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Abstract

We study the problem of domain adaptation
under distribution shift, where the shift is
due to a change in the distribution of an un-
observed, latent variable that confounds both
the covariates and the labels. In this set-
ting, neither the covariate shift nor the la-
bel shift assumptions apply. Our approach
to adaptation employs proximal causal learn-
ing, a technique for estimating causal effects
in settings where proxies of unobserved con-
founders are available. We demonstrate that
proxy variables allow for adaptation to distri-
bution shift without explicitly recovering or
modeling latent variables. We consider two
settings, (i) Concept Bottleneck: an ad-
ditional “concept” variable is observed that
mediates the relationship between the covari-
ates and labels; (ii) Multi-domain: train-
ing data from multiple source domains is
available, where each source domain exhibits
a different distribution over the latent con-
founder. We develop a two-stage kernel es-
timation approach to adapt to complex dis-
tribution shifts in both settings. In our ex-
periments, we show that our approach out-
performs other methods, notably those which
explicitly recover the latent confounder.
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1 Introduction

The goal of domain adaptation is to transfer an accu-
rate model from a labeled source domain to an unla-
beled target domain, which has a different but related
distribution (Pan et al., 2010; Koh et al., 2021; Malinin
et al., 2021). Tt is motivated by the fact that labeling
data is often labor intensive, and sometimes requires
domain expertise. For example, the distribution of pa-
tients diagnosed with a condition from hospital A and
hospital B may differ due to patients’ socioeconomic
status, demographics, and other factors. However, la-
beled data might be only be available at hospital A
and not at hospital B (e.g., due to less funding). As a
result, an accurate model for patients from hospital A
may perform poorly for patients from hospital B.

In order to provide guarantees on the accuracy of a
transferred model, one of two classical assumptions
have been made: [label shift or covariate shift. Label
shift (Buck et al., 1966; Lipton et al., 2018) assumes
that the distribution of a label P(Y') shifts between
source and target domains, but the conditional dis-
tribution P(X | Y) does not. Conversely, covariate
shift (Shimodaira, 2000) assumes that the covariate
distribution P(X) shifts between domains, but the dis-
tribution P(Y | X) stays the same. Each assumption
provides theoretical guarantees on the generalization
of a transferred classifier. In fact, without any as-
sumptions, the source and target domains could differ
arbitrarily, making guarantees impossible. However,
these assumptions are often too restrictive to apply in
real-world settings (Zhang et al., 2015; Schrouff et al.,
2022). For instance, if covariates X and labels Y are
confounded by a third variable U, it is possible for
neither P(X |Y) or P(Y | X) to be equal across do-
mains. For example, demographic information U could
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confound the relationship between a diagnosis Y and
a radiological image X. In this example, if two hos-
pitals have different distributions over demographics,
both label shift and covariate shift adaptation meth-
ods will fail to transfer a classifier across hospitals.

To address this, recent work has introduced a latent
shift assumption: the distribution of U, an unob-
served latent confounder of X and Y, shifts between
the source and target domain (Alabdulmohsin et al.,
2023). In this setting, all distributions of X and Y
(without conditioning on U) may differ across the do-
mains, violating label and covariate shift assumptions.

Contributions. We propose techniques for domain
adaptation under the latent shift assumption that are
guaranteed to identify the optimal predictor E[Y | ]
in the target domain. We make use of proxy methods
(Miao et al., 2018), which are a recently developed
framework for causal effect estimation in the pres-
ence of a hidden confounder U, given indirect proxy
information on U. Compared to prior work (Alab-
dulmohsin et al., 2023), our techniques do not re-
quire: identifying the distribution of the latent vari-
able U, that U be discrete, or further linear inde-
pendence assumptions. We consider two settings: (1)
Concept Bottleneck: we observe in both domains
a proxy W of the unobserved confounder U and a
concept C that mediates the direct relationship be-
tween X and Y (Alabdulmohsin et al., 2023), or (2)
Multi-Domain: we do not observe C in either do-
main, but have access to observations from multiple
source domains. For both settings, we provide guar-
antees for identifying E[Y | z] without observing Y
in the target domain. When E[Y | z] is identifi-
able, we develop practical two-stage kernel estima-
tors to perform adaptation. The code is available at
https://github.com/koyejo-lab/ProxyDA.

2 Related Work

The development of techniques for learning robust
models and adapting to distribution shift has a long
history in machine learning, but recently has received
increased attention (Shen et al., 2021; Zhou et al.,
2022; Wang et al., 2022).

Causality for domain adaptation. Our work is in-
spired by techniques that formulate the covariate/label
shift settings as assumptions on the causal structure
for domain adaptation and distributional robustness
(e.g, Scholkopf et al. (2012); Peters et al. (2015); Zhang
et al. (2015); Subbaswamy et al. (2019); Rothenh&usler
et al. (2021); Veitch et al. (2021); Magliacane et al.
(2018); Arjovsky et al. (2019); Ganin et al. (2016);
Ben-David et al. (2010); Oberst et al. (2021)).

Proximal causal inference. Our identification tech-

nique is inspired by approaches used to identify causal
effects with unobserved confounding with observed
proxies (Kuroki and Pearl, 2014; Miao et al., 2018;
Deaner, 2018; Tchetgen et al., 2020; Mastouri et al.,
2021; Cui et al., 2023; Xu and Gretton, 2023). These
approaches design ‘bridge functions’ to connect quan-
tities involving a proxy W with those of the label Y.
The beauty of this approach is that these bridge func-
tions are implicitly a marginalization over U. This
allows these approaches to identify causal quantities
without identifying distributions involving U.

Latent shift. Our work is most closely related to Al-
abdulmohsin et al. (2023), who introduced the setting
of latent shift with proxies W and concepts C. They
showed that the optimal predictor E[Y | z] is identi-
fiable in the target domain if W and C are observed
in the source domain and X is observed in the target
domain. To do so, they required (a) identification of
distributions involving U, (b) that U is a discrete vari-
able, (c) knowledge of the dimensionality of U, and
(d) additional linear independence assumptions. In
contrast, our work derives identification results for ar-
bitrary U, and does not require any of (a)-(d). How-
ever, there is no free lunch: to achieve this, we require
that proxies W are observed in the target, and either
that: (i) concepts C' are also observed in the target,
or (ii) we observe multiple source domains. For (ii) we
do not require C in either the source or the target, but
for full identification we require that U is discrete.

3 Problem Framework

Let P(-) and Q(-) denote the probability distribution
functions of the source domain and target domain, re-
spectively. Let p and ¢ indicate source and target
quantities. Our goal is to study identification and esti-
mation of the optimal target predictor E,[Y" | 2] when
Y is not observed in the target domain.

Concept Bottleneck. The first setting we study is
described by the graph in Figure 1c. We have two addi-
tional variables: (i) proxies W, which provide auxiliary
information about U, or can be seen as a noisy version
of it (Kuroki and Pearl, 2014), and (ii) concepts C,
which mediate or ‘bottleneck’ the relationship between
the covariates X and labels Y (Goyal et al., 2019; Koh
et al., 2020). For example, Koh et al. (2020) describe
a setting where the concepts C are high-level clinical
and morphological features of a knee X-ray X, which
mediate the relationship with osteoporosis severity Y.
In this example, U could describe demographic varia-
tions that alter symptoms X, C' and outcome Y, and
the proxies W could include patient background and
clinical history (e.g., prior diagnoses, medications, pro-
cedures, etc). For the source domain we assume we
observe (X,C,W,Y) ~ P and for the target domain
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(a) Covariate shift

(b) Label shift

(c) Concept Bottleneck shift

n

) Multi-Domain shift

Figure 1: Causal diagrams. The shaded circle denotes unobserved variable and the solid circle denotes observed
variable. X is the covariate, Y is the response, C' is the concept, W is the proxy, Z is the domain-related variable,

and U is the latent variable.

we observe (X,C,W)~Q.

We formalize the notion of latent shift, as introduced
in Alabdulmohsin et al. (2023).

Assumption 1 (Concept Bottleneck, Alabdulmohsin
et al. (2023)). The shift between P and Q is lo-
cated in unobserved U, i.e., there is a latent shift
PU) # QU), but P(V | U) = Q(V | U), where
Vec{WXCY}.

This assumption states that every variable condi-
tioned on U is invariant across domains. However,

P(U) # Q(U), none of the marginal distributions
are: P(V) # Q(V) for V< {W,X,C,Y}. This as-
sumption is a generalization of covariate shift P(Y |
X,U) = Q(Y | X,U) (Shimodaira, 2000) and label
shift P(X | Y,U)=Q(X | Y,U) (Buck et al., 1966),
with associated graphs in Figure la—1b.

Assumption 2 (Structural assumption). Graphs in
Figure 1 are faithful and Markov (Spirtes et al., 2000).

Under Assumption 2, we have the following conditional
independence properties for the graph in Figure lc:
Y L X|{U,C}, WI{X,C}|U.
With this conditional independence structure, {U, C}
blocks the information from X to Y and U blocks the
information flow from W to {X,C}. We will see in
Section 4 that these assumptions allow us to obtain
QY | z) from Q(W,C' | x) in the target domain, where
the latter is a function of observed quantities.

Multi-domain. In the second setting, suppose we do
not observe the concepts C' in any domain, but instead
observe data from multiple source domains, according
to the graph in Figure 1d. For instance, we may want
to learn a classifier for a target hospital that has only
unlabelled data, using data from several source hospi-
tals with labelled data. Here, let Z be a random vari-
able in Z denoting a prior over the source domains, and
let P(U|Z) be the distribution of U given Z. We make
kz draws from Z, indexed by r € {1, ..., kz}, and write
{z1,..., 2k, } =t Z, € Z. For each source domain z,,

we observe (X, W,Y)~P(X,W,Y|z):=FP.(X,W,Y).
For the target, we denote it with index kz + 1 and
only observe (X, W)~ P(X,W|zk,+1):=Q(X,W). In
general let P.(V):=P(V]z,) and Q(V):=P(V|zk,+1)
for any V < {W, X,Y,U}. For this setting we replace
Assumption 1 with the following shift assumption.

Assumption 3 (Multi-Domain). For each z,%' € Z,
such that z # z', we have P(Ulz) # P(U|z") # Q(U).

Note that Assumption 2 implies the following the con-
ditional independence property in Figure 1d:

(Y, X W} 1 Z|U.

Note that under Assumption 3, we allow all joint
distributions to be different P(W,X,U,Y|z) #
PW, X, UY|Z) # QW,X,UY) for z +# 2 € Z,.

4 Identification under Latent Shifts

Our identification techniques are inspired by proximal
causal inference (Tchetgen et al., 2020). The key idea
is to design so-called “bridge” functions to identify dis-
tributions confounded by unobserved variables. We
first show that with additional proxies and concepts,
E4[Y | z] is identifiable under any latent shift.

4.1 Identification with Concepts

To prove identifiability, we need certain assump-
tions to hold for the shift. The first is a regular-
ity assumption, also known as a completeness con-
dition, and is commonly used to identify causal es-
timands (D’Haultfoeuille, 2011; Miao et al., 2018).

Assumption 4 (Informative variables). Let g be any
mean squared integrable function. Both the source do-
main and the target domain, (f, F) € {(p, P), (q,Q)},
satisfy E¢[g(U) | ,c] = 0 for all x € X,c € C if and
only if g(U) = 0 almost surely with respect to F(U).

At a high level, completeness states that the X must
have sufficient variability related to the change of U.
This is a common assumption made in proximal causal
inference (cf. Condition (i) in Miao et al. (2018) and
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Assumption 3 in Mastouri et al. (2021)). For more
details on the justification of completeness assumption,
see the supplementary material of Miao et al. (2022).

Second, we need a guarantee on the support of u e U.
Intuitively, if a w € U has non-zero probability in the
target domain, it should have non-zero probability in
the source domain as well. Otherwise, it is impossi-
ble to adjust to certain shifts (as we never see these
regimes in the source domain). This is similar to the
positivity assumption commonly made in causality lit-
erature (Herndn and Robins, 2006).

Assumption 5 (Positivity). For anyu e U, if Q(u) >
0 then P(u) > 0.

If data are generated according to Figure lc, and the
regularity conditions 8-10 hold (see Appendix A.2),
Miao et al. (2018) first showed the existence of the
solutions hf(w,c), h{(w, c) of the following equations:

E,[Y | ¢, z] = fw hE(w, e)dP(w | ¢, z) (4.1)

E,Y | ¢, z] = fw hd(w,e)dQ(w | ¢, z).

The terms hf(w,c), hi(w,c) are called ‘bridge’ func-
tions as they connect the proxy W to the label Y. If
we are able to identify hd(w,c) then we can identify
E,[Y | z], by using eq. (4.1) to obtain E,[Y | C, «]
and marginalizing over Q(C' | x).

We show that it is possible to connect identification
of hi(w,c) with that of hfj(w,c), leading directly to
identification of E,[Y | z].

Theorem 4.1. Assume that hf) and h{ exist (i.e., reg-

ularity Assumptions 810 hold). Then given Assump-
tions 1, 2, 4, 5 we have that, for any c€C,

| #w Pt [a) = | ke, dQq |
w w

almost surely with respect to Q(U). This implies that

Eq[Y|x]:f

WxC

hi(w, )dQ(w, ¢ | z).

The proof is given in Appendix B.1. Hence, given hf
and (W, X, C) from the target @), we are able to adapt
to arbitrary distribution shifts in unobserved U. The
advantage of this approach is that it will not require
estimating any distributions involving U. We demon-
strate this in Section 5.

While concepts can ensure identifiability, they may not
be available in practice. In this case, a natural question
is whether the optimal target predictor E,[Y | z] is
still identifiable. In the next section we show that if
we instead have access to data from multiple source
domains, E,[Y | ] may again be identifiable.

4.2 The Blessings of Multiple Domains

We now turn to the multi-domain setting. The graph-
ical structure in Figure 1d is similar to the structure
in Figure 1c with C replaced by X, X replaced by Z,
and the arrow between U and Z flipped. Although
the bridge function proposed by Miao et al. (2018) as-
sumes an edge from U to Z, changing the direction
from Z to U does not change the conditional inde-
pendence structure (Pearl, 2009). The main difference
is we will only be able to guarantee full identification
when U is discrete. We start by demonstrating this,
and then give an example of the inherent difficulty of
identification when U is continuous.

To begin, for simplicity, assume U and W are discrete
(with dimensionalities ky and ky ). We have finitely
many samples from Z, denoted as zi,...,2k,, corre-
sponding to our training domains. We seek a bridge
function (in this case, a matrix My(w;, z)) satisfying

Ew

E.[Y | 2] = > Mo(w;, z)P(w; | z), (4.2)
i=1

forallr =1,...,kz, where E,.[Y | z] is the conditional

expectation obtained in domain r, and P.(W | z) =
PW |z, z.).

In order to identify My(w;,x) and E,[Y | ], we need
enough source domains to capture the variability of U.
The following result describes how many we need.

Proposition 4.2. Suppose that we have kz source do-
mains and W, U have kw and ky categories respec-
tively. Then, if kw,kz = ky and subject to appropri-
ate rank conditions (see proof in Appendiz B.2), the
bridge function is identifiable and does not depend on
the specific z.

This result generalizes the identification analysis devel-
oped in Miao et al. (2018). If the number of observed
source domains ky is greater than the dimension of
the latent U, then subject to appropriate identifiabil-
ity requirements (detailed in Appendix B.2), we can
recover the bridge My (w;, x).

Now, consider the case where U is discrete but all ob-
served variables W, X, Y are continuous. In this case
we have the following system

E.[Y | ] :f mo(w,2)dPo(w | 2),  (4.3)
w

for r = 1,...,kz. The proof of existence of mg is a
modification of Proposition A.2, as shown in Propo-
sition A.3. In order to identify target E,[Y | z], we
need the following assumption.

Assumption 6. Let g be a square integrable function
on U. For each x € X and for all z € Z,, E[g(U) |
x,z] =0 if and only if g(U) = 0, P(U) almost surely.
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Given this assumption we can prove identifiability.

Proposition 4.3. Given that Assumptions 1-3, 6
hold; that mg exists; that (W, X,Y) are observed for
the sources z € Z,, and (W, X) is observed from the
target domain. Then E,[Y | z] is identifiable, and for
any x € X, we can write

E,[Y | 2] = fw mo(w, 2)dQ(w | 7). (4.4)

The proof is given in Appendix B.3. Crucially, this
result is valid only when Assumptions 6 holds, and it
remains unclear when it is expected to hold. Propo-
sition 4.2 suggests that Assumptions 6 is not vacuous
when U is finite dimensional.

Now let us consider the case where U is continuous.
In this case, unfortunately, Assumption 6 is unlikely
to hold, preventing identification of E,[Y | ]. This is
illustrated in the following example.

Example 4.4. Recall the decomposition of both sides
of (4.3). Under Assumption 2 and given the existence
of mg (Proposition A.2),

E, Y |z, 2] = JW mo(w, z)dP(w | z, 2)

uJw
(4.5)

E,[Y |z, 2] = L{ E, Y | z,uldP(u | z, 2). (4.6)

For every x, Eqs. (4.5) and (4.6) represent projections
onto P(u | x,z.), rel,... k,. Considerd :=[—m, 7]
with periodic boundary conditions, and for a given x
define P(u | z,2.) = (2m)"Y(1 + cos(ru)),vr € N*
(note that cosines form an orthonormal basis). We
now construct an example where (4.5) holds for some
z but not for others. Define the difference

E,[Y | z,u] — JW mo(w, z)dP(w | u) (4.7)

= cos((k; + Du) =: g(u).

In this case, g(u) # 0, and in particular, (4.5) holds
for all r < k,, but not for P(u | x, 2k 4+1)-

This example illustrates a larger point: that for contin-
uous U, no finite set of projections will suffice to com-
pletely characterize the square integrable functions on
U. That said, as more projections are employed, and
subject to appropriate assumptions on the smoothness
of (4.7), the error will reduce as more domains are ob-
served. The characterization of this convergence will
be the topic of future work. In experiments, we show
that the adaptation can still be effective even when the

latent variable Uz, is continuous valued and follows
different Beta distributions for each distinct r, given
just two training source domains.

5 Kernel Bridge Function Estimation

We introduce kernel methods to estimate the bridge
functions and subsequently leverage the estimates to
adapt to distribution shifts. Section 4 shows that
bridge functions for both settings can be adapted to
the target domain, so we drop the domain specific in-
dices and use hy and mg to denote the bridge functions.
We begin by introducing the notation.

Notation. Let ® be the tensor product, ® be
the columnwise Khatri-Rao product and ® be the
Hadamard product. For any space V € {X,C,W, YV},
let £ :V xV — R be a positive semidefinite kernel
function and ¢(v) = k(v,:) for any v € V be the
feature map. We denote Hy to be the RKHS on V
associated with kernel function k. The RKHS has
two properties: (i) f € Hy, f(v) = {f,k(v,-)) for
all v € V and (ii) k(v,-) € Hy. We denote {-,-) as
the inner product and || - ||, as the induced norm.
For notation simplicity, we denote the product space
Hy x Hyr associated with operation Hy ® Hyr as
Hyy . We define the kernel mean embedding as py =
E[¢(V)] = (k(v,-)p(v)dv (Smola et al., 2007) and the
conditional mean embedding as jy), = §k(v, )p(v |
y)dv (Song et al., 2009; Singh et al., 2019). For V €
{W, X, C}, we denote the a-th batch of 4.i.d. samples
as V, = {vg,:};2,. Define the Gram matrices as Ky, =
[k(vavi,va,j)]i’j € Rnaxn“, ’CVab = [k(’l)a,hvb,j)]iJ €
R™Xme. Let y, = [$van), - s d(van,)] € Hie
be the vectorized feature map such that ®y, (v') =

[£(va,1,"), - k(van, v’)]T € R"a,

5.1 Adaptation with Concepts

Suppose that for the bridge function hg € Hyyc, where
Hyye is a RKHS. It follows from Theorem 4.1 that

Eo[Y | X = 2] = Eq[ho(W, C) | 2]
= Ey[¢ho, 6(W) ® ¢(C)) | 7]

= Chos iy ) (5.1)
To adapt to the distribution shifts, we estimate the
bridge function hg in the source domain and the condi-
tional mean embedding 'U/(YZ/VC\I =Eq4[o(W)®¢(C) | x]
in the target domain. The empirical estimate of the
conditional mean embedding along with the consis-
tency proof have been provided in (Song et al., 2009;
Griinewdlder et al., 2012) thus we focus on the esti-
mation procedure of the bridge function hyg.

To estimate the bridge function hg, we employ the
regression method developed in Mastouri et al. (2021).



Proxy Methods for Domain Adaptation

Recall E[Y | ¢,z] = E[ho(W,¢) | ¢,z]. We define the
population risk function in the source domain as:
R(ho) = E,[(Y — G, (C, X))*J;
Gho(, ) = Chos piyy,, ® B(c))-

(5.2)

The procedure to optimize (5.2) involves two stages.
In the first stage, we estimate the conditional mean
embedding ,u{jv‘cw = E,[¢p(W) | ¢,z], which we will
use as a plug-in estimator to estimate hg in the sec-
ond step. Given n; 4.i.d. samples (X;,W7,C) =
{(z1,5, w14, ¢1,4) }i2; from the source distribution p and
a regularizing parameter A\; > 0, we denote Kx, €
RM>*m s o € R™M*™ a5 the Gram matrices and
Ox, € HY, o, € H;' as ni-dimensional vectorized
feature maps of X7, C; respectively. Following the pro-
cedure developed in Song et al. (2009), the estimate of

p .
'U’W|m,c 18

ﬁgV\c,z = Z bi(xvc)(b(wl,i); (53)
i=1

b(a:,c) = (’Cxl @Kcl + /\1’(11])71 (‘I’Xl (3}) Q(I)Cl (C)) .

In the second stage, we replace uf,le_rc with ﬁlf/Vh:,c
in (5.2) and define the empirical risk. Consider ng
i.i.d. samples (X2,Ys,C2) = {(z2,i,y2.i,C2,i) }i2q from
the source distribution and a regularization parameter
A2 > 0, we want to minimize

n2

o1 . 2
argmin =— > <y2,i = (ho, d(c2,i) @ M%cmwzﬁ)

hoeHwe 2n2 i=1

+ Xollhollge- (5:4)

We follow the same analysis procedure derived in Mas-
touri et al. (2021). The solution to (5.4) is shown in
the following.

Proposition 5.1. Let Ky, € R >, Kg, € R™2X"2
be the Gram matrices of Wy and Cy, respectively. Let
Kx,, e R"*"2 o, € RM*"2 be the cross Gram ma-
trices of (X1,Xs) and (C1,C3), respectively. For any
A2 > 0, there exists a unique optimal solution to (5.4)
of the form

ni n2

ﬁo = 2 2 aij¢(w1,i) ® ¢(02,j)§

i=1j=1
vee(a) = (IQT) (Aanal + X) " Lys,

where ¥ = (I'"Kw,T) ® Ke,, T' = (Kx, © K¢, +
M) HKxy, ©Key,), and y2 = [y2.1,. - - 7y2,n2:|T-

Proposition 5.1 is an application of the Representer
theorem (Scholkopf et al., 2001) — the optimal estimate
of the infinite dimensional operator is a finite rank
operator spanned by the feature space of W7 and Cj.

Finally, given estimate ﬁ%vcp: and a new sample Tpew,
we can construct the empirical predictor of (5.1) as

’Z/\pred = <h0u ﬁg/vc‘zncw>~
This completes the full adaptation procedure.

On classification tasks. For classification tasks,
where the label is Y € {1,..., ky}, we treat the multi-
task regressor as a classifier. We encode Y by a one-hot
encoder and then regress on the encoded Y € {0, 1}kv.
Each label ¢ has a corresponding bridge function h g
for £ € {1,...,ky}. Fori=1,...,n9, let the encoded
Y2.i be gg,i = [gZ,i,l; ce 7§27i,ky]'l' € {0, l}ky. Then for
each ¢, we can estimate hg, by replacing y2; in (5.4)
with 22,0 € {0,1}. For each new sample Zpew, the
predicted score of label £ is Ypred,r = <ﬁ0’g, ﬁ?/VClznew%
and we select the label that has the highest prediction
score: argmaxy Ypred,o-

5.2 Adaptation with Multiple Domains

In the multiple source domain setting, the estimation
of mg follows similarly to that of hg. Assuming that
mo € Hyx, then (4.3) can be written as

ET[Y | LU] = ]EP[<m07/~"W|x,T ®¢(x)> | x]»

forr =1,...,kz. The task is to estimate mg from the
source domain and then apply it to the target domain.
We can define the population risk function as

kz
R(mo) = Y E[(Y = Gy (r, X))?];

r=1
Gmo (Tv JJ) = <m07 HW |r,x ® ¢(x)>

We employ the two-stage estimation procedure as we
did for estimating ho: (i) we first estimate pyy ), , and
then (ii) plug the estimate fiyy |, to estimate mq.

(5.5)

At the r-th domain, we observe the samples:
{(wys,xri,7)}ir, . As with (5.3), we learn a condi-
tional mean embedding iy ., = D1y dri(@)d(wr),
where d.(z) = (Kx, + X\3I)7! (®x,(z)) € R*™ and

A3 >0forr =1,...,kz. Inthe second stage, given an-
other batch of independent samples: {(y,;,zrs,7)}i7y
forr =1,...,kz, we minimize:

1 kz np R )
- ri — (M0, P\Lr i () S
2Zr=1 Ny ;; (y ’ < 0 (b( ) Hw| ) >)

+ Xallmollsyy - (5.6)

Then, My yields an analytical solution in similar form
to hgo shown in Proposition 5.1 (see Appendix C.2 for
details). Finally, with the estimated conditional mean
embedding ﬁ‘{,‘,u and a new sample Z,¢y from the tar-
get test set, we have

Z//\pred = (Mo, ﬁ?ﬁ/‘mnew ® O(Tnew))-
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We convert the regression task with mg to the clas-
sification task by learning ky bridge functions, where
each bridge function mg , corresponds to label £.

6 Experiments

We verify our theory with both simulated and real
data, demonstrating robustness to latent shifts and
transferablility of the bridge functions.

For the setting with concept variables present, we
compare our method with baselines: Empricial Risk
Minimization (ERM), Covariate shift weighting (CO-
VAR) (Shimodaira, 2000), Label shift weighting (LA-
BEL) (Buck et al., 1966), and the spectral (LSA-S)
and Wasserstein Autoencoder (LSA-WAE) latent shift
adaptation approaches (Alabdulmohsin et al., 2023).
For the multi-domain setting, we compare our method
with baselines: Simple Adaptation (SA) (Mansour
et al., 2008), Weighted Combination of Source Classi-
fiers (WCSC) (Zhang et al., 2015), and Marginal Ker-
nel (MK) (Blanchard et al., 2011). We also compare
with multi-domain generalization baselines (Muandet
et al., 2013): Domain Adversarial Neural Networks
(DANN) (Ganin et al., 2016), Maximum Mean Dis-
crepancy (MMD) (Gretton et al., 2012). Additionally,
we modify the ERM method to the multi-domain set-
ting by concatenating the source samples to learn one
ERM model (Cat-ERM) or taking the average result
of each source domain ERM model (Avg-ERM). The
ORACLE model is a model that is trained on target
distribution samples. and evaluated on held-out tar-
get distribution samples. The tuning parameters for
all models including the proposed model are selected
using five-fold cross-validation. Details regarding the
setups are in Appendix D.

Classification task. The task designed in Alabdul-
mohsin et al. (2023) is a binary classification prob-
lem with Y € {0,1} and the latent variable U €
{0,1} is a Bernoulli random variable. Additionally,
X € R?2,W e R are continuous random variables and
C € R3 is a discrete variable. We have one source
domain with P(U = 1) = 0.1. We evaluate the mod-
els on the target distribution with Q(U) shifting from
QU =1) e {0.1,...,0.9}. The goal of this task is to
investigate whether the adaptation method is robust
to any arbitrary shift of U.

The ORACLE and ERM model are implemented as
MultiLayer Perceptrons (MLP). The kernel function
used in the proposed method is the Gaussian kernel.

We compare the proposed method with the LSA-S
and Wasserstein Autoencoder adaptation LSA-WAE
approaches developed in Alabdulmohsin et al. (2023).
While all three methods are designed to adjust shift
for the same graph in Figure lc, our method takes

additional W, C, X as training samples in the target
domain while LSA-S and LSA-WAE only take X. For
all three methods, only X is observed in the test data.

While the identification theory developed in (Alabdul-
mohsin et al., 2023) does not require W, C in the tar-
get domain, we are aware that in practice, having more
information in the target domain may improve estima-
tion. To make the methods more directly comparable,
we design an additional step to incorporate W from
the target in the LSA-S algorithm. We describe this
procedure in more detail in Appendix D.1.

Results are shown in Figure 2a. The proposed method
is more robust to the shift compared to baselines and
is close to the ORACLE model. It is shown that with
observed W in the target domain, LSA-S does not im-
prove the performance compared to LSA-S without W.
We also compare results under different noise levels
and observe similar trends as discussed in Appendix D.

dSprites dataset regression task. We test the
proposed procedure on the dSprites dataset (Matthey
et al., 2017), an image dataset described by five latent
parameters (shape, scale, rotation, posX, and posY).
Motivated by Matthey et al. (2017)’s experiments, we
design a regression task where the dSprites images (64
x 64 = 4096-dimensional) are X € R4*64 and sub-
ject to a nonlinear confounder U € [0, 27] which is a
rotation of the image. W € R and C' € R are contin-
uous random variables. For this experiment, we have
7000 training samples and 3000 test samples. Further
details about the procedure are in Appendix D.

In the results in Figure 2b, we vary a, which controls
which region of the source distribution that the target
distribution concentrates. We design the experiment
such that increasing a shifts the target distribution
to increasingly low mass regions of the source distri-
bution. We compute the mean squared error of each
method on test examples from the target distribution.

We find that, while the baseline methods degrade as
the target distributions shift increases, the proposed
method adapts and maintains low error, nearly match-
ing the error achieved by the oracle, which is trained
on target distribution samples.

6.1 Multi-Domain Adaptation

In the multi-domain setting, we use the same classifi-
cation dataset provided in Alabdulmohsin et al. (2023)
as Section D.6. We assume that C' is not observed in
any domain and generate multiple datasets drawn with
different distributions on U.

Classification task. We construct three different
tasks with different settings of P(U) over the source
and target domains. For each task, we construct three
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Figure 2: Adaptation results with concept and proxy. Shown is the average evaluation metric on held-out
target distribution samples across 10 independent replicates of the data. The proposed method is robust to the
latent shift compared to the baselines in both cases. (a) We set P(U = 1) = 0.1. Both the AUROC and accuracy
remains nearly constant in various degree of shifts, while the performance of other baselines drops as Q(U = 1)
moves to 0.9. (b) The left figure denotes the density function of U, the overlapping area of two distribution
shrinks as a moves rightward. The result on the right shows that our method is robust even when the overlapping

area between two distributions is small.

Table 1: Multi-domain adaptation result. The values are the average AUROC of 10 independent replicates
of the data. Each task has three source domains with different P.(U) and one target domain. The proposed
method has outperformed other baselines and is close to the Oracle in task 2.

Task ORACLE Cat-ERM Avg-ERM SA MK WCSC DANN MMD Proposed
Task 1 0.9425 0.8030 0.7916 0.7918 0.5848 0.5221 0.8039 0.8055 0.8848
+0.0039 +0.0155 +0.0148  +0.0148 +0.0593 +0.0299 +£0.0229 +0.0248 +0.0120

Task 2 0.9431 0.8942 0.8953 0.8953 0.8054 0.8144 0.9158 0.9149 0.9318
o +0.0061 +0.0084 +0.0079 +0.0079 +0.0204 +0.0474 +0.0125 +0.0135 +0.0063
Task 3 0.8876 0.8483 0.8427 0.8408 0.8002 0.7428 0.8480 0.8470 0.8569
§ +0.0085 +0.0134 +0.0130 +0.0132 +0.0311 =£0.0311 +£0.0166 +0.0181 +0.0095

source domains and one target domain, drawing 3200
random training samples for the each source domain
and 9600 random training samples for the target do-
main. The set of source domains of of Task 1-3
have different combinations of distribution on U doc-
umented in Appendix D.3.

The backbone models for ORACLE, Cat-ERM, Avg-
ERM, and SA (Mansour et al., 2008) are simple MLPs;
MK (Blanchard et al., 2011) is a weighted kernel sup-
port vector machine; WCSC (Zhang et al., 2015) is
a re-weighted kernel density estimator. SA (Mansour
et al., 2008) assumes that Q(X) is the convex com-
binations of P.(X) for r = 1,...,kz; WCSC (Zhang
et al., 2015) assumes that Q(X | Y) is a linear mix-
ture of P.(X|Y) for r = 1,...,kz domain is an i.i.d.
realization from the general distribution.

The results are shown in Table 1. Overall, we find
our approach performs better than ERM and baseline
multi-domain adaptation methods. All methods per-
form better in the setting of Task 2 than for Task 1,

informally demonstrating the effect of the closeness of
the source domains to the target domain. For Task
3, while our proposed approach performs best, ERM
also performs well, and substantially better than the
domain adaptation baselines.

Regression task. We consider two regression tasks,
where U is either a Bernoulli or a Beta random vari-
able. We present the results in Appendix D.

6.2 Concept and multi-domain adaptation
with MIMIC-CXR

We conduct a small-scale experiment using a sample
of chest X-ray data extracted from the MIMIC-CXR
dataset (Johnson et al., 2019). We briefly describe the
experimental design and results here, and include a
complete description in Appendix D.7. We consider
classification of the absence of a radiological finding
from low-dimensional embeddings of the X-rays (Sell-
ergren et al., 2022), using the absence of a radiological
finding in the radiology report as the target of pre-
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Figure 3: Concept and multi-domain adaptation with MIMIC-CXR. Shown are the mean + SD AUROC
of concept (left) and multi-domain adaptation (right) for classification of “No finding” from embeddings of chest
X-rays over five replicates of a sampling procedure that introduces a shift in the prevalence of “No finding” with
patient sex subgroups, where radiology report embeddings serve as concept variables C' and patient age serves
as the proxy W. In the concept adaptation experiment, the source domain corresponds to P(U = 1) = P(Y =
1| Sex = Female) = P(Y = 0| Sex = Male) = 0.1. In the multi-domain adaptation experiment, we consider two

source domains P(U = 1) = {0.1,0.2}.

diction. This corresponds to the “No Finding” label
defined by Irvin et al. (2019).

We consider distribution shifts similar to settings in
Makar et al. (2022), where patient sex is considered
as a possible “shortcut” in the classification of the ab-
sence of a radiological finding. We impose distribution
shift through structured resampling of the data where
PU =1) = P(Y = 1| Sex = Female) = P(Y =
0 | Sex = Male) and P(Sex = Female) = P(Sex =
Male) = 0.5 is held constant. We perform both con-
cept adaptation and multi-domain adaptation exper-
iments with the MIMIC-CXR data. For the concept
adaptation experiment, we consider the concept vari-
able C to be the embedding of a radiology report asso-
ciated with the chest X-ray. We experiment with the
use of patient age as a potential proxy W for U due
to a hypothesized correlation between the presence of
radiological findings and patient age.

The results are summarized in Figure 3. For both ex-
periments, we find that the performance of baseline
models fit using only information from the source do-
main(s) degrades under distribution shift. In the con-
cept adaptation experiment, adaptation is relatively
successful, as much of the performance of comparator
models fit using target domain data is recovered by
the adaptation procedure.

However, we find that the multi-domain adaptation
procedure is not successful. In this case, we find
that while the multi-domain adaptation procedure
marginally outperforms a model fit using the concate-
nated source domain data under distribution shift, it
recovers substantially less of the performance of the
target domain model than the concept adaptation pro-

cedure does. Furthermore, the adapted model does
not outperform the kernel estimators that only lever-
age information from the source domains. The lack of
success in this setting could potentially be explained
by insufficient number or diversity of domains relative
to the level of noise induced by sampling variability
and limited sample size.

7 Discussion

We propose a strategy for adaptation under distribu-
tion shift in a latent variable using a bridge function
approach (Miao et al., 2018; Tchetgen et al., 2020).
This approach allows for identification of the optimal
predictor in the target domain without identifying the
distribution of the latent variable and without distri-
butional assumptions on the form of the latent. We
require that proxies of the latent variable are present
and that (i) mediating concepts are available or (ii)
data from multiple source domains are present.

We argue our approach is useful for two reasons.
First, the latent distribution in general is only identifi-
able under strict distributional assumptions (Locatello
et al., 2019). Second, recovery of the latent variable
may be challenging in practice even if it is identifiable
(Rissanen and Marttinen, 2021). For example, because
most latent variable estimation methods are designed
to model the data generating process (Kingma and
Welling, 2013), one might allocate substantial model-
ing capacity to variability in the data and the latent
variable that are irrelevant to modeling the shift in
the conditional distribution of Y | X. By contrast, we
model only the components of the observable variables
relevant to the adaptation.
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Supplementary Materials

A Identification of the Distribution

In this section, we demonstrate the existence of the bridge functions hy and mg under certain regularity condi-
tions. We first discuss the discrete case and then generalize to the continuous case.

A.1 The Discrete Case of the Bridge Function hg

The idea of bridge function hy may seem abstract in the continuous setting. When every variable is discrete,
however, the construction of the bridge function is demonstrated by solving series of matrix problems. This idea
originates from Miao et al. (2018) and we apply the technique to show the construction of bridge function when
every variable (W, U, C, X,Y) is discrete.

Let POW | u) = [P(wi|u) ... Plwg, |uw)] € R, PW | U) = [P(W |u) ... PW|u)] €
RFwXku  he a column vector, and a matrix, respectively. We define similarly P(U | z,¢) =
[P(uy | c,z) ... P(ukU|c,x)]T € Rv, P(U | X,¢) = [P(U|z1,0) ... PU|zpy,0)]

for ¢ € C. We define P(Y | X,¢) = [P(Y]z1,¢) ... P(Y|xpy,c)] € RvXx P(Y | Upc) =
[P(Y |ur,c) ... P |upy,c)] € REvEx PW | X, ¢) = [P(W |21,¢) ... P(W| xkx,c)] € RkakX
analogously. As an alternative to finding a ho(w, ¢) such that

c RkUXkX

E[Y | c,z] = Zho (wy, )p(w; | ¢, ),

the proxy problem is converted to finding a ﬁO(Y, W, ¢) such that
P(Y | X,¢) = Hy(Y,W,c)P(W | X,¢), ceC.
First, under the condition that W 1L {X,C} | U, we can write
PW|X,e)=P(W|U)PU | X,c). (A.1)
Similarly, under the condition that Y 1L X | {U, C'}, we have
PY|X,e)=PY |Uc)PU | X,c) (A.2)

We introduce the following assumption:
Assumption 7. Columns of P(W | U) are linearly independent. For every c € C, the columns of P(W | X, ¢)
satisfy P(W | z,¢) e N(P(W | U)*)* for all z € X.

Assumption 7 is the requirement for the least-squares problem to have an unique solution. Hence, by Assump-
tion 7, we have
P(U|X,c)=P(W |U)'P(W | X,0),

where P(W | U)T is the generalized inverse of P(W | U). Plug the above equation into (A.2), we see that

P(Y | X,c) =P |U)PW |U)'P(W | X,c).

H(Y,W,c)
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A.2 Existence of the Bridge Function hg

The sufficient conditions of existence of hy are originally discussed in Miao et al. (2018), we adapt them to
our setting and provide a brief review in this section. We assume the following completeness assumption and
regularity conditions. This assumption is equivalent to Condition (iii) in Miao et al. (2018).

Assumption 8. For any mean squared integrable function g and for c € C, E[g(X) | W,c] = 0 almost surely if
and only if g(X) = 0 almost surely.

Let f be either the distribution from p or ¢, we consider K, : Lo(W | ¢) — La(X | ¢) as the conditional
expectation operator associated with the kernel function

__fwz|c
K, €)= F T T @ o)
Then it follows that E[Y | ¢, 2] = K ho:
E[Y | ¢,z] = J ho(w, ¢) f(w | z, ¢)dw
w
= Jk(mx,c)ho(w,c)f(w | ¢)dw = K, hy.

To find the solution hgy, we assume the followings.
Assumption 9. For any ceC, §,,§, f(w | ¢, z)f(x | ¢,w)dwdz < 0.
This is a sufficient condition to ensure that K. is a compact operator (Carrasco et al., 2007, Example 2.3).

Hence, by the definition of a compact operator, there exists a singular system {Ac;, ¢c.i, ¥e,ibien of K, for every
ceC.

Assumption 10. For fixed c€ C:

1 E[Y | X,c] € Ly(X | ¢);

2. Yien M2 KE[Y | X, ), ved| < .

The above two assumptions are restatements of Conditions (v)—(vii) in Miao et al. (2018). We adapt the results
from Proposition 1 in Miao et al. (2018) to the graph in Figure 1c which replaces the node X by C' and node Z
by X.

Proposition A.1 (Existence of hg, adapted from Proposition 1 in Miao et al. (2018)). Under Assumption 2,
8-10, the solution to (4.1) exists.

Proof. The proof follows directly from the result of Picard’s theorem. Assumption 9 implies that K. is a
compact operator. Assumption 8 implies that N (K*)* = Ly(X | ¢). Therefore, under the first statement in
Assumption 10, we have E[Y | X,c] € N(K})1. Along with the second statement in Assumption 10, we can
apply Lemma A.3. O

A.3 Existence of Bridge Function mg

The proof of the existence of m} is similar to the analysis of hg. Let K, : Lo(W | ) — Lo(Z | x) be the integral
operator associated with the kernel function k(w,z,2) = p(w, 2z | )/(p(w | z)p(z | x)). Then, we can write

EpY |z, 2] = Jk(w,x,z)p(w | 2)mo(w, z)dw = K,my.
Proposition A.2 (Existence of mg, Proposition 1 in Miao et al. (2018)). Assume that

1. for any mean squared integrable function g and for x € X, E[g(Z) | W,x] = 0 almost surely if and only if
9(Z) = 0 almost surely;
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2. Foranyxe X, §, §, f(w]z 2)f(z|z,w)dwdz < o;
3. For anyx € X, E[Y | Z,z] € Ly(Z | z);

4. Foranyxe X, Y, )\;3 [KE[Y | Z, ], 77/19“->|2 < 0, where (Mg i, Ogi, Us,i) is the singular system of K.

Then the solution of mf exists.

The proof of Proposition A.2 is similar to the proof of Proposition 1 in (Miao et al., 2018), where we replace
P(y|z,z) in Proposition 1 of Miao et al. (2018) with E[Y | Z,z]. The proof for existence of m{ also follows
similarly as Proposition A.2.

A.4 Auxiliary Lemma

We introduce the Picard’s theorem as follows.

Lemma A.3 (Picard’s Theorem). Let K : H1 — Ha be a compact operator with singular system {\;, ¢;,1;}72,
and ¢ be a given function in Ho. Then the equation of first kind Kh = ¢ have solutions if and only if

1. ¢ e N(K*)*, where N(K*) = {h: K*h = 0} is the null space of the adjoint operator K*.
2. SN bl < oo

B Transferring Bridge Functions

In this section, we discuss the identifiability results.

B.1 Proof of Theorem 4.1

For f € {p, ¢}, recall that

E¢[Y | c,z] = J h{;(w,c)f(w | ¢, z)dw
w
= J J hg(w,c)f(w | c,u)f(u | ¢, z)dudw
wJu
:J f hi(w,e)f(w | w)f(u| ¢, z)dudw (WlcC|v).
wJu
Similarly, we can write
BY | e.a] = | B[ | eulf(u] e.a)du (v 1L X [ {U,C}).
Under Assumption 4, we have
BAY | U) = | W(w,e)f(w] U)du (B.1)
w

almost surely with respect to F(U), F € {P,Q}.

Suppose that u € Y such that Q(u) > 0. Then, by Assumption 5 , we must have P(u) > 0. Hence, conditioned
on the selected u and ¢ and under Assumption 1, we have

E,[Y | c,u]l = fw hb(w, ¢)p(w | w)dw;

E Y | c,u] = fw hi(w, e)p(w | v)dw (p(w | u) = q(w | u), Yee C,w e W,ueld).
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‘We then can write
BV [ ccul = EY | evul = [ B el |widw — [ B(w.e)a(w | wide.
w w

Note that, by Assumption 1, we have E,[Y | ¢,u] = E4[Y | ¢,u] and hence the left hand side of the above
equation is 0 and we can conclude that:

J R (w, e)p(w | U)dw = J hd(w, c)q(w | U)dw
% w

Q(U) almost surely. We complete the first part of proof.

To show the second part of the theorem, note that we can write

Eq[Y | 2] = Eg[Eq[Y" | Coa] | 2]
= Eqg[Eq[n§(W,c) | C,a] | 2].

Since p(w | u) = g(w | u) by Assumption 1, we can factorize the above equation as
E,[Y | z] = J U {f hd(w, e)p(w | u)dw} q(u| ¢, x)du] g(c| x)de.
¢ Ju Uw
Let the support of U conditioned on ¢,z be Uy, = {u: Q(u | ¢,z) > 0} and U, = {u: Q(u | ¢,2) = 0}. Hence,

we have U = UL, U}, and U, " U}, = & such that o g(u]c,z)du=0and §,, q(u]|c,z)du=1. Then,

c,x?
we can further decompose the above as

Ey[Y | 2] = L Uu
1,
-LII

Given ¢, z, since the support of Q(U | ¢,x) is included in the support of Q(U), so if u € Z/lclyz, we must have
Q(u) > 0 and hence P(u) > 0 by Assumption 5, and we can swap h¢ with hb.

g

Since Sugw {5, b (w, )p(w | w)dw} q(u | ¢, z)du = 0, we can add it to the above term and arrive at

- L [fu {fw b (w, e)p(w | u)dw} q(u | c,ac)du] q(c| z)de
_ wa B2 (w, )q(w, ¢ | @)dwde. (B.2)

{,, ot L o x)du} dle| 2)de

{fw g (w, )p(w | u>dw} alu | . x)du] g(c] z)de

1
c,x

{,, - cpte Pt ot r)du] dle | z)de.

1
c,x

{,, .ot | gaw x)du] dfe | 2)de.

1
c,x

Since we can identify hf) from the observable (W, X, Y, C) of the source domain by solving the linear system (4.1),
given observable (W, C, X) from the target domain, we can identify Eq[Y | z].

B.2 Proof of Proposition 4.2

The following proof is a generalization of the proof of Miao et al. (2018), suited to the multidomain case. All
variables besides Z are assumed to be discrete-valued and multivariate: V can take k, values for V e {U, X, Y, W}.
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Let P(W | U) = [PW]|w) ... P(W|ug)|] € RFw>kv_  Gimilarly, define P(Y | Uz) =
[P(Y |uy,x) ... P(Y|up,,z)| € R¥>**v_ This notation carries through to the remaining variables.

The approach we will take differs from the concept case (and standard proxy case) in the following way: we do
not observe Z in the training or test domains, nor do we know its true dimension (indeed Z may be continuous
valued). Rather, we assume that we have at least kz distinct draws z, from Z in training, where r € {1,...,kz}

is the domain index, and that kz > ky. We also suppose that in test, we observe a distinct draw zj,4+; which
was not seen in training.

Our goal is to obtain a bridge function, which in the categorical case will be a bridge matriz of dimension
M,y € REYkw  Define P.(V | x) := P(V | ,2,) for V € {U,Y,W}. We assume that for each ,

rank (Plzkrz(U | {L‘)) = ]€U7 Plsz(U | .T) = [ Pl(U | .73) .e PkZ(U | Z‘) ]

which implies that P(U | z, z,-) varies with z,., and that we see a sufficient diversity of domains to span the space
of vectors on U.

The graphical model supports the conditional independence relation
(Y, X, W} 1 Z|U,
however we will only require the standard proxy assumptions
WX Z|U,
YUZ|X,U.

Next, as in the concept case, we require
PY|U,z) = M, -P(W|U),

where we assume rank(P(W|U)) = k,, (as in the first condition of Assumption 7). The matrix M, , is invariant
to the distribution P(U) by construction. If we can solve for M, ;, then given a novel domain corresponding to
the draw zj, 11, we have

P(Y|U,2) Py, 11(Ulx) = My o P(W|U) Py, 41(Ulz)
Pr.41(Y]x) = My o Py, 2 (W)
This allows us to compute conditional expectations under P(Y | z) in the novel domain, based on observations
of (W, X) in this domain.
To solve for M, ., we project both sides on a basis over U arising from the training domains,
PY|U,2)Pr, (U | 2) = My PW|U) Py, (U | 2),
where we define Ppi, (Y|z) = [ PA(Y |z) ... Pu,(Y|z) ], and likewise Py, (W | z). Then the above
becomes
Pr, (Y|z) = My o Prg, (W | 2)

My z = Prg, (Y|m)P1T:kZ (W | ). (B.3)
This demonstrates that we can recover the domain-invariant M,, , purely from observed data.
One domain is not enough: We illustrate with an example, where we again consider the case where all

variables are categorical:
P(Yl|z) = My P(W]z), (B.4)

where P(Y | z) is a ky x 1 vector of probabilities, P(W | z) is a kw x 1 vector of probabilities, and M is a
ky x kw matrix for which we wish to solve. We have too few equations for the number of unknowns.

One solution to (B.4) is the matrix of conditional probabilities M,, , = P(Y|W, ). This matrix is not invariant
to changes to P(U), however:

p(Y|W,z) = p(Y|U,z) P(UIW, z).
The posterior P(U|W, x) changes when the prior P(U) changes. In contrast, the solution in (B.3) is guaranteed
to be domain invariant.
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B.3 Proof of Proposition 4.3

Forallr =1,...,kz, we can write

E.[Y | 2] =E[Y | z,2.] = f mo(w, x)dP(w | z, )

w

= f f mo(w, z)dP(w | w)dP(u | z, z,.); (B.5)
uJw

E[Y |z, 2] = f E[Y | z,u]dP(u | z, z). (B.6)

u

By Assumption 6, the integrands of (B.5)—(B.6) have the following property
E[Y | z,u] = J mo(w, z)dP(w | u), (B.7)
w

almost surely with respect to P(U). We will show that mg can be transferred to identify the distribution in the
target domain.

We define the support set Sy(z) = {u: Q(u | x) > 0}. Therefore, we can write
B[Y | 2] = | BIY |uo)iQ(u | o)
u
= J E[Y | u,z]dQ(u | x).
Sq()
Furthermore, since we have Sy(x) € {u : P(u) > 0}, we can apply (B.7) to obtain

BV [a] = | [ mow.z)apP(w | wag] )
= Eq[mo(W,2) | z].

We complete the proof.

C Estimation Procedure

The estimation procedure of ?Lo is discussed in Section C.1 and the estimation procedure of myg is discussed in
Section C.2. In Section C.3, we discuss the case when either Z or C is a discrete variable.

C.1 Proof of Proposition 5.1

The proof of Proposition 5.1 simply follows the result in (Mastouri et al., 2021) which extends from the representer
theorem (Scholkopf et al., 2001). There exists a v € R™ such that

ho = Z ViBW|es ;.2 © D(C2,5)- (C.1)

j=1

From Song et al. (2009), we have fiy|c, 2y, = 2ieq bic2,j; T2,5)¢(w1 ;) and b; is the i-th element of b, a function
on C x X: b(c,z) = (Kx, ©Ke, + Ainid) 1 (@, (z) © B¢, (c)). If we expand (C.1) with the previous expression,

we have
ny n2

ho = D0 2 @id(wi) ® ez ),

i=1j=1

where a;; = bi(cz,5, x2;)7;. Hence, the rest of the proof will focus on finding the expression of «;;. Following the
proof technique developed in (Mastouri et al., 2021), we introduce two following lemmas that assist the analysis.

Lemma C.1. The square of the operator norm of ho, denoted as |[ho I3, can be represented as

Iholl3e = vee(a) T (Ko, ® K, ) vee(a).
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Proof of Lemma C.1. Write

ooy ={ 303 aigbwns) ® dleas), 31 S amrblavn m) ®¢<c27r>>

i=15=1 m=1r=1

ny no
DT> aijomek(wi i, wim)k(c2, ca)

im=1j,r=1

tr (ozTICW1 ake,)

vec(a) " vec(Kw, aKe,).

Using the fact that vec(ABC) = (CT ® A) vec(B), the above display can be written as

= vec(a) " (Ke, ® Kw, ) vec(a).

O
Lemma C.2. ForanyceC, xe X,
<E0, gf)(C) ® ﬁW\c,:r> = Qc, (C)TQTICVVl (ICX1 © ICC1 + /\177’1[)71((1)01 (C) O Px, (‘T))
Proof of Lemma C.2. Write
(ho, 6(€) ® fiw|c,a) = DD aib(wii) ® dlea), dle) ® Y br(C>I)¢(w1,r)>
i=1j=1 r=1
= 2 Z Z a;jk(w i, wir)k(ca 5, ¢)br(c, ).
i=1j=1r=1
Summing over 4, j, the above equation is equivalent as
= Z e, (c) T Dy, (w1 )b, (c, )
= (DC2(C)T T’CW1 (C {,C)
= ®C2(C) «a ICWI(’CXI QICCI +/\1n1]) ((le(x)@q)Cl(c))
= ((I)Xl (‘T) O] (I)Cl (C)) (]CX1 © ICCl + Alnl[)illcwl a(I)c2 (C)
O
With Lemma C.1-C.2, we can write (5.4) as
1
27||y2 — DT vec(a)|? + Ay vec(a) " E vec(a), (C.2)
N2

where
D= ]Cc2® {]Cwl (/Cxl @]Ccl + /\177,1])71(’CX12 @’Ccm)} , E= ]CCQ X ICWl.

Then by setting the gradient of (C.2) with respect to vec(a) to zero, we will obtain
vec(a) = (DDT + )\gngE)fl Dys.
Apply Woodbury matrix identity, the above display is equivalent as

= E'D(\onol + DTEID) 1y, (C.3)
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Using the fact that for matrices 4, B,C, F, (A® B)(C®F) = ACR®BF, we can simplify E~1D as

E7'D = (Kgl @Kyt [Keu® {Kw, (Kx, ©Ke, + Aiml) ™ (Kx,, ©Keyy) Y]
= I®(K:X1 QK:CH + )‘177’1])_1(’CX12 GICCIZ)
= IQI.

Hence, using the fact that (AQB)T (C®F) = (ATC) ® BT F, we have
DTE™'D = (K¢,®Kw,T)T(IRT) = Ko, © (I'T Kw, T)
Hence, we can write (C.3) as

VCC(O() = (I@F) {/\2712] + ICCQ ® (FTlelF)}_l Yo.

C.2 Proof of Kernel Bridge Function my

We begin with the results.

Proposition C.3. Let Ky, € R™*" Ky, € R™*" be the Gram matrices of W3 and X4, respectively. Let
Kx,, € R®Xm [Cp € R"™*™ pe the cross Gram matrices of (X3, Xa) and (Z3, Zy), respectively. For any
Ay > 0, there exists a unique optimal solution to (5.6) of the form

n3 N4

Mg = Y > aijd(ws) @ ¢(za5);

i=1j=1

vee(er) = (I®F) (\anal + %) 'y,

where ¥ = ([TKw,T) OKx,, T = (Kx, ©Kz, + A3n3)1(Kx,, ©Kz,), and ys = [y4717 . ,y4_,n4]T.

The proof of Proposition C.3 follows exactly as the proof of Proposition 5.1, with X replaced by Z and C replaced
by X.

C.3 Estimation with discrete Z or C

In the case when C or Z happen to be discrete variables, a more efficient alternative to the estimator introduced
in Section 5.1 which requires kernelized features of C (or Z), is to solve a separate regression of W on X for each
ceC (or z € Z). Define the index set Z1(c) = {i: 1, =¢,i =1,...,n1}, we modify (5.3) as
ny
Boven = 2, bi(@)d(wi )1 (er; = ¢);
i=1
b(z) = (Kx,, + M) 0x, . (2),

where Kx, . = [k(®1,4,215)]i; and ®x, = [gb(x“)]j with ¢,j € E1(c). Alternatively, one can apply the form
in (5.3) but use binary kernel on C (or Z).

D Experiments

In this section we discuss the experimental settings and implementation details. We start with introducing the
implementation details of all the baselines and proposed method. Then, we discuss the experimental settings.

D.1 Baselines of Adaptation with Concepts and Proxies

We introduce the baseline methods for the adaptation task with C' and W. This includes the baselines methods
COVARS, LABELS, ORACLE, LSA-W, LSA-S, LSA-S w/ target W and the proposed method. To select the
parameters for the regression task on dSprite, we apply five-fold cross-validation with mean squared error as the
metric to select the kernel length scale and the ridge regularization penalty.



Tsai, Pfohl, Salaudeen, Chiou, Kusner, D’Amour, Koyejo, Gretton

COVARS. We fit a domain classifier using logistic regression, compute instance weights following Shimodaira
(2000), and learn a weighted kernel ridge regressor with a Gaussian kernel function on the source training samples.

LABELS. The label shift baseline assumes oracle access to labels in the target domain. For the classification
task, we compute instance weights ¢(Y")/p(Y") using the observed frequencies in the validation set for the source
domain and the training set for the target domain. For the regression task, we compute the weights by fitting
a Gaussian kernel density estimator using the source validation set and the target training set separately. We
then use the fitted densities to estimate ¢(Y)/p(Y") for each sample in the source training set. Finally, we learn
a sample-weighted kernel ridge regressor with a Gaussian kernel on the source training samples.

ORACLE. For regression tasks, we learn a kernel ridge regressor with a Gaussian kernel on target training
samples. For the classification task, we use a standard MLP trained with sample in the target domain. Details
of the model structure are documented in Section D.2.

LSA-W. The estimation procedure follows Section 6 in Alabdulmohsin et al. (2023). In this case, we discretize
the values of W by applying additional transform sign(w) for each sample w.

LSA-S. The estimation procedure follows Algorithm 2-5 in Alabdulmohsin et al. (2023).
LSA-S w/ target W. We briefly describe the procedure to incorporate target W to LSA-S. Alabdulmohsin
et al. (2023) showed that Q(Y|x) can be decomposed as
QY | z) ZPY|um Q| z) (D.1)
—_——
(a) ()

ocZPY|ux) P(u|x) Pa) 0@
(a) (e) \“((;)"’

(D.2)

where u is a permutation of original u. Both LSA-WAE and LSA-S are multi-stage procedures to compute (a),
(c), (d) individually and combine the results using formula (D.2) to obtain the predicted target distribution.
Step (a) corresponds to Algorithm 5, (c¢) corresponds to Equation (17), and (d) corresponds to Algorithm 4
n (Alabdulmohsin et al., 2023).

With the additional W from target, we can obtain (b) by slightly modifying the one estimation step in LSA-S.
We test on this procedure, namely LSA-S w/ target W, with (c), (d) replaced by (b). Suppose that U takes

values in 1,...,ky and U be a permutation of U. Define the matrix G as:
PW|T =1),PW|T=1)) - PWI|T=1),PW |0 = k)
G = s s 7
(P(W | U =ky), PW |U=1)) --- (PW|U=kp),PW|U = ku))

where 13(W | U= i) is the estimated conditional kernel density function obtained by Algorithm 3 in Alabdul-
mohsin et al. (2023). The step (b) is computed by solving the following least-squares:

QW | ), P(W | U =1)) QU =1]|x)
@(ﬁ | £) = arg min -G ,
QW | ), P(W | U = ku)) QU =ky |2) ],
subject to 0<Q((7:i|x)<1, i=1,..., ky;

ZQ =i|lx)=1.

Then, we compute the predicted conditional probability based on (D.1).

Proposed Method. For the regression task using the dSprite dataset, we employ the Gaussian kernel function
as the feature map for both X and W. In the classification task, we also utilize the Gaussian kernel function
for X and W. Additionally, we make use of a columnwise binary kernel for C', which performs a binary kernel
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operation on each entry and computes the product of all function outputs. To compute ﬁo, we apply one-hot
encoder on Y and apply the results in Proposition 5.1 For choosing the kernel length scale for the classification
task, we use the validation set with AUROC metric.

D.2 Baselines of Multi-Source Adaptation

For the first three baselines: Cat-ERM, Avg-ERM, and SA, we use a standard MLP model as the backbone
structure. It is a single hidden layer MLP with size 100 and ReLU activation functions. The network is trained
using Adam optimizer (Kingma and Ba, 2014) with learning rate 10~3. The batch size is set to be 200 and the
maximum number of iteration is set to be 300.

Cat-ERM. We concatenate all the samples across environments into one dataset. Then, we train the model
with a standard MLP model as specified above.

Avg-ERM. For each environment, we train a standard MLP model. During testing, we take the average of
predictions from all models.

Simple Adaptation (SA) (Mansour et al., 2008). To implement the method, we build kernel density
estimators with Gaussian kernel function to estimate the density p,(z) for r = 1,... kz. We then reweigh the
output of the classifier, a standard MLP, of each domain with the normalized weight P, (znew)/ {2, Pr(Tnew)}-
The kernel length scale is chosen using five-fold cross-validation with AUROC metric.

Marginal Kernel (MK) (Blanchard et al., 2011). This method involves a kernel SVM with a product
kernel on (X,P(X)). For any x,2’ € X and a distribution on X, P, P’, the kernel function is defined as
kE((xz, P),(«',P")) = ki(z,2")k2(P, P"). Let n be the number of samples. Here k; is a Gaussian kernel function,
and ky is the mean of the Gram matrix [k(z;, 2})]i; € R"*", where x; for i = 1,...,n is a i.i.d. sample from P
and x; for j=1,...,nis a 4...d. sample from P’. To accommodate the large dataset, we precompute the Gram
matrix and apply it to a linear classifier trained using Stochastic Gradient Descent (SGD) implemented in the
package scikit-learn (Pedregosa et al., 2011). The kernel length scale is chosen using five-fold cross-validation
with AUROC metric.

Weighted Combination of Source Classifiers (WCSC) (Zhang et al., 2015). For each source environ-
ment, we estimate the conditional probability X | y using kernel density estimator with the Gaussian kernel
function. The rest of the estimation procedure follows Section 2 in Zhang et al. (2015). The kernel length scale
is chosen using five-fold cross-validation with AUROC metric.

Proposed Method. We use columnwise Gaussian kernel function as the feature map of X, a Gaussian kernel
function as the feature map of W. The conditional mean embedding ﬁ€V|z,z is estimated using the approach
introduced in Section C.3. The analytical solution of mg is discussed in Proposition C.3. All the kernel length
scale and the regularization parameters Az, A4 are selected using five-fold cross-validation with AUROC metric.

ORACLE. The model is <T?Lo,ﬁ“1,m>, where both the bridge function 7y and ﬁ%v‘x are estimated using the

target dataset, with the number of training samples equal to the training samples of the source domain. All
the kernel length scale and the regularization parameters Az, A4 are selected using five-fold cross-validation with
AUROC metric.

D.3 Classification Task

The classification task discussed in Section D.6 is first introduced Alabdulmohsin et al. (2023). Let o(:) be
the one-hot encoder, we follow their data generation procedure and generate samples using the following data
generation process:

U ~ Categorical(m);
WU =u~ N(o(u)Myy,1);
X|U=u~N(OuMxuy,I);
C; | X = 2,U = u ~ Bernoulli (logit_l([mMc‘Xﬂ:u + o(u)MC|U]¢)>;

Y| C = ¢,U = u ~ Bernoulli <logit_1(CMy|QU=u + o(u)My|U)>,
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Figure 4: Classification results with a,, = 2,3. The figures indicate that LSA-S and LSA-S w/ target W have
comparable performance, aggregating the target W does not seem to improve the performance.

where the matrices are defined as

)

T -1 1 -2 2 2
My y:=[-1 1], My i—aw[l _1], Mcy = [_1 1 2]

2 2 -1 2 -2 1
Meix,v=u, =3 [ 1 _9 _3] , Meix,u=u, =3 [_1 9 3] ;
My =[2 2]", Myuew =[3 -2 —1]", Mycye, i=[3 -1 -2]".

The coefficient a,, = 1 in Figure 2a. Figure 4 displays additional results where a,, = 2,3. We generate 7000
training samples, 1000 validation samples, and 2000 testing samples for the classification task with concepts and
proxies.

In the multi-domain case, we construct 3 different tasks: Task 1 is composed of z1, 29, 23 such that P(U = 0 |
z1) =0.1, PU =0 2) =02, P(U=0| 23) = 0.3 and a target domain with Q(U = 0) = 0.9. For task 2, we
select zy4, 25, 26 such that P(U =0 z4) = 0.4, P(U =0 2z5) = 0.5, P(U =0 25) = 0.6 and Q(U = 0) = 0.9.
For task 3, we select z7,zs, z9 such that P(U = 0| z7) = 0.7, P(U =0 | z5) = 0.8, P(U =0 2z9) = 0.9 and
Q(U = 0) = 0.4. The results are shown in Table 1- 2.

D.4 Comparison to Domain Generalization Baselines

Table 2: Multi-domain generalization vs. (proposed) adaptation result. The values are the average
AUROC of 10 independent runs drawn from the data generating process. Each task has three source domains
with different P,.(U) and one target domain. The proposed method has outperformed all domain generalization
benchmarks across all tasks.

ORACLE ARM CDANN CORAL DANN GroupDRO IRM MMD VREx Proposed

Task 1 0.9425 0.8065 0.8061 0.8030 0.8039 0.7954 0.7989 0.8055 0.8010 0.8848
+0.0039 +0.0247  £0.0252 +0.0236  +£0.0229 +0.0323 +0.0283  £0.0248 +0.0279 +0.0120
Task 2 0.9431 0.9143 0.9159 0.9158 0.9158 0.9160 0.9131 0.9149 0.9136 0.9318
+0.0061 +0.0150  £0.0125 +0.0132  £0.0125 +0.0125 +0.0135 £0.0135 £0.0124  £0.0063
Task 3 0.8876 0.8470 0.8456 0.8473 0.8480 0.8487 0.8469 0.8470 0.8470 0.8569

+0.0085 +0.0171  £0.0164 +0.0163  +£0.0166 +0.0185 +0.0186 +0.0181 +0.0132 +0.0095

Given that we observe multiple domains at test time, a natural question is: Does adaptation give us an advantage
over generalization? In generalization, we cannot assume to have any observations in the target domain. We com-
pare our adaptation method with multi-domain generalization baselines (Muandet et al., 2013): Adaptive Risk
Minimization (ARM) (Zhang et al., 2021), Conditional Domain Adversarial Neural Networks (CDANN) (Long
et al., 2018), Correlation Alignment (CORAL) (Sun and Saenko, 2016), Domain Adversarial Neural Networks
(DANN) (Ganin et al., 2016), Distributionally Robust Optimization for Group Shifts (GroupDRO) (Sagawa
et al., 2019), Invariant Risk Minimization (IRM) (Arjovsky et al., 2019), Maximum Mean Discrepancy (MMD)
(Borgwardt et al., 2006), and Risk Extrapolation (REx) (Krueger et al., 2021).
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In Table 2, we show that our proposed method for domain adaptation in the multi-domain setting outperforms
the state-of-the-art multi-domain generalization methods.

D.5 Regression Tasks

We consider three tasks. We will first introduce the simulated task and then discuss about the task on dSprite
data (Matthey et al., 2017).

D.5.1 Simulated Dataset

We consider the following data generation process.

Simulated regression task 1.

U = Ber(a);
X = N(0,1);
Y = _X]-(U=O) + X]-(U=1); (D3)

W = N(~1,0.01)1 =gy + N (1,0.01)1 g1y

There are two source domains. We set ¢ = 0.1 for source domain z; and a = 0.9 for source domain z».
According to the data generation process (D.3), Y is mostly positively correlated with X in domain z; and
negatively correlated with X in domain z5. For each domain, we synthesized 2000 training samples and 1000
testing samples. We sweep across a = {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} in the target domain. We run 10
replications and the results shown in Figure 5. In the next task, we set U to be a continuous random variable
following a Beta distribution.

In this task, we expect the Cat-ERM method to fail drastically as we anticipate that the predicted Y versus X is
a flat line — the predicted result would be an average of the downward sloping line (U = 0) and upward sloping
line (U = 1). The result in Figure 5 supports our hypothesis, as the mean squared error remains nearly flat as
we vary the target distribution Q(U).

Simulated regression task 2.

U = Beta(a,b)
X =N(0,1)
Y = (2U - 1)X

W = N(=1,0.01)(1 — U) + N(1,0.01)U.

There are two source domains, corresponding to two draws from P(Z) which we write z, = (a,b). We set
a = 2,b = 4 for the first source domain r = 1, and a = 4,b = 2 for the second source domain r = 2. The
corresponding distributions over U are shown in Figure 6. Under this setting, we test the target domain with
a,b=1,...,5, with distributions shown in Figure 6. For each domain, we synthesized 2000 training samples and
1000 testing samples. We run 10 replications and the results shown in Figure 5.

D.6 Adaptation with Concepts and Proxies

D.6.1 dSprites Dataset

We test the proposed procedure on the dSprites dataset (Matthey et al., 2017), an image dataset described by five
latent parameters (shape, scale, rotation, posX, and posY). Motivated by Matthey et al. (2017)’s experiments,
we design a regression task where the dSprites images (64 x 64 = 4096-dimensional) are X € R%4*%4 and subject
to a nonlinear confounder U € [0,2n] which is a rotation of the image (Figure 7). We fix all other latent
parameters — shape is heart, scale is maximized, and all others are set to their 0’th position. W e R and C' € R
are continuous random variables. The data generation process is defined as follows
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Figure 5: Top left: results of regression task 1. The proposed method is close to the ORACLE method
as compared all other competing methods that is vulnerable to the distribution shifts. Other figures: results
of regression task 2. In each plot, we fix b and vary a. For all plots, it appears that when a = b, the mean
squared error of all methods converge to a point. This is the case when the target density function of U has a
peak centered around 0.5, as shown in Figure 6, and hence Y = (2U — 1) X is close to zero for most samples.

UP ~ 27Beta(2,4), U? ~ Uniform(a, 27);
X = Rotate(image, U rads) +1, n ~ N(0,0.011¢4);

2
0.1|XT Al — 5000
C_< |XT A3 >+U+%

2000

A ~ Uniform(0, 1), A e R196x10"+ ~ A/(0,0.5);
1 1 _

Y = ZC+ %sm(U) +e, &~N(0,0.1);

W =cos(U) +v, v~N(0,0.25).

When fitting all model, both baselines and the proposed method, we project the images R*%?6 to R'6 via Gaussian
Random Projection using the scikit-learn implementation (Bingham and Mannila, 2001; Pedregosa et al., 2011).
Additionally, for the proposed method, we use a Gaussian kernel as the feature map for X, C.

We generate 7000 training samples and 3000 test samples in our experiments. Then, we use five-fold cross-
validation to select hyperparameters for baselines and proposed method for each a (U? ~ Uniform(a,2m)) —
hyperparameters are (i) ridge regression penalty and (ii) Gaussian kernel scaling factor. Once we select a set of
hyperparameters for a value of a, we perform 10 new random data regenerations to get transfer errors with 95%
confidence intervals (Figure 2b).
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Figure 6: The probablity density function of Beta distributions with different a,b=1,...,5.

Figure 7: dSprites image with confound (rotation) applied.

D.7 Classification of radiological findings with MIMIC-CXR

We conduct a small-scale experiment with chest X-ray data extracted from the MIMIC-CXR dataset (Johnson
et al., 2019). We consider classification of the absence of a radiological finding in a chest X-ray. For this, we use
the set of labels extracted by Irvin et al. (2019). These labels correspond to 14 categories of radiological findings
extracted based on mentions in the associated radiology reports. We specifically consider classification of the
“No Finding” (Y = 1) label, corresponding to cases where no pathology was identified as positive or uncertain
in the radiology report.

To define the dataset, we consider the set of 217,536 chest X-rays with defined Chexpert labels (Irvin et al.,
2019), MIMIC-IV entries, and pretrained embeddings (Sellergren et al., 2022). We then filter this dataset to the
212,567 examples considered as a part of the “train” partition provided by the MIMIC-CXR database (Johnson
et al., 2019). We then partition the data into training, validation, and testing splits such that 80%, 10%, and 10%
of the examples belong to each partition, respectively. For adaptation, we consider BioBERT (Lee et al., 2020)
768-dimensional embeddings of the radiology reports as concepts C' and the patient’s age as a proxy variable W.
For simplicity, we use the patient anchor_age defined through linkage to the MIMIC-IV database, regardless
of the patient’s age at the time of the chest X-ray. Similar to the dSprites experiment, we further reduce the
dimensionality of X and C to R%* using Gaussian Random Projection fit on the full training partition (170,053
examples).
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To define distribution shifts, we adopt a problem formulation similar to that of Makar et al. (2022), where
patient sex is considered as a possible “shortcut” in the classification of the absence of a radiological finding.
As in Makar et al. (2022), we impose distribution shift through structured resampling of the data where P(U =
1) = P(Y = 1| Sex = Female) = P(Y = 0 | Sex = Male). For example, when P(U = 1) = 0.1, the
prevalence of P(Y = 1| Sex = Female) = 0.1 and P(Y = 1 | Sex = Male) = 0.9. We implement the shift
through a weighted sampling procedure that maintains the label shift invariance within patient sex subgroups,
i.e., preserves X | Y, A under the distribution shift, where A corresponds to patient sex. This procedure further
fixes the total proportion of male and female patients in the population at 50%. For our experiments, we consider
nine domains corresponding to cases where P(U = 1) € {0.1,0.2,...,0.9}.

We perform both concept adaptation and multi-domain adaptation experiments with the MIMIC-CXR data.
For the concept adaptation experiment, we perform weighted sampling with replacement of 1,000 examples from
each of the training, validation, and testing partitions defined previously, separately for each domain. We fix the
source domain to the case where P(U = 1) = 0.1 and then adapt to each of the nine target domains. For the
multi-domain adaptation experiment, we randomly sample 500 examples per domain and partition from the sets
of 1,000 examples defined for the concept experiment. For this experiment, we consider a case where two source
domains corresponding to P(U = 1) = 0.1 and P(U = 1) = 0.2 are available. To match the size of the aggregate
source domain data with the size of the target domain, we sample 250 examples per partition for each source
domain. We repeat the sampling procedure five times and report the mean + standard deviation of performance
metrics over the five replicates.

For both experiments, we perform two-fold cross-validation for the kernel length-scale parameters using data from
the source domain(s). Here, we compare to ridge logistic regression models fit in the source and target domains,
with the ridge penalty fit with five-fold cross validation. We use LR-Target to refer to logistic regression models
fit in a target domain, LR-SOURCE to refer to models fit in a source domain, and Cat-LR to refer to logistic
regression models fit with concatenated data from the multiple source domains. We use Bridge-SOURCE to
refer to the kernel estimator that leverages the bridge function (hg or mg for the concept and multi-domain
adaptation settings, respectively) and conditional mean embedding (pwc|e OF pw |z ) fit on the source domain
data. Bridge-TARGET refers to the kernel estimator where both the bridge function and conditional mean
embedding are fit on the target domain data.
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