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Abstract

The proliferation of generative models, combined with pretraining on web-
scale data, raises a timely question: what happens when these models are
trained on their own generated outputs? Recent investigations into model-
data feedback loops proposed that such loops would lead to a phenomenon
termed model collapse, under which performance progressively degrades
with each model-data feedback iteration until fitted models become useless.
However, those studies largely assumed that new data replace old data over
time, where an arguably more realistic assumption is that data accumulate
over time. In this paper, we ask: what effect does accumulating data have
on model collapse? We empirically study this question by pretraining se-
quences of language models on text corpora. We confirm that replacing
the original real data by each generation’s synthetic data does indeed tend
towards model collapse, then demonstrate that accumulating the successive
generations of synthetic data alongside the original real data avoids model
collapse; these results hold across a range of model sizes, architectures, and
hyperparameters. We obtain similar results for deep generative models on
other types of real data: diffusion models for molecule conformation gener-
ation and variational autoencoders for image generation. To understand
why accumulating data can avoid model collapse, we use an analytically
tractable framework introduced by prior work in which a sequence of linear
models are fit to the previous models’ outputs. Previous work used this
framework to show that if data are replaced, the test error increases with
the number of model-fitting iterations; we extend this argument to prove
that if data instead accumulate, the test error has a finite upper bound
independent of the number of iterations, meaning model collapse no longer
occurs. Our work provides consistent empirical and theoretical evidence
that data accumulation avoids model collapse.

∗Denotes equal authorship.
†Harvard & Stanford University.
‡Denotes equal contribution.
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Figure 1: Two Settings to Study Model Collapse. Model collapse is a phenomenon where
sequences of generative models trained on their own outputs progressively degrade until the
latest model becomes useless. Left: Many prior works studied model collapse where data
are replaced with each model-fitting iteration. Right: We study model collapse where data
accumulate with each iteration and demonstrate accumulating data avoids model collapse.

1 Introduction

The advent of large-scale generative models such as GPT-4 (Achiam et al., 2023), DALL-E
(Ramesh et al., 2022) and Stable Diffusion (Rombach et al., 2022) has revolutionized the
field of artificial intelligence. These models, trained on vast web-scale datasets, exhibit
remarkable capabilities in generating text, images, and other media (Brown et al., 2020;
Saharia et al., 2022). However, as these models become more widely used, an increasing
amount of generated data populates the web. This raises a critical question: what are the
consequences of training generative models on datasets containing their own outputs?

Recent studies have investigated this question, revealing that training generative models on
their own outputs can cause the performance of such models to progressively degrade with
each model-fitting iteration, eventually rendering newer models useless (Hataya et al., 2023;
Martı́nez et al., 2023a; Shumailov et al., 2023; Alemohammad et al., 2023; Martı́nez et al.,
2023b; Bertrand et al., 2023; Briesch et al., 2023; Dohmatob et al., 2024a;b) (see Appendix
A for review and discussion of prior work). This phenomenon was consequently labeled
model collapse. Model collapse warns that democratizing access to generative models runs
the risk of polluting the very data necessary to train future iterations of generative models.

To better understand this phenomenon many prior works have considered a setup that
assumes each model’s generated data replaces previous data. In theory, this leads to very
natural comparisons across generations as the total number of training points for each
model remains fixed. In practice, subsequent generations of LLMs are often trained with
increasing data over time – e.g., 1.4 trillion tokens for Llama 1 (Touvron et al., 2023a), 2
trillion for Llama 2 (Touvron et al., 2023b), 15 trillion for Llama 3 – in which presumably both
human-generated and machine-generated data are accumulating in training sets collected
from the internet. It was noted in some of those works Hataya et al. (2023); Martı́nez et al.
(2023a); Alemohammad et al. (2023); Bertrand et al. (2023); Dohmatob et al. (2024b) that
model collapse can be either slowed down or negated by mixing in clean data with the
generated data.
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To that end, in this work we study the effect of accumulating data on model collapse,
rather than replacing data. Our data-accumulating setting is, in some sense, maximally
pessimistic: it considers a hypothetical future where synthetic data are uncontrollably
dumped on the internet to be vacuumed up for training the next iteration of generative
models. Nevertheless, we find that model collapse is avoided when accumulating data.

We begin by studying model collapse experimentally with deep generative models trained
on realistic data: transformers on causal language modeling (Sec. 2.1), diffusion models on
molecular conformation (Sec. 2.2) and variational autoencoders on images (Sec. 2.3). After
confirming that replacing data at every iteration indeed causes test error to increase with the
number of iterations, we empirically find that accumulating synthetic data with real data
avoids model collapse for all models and for all data modalities we test. To understand why
replacing data and accumulating data have different consequences for model collapse, we
turn to an analytically tractable framework of a sequence of linear models, each trained on
synthetic outputs generated from the previous-iteration’s fitted linear model (Mobahi et al.,
2020; Dohmatob et al., 2024a). Within this framework, Dohmatob et al. (2024a) demonstrated
that if data are replaced with each model-fitting iteration, the test error increases linearly
with the number of iterations n. We extend Dohmatob et al. (2024a)’s analysis to prove
that if data instead accumulate, then the test error has a finite and (to us, surprisingly)
well-controlled upper bound independent of the number of model-fitting iterations.1

Altogether, our work suggests that data accumulation may be robust to model collapse and
emphasizes the importance of considering accumulating data and other real-world data
dynamics in the analysis of model collapse in generative models trained on web-scale data.

2 Accumulating Data Avoids Model Collapse in Deep
Generative Models

We first investigate model collapse experimentally in several classes of generative models.
Here, and for the remainder of this manuscript, the term model collapse refers to notably
worsening error over increasing iterations of the model-data loop, while avoiding model
collapse refers instead to bounded error over such iterations. To test the effect of accumulating
data on model collapse, we compare accumulating data against replacing data. We use
three diverse experimental setups of causal transformers, diffusion models, and variational
autoencoders trained on real text, molecular conformation, and image datasets, respectively.
We find that replacing data yields model collapse for all models and all datasets, whereas
accumulating data avoids model collapse.

2.1 Transformer-Based Causal Language Modeling

Experiments We first train causal transformers (Vaswani et al., 2017) on text data. Specif-
ically, we pretrain 9M parameter GPT-2 (Radford et al., 2019) and 12M, 42M and 125M
parameter Llama2 (Touvron et al., 2023b) language models for a single epoch on TinyS-
tories (Eldan & Li, 2023), a 470M token GPT-3.5/4-generated dataset of short stories at
a kindergarten reading level. For each model-fitting iteration n ≥ 2, we sample a new
dataset of the same size as TinyStories from the previous iteration’s language model and
then either replace or concatenate the previous dataset with the newly generated dataset.
In each model-fitting iteration, we then pretrain a newly initialized model on the replaced
or concatenated dataset from the previous iteration. We experiment with sampling the
new datasets using temperatures 0.3 or 1.0. We chose this combination of architectures,
scales, dataset, and sampling because the setup necessitates pretraining multiple iterations

1An approach ‘halfway’ between the ‘replace’ and ‘accumulate’ settings replaces the previous
dataset with a pure synthetic dataset of size T × i at the i-th iteration; in other words, the comparison
at each generation is now between models trained on the same number of training points. While this
halfway setting has a milder sublinear behavior – explicitly, the test MSE scaling is MSE ≍ O(log(n))
– the test error does still diverge with iterations. (See Appendix E for more details.) We thank Elvis
Dohmatob, Yunzhen Feng, and Julia Kempe for communicating this observation. We also consider the
halfway setting as an ablation in our language modeling experiments, as detailed in Appendix C.

3



1 2 3 4 5
Model-Fitting Iteration

1.75

2.00

2.25

2.50

2.75
C
ro
ss

E
nt
ro
py

(T
es
t)

Replace

1 2 3 4 5
Model-Fitting Iteration

Accumulate

Language Models Pretrained on TinyStories Model

GPT-2 (9M)

Llama-2 (12M)

Llama-2 (42M)

Llama-2 (126M)

Figure 2: Data Accumulation Avoids Model Collapse in Language Modeling. Sequences
of causal transformer-based language models are pretrained on TinyStories (Eldan & Li,
2023). Cross-entropy validation loss increases when repeatedly replacing data (left), but not
when accumulating data (right). Synthetic data was sampled with temperature = 1.0.
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Figure 3: Data Accumulation Avoids Model Collapse in Language Modeling. Learning
curves for individual model-fitting iterations when repeatedly replacing data (top), and
when accumulating data (bottom). Note: Epochs correspond to more gradient steps for
accumulate than replace because the number of training data grows for accumulate.

of language models – a computationally costly endeavor – but we also wish to study realistic
conditions where generative models are high-performing and generative diverse outputs.
Because small language models (below 10M parameters) pretrained on TinyStories were
shown to be able to generate coherent-albeit-simple English sentences (Eldan & Li, 2023),
this choice of architectures, scales, dataset and temperature hopefully strikes a good balance
between being representative, being diverse and being computationally feasible.

Results We found that for all architectures, parameter counts, and sampling temperatures,
as the number of model-fitting iterations increased, replacing data led to an increase in test
cross entropy (Fig. 2 top). We also found that for all architectures, parameter counts, and
sampling temperatures, as the number of model-fitting iterations increased, accumulating
data led to equal-or-lower test cross entropy (Fig. 2 bottom). Lower temperature (0.3) led to
a faster increase in test error than higher temperature (1.0) (Appendix Fig. 13), but the trend
was consistent for both temperatures. Table 1 shows samples of generated texts for GPT2
(9M) and Llama2 (125M) models at model-fitting iterations 3-5 when both accumulating
and replacing data, as well as iterations 8-10 (replacing only).
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Model Iteration Sample Generation
Llama2 (125M) 3 (A) In the end, the crab found a smooth shell. He took it to a safe place

under a tree. The crab put the shell where he found it. Tim and his
mom were tired, but they were happy. They had a fun day at the
beach. And they lived happily ever after. The end.

3 (R) Henry asked his Mom why the golf sounded so special. His Mom
explained that the line of lumber had something special that would
help. She said that if you’re not sure, the lumber is special.

8 (R) Friend Stan and Millie laughed together and prepared to spend the
morning together. Mamaing Grandma’s possibilitant, twice would
measure how much she lovedk. Everyone started to get ready when
they started arguing until their mum upset.

GPT2 (9M) 5 (A) Jack was so happy that he took care of the honey. He thought, ”I care
about the beautiful garden, because it is nice and clean.” He started
to feed the flower every day. The flower grew bigger and taller, and
Jack became very happy.

5 (R) After playing, Lily got tired and quickly ran back to playing with her
dolls. She opened her eyes and played with her dolls all day long.
Her grandma was so happy that she screamed as she watched her
look back at her original clothes and laughed.

10 (R) When she finished eating it, she tasted it all up. She said goodbye to
her mom and said goodbye. Mommy smiled, feeling very proud of
her. It was other. She knew that sharing is always easy to share her
meal with her mom.

Table 1: Data Accumulation Avoids Model Collapse in Language Modeling. Both 125M-
parameter Llama2 as well as 9M GPT-2 models show decreasing quality when replacing
data (R), but maintain high-quality text generations when accumulating data (A).

Ablations We ablate for several additional potential confounds beyond generation tem-
perature. First, when accumulating data, subsequent model iterations are trained on larger
datasets than when replacing data. To control for this, we also perform experiments in
which data is replaced, but the size of the (fully synthetic) dataset is grown to match the
training set size in the accumulation regime. We find that model performance still degrades
(albeit at a lower rate). This is shown in Appendix C, Table 2, right-most column. Second, a
possible concern could be that degrading performance when replacing data could be due to
low model performance in iteration 1 (and thus the quality of the first synthetic dataset).
We control for this by varying the amount of training performed in iteration 1 only and find
that this has no significant impact. Lastly, we find that our results are also consistent across
varying dataset sizes and training epochs. These ablations are discussed in Appendix F.

2.2 Diffusion Models on Molecular Conformation Data

Experiments We next train sequences of diffusion models on molecular conformation data.
Specifically, we train GeoDiff (Xu et al., 2022), a geometric diffusion model for molecular
conformation generation, on the GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022) dataset.
We down-sample the training split of GEOM-Drugs to 40, 000 molecular conformations,
which we use as our initial training set, and perform 50 diffusion steps for each prediction.
For the loss, we use the standard loss used by GeoDiff: a weighted variational lower bound
to the conditional likelihood; for more details, see Xu et al. (2022).

Results Over 8 model-fitting iterations, we find test loss increases when replacing data,
matching our language model experiments, and test loss remains relatively constant when
accumulating data (Fig. 4). Unlike with language models, we found that when replac-
ing data, performance worsens significantly in the first model-fitting iteration trained on
synthetic data and does not degrade further substantially in subsequent iterations.
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GeoDiff, a diffusion-based molecular conformation generation model, is trained on a subset
of Drugs data containing molecular structures found in drugs. Test loss degrades when
replacing data (left) but not when accumulating data (right).
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Figure 5: Data Accumulation Avoids Model Collapse in Variational Autoencoders for
Image Generation. Sequences of variational autoencoders (VAEs) are trained on CelebA, a
large-scale dataset of human faces. Test loss degrades when replacing data (left) but not
when accumulating data (right).

2.3 Variational Autoencoders on Image Data

Experiments We lastly train sequences of variational autoencoders (VAEs) (Kingma &
Welling, 2013; Rezende et al., 2014) on CelebA (Liu et al., 2015), a dataset of 200k images of
human faces split between train and test sets, chosen as a balance between being a realistic
dataset with many samples, color images and resolution, and computational feasibility of
training multiple iterations of models on accumulating data. The loss is the standard VAE
loss: reconstruction error plus the KL divergence between the encoder’s output Gaussian
and the isotropic Gaussian prior. See Appendix D for more experimental details.

Results We find that replacing data at each iteration again exhibits model collapse: the test
error rises swiftly with each additional iteration, and each iteration yields lower quality and
less diverse generated faces until all model generations represent a single mode as shown in
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Figure 6: Sampled Images from Left: Replacing data with data generated by the previous
iteration’s newly trained VAE yields lower quality and eventually leads to complete mode
collapse. Middle: Accumulating data with data generated by the previous iteration’s newly
trained VAE preserves the quality and diversity of generated data across iterations. Right:
Baseline samples after 100 training epochs on the dataset.

the left panel of Figure 6. In contrast, accumulating data at each iteration significantly slows
model collapse: the test error increases significantly slower with each additional iteration.
While the diversity of generations does go down as compared in the middle and right panel
of Fig. 6, it still represents major axes of variation in the dataset, such as gender, but no
longer seems to generate other details, along more minor axis of the data manifold, such as
glasses and accessories. We discuss further analysis of VAE reconstructions in Appendix D.

Interestingly, unlike language modeling, the test error of accumulating data does increase
with the number of iterations (albeit much more slowly than with replacing data). We also
note that Martı́nez et al. (2023a) found slightly contradictory evidence, specifically that a
different architecture on a much smaller dataset exhibits fast performance deterioration even
with accumulating data. Understanding under what conditions and why these discrepancies
exist is an interesting direction we leave for future research.

3 Accumulating Data Avoids Model Collapse in Linear Models

To gain mathematical understanding and intuition, we employ an analytical framework
introduced in prior work (Mobahi et al., 2020; Dohmatob et al., 2024a) to understand the
difference between data accumulation and data replacement. We will show that it predicts
the same types of test error behaviors for these two data-use strategies that were measured
empirically. The framework considers a sequence of linear models that are fit to the synthetic
data sampled from the linear generative model model based on the previously fit linear
models. Within this framework, Dohmatob et al. (2024a) showed that if data are replaced
across model-fitting iterations, then the test squared error increases linearly2 with the
number of iterations n. Here, we extend Dohmatob et al. (2024a)’s argument to show that if
data instead accumulate across model-fitting iterations, then the test squared error is upper
bounded by a relatively small constant, meaning model collapse is avoided3.

2To echo an earlier footnote, an approach ‘halfway’ between the ‘replace’ and ‘accumulate’ ap-
proaches would replace the previous dataset with a pure synthetic dataset of size iT at the i-th iteration.
Analyzing this goes mostly in parallel, except the 1/i2 mentioned in running text now becomes 1/i
for the ‘halfway’ approach. Consequently, the MSE scaling becomes MSE ≍ O(log(n)); the ‘halfway’
approach with pure synthetic data but more of it, again has test error growing unboundedly with itera-
tions. Thanks to Elvis Dohmatob, Yunzhen Feng and Julia Kempe for communicating this observation.
See Appendix E for an extended discussion.

3In this theoretical section, we identify the term model collapse with the situation where test error
diverges to infinity (at any rate) as iterations progress. Other authors may employ similar terminology
while identifying it with different properties of test error. For example, Alemohammad et al. (2023)
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The content in this section relies heavily on the framework and pioneering contributions
of Dohmatob et al. (2024a). Our contribution is to study a different way to use synthetic
data in training, namely accumulate, which seems to better align with certain real-world
considerations. We show that our empirical results could have been anticipated on theo-
retical grounds, by applying the same analysis framework as in Dohmatob et al. (2024a),
but instead to this specific training dataset pattern. We use the same framework to analyze
some other ways that synthetic data might have be used, such as replace, again the theory
aligns with many empirical results.

3.1 Notation and Preliminaries

Original Data Distribution. We adapt notations from Dohmatob et al. (2024a). Define the
distribution PΣ,w,σ2 on Rd × R given by (x, y) ∼ PΣ,w,σ2 iff :

(Input) x ∼ N (0, Σ),

(Noise) ϵ ∼ N (0, σ2), independent of x,
(Label) y = x · w∗ + ϵ.

The positive integer d is the input-dimension, the matrix Σ ∈ Rd×d is the true covariance
structure of the input x, the vector w∗ is the true linear relationship used to generate the
original data and the scalar σ is the level of label noise. We start at iteration n = 1 with
T initial independent data points (xi, yi) each following PΣ,w∗ ,σ2 , that is, yi = xi · w∗ + ϵi

for each i = 1, 2, · · · , T. We form the design matrix X ∈ RT×d with x⊤1 , · · · , x⊤T as rows.
We also form the vectors Y and E with i-th coordinate yi and ϵi respectively. In whatever
follows, we will assume that X has full column rank, i.e., T ≥ d, X⊤X is invertible and the
model is underparameterized.

Synthetic Data Generation Process. We generate synthetic data from the following se-
quence of distributions

PΣ,w∗ ,σ2 → PΣ,ŵ1,σ2 → . . . → PΣ,ŵn ,σ2 ,

where n ∈ N is the number of iterations. The scheme is outlined as follows.

• For n = 1:

– Accumulating Covariates/Features: X̃1
def
= X

– Accumulating Targets: Ỹ1
def
= Ŷ1

def
= Xw∗ + E1, where E1

def
= E ∼ N (0, σ2 IT)

– Fit linear model: ŵ1 = X̃†
1Ỹ1

– Sample synthetic data for the next iteration: Ŷ2
def
= Xŵ1 + E2, where E2 ∼

N (0, σ2 IT)

• For n ≥ 2:
– Accumulating Covariates/Features: X̃⊤

n = [X̃⊤
n−1; X⊤] ∈ Rd×nT

– Accumulating Targets: Ỹ⊤
n = [Ỹ⊤

n−1; Ŷ⊤
n ] ∈ R1×nT

– Fit linear model: ŵn
def
= X̃†

nỸn

– Sample synthetic data for the next iteration: Ŷn+1
def
= Xŵn + En+1, where

En+1 ∼ N (0, σ2 IT)

Here, for a matrix A with full column rank, A† = (A⊤A)−1 A⊤ is the Moore-Penrose
pseudo-inverse of A. The noise terms E1, E2, . . . , En are independent of each other and of
the covariates/features. Since X has full column rank, so does X̃n for every n ≥ 1.

use the term MAD to refer to the situation where the distance between the distribution of the original
data and that of the subsequent generative models grow farther apart, without necessarily diverging.
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Figure 7: Accumulating Data Avoids Model Collapse in Linear Regression. We consider
sequences of linear models recurrently fit to generated targets by previous iterations of
models. Top: If each linear model is fit to the generated targets of only the preceding linear
model, i.e., data are replaced, then the test error grows linearly with the number of iterations
n. Bottom: If each linear model is instead fit to the generate targets of all the preceding linear
models, i.e., data accumulate, then the test error has a finite upper bound independent of
the number of iterations. This suggests that data accumulation might be a robust solution
for mitigating model collapse. For log test error and higher iterations, see Appendix Fig. 16.

Test Error. We are interested in the dynamics of the test error Etest(ŵn) of this sequence of
linear model ŵ1, ŵ2, .... Note that evaluation of the model is done on the true distribution
PΣ,w∗ ,σ2 , even though the model is trained on the accumulated synthetic data. For any linear
estimator ŵ computed from the training data, we measure test error in the standard way:

Etest(w)
def
= E

[
(xT

testw − ytest)
2
]
− σ2 = E[∥w − w∗∥2

Σ] (1)

where the expectation is taken over the training data and (xtest, ytest) ∼ PΣ,w∗ ,σ2 independent
of the training data.

A Note on Extensions to Ridge Regression and Kernel Methods. To reiterate a comment
made previously by Dohmatob et al. (2024a), although we present our results in the context
of ordinary linear regression in Rd, our analysis can be readily extended to ridge regression
and the kernel setting (Caponnetto & De Vito, 2007; Simon et al., 2021; Cui et al., 2021; Wei
et al., 2022). We focus here on a simple useful model for studying model collapse.

3.2 Precise Test Error Characterization Under Accumulating Data

Our goal is to establish an analytic formula for the test error of the nth model in the data
accumulation setting. We begin by characterizing the relationship between the fitted linear
parameters ŵn and the true parameters w∗. We remind the reader that we assume that X
has full column rank, i.e., X⊤X is invertible. Proofs are deferred to App. B.
Theorem 1. In the data accumulation setting, ∀n ≥ 1, the fitted linear parameters ŵn can be
expressed as:

ŵn = w∗ + (X⊤X)−1X⊤
(

n

∑
i=1

Ei
i

)
(2)

9



where, recall, w∗ is the true parameter, X is the original design matrix, and Ei is the extra noise
added at the i’th iteration.
Theorem 2. For an n-fold synthetic data generation process with T ≥ d + 2 samples per iteration

and isotropic features (Σ
def
= Id), the test error for the ridgeless linear predictor ŵn learned on the

accumulated data up to iteration n is given by:

EAccum
test (ŵn) =

σ2d
T − d − 1

(
n

∑
i=1

1
i2

)
≤ σ2d

T − d − 1
× π2

6
(3)

where, recall, σ2 is the noise variance of the fake data generation process, d is the input dimension,
and T is the number of samples (i.e., data points) added per iteration.

How does test error with accumulating data compare against test error with replacing
data? Under otherwise identical assumptions, Dohmatob et al. (2024a) proved in the data-
replacing setting that the test error is given by4:

EReplace
test (ŵn) =

σ2d
T − d − 1

× n (4)

When data are replaced, the test error grows linearly with the number of iterations n (Fig 7
top), with the rate of growth determined by a noise-to-signal ratio: the amount of noise per
dimension σ2 times the number of dimensions d, adjusted by the (per-iteration) sample size
T. In contrast, when data accumulate, Theorem 2 shows the test error is upper bounded
regardless of the number of iterations n:

EAccum
test (ŵn) ≤

σ2d
T − d − 1

× π2

6

This striking difference can be intuitively explained by the differences in the way data are
handled across iterations. In the data replacement setting, because previous data were
discarded, the model is more strongly affected by the new noise that each iteration of
generated data introduces, and adds that to the effects experienced in earlier iterations. But
in the data accumulation setting, because iteration i contributes fraction 1/i to the training
dataset, the additional noise from the ith iteration of synthetic data has its effect on the
model MSE shrunken proportional to 1/i2 (due to squared error). The summability of 1/i2
prevents the test error from growing indefinitely. This suggests that accumulating generated
data with real data can indeed avoid model collapse.

3.3 Numerical Confirmation of Analytical Results

To confirm the analytical results, we numerically simulate the setup. The numerics almost
perfectly matched the analytics (Fig. 7): when data are replaced, the test error grows with the
number of iterations n, with the prefactor set by the noise-to-signal ratio σ2d/(T − d − 1),
but when data accumulate, the test error rapidly plateaus with the prefactor similarly set.
For log test error and higher model-fitting iterations, see Appendix Fig. 16.

4 Discussion

This work explored the phenomenon of model collapse, an important concern as AI-
generated content permeates the internet and finds its way into future training datasets.
Prior work has shown that training on model outputs can lead to degraded performance
(Martı́nez et al., 2023a;b; Shumailov et al., 2023; Alemohammad et al., 2023; Hataya et al.,
2023; Bertrand et al., 2023; Briesch et al., 2023; Dohmatob et al., 2024a;b), implying that

4For notational simplicity, we assume that Dohmatob et al. (2024a)’s T0
def
= T and σ0

def
= σ.

10



future model training faces a difficult challenge of ensuring strict training dataset hygiene.
For a significantly more thorough discussion of related work, please see Appendix A.

Our findings extend these prior works to show that if data accumulates and models train
on a mixture of “real” and synthetic data, model collapse no longer occurs. We show this
both experimentally on causal transformers for language modeling, diffusion models for
molecule generation, and variational auto-encoders on image data as well as theoretically
for linear regression. Together, these results strongly suggest that the “curse of recursion”
may not be as dire as had been portrayed – provided we accumulate synthetic data
alongside real data, rather than replacing real data by synthetic data only.

Looking to the future, many questions worth investigating remain. For instance, in future
work we would like to explore different data generation and accumulation regimes, such as
(1) additional “real” data being introduced in each model-fitting iteration and (2) different
schedules of how much synthetic data is generated at each iteration and (3) human-filtering
of generated data, e.g., as done in RLHF. Additionally, we note that in all our experiments,
the synthetic dataset is generated by sampling from the previous model, i.e., with some
stochasticity; in future work, we would like to explore also what happens if data is generated
deterministically, e.g. with temperature 0 in a typical language model.

Lastly, it is worth noting that “model collapse” – as a term of art – has been used in various
ways by various researchers; so care is required in comparing claims across articles. In
reviewing the literature, we identified at least four related phenomena: (0) unbounded test
error blowup (as here); (1) modal collapse — collapse to one (or a few) modes; (2) collapse to
uniformity; and (3) amplification of artifacts introduced by models fit to previous synthetic
data. Future work should map out what factors cause which to occur and what preventative
strategies are effective at addressing each.
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A Summarization and Discussion of Prior and Related Work

Prior Empirical Work A growing body of recent work has investigated the phenomenon
of iteratively training models on data generated by previous models, e.g., Hataya et al.
(2023); Martı́nez et al. (2023a); Shumailov et al. (2023); Alemohammad et al. (2023); Martı́nez
et al. (2023b); Bertrand et al. (2023); Briesch et al. (2023); Dohmatob et al. (2024a;b) and (in a
different context) Taori & Hashimoto (2023). Hataya et al. (2023) and Martı́nez et al. (2023b)
conducted experiments replacing real training data with generated data at each iteration,
assuming that the dataset size remains fixed over time. They found that this iterative
retraining procedure can lead to model degradation if the proportion of synthetic data
becomes too high. Similarly, Shumailov et al. (2023) ran experiments with Gaussian mixture
models, VAEs, and language models in which the total number of samples per iteration
was held constant, and the samples always originated with the previous model rather than
aggregating over time. Building on this work, Alemohammad et al. (2023) considered three
treatments of data: fully replacing real data with synthetic data, augmenting a fixed real
dataset with additional synthetic data, and mixing new real data with synthetic data at
each iteration. In almost all of their experiments, they drew a fixed size dataset from the
most recent model at each iteration, without accumulating data. Bertrand et al. (2023) also
assumed that dataset size and mixing proportions are constant over time in their theoretical
stability analysis and empirical validation.

Prior Theoretical Work Over the last few years, there has been significant research effort
contributing to our theoretical understanding of model behavior when synthetic data are
integrated into training. The most closely related works to ours are Dohmatob et al. (2024a)
and Dohmatob et al. (2024b); of course, the inspiration for the linear regression model
studied in this paper directly comes from Dohmatob et al. (2024a). Dohmatob et al. (2024a)
performs an in-depth analysis of high dimensional linear and ridge regression when the
training data used per iteration are generated from the previous iteration’s fitted model.
They are able to conclude that the test error grows linearly with the iteration count in their
setup, as well as derive more interesting and more nuanced results using random matrix
theory. They also discuss how to mitigate model collapse through optimal regularization
both when the training data are noise-free and noisy versions of the previous model’s
synthetic outputs. A related noise-free setup was studied by Mobahi et al. (2020) in the
case of self-distillation. Although Mobahi et al. (2020) considers a more general setup with
ridge regression as a special case, they use noiseless predictions from the previous model
as the training data for the next model, and show that eventually, the predictions shrink
to zero. Through this, they highlight that self-distillation induces regularization in the
function space, which initially is beneficial for reducing over-fitting, but eventually over-
regularization causes underfitting and hence performance decay. Dohmatob et al. (2024b)
go beyond the linear model to study model collapse – they study the tails of LLM outputs vs.
real data and provide scaling laws that clearly identify regimes of model degradation when
synthetic data misses tails present in real data. They identify an interesting phase transition
in the test error scaling law depending on the size of the real dataset size in comparison to
(a functional of) the chopped-off tail, and conclude that enough real data is able to mitigate
model collapse. All these works consider the scenario where the amount of training data
available per iteration is fixed (and does not grow with the iteration count), and it is certainly
possible that with larger amount of synthetic data (from prediction by the previous model),
several of these scalings would improve significantly. For example, in Equation (12) of
Dohmatob et al. (2024b), one obtains the linear scaling (with iteration count) of test error
simply because the amount of synthetic data generated per iteration is the same. If one
generated synthetic data with size proportional to the iteration count, then at iteration n,
the scaling would, instead of n, be like n1−c/(1 − c) for c < 1. When one does not increase
the dataset size, Dohmatob et al. (2024b) points out that increasing the proportion of real
data would help one to avoid model collapse altogether. However, even if one did increase
the amount of synthetic data with iteration count, Theorem 3.2 coupled with Corollary 3.3
in Dohmatob et al. (2024b) would tell us that the amount of real data was all that mattered –
if the amount of real data is large, we overcome model collapse. If one only had synthetic
data (and no real data), no matter how large, it would be impossible to regain the original
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real-data scaling laws. The scenario we study is highly inspired by these pioneering works,
but still, in our view, different. We consider the case when we keep augmenting synthetic
data (generated by the previous model trained on all the previous data so far) as iterations
progress, much akin to how – in our view – the internet evolves. We observe that we can
avoid model collapse in this setting. The analysis of previous models in our case is more
involved, since the data used for training at iteration n is not homogeneous – different
models from the past impart different statistical aspects to different parts of the training
data. We also note a related augmentation model studied by Jain et al. (2024) – they perform
risk minimization augmenting real data with synthetic data available from a potentially
different independent source. One of their messages is that augmentation of (even) pure
noise can be looked upon as adding a ridge penalty and hence, in certain cases, can improve
test error. Their setup, however, is different from ours, since the synthetic data in their
setup is not obtained by a learning algorithm employed on the real data, and the process is
not iterative. However, morally, each iteration of ours involves risk minimization on data
statistically composed of an equal mixture of data generated from the previous models, and
hence each iteration of ours can be mapped to the general framework developed in Jain
et al. (2024), although the dependencies among the various models trained in our setup
introduce theoretical complications that do not seem to be too easily addressed by the theory
developed in Jain et al. (2024). Shortly after v1 of our manuscript was uploaded to ArXiv,
two other manuscripts appeared, dealing with the theoretical aspects in a setting similar
to ours. Theorem 1 of Marchi et al. (2024) obtains the same square summability scaling of
the variance as us. Seddik et al. (2024) studies collapse in language models in both purely
synthetic and partly synthetic regimes and obtains deviation bounds as model iterations
progress.

Considering Accumulating Data The two papers we found that partially considered accu-
mulating data are Martı́nez et al. (2023a) and Alemohammad et al. (2023). Alemohammad
et al. (2023) did so in one-half of one experiment: StyleGAN2 trained on FliqrFaces 128×128
(App. Fig. 8). The authors concluded that accumulating data does not avoid model collapse,
but merely slows it down. However, we believe that a closer examination of their results
(App. Fig. 8) reveals that accumulating data causes the test error to plateau to a relatively
low error with increasing numbers of model-fitting iterations. This result would support
our conclusion that accumulating data avoids model collapse and does not merely delay it.
The results from Martı́nez et al. (2023a) are harder to evaluate; model collapse only seems
to occur when the amount of synthetic data added per model-fitting iteration is 2× the
total amount of accumulated data, and the subsequent work by the authors switched from

Figure 8: Clarification of Data Accumulation in Alemohammad et al. (2023). Figure 7
from Alemohammad et al. (2023) (above) shows that linearly accumulating data (“Synthetic
augmentation loop”) causes poor behavior to plateau with the number of model-fitting
iterations. Alemohammad et al. (2023) write, “Our experiments [...] support our main
conclusion [that] fixed real training data only delays the inevitable degradation of the
quality or diversity of the generative models over generations.” We believe is that our
evidence and their evidence is more consistent with the conclusion that accumulating data
avoids model collapse and does not merely delay it.
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accumulating data to replacing data (Martı́nez et al., 2023b). We think understanding what
conditions and why these discrepancies exist is an interesting future direction.

Avoiding Model Collapse Several papers present methods for avoiding or slowing model
collapse. Bertrand et al. (2023) shows in the replacing data setting that model collapse will
not occur if the initial generative models approximate the data distribution well enough and
the proportion of real data is sufficiently large with respect to the synthetic data. Dohmatob
et al. (2024b) similarly demonstrates that in the replacing data setting, carefully selecting
real data to mix with synthetic data can avoid model collapse. Other solutions may also be
possible in various models and under various assumptions. To our knowledge, no paper
has claimed an “optimal” strategy to avoid model collapse, and neither has ours.

17



B Proofs of Mathematical Results

We point out a lemma useful to prove Theorem 2.

Lemma 3. Let T and d be positive integers with T ≥ d + 2, and let X ∈ RT×d be a random matrix
with i.i.d. rows from N (0, Σ) with Σ positive definite. Then, X has full rank a.s. Moreover, it holds
that:

EX [(X⊤X)−1] =
1

T − d − 1
Σ−1. (5)

Proof. See Dohmatob et al. (2024a).

Assuming Lemma 3 and Theorem 1, we present the proof of Theorem 2.

Proof of Theorem 2. From Theorem 1, we have:

ŵn = w∗ + (X⊤X)−1X⊤
(

n

∑
i=1

Ei
i

)
(6)

where w∗ is the true parameter, X is the original data matrix, and Ei are the noise terms at
each iteration, with Ei ∼ N (0, σ2 IT). The test error is given by:

Etest(ŵn) = E[||ŵn − w∗||2Σ] (7)

where the expectation is taken over all random quantities involved.

Substituting ŵn into the test error expression and using the fact that Σ def
= Id, we get:

Etest(ŵn) = E

( n

∑
i=1

Ei
i

)⊤
X(X⊤X)−2X⊤

(
n

∑
i=1

Ei
i

)
= E

[
n

∑
i=1

σ2

i2
tr(X(X⊤X)−2X⊤)

]

=
n

∑
i=1

σ2

i2
E
[
tr((X⊤X)−1)

]
Using Lemma 3, we have:

EX

[
tr((X⊤X)−1)

]
=

d
T − d − 1

(8)

Therefore, the test error for ridgeless regression with isotropic features in the data accumu-
lation setting is:

Etest(ŵn) =
n

∑
i=1

σ2

i2
· d

T − d − 1
<

σ2d
T − d − 1

(
π2

6

)
as ∑n

i=1 i−2 < ∑∞
i=1 i−2 = π2/6.

Finally, we prove Theorem 1.

Proof of Theorem 1. We prove this theorem by induction.

Base case: For n = 1, we have:

ŵ1 = X̃†
1Ỹ1 = (X⊤X)−1X⊤(Xw∗ + E1) = w∗ + (X⊤X)−1X⊤E1

which satisfies the lemma.
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Inductive step: Assume that for some n ≥ 1, we have:

ŵn = w∗ + (X⊤X)−1X⊤
(

n

∑
i=1

Ei
i

)
Now, consider ŵn+1:

ŵn+1 = X̃†
n+1Ỹn+1

= (X̃⊤
n+1X̃n+1)

−1X̃⊤
n+1Ỹn+1

=
1

n + 1
(X⊤X)−1

n+1

∑
i=1

X⊤Ŷi

Recalling that Ŷi:

Ŷi =

{
Xw∗ + E1, i = 1
Xŵi−1 + Ei, 2 ≤ i ≤ n + 1

Substituting this back into the expression for ŵn+1:

ŵn+1 =
1

n + 1
(X⊤X)−1

(
X⊤(Xw∗ + E1) +

n+1

∑
i=2

X⊤(Xŵi−1 + Ei)

)

=
1

n + 1
(X⊤X)−1

(
X⊤Xw∗ + X⊤E1 +

n+1

∑
i=2

(X⊤Xŵi−1 + X⊤Ei)

)

=
1

n + 1
(X⊤X)−1

(
X⊤Xw∗ + X⊤E1 +

n

∑
i=1

(X⊤Xŵi + X⊤Ei+1)

)

=
1

n + 1
(X⊤X)−1

(
X⊤Xw∗ +

n

∑
i=1

X⊤Xŵi +
n+1

∑
i=1

X⊤Ei

)

Now, using the induction hypothesis:

ŵn+1 =
1

n + 1
(X⊤X)−1

(
X⊤Xw∗ +

n

∑
i=1

X⊤X

(
w∗ + (X⊤X)−1X⊤

i

∑
j=1

Ej

j

)
+

n+1

∑
i=1

X⊤Ei

)

=
1

n + 1
(X⊤X)−1

(
(n + 1)X⊤Xw∗ +

n

∑
i=1

X⊤X(X⊤X)−1X⊤
i

∑
j=1

Ej

j
+

n+1

∑
i=1

X⊤Ei

)

= w∗ +
1

n + 1
(X⊤X)−1

(
n

∑
i=1

X⊤
i

∑
j=1

Ej

j
+

n+1

∑
i=1

X⊤Ei

)

= w∗ +
1

n + 1
(X⊤X)−1X⊤

(
n

∑
i=1

i

∑
j=1

Ej

j
+

n+1

∑
i=1

Ei

)

Now, we need to simplify the term ∑n
i=1 ∑i

j=1
Ej
j + ∑n+1

i=1 Ei. We can do this by counting the
number of times each Ei appears in the double sum: E1 appears n times in the double sum
and once in the single sum, so its coefficient is n+1

1 . E2 appears n − 1 times in the double
sum and once in the single sum, so its coefficient is n

2 . This continues along till we reach
En, which appears once in the double sum and once in the single sum, so its coefficient is 2

n .
En+1 appears only once in the single sum, so its coefficient is 1

n+1 . Therefore,

n

∑
i=1

i

∑
j=1

Ej

j
+

n+1

∑
i=1

Ei =
n+1

∑
i=1

n + 2 − i
i

Ei = (n + 1)
n+1

∑
i=1

Ei
i

19



Substituting this back into the expression for ŵn+1:

ŵn+1 = w∗ +
1

n + 1
(X⊤X)−1X⊤

(
(n + 1)

n+1

∑
i=1

Ei
i

)

= w∗ + (X⊤X)−1X⊤
n+1

∑
i=1

Ei
i

Therefore, by mathematical induction, the lemma holds for all n ≥ 1.
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C Additional Details and Ablations on Language Model Experiments

Implementation Details

Model training was implemented using Huggingface Transformers (Wolf et al., 2019).
Dataset generation was implemented using vllm (Kwon et al., 2023).

Additional Plots

In addition to Figure 3 in the main text, Figures 9-12 show learning curves in larger print,
with x-axes showing either epochs or gradient steps, and with axes shown in linear-linear
or log-log scale, respectively.

Ablations

In addition to the experiments shown in the main paper, we conducted several ablation
studies.

Controlling for dataset size. One possible concern is that when accumulating data, the
train dataset size will grow at each model-fitting iteration, meaning subsequent models will
be trained on more aggregate data than their counterparts in the replacement regime. To
control for this, we run experiments controlling for this. In this “replace-multiple” regime,
we create a fully synthetic dataset at the end of each model-fitting iteration, but grow the size
of this dataset to match that of the accumulated data in the accumulation regime. Table 2
rightmost column shows that in this regime, evaluation loss still increases over model-fitting
iterations.

Generation temperature. Most of our language model experiments were run with sam-
pling temperature 1.0 during generation of new datasets. To ensure that this choice is
not critical, we also run one experiment with temperature 0.3, and see that this shows
similar results (with even larger increases in validation loss in the replacement regime than
temperature 1.0), as shown in Table 2, row 2, and Figure 13.

Dataset size and training epochs. We similarly vary the size of the initial (and subsequent)
training datasets and number of training epochs, and see that this has no qualitative effect
on the results (Table 2, rows 3 & 4 show training on 1/5th of the TinyStories dataset for 1 &
3 epochs, respectively).

Model quality after first model-fitting iteration. Finally, we control specifically for model
(and thus synthetic dataset) quality after the first iteration, to rule out an undue influence
of a “bad” first synthetic dataset on subsequent training. Figure 14 shows performance in
subsequent iterations for different amounts of training in the first iteration, showing no
qualitative differences.

Model t=1 t=4 (acc) t=4 (repl) t=10 (repl) t=4 (*)
GPT-2 (9M) 1.82 1.74 (-0.07) 2.39 (+0.58) 2.91 (+1.09) 2.18 (+0.36)

GPT-2 (9M) (temp=0.3) 1.82 1.75 (-0.06) 5.82 (+4.00) 9.85 (+8.04) n/a
GPT-2 (9M) (small dataset) 2.56 2.28 (-0.28) 3.21 (+0.65) 3.72 (+1.16) 2.91 (+0.35)

ibid (+ 3 epochs) 1.99 1.87 (-0.12) 2.62 (+0.63) n/a n/a
Llama-2 (12M) 2.06 1.94 (-0.12) 2.72 (+0.66) n/a n/a
Llama-2 (42M) 1.90 1.76 (-0.14) 2.52 (+0.62) n/a n/a

Llama-2 (126M) 1.71 1.59 (-0.12) 2.23 (+0.53) n/a n/a

Table 2: Evaluation cross-entropy loss for different models at model-fitting iterations 1, 4
and 10 for replacement and accumulation regimes. (*) indicates a replacement regime with
growing dataset size to ablate for total train set size.
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Figure 9: Data Accumulation Avoids Model Collapse in Language Modeling. Learning
curves for individual model-fitting iterations when repeatedly replacing data (left), and when
accumulating data (right). Note: Epochs correspond to more gradient steps for accumulate
than replace because the number of training data grows for accumulate.

22



2× 100

3× 100

4× 100

C
ro

ss
E

nt
ro

py
(T

es
t)

Replace

G
P

T
-2

(9M
)

Accumulate

2× 100

3× 100

4× 100

C
ro

ss
E

nt
ro

py
(T

es
t) L

lam
a-2

(12M
)

2× 100

3× 100

4× 100

C
ro

ss
E

nt
ro

py
(T

es
t) L

lam
a-2

(42M
)

10−1 100

Epoch

2× 100

3× 100

4× 100

C
ro

ss
E

nt
ro

py
(T

es
t)

10−1 100

Epoch

L
lam

a-2
(126M

)

Language Models Pretrained on TinyStories
Iteration

1.0

2.0

3.0

4.0

5.0

Figure 10: Data Accumulation Avoids Model Collapse in Language Modeling. Learning
curves for individual model-fitting iterations when repeatedly replacing data (left), and when
accumulating data (right), in log-log scale. Note: Epochs correspond to more gradient steps
for accumulate than replace because the number of training data grows for accumulate.
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Figure 11: Data Accumulation Avoids Model Collapse in Language Modeling. Learning
curves for individual model-fitting iterations when repeatedly replacing data (left), and
when accumulating data (right).
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Figure 12: Data Accumulation Avoids Model Collapse in Language Modeling. Learning
curves for individual model-fitting iterations when repeatedly replacing data (left), and
when accumulating data (right), in log-log scale.
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epochs) in first iteration.
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D Additional Details on VAE Experiments

Experiment Details. As pre-processing, we crop and down-sample the images to 64x64
pixels. We use a standard convolutional architecture for the VAE model consisting of 5
convolutional layers with 32, 64, 128, 256, and 512 channels, respectively, and a similar
convolutional decoder structure. The latent space is 128-dimensional isotropic Gaussian,
represented by 2 MLP layers. Each data iteration consists of 100 training epochs, after which
we generate 163K new training images by sampling latents from the Gaussian prior and the
passing them through the generator model.

Analysis of Reconstructions. Figure 15 shows reconstructions after replacing (left) and
accumulating (center) data, compared to baseline (right). Analyzing the reconstruction
of test set images also reveals interesting findings - the model trained only on data from
the prior iteration has indeed collapsed and cannot represent any other classes besides the
single mode it generates. Interestingly, the model trained on aggregated data still maintains
it’s capabilities and generates accurate reconstructions, including smaller details such as
glasses and hats. We hypothesize that this model maintains it’s generative capabilities, but
these details become a more minor sub-manifold in the latent space, which is realigned with
the newly-generated data, hence why they appear less often in the generated images, which
use samples from the prior.

Figure 15: Data Accumulation Maintains Model Capabilities. Image reconstructions
from the test set. Left: Training on prior iterations collapses the model’s capability, and
subsequently, it can only represent a single mode. Middle: training on aggregated data
preserves model capabilities and leads to little to no degradation in the reconstructed images.
Right: Baseline reconstructions after 100 training epochs on the dataset.
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E Linear Regression: Replacing Data with Increasing Sample Size

In the framework of Mobahi et al. (2020) and Dohmatob et al. (2024a), we consider sequences
of linear models fit to the previous model’s synthetic outputs. Within this framework,
Dohmatob et al. (2024a) proved that if data are replaced with each model fitting iteration
and the training data cardinality remains constant, then the test squared error scales linearly
with the number of model fitting iterations n:

EReplace
test (ŵn) =

σ2d
T − d − 1

× n (9)

In this work, we lightly adapt the argument of Dohmatob et al. (2024a) to study the effects if
data accumulate with each model fitting iteration. We specifically considered the case where
the training data cardinality increases by a constant T with each model-fitting iteration i.e.
the ith model is fit using T × i data, where T data are “real” and then each subsequently fit
model contributes its own T synthetic data to the accumulating data. In this setting, the test
squared error is upper bounded independent of the number of iterations.

EAccumulate
test (ŵn) =

σ2d
T − d − 1

×
n

∑
k=1

1
k2 ≤ σ2d

T − d − 1
× π2

6
(10)

In the main text, we focus on the replace and accumulate data settings because prior work
focused on replacing data and we wished to study how accumulating data affects model
collapse. However, a much richer landscape of outcomes is possible. For instance, and as
pointed out in personal correspondence with Dohmatob et al. (2024a), one can consider
what we term the “Replace-Multiple” setting, in which one fits the i-th linear model using
T × i data sampled from the (i − 1)-th linear model. Replace-Multiple is a useful baseline for
Accumulate because it matches the amount of training data at each model fitting iteration.
Under Replace-Multiple, the test squared error grows logarithmically:

EReplace-Multiple
test (ŵn) =

σ2d
T − d − 1

×
n

∑
k=1

1
k
≈ σ2d

T − d − 1
× log(n) (11)

Replace-Multiple has the drawback of not matching the total amount of compute of Accu-
mulate since each iteration of Replace-Multiple draws T × i samples from the most recent
model, whereas Accumulate draws T samples from the most recent model. Other baselines
are also possible, but we leave these to future work. We focus on accumulating data as we
feel real and synthetic data are likely to accumulate in the real world as time progresses.
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F Additional Linear Regression Numerical Results
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Figure 16: Accumulating data across iterations avoids model collapse in linear regression.
We consider sequences of linear models recurrently fit to generated targets by previous
iterations of models. Replace (Top): If each linear model is fit to the generated targets of
only the preceding linear model i.e. data are replaced, then the test squared error grows
linearly with the number of model-fitting iterations iterations n. Replace-Multiple (Middle):
If each linear model is fit to T × i samples from the (i − 1)-th model (i.e. the same amount
of data as Accumulate), then the test squared error grows logarithmically with the number
of model-fitting iterations; see Appendix E for more details. Accumulate (Bottom): If each
linear model is instead fit to the generate targets of all the preceding linear models i.e. data
accumulate, then the test squared error has a finite upper bound, independent of the number
of iterations. This suggests that data accumulation might be a robust solution for mitigating
model collapse. This figure is similar to Figure 7 but displaying log test squared error and
more model-fitting iterations for additional clarity.
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