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Abstract

Nash Q-learning may be considered one of the first
and most known algorithms in multi-agent rein-
forcement learning (MARL) for learning policies
that constitute a Nash equilibrium of an underly-
ing general-sum Markov game. Its original proof
provided asymptotic guarantees and was for the
tabular case. Recently, finite-sample guarantees
have been provided using more modern RL tech-
niques for the tabular case. Our work analyzes
Nash Q-learning using linear function approxima-
tion — a representation regime introduced when
the state space is large or continuous — and pro-
vides finite-sample guarantees that indicate its sam-
ple efficiency. We find that the obtained perfor-
mance nearly matches an existing efficient result
for single-agent RL under the same representation
and has a polynomial gap when compared to the
best-known result for the tabular case.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has been suc-
cessfully applied to a diversity of problems, such as solv-
ing the games of Go (Silver et al., 2016, 2017) and Star-
craft (Vinyals et al., 2019), coordination of unmanned aerial
vehicles (Pham et al., 2018), autonomous driving (Din-
neweth et al., 2022), power systems (Foruzan et al., 2018),
and management of water and energy resources (Ni et al.,
2014; Yang et al., 2020). The theory and development of
multi-agent reinforcement learning algorithms is currently
a prolific area, as attested by various recent surveys on the
field, e.g., (Zhang et al., 2021; Hernandez-Leal et al., 2019;
Yang and Wang, 2021). In general, employing MARL to
solve for a Nash equilibrium general-sum Markov game is
computationally complex (Daskalakis et al., 2009). This mo-
tivated theoretical works to look for other weaker solution

concepts (e.g., coarse-correlated equilibria), or, if looking
for a Nash equilibrium, either: (i) leave the general-sum
domain and focus on zero-sum games or fully cooperative
games, or (ii) specify extra conditions for the underlying
general-sum Markov game (MG) (Zhang et al., 2021). The
seminal work (Hu and Wellman, 2003) introduced the Nash
Q-learning algorithm in the context of infinite-horizon dis-
counted Markov games. The idea of Nash Q-learning is
that, at every time step, each agent needs to find a Nash
equilibrium which solves some static game whose utilities
or rewards are defined by the (estimates of the) Q-functions
of all the agents — this is also called a stage game. Thus,
a motivation for using Nash Q-learning is its algorithmic
simplicity: it solves a static game where Q-learning (for
classic single-agent RL) would otherwise solve for an op-
timum. In (Hu and Wellman, 2003), asymptotic learning
guarantees are given when the chosen Nash equilibrium is
consistent in all stage games and is either a global optimal
or a saddle one. Despite this strong sufficient condition, Hu
and Wellman (2003) presented numerical examples where
Nash Q-learning solves games that do not satisfy such condi-
tions. It is important to remark that there exist proven cases
in which value-based methods — encompassing Nash Q-
learning — cannot converge to a single Nash equilibrium of
general-sum Markov games (Zinkevich et al., 2005). How-
ever, remarkably, Nash Q-learning stands as one of the few
general-sum MARL algorithms and has elicited the develop-
ment of algorithms specialized to other classes of Markov
games or focused on other solution concepts. Further, it is
still consistently cited in the applied literature (Hernandez-
Leal et al., 2019).

The first formal proof for Nash Q-learning by Hu and Well-
man (2003) only provided formal guarantees for asymptotic
convergence in the tabular setting. However, recently, about
two decades later, Liu et al. (2021) proposed a type of Nash
Q-learning algorithm and used a modern approach from the
theoretical reinforcement learning (RL) literature to estab-
lish finite-sample guarantees and thus guarantee the sample
efficiency of learning in the tabular setting. Liu et al. (2021)
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used regret as a performance metric, and thus it was of in-
terest that the average performance of policies gets closer to
the performance of a Nash equilibrium instead of an actual
convergence to a single equilibrium.

In the modern RL literature, it is known that tabular ap-
proaches are not ideal in environments where the state space
is large or continuous. This has motivated the development
of linear function approximation, where, for example, the
transition kernel and reward function of the underlying
Markov decision process (MDP) are a linear function of
a vector of features (Jin et al., 2020; Yang and Wang, 2020).

Taken together, these prior works motivate the central ques-
tion of our paper:

Can we obtain finite-sample guarantees and sample effi-
ciency for Nash Q-learning in the linear function approxi-
mation regime?

We answer this question positively by proposing a Nash Q-
learning algorithm — called Nash Q-learning with optimistic
value iteration (NQOVI) — and providing its finite sample
guarantees under a regret performance metric. Interestingly,
we find that the sample efficiency of our algorithm nearly
matches the one reported in (Jin et al., 2020) for (single-
agent) RL in the same approximation regime.

In general, our central question is also motivated from the
fact that an increasing number of works providing sample
efficient guarantees for (single-agent) RL problems has ap-
peared in recent years. The works (Jin et al., 2020; Yang and
Wang, 2020) started providing such guarantees in the linear
function approximation domain using the principle of opfi-
mism under uncertainty for online RL — later, other works
have applied it to reward-free RL (e.g. (Wang et al., 2020))
and have even applied a counterpart principle, called pes-
simism, to offline RL (Jin et al., 2021). Optimism consists of
adding a bonus so that the estimated optimistic Q-function
rewards more those state-action pairs that have been less ex-
plored. Pessimism basically does the opposite by subtracting
a bonus value. However, when it comes to (online) MARL,
to the best of our knowledge, the simultaneous application
of optimism and pessimism to achieve sample efficiency
for learning Nash equilibria has mainly been limited to two-
player zero-sum games in the linear function approximation
case (Qiu et al., 2021), and to general-sum games in the
tabular case (Liu et al., 2021). In this work, we show that
the principle of optimism can easily be applied to Nash
Q-learning in general-sum games.

Contributions We summarize our contributions.

* We provide the first sample efficient guarantees for a
Nash Q-learning algorithm in the linear function ap-
proximation regime for general-sum games — obtain-
ing a regret bound O(V Kd3H?®), with K being the
number of episodes, H the episode length, and d the
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dimension of the feature vector of the linear function
approximation.

To prove our guarantees, we propose the Nash Q-
learning with optimistic value iteration (NQOVI) algo-
rithm. The original Nash Q-learning proposed by Hu
and Wellman (2003) was in the context of tabular
and discounted MGs, and considered convergence to a
Nash equilibrium as a performance metric. In contrast,
we consider episodic MGs with regret performance,
and do no need the existence of special Nash equilibria
on the stage games as in Hu and Wellman (2003).

When directly transforming it to the tabular case, our
performance bound has a polynomial gap on all factors
except for the number of episodes K compared to the
best-known result by Liu et al. (2021).

In the single agent case, our NQOVI algorithm col-
lapses to the model-free RL algorithm proposed by Jin
et al. (2020) (instead of taking a (mixed) Nash equilib-
rium at each stage game, the agent takes the optimal
greedy action). Remarkably, we show that our algo-
rithm’s sample efficiency differs only by a factor of
H - the length of the episode — compared to the single
agent one. To the best of our knowledge, this is the first
time a general-sum MARL algorithm nearly matches
the sample efficiency of an RL algorithm.

1.1 RELATED WORKS

Since our paper is of a theoretical nature, we limit ourselves
to presenting prior work focused on theory.

Multi-agent RL. (MARL). Although the applied MARL
literature has been around for decades, theoretical works
have been gaining more presence in recent years — we re-
fer the reader to the recent surveys (Zhang et al., 2020;
Hernandez-Leal et al., 2019; Yang and Wang, 2021). Impor-
tantly, we highlight that a large body of recent works have
focused on the study of learning in the two-player zero-sum
Markov game case — where one player tries to maximize
the expected reward while the other tries to minimize it.
One reason for its popularity is that it can be formulated as
a minimax game and Nash equilibria are easily character-
ized (Zhang et al., 2021). Recent works have been done both
in the tabular setting, e.g., (Kozuno et al., 2021; Zhang et al.,
2020; Bai et al., 2020; Liu et al., 2021; Jin et al., 2022), and
the linear function approximation setting, e.g., (Chen et al.,
2022; Cisneros-Velarde et al., 2023; Qiu et al., 2021). In
the case of general-sum Markov games, another large body
of work has focused on providing guarantees for finding
other solution concepts such as coarse correlated equilibria
(CCE); e.g., (Liu et al., 2021; Jin et al., 2022; Mao and
Bagar, 2022). Minimax sample optimality has been shown
—under certain assumptions — for finding CCE in general-
sum games and Nash equilibria in zero-sum games for the
tabular case (Li et al., 2022). In learning Nash equilibria,



Liu et al. (2021) proposed a Nash Q-learning algorithm
for general-sum games in the tabular setting, with an un-
derlying episodic MG — no extra conditions on the Nash
equilibria are required. While writing our paper we found
the recent preprint by Ni et al. (2022) who studied represen-
tation learning in general-sum games and whose proposed
algorithms output a policy after a number of episodes. They
focus on the harder problem of learning the feature vec-
tor of the linear approximation, whereas we assume it is
given — we only focus on learning a good policy and not on
learning a good representation. Thus our guarantees are not
directly comparable. Finally, we remark that both Liu et al.
(2021) and Ni et al. (2022) use the principle of optimism
and pessimism, so they compute two Q-functions on their al-
gorithms, while we compute just one optimistic Q-function.
Two recent works (Cui et al., 2023; Wang et al., 2023) used
function approximation and sought to avoid an exponential
dependence on the size of the action spaces of the agents
on the regret bounds when specialized to the tabular setting.
While our results have such dependency when specialized
to the tabular case, our setting is different than theirs. Cui
et al. (2023) considered linear function approximation with
each agent having its own feature vector encoding only its
own action space, whereas we consider a feature vector that
encodes the joint action space. Moreover, their work, unlike
ours, restricted the underlying Markov game to be a poten-
tial Markov game when considering NE. The work by Wang
et al. (2023), also considered independent feature vectors
and was only concerned with CCE and correlated equilibria
(CE) as solution concepts.

Linear function approximation in RL. The idea of us-
ing linear function approximation is ubiquitous in theoret-
ical RL. The first works to combine it with optimism for
sample efficient learning were (Jin et al., 2020; Yang and
Wang, 2020) for online RL. Since then, such setting has
been adapted to different RL problems, such as represen-
tation learning (of the feature vector of the linear function
approximation), e.g. (Agarwal et al., 2020); parallel learning
(multiple agents learning through independent MDPs but
being able to communicate their experience), e.g., (Dubey
and Pentland, 2021); deployment efficiency (RL algorithms
when the number of times a policy can be updated is re-
stricted), e.g., (Gao et al., 2021); reward-free RL (where ex-
ploration and exploitation are separated in different learning
stages), e.g., (Wang et al., 2020; Wagenmaker et al., 2022).
Some works have combined two of the aforementioned prob-
lems using linear function approximation; e.g. in the context
of reward-free RL, Huang et al. (2021) studied deployment
efficiency, whereas Cisneros-Velarde et al. (2023) studied
the effect of parallel exploration. These works follow a sim-
ilar skeleton in their algorithms since all of them have in
common the use of optimism and value iteration — it is in
this framework that we decided to propose an algorithm
based on Nash Q-learning.
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The paper is organized as follows. In Section 2, we formally
introduce the setting. In Section 3, we introduce our Nash
Q-learning algorithm and state our main result. In Section 4,
we provide a sketch of the proof and some nuances of its
formal analysis. Section 5 is the conclusion.

1.2 NOTATION

Let || - || be the Euclidean norm, and ||v||4 = VvT Av for
positive semidefinite matrix A. Let [k] = {1,2,...,k} fora
positive integer k. Let I,,, be the m x m identity matrix. Let
A(A) be the probability simplex defined on a given finite
set A. Given the big-O complexity notation O, we use O to
hide polylogarithmic terms in the quantities of interest.

2 PRELIMINARIES

We consider an episodic Markov Game (MG) of the form
MG = (S, A, H,P,r,), with state space S, action space
A=A x ... A, with A; being the action space for agent
i € [n], H is the number of steps per episode or episode
length — we assume the non-bandit case H > 2, P =
{Pn}hen are transition probability measures and Py, (- |
x,a) denotes the transition kernel over h + 1 if all players
take the action profile a € A for state x € S. We denote
agent i’s reward function profile by r; = {r¢ }L  with
ri : §xA; — [0,1].! Forany agenti € [n], its action taken
at step h is denoted by a; 5, € A;, and let a; = {ai,h}ff:l.
We assume every agent has a finite action space, while the
state space can be arbitrarily large or even continuous.

We denote agent i’s policy by m; = {m; p }2L | with m; ), :
S — A(A;). With some abuse of notation, we also let
7 ¢ S = A(A) denote the (joint) policy taken by the
agents over the joint action space at time step h € [H] — the
subindex £ in 7, will be clear from the context whether it
refers to an agent or a time step. Let 7 be the joint policy
of all agents. We say  is a product policy (across agents)
T = 1 X -+ X 7, When, conditioned on the same state, the
action of every agent can be sampled independently accord-
ing to their own policy, i.e., m(z) € A(A1) X --- x A(A,)
for every € S, h € [H]. For agent i, we define
her value function V"™ : & — R at the h-th step as
Vi (x) = Be[S gy, mh (snyan) | sn = 2] and her Q-
function or action-value function Q;[W :SxA— Ras

W (@, a) == B[, v (shryan) | sn = @,an = ],
where the expectation E is taken with respect to both the
randomness in the transitions P and the randomness inher-
ent in the policy 7. If agent ¢ has policy v and the rest of
the agents joint policy m_;, we denote its associated value
function at step h by the notation th =1 ., by placing
a superscript with ¢’s policy before the (joint) policy of the

"We assume deterministic rewards for simplicity.



rest of the agents; consequently, V," ™™ " = V"
We now define our solution concept of interest.

Definition 2.1 (Nash equilibrium for Markov games). Given
an initial state s, € S, a product policy profile 7 is called
a Nash equilibrium (NE) ifVlmi T (s0) > Vlwri’ﬂ’i (S0)
for any i € [n] and any policy w;, and it is called an e-NE if

o) =TT o) < e

9,705 T

Vi

We say agent i € [n] plays a best response policy against
the policy profile m_; of the rest of the agents according to
br;(m_;) € argmax, V,""" " (z) for any (z,h) € S x [H].
Note that we can easily characterize a Nash equilibrium
(Definition 2.1) using best-responses.

For any function f : & — R, we define the transition
operator as (P f)(z,a) = Euup, (|a,0)[f(2')]. For any
i € [n], the Bellman equation associated with a policy
is: Qzﬂ(z,q) = (r}(z,a) + thhlfl)(x,a), Vi'(z) =
Eqrm, ()@} (2, a)], with Vlgil(x) = 0, for any (z,a) €
S x A.

In this paper, we consider linear MGs.

Linear (function approximation in) Markov Games. Un-
der a linear MG setting, there exists a known feature map
¢ : S x A — R such that for every h € [H], there ex-

ist d unknown (signed) measures i, (1) (d))

(,uh s b
over S and an unknown vector 6, € R? such that
Pa(e']z,0) = (@(z, a), (&), 7 (2, @) = (6(, ), Bn)
forall (x,a,2") € SXxAxS. We assume the non-scalar case
with d > 2 and that the feature map satisfies ||¢(x, a)|| <1
for all (z,a) € S x A and max{||ux(S)|, |0n]]} < Vd
at each step h € [H]|, where (with an abuse of notation)
[12r(S)|| = [s ln(z)|dz. Note that the transition kernel
P (|, a) may have infinite degrees of freedom since the
measure jip, is unknown.

Performance Metric. We consider that all agents are learn-
ing during a total of K episodes, starting at some initial
state s, € S at the beginning of each episode. For a set of
policies {*} y¢ (k] provided by an online MARL algorithm,
we use the following regret performance metric:

K

max (
i€[n]

i,br(w® )7k, i,
Vi (80) = V1" (80))-
2.1)

The idea behind such regret is that, at episode k € [K],
i, br(r",),7*, i7" .
maxie{n](Vf’b (™=, “(s0)= V" k(so)) = 0 iff (product)

policy 7 is a Nash equilibrium for the Markov game.

Regret(K) =
k=1

Static games. We also consider that the n agents can
play a static game, keeping their respective action spaces.
Given that each agent has an associated reward function
gi : A — Rin a static game, the game is defined by the tu-
ple (g1,...,9n). Given a € A, we define a_; as the respec-
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tiveelementof A_; = Ay x ... A;—1 X Aj41 X -+ X A,
We consider a tuple v = (v1,...,v,) with v; € A(A;),
i € [n], to be a strategy profile; and let v_; be the
tuple v without its ¢th element. In this work, we con-
sider strategy profiles v € A(A) as product measures
v(a) = [Ii-, v(a;), a similar consideration follows for
v_; € A(A_;), i € [n]. A strategy profile v* is a Nash
equilibrium if v € argmax, ca(4,) EaaiNV* [g:(a)] for ev-

z k3

ery i € [n].

Definition 2.2 (Global optimal and saddle Nash equilib-
ria (Hu and Wellman, 2003)). A strategy profile v* of the
static game (g1, ..., gn) is:

(i) a global optimal (Nash) equilibrium if Eq.,+[g;(a)] >
Eo~v]9i(a)] for any strategy profile v € A(A); and

(ii) a saddle Nash equilibrium if Eg,[gi(a)] >
E ai~vi [gi(a)] for any i € [n] and any v; € A(A;),
and B g:(@)] <E ayros gi(a)] for any strategy

a_;~V_j;

profilev_; € A(A_;).

NASH Q-LEARNING AND ITS
ANALYSIS

We propose a simple Nash Q-learning algorithm based on
linear function approximation and optimism named Nash
Q-learning with optimistic value iteration or NQOVI as
described in Algorithm 1.

We provide an outline of the NQOVI algorithm. At each
iteration k € [K] and step h € [H], the information
of the explored state-action trajectories described by the
agents in the game at the same step but up to the previ-
ous episode is collected in a covariance matrix Aﬁ (line
6 of Algorithm 1). Then, all the agents participate in a
static game described by some prior optimistic estimates of
Q-functions and a Nash equilibrium is computed — this
static game is called a stage game because it is solved
in every episode and time-step (and depends on the cur-
rent state of the Markov game). Then each agent, using its
computed Nash policy from the stage game, computes a
new optimistic estimate of the Q-function (line 10), using
the optimism bonus B(¢(-,-) T (A¥)~1¢(-,-))'/2. Then, all
the agents jointly explore the environment (lines 14-16) by
taking actions coming from their respective policies com-
puted from stage games. The resulting state-action trajectory
across the episodes will then be collected and the whole pro-
cess repeats.

Remark 3.1 (Computational aspects). Though a (mixed)
Nash equilibrium (NE) is always guaranteed to exist for the
static game defined by the optimistic Q-value function in
lines 14 and 16 of Algorithm 1, solving for an (exact) NE is
in general computationally intractable (Chen et al., 2009;
Daskalakis et al., 2009).



Algorithm 1 Nash Q-learning with optimistic value itera-
tion (NQOVI)
1: Input: K, 3, \
2: for episode k € [K] do
3 Tk« 50
4 QY () 0i€n
5.
6
7

forh=H,...,1do
k—1 T T T T
Af = Mg+ 3272, ¢(af, af)d(af, ap) "
7m* <— a Nash Equilibrium for the n-player game
1,k n,k
(Qh+1<x2+1a 3 I Q}L.H(xfprlv )
fori € [n] do
i,k - k—1 T T 7 T T
wy” (Alg) Lo o, af) [y, (e af) +
Eqwn* [QZ.H(ZE;—LJFU a)]
10: DR —

0 »

min{(w;*)Te(,-) +

B, ) T(AF) T (-, ), H}
11: end for
12:  end for
13:  for h € [H] do
14: 7F(2%) <« a Nash Equilibrium for the n-player
game ( %k(xﬁv ')’ Tt ZJC('%‘?N ))
15: Take af ~ 7F(zF)
16: Observe :L"ZH
17:  end for
18: end for

Remark 3.2 (About information access in NQOVI). In this
paper, we are primarily concerned with analyzing NQOVI as
a solver for the policies of the underlying Markov game, e.g,
as done in the recent work (Liu et al., 2021). One could
think of relaxing some implementation details such as the
information each agent has access to across episodes, but
this is beyond the scope of the paper. For example, at each
step h € [H] and iteration k € [K], one could make the
optimistic Q-functions of every agent i € [n], Q;l’k, be pri-
vate information to the rest of the agents. Then, each agent
would try to estimate the Q-functions of the rest of the agents
based on the observation of past rewards — an idea already
outlined in (Hu and Wellman, 2003).

We now present the paper’s main result.

Theorem 3.1 (Performance of the NQOVI algorithm).
There exists an absolute constant cg > 0 such that, for
any fixed 6 € (0,1), if we set \ = 1 and 8 = cgdH /1,
with ¢ := log(dK H(n + 2)/6), then, with probability at
least 1 — 6,

Regret(K) < O <\/Ex/d3H5L2>. (3.1

Sample efficiency. Our regret bound is sublinear in the
number of episodes K and — ignoring logarithmic terms —
polynomial on the parameters d and H, i.e., there is learning
with sample efficiency. Our finite-sample guarantee states
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~ 3 175
that K = O (d A
an average regret less or equal than e, i.e., for the policies
across the episodes to perform on average as an e¢-Nash
equilibrium.

) episodes are needed in order to achieve

About the number of agents. Our bound has a logarithmic
dependence on the number of agents n. However, we remark
that the feature dimension d of the linear MG might hide
dependencies on n depending on how the feature vector ¢ is
constructed (more on this below, when discussing the tabular
case). In any case, the larger the number of agents, the more
samples are needed to achieve the same average regret per-
formance. Intuitively, this makes sense, since increasing the
number of agents increases the number of possible decision
makers and thus the complexity of the state-action space
to be sampled. This is in stark contrast with other works
in the single-agent RL case where multiple agents can be
deployed to explore the same state-action space of the MDP,
in which case their performance measure improves with the
number of agents (Cisneros-Velarde et al., 2023).

Comparison with (single-agent) RL. For the classic single-
agent RL case (n = 1), Jin et al. (2020) obtained, with the
regret metric with respect to the optimal policy of the under-
lying MDP, the bound O(v/K+/d3H*%). Thus, our result is
essentially larger by a factor H — thus nearly-matching the
sample efficiency. Having to learn a Nash equilibrium of an
MG thus requires more samples than what would be neces-
sary for an MDP. It is important to highlight that though the
single-agent case requires taking an action that maximizes
the optimistic Q-function (see (Jin et al., 2020, LSVI-UCB
Algorithm)), NQOVI requires solving for Nash equilibrium
and thus is computationally more complex.

Comparison with (Hu and Wellman, 2003). The origi-
nal Nash Q-learning proposed by Hu and Wellman (2003)
has as its performance metric the convergence to a Nash
equilibrium of the underlying discounted MG. In order to en-
sure such convergence, they assumed the existence of either
global optimal or saddle Nash equilibria uniformly on every
stage game — see Definition 2.2. In contrast, since we use re-
gret in the context of episodic MGs, we are interested in the
average performance of the computed policies across itera-
tions, with the expectation that it will approximate a Nash
equilibrium performance. Therefore, we are not strictly in-
terested in convergence to a single Nash equilibrium. For
this reason, our proof makes no use of the assumptions
across stage games by Hu and Wellman (2003). Their work
and ours, though being model-free, use completely different
proof techniques.

Comparison with (Liu et al., 2021). The first Nash Q-
learning algorithm in (Hu and Wellman, 2003) was designed
and analyzed for tabular RL. Motivated by concerns of large
or continuous state spaces, we decided to opt for the func-
tion approximation regime. As it is known in the literature,
a direct translation of the NQOVI algorithm to the tabular



case can be done by letting the feature vector ¢ capture
d=|S||A| = |S|TTi-, , which would give our regret
bound a complexity of (5(\/H5\S|3|(H?=1 |A;)3K). In
the tabular case, Liu et al. (2021) proposed the Multi-Nash-
VI algorithm which obtains O(y/H*[S|2|(T]—, A K) -
tighter in horizon H and both sizes of the state and action
spaces of the agents. Interestingly, in the tabular case, both
NQOVI and Multi-Nash-VI are of different nature, since
the former is model-free and the latter model-based. Inter-
estingly as well, Multi-Nash-VI requires the computation
of two Q-functions based on the constructed model — one
using optimism and another using pessimism —, whereas
NQOVI requires only the computation of an optimistic Q-
function. As generally expected in general-sum MGs, both
suffer from the curse of multi-agents in the tabular case
since the sample bounds have exponential dependence on
the number of agents (through the product of the cardinality
of the agents’ action spaces) (Song et al., 2022).

4 PROVING THE MAIN RESULT

We first present two lemmas that make use of the fact that
we solve for Nash equilibria in the stage games. All missing
proofs and results are in the supplementary material.

Lemma 4.1 (Bounding the covering number). Let i € [n],
and let w; € RY be such that ||w;|| < L, A € R4 pe
such that its minimum eigenvalue is greater or equal than A,
and, for all (z,a) € S x A, let ¢(x,a) € R? be such that
l¢(z,a)|| <1, and let B > 0. Define the function class

vi={V:s R |V()

= max E ai~v {min{u?;r a
vEA(A;) a_j~m_i(+) ¢( )

+8y/o(.a) A 0,0), H |} @)

where m_;(-) € A(A_;). Let N;, be the ¢;-covering
number of V; with respect to the distance dist(V, V') =
SUp,es |V (x) — V'(x)|. Then,

log N, < dlog(1 +4L/e) + d*log[1 + 8d/2 8% /(\e?)].

In Lemma B.2 of the supplementary material, we introduce
an event & which defines a concentration bound over a
cumulative quantity of the value function associated to agent
i € [n] across iterations. We use this event in the lemma
below.

Lemma 4.2 (Optimism bounds). Consider the setting of
Theorem 3.1. Given the event &; defined in Lemma B.2, we

have for all (x,a,h, k) € S x A x [H] x [K] that
’LbI‘TK‘ 71'
h( i) (:ca)<Qh(:17a)
k
and Vzbr(ﬂ' )T ( ) Vzk,( )
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The importance of Lemma 4.1 and Lemma 4.2.
Lemma 4.1 defines a function class V; to which the function
ViR () = Eoori(yl "% (., a)] belongs. Indeed, the charac-
terization of V; includes the one of a Nash equilibrium for a
static game; however, we remark that 7_;(-) € A(A_;) in
the statement of Lemma 4.1 does not need to be a product
measure. Using a covering number argument, Lemma 4.1
would be used to prove a series of results that would end
up being used by Lemma 4.2. Fundamentally, Lemma 4.2
makes use of (i) the optimism bonus at each episode —
the factor starting with 3 in line 10 of NQOVI — and (ii)
the selection of Nash equilibria across all stage games.
Bounding the best-response value functions across agents in
Lemma 4.2 is important because it upper bounds one of the
terms of the regret, see (2.1). Finally, we end our discussion
by pointing out that these lemmas are the only two places
in the proof of Theorem 3.1 which makes direct use of the
notion of Nash equilibria.

4.1 PROOF SKETCH OF THEOREM 3.1

We present the proof sketch of our main result. A more
detailed full version of the proof along with all auxiliary
results and necessary proofs are found in the supplementary
material.

Let us first condition on the event ﬂ?:l &; where &; is de-
fined in Lemma B.2. Since P[not &;] < ¢, applying union
bound let us conclude that P[(;,, €] = 1 — nd. Condi-
tioning on this event allows us to use Lemma 4.2 for every
i € [n].

For any k € [K], given the policy 7% = {7}, defined
by NQOVI, we define the functions @Z and ‘7}5 recursively
as: Vi (@) = Q. () =0and

Qh(x,a) = PuVilys (2, 0) +281/ (6F) T (AF) 16},
forany h = H,...,1and (x,a) € S x A. Notice that since

26,/ (6)T(AF) 16k < 28,/ (05) Tk = 28 |0} < 25,
we have that @Z and ‘7}5 are nonnegative with maximum
value 25 H.

Let k € [K]. We can show that for any (h,z,a) € [H] X
Sx A,

max(Q}" (z, a) — ;L’Trk (2,a)) < Q¥ (z,a), and
e | . A “2)
max(V; " (@) =V, (@) < Vi (@)-
We now introduce the following notation: &F :=
Eoonp o) [@F (2 0)] — Qh(af.af), and &, =
PV (af,af) — VE (2} ,,) with € := 0. Then, for



any (h, k) € [H] x [K], we can show that

ViEal) = of + €8y +28
+ foﬂ(xlﬁﬂ)-

(OF)T(AF) 1ok

Now, let us focus on the regret performance metric.

K i,br(mk )7k, ik
Regret(K) = 3 max(V; "7 (5,) — Vi (s,)
k:liehd
@ & ik i,k
< ) max(Vy(so) = V)™ (s0))
% 1i€h]

(1)
4.3)
where (a) follows from Lemma 4.2 and the fact that we are
conditioned on the event ﬂ?zl &;; (b) follows from (4.2).

We first analyze the term (I) from (4.3). By defining an
appropriate infinite sequence of tuples £* C Z>1 x [H],
we can show that {£}'} (s, pyec+ is a martingale difference
sequence. Therefore, we can use the Azuma-Hoeffding in-
equality to conclude that, for any € > 0,

K H . 7262
Pr (I;];fh > e> < exp ((KH)(1662H2))'

We choose € = /8K H?3[3?log (). Then, with probability

atleast 1 — 4,
K H

H=> > &< \/SKH352 log ( ) < 8BHVKH
k=1 h=1

4.4)
when setting ¢ = log( ) We call £ the event such

that (4.4) holds.

The term (II) can be analyzed in a very similar way as
in (I) to show that {0}'} . n)e .+ is a martingale difference
sequence, and thus obtain that with probability at least 1 — 4,

K H
1 = Z Z 6F < 8BHVKH.. (4.5)

k=1h=1

We call € the event such that (4.5) holds.
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We now analyze the term (III) from (4.3).

H

(1) = 23

h=1

(0h)T (A7)~ )

Mw

=
I

1

(a)

K
< 2/32\/ D (@h)T ) ek
h=1 k=1

(b)
< 28HV2dKu,

where (a) follows from the Cauchy-Schwartz inequality, and
we can show (b) by using the so-called elliptical potential
lemma (Abbasi-yadkori et al., 2011, Lemma 11).

Now, using the results in (4.4), (4.5), and (4.6) back in (4.3),
we conclude that,

Regret(K) < 8SHVKH. +88HVKH.+28HVdK.
= 16cs VA2 K H%12 + 2cg VAP K H4.2

(@)
< 18csVBKH5:2,

where (a) follows from /¢ < ¢.

(4.6)

“.7)

Finally, applying union bound let us conclude that
PMicpy & NENEL > 1 — (n+2)4, ie., our final re-
sult holds with probability at least 1 — (n + 2)d. We set the
change of variables ¢’ := (n + 2)J so that all results hold
with probability at least 1 — ¢’ and the regret bound has

now a logarithmic dependence ¢ = log (%). This

finishes the proof of Theorem 3.1.

S CONCLUSION

We have shown the sample-efficiency of Nash Q-learning
under linear function approximation — ideal for large state
spaces or continuous ones — by making use of the principle
of optimism in the face of uncertainty — largely exploited in
the modern RL literature. We also compared our result to the
sample complexity obtained for single-agent RL with linear
function approximation and for general-sum MARL on the
tabular case. We hope our work may open the path to the
future analysis of a more diverse set of MARL algorithms.

One future research direction is obtaining sample perfor-
mance lower bounds to analyze the (closeness to) minimax
optimality of general-sum MARL algorithms such as Nash
Q-learning. Moreover, though most modern theoretical work
in RL (including this paper) mostly focus on sample effi-
ciency, it is relevant to propose and study algorithms that
are also computational efficient — for which other weaker so-
lutions to MGs such as CE and CCE are important. Finally,
another future direction would be to expand the analysis of
Nash Q-learning to nonlinear function approximators such
as neural networks.
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