Zdg. However, in prac-
tice, one does not (partially) observe the latent features
independently to regularize directly. Other works have
also highlighted the need to consider generative pro-
cesses when designing robust algorithms to distribute
shifts [Veitch et al., 2021, Makar et al., 2022]. However,
previous work has largely focused on regularizing for
the domain invariance property, ignoring the condi-
tional independence property Zdg ⊥⊥ Zspu | {Y, e}.

Sufficiency of ERM under Fully Informative
Invariant Features. Despite the known challenges
of learning domain-general features from the domain-
invariance properties in practice, this approach persists,
likely due to it being the only property shared across
all DAGs. We alleviate this constraint by observing
that Graph (Fig. 2c) falls under what Ahuja et al.
[2021] refer to as the fully informative invariant features
settings, meaning that Zspu is redundant, having only
information about Y that is already in Zdg. Ahuja
et al. [2021] show that the empirical risk minimizer is
domain-general for bounded features.

Easy vs. hard DAGs imply the generality of
TCRI. Consequently, we categorize the generative
processes into easy and hard cases Table 1: (i) easy
meaning that minimizing average risk gives domain-
general solutions, i.e., ERM is sufficient (Fig. 2c), and
(ii) hard meaning that one needs to identify Zdg to ob-
tain domain-general solutions (Figs. 2a-2b). We show
empirically that regularizing for Zdg ⊥⊥ Zspu |Y ∀e ∈ E
also gives a domain-general solution in the easy case.
The generality of TCRI follows from its sufficiency
for identifying domain-general Zdg in the hard cases
while still giving domain-general solutions empirically
in the easy case.

4 Proposed Learning Framework

We have now clarified that hard DAGs (i.e., those
not solved by ERM) share the TCRI property. The
challenge is that Zdg and Zspu are not independently
observed; otherwise, one could directly regularize. Ex-
isting work such as Kaur et al. [2022] empirically study
semi-synthetic datasets where Zspu is (partially) ob-
served and directly learn Zdg by regularizing that
Φ(X) ⊥⊥ Zspu |Y, e for feature extractor Φ. To our
knowledge, we are the first to leverage the TCRI prop-
erty without requiring observation of Zspu. Next, we
set up our approach with some key assumptions. The
first is that the observed distributions are Markov to
an appropriate DAG.

Assumption 4.1. All distributions, sources
and targets, are generated by one of the
structural causal models SCM that follow:

causal︷ ︸︸ ︷
SCM(e) :=


Z

(e)
dg ∼ P

(e)
Zdg

,

Y (e) ← ⟨w∗
dg, Z

(e)
dg ⟩+ ηY ,

Z
(e)
spu ← ⟨w∗

spu, Y ⟩+ η
(e)
Zspu

,

X ← Γ(Zdg, Zspu),

(2)

anticausal︷ ︸︸ ︷
SCM(e) :=


Y (e) ∼ PY ,

Z
(e)
dg ← ⟨w̃dg, Y ⟩+ η

(e)
Zdg

,

Z
(e)
spu ← ⟨w∗

spu, Y ⟩+ η
(e)
Zspu

,

X ← Γ(Zdg, Zspu),

(3)

or
FIIF︷ ︸︸ ︷
SCM(e) :=


Z

(e)
dg ∼ P

(e)
Zdg

,

Y (e) ← ⟨w∗
dg, Z

(e)
dg ⟩+ ηY ,

Z
(e)
spu ← ⟨w∗

spu, Zdg⟩+ η
(e)
Zspu

,

X ← Γ(Zdg, Zspu),

(4)

where PZdg is the causal covariate distribution, w’s
are linear generative mechanisms, η’s are exogenous
independent noise variables, and Γ : Zdg ×Zspu → X
is an invertible function. It follows from having causal
mechanisms that we can learn a predictor w∗

dg for Zdg
that is domain-general (Equation 2-4) – w∗

dg inverts
the mapping w̃dg in the anticausal case.

These structural causal models (Equation 2-4) corre-
spond to causal graphs Figures 2a-2c, respectively.

Assumption 4.2 (Structural). Causal Graphs and
their distributions are Markov and Faithful [Pearl,
2010].

Given Assumption 4.2, we aim to leverage TCRI prop-
erty (Zdg ⊥⊥ Zspu |Y ∀e ∈ Etr) to learn the latent Zdg
without observing Zspu directly. We do this by learning
two feature extractors that, together, recover Zdg and
Zspu and satisfy TCRI (Figure 3). We formally define
these properties as follows.

Definition 4.3 (Total Information Criterion (TIC)).
Φ = Φdg ⊕ Φspu satisfies TIC with respect to random
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Xe

Φdg

Φspu

Ẑdg θc

⊕

Ẑspu

θe

ŷc

ŷe

Figure 3: Modeling approach. During train-
ing, both representations, Φdg, and Φspu, generate
domain-general and domain-specific predictions, respec-
tively. However, only the domain-invariant representa-
tions/predictions are used during testing – indicated
by the solid red arrows.

variables X, Y, e if for Φ(Xe) = [Φdg(X
e); Φspu(X

e)],
there exists a linear operator T s.t., T (Φ(Xe)) =
[Ze

dg;Z
e
spu]∀e ∈ Etr.

In other words, a feature extractor that satisfies the
total information criterion recovers the complete latent
feature sets Zdg, Zspu. This allows us to define the
proposed implementation of the TCRI property non-
trivially – the conditional independence of subsets of the
latents may not have the same implications on domain
generalization. We note that X ⊥⊥ Y |Zdg, Zspu, so X
has no information about Y that is not in Zdg, Zspu.

Definition 4.4 (Target Conditioned Representation
Independence). Φ = Φdg ⊕ Φspu satisfies TCRI with
respect to random variables X, Y, e if Φdg(X) ⊥⊥
Φspu(X) |Y ∀e ∈ E .
Proposition 4.5. Assume that Φdg(X) and Φspu(X)
are correlated with Y . Given Assumptions 4.1-4.2 and
a representation Φ = Φdg ⊕ Φspu that satisfies TIC,
Φdg(X) = Zdg ⇐⇒ Φ satisfies TCRI. (see Appendix
C for proof).

Proposition 4.5 shows that TCRI is necessary and suf-
ficient to identify Zdg from a set of training domains.
We note that we can verify if Φdg(X) and Φspu(X) are
correlated with Y by checking if the learned predictors
are equivalent to chance. Next, we describe our pro-
posed algorithm to implement the conditions to learn
such a feature map. Figure 3 illustrates the learning
framework.

Learning Objective: The first term in our proposed
objective is

LΦdg = Re(θc ◦ Φdg),

where Φdg : X 7→ Rm is a feature extractor, θc : Rm 7→
Y is a linear predictor, and Re(θc ◦ Φdg) = E

[
ℓ(y, θc ·

Φ(x))
]

is the empirical risk achieved by the feature
extractor and predictor pair on samples from domain e.

Φdg and θc are designed to capture the domain-general
portion of the framework.

Next, to implement the total information criterion, we
use another feature extractor Φspu : X 7→ Ro, designed
to capture the domain-specific information in X that is
not captured by Φdg. Together, we have Φ = Φdg⊕Φspu
where Φ has domain-specific predictors θe : Rm+o 7→ Y
for each training domain, allowing the feature extractor
to utilize domain-specific information to learn distinct
optimal domain-specific (non-general) predictors:

LΦ = Re
(
θe ◦ Φ

)
.

LΦ aims to ensure that Φdg and Φspu capture all of the
information about Y in X – total information criterion.
Since we do not know o,m, we select them to be the
same size on our experiments; o,m could be treated as
hyperparameters though we do not treat them as such.

Finally, we implement the TCRI property (Definition
4.4). We denote LTCRI to be a conditional indepen-
dence penalty for Φdg and Φspu. We utilize the Hilbert
Schmidt independence Criterion (HSIC) [Gretton et al.,
2007] as LTCRI . However, in principle, any conditional
independence penalty can be used in its place. HSIC:

LTCRI(Φdg,Φspu)

=
1

2

∑
k∈{0,1}

ĤSIC
(
Φdg(X),Φspu(X)

)y=k

=
1

2

∑
k∈{0,1}

1

n2
k

tr
(
KΦdgHnk

KΦspuHnk

)y=k

,

where k, indicates which class the examples in the esti-
mate correspond to, C is the number of classes, KΦdg ∈
Rnk×nk , KΦspu ∈ Rnk×nk are Gram matrices, Ki,j

Φ =

κ(Φdg(X)i,Φdg(X)j), K
i,j
Φspu

= ω(Φspu(X)i,Φspu(X)j)
with kernels κ, ω are radial basis functions, Hnk

=
Ink
− 1

n2
k
11⊤ is a centering matrix, Ink

is the nk × nk

dimensional identity matrix, 1nk
is the nk-dimensional

vector whose elements are all 1, and ⊤ denotes the
transpose. We condition on the label by taking only
examples of each label and computing the empirical
HSIC; then, we take the average.

Taken together, the full objective to be minimized is
as follows:

L =
1

Etr

∑
e∈Etr

[
Re(θc ◦ Φdg) +Re(θe ◦ Φ)

+βLTCRI(Φdg,Φspu)

]
,

where β > 0 is a hyperparameter and Etr is the number
of training domains. Figure 3 shows the full framework.
We note that when β = 0, this loss reduces to ERM.
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Note that while we minimize this objective with respect
to Φ, θc, θ1, . . . , θEtr , only the domain-general represen-
tation and its predictor, θc · Φdg are used for inference.

5 Experiments

We begin by evaluating with simulated data, i.e., with
known ground truth mechanisms; we use Equation 5 to
generate our simulated data, with domain parameter
σei ; code is provided in the supplemental materials.

SCM(ei) :=


Z

(ei)
dg ∼ N

(
0, σ2

ei

)
y(ei) = Z

(ei)
dg +N

(
0, σ2

y

)
,

Z
(ei)
spu = Y (ei) +N

(
0, σ2

ei

)
.

(5)

We observe 2 domains with parameters σe=0 = 0.1,
σe=1 = 0.2 with σy = 0.25, 5000 samples, and linear
feature extractors and predictors. We use partial covari-
ance as our conditional independence penalty LTCRI .
Table 2 shows the learned value of Φdg, where ‘Oracle’
indicates the true coefficients obtained by regressing Y
on domain-general Zdg directly. The ideal Φdg recovers
Zdg and puts zero weight on Zspu.

Table 2: Continuous Simulated Results – Feature Extrac-
tor with a dummy predictor θc = 1., i.e., ŷ = x · Φdg · w,
where x ∈ RN×2, Φdg,Φspu ∈ R2×1, w ∈ R. Oracle in-
dicates the coefficients achieved by regressing y on zc
directly.

Algorithm (Φdg)0 (Φdg)1
(i.e., Zdg weight) (i.e., Zspu weight)

ERM 0.29 0.71
IRM 0.28 0.71
TCRI 1.01 0.06
Oracle 1.04 0.00

Now, we evaluate the efficacy of our proposed objective
on non-simulated datasets.

5.1 Semisynthetic and Real-World Datasets

Algorithms: We compare our method to baselines
corresponding to DAG properties: Empirical Risk
Minimization (ERM, [Vapnik, 1991]), Invariant Risk
Minimization (IRM [Arjovsky et al., 2019]), Vari-
ance Risk Extrapolation (V-REx, [Krueger et al.,
2021]), [Li et al., 2018a]), Group Distributionally
Robust Optimization (GroupDRO), [Sagawa et al.,
2019]), Fish [Shi et al., 2021], CausIRL [Cheval-
ley et al., 2022], and Information Bottleneck methods
(IB_ERM/IB_IRM, [Ahuja et al., 2021]). Addi-
tional baseline methods are provided in the Appendix
A.

We evaluate our proposed method on the semisynthetic
ColoredMNIST [Arjovsky et al., 2019] and real-world

Terra Incognita dataset [Beery et al., 2018]. Given
observed domains Etr = {e : 1, 2, . . . , Etr}, we train on
Etr \ ei and evaluate the model on the unseen domain
ei, for each e ∈ Etr.

ColoredMNIST: The ColoredMNIST dataset [Arjovsky
et al., 2019] is composed of 7000 (2×28×28, 1) images of
a hand-written digit and binary-label pairs. There are
three domains with different correlations between image
color and label, i.e., the image color is spuriously related
to the label by assigning a color to each of the two
classes (0: digits 0-4, 1: digits 5-9). The color is then
flipped with probabilities {0.1, 0.2, 0.9} to create three
domains, making the color-label relationship domain-
specific because it changes across domains. There is
also label flip noise of 0.25, so we expect that the
best accuracy a domain-general model can achieve is
75%, while a non-domain general model can achieve
higher. In this dataset, Zdg corresponds to the original
image, Zspu the color, e the label-color correlation, Y
the image label, and X the observed colored image.
This DAG follows the generative process of Figure 2a
[Arjovsky et al., 2019].

Spurrious PACS: Variables. X: images, Y : non-urban
(elephant, giraffe, horse) vs. urban (dog, guitar, house,
person). Domains. {{cartoon, art painting}, {art
painting, cartoon}, {photo}} [Li et al., 2017]. The
photo domain is the same as in the original dataset.
In the {cartoon, art painting} domain, urban exam-
ples are selected from the original cartoon domain,
while non-urban examples are selected from the origi-
nal art painting domain. In the {art painting, cartoon}
domain, urban examples are selected from the orig-
inal art painting domain, while non-urban examples
are selected from the original cartoon domain. This
sampling encourages the model to use spurious cor-
relations (domain-related information) to predict the
labels; however, since these relationships are flipped
between domains {{cartoon, art painting} and {art
painting, cartoon}, these predictions will be wrong
when generalized to other domains.

Terra Incognita: The Terra Incognita dataset contains
subsets of the Caltech Camera Traps dataset [Beery
et al., 2018] defined by [Gulrajani and Lopez-Paz, 2020].
There are four domains representing different locations
{L100, L38, L43, L46} of cameras in the American
Southwest. There are 9 species of wild animals {bird,
bobcat, cat, coyote, dog, empty, opossum, rabbit, rac-
coon, squirrel} and a ‘no-animal’ class to be predicted.
Like Ahuja et al. [2021], we classify this dataset as
following the generative process in Figure 2c, the Fully
Informative Invariant Features (FIIF) setting. Ad-
ditional details on model architecture, training, and
hyperparameters are detailed in Appendix 5.
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Model Selection. The standard approach for model
selection is a within-domain hold-out validation set.
We find that model selection across hyperparameters
using held-out training domain validation accuracy of-
ten returns non-domain-general models in the ‘hard’
cases. One advantage of our model is that we can do
model selection based on the TCRI condition (condi-
tional independence between the two representations)
on held-out training domain validation examples in the
‘hard’ cases. In the easy case, we expect the empiri-
cal risk minimizer to be domain-general, so selecting
the best-performing training-domain model is sound –
we additionally do this for all baselines (see Appendix
A.1 for further discussion). We find that, empirically,
this heuristic works in the examples we study in this
work. Nevertheless, model selection under distribu-
tion shift remains a significant bottleneck for domain
generalization.

5.2 Results and Discussion

Worst-domain Accuracy. A critical implication of
domain generality is stability – robustness in worst-
domain performance up to domain difficulty. While
average accuracy across domains provides some insight
into an algorithm’s ability to generalize to new domains,
the average hides the variance of performance across
domains. Average improvement can be increased while
the worst-domain accuracy stays the same or decreases,
leading to incorrect conclusions about domain general-
ization. Additionally, in real-world challenges such as
algorithmic fairness where worst-group performance is
considered, some metrics or fairness are analogous to
achieving domain generalization Creager et al. [2021].

Results. TCRI achieves the highest average and worst-
case accuracy across all baselines (Table 3). We find
no method recovers the exact domain-general model’s
accuracy of 75%. However, TCRI achieves over 7%
increase in both average accuracy and worst-case ac-
curacy. Appendix A.2 shows transfer accuracies with
cross-validation on held-out test domain examples (ora-
cle) and TCRI again outperforms all baselines, achiev-
ing an average accuracy of 70.0% ± 0.4% and a worst-
case accuracy of 65.7% ± 1.5, showing that regularizing
for TCRI gives very close to optimal domain-general
solutions.

Similarly, for the Spurious-PACS dataset, we observe
that TCRI outperforms the baselines. TRCI achieves
the highest average accuracy of 63.4%± 0.2 and worst-
case accuracy of 62.3%±0.1 with the next best, VREx,
achieving 58.8± 1.0 and 33.8± 0.0, respectively. Addi-
tionally, for the Terra-Incognita dataset, TCRI achieves
the highest average and worst-case accuracies of 49.2%
± 0.3% and 40.4% ± 1.6% with the next best, Group-
DRO, achieving 47.8± 0.9 and 39.9± 0.7, respectively.

Appendix A.2 shows transfer accuracies with cross-
validation held-out target domain examples (oracle)
where we observe that TCRI also obtains the highest
average and worst-case accuracy for Spurrious-PACS
and Terra Incognita.

Overall, regularizing for TCRI gives the most domain-
general solutions compared to our baselines, achieving
the highest worst-case accuracy on all benchmarks.
Additionally, TCRI achieves the highest average ac-
curacy on ColoredMNIST and Spurious-PAC and the
second highest on Terra Incognita, where we expect
the empirical risk minimizer to be domain-general.

Additional results are provided in the Appendix A.

The Effect of the Total Information Criterion.
Without the TIC loss term, our proposed method is
less effective. Table 5 shows that for Colored MNIST,
the hardest ‘hard’ case we encounter, removing the
TIC criteria, performs worse in average and worst case
accuracy, dropping over 8% and 18, respectively.

Separation of Domain General and Domain Spe-
cific Features. In the case of Colored MNIST, we
can reason about the extent of feature disentanglement
from the accuracies achieved by the domain-general
and domain-specific predictors. Table 4 shows how
much each component of Φ, Φdg and Φspu, behaves
as expected. For each domain, we observe that the
domain-specific predictors’ accuracies follow the same
trend as the color-label correlation, indicating that
they capture the color-label relationship. The domain-
general predictor, however, does not follow such a trend,
indicating that it is not using color as the predictor.

For example, when evaluating the domain-specific pre-
dictors from the +90% test domain experiment (row
+90%) on held-out examples from the +80% training
domain (column "DS Classifier on +80%"), we find
that the +80% domain-specific predictor achieves an
accuracy of nearly 79.9% – exactly what one would
expect from a predictor that uses a color correlation
with the same direction ‘+’. Conversely, the -90% pre-
dictor achieves an accuracy of 20.1%, exactly what one
would expect from a predictor that uses a color correla-
tion with the opposite direction ‘-’. The -90% domain
has the opposite label-color pairing, so a color-based
classifier will give the opposite label in any ‘+’ domain.

Another advantage of this method, exemplified by Table
4, is that if one believes a particular domain is close
to one of the training domains, one can opt to use the
close domain’s domain-specific predictor and leverage
spurious information to improve performance.

On Benchmarking Domain Generalization. Pre-
vious work on benchmarking domain generalization
showed that across standard benchmarks, the domain-
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Table 3: E\etest → etest (model selection on held-out source domains validation set). The ‘mean’ column indicates
the average generalization accuracy over all three domains as the etest distinctly; the ‘min’ column indicates the
worst generalization accuracy.

ColoredMNIST Spurious PACS Terra Incognita
Algorithm average worst-case average worst-case average worst-case
ERM 51.6 ± 0.1 10.0 ± 0.1 57.2 ± 0.7 31.2 ± 1.3 44.2 ± 1.8 35.1 ± 2.8
IRM 51.7 ± 0.1 9.9 ± 0.1 54.7 ± 0.8 30.3 ± 0.3 38.9 ± 3.7 32.6 ± 4.7
GroupDRO 52.0 ± 0.1 9.9 ± 0.1 58.5 ± 0.4 37.7 ± 0.7 47.8 ± 0.9 39.9 ± 0.7
VREx 51.7 ± 0.2 10.2 ± 0.0 58.8 ± 0.4 37.5 ± 1.1 45.1 ± 0.4 38.1 ± 1.3
FISH 51.7 ± 0.2 10.1 ± 0.0 57.8 ± 1.1 34.9 ± 2.4 47.2 ± 1.8 39.5 ± 2.3
Causal IRL 51.6 ± 0.2 10.2 ± 0.1 56.8 ± 0.8 34.4 ± 0.7 48.6 ± 0.3 38.4 ± 1.5
IB_ERM 51.5 ± 0.2 10.0 ± 0.1 56.3 ± 1.1 35.5 ± 0.4 46.0 ± 1.4 39.3 ± 1.1
IB_IRM 51.7 ± 0.0 9.9 ± 0.0 55.9 ± 1.2 33.8 ± 2.2 37.0 ± 2.8 29.6 ± 4.1
TCRI_HSIC 59.6 ± 1.8 45.1 ± 6.7 63.4 ± 0.2 62.3 ± 0.2 49.2 ± 0.3 40.4 ± 1.6

Table 4: Total Information Criterion: Domain General (DG) and Domain Specific (DS) Accuracies. The DG
classifier is shared across all training domains, and the DS classifiers are trained on each domain. The first row
indicates the domain from which the held-out examples are sampled, and the second indicates which domain-
specific predictor is used. {+90%, +80%, -90%} indicate domains – {0.1, 0.2, 0.9} digit label and color correlation,
respectively.

DG Classifier DS Classifier on +90 DS Classifier on +80 DS Classifier on -90
Test Domain
No DS clf.

+90% +80% -90% +90% +80% -90% +90% +80% -90% +90% +80% -90%

+90% 68.7 69.0 68.5 - 90.1 9.8 - 79.9 20.1 - 10.4 89.9
+80% 63.1 62.4 64.4 76.3 - 24.3 70.0 - 30.4 24.5 - 76.3
-90% 65.6 63.4 44.1 75.3 75.3 - 69.2 69.5 - 29.3 26.0 -

Table 5: TIC ablation for Colored MNIST.

Algorithm average worst-case
TCRI_HSIC (No TIC) 51.8 ± 5.9 27.7 ± 8.9
TCRI_HSIC 59.6 ± 1.8 45.1 ± 6.7

unaware empirical risk minimizer outperforms or
achieves equivalent performance to the state-of-the-art
domain generalization methods [Gulrajani and Lopez-
Paz, 2020]. Additionally, Rosenfeld et al. [2022] gives
results that show weak conditions that define regimes
where the empirical risk minimizer across domains is
optimal in both average and worst-case accuracy. Con-
sequently, to accurately evaluate our work and base-
lines, we focus on settings where it is clear that (i) the
empirical risk minimizer fails, (ii) spurious features, as
we have defined them, do not generalize across the ob-
served domains, and (iii) there is room for improvement
via better domain-general predictions. We discuss this
point further in the Appendix A.1.

Oracle Transfer Accuracies. While model selection
is an integral part of the machine learning development
cycle, it remains a non-trivial challenge when there is a
distribution shift. While we have proposed a selection
process tailored to our method that can be generalized

to other methods with an assumed causal graph, we
acknowledge that model selection under distribution
shift is still an important open problem. Consequently,
we disentangle this challenge from the learning problem
and evaluate an algorithm’s capacity to give domain-
general solutions independently of model selection. We
report experimental reports using held-out test-set ex-
amples for model selection in Appendix A Table 6. We
find that our method, TCRI_HSIC, also outperforms
baselines in this setting.

6 Conclusion and Future Work

We reduce the gap in learning domain-general predic-
tors by leveraging conditional independence properties
implied by generative processes to identify domain-
general mechanisms. We do this without independent
observations of domain-general and spurious mecha-
nisms and show that our framework outperforms other
state-of-the-art domain-generalization algorithms on
real-world datasets in average and worst-case across do-
mains. Future work includes further improvements to
the framework to fully recover the strict set of domain-
general mechanisms and model selection strategies that
preserve desired domain-general properties.
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5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. [Not Applicable]
(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if

applicable. [Not Applicable]
(c) The estimated hourly wage paid to participants and the total amount spent on participant compensation.

[Not Applicable]
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Supplements

A Additional Results and Discussion

A.1 On Benchmarking Domain Generalization

Table 6: Oracle (model selection on held-out target domain validation set) E\etest → etest. The ‘mean’ column
indicates the average generalization accuracy over all three domains as the etest distinctly; the ‘min’ column
indicates the worst generalization accuracy.

ColoredMNIST Spurious PACS Terra Incognita
Algorithm average worst-case average worst-case average worst-case
ERM 57.8 ± 0.2 38.4 ± 1.4 59.2 ± 1.3 38.4 ± 1.4 52.9 ± 0.8 42.0 ± 0.6
IRM 68.9 ± 1.6 62.0 ± 4.9 67.5 ± 5.8 53.9 ± 6.6 42.6 ± 4.0 42.7 ± 1.2
GroupDRO 61.1 ± 1.3 37.6 ± 3.6 61.8 ± 1.8 40.0 ± 1.6 50.7 ± 1.0 42.7 ± 1.2
VREx 68.0 ± 2.5 59.4 ± 7.3 62.8 ± 2.4 38.7 ± 0.9 43.2 ± 2.0 34.9 ± 4.2
IB_ERM 65.0 ± 0.1 50.6 ± 0.3 67.3 ± 3.7 53.1 ± 8.0 49.0 ± 0.3 39.9 ± 0.8
IB_IRM 68.4 ± 1.0 58.5 ± 2.8 69.0 ± 1.3 62.3 ± 0.3 32.8 ± 6.6 20.4 ± 7.5
TCRI_HSIC (TCRI) 70.4 ± 0.4 65.7 ± 1.5 69.5 ± 1.1 62.3 ± 0.2 51.2 ± 0.1 43.0 ± 0.4

Oracle Transfer Accuracies. While model selection is an integral part of the machine learning development
cycle, it remains a non-trivial challenge when there is a distribution shift. While we have proposed a selection
process tailored to our method that can be generalized to other methods with an assumed causal graph, we
acknowledge that model selection under distribution shift is still an important open problem. Consequently, we
disentangle this challenge from the learning problem and evaluate an algorithm’s capacity to give domain-general
solutions independently of model selection. We report experimental reports using held-out test-set examples for
model selection in Appendix A Table 6.

In this case, we find that there is indeed a separation between ERM and some domain-generalization algorithms,
suggesting that model selection might be the bottleneck for learning domain-general predictors. Nevertheless, we
still find that our method, TCRI_HSIC, also outperforms baselines in this setting.

Challenges of Benchmarking Domaing Generalization. We show some results below that illustrate the
challenge of accurately evaluating the efficacy of an algorithm for domain generalization. We first note that we
expect ERM (naive) to perform poorly in domain generalization tasks, certainly so when we observe worst-case
shifts at test time. However, like other works [Gulrajani and Lopez-Paz, 2020], we observe that ERM performs as
well as other baselines during transfer on various benchmark datasets. Previous theoretical results [Rosenfeld
et al., 2022] suggest that this observation is indicative of properties of the benchmark domains that may be
sufficient for ERM to give domain-general solutions - specifically that the distribution (and equivalently the loss)
of the target domain can be written as a convex combination of the those in the source domains.

To further investigate this, we develop additional experiments motivated by the ColoredMNIST [Arjovsky et al.,
2019] – since its generative process is well understood. We note that in the +90%, +80%, and -90% domains of
ColoredMNIST, the -90% domain has the opposite relationship between the spurious correlation and the label, so
the use of spurious correlations from {+90%, +80%} generalizes catastrophically to the -90% domain. In this
setting, the baseline algorithms we present, including ERM, achieve poor accuracy in the -90% domain while
maintaining high accuracy in the +90% and +80% domains. Consequently, we investigate two settings, setting a:
observe {+90%, +80%, +70%, -90%} domains and setting b: observe {+90%, +80%, -80%, -90%} domains – we
focus on generalizing to the -90% domain. In setting a, we add another domain with the majority direction in
the relationship between spurious correlation and labels. In setting b, we add another domain with the minority
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direction. Note that in setting a, the closest domain to -90% that can be generated with a convex combination of
the other domains still has a ‘+’ correlation between the color and label. In setting b, however, one can generate
a domain with a ‘-’ correlation between color and label with a convex combination of the other domains. Thus,
we expect the empirical risk minimizer to give domain-general solutions in setting b but not in setting a.

We use Oracle model selection (held-out target data) to remove the effect of model selection for all methods
in the results. We find that in setting a, where we add a domain (+70%), we observe that the generalization
accuracy to the -90% domain is still very different from the other domains (Table 7).

Table 7: Colored MNIST setting a. Columns {+90%, +80%, +70%, -90%} indicate domains – {0.1, 0.2, 0.3, 0.9}
digit label and color correlation, respectively. We report domain accuracies over 3 trials each. We use the oracle
selection method – held out target data. E\etest → etest.

Algorithm +90% +80% +70% -90%
ERM 72.8 ± 0.3 74.7 ± 0.3 73.3 ± 0.1 16.3 ± 1.5
IRM 49.0 ± 0.1 54.2 ± 2.0 50.3 ± 0.3 43.8 ± 2.8
GroupDRO 71.0 ± 0.6 72.2 ± 0.3 70.7 ± 0.9 36.4 ± 4.2
VREx 74.1 ± 1.3 72.6 ± 0.5 72.1 ± 0.5 19.5 ± 5.5
TCRI (HSIC) 72.1 ± 1.5 73.6 ± 0.4 72.6 ± 0.4 49.9 ± 0.3

However, in setting b, where we add a domain (-80%), we observe that the generalization accuracy to the -90%
domain is on par with the other domains (Table 8).

Table 8: Colored MNIST setting b. Columns {+90%, +80%, -80%, -90%} indicate domains – {0.1, 0.2, 0.8, 0.9}
digit label and color correlation, respectively. We report the average domain accuracies over 3 trials each. We use
the oracle selection method – held out target data. E\etest → etest.

Algorithm +90% +80% -80% -90%
ERM 58.4 ± 1.3 67.0 ± 0.5 64.2 ± 2.0 52.6 ± 3.2
IRM 56.7 ± 3.3 56.6 ± 2.8 51.6 ± 0.7 51.7 ± 0.7
GroupDRO 69.7 ± 0.8 71.7 ± 0.3 72.0 ± 0.2 71.4 ± 1.9
VREx 67.4 ± 1.9 70.4 ± 0.1 71.2 ± 0.2 59.4 ± 4.3
TCRI (HSIC) 62.2 ± 4.4 70.0 ± 1.3 67.9 ± 1.4 65.4 ± 2.8

This illustrates the challenge of accurately evaluating an algorithm’s ability to give domain-general predictions.
We note that it is generally difficult to distinguish between setting a and setting b. The primary signature we
see is some consistency between the empirical risk minimizer and the other baselines. Gulrajani and Lopez-Paz
[2020] observe a similar trend for standard benchmarks for domain generalization. Hence, we focus our empirical
evaluations in this work on settings where we know that the ERM solution fails by design.

A.2 ColoredMNIST

ColoredMNIST: The ColoredMNIST dataset [Arjovsky et al., 2019] is composed of 7000 (2× 28× 28, 1) images of
a hand-written digit and binary-label pairs. There are three domains with different correlations between image
color and label, i.e., the image color is spuriously related to the label by assigning a color to each of the two
classes (0: digits 0-4, 1: digits 5-9). The color is then flipped with probabilities {0.1, 0.2, 0.9} to create three
domains, making the color-label relationship domain-specific because it changes across domains. There is also
label flip noise of 0.25, so we expect that the best accuracy a domain-general model can achieve is 75%, while a
non-domain general model can achieve higher. In this dataset, Zdg corresponds to the original image, Zspu the
color, e the label-color correlation, Y the image label, and X the observed colored image. This DAG follows the
generative process of Figure 2a

We use MNIST-ConvNet Gulrajani and Lopez-Paz [2020] backbones for the MNIST datasets (Table 10). Both
Φdg and Φspu are linear layers of size 128× 128 that are appended to the backbone. The predictors (classification
hyperplanes) θc, {θ1, θ2} are also parameterized to be linear and appended to the Φdg and Φ, respectively.
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Table 9: Colored MNIST Hyperparameters. Additional hyperparameters provided in
https://github.com/olawalesalaudeen/tcri.

Algorithm Hyperparameter Default Random Distribution

All Learning Rate 1−3 10Uniform(−4.5,−2.5)

Batch Size 64 2Uniform(3,9)

TCRI β penalty weight 100 10Uniform(−1, 5)
annealing steps 500 10Uniform(2.5, 5)

Table 10: MNIST ConvNet architecture. All convolutions use 3×3 kernels and "same" padding.

# Layer
1 Conv2D (in=d, out=64)
2 ReLU
3 GroupNorm (groups=8)
4 Conv2D (in=64, out=128, stride=2)
5 ReLU
6 GroupNorm (groups=8)
7 Conv2D (in=128, out=128)
8 ReLU
9 GroupNorm (groups=8)
10 Conv2D (in=128, out=128)
11 ReLU
12 GroupNorm (8 groups)
13 Global average-pooling

We do a random search to select hyperparameters using the same scheme as Gulrajani and Lopez-Paz [2020]
(https://github.com/facebookresearch/DomainBed). We select 25 hyperparameters with 5 random restarts each
to generate error bars.

We show transfer accuracies with both source and target domain validation for model selection in Tables 11-12.
We find that TCRI outperforms all baselines in average and worst-case accuracy.

Table 11: Colored MNIST Transfer Accuracy – model selection on held-out source validation set. Columns {+90%,
+80%, -90%} indicate domains – {0.1, 0.2, 0.9} digit label and color correlation, respectively. E\etest → etest.

Domains Domain Accuracy Statistics
Algorithm +90% +80% -90% Avg Std Min
ERM 71.6 ± 0.3 73.1 ± 0.1 10.0 ± 0.1 51.6 ± 0.1 29.4 ± 0.1 10.0 ± 0.1
IRM 72.1 ± 0.1 73.0 ± 0.3 9.9 ± 0.1 51.7 ± 0.1 29.5 ± 0.1 9.9 ± 0.1
GroupDRO 72.6 ± 0.2 73.4 ± 0.2 9.9 ± 0.1 52.0 ± 0.1 29.8 ± 0.1 9.9 ± 0.1
VREx 72.2 ± 0.2 72.7 ± 0.3 10.2 ± 0.0 51.7 ± 0.2 29.3 ± 0.1 10.2 ± 0.0
IB_ERM 71.0 ± 0.4 73.4 ± 0.3 10.0 ± 0.1 51.5 ± 0.2 29.4 ± 0.1 10.0 ± 0.1
IB_IRM 71.7 ± 0.2 73.4 ± 0.1 9.9 ± 0.0 51.7 ± 0.0 29.5 ± 0.0 9.9 ± 0.0
TCRI_HSIC 67.2 ± 2.3 65.6 ± 3.4 45.9 ± 6.9 59.6 ± 1.8 11.4 ± 3.3 45.1 ± 6.7

A.3 Spurrious PACS

Spurious–PACS. Variables. X: images, Y : non-urban (elephant, giraffe, horse) vs. urban (dog, guitar, house,
person). Domains. {{cartoon, art painting}, {art painting, cartoon}, {photo}} [Li et al., 2017]. The photo
domain is the same as in the original dataset. In the {cartoon, art painting} domain, urban examples are selected
from the original cartoon domain, while non-urban examples are selected from the original art painting domain.
In the {art painting, cartoon} domain, urban examples are selected from the original art painting domain, while
non-urban examples are selected from the original cartoon domain. This sampling encourages the model to use
spurious correlations (domain-related information) to predict the labels; however, since these relationships are

https://github.com/olawalesalaudeen/tcri
https://github.com/facebookresearch/DomainBed
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Table 12: Colored MNIST Transfer Accuracy – model selection on held-out target validation set accuracy.
Columns {+90%, +80%, -90%} indicate domains – {0.1, 0.2, 0.9} digit label and color correlation, respectively.
E\etest → etest.

Domains Domain Accuracy Statistics
Algorithm +90% +80% -90% Avg Std Min
ERM 71.7 ± 0.4 73.4 ± 0.1 28.3 ± 0.2 57.8 ± 0.2 20.9 ± 0.2 28.3 ± 0.2
IRM 72.3 ± 0.3 72.4 ± 0.1 62.0 ± 4.9 68.9 ± 1.6 5.3 ± 2.0 61.5 ± 4.5
GroupDRO 73.5 ± 0.4 72.4 ± 0.1 37.6 ± 3.6 61.1 ± 1.3 16.7 ± 1.7 37.6 ± 3.6
VREx 72.0 ± 0.1 72.6 ± 0.4 59.4 ± 7.3 68.0 ± 2.5 7.6 ± 2.2 57.7 ± 6.0
IB_ERM 71.3 ± 0.2 73.2 ± 0.2 50.6 ± 0.3 65.0 ± 0.1 10.2 ± 0.2 50.6 ± 0.3
IB_IRM 74.1 ± 0.9 72.7 ± 0.4 58.5 ± 2.8 68.4 ± 1.0 7.1 ± 1.2 58.5 ± 2.8
TCRI_HSIC 72.8 ± 0.4 72.7 ± 0.2 65.7 ± 1.5 70.4 ± 0.4 3.4 ± 0.7 65.7 ± 1.5

flipped between domains {{cartoon, art painting} and {art painting, cartoon}, these predictions will be wrong
when generalized to other domains.

Table 13: Spurrious PACS Hyperparameters. Additional hyperparameters provided in
https://github.com/olawalesalaudeen/tcri.

Algorithm Hyperparameter Default Range

All Learning Rate 1−3 10Uniform(−4.5,−2.5)

Batch Size 64 2Uniform(3,9)

TCRI β penalty weight 100 10Uniform(−1, 5)
annealing steps 500 10Uniform(2.5, 5)

We use a ResNet-50 backbone [He et al., 2016]. Φdg and Φspu are linear layers of size 2048 × 2048 that are
appended to the backbone. The predictors (classification hyperplanes) θc, {θ1, θ2, θ3} are linear and appended to
Φdg and Φ layers, respectively.

Hyperparameters: We do a random search to select hyperparameters using the same scheme as Gulrajani
and Lopez-Paz [2020] (https://github.com/facebookresearch/DomainBed). We select 5 hyperparameters with 3
random restarts each to generate error bars.

We show transfer accuracies with both source and target domain validation for model selection in Tables 14-15.
We find that TCRI outperforms all baselines in average and worst-case accuracy.

Table 14: Spurious–PACS Transfer Accuracy – model selection on held-out source validation set. E\etest → etest.

Domains Domain Accuracy Statistics
Algorithm C x A A x C P mean std min
ERM 31.2 ± 1.3 42.8 ± 0.7 97.6 ± 0.2 57.2 ± 0.7 29.0 ± 0.4 31.2 ± 1.3
IRM 30.3 ± 0.3 39.0 ± 1.3 94.9 ± 1.4 54.7 ± 0.8 28.6 ± 0.8 30.3 ± 0.3
GroupDRO 37.7 ± 0.7 42.1 ± 1.6 95.7 ± 0.5 58.5 ± 0.4 26.4 ± 0.3 37.7 ± 0.
VREx 37.5 ± 1.1 43.0 ± 0.5 95.7 ± 1.5 58.8 ± 0.4 26.2 ± 1.0 37.5 ± 1.1
IB_ERM 35.5 ± 0.4 48.6 ± 3.3 84.8 ± 0.6 56.3 ± 1.1 20.8 ± 0.6 35.5 ± 0.4
IB_IRM 33.8 ± 2.2 38.8 ± 3.0 95.1 ± 1.5 55.9 ± 1.2 27.8 ± 1.5 33.8 ± 0.4
TCRI (HSIC) 62.8 ± 0.1 62.3 ± 0.2 65.0 ± 0.4 63.4 ± 0.2 1.2± 0.2 62.3 ± 0.2

https://github.com/olawalesalaudeen/tcri
https://github.com/facebookresearch/DomainBed
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Table 15: Oracle Spurious–PACS Transfer Accuracy – model selection on held-out target validation set. E\etest →
etest.

Domains Domain Accuracy Statistics
Algorithm C x A A x C P mean std min
ERM 38.4 ± 1.4 43.4 ± 1.9 95.9 ± 0.6 59.2 26.0 38.4
IRM 62.8 ± 0.1 53.9 ± 6.6 85.8 ± 8.2 67.5 13.4 53.9
GroupDRO 40.0 ± 1.6 49.7 ± 2.9 95.7 ± 0.6 61.8 24.3 40.0
VREx 55.8 ± 5.5 38.7 ± 0.9 93.8 ± 0.8 62.8 23.0 38.7
IB_ERM 53.1 ± 8.0 55.4 ± 5.7 93.5 ± 1.8 67.3 18.5 53.1
IB_IRM 62.8 ± 0.1 62.3 ± 0.3 81.8 ± 7.0 69.0 9.1 62.3
TCRI (HSIC) 64.0 ± 0.7 62.3 ± 0.2 82.4 ± 5.7 69.5 9.1 62.3

A.4 Terra Incognita

The Terra Incognita dataset contains subsets of the Caltech Camera Traps dataset [Beery et al., 2018] defined by
[Gulrajani and Lopez-Paz, 2020]. Four domains represent different locations {L100, L38, L43, L46} of cameras in
the American Southwest. There are 10 different species of wild animals {bird, bobcat, cat, coyote, dog, empty,
opossum, rabbit, raccoon, squirrel} (classes) to be predicted. Like Ahuja et al. [2021], we classify this dataset as
following the generative process in Figure 2c, the Fully Informative Invariant Features (FIIF) setting.

Table 16: Terra Incognita Hyperparameters. Additional hyperparameters provided in
https://github.com/olawalesalaudeen/tcri.

Algorithm Hyperparameter Default Range

All Learning Rate 1−3 10Uniform(−4.5,−2.5)

Batch Size 64 2Uniform(3,9)

TCRI β penalty weight 100 10Uniform(−1, 5)
annealing steps 500 10Uniform(0, 4)

We use a ResNet-50 backbone [He et al., 2016]. Φdg and Φspu are linear layers of size 2048 × 2048 that are
appended to the backbone. The predictors (classification hyperplanes) θc, {θ1, θ2, θ3, θ4} are linear and appended
to Φdg and Φ layers, respectively.

Hyperparameters: We do a random search to select hyperparameters using the same scheme as Gulrajani
and Lopez-Paz [2020] (https://github.com/facebookresearch/DomainBed). We select 5 hyperparameters with 3
random restarts each to generate error bars.

We show transfer accuracies with both source and target domain validation for model selection in Tables 17-18.
We find that TCRI outperforms all baselines except ERM on average and outperforms all baselines in worst-case
accuracy.

Table 17: Terra Incognita Transfer Accuracy – model selection on held-out source validation set. E\etest → etest.

Domains Domain Accuracy Statistics
Algorithm L100 L38 L43 L46 Avg Std Min
ERM 43.6 ± 3.9 45.2 ± 0.6 53.0 ± 1.2 35.1 ± 2.8 44.2 ± 1.8 6.8 ± 1.0 35.1 ± 2.8
IRM 43.9 ± 3.3 35.7 ± 4.0 37.7 ± 7.8 38.3 ± 2.4 38.9 ± 3.7 5.4 ± 1.8 32.6 ± 4.7
GroupDRO 53.8 ± 4.6 40.5 ± 0.7 55.3 ± 1.5 41.8 ± 1.1 47.8 ± 0.9 7.7 ± 0.9 39.9 ± 0.7
VREx 48.8 ± 2.0 38.1 ± 1.3 54.4 ± 0.6 39.0 ± 1.4 45.1 ± 0.4 7.0 ± 0.9 38.1 ± 1.3
IB_ERM 46.1 ± 4.5 40.7 ± 0.7 55.2 ± 0.8 42.2 ± 1.1 46.0 ± 1.4 6.4 ± 0.8 39.3 ± 1.1
IB_IRM 39.7 ± 7.3 40.8 ± 2.3 34.7 ± 4.3 32.9 ± 2.6 37.0 ± 2.8 6.7 ± 1.3 29.6 ± 4.1
TCRI_HSIC 54.6 ± 2.4 48.6 ± 2.0 53.2 ± 1.0 40.4 ± 1.6 49.2 ± 0.3 6.1 ± 1.1 40.4 ± 1.6

https://github.com/olawalesalaudeen/tcri
https://github.com/facebookresearch/DomainBed
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Table 18: Terra Incognita Transfer Accuracy – model selection on held-out target validation set. E\etest → etest.

Domains Domain Accuracy Statistics
Algorithm L100 L38 L43 L46 Avg Std Min
ERM 58.5 ± 1.8 52.0 ± 1.3 59.2 ± 0.2 42.0 ± 0.6 52.9 ± 0.8 7.0 ± 0.5 42.0 ± 0.6
IRM 53.0 ± 0.9 48.0 ± 1.8 36.3 ± 9.6 33.2 ± 3.9 42.6 ± 4.0 9.6 ± 1.7 30.8 ± 5.4
GroupDRO 56.2 ± 3.0 45.2 ± 2.3 58.0 ± 0.2 43.3 ± 0.7 50.7 ± 1.0 6.9 ± 0.9 42.7 ± 1.2
VREx 43.2 ± 1.5 49.3 ± 1.2 41.5 ± 7.8 38.9 ± 1.1 43.2 ± 2.0 6.5 ± 1.8 34.9 ± 4.2
IB_ERM 55.6 ± 1.7 47.2 ± 1.1 53.4 ± 0.7 39.9 ± 0.8 49.0 ± 0.3 6.4 ± 0.5 39.9 ± 0.8
IB_IRM 40.2 ± 8.2 31.9 ± 11.8 29.4 ± 4.4 29.7 ± 3.8 32.8 ± 6.6 8.2 ± 1.0 20.4 ± 7.5
TCRI_HSIC 57.7 ± 1.8 50.1 ± 1.8 54.1 ± 0.6 43.0 ± 0.4 51.2 ± 0.1 5.8 ± 0.7 43.0 ± 0.4

B DAGs

e Zdg

Zspu

Y

X

Figure 4: Partial Ancestral Graph (PAG). Dashed edges indicate that the edge may or may not exist. The
combination of Y → Zdg → Zspu, and Y → Zdg, e→ Zdg is not allowed.

B.1 On Valid DAGS:

We consider other edges that could be introduced to Figure 4 where Zdg ̸⊥⊥ Zspu |Y, e, Zspu ̸⊥⊥ Y |Zdg, or are not
included in Figure 5. and show that these edges either make the problem intractable or require new assumptions
about the generative process – note we do not discuss edges that induce a cycle, thus, are invalid.

(i) e− Y : we do have a direct edge in either direction e between Y otherwise, Y is always dependent on e and
the problem becomes intractable.

(ii) e−X: we do have a direct edge from e−X without making additional parametric assumptions about the
role of e in Γ(Zdg, Zspu, e).

(iii) Zspu → Y : we do have both Zdg → Y and Zspu → Y , since then, both mechanisms are domain general.
WLOG, we let Zspu denote the features that never have domain-general mechanisms to Y .

(iv) Y → Zdg → Zspu and Y → Zdg ← e: conditioning on Zdg and/or Zspu make Y dependent on e, so Y is
always dependent on e and the problem becomes intractable.

Table 19: Generative Processes and Sufficient Conditions for Domain-Generality

Graphs in Figure 5
(a) (b) (c)

Zdg ⊥⊥ Zspu | {Y, e} ✓ ✓ ✗

Identifying Zdg is necessary ✓ ✓ ✗

B.2 Fully Informative Invariant Features

We briefly summarize Ahuja et al. [2021]’s results on minimax-optimality of Empirical Risk Minimization in the
Fullly Informative Invariant Features setting (their Lemma 4). First, we informally state their assumptions.
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Zspu
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(c)

Figure 5: Generative Processes. Graphical model depicting the structure of our data-generating process -
shaded nodes indicate observed variables. X represents the observed features, Y represents observed targets, and
e represents domain influences. There is an explicit separation of domain-general Zdg and domain-specific Zspu
features combined to generate observed X. Dashed edges indicate the possibility of an edge.

Table 20: Generative Processes and Sufficient Algorithms

Graphs in Figure 5
(a) (b) (c)

Solved by ERM ✗ ✗ ✓
Solved by TCRI ✓ ✓ ✓

Assumption 2: Linear structural equation model.

Assumption 3-4: Bounded Features.

Assumption 8: wdg partitions Z up to noise ηY .

These assumptions are implied by our Assumption 4.1.

B.2.1 Proof Sufficiency of ERM [Ahuja et al., 2021]

If Assumptions 2, 4, and 8 hold, then there exists a classifier that puts a non-zero weight on the spurious feature
and continues to be Bayes optimal in all the training environments.

Proof. Choose an arbitrary non-zero vector and derive a bound on the margin of (wdg, γ), where wdg is the true
(optimal) linear predictor of Y from Zdg. Recall domain-general and domain-specific features zdg ∈ Zdg, zspu ∈
Zspu, respectively. Let y∗ = sign(wdg · zdg). The margin of (wdg, γ)) at point (zdg, zspu) with respect to y∗ is
defined as:

y∗(wdg · zdg) + y∗(γ · zspu).

Using Cauchy-Schwartz inequality, we get

|y∗(γ · zspu)| = |γ · zspu| ≤ ∥∥γ∥zspu∥.

Since Zspu is bounded, one can set γ sufficiently small enough to control y∗(γ · Zspu). If ∥γ∥ ≤ c
2zsup , then

|γ · zspu| ≤ c
2 , where zsup satisfies that ∥z∥ ≤ zsup∀z ∈ Zspu. From Assumption 8, ∃ c > 0 s.t.,

y∗(wdg · zdg) ≥ c.

Using |γ · zspu| ≤ c
2 , the margin becomes

y∗(wdg · zdg) + y∗(γ · zspu) ≥ c− |γ · zspu| ≥
c

2
.

From the above equation, it follows that sign
(
(wdg, γ) · (zdg, zspu)

)
= sign

(
(wdg, 0) · (zdg, zspu)

)
∀zdg ∈ Zdg, zspu ∈

Zspu.
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Now, this condition is used to compute the error of a spurious classifier, i.e., based on (, γ). Define gspu =
I ◦ (wdg, γ) ◦ Γ−1, where I(·) is an indicator function that returns 1 if its input is ≥ 0. The error achieved by gspu
is

Re(gspu) = E
[
Y e ⊕ I((wdg, γ) · (zdg, zspu)

]
= E

[
I
(
(wdg, 0) · (zdg, zspu)

)
⊕ ηy ⊕ I

(
(wdg, γ) · (zdg, zspu)

)]
= E[ηy].

The error achieved by gspu is then due to the noise in observed Y and is, therefore, optimal in all domains.

It follows from above that since gspu is Bayes optimal in every domain, it is also the empirical risk minimizer
(ERM) as it minimizes the sum of risks across training domains.

C Proof of Proposition 4.3

Assume that Φdg(X) and Φspu(X) are correlated with Y . Given Assumptions 4.1-4.2 and a representation
Φ = Φdg ⊕ Φspu that satisfies TIC, Φdg(X) = Zdg ⇐⇒ Φ satisfies TCRI. (see Appendix

Proof. ‘only if’. Assume that Φdg(X) = Zdg. By the Total Information Criterion, we have that Φspu(X) = Zspu.
We observe the following paths from Zdg to Zspu: (i) Zdg → Y → Zspu, (ii) Zdg ← e → Zspu, and (iii)
Zdg → X → Zspu. Conditioning on Y, e blocks both paths (i) and path (ii); path (iii) contains a collider
(Zdg and Zspu are common causes of X), so this path is blocked when X is not in the conditioning set. So,
Zspu ⊥⊥ Zdg |Y, e and therefore Φdg(X) ⊥⊥ Φspu(X) |Y, e, which completes this direction.

‘if’. Assume that Φ satisfies TCRI. We proceed by contradiction. Let Φ = [Φdg; Φspu]. We consider the following
scenario for Φdg ̸= Zdg.

Scenario 1 (causal aggregation): Assume that Φdg(X) ⊂ Zdg. From TIC, we have that Z†
dg ⊂ Φspu(X), where

Z†
dg ⊂ Zdg is the subset of Zdg not captured by Φdg. Since Φdg(X) and Z†

dg are colliders on Y , given both are
subsets of Zdg, Φdg(X) ̸⊥⊥ Φspu(X)|Y, e, violating TCRI and giving a contradiction. So, Zdg ⊂ Φ(X)

Scenario 2 (anticausal exclusion): Assume that Φdg(X) ⊂ Zspu. From TIC, we have that Z†
spu ⊂ Φspu(X),

where Z†
spu ⊂ Zspu is the subset of Zspu not captured by Φdg. From Assumption 4.2 (faithfulness), we have that

Φdg(X) ̸⊥⊥ Φspu(X)|Y, e, violating TCRI and giving a contradiction. So, Zspu ̸⊂ Φdg(X).

Combining scenarios 1-2, it follows that Φdg(X) = Zdg.
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