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Abstract

We address the problem of unsupervised domain
adaptation when the source domain differs from
the target domain because of a shift in the dis-
tribution of a latent subgroup. When this sub-
group confounds all observed data, neither co-
variate shift nor label shift assumptions apply.
We show that the optimal target predictor can
be non-parametrically identified with the help of
concept and proxy variables available only in the
source domain, and unlabeled data from the target.
The identification results are constructive, imme-
diately suggesting an algorithm for estimating
the optimal predictor in the target. For continu-
ous observations, when this algorithm becomes
impractical, we propose a latent variable model
specific to the data generation process at hand.
We show how the approach degrades as the size
of the shift changes, and verify that it outperforms
both covariate and label shift adjustment.

1 INTRODUCTION

Distribution shift is a fact of many real-world machine learn-
ing systems. For example, imagine we have trained a pre-
diction model on patients of hospital P and would like to
apply it to patients of hospital (). However, these hospitals
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differ in their patient populations along socioeconomic, de-
mographic, and other axes (Finlayson et al., 2021). How
can we find the optimal predictor for hospital (), given only
labelled data from hospital P and unlabelled data from hos-
pital @? This is the problem of unsupervised domain adap-
tation (Huang et al., 2006). Without any assumptions on the
shift, this question is impossible to answer: the mapping
from features X to labels Y could differ across hospitals in
arbitrary ways. To address this, approaches typically assume
that certain observed distributions are preserved across the
shift, covariate shift: p(Y | X)=¢q(Y | X) (Shimodaira,
2000) or, label shift: p(X | Y)=q(X | Y') (Gart and Buck,
1966), where p, g are distributions of hospitals P, Q).

However, these assumptions are often restrictive for real-
world settings, as the shifts encountered are typically more
complex (e.g., ‘compound’ shifts (Schrouff et al., 2022)).
Here, we focus on one such shift that we call latent sub-
group shift. Subgroup shift occurs when both the source P
and target () distributions are composed of a common set
of subgroups U € U, but the prevalence of these subgroups
differs, i.e., p(U) # q(U). The subgroup shift is latent if
these subgroups are unobserved in both P and ). Impor-
tantly, the relationships between features X and labels Y
can differ between subgroups, such that neither the discrim-
inative distribution p(Y" | X) nor the generative distribution
p(X | Y) is preserved across the shift. In healthcare set-
tings, these subgroups may differ in their exposure to social
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determinants of health, contributing to differences in health
outcomes and patterns of comorbidity, care access, delivery,
and treatment (Marmot and Wilkinson, 2005).

To tackle latent subgroup shift, we frame learning the op-
timal ¢(Y | X) as an identification problem. Our identifi-
cation strategy combines approaches from proximal causal
inference (originally designed to identify intervention distri-
butions p(Y" | do(X)) under unobserved confounding using
proxy variables) (Kuroki and Pearl, 2014), black box label
shift adaptation (Lipton et al., 2018), and concept bottleneck
modeling (Koh et al., 2020). We show that it is possible
to express ¢(Y | X) in terms of the joint distribution of
observables in P and the distribution of unlabeled inputs X
in ). We derive two identification results, one for discrete
data and another for continuous data. While the results are
constructive, immediately implying an algorithm, estima-
tion requires non-trivial density estimation. Therefore, we
describe an alternative approach that leverages stable latent
variable (Kingma and Welling, 2013) models to estimate
q(Y | X). Our approach answers an open question on how
to leverage advances in concept bottleneck models (Koh
et al., 2020) for distribution shifts in both X and Y. Further,
it allows one to learn a single model in the source P which
can then be adapted to arbitrary shifts in Q.

Contributions. We propose a new approach for adapta-
tion to latent distribution shifts given concepts and prox-
ies, for cases where existing adaptation methods often
fail. We formally identify the target distribution for both
discrete and continuous variables, then propose effective
estimators. We perform a sensitivity analysis that char-
acterizes how our method changes when shift size and
proxy strength are varied. We show that our approach
outperforms multiple baselines including covariate and
label shift techniques. We provide code to reproduce
experiments at https://github.com/google-research/google-
research/tree/master/latent_shift_adaptation.

Notation. We denote scalars and functions by lowercase
letters (e.g., a, a(+)), vectors by bold lowercase (a), random
variables by capital letters (A), matrices by bold, capital
letters (A), and sets by caligraphic, capital letters (A). Let
[n] denote the set {1,2,...,n}.

2 RELATED WORK

There has been a flurry of recent work on improving out-
of-distribution generalization (see Shen et al. (2021), Wang
et al. (2022), and Zhou et al. (2022) for three recent surveys).
Largely, this work can be divided into two camps: (a) work
that learns a single model to work well across shifts, such
as work on invariant predictors (Arjovsky et al., 2019) and,
(b) work that adapts a model from a source distribution to a
target distribution, given access to limited data in the target.
Here we focus on the second class of approaches.

Model adaptation. To obtain an optimal predictor in a
new distribution (), one of the most popular assumptions is
to localize the shift between distributions P and ) in the
features (covariates) X, i.e., covariate shift: p(X) #q(X).
There has been a large body of work devoted to estimat-
ing predictors for () under this setting (Shimodaira, 2000;
Zadrozny, 2004; Huang et al., 2006; Gretton et al., 2009;
Bickel et al., 2009; Sugiyama and Kawanabe, 2012; Chen
et al., 2016; Schneider et al., 2020). The key assumption in
this line of work is that p(Y | X)=¢(Y | X). Therefore, if
one makes the source data appear like the target data (e.g.,
by reweighing the source classifier loss by ¢(X)/p(X)),
one can learn an accurate target classifier. The other popular
assumption is to localize the shift in the labels Y, i.e., label
shift: p(Y)#q(Y) and p(X | Y)=¢(X | Y) (Gart and
Buck, 1966; Manski and Lerman, 1977; Rosenbaum and
Rubin, 1983; Saerens et al., 2002; Forman, 2008; Storkey,
2009; du Plessis and Sugiyama, 2012; Zhang et al., 2013;
Lipton et al., 2018; Azizzadenesheli et al., 2019; Alexandari
et al., 2020; Garg et al., 2020; Tachet des Combes et al.,
2020; Wu et al., 2021). Here one can use a similar approach:
learn ¢(Y)/p(Y’) and use it to reweigh a source classifier,
adapting it to the target distribution. The assumptions of co-
variate and label shift can be framed as criteria on the causal
structure of the data, shown in Figure 1(a)-(b) (Scholkopf
et al., 2012). Most theoretical work is on generalization er-
ror bounds for covariate shift (Sugiyama and Mueller, 2005;
Ben-David et al., 2006; Mansour et al., 2009; Ben-David
et al., 2010; Cortes and Mohri, 2011; Johansson et al., 2019)
and label shift (Gong et al., 2016).

Causality for domain shift. Recently, a line of work has
framed domain shift using causal methods (Zhang et al.,
2015; Magliacane et al., 2018; Gong et al., 2018; Chen and
Biihlmann, 2020; Teshima et al., 2020). Most related to our
approach is the work of Yue et al. (2021). Similar to our
setup, they describe a setting where an unobserved latent
confounder U shifts the distribution of X and Y. However,
different from our work, they target an interventional distri-
bution instead of ¢(Y | X). To do so they learn mappings
from X ~ Pto X ~ (@, and vice-versa. They use these
mappings, as well as a variational autoencoder (Kingma
and Welling, 2013), to generate two ‘proxies’, one for X
and Y. They assume these proxies are caused by U, and
they use the result of Miao et al. (2018) to identify an invari-
ant ‘bridge function’ to remove the effect of the latent shift.
However, this does not guarantee identification of the struc-
tural equations mapping U to the proxies, X, and Y, which
is necessary for the procedure to correct for U.

3 SETUP AND PRELIMINARIES

Let P be the source distribution and ) be the target, with
probability mass/density functions p and ¢g. Our goal is to
identify the optimal predictor of Y from X in the target:
q(Y | X). To do so, we will make two main assumptions.
First, to make progress in this setting, we assume that we
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Figure 1: Different domain shift assumptions: (a) p(X)#q(X), (b) p(Y)#q(Y), (¢) p(U) #q(U).

have access to some auxiliary variables that play key roles
in the source distribution.

Al. We also observe auxiliary variables C (concept bottle-
neck) and W (proxy). All data is generated by the process
described in Figure 1(c) and is faithful and Markov (Spirtes
et al., 2000) (i.e., conditional independences in the data
exist iff they exist in the graph). Crucially, we only observe
(X,C,Y, W) in the source P and X in the target Q).

Formally, the data generation process of Figure 1(c) is a
probabilistic graphical model (Pearl, 1988). Given a set
of observed variables V and unobserved variables U/, these
models define a functional relationship f; between each
V; €'V and the variables that generate V; (also called its
direct parents) Vpa(i),upa(i) ie, V; = fi(Vpa(i),L{pa(i)).
These relationships can be described by a directed acyclic
graph (DAG), e.g., as in Figure 1. A key aspect of these
models is that they encode conditional independence rela-
tionships between variables in V, U, that can be derived via
d-separation (Pearl et al., 2000). Throughout this work we
assume f; and U are unknown.

The additional auxiliary variables C' and W play specific
roles in this graph. C operates as a “concept bottleneck”
that mediates the dependence between X and Y within sub-
groups indexed by U. Meanwhile, W operates as an inde-
pendent proxy, or noisy observation, of U that is condition-
ally independent of all other variables. Both of these proper-
ties play key roles in our identification strategy.

Our second assumption defines latent subgroup shift.

A2. The shift between P and Q is located in U, i.e., there
is a latent shift p(U) # q(U), while p(V | U)=q(V | U),
whereV C {W, X ,C,Y}.

Under these assumptions, distributions on U or that have U
marginalized (i.e., all observed distributions p(V) # q(V)
for Vv C {W,X,C,Y}) will shift between P and Q,
whereas only distributions conditional on U do not shift.
This is a direct generalization of the covariate shift invari-
ance, in which U — X — Y and the label shift invariances,
in whichU - Y — X.

Our framework is inspired by (a) concept bottleneck mod-
els (Koh et al., 2020) and (b) identification via proxies
(Kuroki and Pearl, 2014). We briefly review these topics
next.

Concept bottleneck models. Data in certain settings may
contain information beyond features and labels. For in-
stance, in healthcare it is common to not only have raw
electronic health record data X (e.g., temperature, blood
cultures, ...) and disease labels Y, but also physician sum-
maries C such as the presence and spread of infection. Koh
et al. (2020) formalize this learning setup, calling C' con-
cepts. In general, concepts C' are high-level, often inter-
pretable, pieces of information that mediate the relationship
between X and Y. Prior works have used concepts for diag-
nosing model failures and for covariate shift (Kumar et al.,
2009; Lampert et al., 2009; Koh et al., 2020; Chen et al.,
2020; Mahinpei et al., 2021). The concept bottleneck model
(Koh et al., 2020) was shown to be robust to covariate distri-
bution shifts; here, we show with the appropriate adjustment
strategy, such models can also be adapted to subgroup shifts.
Another line of work have incorporated concepts into causal
models to improve model explanations (Goyal et al., 2019;
Bahadori and Heckerman, 2021).

Proxies. Our work leverages results in causal effect esti-
mation with proxy variables (Kuroki and Pearl, 2014; Miao
et al., 2018). In these works, W is a proxy of U that allows
one to identify the causal effect of C' on Y in Figure 1(c). In
our running example, a useful W would be the region where
a patient lives as this is often a proxy for SDH quantities,
such as income U.

4 IDENTIFICATION UNDER LATENT
SHIFT

In this section, we report identification results for the opti-
mal target distribution predictor ¢(Y | X) given observed
draws from p(X, C, Y, W) and ¢(X). We first present our
central adjustment strategy in the case where U is observed
in the source distribution. We then show that, when C' and
W are observed in the source distribution, we can use this
strategy even in cases where U is unobserved. We consider
two such cases: one where all observed variables are dis-
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crete, and another where X and W are continuous. In these
latter two cases, the key challenge is to show that the distri-
butions in our adjustment formula, which involve U, can be
identified in the source domain.

4.1 Subgroup Adjustment Formula

To begin, we present our central adjustment formula, consid-
ering the case where U is observed in the source distribution
P, but not in the target distribution ). We derive the for-
mula by decomposing our target ¢(Y | X), leveraging A2
and Figure 1(c):
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The first equality (a) is given by the chain rule and marginal-
ization. The second (b) is given by A2: since ¢(Y | X, U =1)
conditions on U, we have ¢(Y|X,U =1)=p(Y|X,U =1).
The fractional term is given by Bayes rule. The equality
(¢) is again given by A2 and Bayes rule: ¢(X|U =1i) =
p(X|U=1)=p(U=i|X)p(X)/p(U=1). The proportional
(d) is given by the fact that p(X)/q(X) is constant as the
left-hand side conditions on these variables.

When U is observed under P, all quantities on the final
right hand side are directly estimable except ¢(U)/p(U),
because U is not observed under (). Interestingly, this
parallels the label shift problem, where distributions con-
ditional on Y are preserved across the distribution shift,
but Y is not observed under (). In fact, the same label
shift adaptation identification arguments and techniques
can be applied to adjust for U instead! Here, we adapt
the method-of-moments identification argument made in
Lipton et al. (2018). For any function f(X), the identity
4(F(X)) = S8 g(f(X) | U = i)g(U) can be expanded
(using Bayes rule and A2):

W) ]S a(U =)
() = ;pw =il /) Gy @

These equations define a linear system, and, for appropriate
choices of f(X) and rank conditions on p(U =14 | X) (see
A4 and A6 below), we can solve for ¢(U = i)/p(U = 7).
For example, Lipton et al. (2018) define f(X) as the deci-
sion function of a classifier; in that case the linear system can
be written in terms of the confusion matrix of the classifier.

Garg et al. (2020) discuss other choices, as well as maxi-
mum likelihood approaches to learning this likelihood ratio.
Upon solving (2), ¢(Y | X) is identified by (1).

Remark 1. This “observed U” setting is a simplification of
the general latent subgroup shift problem, but may be of
independent interest. In many applications, especially when
U includes sensitive demographic categories, the subgroup
label may be collected at training time, but unavailable at
deployment time. In such cases, this identification argument
would be sufficient for domain adaptation.

Remark 2. The identifying expression (1) enables adapta-
tion to new distributions ) without retraining any models
under P. To adapt to a new distribution, we plug in a new
estimate of ¢(f(X)) to (2), then evaluate (1) at the solution.
This post hoc property applies to all identification strategies
we discuss.

4.2 The Error of Covariate/Label Adjustment

What if we apply covariate or label shift adjustment to the
latent subgroup shift setting?

Covariate shift adjustment. Assume data follows the la-
tent shift setting of Figure 1(c), but we (falsely) believe that
the shift between the observed datain P, {X,C, W, Y}, and
that of @, { X'}, is due to covariate shift. The covariate shift
assumption implies that p(Y'|X)=¢(Y|X). Given this, we
would start by training a model f : X — Y on the data in
P which estimates P(Y|X). We would then use this model
on the data X’ in () as an estimate ¢(Y'| X') (we would only
use X to train f, and not (C, W), as we only see X in Q).
However, regardless of the amount of data in P and X there
would always be an error between f(X) := p(Y|X) and
q(Y'|X). Specifically, at the population level, the (squared)
error under latent shift is:

(p(Y]X) — q(Y]X))?
- (Zp(y\x, ) [p(ulX) — q(UIX)D

2
_ il |1 20 atw)
- (;wx, Jp(ulX) [1 s PWD .

Label shift adjustment. Imagine we instead assumed
the shift was due to label shift which implies p(X|Y) =
q(X|Y). Given this, ¢(Y'|X) could be written as:

B q(Y) q(Y)
_ p(X) ¢(Y)
=PV ) )

All of the terms on the right hand side are estimable,
even ¢(Y)/p(Y). Specifically, given a trained model
f + X — Y on the data in P (estimating p(Y|X)), we
can estimate ¢(Y)/p(Y) using a label shift correction
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technique. For example, Lipton et al. (2018) shows that
q(f(X)) =22, p(f(X),9)la(y)/p(y)]. However, this ad-
justed estimate also incurs error with respect to the optimal
target ¢(Y|X) in the latent shift setting. The population
(squared) error under latent shift is:

(p(Y | )p(X) q(Y)

X TX)ZTD*Q(YLX))

p

4.3 Discrete Observations

We now state sufficient conditions for identification of
q(Y|X) in the latent shift setting. To begin we assume
all observable variables { X, C,Y, W} are discrete.

A3. U € [ky]isdiscrete s.t., kx, kw > ky (recall kx , kw
are the number of categories of (discrete) X, W ).

Generally, identification requires some restrictions on how
U influences the observed variables {W, X,C,Y}. The
above places such a restriction more generically than restric-
tion functional forms; all we require is that the support of U
is smaller than that of observed variables X, W.

Ad. For every i € [ky] where q(U = i) > 0 we have
p(U = 1) > 0, all linear systems have rank at least ky;, and
p(Y|C,U = 1) # p(Y|C=U = 2) £ F p(Y\C,U =
ky) P-almost everywhere.

The first condition ensures that (U = 4)/p(U = i) is
bounded for all ¢. The remaining two conditions are inher-
ited from Kuroki and Pearl (2014): they ensure that inverses
exist and that eigenvectors are unique. Essentially, they
require that all variables depend non-trivially on U. Overall
these assumptions are of two types: (1) Structural: Al
and A2 describe how the data and shifts are structured; (2)
Functional: S3 and A4 detail conditions on the functions
that generate data.

Our main result for discrete data is the following.

Lemma 1. Given Al-A4, all probability mass functions
over discrete {W, X, C,Y, U} in the source P are identifi-
able, where U is an unknown permutation of U.

Theorem 1 (Identifiability for Discrete Observations).
The distribution q(Y|X) is identifiable from discrete

{W,X,C,Y,U} ~Pand X ~ Q.

Proof sketches. We give full proofs in the Appendix and
give sketches here. The first key observation for Theorem 1
is that all of the steps (a)—(d) in eq. (1) hold when U is
replaced with the permutation U. This is because (a) U
satisfies the same independence conditions as U, and (b)
q(Y'|X) only requires marginalizing over U, making the or-
der of the categories of U irrelevant to identification. Given

Lemma 1, the only step remaining is to solve (2) in terms of
U. A3 and A4 ensure that the system has a solution.

The proof of Lemma 1 works in two stages: 1. It first
demonstrates that p(W|U) can be identified, and 2. It
shows that once p(W|U) is identified, all distributions on
W, X,C)Y, U are identified. Stage 1 is done by proving
a variation of a result given by Kuroki and Pearl (2014).
They demonstrate that when kyy = kx = ky and data is
generated from the graph of Figure 1(c) then it is possi-
ble to identify the causal effect p(Y|do(C)) (in Theorem
1 (Kuroki and Pearl, 2014)). Identifying p(Y'|do(C)) only
requires identifying specific distributions involving ﬁ, in
order to remove its contribution to Y, i.e., p(Y|do(C)) =
> PYI|C, X =2, U=u)P(X = z,U =u). However,
as we show by construction, the result of Kuroki~ and Pearl
(2014) is stronger. In Stage 1, we recover p(W|U) for Fig-
ure 1 (c) by contrasting the distributions p(X, W | ¢) and
ply, X, W | ¢). Specifically, p(W|U) can be recovered
from the eigendecomposition of A~'B where, for fixed
values of y and ¢, these matrices are as follows,

Py —1]c)
P(@1, weyy—1]0)

1 p(wi|c)
p(z1]c) p(z1,wile)

P(rx—1lc) p(Try—1,wilc), P(Thox —1, Whyy —1/C)

A

p(y7 Wiy —1 ‘C)
P(Y, T1, Wiy —1]c)

p(y,wile)
p(y, 21, wic)

p(yle)
p(y, z1/c)

(Y, Trx—1le) (Y, Ty —1,w1]c) P(Ys Thox—15 Wiy —1]C)

B

In the above w is shorthand for W = 1 (similarly for X).
In Stage 2, we identify all distributions involving U. The key
observation behind this second result is that conditioning
on U d-separates W from the rest of the observed variables.
Thus, factorizing observed distributions using U, W can
form linear systems. In these systems, the unknown distri-
butions involving U can be recovered by some function of
p(W|U) (identified in Stage 1) and observables.

Estimation. As both proofs are constructive, we can im-
mediately use them to design an approach to estimate
q(Y'|X). This is shown in Algorithm 1.

4.4 Continuous Observations

We now consider the case where W, X, C, Y are continuous.
This setting turns out to be more challenging, as, unlike
in the discrete case, we cannot enumerate all of the states
and apply finite dimensional eigendecomposition to esti-
mate the associated probability mass functions. Instead, we
must apply functional analysis tools to estimate nonparamet-
ric continuous probability density functions, which require
more care to ensure existence and estimability. To this end,
we make the following assumptions.
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Algorithm 1 Estimating ¢(Y'| X).

Require: source P = {(w;,x;, ¢, y;) 1 q; target Q =
{x;}7,; For any variables G € [kg|, H € [kg] let
p(G|H) be a kg x ky matrix of probabilities s.t.
p(GH);; = p(G=ilH =))

: Using P, form matrices A, B described in eq. (3)

: Decompose A" 'B=S"1AS to get p(W|U) via S~!

. Compute p(TIX) = p(W[T)~ p(WIX)

: Compute ¢(U)/p(U) = p(U|X)~*[q(X)/p(X)]

: Compute

N - 1
p(Y|X,U) = p(Y|X, W)(W)

DA W N -

6: Compute

(Y1) xp(¥ ]z, ) [p(Olay)o B2 vy € Q.

AS. There exists a ¢ € Dom(C), such that p(X | U =
i,¢),p(X | U=}, c) are linearly independent for all (i, j) €
[ku] for i # j. Similarly, p(W | U=1),p(W | U =) are
linearly independent for all (4, j) € [ky] for i # j.

This assumption allows us to identify the distributions of
p(W | U) and p(X | U, C), which are crucial to the eigen-
decomposition technique.

A6. There exist distinct points z1, . . . , z, € Dom(X) such
that the matrix [p(U=j | z;)]; ; € R**kU is invertible.

This assumption ensures that the ¢(U)/p(U) system in
eq. (2) has a unique solution. Note this assumption is very
weak for continuous X, e.g., z1, ..., 2k, can be chosen to
be exemplars of each class i € [ky].

With AS, A6 replacing A3, we extend the identification
result from Theorem 1 to continuous data.

Theorem 2 (Continuous Observations). Given Al, A2, A4—
6, the distribution q(Y | X = x) is identifiable from continu-
ous {W,X,C,Y} ~Pandz € X ~ Q.

We give a full proof in the Appendix. The steps are similar
to the discrete observation case: set up a linear system,
eigendecompose it, recover p(IW |U) from the eigenvectors,
and use p(W|U) to identify all quantities on the right-hand
side of eq. (1). However, the specifics of the continuous
setting require more technical tools.

Estimation. Implementing a plug-in estimator from The-
orem 2 is challenging, as it requires non-parametric condi-
tional density estimation and an eigendecomposition over
functions. We implement such an approach, and describe it
in detail in the Appendix.

S ROLES OF CONCEPTS AND
PROXIES

Do we really need C' and W? And why can’t we have addi-
tional edges in Figure 1(c), e.g. X — Y7 We describe here

feature (unobserved) proxy
\/ concept label

Figure 2: Removing C, W or adding any of the dotted
edges prevents non-parametric identification of the full joint
distribution p(V, U) via our approach.

why the “concept bottleneck™ and “proxy” properties of W
and C are essential to our identification strategy. Specifi-
cally, we discuss at a high level why generalizing the graph
by removing observed nodes or adding edges prevents non-
parametric identification of simpler causal quantities. While
these are not necessary conditions, they are nearly as gen-
eral as those used in non-parametric identification results
in causal inference literature (Miao et al. (2018); Lee and
Bareinboim (2021) also allow edge W — Y)).

Can C and/or W be removed? Removing C' corre-
sponds to the setting of Pearl (2010), where the goal is
to estimate p(Y'|do(X)). This work assumes one can ei-
ther: (a) observe U without error in a subpopulation (Selén,
1986; Greenland and Lash, 2008), (b) observe p(W|U)
(Pearl, 2010), or (c) place a prior distribution on the param-
eters of p(W|U) to bound p(Y'|do(X)) (Greenland, 2005).
However, these techniques are non-trivial when U is com-
plex. Here we will not assume that it is possible to observe
U, p(W|U) or derive a prior for p(W|U). Keeping C but re-
moving W leads to a generalization of the front-door graph
(Pearl et al., 2000) for which causal effects are not non-
parametrically identifiable. If we remove both C' and W, we
can only identify p(Y'|do(X)) if U is observed, an assump-
tion called ‘ignorability’ (Imbens and Rubin, 2015).

Can we remove/add any additional edges? First note
that if we remove edges from our assumed graph this limits
the possible data distributions that it could have generated.
This is because when edges are removed, conditional inde-
pendences may be introduced. For example, if we remove
the edge from U — C then W L C' | X, which is not the
case for our original graph in Figure 1 (c). Another way to
see this is that we can recover the covariate shift graph of
Figure 1 (a) from ours if we remove all edges starting from
U, then remove X — C, and finally relabel C' as X. Recall
that the covariate shift graph implies p(Y|X) = ¢(Y|X)
which does not hold in our original graph. What about
adding edges? Identifying p(W|U) (i.e., Stage 1 in the
proof of Lemma 1) requires that both W L {X,C, Y} | U
andY L {W, X} | {U,C}. The first conditional indepen-
dence is broken if there are any arrows from X, C,Y to or
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from W. We do not prove here that this is necessary, but we
suspect that it is: currently the only edge that can be added
for identifying the simpler causal quantity p(Y|do(C)) is
W — Y (Miao et al., 2018; Lee and Bareinboim, 2021).
Crucially, these methods do not identify p(W|U). The only
other edge that could be added to the graph and it still be
a DAG is X — Y. However, this would break the sec-
ond conditional independence statement as it would make
Y U X | {U,C}. This edge would also render the causal
effect unidentifiable under the most generic non-parametric
methods (Lee and Bareinboim, 2021).

6 ESTIMATION WITH LATENT
VARIABLE MODELS

Algorithm 1 and its associated continuous version (de-
scribed in the Appendix C) become impractical as the dimen-
sion increases (due to the need for probability mass/density
estimation). Here, we propose an alternative approach based
in deep latent variable modelling that can be useful for
adapting to latent subgroup shifts with high-dimensional
data. Note that the identification arguments in the previous
section imply that any joint distribution p(U, C, X, Y, W)
that satisfies our assumptions and matches the observed
marginal distribution p(C, X, Y, W) can be used to identify
q(Y | X). We propose approximating such a joint distribu-
tion using a model based on the Wasserstein Auto-Encoder
(WAE; Tolstikhin et al., 2018). In this section, we describe
modifications to the standard WAE to customize the learned
joint distribution to our assumptions.

Formally, ~we approximate the true posterior
p(U|X,C,Y,W) with a recognition model or en-
coder ﬁ(ﬁ | X, C,Y, W) with parameters ¢. Given observed
variables V = { X, Y, C, W}, reconstruction loss ¢, decoder
f with parameters 6, divergence D, and prior distribution
p(U), the form of the training objective is

it By 0, 5, (402, S (D))] + DED) || 5D 3)

To encourage the inference network to learn a posterior
distribution that conforms to Figure 1(c) we impose the
following factorization on the joint probability

p(V,U) = p(Y|C,U)p(C| X, U)p(X|U)p(W|U)p(T).
Given this, the reconstruction (log) loss decomposes

(W, F(U)) = Byly (Y. fy(C,0)) + Bele(C, fo(X,U))
+ Bxtx (X, fx (O)) + Bwlw (W, fu (T)).

where the above subscripts indicate variable-specific de-
coders, loss functions, and scalar hyperparameter weights
(. As U is discrete, to allow training with the reparameter-
ization trick we model p(U| X, C,Y, W) using a Gumbel-
Softmax distribution (Jang et al., 2016; Maddison et al.,

2016). We set the prior p(U) to be a uniform categorical
distribution over the categories of U.

Given a trained WAE model, we can generate joint samples
{(x4, ¢iy ¥, wi, U; )} 4 by the encoder p(U | X,C, Y, W).
Lemma 1, which establishes identification of this joint dis-
tribution under our assumptions, provides some justifica-
tion for this approach. All that remains to estimate are
p(U|X),q(U)/p(U),p(Y|X,U) and Equation (5). Each
of these is readily estimable using standard classification
models, as we have joint samples. We discuss our implemen-
tation of this estimation strategy in the Appendix.

7 SIMULATION STUDY

We now describe demonstrate our identification results in a
simulated numerical examples. These examples serve as a
proof of concept that our identification strategies can serve
as the basis for estimation methods. In particular, we aim to
show that (a) plug-in estimators based on our constructive
proofs can be used to estimate ¢(Y | X) in simple contexts,
and (b) modifying deep latent variable models to respect the
conditional independence structure in our setting can be an
effective strategy for estimation in more complex settings.
We also show that estimators based on our adjustment strat-
egy can succeed where standard covariate shift and label
shift adaptation techniques, or naive applications of latent
variable models, fail.

The simulations are structured as follows. We have one
source distribution P, and several target distributions @),
generated by latent subgroup shifts. We train several models
on the source distribution, some of which use unlabeled
examples from Q for adaptation, then measure their per-
formance on the target distribution. In each case, we com-
pare performance to two endpoints: the performance of
an unadapted model trained by ERM on the source (ERM-
SOURCE), which should be a lower bound on performance,
and an oracle model trained directly on data from the target
distribution (ERM-TARGET), which should be an upper
bound. We also compare to an oracle model that adjusts for
U using (1), as if it were observed (LSA-ORACLE).

For these simulations, we fix a set of parameters that in-
stantiate a case where standard empirical risk minimization
(ERM-SOURCE) fails in a predictable way, while oracle
adjustments for U (LSA-ORACLE) recover the optimal
target predictor ¢(Y | X'). We do so by constructing a set-
ting where the subgroup specific conditional expectation
E[Y | X,U] is sufficiently different across subgroups, thus
producing a different ordering of predictions over examples
from the target ¢(Y | X). Furthermore, we ensure that
neither U nor Y can be perfectly reconstructed from X. If
either were the case p(Y | X) = p(Y | X,U) = ¢(Y |
X,U) = q(Y | X), and the optimal predictor under @
would simply correspond to the optimal predictor under P.
We then evaluate several estimation approaches based on
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Table 1: Results of discrete simulation study (o, = 1,
n=10% p(U=1)=0.1, ¢(U = 1)=0.9). Results shown
are the RMSE between estimated and true ¢(Y" | X) across
categories of discretized X.

RMSE
p(YX) 0.194
ours 0.056
q(Y|X) 0.004

our identification strategy (from which U is hidden).

We sample datasets of size 10,000, and divide training,
validation, and test sets into 70%, 20%, and 10% splits.
For all experiments, we consider a fixed setting for the
source distribution such that p(U = 1) = 0.1. The target
distribution varies over a range of settings of ¢(U =1) €
{0.1,0.2,...,0.9}. Further details regarding the experimen-
tal procedure are provided in Appendix B.

To evaluate the discrete eigendecomposition approach (Al-
gorithm 1), we first apply K-means with two clusters to
discretize X. The results in Table 1 verify that the algorithm
is capable of improving on estimates derived from the source
domain in a setting where the magnitude of the distribution
shift is large (p(U=1)=0.1 vs. ¢(U=1)=0.9) and W is
a noisy proxy of U (o, =1).

For the case where X is continuous, we compare the pro-
posed adaptation approach to alternatives. In the main text,
we primarily evaluate performance using the area under
the ROC curve (AUROC), but include analagous results
in the appendix for the cross-entropy loss and accuracy
(Supplementary Tables 3 and 4). In a setting analogous
to the experiment conducted in the discrete case (Table
2; p(U=1)=0.1, qU =1) = 0.9, o, = 1)), models
learned with ERM on the source domain (ERM-SOURCE)
using a multilayer perceptron perform poorly in the target
domain relative to those learned in the target domain (ERM-
TARGET). Furthermore, standard approaches to accounting
for distribution shift, including covariate shift weighting
(COVAR; Shimodaira (2000)), label shift weighting (LA-
BEL,; weighting by oracle ¢(Y")/p(Y")), and black box shift
estimation (BBSE; Lipton et al. (2018)) do not outperform
ERM-SOURCE. However, we note that the latent shift adap-
tation approach with oracle access to U (LSA-ORACLE;
(1)) is able to perform on-par with ERM-TARGET with-
out access to labeled data in the target domain. Our main
WAE-based approach that leverages the structured decoder
and reconstruction loss (LSA-WAE-S) does not match LSA-
ORACLE, but does partially mitigate the gap in performance
between ERM-SOURCE and ERM-TARGET. We compare
to an alternative WAE specification that does not leverage
a structured decoder (LSA-WAE-V) and find that it is does
not improve on ERM-SOURCE. This highlights the key

Table 2: Results of continuous simulation study (c,, =1,
n =104 p(U =1) = 0.1, ¢(U = 1) = 0.9), mean =+ std

AUROC over 10 random training replicates.

Method Source Target
ERM-SOURCE  0.9560 £+ 0.0001  0.6856 £ 0.0010
COVAR 09113 £0.0216  0.3274 £ 0.1351
LABEL 0.9561 £ 0.0001 0.6848 £ 0.0014
BBSE 0.9550 £ 0.0001  0.6789 £ 0.0005
LSA-WAE-S 0.9429 £+ 0.0083  0.8131 + 0.0365
LSA-WAE-V 0.9550 £ 0.0006  0.6730 £ 0.0138
LSA-ORACLE  0.7843 £ 0.0254 0.9167 £ 0.0012
ERM-TARGET 0.7611 £0.0011 0.9194 £+ 0.0001

role played by that the structural properties of the auxiliary
variables C and W

We further evaluate the proposed WAE approach over vary-
ing degrees of distribution shift and levels of noise in the
proxy variable W, and compare it to the continuous eigen-
decomposition (spectral) method (appendix C) suggested by
the proof of Theorem 2. We observe that ERM-SOURCE
performance degrades smoothly as a function of the de-
gree of distribution shift (Figure 3). Both the WAE-based
adaptation approach and the continuous eigendecomposition
approach are capable of mitigating the performance degra-
dation when the level of noise in W is low (o, € {2,3}).
Overall, the WAE approach outperforms the continuous
eigendecomposition approach and is less sensitive noise in
W . In the high-noise setting (o, = 1), the eigendecomposi-
tion approach is worse than the ERM-source but has similar
performance to the eigendecomposition method without
adaptation (Spectral-ERM-source in Figure 3(b)).

8 DISCUSSION

We presented a strategy for unsupervised domain adaptation
under latent subgroup shift, which generalizes the standard
settings of covariate and label shift. Our strategy leverages
auxiliary data in the source domain (concepts C' and a proxy
W), and generalizes identification results from the causal
inference literature to derive an identification strategy for the
optimal predictor ¢(Y'|X') under the target distribution. Our
identification results are amenable to deep latent variable
modeling, and suggest constraints that can be imposed on
these models to make them effective for domain adaptation
under this particular shift. We demonstrated these claims in
a carefully designed numerical example.

Limitations and future work While a latent variable
model has been shown promising to estimate the quanti-
ties of interest, such models are tricky to tune in practice,
and have many known failure modes when used in causal
contexts (see, e.g., Rissanen and Marttinen (2021), who
critique the method proposed in Louizos et al. (2017)). The
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Figure 3: Simulation study: adaptation over target environments and varying levels of noise in the proxy variable W

(aw =

[1,2, 3] for high, medium, and low noise). We plot the mean + std AUROC for different shift levels ¢(U =1) €

[0.1,0.9] across ten trials. All models trained in a fixed source domain (p(U =1)=0.1). Panel A compares adaptation with
Wassertein Autoencoders with structured decoders (LSA-WAE-S) and Panel B compares adaptation with the continuous

eigendecomposition (spectral) approach.

identification arguments and corresponding modifications
we make to the latent variable model may address some of
these concerns, but practical challenges still remain. For
example, in practice, we observed that the dimensionality
of the latent space mattered (the higher, the better) and that
multiple preprocessing and training choices influenced the
fit of the model.

Our approach requires the availability of mediating con-
cepts C' and of a proxy variable IV at training time. This
information might not be readily available, or it may not sat-
isfy all the assumptions (e.g. C' such that p(Y|C,U, X) =
p(Y|C,U)). Furthermore, these assumptions are typically
not testable as U is not observed. However, we hope that
our identification results can serve as motivation for careful
collection of richer data, in which concepts and proxies may
be present by design.

It is also worth deriving estimation guarantees (i.e., consis-
tency guarantees, error bounds) for estimators of ¢(Y | X).
This would help understand if further data in @ could im-
prove estimation. For example, if we also observed C' in )
would this more tightly bound the error of ¢(Y|X)?

We study the case where U is discrete and other variables
{W,Y, X, C} can be either discrete or continuous. It is
interesting to study the identification in the case that U is
continuous. In addition, our identification results require
additional assumptions, i.e., A4—A6, that potentially limit
the the class of distributions. These assumptions arise from
the eigendecomposition technique used to show identifi-
cation. It would interesting to understand whether these
assumptions can be relaxed, perhaps incorporating results
from proximal causal inference and missing data methods
that do not need to identify the full joint distribution of ob-
servables and latent variables (see, e.g., Tchetgen Tchetgen
et al., 2020; Kallus et al., 2021; Li et al., 2021).
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APPENDIX

A PROOFS
A.1 Proof of Lemma 1

Recall Lemma 1:

Lemma 1. Given that the above assumptions hold, all probability mass functions over discrete {W, X,C.Y, (7} in the
source P are identifiable, where U is an unknown sorting of U.

Before we prove this we will prove a variant of Theorem 1 of Kuroki and Pearl (2014).

Lemma 2 (variant of Theorem 1 of Kuroki and Pearl (2014)). Given Al-A4, p(W|[7 ) is identifiable.

Proof. First, fix a ky. Without any additional information the easiest is to set kyy = kyy. However, if you believe that
ky < kw, coarsen W by dropping categories to ensure that the new dimensionality ky;, is equal to k7. Next notice that,
given A1l (Figure 1 (c)) we can factorize the joint of W, X, Y conditional on C' as:

ku
p(Y, X, W |C)=> p(Y | C,U=k)p(X | C,U = k)p(W | U =k)p(U =k | C).

k=1

Next, construct the following matrices based on the decomposition of p(Y, X, W|C') and of its marginal distributions:

1 p(W =1/0) p(W = kw —1/0)

A p(X =1|C) p(X =1, W =1|C) p(X =1,W = kw — 1|C)

P(X =kx —11C) p(X =kx —1L,W =1]C), - p(X =kx —1,W =kw —1|0)
p(Y1]C) p(Y, W =1|C) p(Y, W = kw — 1|C)

- p(Y, X =1|C) p(V, X =1,W=1[C) - p(Y, X =1, W = ky — 1|C)
PV, X =kx —1|C) p(Y,X =kx —1,W =1|C) -+ p(Y,X =kx — 1,W = ky — 1|C)
(1 pX=1C,U=1) -+ pX=kx—1C,U=1)

R = |: : :
11 p(X =1C,U=ky) - p(X =kx—1|C,U = ky)
(p(U=1/C) 0 - 0

M =
| O 0 p(U=kulO)
p(Y|C,U=1) 0 - 0

A =
L 0 o 0 pY|CU =ku)
1 pW=14U=1) - pW=kw—1U=1)

S = |: : :
11 p(W=1U=ky) - pW=kw—1U=kv)

Then note that
A =R'MS B = R"MAS. 4)

We then have that,
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ATB = {(ATA)”AT} RTMAS (5)

— (STMRR'MS) ' STMR (R"MAS)
— (S)7'AS,

(a)

where AT is the Moore-Penrose pseudoinverse of A (recall all pseudoinverses are unique and exist). Recall that above
we have ensured that the dimensionality of W is equal to the dimensional U. Thus, S is square. Further, both S and R
have rank at least k;; by A4. So S and RR.T are invertible. Because we have to marginalize U in order to obtain observed

distributions, it is only possible to identify U up to an arbitrary permutation. Specifically, let U be a sorting of U such that
pY|C,U=1)>pY|C,U=2)>--->pY|C,U = ky).

Now we need to show that we can obtain p(W\ﬁ ) from eigendecomposition of ATB. To do so we first must solve
|ATB — AI| = 0 for ), to obtain the eigenvalues of ATB. Note that [ATB — M| = [(S)"'AS — AI| = [A — ]| = 0
where the second-to-last equality uses the Weinstein—Aronszajn identity [(S)1AS — AXI| = [S(S) 1A — MI| = |A — AI|.
Therefore, if we define Ay > - - - Ag,, as the eigenvalues of ATB, it must be that \; = p(Y|C,U = i) fori = 1,..., ky.

Now that we have identified p(Y'|C, U ) we will show we can obtain p(W\ﬁ ) from )\; and the eigenvectors 7; of ATB.
Define the matrix of eigenvectors as H = [, ..., s, ]. To obtain this we must solve the linear system ATBH = HA.
Note that H is determined up to a multiplicative constant as A; # --- # A, from A4. Define a matrix of non-zero
multiplicative constants E = diag(«y, . . ., ag,, ) and the shifted matrix F = S™'E. Note that ATBF = ST'ASS~'E =
S™!AE = ST'EA = FA. Therefore, F is also a matrix of eigenvectors of A'B, and that F = S™'E = H for certain
values of a1, .. ., o, . To recover these, note that,

1 p(WleUZl) p(W:k’W_HU:1> Oélhll alhlku
S=|: : g : =EH'=| :
1 p(W=1|U=kU) p(W:kw—HU:kU) ak(}hkul OkuhkUkU
Equating the first column of both sides of the equation we have that oy = 1/hy1,..., ok, = 1/hk,1. This means that S
is identifiable from EH ' as H! is what we estimate from eigendecomposition of ATB. Therefore, every element of
p(W|U) is identifiable. O

Now that we have obtained p(W|U), we can prove Lemma 1.

Proof. As distributions ~that only involve {W, X, C, Y} are observable, all we need to prove is that we can identify all
distributions involving U. Let V C {W, X, C, Y} and V' C {W, X, C,Y} \ V. All we need to identify are

@ p(O);

®) p(V | U);

© p(U | V);

@ p(V| U V).
Note that proving above identities are sufficient because (e) p((~] VIV)=p(V | U,V )p((} | V') (given by (d) and (c)).
Identifying (a) p(U). The identification is straightforward: note that p(U) = p(W|U)p(W).

Identifying (b) p(V | U). Recall we have already identified p(W|U). zlet Ww =V \ W. Note that p(V\w, W|U) =
p(V\W|ﬁ)p(W|I~J) because Y\ L W' | U. Hence, we have

PM\w | W) =p(WV\w | O)p(U | W).
By multiplying p(I~J | W)T on both side, we can obtain
pV\w | T) = p(W\w | W)p(U | W)

Note that this is identified because the first term on the right-hand side is observed and the second term can be identified via
Bayes rule p(U|W) = p(W|U)p(U)/p(W), where p(W|U) is identifiable as shown in Lemma 2.
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Identifying (c) p(U | V). We have identified p(U|W) in the previous step using Bayes rule. We then have that
p(W[WV\w) =p(W|U)p (U\V\W) = p(U\V\W) p(W|U) p(W|V\w ), which is identifiable. Finally we have via
Bayes rule p((7|V\W, W) =pMNw, W|0)p(U )/p(\w, W) all of which we can identify (via (a) and (b)).

Identifying (d) p(V | U,)’). Note that PWV\w Wy, W) = p(WV\w|U, V<W)p(I~J|V<W, W), which implies that

POV U V) = oV V. Wp(T Wy, W),

The first term on the right-hand side is observed and the second is identified via (c). Finally note that p(WV\y, W| U , V<W) =
p(W|V\W,ﬁ,V<W)p(V\W|(7,V<W) = p(W|ﬁ)p(V\W\(7,V<W) (as W L V\W|(7), where all right-hand terms are
identified. Also that p(V\w, |W, U, V<W) =pMNw, |(7, V{W) which is identified. O

A.2 Proof of Theorem 1

Theorem 1 (Discrete Observations). The distribution q(Y|X) is identifiable from discrete {W,X,C,Y,U} ~ P and
X ~Q.

Proof. The first observation is that we can replace U with U everywhere. This is because U has the exact same conditional
independences as U that are required in the factorization of ¢(Y|X) in eq. (1) (as there are no requirements on the ordering
of the categories of U). Further, we can replace U with U in eq. (1) without changing anything, i.e.,

k” (U = i)
Y|X) V|X,T = i)p(0 = i|x) L =Y 6
q(Y| ;p \ )n( | )p(U:i) (6)

This is because we are summing over categories of U and so it makes no difference to change the order of categories of U,

asin U. The only remaining thing to show is that qEU, ; can be identified. Note that

X . q(U =)
U=ix)L2 =",
;; | p(U=i)

Define the vector vx = [¢(X = 1)/p(X =1),...,q(X = kx)/p(X = kx)], the matrix N;; = p(U = i|X = j), and
the vector viy = [q(U = 1)/p(U = 1),...,q(U = kx)/p(U = ky)]. We have that vy = Nfvx. Note that qg _Z;

identified because N, v x are identified, and NT = (NTN)~!NT because kx > kyy by A3 and (b) all linear systems have
rank at least kyy by A4. O

A.3 Proof of Theorem 2
We first restate Theorem 2:

Theorem 2 (Continuous Observations). The distribution q(Y'|X) is identifiable from continuous {W,X,C,Y } ~ P and
X ~ Q, and discrete U ~ P.

Proof. The proof steps is similar to the proof of Theorem 1: we can factorize the probability as (6). We identify each
component as follows.

Identifying p(1W | U ). We first show the continuous version of Lemma 2. As in the discrete case, given Al we can
factorize p(Y, X, W|C') as written above. We rewrite it here in order to define functions ;(X), ¢;(WW) and quantities
si, m; as follows,

. mi i (X) $i (W)
p(Y, X, W|C)=>p(Y | C,U=k)p(X |C,U =i)p(W |U=i)p(U =i|C).
k=1

To construct the integral operators for A, B let W, X be the domains of X, W, respectively. Let Lo (W, 1) be the space
of Lo-integrable functions on W with Lebesgue measure p (and similarly for X). Let A : Lo(W, ) — Lo(X, u) and
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B : Ly(W, 1) — Lo(X, ) be the integral operators associated with kernel functions p(X, W|C) and p(Y, X, W|C),
respectively. They are defined as

kJU k?U
A= Z 5ii(X) @ (W) B := Zslmlwl(X) ® ¢ (W)
i=1 i=1

Note that these operators operate on any function h € Lo(W, i) in the following way, e.g., for A,

ku

A=Y ()G, st (W), )= [ 60RO )aw.

i=1

Next we will describe how we can identify functions p(Y|C, U) and p(W|U) from eigendecomposition of the operator
At B. We begin by collecting functions into vectors/matrices that will make up this decomposition. Define the row vectors
of functions

P = [wl(x)v"'vwku(x)];
@ = [p1(W), ..., o, (W)].

To fix the scale of the decomposition, we will apply the Gram—Schmidt process to 10, ¢ to create the set of orthonormal
functions

&= [p1(W), ..., b, (W)].
Note that the Gram-Schmidt process is well-defined as the inner product between functions is defined. This process also
creates upper triangular matrices Ry, Ry € RFuxku that map the orthonormal functions back to their originals ) = PRy,

and ¢ = ¢R,,. Finally define the diagonal matrices A := diag(si, ..., sk, ) and A, := diag(my, ..., mx, ) Now note
the following decompositions:

A=9yPA¢d" =yYRyAR(P)T  B=9pAN¢" =9PpRuANR (D))" 7

Notice that the operator A is a finite-rank operator mapping between two finite dimensional spaces A : Hy — Hy, as
Hy, H,, are closed subspaces spanned by 1), ¢. Then we can write the inverse of A as:

AT =R, TATR ()T
It follows that,

AT'B=3(R)) AR, (%) PRyANLR (6)T = d(R]) AR (D)

Given the above decomposition, we now show that we can identify A,,,, ¢ and thus p(Y|C, U), p(W\ﬁ ) via eigendecompo-
sition. First notice that eigendecomposition of A~1 B gives d)(R;)_lAng (¢) . Asin the discrete observation setting we

have that the eigenvalues Ay, ..., Ay, must satisfy [A~'B — M| = |A,,, — M| = 0. Therefore, \; = p(Y|C, U = i). Using
the same argument as we use in Theorem 2, it follows that column of qﬁ(R;)’l are eigenfunctions of A~!B. Applying the

Gram-Schmidt process to E(Rl)*l, we recover ¢ and (R;)’l. We can then invert (Rl)’1 to identify ¢ via ¢ = Ry,
and thus p(W|U).

All that is left to show is how to identify p(U|X = z), p(Y| = ,U), q(U)/p(U).
Identifying p(U|X = z). Under the Al , we have W 1L X | U. Hence, we can write

ku
pW|X=x)=> pW|U=ipU=Fk|X=ux). ®
k=1

By the linear independence condition stated in A5, we know that f(TW | X = x) is uniquely represented by f(W | U=

1),...,f(W | U = ky). This implies for any z € Dom(X), we can identify p(U =i | X = ).
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Identifying p(Y |z, U). Note that

ku
pW,Y [2) =Y p(Y |2,U=di)p(W |U = k)p(U =k | z)
k=

p(U=1|z) - 0 p(Y | z,U=1)
=¢ :
0 o pU=kla)) (Y |20 =F)
pO=1]2) - 0 p(Y | 2,0 = 1)
=R, - :
0 o pU=k|z)] lp(Y |2,U=k)
Since ¢, ..., @, are pairwise orthonormal, it follows that for any i € {1,...,k}
(pW,Y | X = x),¢;) = / p(W,Y | X = 2);dw = z(Y,z,U = i). )
w
Then, we can obtain
~ 1 ~
p(Y |z,U=1) pO=1a) 0 z(Y,z,U=1)
. _ p-1
P =R, . ) N
(Y | z,U = k) 0 T p(U=k|z) Zk(Y7337 U= k)
as the inverse of 7y exists given AS.
Identifying q(U)/p(U). Note that
ku
= q(X | U = k)q( ZpX|U—k U = k)
_ Zp q(l’7 = k)
p(U = k)
U=k
= Zp (U = k| X)p(X)Z U=k
p(U = k)
This implies that for all 2 € Dom(X)
qx Zp —k|x7(U:k).
p(x) p(U=k
Now select observed x1, ..., x} that satisfies A6. Then, we can write
a(z1) ~ ~ ~ a0=1)
o) p(U=1]z1) pU=2|z1) - pU=k|ax) P(g-D
Z(gj) p(U=1]z2) p(U=2]z2) p(U =Fk|x2) ﬁ
Zgzkg p(U=1|zr) p(U=2|z) p(U =k |zk)l | «U=k
H,k_/ p(U=k)
Va,p, X Mg x
Vq’p’i}

By A6, the confusion matrix M . is invertible and hence we can obtain q(U)/p(U) via Vool = MU «Vap.X» and we
are done. O
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Table 3: Cross-entropy for continuous observations
(0vy = 1, n=10%), mean =+ std over 10 training repli-

Table 4: Accuracy for continuous observations (o, =
1, n=10%), mean = std over 10 training replicates.

cates.

Method Source Target Method Source Target
ERM.SOURCE 01683 £ 0.0002 03979 % 0.0007 ERM-SOURCE  0.9179 + 0.0006  0.7972 =+ 0.0009

COVAR 0.8807 + 0.0011  0.9199 + 0.0140
COVAR 0.2489 4+ 0.0107  0.4206 + 0.0711

LABEL 0.9153 +0.0011  0.8294 + 0.0115
LABEL 0.1726 4+ 0.0021  0.3635 + 0.0111

BBSE 0.8935 + 0.0030  0.5875 + 0.0083
BBSE 0.2372 + 0.0065 0.8461 + 0.0233

LSA-WAE-S 0.8994 + 0.0093  0.8924 + 0.0181
LSA-WAE-S 0.1962 + 0.0112  0.2530 + 0.0248 LSAWAE.V 00121 + 00113  0.7042 + 0.0486
LSA-WAE-V 0.1751 £ 0.0112  0.3929 + 0.0409 - - : i i i
LSAORACLE 03300400250 0163700008 LSAORACLE 08355200225 09320 4 0.0008
ERM-TARGET 0.3415 £+ 0.0010  0.1660 =+ 0.0003 : : : '

B Experimental details

Here we describe the construction of the simulation study considered in Section 7. We let ky =2, kx =2, kc =3, ky =
2, kw =2, where X is continuous and U, Y, C, and W are discrete. We generate C' as a multilabel variable where each
dimension C; takes on a value of either 0 or 1, giving a discrete variable with 2% states. Let o(v) be the |V|-dimensional
one-hot representation of a sample from a categorical variable v € V. Let V; designate the j-th dimension of a categorical
random variable V. Let I, be the identity matrix of size k x k. Let sign be the function such that sign(z) = 1 if z > 0 and
sign(z) = 0 otherwise. For a vector 7w drawn from the (ki —1)-dimensional simplex, the data are simulated as

U ~ Categorical ()
W | U = u ~ sign(N(o(u)Myy, 1)
X |U=u~N(o(u)Mx|u, Iiy)

Cj | X = x, U=un~ Bernoulli(logit_l ($M0|X,U:u + O(U)Mc|U))

Y|C=cU=u~ Bernoulli(logit_1(cMy|C7U:u + o(u)My|U)),

where the matrices are defined as

T -1 1 2 2 2
MW|U = Qy [—1 1] MX\U = |: 1 1:| MC|U |: 1 1 2:|
-2 2 -1 2 -2 1
Mex,v=u, =3 [ 1 _9 _3} Meix,v=u, =3 [_1 9 3]
T T T
Mle = [2 2] MY‘C,U:U/O = [3 —2 —1] MY\C,U:ul [3 -1 —2} .

To construct the setting used for the simulation experiments, we draw a sample from a source domain where 7r is such that
p(U = 1) = 0.1. We further draw several target distributions where 7 is such that ¢(U = 1) € {0.1,0.2,...,0.9}. We
vary the noisiness of the proxy W by generating three copies of the target domain datasets where «,, € {1, 2,3} such that
greater values for «,, indicate less noise.

For the ERM baselines considered for the experiment presented in Tables 2, 3, and 4, and Figure 3 we use a multilayer
perceptron (MLP) with one hidden layer of size 100 with ReLU activations. We train for 200 epochs with a batch size of
128 using stochastic gradient descent (SGD) with a learning rate of 0.01 that is reduced by a factor of ten if the training loss
has not improved by at least 0.01 in the last 20 epochs, with a minimum learning rate of 10~7. We use a weight decay of
1076, The training procedure is implemented using Tensorflow 2.12.0.

For the covariate shift adjustment baseline, we fit a domain classifier, using the same model architecture and training
procedure in the model for Y, derive instance weights following Shimodaira (2000), and apply weighted ERM with the same
procedure as in the unweighted case. The label shift baseline with oracle access to labels in the target domain (LABEL)
applies weighted ERM with learned class weights ¢(Y") /p(Y") based on observed frequencies in the validation set in the
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Algorithm 2 Estimating Continuous ¢(Y|Zgew) -

Require: source {(w;, z;, c;, y;) }iq; target {Z; }3»”:1; Given Tpew
1. p(W|U) <= Algorithm 3({(wi, z;, ¢i, y:) }iq) B
2: [q(U)/p(U)] + Algorithm 4({(w;, 2:)}ioy, {7}y, {POVIU = k)}32,)
3: P(U | Zpew) is obtained by solving (17)
4: p(Y | fjvwneW) — Algorithm5({(wi,xi,yi)}?:1, {ﬁ(W”} = k)}Zilaﬁ(ﬁ | Znew))
5. fory=1,...,ky do
6

—

QY | Tnew) ngl Py | Toew, U = Z)ﬁ(ﬁ =] xneW)ZEU)

?‘

~, ~ k ~
7: QY | Tnew) < q(Y | Znew)/ Zzil QY | Tnew)

source domain and the training set in the target domain. For the BBSE approach (Lipton et al., 2018), where the labels Y
are not available in the target domain, we first fit an auxiliary model with ERM to estimate p(Y | X) in the source domain,
using the same procedure as before, and use its predictions on the source validation set and target training set to estimate
q(Y)/p(Y) using the soft confusion matrix approach of (Garg et al., 2020). We clip weights derived from the confusion
matrix approach to the range [0.01, 15]. For the adjustment procedure that implements equation (1) with oracle access to U
(LSA-ORACLE), we fit auxiliary models for p(Y" | X, U) and p(U | X), using the model for p(U | X) directly in equation
(1) and as the predictor used to derive ¢(U)/p(U) with the soft confusion matrix approach. We apply temperature scaling
as an additional calibration step to each auxiliary model and the final result of each procedure. The temperature scaling
procedure is implemented as a uniform scaling of the output logits by a scalar learned on the validation data using SGD with
a fixed learning rate of 0.001.

For the WAE-based adaptation approach, we use an encoder with one hidden layer of size 100 and set the dimensionality of
the learned latent space over U to be 10. Following the construction in section 6, we use a model architecture and objective
function that reflects the factorization of the joint distribution implied by the causal graph (LSA-WAE-S). For this approach,
we use separate decoder networks { fy, fc, fx, fw } of one hidden layer of size 100 for each of the observed variables. We
use categorical cross-entropy losses over the reconstruction of Y and T and the elementwise binary cross-entropy loss
over the elements of C. The loss {x over X is given by log(ox) + i (X — fx(U))?, where o is a learned parameter.
The weight /5 on reconstruction loss associated with each of C, W, and Y is the reciprocal of the entropy of the variable,
estimated on the training data of the source domain, and the weight Sx is analogously the reciprocal of the variance of
X. The KL divergence term in the loss is weighted by a factor of 3. The WAE is fit using the RMSprop optimizer for
200 epochs using a learning rate of 10~%, annealed with the same strategy as in the baseline approaches. We anneal the
temperature of the Gumbel-softmax distribution used for sampling U by a factor of 0.9999 at each training iteration, starting
from an initial temperature of 1 to a minimum temperature of 0.01.

C ESTIMATION PROCEDURE FOR CONTINUOUS RANDOM VARIABLES

In this section, we introduce the estimation procedure for continuous random variables, an extension of Algorithm 1. The
continuous setting requires an additional step to select kyy points from the domain of X such that the constructed confusion
matrix is invertible. While there exist various density function estimators, the main challenge is finding a reliable density
estimator for computing of the underlying eigenfunctions. To this end, we employ the Least-Squares Conditional Density
Estimator (LS-CDE) (Sugiyama et al., 2010), where the set of basis functions are pre-defined by users. This method allows
us to easily compute the eigenfunctions of the underlying density operators, which, in turn are a finite set of basis functions.
The complete estimation procedure is presented in Algorithm 2. The algorithm is implemented for discrete U, Y, C' and
continuous X, W, which matches the simulation setting in Section 7. We first briefly introduce the LS-CDE method and
discuss the selection of basis functions, followed by the details of each step.

C.1 Brief introduction of least-squares conditional density estimator

Given a pair of random variables (X, Y), the Least-Squares Conditional Density Estimator (LS-CDE)) (Sugiyama et al.,
2010) assumes the following form

pXY)
p(X) T (X7Y)7

where r(X,Y) is the density ratio function. Let {g1(z,¥),...,gm(x,y)} to be a set of basis functions such that (1)
gi(z,y) > 0 for every ¢ € [m] and z € Dom(X) and y € Dom(Y’). To estimate r(X,Y"), we consider the estimate

p(Y | X) =
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Algorithm 3 Estimate Continuous p(W|U), details provided in Section C.2

Require: source P ={(w;,x;, ¢;,y;)}*; Given ¢ € Dom(C) and y € Dom(Y)
1: p(W, X | ¢) and p(W, X,y | ) via least-squares density estimator (12)—(13)
2: Find the decomposition p(W, X | ¢) and p(W, X,y | ¢) (14)
3: Eigendecompose A-1p (15) and obtain the eigenfunctions _ _
4: Compute the inverse of the eigenfunctions to obtain {p(W|U = 1),...,p(W|U = ky)}

Ta(X,Y) that lies in the linear subspace of r(x,y) € {a'g(r,y) : @ € R™} with g(z,y) = (91(z,¥),-- -, gm(7, ).
Hence, the goal is to estimate the coefficient vector « from data. To this end, Sugiyama et al. (2010) proposed the following

objective functional:
arg min 1 // (aTg(x y) — p(x’y)>2p(x)da:dy
2 ’ p(x)

With simple algebraic manipulation, the above objective function is equivalent as the following:

Q = arg min 1ozTHoz —h'le,
where
H:://g(x,y)g(x,y)Tp(x)dydx, h;://g(m,y)p(x,y)dxdy.

Since the density functions p(x,y) and p(x) are unknown, we can compute the empirical estimators of H and h from
independent samples {(z;, y;)}7, as follows:

P -l
H:= EZ/g(xuy)g(xi,y)Tdy, hi=—> a(@u).
=1 =1

To stabilize the empirical estimator, we additionally add a regularizer A " o with A > 0. The overall objective function is
summarized as

~ 1 +4 ~
a = arg min §aTHa —h'a+Xa"a. (10)
Note that (10) is a quadratic program and yields an analytical solution
a=(H+A) "'h.
To ensure the the estimated conditional density is non-negative everywhere, we output & = (&, ..., Q) such that

@; = max(0, a;) fori € [m]. In our simulations, we found that choosing A = 10~2 suffices to provide good resuls.

Choosing the candidate basis functions requires knowledge of the underlying distributions. When the class of distribution is
unknown, Gaussian kernel functions can often be used as a basis to provide a good approximation of the distribution(s).
In addition, the Gaussian kernel function yields and analytical result for the integral H. Specifically, let go(z,y) =
exp(—||(z = z¢||* + ly — el|*) /20?) and go (2, y) = exp(— ([l =z |* + |y =y |*) /20?) for some 24, 2, € Dom(X),
Yo,y € Dom(Y') and o > 0, we have

2 2 2
Yo — Yo T— ||+ ||x— 20
/ge(x,y)ge/(x,y)dy = (V7o) exp <_ H ” ) exp <_ ” = ” ) ;
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where d,, is the dimension of Y. Hence, we do not need to resort to numerical methods to compute H.

C.2 Implementation details of Algorithm 3

In this section, we introduce the implementation details of Algorithm 3 step-by-step.

Step 1 of Algorithm 3. Since both Y, C are discrete random variables, for any fixed ¢ € Dom(C),y € Dom(Y), the
conditional density functions p(w, z | ¢) and p(w, x,y | ¢) can be estimated by marginal density estimators. We use the
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least-squares density estimator to estimate both p(w,« | ¢) and p(w, z,y | ¢) with Gaussian kernel basis functions of
length-scale 1:

{ortw.2) = eutw1no) : outw) = exp (L) 1) = e (L2220 o1, an

where the centers Ty, wy for ¢ = 1, ..., m are chosen to match the means of the mixture models from the data generation
process, namely My |y and My |y defined in Section B. Here, we assume the density functions have the following
form

p(w,zlc) = alg(w,z), plw,z,y]|c)=plwaz|ycply|c) =By &w x)p(y|c),
where the conditional probability p(y | ¢) can be seen as a constant given that y, c are fixed. Hence, it is natural to assume
that the empirical marginal density estimator has the following form

ﬁ(w,x|c) = a:g(’w, (E)7 lb\(wvx | Y, C) = ;cg(wvx)7
We obtain coefficient vectors & and BMC by solving a similar objective function as LS-CDE:
.1 T 2
0 = argmin 5 (o, g(w,z) — p(w,z | ¢))” dwdz;
By, = argmin — // . T g(w,z) —p(w,z | y,c))dedx.
Given subsets of samples {(z, w;, ¢;) bienr. With N = {i € [n] : ¢; = ¢} and { (@4, yi, wi, ¢i) Yien, . With N, . = {i €

[n] : yi =y, ¢; = c} from the original sample set {(, Yi, wi, ¢i) " ,, we can construct the associated regularized empirical
estimators. Define H = f f g(x,y)g(z,y) " drdy, A, ﬁy,c are obtained by solving the following function

1 ~ ~ ~ 1
a, =argmin —a' Ha — hza +Xa'a, h.=-— Z g(wi, x;); (12)
2 ‘NC| i€EN,
. 1 - 1
By,c = arg min §,BTHﬂ — h;cﬁ +2873, h, .= m Z g(w;, z;). (13)

€Ny, ¢

It is worth noting that the integral of Gaussian kernel functions H-= f [ g(w x)g(w :U)dedw has an analytical form and
the objective function is quadratic, yielding analytical forms &, = (H +AI)~ 1h and ,By c= (H + )t

Step 2—3 of Algorithm 3. With the estimated from Step I, we can construct the empirical integral operator A and B’ with
respect to the kernel functions p(w, z | ¢) and p(w, = | y, ¢), respectively, as

ku
A= "a0:9:(X) ® (W Zﬁy cii(X) @ i (W). (14)
i=1
To find the inverse of A, we first run the Gram-Schmidt procedure on {V1,...,9%, } and {¢1, ..., @, } respectively to

orthonormalize the basis functions. Since we are using Guassian kernels, the Gram-Schmidt procedure can be obtained
analytically. We provide the example of constructing the first two orthonormal components and the rest of them can be
constructed similarly. We have

g - Y1 = 2 (z)de = (V)™
T 0100) = [ Dr(a)is(e)dn = (V)

= U2 —(02,01) Y = T (V00 () = (/2 ox =2
= et (02.70) = [Ta(pma(ote = (VA exp (122220

Let Ry € RFv > be a coefficient matrix whose ij-th entry is (J;,9;) and R, € R¥U**V be a coefficient matrix whose
ij-th entry is (;, ;). Then, it follows that

~ —1 o~
ac,l ﬁy,c,l

A =p(R]) R;'9 , B =9Ry R.7".

Qe kyy 6y7C,kU
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Algorithm 4 Estimate ¢(U) /p(U), details provided in Section C.3
Require: source P ={(w;,x;)}{_;; target Q={z;}7 ;s {p(W|U = 1),...,p(W|U = kv)};
1: Compute p(W | X) via LS-CDE (Sugiyama et al., 2010)
2: Run K-means clustering to select ki centers: z1, ..., xg
3: for z in {x1,..., 2k, } do
P(U|X = z) is obtained by solving (17)
[¢(U)/p(U)] is obtained by solving (18)

U

A

Hence, we can obtain
~ -1 5
Qc,1 ﬂy,c,l
1D —(mTy\—1 . . —T
AT'B'=%(R,) - - R, %', (15)
Qeky By,c,ku

M

where the eigenfunctions of A~1B’ are obtained by first computing the eigenvectors of M, denoted as 71, . . ., 7Jk,, and then
projecting them to the basis functions {%,, ..., @y, }. Thatis, the j-th eigenfunction of A71Bis Zf:Ul 0j,i@; (w).

Step 4 of Algorithm 3. Let D = {al e aku} =M Ty | - by proof of Theorem 2, the estimate of p(w | U= j)is
ku ~
Sy diii(w) /| 5 dail -

C.3 Implementation details of Algorithm 4

The first step of Algorithm 4 is implemented by LS-CDE introduced in Appendix C.1 with the set of basis functions defined
in (11) and A = 10~2. The second step is straightforward. Hence, we only discuss the implementation details of Step 4 in
Algorithm 4. The identification result (8) suggests the construction of the following program

2

ku
PU| X =2)=argmin |p(W |X =2)= > pW |U=i)p(U=k|X =x) (16)
k=1 Lo
subject to 0<p(U—z|x) <1, i=1,...,ky;
Zp =i|z)=1.
Define the design matrix G € RFv*ku:
GW [U=1pW|U=1) -~ GWI|U=1,5W|U=ky))
G = E '.. :
POV | U = k) pW | U=1)) -+ (pW |U = ko). BW | U = kv))
Given z € Dom X, since p(ﬁ | ) is discrete random variable with ky states, we can reformulate (16) as
(BW | 2).50W | U =1) p(U=1]x)
p(U | ) =argmin -G , (17)
(W | 2),pW | U = k) (U =kv | o)1l

subject to O<p( =i]lx)<1, i=1,... ky;

Zp =i|z)=1,

which is a constrained least-squares problem and can be optimized efficiently by sequential least-squares program-
ming.
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Algorithm 5 Estimate p(Y | Zyew, U ), details provided in Section C.4

Require: source P = {(w;, yi, )} 1, (U | Zoew)
1: Compute p(Y | X) using MLP
2: fory=1,...,ky do
3: Estimate p(WW | X, y) via LS-CDE (Sugiyama et al., 2010)
4; Compute ﬁ(VL/, Y | ZTnew) = PW | X, 9)P(Y | Znew)
5: Compute p(Y | U, Zpew) by solving (19).

Finally, to compute the vector ¢(U) /p(U), we need to estimate the marginal density p(z) and ¢(z). This can be implemented
through a similar approach as introduced in Step I in Appendix C.2. We briefly introduce the procedure to estimate p(z);
The estimation procedure of ¢(z) follows similarly. Consider the subspace spanned by Gaussian kernel basis functions of

length-scale 1,
a2
{ﬂg(x) s ¥¢(x) = exp (”x;w”> A=1,... kU}.

We assume that the distribution is of the form p(z) = a" 9(z) with 9(z) = [V1(x) - - - Ik, (z)]. Hence, it follows that o
minimizes [(a'9(z) — p(z))?dz. Then, it is natural to formulate the empirical estimator as p(z) = &' 9(z), where we
can obtain & by solving the following problem:

~ 1 ~
a = arg min iozTHxa — hla +Xa'a,

where H, = [ 9(z)9(z) Tdz, and h, = L "  9(x;). Then we set &; = max(0,d,) fori = 1,...,ky to ensure the
non-negativity of the dlstrlbutlon.

After estimating g(z) and p(z), we construct the vector [g(x )/p(x)] = [q(x1)/p(x1) - @7k, ) /D(Thy, )] T by querying
x1,...x from g(z) and p(z). Then we can obtain g(U)/p(U) by solving the following constrained least-squares
problem:

% pU=1|z) pU=2[z1) - pU=k|mz)
S P U=1|zs U=2|z2) - pU=k|m SO
@O)FO) —arguin | | ¢ | - [P0 ORI e p ORI gy
qA(cnkU) _ . B . N :
el p@=1]m) p@=2]2) - o0 =k|w) ,
(18)

subjectto  [¢(U)/p(U)]; >0, i=1,... ky.

C.4 Implementation details of Algorithm 5

In this section, we introduce the implementation details of Algorithm 5. First, we learn the distribution of p(y|z) by
fitting a Multi-Layer Perceptron classifier (MLP) with ‘ReLU’ activation function attached at the output of the hidden
layers. Given a fixed y, we estimate p(IW | X,y) by first constructing the subset of samples {z;, w; }icn;, such that
Ny = {i € [n] : y; = y}. Then, p(W | X, y) is estimated by fitting LS-CDE (Sugiyama et al., 2010) with {x;, w; }icn;,
and the basis functions (11).

To estimate p(Y | U, X), we first recall the relation of p(W | U), p(U | X), p(W,Y | X) and p(Y | U, X) defined in (9).
Computing the inverse of the matrix might lead to numerical instability in practice and hence we solves a constrained

least-squares problem as an alternative. Given estimated {qﬁl = p(W | U = i)}, we run the Gram-Schmidt procedure
to obtain qborth(, = [qﬁmho Tyvons QS(th k] and R¢ LetR = R¢d1ag( (U =1|Zpew),---,P(U = ky | Znew))- Then, we



Adapting to Latent Subgroup Shifts via Concepts and Proxies

estimate p(Y | U, Tnew) € R¥UXFY by solving the following constrained optimization problem

f)\(Y | ﬁwrnew) =

<p(Y = ]-7 w | xnew)a (Zortho,1> te <p(Y - kY; w | xnew)v (gorlho,l>
arg min : ‘ : — (I®g ﬁ)p(Y | U, Znew)

<p(Y = 17 w | xnew)a Q/b\ortho,ku> T <p(Y = ka w | xnew>7 (gortho,k,U> F

(19)
subjectto 0< p(Y =y |U =i, 0pew) <1, y=1,...ky,i=1,... ku;

k‘y _
oY =y|U=i)=1, i=1,... kv,
y=1

where ®j, denotes the Kroneker product. This completes the procedure.

D DEEP LATENT VARIABLE MODEL SETUP

As described in Section 6, we approximate the joint distribution p(X,Y, C, W, U ) using a model based on the Wasserstein
Auto-Encoder (WAE; Tolstikhin et al., 2018). The overall algorithm is broken down into five main steps as shown
below:

High-Level Pseudo-code
1. Train the WAE.
2. Use the WAE’s encoder to append U to the source dataset: {(zi, yis ciywi) Yoy = {(mi, yi, ciywi, W) Y.
3. Train p(U | X) and p(Y | X,U) using the dataset {(;, y;, ¢;, wy, i) Y-,
4. Estimate the likelihood ratios ¢(U)/p(U) using the confusion matrix approach of (Lipton et al., 2018) and p(U | X).
5. Predict ¢(Y | X) using (1).

We describe, next, how this approach works in detail.

D.1 Training the WAE

First, we approximate the latent variable U. For that, we construct a variant of WAE, in which the assumptions ~of the
graph in Figure 1(c) are imposed. Specifically, while the encoder p(U | X,C,Y, W) is an MLP (X,Y,C, W) — U with
parameters ¢, the decoder has the structure: U — X, U — W, (U, X) — C, and (U,C) — Y, where each arrow is a
separate MLP model with its own parameters, leading to the factorization:

p(V,U) =p(Y | C,U)p(C | X,U)p(X | U)p(W | U)p(D),

where V = (X, Y, C, W) as discussed in Section 6. The WAE is trained to minimize the reconstruction loss and the KL-
divergence between p(ﬁ) and its prior p( 17) as shown in (3), where p is averaged over the entire batch. In our experiments,
the reconstruction loss is the mean square error (MSE) for X, cross-entropy for Y and W (because both are one-hot
encoded), and the binary cross-entropy for every concept in C' (because C is multi-label). We set the number of latent

categories |U| in the WAE to 10. All MLPs follow the architecture described in Appendix B.

As U is discrete, to allow training with the reparameterization trick, we model p(ﬁ | X,C,Y, W) using a Gumbel-Softmax
distribution (Jang et al., 2016; Maddison et al., 2016). We set the prior p(U) to be a uniform categorical distribution over the
categories of U.

D.2 Append the latent category U

Given a trained WAE model, we next generate joint samples {(z;, ¢;, y;, w;, U;) }7_; using the encoder p([} | X,C,Y,W).
Specifically, for every tuple in the training set (z, y, ¢, w), we generate u ~ p(U | X = z,C =¢,Y = y,W = w) and
append w to the tuple (z,y, ¢, w).
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D.3 Training p(U | X) and p(Y | X,U)

Given the dataset {(;, ¢;, yi, wy, i)}, we train a model p(U | X) and another model p(Y | X, U). In our experiments,
both models are MLPs (of the same architecture specified in Appendix B), which are trained by minimizing the cross-entropy
loss. After training, we calibrate on the separate hold-out dataset using temperature scaling (Guo et al., 2017).

D.4 Likelihood Ratios

Next, we employ the confusion matrix approach of (Lipton et al., 2018) to estimate the likelihood ratios ¢(U)/p(U) by
applying it on the model p(ﬁ | X). Specifically, since p(ﬁ\X ) is trained on source data, we calculate the confusion matrix
on source. Then, we run the model on unlabeled X from the target domain ¢ and calculate its mean predictions. After that,
we use Proposition 2 in (Lipton et al., 2018) to estimate the likelihood ratios.

D.5 Inference

Finally, during inference, we use the two models p(U | X) and p(Y | X, U) trained in the third step and the likelihood
ratios ¢(U) /p(U) obtained in the forth step, and predict ¢(Y'| X) using (1).



