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Abstract

We study the design of loss functions for click-
through rates (CTR) to optimize (social) welfare
in advertising auctions. Existing works either only
focus on CTR predictions without consideration
of business objectives (e.g., welfare) in auctions or
assume that the distribution over the participants’
expected cost-per-impression (eCPM) is known
a priori, then use various additional assumptions
on the parametric form of the distribution to de-
rive loss functions for predicting CTRs. In this
work, we bring back the welfare objectives of
ad auctions into CTR predictions and propose a
novel weighted rankloss to train the CTR model.
Compared to existing literature, our approach pro-
vides a provable guarantee on welfare but without
assumptions on the eCPMs’ distribution while
also avoiding the intractability of naively apply-
ing existing learning-to-rank methods. Further,
we propose a theoretically justifiable technique
for calibrating the losses using labels generated
from a teacher network, only assuming that the
teacher network has bounded ¢ generalization er-
ror. Finally, we demonstrate the advantages of the
proposed loss on synthetic and real-world data.

1. Introduction

Global online advertising spending is expected to exceed
$700 billion in 2023 (Statista, 2022). At the core of on-
line advertising are advertising (ad) auctions, held billions
of times per day, to determine which advertisers get the
opportunity to show ads (Jeunen, 2022). A critical compo-
nent of these auctions is predicting the click-through rates
(CTR) (Yang and Zhai, 2022). Typically, advertisers submit
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cost-per-click (CPC) bids, i.e., report how much they are
willing to pay if a user clicks. The CTR is the probability
that a user clicks the ad when the ad is shown. Combined
with the cost-per-click bid, the platform can then calculate
the value of showing the ad, usually called the cost-per-
impression (eCPM). As the CTR needs to be learned, the
platform instead uses the predicted click-through rates (pC-
TRs) to convert the submitted CPC bids to predicted eCPM
bids, which then determine the auctions’ outcomes.

Due to the importance of predicting the CTRs, a wealth
of related literature exists, and we refer interested reader
to Choi et al. (2020); Yang and Zhai (2022) for thorough
reviews of these advances. Of these works, the majority
focus on the various neural network architectures designed
for the task, such as DeepFM (Guo et al., 2017), Deep &
Cross Network (DCN) (Wang et al., 2017), MaskNet (Wang
et al., 2021), among many others. These works propose
novel neural network architectures but train these networks
using off-the-shelf classification losses with no guarantees
on the actual economic performance of the ad auctions,
creating a discrepancy between the upstream model training
for CTR prediction and downstream model evaluation.

Some works aim to ameliorate these discrepancies by using
business objectives such as social welfare (or welfare for
short) to motivate the design of loss functions (Chapelle,
2015; Vasile et al., 2017; Hummel and McAfee, 2017). How-
ever, these works either lack reproducible experiments on
publicly available real-world benchmarks (Hummel and
McAfee, 2017), or depend on ad-hoc heuristics with insuffi-
cient theoretical guarantees (Vasile et al., 2017). Moreover,
many of these works suffer from an unrealistic assumption
that bidders submit eCPM bids and the eCPM of the highest
competing bid follows a known and fixed distribution. How-
ever, in real life, some ad auctions at industry leaders such as
Amazon, Meta, and Google only accept CPC bids (Amazon
Ads, 2023; Meta Business Help Center, 2023; Google Ads
Help, 2023), and adjustments to the CTR prediction model
changes the distribution of competing bids’ eCPM.

We avoid the pitfalls of existing works by limiting assump-
tions about the eCPMs’ distribution. Since various types
of ad auctions with drastically different revenue functions
are widely deployed, ranging from Generalized Second



Ranking Losses of CTR Prediction for Welfare Maximization

Price (Edelman et al., 2007) to Vickrey-Clarke-Groves (Var-
ian and Harris, 2014), and first price auction (Conitzer et al.,
2022), we focus on maximizing the welfare achieved by
these auctions, which measures the efficiency of the ad auc-
tion in terms of showing the most valuable ads.

Our Contributions. We list our contributions below.

* We propose a learning-to-rank loss with welfare guar-
antees by drawing a previously underutilized connec-
tion between welfare maximization and ranking.

* We propose two surrogate losses that are easy to opti-
mize and theoretically justifiable.

* Inspired by student-teacher learning (Hinton et al.,
2015), we construct an approximately calibrated, easy-
to-optimize surrogate, whose theoretical guarantees
only depend on the ¢5-generalization bound of the
teacher network.

* We demonstrate the benefits of the proposed losses
on both simulated data and the Criteo Display Adver-
tising Challenge dataset!, arguably the most popular
benchmark for CTR prediction in ad auctions.

1.1. Related Works

In this section, we divide the related works into three main
categories: applied research in CTR prediction, theoretical
analysis of ad auctions, and methods in learning-to-rank.

Applied Research in CTR Prediction. There is an abun-
dance of application oriented literature on CTR predic-
tion (McMabhan et al., 2013; Chen et al., 2016; Cheng et al.,
2016; Zhang et al., 2016; Qu et al., 2016; Juan et al., 2017;
Lian et al., 2018; Zhou et al., 2018; 2019; Wang et al.,
2021; Pi et al., 2019; Pan et al., 2018; Li et al., 2020;
Chapelle, 2015), and we refer interested readers to Yang
and Zhai (2022) for a detailed survey. Two works with well-
documented performance on the Criteo dataset are Guo
et al. (2017) and Wang et al. (2017). Particularly, Guo et al.
(2017) proposes DeepFM, short for deep factorization ma-
chines, which combines deep learning with factorization
machines. Wang et al. (2017) is similar, where the proposed
Deep Cross Network model combines deep neural networks
with cross features. These works focus on the development
of neural network architectures and use classification losses
with little to no theoretical guarantees. Our work is orthogo-
nal to and complements this line of literature by proposing
easy-to-optimize loss functions rooted in economic intuition
with provable guarantees on economic performance.

A well-known technique in knowledge distillation is student-
teacher learning (Hinton et al., 2015), where a smaller net-
work is used to approximate the predictions of a larger one.

"https://www.kaggle.com/c/criteo—display—
ad-challenge

Recently some attempts have been made at applying the
technique in CTR prediction (Zhu et al., 2020) and, as we
demonstrate in this manuscript, the technique can even ben-
efit the design of welfare-inspired loss functions, in addition
to reducing the computation and memory requirements of
the teacher network itself.

Among this line of work, two papers are closer to ours in
spirit. Chapelle (2015) studies the design of CTR evaluation
metrics that approximate the bidders’ expected utility. Simi-
larly, Vasile et al. (2017) uses the utility that the bidder de-
rives from the auction to design a suitable loss function that
the bidder should use for CTR prediction. While both works
provide empirical justifications for the proposed losses, they
only provide heuristic arguments when designing the loss
functions themselves and include no theoretical guarantees
on the generalization or calibration of the losses. Moreover,
they both rely on the assumption that the distribution of the
highest competing bid’s eCPM is fixed and known a priori.

Theoretical Analysis of Ad Auctions. Many works study
the theoretical properties of ad auctions (Fu et al., 2012;
Edelman and Schwarz, 2010; Gatti et al., 2012; Aggarwal
et al., 2006; Varian, 2009; Dughmi et al., 2013; Bergemann
etal., 2022; Lucier et al., 2012), and Choi et al. (2020) offers
a detailed survey of a collection of recent advances in the
analysis of ad auctions.

Hummel and McAfee (2017) is the most relevant work to
ours, as it studies the design of loss functions in ad auctions
from the seller’s perspective, offering new insights on how
to design losses for either welfare maximization or revenue
maximization. However, the real-world experiments in the
paper rely on proprietary data, and the claims are not verified
on widely available benchmarks. Moreover, it again relies
heavily on the assumption that the distribution of the highest
competing bid’s eCPM is known beforehand, which can be
unrealistic in practice.

Learning-to-Rank. Our work draws inspiration from a line
of research on learning-to-rank (Burges et al., 2005; 2006;
Cortes et al., 2010; Burges, 2010; Wang et al., 2018), which
incorporates information retrieval performance metrics such
as Normalized Discounted Cumulative Gain into the design
of the loss functions, resembling our works. However, as
we show in Section 3.2, these works do not directly apply
to the welfare maximization setting. Moreover, to the best
of our knowledge, these works have not been examined in
the context of welfare maximization in ad auctions.

2. Models and Preliminaries

We begin with a multi-slot ad auction (Edelman et al., 2007,
Varian, 2007) where each ad is associated a cost-per-click
(CPC) bid. Let K denote the number of the slots and each
slot, indexed by k, is associated with a position multiplier
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a. Without loss of generality assume that v; = 1 and
the weights are decreasing in k, namely oy > ... > ak.
Assume there are n > K ads participating in the auction
where each ad has a feature vector z; € R* and CPC bid b;.
There exists a function p* : R? — [0, 1] such that the CTR
of the ad at slot k is «p;, where we let p; = p*(x;) for
convenience. The ad’s CTR is affected by both the slot it is
assigned to and the ad’s features. Intuitively, p; is the ad’s
base CTR if it were assigned to the first slot, and is scaled
according to oy, for any slot k.

Throughout this paper, we assume that the position multi-
pliers are known, and we focus only on learning p*, i.e
the ad’s CTR if it were assigned the first slot. Learning a
position-based CTR prediction model requires additional
assumptions to model the user’s click behavior and is out-
side of our scope, which focuses on welfare maximization
instead. Indeed, we will show it is without loss of generality
to focus on single-slot auctions to maximize welfare, which
is equivalent to learning the base CTR when shown in the
first slot (Proposition 2.2).

More concretely let X < {f : & — [0,1]} denote
the hypothesis space and assume that p* is realizable, i.e.
p*(-) € H. Conditioned on a set of n ads {(b;, z;)} ,
let f(-) denote an arbitrary function that the seller uses
to predict the CTRs. The function f, combined with the
submitted bid b; and the observed context x;, yields the
predicted eCPMs b; f(z;) for all ¢ € [n]. The seller then
awards the first slot to the bidder with the highest predicted
eCPM, the second slot to the bidder with the second, and so
forth, achieving a welfare of

Welfare ¢ ({(b;, z;)}io1) = Z bre (k) P (k)

where for any function f, 7 (k) returns the index of the ad
with the k-th highest predicted eCPM. The welfare maxi-
mization problem is then

K

max b
f e?—L

(k)Prs (k) ey
As we will prove, a solution to the problem is f =
p*.  For convenience, we let m,(-) = mpx(-),
Welfarey ({(bs, z;)}7) = Welfare,« ({(b;, z;)}i~ ), and

assume there are no ties in b; f (x;) or b;p;.

To better illustrate welfare and advertisement auction, we
include an specific instance of ad auction in the following
example.

Example 2.1. Let ady, ads, ads denote three different ad-
vertisements, where ady;’s CTR is 0.1 and CPC bid 10,
ads’s CTR 0.4 and CPC bid 2, and ads’s CTR 0.9 and CPC
bid 0.5. Suppose there two advertisement slots where the

first slot has multiplier oy = 1 and the second cy = 0.9. As-
signing the first slot to ad; and the second to ads maximizes
welfare, and the maximum welfare is 1 + 0.8 x 0.9 = 1.62.
Knowing the ads’ exact CTR helps us achieve this maximum
welfare.

2.1. Welfare Maximization and Ranking

We first show that we lose no generality by restricting our
focus to single-slot ad (e.g., the first slot) auctions.

Proposition 2.2 (Reduction to Single-slot Setting). The
Sfunction f maximizes welfare in a K-slot auction only if
it maximizes welfare in single-slot ad auctions held over
subsets of the participating ads. Moreover, the ground-truth
CTR function p* maximizes welfare.

Detailed proof of the proposition is deferred to Ap-
pendix A.1. Consider the setting in Example 2.1, for in-
stance. Only considering the welfare objective, note that
we can auction off the two ad slots one by one, where
adj, ada, ads participates in the auction for the first slot
and ady, ads participates in that for the second. In this
setting, if we know the ads’ ground-truth CTR, then ad;
wins the first slot and ads wins the second, achieving the
maximum welfare.

By Proposition 2.2, we can see that welfare maximization in
multi-slot ad auctions is no harder than welfare maximiza-
tion in single-slot ad auctions, and this relies on the fact
that the position multipliers are independent of advertisers.
For the rest of the paper, we then without loss of generality
focus only on single-slot auctions.

As welfare is maximized by the ground-truth CTR function,
a common approach is to treat the problem as a classification
problem, using y; as feedback for learning p* (Vasile et al.,
2017; Hummel and McAfee, 2017). However, as noted
in Section 1, this approach can suffer from a mismatch
between the loss function and the business metric (in our
case, welfare).

We notice that welfare maximization can be reduced to a
learning-to-rank problem instead. Let i* = 7, (1) be the
index of the ad with the highest ground-truth eCPM and
j* = my(1) be that of the ad with the highest predicted
eCPM. We note that

Welfare, ({(b;, z;)}iq) — Welfarer ({(b;, z:) }i—1)

n

= S (b -

i=175=1

bjp;) i = i*} 1{j = j*}

X Wb f (i) < bj f(x5)}).
@)
We defer the detailed derivation of (2) to Appendix A.3.

Since b+ p;= yields the highest ground-truth eCPM, welfare
is maximized if and only if j* = ¢*. Consequently, as
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long as f correctly ranks each pair of observations accord-
ing to their ground-truth eCPM, it also correctly identifies
the ad with the highest ground-truth eCPM and maximizes
welfare. The reduction to ranking generalizes to multi-slot
auctions, and we defer a formal statement to Lemma A.1 in
the appendix.

The same intuition is illustrated by Example 2.1: as long as
we can rank the three ads according to their ground-truth
eCPM (ad; > ady > adj), then we can maximize the
auction’s welfare.

To summarize, we must rank the ads according to their
ground-truth eCPM using a suitable CTR prediction func-
tion to maximize welfare. An approach that follows this
observation is to learn a CTR prediction rule to rank the ads,
leading to the proposed ranking-inspired losses.

3. Ranking-Inspired Loss Functions for
Welfare Maximization

Let D = {(b;, z;), y:}_, be a batch of n ads participating
in one round of an ad auction, where y; ~ Ber(p;) indicates
whether the ad has been clicked or not. We then call b;p;
the ad’s ground-truth eCPM and b;y; its empirical eCPM.
Consider the following pairwise loss function (which we
propose the seller minimize):

n

Z Z biyi — bjy;) L{bi f (i) < bj f(x;)}-

3)
Let R(f; D) = Ey,j»_ [€(f;D)] denote the conditional
risk induced by the loss function /. Recalling that y; ~
Bernoulli(p; ), we know

=ZZ ipi — bjpy) 1{bi f (2i) < b;f(z;)}.
- 4)

Observe the similarities between (2) and (4). The condi-
tional risk R (f; D) can be viewed as a proxy for the welfare
suboptimality of f, where we replace 1{i = i*} 1{j = j*}
with 1. While j* is easy to determine once f is given, we
do not the index with the highest ground-truth eCPM. Fortu-
nately, as we show in the following proposition, minimizing
R(f; D) via empirical risk minimization is a reasonable
proxy for minimizing welfare suboptimality.

Proposition 3.1. For any D, let f be an arbitrary and fixed
minimizer of the conditional risk R(f; D). We then know f
ranks every pair in the sequence correctly, i.e. b;p; = b;p; if
and only lfblf<$l> > b; fA‘(xJ) Moreover, the ground-truth
CTR function p*(-) minimizes the conditional risk R(f; D)
for any D.

Detailed proof for the proposition can be found in Ap-
pendix A.2. Proposition 3.1 shows that minimizing the

conditional risk R(f; D) is a surrogate for maximizing wel-
fare and minimizing (3) is a reasonable choice of loss func-
tion. In the following theorem, we make explicit the con-
nection between the conditional risk and welfare. With a
slight abuse of notation let Welfare ; (D), Welfare, (D) de-
note the welfare achieved by f and the optimal (achievable)
welfare, respectively, when {(b;, z;)}?_; are given by the
dataset D. We emphasize the conditional risk R(f; D) can
be negative, an important fact to bear in mind in the context
of the following theorem.

Theorem 3.2. The following holds for all f € H and D

1
< Welfares (D) + *R(ﬁ D)

+ = Z Z |bzp1 - jpj

11]1

Welfare, (D)

Moreover, the bound is tight for any minimizer of R(f; D)
and for all D

min R(f; D)
feH

n n
Z Z bip; — Jp]

[\D\H

See Appendix A.3 for detailed proof. We note that the
theorem provides a valid lower bound for all possible
f € H. More importantly, for any dataset D, we can
show that there is at least one minimizer of R(f; D) thanks
to the realizability assumption, for which {R(f;D) +
> >y [bipi — bjp;| = 0. Crucially, the theorem im-
plies that minimizing the conditional risk on any dataset D
maximizes welfare, further justifying the use of £(f; D).

While we have shown minimizing R(f; D) suffices for wel-
fare maximization, recovering the ground-truth CTR func-
tion p*(-) remains crucial for real-world ad auctions. For
instance, revenue in generalized second price auctions de-
pends on the pCTRs themselves, and functions that correctly
rank the ads do not necessarily lead to high revenue. Fortu-
nately, by adding a calibrated classification loss to £(f; D),
we can ensure that p*(-) minimizes the (unconditional) risk.
Particularly, we have the following proposition.

Proposition 3.3. Ler h(f; D) denote an arbitrary loss func-
tion such that p* is the unique minimizer of Ep[h(f;D)].
For any constant A > 0, p* is the unique minimizer of

Ep[((f; D) + Ah(f; D).

See Appendix A.4 for detailed proof. We note that logis-
tic loss and mean squared error are both valid choices for
h(f; D) in Proposition 3.3.

3.1. Easy-to-Optimize Surrogates

While £(f; D) is attractive as it is closely related to the wel-
fare, the function itself is nondifferentiable and cannot be
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efficiently optimized using first-order methods (e.g., SGD)
due to the indicator variables. We thus propose two differ-
entiable surrogates with provable performance guarantees

n n

glog (f;D) Z Z iYi — ]y]

X log(l + exp(—o(bif(xi) — b f(z5)))),
(5)
and
ghmge f D 30 iYi — y
;; b ©)

x (=o(bif (i) = b f(25))+

For (5), we replace the indicators in £(f; D) with the log
logistic function — log(1 + exp(—o(b; f(z;) — b, f(x;))))-
Similarly, (6) acts as a surrogate to £(f; D) with the indica-
tor replaced by (—o(b; f(x;) — bj f(x;)))+ instead, where
forany a € Rwelet (a); = max(O a). While the function
(+)+ itself is not differentiable at = = 0, it is differentiable
almost everywhere and can be easily optimized using its
subderivative.

—— Indicator

—— Hingewitho =1

=== Hinge with 0 =3
. Logistic with 0 = 1
44 S Logistic with 0 =3

bipi — bjp;

Figure 1. Visualization of the surrogates to 1{b; f (z;) < b; f(x;)}
for different values of o as functions of b; f(z;) — b; f(x;).

For both surrogates, the term o is a manually adjustable
parameter controlling how much we penalize small margins
between a pair of eCPM, b; f(x;) — b; f(x;). As we can
see from Figure 1, for pairs of ads whose predicted eCPMs
are close to each other, a larger o accentuates the difference
between them and leads to a surrogate value close to one.
However, as o increases, the surrogate value for ads with
large gaps in predicted eCPMs tend to be much larger than
one. Adjusting o is then a balancing act between these two
kinds of pairs.

Regardless of the choice of surrogate for the indicator func-
tion, the surrogate losses themselves remain closely related
to (2), which we highlight in the following theorems.

Theorem 3.4. Assuming all bids are bounded by some B €

R., setting o = 2/B ensures for any f € H and D
Egyyp, 65 (f:D)] = R(f; D) < A,
Eqyp, [ (f;D)] = R(f; D) < A,

n n
where A = 130" =1 lbipi —
dependent constant.

bjp;| is a problem-

See Appendix A.5 for detailed proof. Theorem 3.4 shows
that 02 ( f; D) and ¢2i"&e( f; D) are closely tied to the origi-
nal loss £(f; D). While assuming the CPC bids are bounded
implicitly implies the eCPMs’ are also bounded, the as-
sumption is mild and does not restrict the parametric form
of the eCPMs’ distribution. While the surrogates do not
exactly match the proposed loss ¢(f; D), the gap is due
to approximating the indicators in ¢(f; D) and cannot be
avoided.

3.2. Failure of Directly Applying Learning-to-Rank

It may be tempting to further exploit the connection be-
tween welfare and ranking over predicted eCPMs by ap-
plying a learning-to-rank loss function directly on the ob-
served eCPMs b;y;. As we show below, the approach,
unfortunately, fails, as the inclusion of bids makes the
empirical observation 1{b;y; > b;y;} a poor estimate of
ﬂ{bipi = bjpj}.

Proposition 3.5. For any 1/2 > € > 0, there exists a pair
of ads v and j such that

Pr(1{biy; = bjy;} = 1{bipi = bjp;}) = ¢

where (b, p;,yi) and (b;, p;,y;) are the CPC bids, ground-
truth CTR, and realized click indicator for the two ads.

See Appendix A.6 for detailed proof. Intuitively, the con-
struction of the counterexample in Proposition 3.5 relies
on the fact that the ground-truth eCPM of an ad increases
as its corresponding CPC bid increases, but the probability
that the ad is clicked does not. In other words, for any ad ¢,
the probability that b;y; is non-zero does not depend on b;
while the ground-truth eCPM does, creating a discrepancy
between the ground-truth eCPM and the empirical eCPM.
We may then strategically manipulate b; to construct an
example satisfying Proposition 3.5.

Crucially, Proposition 3.5 shows that there exist pairs of ads
whose empirically observed CPM rankings agree with their
ground-truth eCPM rankings with probability arbitrarily
close to zero. Unless strong assumptions are made on the
distributions of empirically observed CPMs, it is impossible
to directly apply off-the-shelf learning-to-rank loss functions
for 1{b;y; > bjy;}.

On the other hand, (3) avoids the pitfall by weighing each
entry by (b;y; — b;y;). When conditioned on any CTR pre-
diction rule f(-), by the linearity of expectation, we can
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see that the weight is an unbiased estimate of the difference
in ground-truth eCPM. The fact that ¢(f; D) is linear in
each observed eCPM b;y; is crucial, as the linearity ensures
that the loss function accurately reflects the differences in
b;p;, enabling us to relate the conditional risk to the actual
welfare loss and obtain theoretical guarantees without any
assumptions on the empirical eCPMs.

To the best of our knowledge, no existing works on learning-
to-rank use loss functions of this form, and our proposed
methods are uniquely capable of avoiding the challenge
highlighted by Proposition 3.5. While resembling a learning-
to-rank loss, (3) is at its core a loss function that resembles
the shape of the welfare objective in an ad auction, ensuring
that optimizing the loss is closely related to optimizing
welfare.

4. Replacing y; with Predictions from the
Teacher Model

A concern for (5) and (6) is that their variance scales with
bf, the squared values of the CPC bids. Combined with the
noisiness of y;, the resulting loss may be overly noisy. While
the issue might be mitigated by properly pre-processing the
CPC bids, we propose a theoretically justifiable alternative
inspired by student-teacher learning (Hinton et al., 2015). In
fact, distillation loss associated with the prediction from the
teacher model is widely used in industrial-scale advertising
systems (Anil et al., 2022). This technique is shown to be
helpful for stabilizing the training and improving the pCTR
accuracy of the student model.

The idea is straightforward. Let p(-) be a teacher network
trained on the same dataset and we replace y; with p(z;).
We show that doing so leads to an empirical loss that is
close to R(f; D), the conditional risk, as long as the teacher
network itself is sufficiently accurate. We begin with the
following theorem for replacing the ¥;’s in (3).

Theorem 4.1. Let p be an estimate of p* such that
E.[(p(x) — ( ))?] < e Let ﬁ(f D) be (3) but with each
y; replaced by pi = plai), i

as:p) :i i (bifs — b;55) 1bif (i) > by ().

Assuming all bids are upperbounded by positive constant
B e Ry, for any f € H we have

Ep[|0(f; D) — R(f; D)|] <

where n is the number of ads.

(n —1)nB+ye

See Appendix A.7 for proof. As 0 (f; D) sums over all pairs
of ads, the bound necessarily grows in O(n?), and the factor
can be removed if we use the average over the pairs instead.

While the teacher network may be used in ad auctions as-is,
student networks still offer several benefits in addition to
the theoretical guarantee in Theorem 4.1. First, teacher net-
works may be costly to deploy, thus student networks offer
efficiency benefits from knowledge distillation. Second, the
ranking losses may help the student network better differen-
tiate the eCPMs of pairs of ads, leading to higher welfare,
as we observe in experiments.

It is also reasonable to suggest directly learn-to-rank with
1{b;p(z;) = b;p(z;)} as the labels. However, theoretical
guarantees for the approach require additional assumptions
on the distribution of the gaps between pairs of predicted
eCPM, which is not needed for Theorem 4.1.

Recalling Theorem 3.4 and Theorem 3.4, it is not hard to
see that replacing y; with p(x;) in (5) and (6) lead to losses
that are also sufficiently close to R. We instead focus on
using the teacher network to improve calibration.

4.1. Improving Calibration with the Teacher Network

A drawback shared by (5) and (6) is that they are not cal-
ibrated. While both penalizes pCTR functions for incor-
rectly ranking pairs of ads, they also reward pCTR functions
that overestimate the margin between pairs of ads. As the
minimizers of their expected values are not necessarily the
ground-truth CTR function, using these losses may have
negative consequences on other important metrics such as
revenue or area under the curve. Fortunately, we show that
using a teacher network also improves the calibration of the
loss function. We propose the following loss function.

n

@ungeJrsz :ZZ 1]%* _]pj
x (=

o (bif (i) = b f(x5)))+,

Intuitively, 22" (£; D) no longer punishes f for having a
small margin between predicted eCPMs, as long as f ranks
the pair the same way p does. When the teacher network
is sufficiently close to the ground-truth, the loss function
eliminates the bias that (5) and (6) have towards functions
with larger margins between pairs. Additionally, compared
to directly using p(-), (7) better reflects the impact that the
pCTRs have on welfare and has theoretical guarantees in
terms of welfare performance.

@)

We now present theoretical justification for the approach.
Recall from Vasile et al. (2017) that calibration in ad auc-
tions is defined as follows.

Definition 4.2 (Calibration). A loss function ¢'(f; D) is
calibrated if its expected value Ep [¢'(f; D)] is minimized
by the ground-truth CTR function p*.

Based off of Definition 4.2, we first define a slightly relaxed
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notion of calibration, e-approximate calibration.

Definition 4.3 (e-Approximate Calibration). A loss func-
tion £'(f; D) is said to be e-approximately calibrated if the
expected value of the loss achieved by the ground-truth CTR
function p* is at most e greater than the minimum, namely

Ep[¢'(p*: D)] - min Ep['(/:D)] < c.

We then have the following guarantee for /"€,

Theorem 4.4. Let p be an estimate of p* such that
E[(p(z) — p*(2))?] < e Assuming all bids are upper
bounded by some B € R, for any f € H we have

Ep[Welfare, (D)]
< Ep[Welfares(D)] + Ep [Zginge,-r(f; D)]
+ WBmax{l,aB -1}

+n(n —1)oB*/e.

Moreover, the loss function 0M"se+(f:D) is O(y/e)-
approximately calibrated.

See Appendix A.8 for detailed proof. An important feature
Theorem 4.1 and Theorem 4.4 share is that they depend only
on the {5 generalization error of the teacher network, and not
on the explicit parametric assumptions on the distribution of
eCPM. In other words, for any p we can simply use off-the-
shelf results on its generalization error to show that using
the induced 72" ( f: D) is approximately calibrated, with
only the mild assumption that the CPC bids are bounded.

4.2. Weighing with Teacher Networks

The inclusion of the teacher network further guides us in
developing theoretically-inspired weights for the proposed
losses. The goal of the weight for the pair 4, j is to mimic
the indicator product 1{i = *} 1{j = j*}, where i* =
argmax;c,,) bipi and j* = argmaxcp,; b; f(x;), so that
the resulting loss better resembles the welfare suboptimality
in (2). The first indicator corresponds to the event that the
ad ¢ has the highest ground-truth eCPM and the second
the event that the ad j has the highest predicted eCPM.
The weight should then be increasing in both b;p(z;) and
b; f (), with p being the teacher network.

5. Experiments

We now demonstrate the advantages of our proposed losses
on both simulated data and the Criteo Display Advertising
Challenge dataset, a popular real-world benchmark for CTR
prediction in ad auctions. Recalling Proposition 3.3, we
use the weighted sum of the logistic loss and the proposed
ranking losses for all experiments to ensure the learned CTR
model is sufficiently close to the ground truth.

5.1. Synthetic Dataset

For the simulation setting, we assume that the ads’ features
are 50-dimensional random vectors where each component
is 1.i.d. drawn from the standard normal distribution, namely
z; ~ N(0,I50), where I5sg denotes the 50-dimensional
identity matrix. For training, we generate 10,000 x;’s from
the A (0, I5g) distribution and generate the corresponding
ground-truth CTR from a logistic model and the CPC bids
from a log-normal distribution. We then draw the click indi-
cators y; ~ Ber(p;). We defer a more detailed description
of the data-generating process to Appendix B.

A two-layer neural network is used, where the hidden layer
has 50 nodes with ReLU activation, and the output layer
has one node with sigmoid activation. For evaluation, we
simulate 2,000 auctions with 50 ads each. The training and
evaluation processes are then repeated 30 times.

We begin by introducing the baselines we consider: logistic
loss (also referred to as cross-entropy) and two versions of
weighted logistic loss. Logistic loss is commonly used for
training models for predicting CTRs, and is used by Guo
et al. (2017); Lian et al. (2018); Chen et al. (2016) among
many other works. Existing works (Vasile et al., 2017;
Hummel and McAfee, 2017) suggest the usage of a weighed
logistic loss, with each entry weighted by the CPC bid.
Finally, Vasile et al. (2017) propose weighing the logistic
loss by the square root of the CPC bid.

We focus on three loss function representative of what we
proposed: /%, 7°% and /""" The first and the third

o=1>"~o=1>
correspond to (5) and (7), respectively. The second, 7 UO 6 15
replaces the y;’s in E?E 1 with p; obtained from a teacher

network.

As discussed immediately after Theorem 3.2, we add binary
cross entropy loss to £/°% | 7°8. and /""" and optimize
over the composite loss. Additionally, motivated by Sec-
tion 4.2, we use logistic functions to weigh each pair in
Mt and 7% Both /" and £1°%, use the model
trained with logistic loss as the teacher network. We defer a

more detailed discussion to Appendix B.

As we can see from Figure 2, all three proposed pairwise
ranking losses achieve higher test time welfare than the
naive baselines. As we use the same model structure and
optimizer for all models, it is further possible that with more
careful tuning, the advantages of the pairwise ranking losses
may be more pronounced.

Student-Teacher Learning. Comparing the performance of

B?%l and /! o2, shows that student-teacher learning overall

inge,+ .
-1 18

beneficial for simulated data. Moreover, while 22
theoretically proven to be calibrated by Theorem 4.4, in the
simulated task we found that the loss does perform well
compared to other proposed methods. We conjecture that
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Figure 2. Test welfare on simulated data (higher is better). From
left to right: (In Blue) models trained with logistic loss; logistic
loss weighted by b; (Hummel and McAfee, 2017); logistic loss
weighted by +/b; (Vasile et al., 2017), (In Yellow) proposed ELOEI
indicator replaced by logistic function (defined in (5)); @;El indica-
tor replaced by logistic function + student-teacher learning; Zh;'fi’+
indicator replaced by hinge function + student-teacher learning
(defined in (7)).

shinge, +
lo: 1

the relatively modest performance is due to the fact that
hinge function is not as smooth as logistic function, and
thus is not well-suited for training neural networks.

Comparison with Existing Works. The experiment results
also show that the loss functions derived in earlier works
may depend on unrealistic assumptions and may be lacking
in empirical justification, as can be seen in the performance
of both weighted logistic losses. Regardless, we have shown
that our proposed methods significantly outperform existing
baselines.

5.2. Criteo Dataset

We use the popular Criteo Display Advertising Challenge
dataset. We follow standard data preprocessing procedures
and use a standard 8-1-1 train-validation-test split commonly
found in the literature. We defer to Appendix C for a more
detailed description of the setup.

We note there are several limitations to the dataset. Firstly,
the Criteo dataset only includes ads that are shown. In an
ad auction setting, this means that all ads have won their
respective multi-slot auction. Moreover, the Criteo dataset
only includes anonymous features, which means we have no
access to key attributes such as the CPC bid or the slot for
each ad. Lastly, we do not know the specific auction each ad

belongs to. Unfortunately, these limitations are shared by all
openly available benchmarks to the best of our knowledge.

For the first limitation, we note that it is near-impossible to
learn accurate CTR models without assuming the CTRs of
the shown ads follow the same distribution as those of the
unshown ads. To handle the intrinsic bias between shown
ads and unshown ads is very challenging and out of the
scope of this paper. While the slot each ad belongs to is un-
available, as we argued previously, learning a position-based
CTR model is not the focus of this work, and here we learn
the CTR of each ad, assuming that it is assigned to the first
slot. Finally, while we do not know the exact auction round,
from Proposition 2.2, we know maximizing the welfare of
multi-slot ad auctions requires maximizing the welfare of
single-slot auctions over subsets of participating ads (given
the position multipliers are independent wrt. advertisers).
Thus, it remains viable to treat each minibatch as a specific
instance of single-slot auction.

We generate the CPC bids using the outputs from a DeepFM
model (Guo et al., 2017) with randomly initialized weights,
ensuring that the generated bids follow a log-normal distri-
bution. Particularly, let A(-) denote a randomly initialized
DeepFM model, we set b; = exp(c - h(x;) + €;), with ¢
being a scaling factor and €; a Gaussian noise.

We experiment with both DeepFM (Guo et al., 2017) and
DCN (Wang et al., 2017), two popular models with great
performance on the Criteo dataset whose parameter choices
are well-documented. To ensure that our loss functions
benefit welfare holding all else constant, we did not perform
any parameter tuning or architecture search and used the
model architectures and training protocols specified in the
papers.

In this setting, we omit /hineeF a5 it is non-smooth and

not well suited for complex neural network architectures
considered here, given our empirical study. Logistic loss is
chosen as the baseline and é};’i 5 and @0053 are the proposed
candidates due to smoothness. Here we set o = 3 to better
mimic the shape of the indicator variable. We omit weighted
logistic losses proposed in Vasile et al. (2017); Hummel
and McAfee (2017) due to their poor performance on the
synthetic dataset. We compare the losses based on three
metrics: test-time welfare, area-under-curve (AUC) loss,
and logistic loss, where AUC loss is defined as 1 — AUC.

For both DeepFM and DCN, we repeat the following pro-
cedure 10 times. We fit the models using logistic loss and
é?ﬁ 3. The model fitted using logistic loss is then used as the
teacher network, whose outputs are used to construct s o,
We then evaluate the welfare, AUC loss, and logistic loss of
the three models on the test set.

We report the welfare and AUC loss for DeepFM in Ta-
ble land those for DCN in Figure 3. Additional results
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DeepFM
Welfare AUC Loss
LL (baseline) 1.4448 + 0.0025 0.2200 £+ 0.0004
6553 1.4622 + 0.0021 0.2169 £+ 0.0003
@;53 1.4660 + 0.0022 0.2229 + 0.0004

Table 1. Welfare (higher is better) and AUC loss (lower is better)

for DeepFM. Top to bottom: (Baseline) logistic loss; (Proposed)

K?g indicator replaced by logistic function (defined in (5)); @;’g

indicator replaced by logistic function + student-teacher learning.

including comparisons on the wall-clock run time can be
found in Appendix C.
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Figure 3. Experimental results for DCN. Left: Welfare (higher is
better). Right: AUC loss (lower is better). For each plot, from
left to right: (Baseline, Blue) logistic loss, (Proposed, Yellow)
Kifi 5 indicator replaced by logistic function (defined in (5)); @;’g

indicator replaced by logistic function + student-teacher learning.

As we observe from Table 1 and Figure 3, the proposed
losses significantly improve test time welfare at a minimal
cost (if any) to classification performance. Moreover, the
improvement does not depend on the specific underlying
model structure, and student-teacher learning continues to
prove to be beneficial. Surprisingly, the proposed losses may
also benefit AUC, a classification metric. We conjecture the
improvement is due to the ranking loss formulation, which
forces the model to better differentiate the ads” CTRs.

6. Conclusion and Future Work

We propose surrogates that improve welfare for ad auctions
with theoretical guarantees and good empirical performance.
We hypothesize that the improvements will be more pro-
nounced if we further tune the model architecture for the
proposed losses and we leave architecture search as a future
direction.
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A. Omitted Proofs
A.1. Proof of Proposition 2.2

In order to prove Proposition 2.2, we begin with the following lemma that reduces welfare maximization to ranking.

Lemma A.1. The function f maximizes welfare in a K-slot auction only if it wy(k) = my (k) forallk =1,..., K.

Proof of Lemma A.1. We begin by showing a basic fact that ads with higher ground-truth eCPM should be ranked higher.
Let 1 < k1 < ko < K be two arbitrary and fixed slots and ¢, j be a pair of arbitrary and fixed ads, and assume without loss
of generality that b;p; > b;p;. Immediately, we know that

Qp, — Ay, = 0 bipq; — bjpj =0

where the first inequality comes from the assumption that «, is decreasing in k and k; < ko. The product of two nonnegative
reals is nonnegative, and therefore

(akl - ak2)(bipi - bjpj) =0
which rearranges to
e, bipi + agybip; = o, bipj 4 e, bip;

In other words, for pair of ads (¢, j) in the top k slots, if b;p; > bjp;, then ad 7 should be assigned to a slot that is closer to
the first. As p; = p*(x;), the function p* correctly ranks each ad and therefore achieves maximum welfare.

We now show f maximizes welfare only if 7 (k) = 7, (k) for all k. Let some CTR prediction function f be arbitrary and
fixed and assume there exists some ko where ¢ (ko) # 7 (ko). We can then divide the problem into two cases.

1. When by, (x,)Px (ko) dOes not have top K ground-truth eCPM. In other words, there is no 1 < k& < K such that
s (ko) = m (k).

In this case, the function f has erroneously selected an ad who does not have top K ground-truth eCPM and assigned it
to the kq-th slot. Moreover, the inclusion of the ad in the K -slots must imply that one of the ads with top K ground-truth
e¢CPM must be omitted by f. It is easy to see that replacing ad 7 ¢ (ko) with the ad that is erroenously left out improves
f’s welfare.

2. When by, (ky)Pr (ko) has top K ground-truth eCPM. In other words, there is some 1 < k1 < K such that (ko) =
(k1) where k1 # ko. The case can be further divided into two subcases.

e When kg < k. In this case, the ad is ranked higher by f than it actually is. Similar to our reasoning for case
1, there must be an ad with top k( ground-truth eCPM that is erroneously left out of top kg by f. Switching ad
7 (ko) and the ad that is left out increases welfare.

e When ky > k1. In this case, the ad is ranked lower by f than it actually is. Therefore, there must be an ad with
lower ground-truth eCPM in front of ad 7 (ko ), and switching the two ads also increase welfare.

As we can see, whenever 7y and 7, there is always a method to improve the welfare achieved by f. Hence, f maximizes
welfare only if 77 (k) = me (k) for 1 < k < K. O

We then proceed with the proof of the proposition itself.

Proof of Proposition 2.2. Let {(b;,z;)}"_; be the ads participating in the K-slot auction. Let f denote an arbitrary and
fixed CTR function. Forall 1 < k < K — 1, we define the set

Sk = {(bi, i) = bip™ (i) < by (k) Py (k) }-

In other words, Sy, is the set of ads whose ground-truth eCPMs are outside of top-k, excluding the ad with the k-th highest
ground-truth eCPM. With a slight abuse of notation let

So = {(bi, i) }isy-
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Observe that f maximizes the welfare of the single-slot auction over Sy, if and only if
mp(k+1) = me(k + 1)

forallk =1,..., K —1, as we recall the construction of Sy and Lemma A.1. Additionally, note that maximizing the welfare
of the single-slot ad auction over Sy requires 7¢(1) = m4(1). Combine both observations, we know that f maximizes the
welfare of single-slot ad auctions over Sy, ..., Sk if and only if 7¢ (k) = my (k) fork =1,..., K.

Additionally, we know by Lemma A.1 that f maximizes the welfare of the K -slot auction over Sy if and only if

wg(k) =me(k), V1<EkE<K.
The two claims are thus equivalent and we complete the proof. O

A.2. Proof of Proposition 3.1

Proof. Let {(b;,x;)}"_, be arbitrary and fixed. Consider some pair (4, j) and an arbitrary, not necessarily optimal, pCTR
function f. We write out the parts of the conditional risk that depend only on the pair

(bipi — bjp;)(L{b; f(z:) < bjf(xj)} — (L= 1{b; f(x;) < bjf(x))}))
= (bipi — bjp;) 2 1{bi f (i) < bjf(x;)} — 1)

The conditional risk for the pair is then minimized when 1{b;p; < b;p;} = 1{b;f(x;) < b;f(z;)}. By the range of
indicator variable, we know that

(bipi — bjp;)(21{bi f () < bjf(w;)} — 1) = —[bipi — bjpj|.

Summing over all pairs %, j, the bound above implies

®

Z ‘b1pz - ]pj

1#]

As we focus on the realizable setting, p* € ‘H, and therefore

R(f:D bipi — b
minR(f;D) < ;\p i,

which immediately implies that for any {(b;, z;)}"_ 4,

rfmnR ;D) Z |bipi — bjpjl.
1#]

From realizability, there always exist at least one hypothesis in H{ that minimize the conditional risk. Moreover, as we
can see from the equation above, the ground-truth CTR function minimizes the conditional risk. Lastly, note that the

ground-truth CTR ranks every pair correctly, which then implies the minimizer of the conditional risk must also rank each
pair correctly. O

A.3. Proof of Theorem 3.2

Proof. Let f € H be arbitrary and fixed. We proceed by first writing out the welfare loss in a pairwise fashion. For
convenience, let i* = argmax;.¢[,) bi'pi denote the index with the highest ground-truth eCPM. For an auction with n
participants, the optimal welfare is max;c[,] bipy, which expands to

Welfare, (D) = Z bipi 1{i = i*}.
Similarly, the welfare achieved by pCTR rule f expands to
Welfare (D) = Z bip; 1{j = j*},

13



Ranking Losses of CTR Prediction for Welfare Maximization

where we let j* = argmax ., by f (). The difference between them is
Welfare, (D) — Welfare; (D) = Z Z L{i =*} 1{j = j*}(bipi — b;p;)-
i€[n] je[n]
Since 1{j = j*} = 1 implies b; f(z;) > b; f(x;), the difference equals to
Welfare, (D) — Welfare; (D) = Z Ui = *}1{j = j*} 1{b; f(z;) = bif(z:)}(bipi — bjp;).
(i-5)€[n]?

Consider an arbitrary and fixed unordered pair (4, j) . As the summation contains both (4, j) and (3, 7), we write out the
parts of ground-truth welfare loss that depend on only the pair,

1{i ="} 1{j = j*} 1{bif(2:) < bj f(x5)}(bipi — bjp;)
+1{j ="} 1{i = 5%} 1{b; f(x;) < bif(2:)}(bjpj — bips).

When b;p; > b;p;, the sum is upper bounded by
Ui ="} 1{j = j*}L{bif () < b f ()} (bipi — bjps) < L{bif(wi) < bjf(25)}(bipi — bjpy).
When b;p; > b;p;, the sum is upper bounded by
Ly ="} 1{i = 7%} 1{b; f(x;) < bif (2:)}(bjp; — bipi) < 1{b; f(z;) < bif(x:)}(bjp; — bipi).-
Combining the two halves, we know that omitting ties, (9) is upper bounded by
max{1{b; f(z;) < b;f(x;)}(bipi — bjp;), 1{b; f(x;) < bif(2:)}(bjp; — bipi)}-

Ignoring ties, we may divide the problem to four cases: when b; f(x;) > b; f(x;) and byp; > b;p;, when b; f(x;) < b f(x;)
and b;p; > b,p;, when b; f (x;) > b; f(z;) and b;p; < b;p;, and finally when b, f(x;) < b; f(z;) and b;p; < b;p;. We can
show that in all four cases,

max{1{b; f(x;) < b; f(z;)}(bipi — bjp;), 1{b; f(x;) < bif(xi)}(bjp; — bipi)}
= %(]l{bif(xi) < b f(x)}(bipi — bjpy) + 1{b; f () < bif (x:)}(bjp; — bipi) + |bipi — bjpj]).

©))

Summing over all (i, 7) € [n]? and dividing by two shows

1
Welfare, (D) — Welfare; (D) < -R(f; D) + 1 Z |bipi — b;pj].

(4,9)€[n]?

N =

Rearranging the terms gives us
1 1
Welfare; (D) > —R(f; D) + Welfare, (D) — - D1 |bipi — bl
(6,5)€[n]?

Notice that the term Welfare, (D) — 1 2.(i.)efn) [bipi — bjpj] is independent of f. Thus, we have shown that the conditional
risk lower bounds Welfare; up to some problem dependent constants and scaling.

Recall from Appendix A.2 mingey R(f; D) = =2 D7, 2?21 |bip; — bjpj|. Let f be an arbitrary minimizer of R(f;D)
and we know

1~
Welfaref(D) > —§R(f;D) + Welfare, (D) —

| =

D7D [bipi — bjp;| = Welfare, (D).
i=1j=1

Recall that Welfare, (D) is the maximum welfare achievable by definition. Thus the inequality is tight for any maximizer of
R(f; D). O

14
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A.4. Proof of Proposition 3.3

Proof. We begin by showing p* is a minimizer of Ep[¢(f; D) + Ah(f; D)]. By Proposition 3.1, we know that p* minimizes
R(f; D) for all D and therefore, p* minimizes E[¢(f; D)] by extension. The claim then easily hold.

We then show that p* is unique. Let f’ # p* be arbitrary and fixed. Because p* is the unique minimizer of Ep[h(f; D)]
Ep[h(f;D)] > Ep[h(p*; D)],

and we emphasize that the inequality is strict. Moreover, because p* is the minimizer of R(f; D) for all D,
Ep[t(f';D)] = Ep[¢(p*; D)].

As A > 0, we know p*
Ep[e(f'sD) + A(f';D)] > Ep[¢(p*; D) + Ah(p*; D)]

and hence p* is the unique minimizer. O

A.S. Proof of Theorem 3.4
We first show the claim holds for ¢1°%( f; D).

Proof for £28(f; D). Consider an arbitrary pair (i, j). For simplicity, let A;; = b;p; — b;p; and Afj = b, f(x;) — bj f(z;).
We begin by writing out the parts of £1°2( f) and £(f) that depend only on the pair (i, j), which are
Ajjlog(1 + exp(—JA{j)) — Aj;log(1 + exp(aA{j)) (10)

and
—Ag T{AL = 0} + Ay 1{A], <0}, (11)

respectively. Without loss of generality we assume throughout the rest of this proof that Alfj > 0 and know that

(10) — (11) = A, <log(1 + exp(—0AL)) —log(1 + exp(oAL)) + 1) ,
which in turn implies

(10) — (1D)] < |Ay] ‘log(l + exp(—0AL)) — log(1 + exp(oAL)) + 1‘ .
We now focus on the function g(z) = log(1 + exp(—ox)) — log(1 + exp(ox)) + 1. We quickly note that the function is
monotonically decreasing in x and hence

sup |g(z)| < max{l,|log(1 + exp(—oB)) —log(1 + exp(cB)) + 1|}
z€[0,B]

Since o, B > 0, we always have log(1 + exp(cB)) — log(1 + exp(—oB)) > 0. Divide the problem to two cases.

1. When log(1 + exp(cB)) — log(1 + exp(—cB)) € [0, 2). In this case we always have

|log(1 + exp(—oB)) — log(1 + exp(cB)) + 1|
= |1 — (log(1 + exp(0B)) — log(1 + exp(—0oB)))|
<1

and thus |g(z)| < 1 forall z € [0, B].
2. When log(1 + exp(cB)) — log(1 + exp(—oB)) > 2, we have

sup |g(z)| = log(1 + exp(oB)) — log(1 + exp(—oB)) — 1.
z€[0,B]

15
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Combine the two cases above, and we have for all z € [0, B], g(x) < max{1,log(1 + exp(cB) —log(1 +exp(—oB)) —1}.
Recall that all bids are upper bounded by B and f : X — [0, 1], and we know Alfj € [0, B] under our assumption. Therefore,
for any arbitrary pair (4, j) we always have

(10) — (1D) < A5 (log(l + exp(—oAij)) —log(1 + exp(aAzfj)) + 1)
< |A;jlmax{1,log(l + exp(c¢B)) — log(1 + exp(—oB)) — 1},

. . n(n—l) . . .
and summing the equation over all ==— unique pairs gives us

£95(7) — ()] < 5 max{1, log(1 + exp(9B)) — los(1 + exp(~0B)) 1} D) 3 Ibupi — by

i=1j=1

Finally, rearrange the term log(1 + exp(cB)) — log(1 + exp(—oB)) and we have the equation

log ( 1+ exp(oB) > o,

1+ exp(—oB)

which solves to 0 B = 2, namely o = 2/B. O
The proof for ¢21"¢¢( f; D) is similar.

Proof for £4"&¢( ;D). Consider an arbitrary pair (4, 7). For simplicity, let A;; = b;p; —b;p; and Afj = bif(x;)—b; f(z;).
We begin by writing out the parts of /228¢( f) that depend only on the pair (i, j), which are

Aij(_O-A{j)+ —Aij(O'Alfj)Jr (12)
and recall from (11) that the corresponding part of £(f) is
—Ag L{AL = 0} + Ay 1{A], <0}
Without loss of generality we assume that Afj > 0 and know that
(12) — (1) = Ay ((—aAg”j)+ —(oAl); + 1) = Ay (1 - O—A{j) .
Recall that Alfj € [0, B]. Therefore, for any arbitrary pair (7, j) we always have

(12) — (11)] < | Ayl ‘1 — oAl

< |Ajj|max{l,1 — oB}

n(n—1)

and summing the equation over all ==

unique pairs and applying triangle inequality gives us
1 n n
(5() = 6] < gmax{l,oB =1} 3 ) [bipi — bjpsl-
i=1j=1
Setting 0 = 2/B completes the proof. O
A.6. Proof of Proposition 3.5

Proof. Without loss of generality we restrict our focus to a pair of ads ¢, j where b;p; > b;p;. We then know that

Pr(1{biy; = bjy;} # L{bip; = bjp;}) = Pr(biy: < bjy;)
=Pr(y; =0ny; =1) = (1 —pi)p;.

Setp; =1— %e andp; =1 — i. We first verify that p;, p; € (0,1).
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* For p;, because € € (0, %), pj € (%, 1) and is valid.

* For p;, because p; € (3, 1), e (e, 3¢) = (0, 2), which in turn shows p; € (0,1) and is valid.

Moreover, plug in the choices of p;, p; and we have

Pr(L{biy; = bjy;} = L{bipi = bjp;}) =1 - (1 —pi)p; =1—(1—€) =€,
which is exactly what we wanted.
2C b _

Lastly, we note that setting b; = p— ensures that b;p; > b;p; for any C' € R.. O

A.7. Proof of Theorem 4.1

Proof. Let D be an arbitrary and fixed dataset. We drop the notation D for the rest of the proof. Consider some pair (4, j)
and an arbitrary, not necessarily optimal, pCTR function f. We write out the parts of the conditional risk R(f; D) that
depend only on the pair,

—(bip* (i) — bjp™ (x;)) L{bi f(wi) > b ()} — (bjp™ (x;) — bip™ (:)) 1{b; f(2;) > bif(x:)}-
Similarly, the parts of Z( f) that depend only on the pair (4, j) is

—(bip(wi) = b;p(;)) T{bi f (wi) > bj f(x5)} — (b;p(x;) — bip(w:)) W{b; f () > bif (w:)}-

Omitting ties, we know one and exactly one of 1{b; f(z;) > b; f(x;)} and 1{b; f(x;) > b; f(z;)} is non-zero. Without loss
of generality we assume b; f(x;) > b; f(;). The absolute value of the difference between the two pairs is then

i) = p* ()| + bjp(;) — p*(x5)]
i) — p*(x:)| + Blp(x;) — p*(x5)],

where for the second inequality we use the assumption that all bids are upperbounded by B. Summing the inequality above

over all M pairs gives us

bi|p(
Bp(

|bip(i) — b;p(;) — bip™ () — bjp™ ()] < x
< x

Ep[|t(f) = R(f: D)[] < n(n — 1) BEq, [|p(x:) — p*(2:)|] < n(n — 1) B/,
where we use Jensen’s inequality for the second inequality, completing the proof. [

A.8. Proof of Theorem 4.4

We begin with a slight detour and first prove the following mathematical proposition.

Proposition A.2. For any pair of real numbers a,b € R, we have the following

lay — by +[(—a)y — (=b)+| = |a—1].
Proof. We divide the proposition into four cases.

* When a > 0,b > 0. In this case left-hand side evaluates to |a — b| and the equation holds.
* When a < 0,b = 0. In this case left-hand side evaluates to |b| + |a| = b — a = |a — b| and the equation holds.
* When a > 0,b < 0. In this case left-hand side evaluates to |a| + |b| = a — b = |a — b| and the equation holds.

* When a < 0,b < 0. In this case left-hand side evaluates to | — a — (—b)| = |a — b| and the equation holds.
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We also make use of the following helper function. Let
f D = Z Z iPi — gp] ﬂ{b f(xz) X jf(xj)} (13)

At a high level, £*(f; D) is the version of £(f; D) when we know exactly what p*(-) is. The loss function is, unfortunately,
difficult to estimate (recall Proposition 3.5), but remains tightly related to welfare. We have the following proposition, which
remains useful for the rest of the section.

Proposition A.3. We have the following inequality for all f € H and D
Welfare (D) > Welfare, (D) — ¢ (f; D).

Moreover, the inequality is tight for any minimizer of £+ (f; D).

Proof. The proof is nearly the same as that of Theorem 3.2, which we provided in Appendix A.3. We detail the proof below
for completeness.

Condition on an arbitrary and unordered pair of indices (¢, j) and assume without loss of generality that b;p; > b;p;. The
parts of £*(f; D) that depend only on the pair

(bipi — bjpj)+ 1{bi f (i) < bjf(x5)} + (bjpj — bipi) + 1{b; f () < bif (wi)} = (bipi — bjp;) 1{bif (wi) < b; f (x;)}-
(14)
Recalling (9), the welfare suboptimality induced by the pair is exactly

(bipi — bjpy) Wi = i*} U{j = j*} 1{bs f (z:) < bjf(25)}, (15)

where we note the assumption that b;p; > b;p; implies j # ¢*, where we recall +* = argmax;cr,] birpy. Immediately we
note that

(15) < (14) < (A5) + (bipi — bjpj)+-
Particularly (14) = (15), when b; f (x;) = b; f (). We then sum over all pairs of (¢, j) and know that
Welfare, (D) — Welfares (D) < £ (f; D). (16)
and the inequality is tight when b; f (x;) = b, f(x;) whenever b;p; = b;p;. Since p* € H, it is possible to exactly minimize

¢t (f; D) for all D, thus any minimizer of £*(f; D) must rank each pair correctly. Therefore, the inequality is tight for any
minimizer of £ (f; D) for any D. O

We now proceed with the proof of Theorem 4.4 itself.

Proof of Theorem 4.4. Consider an arbitrary pair (4, j). For simplicity, let A;; = b;p; — b;p;, Aij = b;p; — b;p;, and
Alfj = b;f(x;) — bj f(x;). We begin by writing out the part of @(‘Ti“ge’* (f; D) that depend only on the pair (4, 5)

(Aij)4(—oAL) 4 + (=Aij) 1 (0A]). (17)
‘We also introduce the loss function
Ehmge-&- f D ZZ O'Af)
i=175=1

and the part that corresponds to the pair (4, j) would be

(Aij)+(_UAzfj)+ +(=Aiy)+(0AL) 4. (18)

)
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We then know

(17) = (18)] = (oA 4 (Ayj)+ (Az;)+) + (AL (FAi) 4 — (=A4)4))|
< max{(—oAL) 4, (AL HIBi) s — (A s+ 1(=Ay) 1 — (Ay)+])
= max{(—o f)+,(UAf)+}‘A — Ayl

< O'B‘Aij — Aij‘v
where for the second equality we use Proposition A.2 and the last inequality the fact that the bids are bounded by B. As
E[(p(z) — p*(2))*] < e,
E[(Ai; — Aij)?] < 2E[(bip; — bib(@:))*] + 2E[(bjp; — b;p(x;))?]
2B?E[(p(z) — p*(2))*] + 2B°E[(p(x) — p*(2))*] < 4B%

2

<
<

where for the first inequality we recall the fact that (a + b)? < 2a? + 2b2. By Jensen’s inequality, we know

E[|Ai; — Aijl] < 2Bve.
Summing over all unique pairs of (¢, j) and we know for any f

Ep[|0™=* (f; D) — L5 F (f;D)[] < n(n — 1)o B*VVe. (19)

We then control E[|¢hinge:+ () — ¢+ (f)|] similar to how we proved Theorem 3.4. Without loss of generality we assume
that A;; > 0 and have

(18) — (14) = Aj;((—oAf) — 1)
and therefore
|(18) = (14)] < |Ay[[(=oAL) 4 = 1] < |bips = bjp;| max{1,0B — 1}.
Summing the inequality across all pairs gives us

|¢hinget (£ DY — 0F f(; D)| < max{l oB—1} Z Z |bipi — b;p;]

1=17=1

-1
< % max{1,08 — 1} B.
Taking the expectation over D and applying Jensen’s inequality, we then know that

n(n—1)B

Ep[|l5" " (f;D) — (£ D)) < =

(2y/€ + max{1,0B — 1}).

By Proposition A.3, we then know for any f € ‘H

Ep[Welfare ;(D)] > Ep[Welfare, (D)] — Ep[(27* (f;D)] — n(n — 1)o B*/e — @Bmax{l, oB —1}.

We now show that p*’s suboptimality tends to 0 as ¢ goes to 0. Recall the definition of 1178+ (f: D), we have

ehmgeJr p D an an JA”)+ =0.

i=1j=1

Plug the result back to (19), and we know
Ep[fy"5F (p*; D)] < n(n — 1)o B*V/e.
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Since a’,inge’Jr(f; D) = 0 for any f € H and D, we have

Ep [0y (p*; D) — min ("5 (f; D)] < n(n — 1)o B>V

Since min ; Ep [(hinge+( f: D)] < Ep[min, /1inee+ (£;D)], we know that

Ep £y (v*; D)] — min Ep[ly* (; D)] < n(n — o B*Ve
and the loss is O(4/€)-approximately calibrated. O

B. Detailed Description for Experiments on Synthetic Dataset

Here we include a detailed discussion on how we conducted the experiments on synthetic data.

Data Generating Process. To generate the ground-truth CTRs, we draw a weight vector w, € R where each entry

is follows a Unif(—+/10, 1/10) distribution. We use a logistic model and set p; = 1+exp(wT1w-)+§CTR’ where ¢€TR is a
P i

random noise following A(0,0.12).

Similarly, in order to generate the bids, we draw a weight vector w;, € R where each entry is drawn from Unif(—2, 2).
Inspired by the empirical observations made in Vasile et al. (2017), we assume the CPC bids, when conditioned on the
feature z;, follow a log-normal distribution and set b; = exp(w{ x; + £P'9) where P4 ~ N(0,0.1%). The choice of
parameters avoids overflowing due to the exponential term used for generating the bids.

We visualize in Figure 4 the distribution of the CTRs and CPC bids generated when octgr = 0.1 as a sanity check. We can
verify that the generated CTRs is unimodal and centered around 0.5, and hence does not follow a degenerate distribution. The
distribution of the generated CPC bids roughly follows a log-normal distribution, agreeing with the empirical observations
made in Vasile et al. (2017).

Empirical Distributions of CTR and CPC Bids

Empirical Distribution of CTR Empirical Distribution of CPC Bids
400
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Figure 4. Distribution of the Generated CTR and CPC.

Training. We used Adam with default parameters. Batch size is set to 256. All models are trained till convergence.

gLL EWLL

Baselines. We use the logistic loss and weighted logistic loss
advertisement ((b;, x;), y;), the logistic loss is

U (f (@), mi) = —(yilog(f (@) + (1 — yi) log (1 — f(:)))

as baselines. Particularly, for any function f and
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and the weighted logistic loss is

OVEE(F(20), yi, b)) = —bi(yilog(f(25)) + (1 — ;) log(1 — f(24))).

Summing them over all ((b;, x;),y;) € D yields the empirical loss.

Proposed Losses. We begin by introducing the version of /!°% we used for the experiment setting, é}fg

log f D) = Z Z Vi — bjy; )log(1 + exp(—(b; f(x;) — bjf(xj)))) + 3Z€LL(JC($1) Yi)

Intuitively, one can view ¢/“L(f(z;), y;) as a regularizer, avoiding the loss function to place too much emphasis on minimizing
the ranking loss, and ensures our model can still adequately predict the CTRs. Similar to our choice of o = 1, choosing 3 as
the regularization strength of ¢ is arbitrary and we did not optimize over the space of possible regularization strengths.

We then write out the version of /278" we employ, which, in addition to a logistic loss function as a regularizer, also uses

logistic functions to weigh each pair. More formally, we have

"hm e, SEN 1 1 -~ o
5D Z 2 1 + exp(—3b;p(z;)) 1 + exp(—3b; f(m;))(bipi ™ baPa)e(Z(ef (i) = b 2)))s

+3Zn]£LL

Particularly, here we use m as a proxy to 1{i = ¢*}, which we recall indicates whether the i-th ad has the

highest ground-truth eCPM or not. Similarly, m is the proxy to 1{;j = j*}. The choice to multiply b;p(z;)
J )

by 3 in the denominator is ad hoc and arbitrary. We did not tune over the space of possible indicators and leave a rigorous

treatise of the parameter choice, under additional assumptions on the eCPMs’ distribution, as an interesting future direction.

Finally, we write out /' (f; D), which uses the same weighing scheme used in /"5 ( ;D). We have

n n 1 1
ZZ T+ oxp(—3bip(e) 1+ exp(=3b; ()

Z LL 371 yz

"Iog

(bip(;) — bip(x;)) log(1 + exp(—(bs f(x:) — b; f(x4))))

For Zh nget (f: D) and ¢ qog 1(f; D), the plug-in estimator p(-) is model trained with logistic loss. We train on the baseline
losses ﬁrst and then use the model outputs as the plug-in estimates for Zh nEST(f:D) and £ %g (f; D).

Evaluation. As we know the exact CTR for each advertisement, we can directly calculate the social welfare achieved by
the model trained with each of the five losses. For each model, we first pick out the ad with the highest predicted eCPM for
each of the 2000 randomly generated auctions. We then calculate the actual CPM of the selected ad and record it as the
social welfare achieved on that particular round of auction.

Calculating the Standard Error. Since the bulk of the randomness in test time social welfare lies in the data generation
process, reporting the standard error of each model’s average test time social welfare would not be informative, as the data
generating process’ noise dominates. We instead report the standard error of the difference between the particular model’s
social welfare and that of the average social welfare across the 5 models. The difference term is then able to account for the
randomness within the data generating process, and we are measuring the standard error of the comparative performance of
each model.
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C. Detailed Description of Experiments on Criteo Dataset

Data Preprocessing. A standard practice is to preprocess the Criteo dataset using the approach used by the winners of
the Criteo Display Advertising Challenge2 (Chen et al., 2016; Guo et al., 2017; Lian et al., 2018; Cheng et al., 2016). The
Criteo data contains 13 numerical feature columns with positive integer observations and we replace all observations with
value greater than 2 with its log instead, namely

f(x):{x ifxé?

|log,(x)]  otherwise

For the remaining 26 categorical features, we replace the values that appear less than 10 times with a special value. We also
use a 8-1-1 train-validation-test split, commonly used by existing works.

Model Implementation. To ensure our results can be easily reproduced, we use the open source implementation found in
the DeepCTR package for both DeepFM and Deep & Cross Network (Shen, 2017).

Bid Generation. We use the DeepFM implementation found in Shen (2017) with default parameters. Each categorical
variable is cast to a 4 dimensional embedding. The weights are initialized randomly. The deep network has 3 hidden layers
with decreasing size, consisting of 256, 128, and 64 nodes each. ReLLU activation is used for all layers save for the output
layer, which uses a sigmoid activation function. The processed data is then fed into the network and then re-scaled to the
range [0, 1] (otherwise the outputs are too close to zero). We then add a A/ (0, 0.1?) random noise and take the exponential
over the scores. Letting x denote the feature, we use

by = exp(c- f(w) + &)
as the CPC bids, where c is a scaling constant ensuring cf(z;) € [0, 1] and P4 ~ A/(0,1).

Choice of Loss Functions. We begin by introducing the version of /'°% used for the Criteo experiments, (};353

E?Es(fﬂ)) = ; ; 1+ eXp 3b7p(x1)) 1+ exp(13bjf(zj)) (biyi - bjyj) log(l + exp(—3(bif(xi) - bjf(l‘j))))

+AZ€LL(f(m) i)

Compared to the version used for the simulation studies, for the Criteo simulations we further incorporate the weighing
schemes discussed in Section 4.2. The value of ¢ is also adjusted slightly to better approximate the indicator function on the
range of eCPMs in our setting.

The version of @Og used is defined as follows. We have

oz, Z 2 e 3bzp(xi)) — exp(_lgbjf(xj)) (bipli) — bip(a;)) log(1 + exp(—3(bif(x:) — b f(2))))

AT AR ),

and we slightly adjusted the choice of o.

We perform a grid search to adjust the value of A over the set {0.1, 1, 3,5, 10} based on the welfare, AUC loss, and logistic
loss achieved by the different choices. We set A = 3 for both DeepFM and DCN as the choice achieves significant increases
in welfare with minor impact on AUC loss and logistic loss for both £/°%, and /1°%.,.
Evaluation. We take the test set and partition it into auctions with 256 bidders each. We use the models trained on the
three losses to determine the winner of each auction, and record the realized eCPM (the observed b;y;’s) as the welfare
of the auction. As the ground-truth CTR of the ads are unknown, we are forced to use the realized eCPM as proxies for
measuring welfare.

2https ://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
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Parameter Settings for DeepFM. We follow the optimal parameters specified in Guo et al. (2017) and construct a
DeepFM with 3 hidden layers, each with 400 nodes using ReL.U activation. Embedding dimension for the categorial
variables is set to 10. Dropout rate is set to 0.5. For optimizing the model we used Adam with default parameters and set
batch size to 256. The model is trained for 3 epochs.

Parameter Settings for DCN. We use the parameters set in Wang et al. (2017) and construct a DCN with 2 hidden layers,
each with 1024 nodes using ReLU activation. Batch normalization is applied to the network and the number of cross layers
is set to 6. For the categorical features, we set the dimensionality of the embedding as 6 x (feature cardinality)'/*. For

optimizing the model we used Adam and set the batch size to 512. The model is trained for 150,000 steps.

Additional Experimental Results.

We plot DeepFM’s welfare, AUC loss, and logistic loss in Figure 5.
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Figure 5. Detailed Performance Metrics for DeepFM. Left: Welfare (higher is better). Center: AUC loss (lower is better). Right:

Logistic loss (lower is better). FFor each plot, from left to right: (baselines, blue) logistic loss, (proposed, yellow) £

and @fg ((5) with y;’s replaced by outputs from teacher network).

We also plot DCN’s welfare, AUC loss, and logistic loss in Figure 6.
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Figure 6. Detailed Performance Metrics for DCN. Left: Welfare (higher is better). Center: AUC loss (lower is better). Right: Logistic
loss (lower is better). For each plot, from left to right: (baselines, blue) logistic loss, (proposed, yellow) 41;)53 (defined in (5)), and @;’g
((5) with y;’s replaced by outputs from teacher network).

The exact values of the metrics and the associated standard errors for DeepFM can be found in Table 2. The exact values of
the metrics and the associated standard errors for DCN can be found in Table 3.
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DeepFM

Welfare AUC Loss Logloss
Logistic Loss ~ 1.4448 +0.0025  0.2200 £ 0.0004  0.4706 % 0.0005
é?ﬁs 1.4622 £0.0021  0.2169 £ 0.0003  0.4723 £ 0.0009
@;53 1.4660 + 0.0022 0.2229 £ 0.0004 0.4795 %+ 0.0009

Table 2. Results for DeepFM.
DCN

Welfare AUC Loss Logloss
Logistic Loss ~ 1.4622 +0.0026 ~ 0.2173 £ 0.0004 0.4840 + 0.0015
€?§3 1.4663 + 0.0028 0.2146 £+ 0.0005 0.4934 + 0.0020
e, 1.4650 + 0.0027  0.2115 £ 0.0007  0.4922 + 0.0048

Table 3. Results for DCN.

As we can see from the results, the proposed methods significantly improve welfare at a minimal cost (if any) to AUC loss.
While logistic loss seems to be negatively affected, the impact is relatively small and we conjecture that better tuning the
model architecture could resolve the issue.

Finally, we report below the per epoch runtime of the methods.

DCN
Logloss Pairwise Loss ([?ig) Pairwise Loss + Student-Teacher (/! Y|
Absolute  2635.13 + 10.86 2700.87 + 8.91 2700.4 + 6.59
Relative 100% 102.5% 102.5%

Table 4. Runtime (in seconds) comparison for DCN. We take the average over 15 epochs and report the standard deviation.

These results show that for the more complex DCN model the added cost of the pairwise losses is relatively negligible. For
DeepFM, the added computation cost is around 2.5% (60 seconds), which is a reasonable price to pay for significantly
improved welfare performance. It is possible that our implementation of the loss is not the most efficient, and additional
optimizations may further decrease the overhead.
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DCN
Logloss Pairwise Loss (Elfi 3) Pairwise Loss + Student-Teacher (@ )
Absolute  5292.2 + 57.39 5333.67 £+ 56.62 5330 £+ 48.11
Relative 100% 100.8% 100.7%

Table 5. Runtime (in seconds) comparison for DCN. We take the average over 15 epochs and report the standard deviation.
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