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Abstract

We study the design of loss functions for click-

through rates (CTR) to optimize (social) welfare

in advertising auctions. Existing works either only

focus on CTR predictions without consideration

of business objectives (e.g., welfare) in auctions or

assume that the distribution over the participants’

expected cost-per-impression (eCPM) is known

a priori, then use various additional assumptions

on the parametric form of the distribution to de-

rive loss functions for predicting CTRs. In this

work, we bring back the welfare objectives of

ad auctions into CTR predictions and propose a

novel weighted rankloss to train the CTR model.

Compared to existing literature, our approach pro-

vides a provable guarantee on welfare but without

assumptions on the eCPMs’ distribution while

also avoiding the intractability of naively apply-

ing existing learning-to-rank methods. Further,

we propose a theoretically justifiable technique

for calibrating the losses using labels generated

from a teacher network, only assuming that the

teacher network has bounded ℓ2 generalization er-

ror. Finally, we demonstrate the advantages of the

proposed loss on synthetic and real-world data.

1. Introduction

Global online advertising spending is expected to exceed

$700 billion in 2023 (Statista, 2022). At the core of on-

line advertising are advertising (ad) auctions, held billions

of times per day, to determine which advertisers get the

opportunity to show ads (Jeunen, 2022). A critical compo-

nent of these auctions is predicting the click-through rates

(CTR) (Yang and Zhai, 2022). Typically, advertisers submit
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cost-per-click (CPC) bids, i.e., report how much they are

willing to pay if a user clicks. The CTR is the probability

that a user clicks the ad when the ad is shown. Combined

with the cost-per-click bid, the platform can then calculate

the value of showing the ad, usually called the cost-per-

impression (eCPM). As the CTR needs to be learned, the

platform instead uses the predicted click-through rates (pC-

TRs) to convert the submitted CPC bids to predicted eCPM

bids, which then determine the auctions’ outcomes.

Due to the importance of predicting the CTRs, a wealth

of related literature exists, and we refer interested reader

to Choi et al. (2020); Yang and Zhai (2022) for thorough

reviews of these advances. Of these works, the majority

focus on the various neural network architectures designed

for the task, such as DeepFM (Guo et al., 2017), Deep &

Cross Network (DCN) (Wang et al., 2017), MaskNet (Wang

et al., 2021), among many others. These works propose

novel neural network architectures but train these networks

using off-the-shelf classification losses with no guarantees

on the actual economic performance of the ad auctions,

creating a discrepancy between the upstream model training

for CTR prediction and downstream model evaluation.

Some works aim to ameliorate these discrepancies by using

business objectives such as social welfare (or welfare for

short) to motivate the design of loss functions (Chapelle,

2015; Vasile et al., 2017; Hummel and McAfee, 2017). How-

ever, these works either lack reproducible experiments on

publicly available real-world benchmarks (Hummel and

McAfee, 2017), or depend on ad-hoc heuristics with insuffi-

cient theoretical guarantees (Vasile et al., 2017). Moreover,

many of these works suffer from an unrealistic assumption

that bidders submit eCPM bids and the eCPM of the highest

competing bid follows a known and fixed distribution. How-

ever, in real life, some ad auctions at industry leaders such as

Amazon, Meta, and Google only accept CPC bids (Amazon

Ads, 2023; Meta Business Help Center, 2023; Google Ads

Help, 2023), and adjustments to the CTR prediction model

changes the distribution of competing bids’ eCPM.

We avoid the pitfalls of existing works by limiting assump-

tions about the eCPMs’ distribution. Since various types

of ad auctions with drastically different revenue functions

are widely deployed, ranging from Generalized Second

1



Ranking Losses of CTR Prediction for Welfare Maximization

Price (Edelman et al., 2007) to Vickrey-Clarke-Groves (Var-

ian and Harris, 2014), and first price auction (Conitzer et al.,

2022), we focus on maximizing the welfare achieved by

these auctions, which measures the efficiency of the ad auc-

tion in terms of showing the most valuable ads.

Our Contributions. We list our contributions below.

• We propose a learning-to-rank loss with welfare guar-

antees by drawing a previously underutilized connec-

tion between welfare maximization and ranking.

• We propose two surrogate losses that are easy to opti-

mize and theoretically justifiable.

• Inspired by student-teacher learning (Hinton et al.,

2015), we construct an approximately calibrated, easy-

to-optimize surrogate, whose theoretical guarantees

only depend on the ℓ2-generalization bound of the

teacher network.

• We demonstrate the benefits of the proposed losses

on both simulated data and the Criteo Display Adver-

tising Challenge dataset1, arguably the most popular

benchmark for CTR prediction in ad auctions.

1.1. Related Works

In this section, we divide the related works into three main

categories: applied research in CTR prediction, theoretical

analysis of ad auctions, and methods in learning-to-rank.

Applied Research in CTR Prediction. There is an abun-

dance of application oriented literature on CTR predic-

tion (McMahan et al., 2013; Chen et al., 2016; Cheng et al.,

2016; Zhang et al., 2016; Qu et al., 2016; Juan et al., 2017;

Lian et al., 2018; Zhou et al., 2018; 2019; Wang et al.,

2021; Pi et al., 2019; Pan et al., 2018; Li et al., 2020;

Chapelle, 2015), and we refer interested readers to Yang

and Zhai (2022) for a detailed survey. Two works with well-

documented performance on the Criteo dataset are Guo

et al. (2017) and Wang et al. (2017). Particularly, Guo et al.

(2017) proposes DeepFM, short for deep factorization ma-

chines, which combines deep learning with factorization

machines. Wang et al. (2017) is similar, where the proposed

Deep Cross Network model combines deep neural networks

with cross features. These works focus on the development

of neural network architectures and use classification losses

with little to no theoretical guarantees. Our work is orthogo-

nal to and complements this line of literature by proposing

easy-to-optimize loss functions rooted in economic intuition

with provable guarantees on economic performance.

A well-known technique in knowledge distillation is student-

teacher learning (Hinton et al., 2015), where a smaller net-

work is used to approximate the predictions of a larger one.

1https://www.kaggle.com/c/criteo-display-

ad-challenge

Recently some attempts have been made at applying the

technique in CTR prediction (Zhu et al., 2020) and, as we

demonstrate in this manuscript, the technique can even ben-

efit the design of welfare-inspired loss functions, in addition

to reducing the computation and memory requirements of

the teacher network itself.

Among this line of work, two papers are closer to ours in

spirit. Chapelle (2015) studies the design of CTR evaluation

metrics that approximate the bidders’ expected utility. Simi-

larly, Vasile et al. (2017) uses the utility that the bidder de-

rives from the auction to design a suitable loss function that

the bidder should use for CTR prediction. While both works

provide empirical justifications for the proposed losses, they

only provide heuristic arguments when designing the loss

functions themselves and include no theoretical guarantees

on the generalization or calibration of the losses. Moreover,

they both rely on the assumption that the distribution of the

highest competing bid’s eCPM is fixed and known a priori.

Theoretical Analysis of Ad Auctions. Many works study

the theoretical properties of ad auctions (Fu et al., 2012;

Edelman and Schwarz, 2010; Gatti et al., 2012; Aggarwal

et al., 2006; Varian, 2009; Dughmi et al., 2013; Bergemann

et al., 2022; Lucier et al., 2012), and Choi et al. (2020) offers

a detailed survey of a collection of recent advances in the

analysis of ad auctions.

Hummel and McAfee (2017) is the most relevant work to

ours, as it studies the design of loss functions in ad auctions

from the seller’s perspective, offering new insights on how

to design losses for either welfare maximization or revenue

maximization. However, the real-world experiments in the

paper rely on proprietary data, and the claims are not verified

on widely available benchmarks. Moreover, it again relies

heavily on the assumption that the distribution of the highest

competing bid’s eCPM is known beforehand, which can be

unrealistic in practice.

Learning-to-Rank. Our work draws inspiration from a line

of research on learning-to-rank (Burges et al., 2005; 2006;

Cortes et al., 2010; Burges, 2010; Wang et al., 2018), which

incorporates information retrieval performance metrics such

as Normalized Discounted Cumulative Gain into the design

of the loss functions, resembling our works. However, as

we show in Section 3.2, these works do not directly apply

to the welfare maximization setting. Moreover, to the best

of our knowledge, these works have not been examined in

the context of welfare maximization in ad auctions.

2. Models and Preliminaries

We begin with a multi-slot ad auction (Edelman et al., 2007;

Varian, 2007) where each ad is associated a cost-per-click

(CPC) bid. Let K denote the number of the slots and each

slot, indexed by k, is associated with a position multiplier
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³k. Without loss of generality assume that ³1 < 1 and

the weights are decreasing in k, namely ³1 ě . . . ě ³K .

Assume there are n ě K ads participating in the auction

where each ad has a feature vector xi P R
d and CPC bid bi.

There exists a function p˚ : Rd Ñ r0, 1s such that the CTR

of the ad at slot k is ³kpi, where we let pi < p˚pxiq for

convenience. The ad’s CTR is affected by both the slot it is

assigned to and the ad’s features. Intuitively, pi is the ad’s

base CTR if it were assigned to the first slot, and is scaled

according to ³k for any slot k.

Throughout this paper, we assume that the position multi-

pliers are known, and we focus only on learning p˚, i.e.,

the ad’s CTR if it were assigned the first slot. Learning a

position-based CTR prediction model requires additional

assumptions to model the user’s click behavior and is out-

side of our scope, which focuses on welfare maximization

instead. Indeed, we will show it is without loss of generality

to focus on single-slot auctions to maximize welfare, which

is equivalent to learning the base CTR when shown in the

first slot (Proposition 2.2).

More concretely let H Ď tf : X Ñ r0, 1su denote

the hypothesis space and assume that p˚ is realizable, i.e.

p˚p¨q P H. Conditioned on a set of n ads tpbi, xiquni<1,

let fp¨q denote an arbitrary function that the seller uses

to predict the CTRs. The function f , combined with the

submitted bid bi and the observed context xi, yields the

predicted eCPMs bifpxiq for all i P rns. The seller then

awards the first slot to the bidder with the highest predicted

eCPM, the second slot to the bidder with the second, and so

forth, achieving a welfare of

Welfaref ptpbi, xiquni<1q <
Kÿ

k<1

bÃf pkqpÃf pkq,

where for any function f , Ãf pkq returns the index of the ad

with the k-th highest predicted eCPM. The welfare maxi-

mization problem is then

max
fPH

Kÿ

k<1

bÃf pkqpÃf pkq. (1)

As we will prove, a solution to the problem is f <
p˚. For convenience, we let Ã˚p¨q < Ãp˚ p¨q,

Welfare˚ptpbi, xiquni<1q < Welfarep˚ ptpbi, xiquni<1q, and

assume there are no ties in bifpxiq or bipi.

To better illustrate welfare and advertisement auction, we

include an specific instance of ad auction in the following

example.

Example 2.1. Let ad1,ad2,ad3 denote three different ad-

vertisements, where ad1’s CTR is 0.1 and CPC bid 10,

ad2’s CTR 0.4 and CPC bid 2, and ad3’s CTR 0.9 and CPC

bid 0.5. Suppose there two advertisement slots where the

first slot has multiplier ³1 < 1 and the second ³2 < 0.9. As-

signing the first slot to ad1 and the second to ad2 maximizes

welfare, and the maximum welfare is 1 ` 0.8 ˆ 0.9 < 1.62.

Knowing the ads’ exact CTR helps us achieve this maximum

welfare.

2.1. Welfare Maximization and Ranking

We first show that we lose no generality by restricting our

focus to single-slot ad (e.g., the first slot) auctions.

Proposition 2.2 (Reduction to Single-slot Setting). The

function f maximizes welfare in a K-slot auction only if

it maximizes welfare in single-slot ad auctions held over

subsets of the participating ads. Moreover, the ground-truth

CTR function p˚ maximizes welfare.

Detailed proof of the proposition is deferred to Ap-

pendix A.1. Consider the setting in Example 2.1, for in-

stance. Only considering the welfare objective, note that

we can auction off the two ad slots one by one, where

ad1,ad2,ad3 participates in the auction for the first slot

and ad2,ad3 participates in that for the second. In this

setting, if we know the ads’ ground-truth CTR, then ad1

wins the first slot and ad2 wins the second, achieving the

maximum welfare.

By Proposition 2.2, we can see that welfare maximization in

multi-slot ad auctions is no harder than welfare maximiza-

tion in single-slot ad auctions, and this relies on the fact

that the position multipliers are independent of advertisers.

For the rest of the paper, we then without loss of generality

focus only on single-slot auctions.

As welfare is maximized by the ground-truth CTR function,

a common approach is to treat the problem as a classification

problem, using yi as feedback for learning p˚ (Vasile et al.,

2017; Hummel and McAfee, 2017). However, as noted

in Section 1, this approach can suffer from a mismatch

between the loss function and the business metric (in our

case, welfare).

We notice that welfare maximization can be reduced to a

learning-to-rank problem instead. Let i˚ < Ã˚p1q be the

index of the ad with the highest ground-truth eCPM and

j˚ < Ãf p1q be that of the ad with the highest predicted

eCPM. We note that

Welfare˚ptpbi, xiquni<1q ´ Welfaref ptpbi, xiquni<1q

<
nÿ

i<1

nÿ

j<1

ppbipi ´ bjpjq1ti < i˚u1tj < j˚u

ˆ 1tbifpxiq ď bjfpxjquq.
(2)

We defer the detailed derivation of (2) to Appendix A.3.

Since bi˚pi˚ yields the highest ground-truth eCPM, welfare

is maximized if and only if j˚ < i˚. Consequently, as
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long as f correctly ranks each pair of observations accord-

ing to their ground-truth eCPM, it also correctly identifies

the ad with the highest ground-truth eCPM and maximizes

welfare. The reduction to ranking generalizes to multi-slot

auctions, and we defer a formal statement to Lemma A.1 in

the appendix.

The same intuition is illustrated by Example 2.1: as long as

we can rank the three ads according to their ground-truth

eCPM (ad1 ą ad2 ą ad3), then we can maximize the

auction’s welfare.

To summarize, we must rank the ads according to their

ground-truth eCPM using a suitable CTR prediction func-

tion to maximize welfare. An approach that follows this

observation is to learn a CTR prediction rule to rank the ads,

leading to the proposed ranking-inspired losses.

3. Ranking-Inspired Loss Functions for

Welfare Maximization

Let D < tpbi, xiq, yiuni<1 be a batch of n ads participating

in one round of an ad auction, where yi > Berppiq indicates

whether the ad has been clicked or not. We then call bipi
the ad’s ground-truth eCPM and biyi its empirical eCPM.

Consider the following pairwise loss function (which we

propose the seller minimize):

ℓpf ;Dq <
nÿ

i<1

nÿ

j<1

pbiyi ´ bjyjq1tbifpxiq ď bjfpxjqu.

(3)

Let Rpf ;Dq < Etyiun
i“1

rℓpf ;Dqs denote the conditional

risk induced by the loss function ℓ. Recalling that yi >
Bernoullippiq, we know

Rpf ;Dq <
nÿ

i<1

nÿ

j<1

pbipi ´ bjpjq1tbifpxiq ď bjfpxjqu.

(4)

Observe the similarities between (2) and (4). The condi-

tional risk Rpf ;Dq can be viewed as a proxy for the welfare

suboptimality of f , where we replace 1ti < i˚u1tj < j˚u
with 1. While j˚ is easy to determine once f is given, we

do not the index with the highest ground-truth eCPM. Fortu-

nately, as we show in the following proposition, minimizing

Rpf ;Dq via empirical risk minimization is a reasonable

proxy for minimizing welfare suboptimality.

Proposition 3.1. For any D, let pf be an arbitrary and fixed

minimizer of the conditional risk Rpf ;Dq. We then know pf
ranks every pair in the sequence correctly, i.e. bipi ě bjpj if

and only if bi pfpxiq ě bj pfpxjq. Moreover, the ground-truth

CTR function p˚p¨q minimizes the conditional risk Rpf ;Dq
for any D.

Detailed proof for the proposition can be found in Ap-

pendix A.2. Proposition 3.1 shows that minimizing the

conditional risk Rpf ;Dq is a surrogate for maximizing wel-

fare and minimizing (3) is a reasonable choice of loss func-

tion. In the following theorem, we make explicit the con-

nection between the conditional risk and welfare. With a

slight abuse of notation let Welfaref pDq,Welfare˚pDq de-

note the welfare achieved by f and the optimal (achievable)

welfare, respectively, when tpbi, xiquni<1 are given by the

dataset D. We emphasize the conditional risk Rpf ;Dq can

be negative, an important fact to bear in mind in the context

of the following theorem.

Theorem 3.2. The following holds for all f P H and D

Welfare˚pDq ď Welfaref pDq ` 1

2
Rpf ;Dq

` 1

4

nÿ

i<1

nÿ

j<1

|bipi ´ bjpj | .

Moreover, the bound is tight for any minimizer of Rpf ;Dq
and for all D

min
fPH

Rpf ;Dq < ´1

2

nÿ

i<1

nÿ

j<1

|bipi ´ bjpj | .

See Appendix A.3 for detailed proof. We note that the

theorem provides a valid lower bound for all possible

f P H. More importantly, for any dataset D, we can

show that there is at least one minimizer of Rpf ;Dq thanks

to the realizability assumption, for which 1
2
Rpf ;Dq `

1
4

řn

i<1

řn

j<1 |bipi ´ bjpj | < 0. Crucially, the theorem im-

plies that minimizing the conditional risk on any dataset D

maximizes welfare, further justifying the use of ℓpf ;Dq.
While we have shown minimizing Rpf ;Dq suffices for wel-

fare maximization, recovering the ground-truth CTR func-

tion p˚p¨q remains crucial for real-world ad auctions. For

instance, revenue in generalized second price auctions de-

pends on the pCTRs themselves, and functions that correctly

rank the ads do not necessarily lead to high revenue. Fortu-

nately, by adding a calibrated classification loss to ℓpf ;Dq,

we can ensure that p˚p¨q minimizes the (unconditional) risk.

Particularly, we have the following proposition.

Proposition 3.3. Let hpf ;Dq denote an arbitrary loss func-

tion such that p˚ is the unique minimizer of EDrhpf ;Dqs.
For any constant ¼ ą 0, p˚ is the unique minimizer of

EDrℓpf ;Dq ` ¼hpf ;Dqs.

See Appendix A.4 for detailed proof. We note that logis-

tic loss and mean squared error are both valid choices for

hpf ;Dq in Proposition 3.3.

3.1. Easy-to-Optimize Surrogates

While ℓpf ;Dq is attractive as it is closely related to the wel-

fare, the function itself is nondifferentiable and cannot be

4



Ranking Losses of CTR Prediction for Welfare Maximization

efficiently optimized using first-order methods (e.g., SGD)

due to the indicator variables. We thus propose two differ-

entiable surrogates with provable performance guarantees

ℓlogÃ pf ;Dq <
nÿ

i<1

nÿ

j<1

pbiyi ´ bjyjq

ˆ logp1 ` expp´Ãpbifpxiq ´ bjfpxjqqqq,
(5)

and

ℓhingeÃ pf ;Dq <
nÿ

i<1

nÿ

j<1

pbiyi ´ bjyjq

ˆ p´Ãpbifpxiq ´ bjfpxjqqq`.

(6)

For (5), we replace the indicators in ℓpf ;Dq with the log

logistic function ´ logp1 ` expp´Ãpbifpxiq ´ bjfpxjqqqq.

Similarly, (6) acts as a surrogate to ℓpf ;Dq with the indica-

tor replaced by p´Ãpbifpxiq ´ bjfpxjqqq` instead, where

for any a P R we let paq` < maxp0, aq. While the function

p¨q` itself is not differentiable at x < 0, it is differentiable

almost everywhere and can be easily optimized using its

subderivative.

−3 −2 −1 0 1 2 3

bipi − bjpj

0

2

4

6

8
Indicator

Hinge with σ = 1

Hinge with σ = 3

Logistic with σ = 1

Logistic with σ = 3

Figure 1. Visualization of the surrogates to1tbifpxiq ď bjfpxjqu
for different values of Ã as functions of bifpxiq ´ bjfpxjq.

For both surrogates, the term Ã is a manually adjustable

parameter controlling how much we penalize small margins

between a pair of eCPM, bifpxiq ´ bjfpxjq. As we can

see from Figure 1, for pairs of ads whose predicted eCPMs

are close to each other, a larger Ã accentuates the difference

between them and leads to a surrogate value close to one.

However, as Ã increases, the surrogate value for ads with

large gaps in predicted eCPMs tend to be much larger than

one. Adjusting Ã is then a balancing act between these two

kinds of pairs.

Regardless of the choice of surrogate for the indicator func-

tion, the surrogate losses themselves remain closely related

to (2), which we highlight in the following theorems.

Theorem 3.4. Assuming all bids are bounded by some B P

Rą0, setting Ã < 2{B ensures for any f P H and D

|Etyiun
i“1

rℓlogÃ pf ;Dqs ´ Rpf ;Dq| ď ∆,

|Etyiun
i“1

rℓhingeÃ pf ;Dqs ´ Rpf ;Dq| ď ∆,

where ∆ < 1
2

řn

i<1

řn

j<1 |bipi ´ bjpj | is a problem-

dependent constant.

See Appendix A.5 for detailed proof. Theorem 3.4 shows

that ℓlogÃ pf ;Dq and ℓhingeÃ pf ;Dq are closely tied to the origi-

nal loss ℓpf ;Dq. While assuming the CPC bids are bounded

implicitly implies the eCPMs’ are also bounded, the as-

sumption is mild and does not restrict the parametric form

of the eCPMs’ distribution. While the surrogates do not

exactly match the proposed loss ℓpf ;Dq, the gap is due

to approximating the indicators in ℓpf ;Dq and cannot be

avoided.

3.2. Failure of Directly Applying Learning-to-Rank

It may be tempting to further exploit the connection be-

tween welfare and ranking over predicted eCPMs by ap-

plying a learning-to-rank loss function directly on the ob-

served eCPMs biyi. As we show below, the approach,

unfortunately, fails, as the inclusion of bids makes the

empirical observation 1tbiyi ě bjyju a poor estimate of

1tbipi ě bjpju.

Proposition 3.5. For any 1{2 ą ϵ ą 0, there exists a pair

of ads i and j such that

Prp1tbiyi ě bjyju < 1tbipi ě bjpjuq < ϵ,

where pbi, pi, yiq and pbj , pj , yjq are the CPC bids, ground-

truth CTR, and realized click indicator for the two ads.

See Appendix A.6 for detailed proof. Intuitively, the con-

struction of the counterexample in Proposition 3.5 relies

on the fact that the ground-truth eCPM of an ad increases

as its corresponding CPC bid increases, but the probability

that the ad is clicked does not. In other words, for any ad i,

the probability that biyi is non-zero does not depend on bi
while the ground-truth eCPM does, creating a discrepancy

between the ground-truth eCPM and the empirical eCPM.

We may then strategically manipulate bi to construct an

example satisfying Proposition 3.5.

Crucially, Proposition 3.5 shows that there exist pairs of ads

whose empirically observed CPM rankings agree with their

ground-truth eCPM rankings with probability arbitrarily

close to zero. Unless strong assumptions are made on the

distributions of empirically observed CPMs, it is impossible

to directly apply off-the-shelf learning-to-rank loss functions

for 1tbiyi ě bjyju.

On the other hand, (3) avoids the pitfall by weighing each

entry by pbiyi ´ bjyjq. When conditioned on any CTR pre-

diction rule fp¨q, by the linearity of expectation, we can
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see that the weight is an unbiased estimate of the difference

in ground-truth eCPM. The fact that ℓpf ;Dq is linear in

each observed eCPM biyi is crucial, as the linearity ensures

that the loss function accurately reflects the differences in

bipi, enabling us to relate the conditional risk to the actual

welfare loss and obtain theoretical guarantees without any

assumptions on the empirical eCPMs.

To the best of our knowledge, no existing works on learning-

to-rank use loss functions of this form, and our proposed

methods are uniquely capable of avoiding the challenge

highlighted by Proposition 3.5. While resembling a learning-

to-rank loss, (3) is at its core a loss function that resembles

the shape of the welfare objective in an ad auction, ensuring

that optimizing the loss is closely related to optimizing

welfare.

4. Replacing yi with Predictions from the

Teacher Model

A concern for (5) and (6) is that their variance scales with

b2i , the squared values of the CPC bids. Combined with the

noisiness of yi, the resulting loss may be overly noisy. While

the issue might be mitigated by properly pre-processing the

CPC bids, we propose a theoretically justifiable alternative

inspired by student-teacher learning (Hinton et al., 2015). In

fact, distillation loss associated with the prediction from the

teacher model is widely used in industrial-scale advertising

systems (Anil et al., 2022). This technique is shown to be

helpful for stabilizing the training and improving the pCTR

accuracy of the student model.

The idea is straightforward. Let ppp¨q be a teacher network

trained on the same dataset and we replace yi with pppxiq.

We show that doing so leads to an empirical loss that is

close to Rpf ;Dq, the conditional risk, as long as the teacher

network itself is sufficiently accurate. We begin with the

following theorem for replacing the yi’s in (3).

Theorem 4.1. Let pp be an estimate of p˚ such that

Exrppppxq ´ p˚pxqq2s ď ϵ. Let pℓpf ;Dq be (3) but with each

yi replaced by ppi < pppxiq, i.e.,

pℓpf ;Dq <
nÿ

i<1

nÿ

j<1

pbippi ´ bjppjq1tbifpxiq ě bjfpxjqu.

Assuming all bids are upperbounded by positive constant

B P Rą0, for any f P H we have

EDr|pℓpf ;Dq ´ Rpf ;Dq|s ď pn ´ 1qnB
?
ϵ

where n is the number of ads.

See Appendix A.7 for proof. As pℓpf ;Dq sums over all pairs

of ads, the bound necessarily grows in Opn2q, and the factor

can be removed if we use the average over the pairs instead.

While the teacher network may be used in ad auctions as-is,

student networks still offer several benefits in addition to

the theoretical guarantee in Theorem 4.1. First, teacher net-

works may be costly to deploy, thus student networks offer

efficiency benefits from knowledge distillation. Second, the

ranking losses may help the student network better differen-

tiate the eCPMs of pairs of ads, leading to higher welfare,

as we observe in experiments.

It is also reasonable to suggest directly learn-to-rank with

1tbipppxiq ě bjpppxjqu as the labels. However, theoretical

guarantees for the approach require additional assumptions

on the distribution of the gaps between pairs of predicted

eCPM, which is not needed for Theorem 4.1.

Recalling Theorem 3.4 and Theorem 3.4, it is not hard to

see that replacing yi with pppxiq in (5) and (6) lead to losses

that are also sufficiently close to R. We instead focus on

using the teacher network to improve calibration.

4.1. Improving Calibration with the Teacher Network

A drawback shared by (5) and (6) is that they are not cal-

ibrated. While both penalizes pCTR functions for incor-

rectly ranking pairs of ads, they also reward pCTR functions

that overestimate the margin between pairs of ads. As the

minimizers of their expected values are not necessarily the

ground-truth CTR function, using these losses may have

negative consequences on other important metrics such as

revenue or area under the curve. Fortunately, we show that

using a teacher network also improves the calibration of the

loss function. We propose the following loss function.

pℓhinge,`
Ã pf ;Dq <

nÿ

i<1

nÿ

j<1

pbippi ´ bjppjq`

ˆ p´Ãpbifpxiq ´ bjfpxjqqq`,

(7)

Intuitively, pℓhinge,`
Ã pf ;Dq no longer punishes f for having a

small margin between predicted eCPMs, as long as f ranks

the pair the same way pp does. When the teacher network

is sufficiently close to the ground-truth, the loss function

eliminates the bias that (5) and (6) have towards functions

with larger margins between pairs. Additionally, compared

to directly using ppp¨q, (7) better reflects the impact that the

pCTRs have on welfare and has theoretical guarantees in

terms of welfare performance.

We now present theoretical justification for the approach.

Recall from Vasile et al. (2017) that calibration in ad auc-

tions is defined as follows.

Definition 4.2 (Calibration). A loss function ℓ1pf ;Dq is

calibrated if its expected value EDrℓ1pf ;Dqs is minimized

by the ground-truth CTR function p˚.

Based off of Definition 4.2, we first define a slightly relaxed

6
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notion of calibration, ϵ-approximate calibration.

Definition 4.3 (ϵ-Approximate Calibration). A loss func-

tion ℓ1pf ;Dq is said to be ϵ-approximately calibrated if the

expected value of the loss achieved by the ground-truth CTR

function p˚ is at most ϵ greater than the minimum, namely

EDrℓ1pp˚;Dqs ´ min
fPH

EDrℓ1pf ;Dqs ď ϵ.

We then have the following guarantee for pℓhinge,`
Ã .

Theorem 4.4. Let pp be an estimate of p˚ such that

Erppppxq ´ p˚pxqq2s ď ϵ. Assuming all bids are upper

bounded by some B P Rą0, for any f P H we have

EDrWelfare˚pDqs
ď EDrWelfaref pDqs ` EDrpℓhinge,`Ã pf ;Dqs

` npn ´ 1q
2

Bmaxt1, ÃB ´ 1u

` npn ´ 1qÃB2
?
ϵ.

Moreover, the loss function pℓhinge,`
Ã pf ;Dq is Op?

ϵq-

approximately calibrated.

See Appendix A.8 for detailed proof. An important feature

Theorem 4.1 and Theorem 4.4 share is that they depend only

on the ℓ2 generalization error of the teacher network, and not

on the explicit parametric assumptions on the distribution of

eCPM. In other words, for any pp we can simply use off-the-

shelf results on its generalization error to show that using

the induced pℓhinge,`
Ã pf ;Dq is approximately calibrated, with

only the mild assumption that the CPC bids are bounded.

4.2. Weighing with Teacher Networks

The inclusion of the teacher network further guides us in

developing theoretically-inspired weights for the proposed

losses. The goal of the weight for the pair i, j is to mimic

the indicator product 1ti < i˚u1tj < j˚u, where i˚ <
argmaxiPrns bipi and j˚ < argmaxiPrns bjfpxjq, so that

the resulting loss better resembles the welfare suboptimality

in (2). The first indicator corresponds to the event that the

ad i has the highest ground-truth eCPM and the second

the event that the ad j has the highest predicted eCPM.

The weight should then be increasing in both bipppxiq and

bjfpxjq, with pp being the teacher network.

5. Experiments

We now demonstrate the advantages of our proposed losses

on both simulated data and the Criteo Display Advertising

Challenge dataset, a popular real-world benchmark for CTR

prediction in ad auctions. Recalling Proposition 3.3, we

use the weighted sum of the logistic loss and the proposed

ranking losses for all experiments to ensure the learned CTR

model is sufficiently close to the ground truth.

5.1. Synthetic Dataset

For the simulation setting, we assume that the ads’ features

are 50-dimensional random vectors where each component

is i.i.d. drawn from the standard normal distribution, namely

xi > N p0, I50q, where I50 denotes the 50-dimensional

identity matrix. For training, we generate 10,000 xi’s from

the N p0, I50q distribution and generate the corresponding

ground-truth CTR from a logistic model and the CPC bids

from a log-normal distribution. We then draw the click indi-

cators yi > Berppiq. We defer a more detailed description

of the data-generating process to Appendix B.

A two-layer neural network is used, where the hidden layer

has 50 nodes with ReLU activation, and the output layer

has one node with sigmoid activation. For evaluation, we

simulate 2,000 auctions with 50 ads each. The training and

evaluation processes are then repeated 30 times.

We begin by introducing the baselines we consider: logistic

loss (also referred to as cross-entropy) and two versions of

weighted logistic loss. Logistic loss is commonly used for

training models for predicting CTRs, and is used by Guo

et al. (2017); Lian et al. (2018); Chen et al. (2016) among

many other works. Existing works (Vasile et al., 2017;

Hummel and McAfee, 2017) suggest the usage of a weighed

logistic loss, with each entry weighted by the CPC bid.

Finally, Vasile et al. (2017) propose weighing the logistic

loss by the square root of the CPC bid.

We focus on three loss function representative of what we

proposed: ℓ
log
Ã<1, pℓlogÃ<1, and pℓhinge,`

Ã<1 . The first and the third

correspond to (5) and (7), respectively. The second, pℓlogÃ<1,

replaces the yi’s in ℓ
log
Ã<1 with ppi obtained from a teacher

network.

As discussed immediately after Theorem 3.2, we add binary

cross entropy loss to ℓ
log
Ã<1,

pℓlogÃ<1, and pℓhinge,`
Ã<1 and optimize

over the composite loss. Additionally, motivated by Sec-

tion 4.2, we use logistic functions to weigh each pair in
pℓhinge,`
Ã<1 and pℓlogÃ<1. Both pℓhinge,`

Ã<1 and pℓlogÃ<1 use the model

trained with logistic loss as the teacher network. We defer a

more detailed discussion to Appendix B.

As we can see from Figure 2, all three proposed pairwise

ranking losses achieve higher test time welfare than the

naive baselines. As we use the same model structure and

optimizer for all models, it is further possible that with more

careful tuning, the advantages of the pairwise ranking losses

may be more pronounced.

Student-Teacher Learning. Comparing the performance of

ℓ
log
Ã<1 and pℓlogÃ<1 shows that student-teacher learning overall

beneficial for simulated data. Moreover, while pℓhinge,`Ã<1 is

theoretically proven to be calibrated by Theorem 4.4, in the

simulated task we found that the loss does perform well

compared to other proposed methods. We conjecture that

7
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LL LL
weighed
by bi

LL
weighed

by √bi

ℓ
log
σ=1

̂ℓ
log
σ=1

̂ℓ
hinge, +
σ=1

10.400

10.425

10.450

10.475

10.500

10.525

10.550

10.575

10.600

Baseline

Proposed

Figure 2. Test welfare on simulated data (higher is better). From

left to right: (In Blue) models trained with logistic loss; logistic

loss weighted by bi (Hummel and McAfee, 2017); logistic loss

weighted by
?
bi (Vasile et al., 2017), (In Yellow) proposed ℓ

log
σ“1

indicator replaced by logistic function (defined in (5)); pℓlogσ“1 indica-

tor replaced by logistic function + student-teacher learning; pℓhinge,`
σ“1

indicator replaced by hinge function + student-teacher learning

(defined in (7)).

the relatively modest performance is due to the fact that

hinge function is not as smooth as logistic function, and

thus is not well-suited for training neural networks.

Comparison with Existing Works. The experiment results

also show that the loss functions derived in earlier works

may depend on unrealistic assumptions and may be lacking

in empirical justification, as can be seen in the performance

of both weighted logistic losses. Regardless, we have shown

that our proposed methods significantly outperform existing

baselines.

5.2. Criteo Dataset

We use the popular Criteo Display Advertising Challenge

dataset. We follow standard data preprocessing procedures

and use a standard 8-1-1 train-validation-test split commonly

found in the literature. We defer to Appendix C for a more

detailed description of the setup.

We note there are several limitations to the dataset. Firstly,

the Criteo dataset only includes ads that are shown. In an

ad auction setting, this means that all ads have won their

respective multi-slot auction. Moreover, the Criteo dataset

only includes anonymous features, which means we have no

access to key attributes such as the CPC bid or the slot for

each ad. Lastly, we do not know the specific auction each ad

belongs to. Unfortunately, these limitations are shared by all

openly available benchmarks to the best of our knowledge.

For the first limitation, we note that it is near-impossible to

learn accurate CTR models without assuming the CTRs of

the shown ads follow the same distribution as those of the

unshown ads. To handle the intrinsic bias between shown

ads and unshown ads is very challenging and out of the

scope of this paper. While the slot each ad belongs to is un-

available, as we argued previously, learning a position-based

CTR model is not the focus of this work, and here we learn

the CTR of each ad, assuming that it is assigned to the first

slot. Finally, while we do not know the exact auction round,

from Proposition 2.2, we know maximizing the welfare of

multi-slot ad auctions requires maximizing the welfare of

single-slot auctions over subsets of participating ads (given

the position multipliers are independent wrt. advertisers).

Thus, it remains viable to treat each minibatch as a specific

instance of single-slot auction.

We generate the CPC bids using the outputs from a DeepFM

model (Guo et al., 2017) with randomly initialized weights,

ensuring that the generated bids follow a log-normal distri-

bution. Particularly, let hp¨q denote a randomly initialized

DeepFM model, we set bi < exppc ¨ hpxiq ` ϵiq, with c

being a scaling factor and ϵi a Gaussian noise.

We experiment with both DeepFM (Guo et al., 2017) and

DCN (Wang et al., 2017), two popular models with great

performance on the Criteo dataset whose parameter choices

are well-documented. To ensure that our loss functions

benefit welfare holding all else constant, we did not perform

any parameter tuning or architecture search and used the

model architectures and training protocols specified in the

papers.

In this setting, we omit pℓhinge,`
Ã as it is non-smooth and

not well suited for complex neural network architectures

considered here, given our empirical study. Logistic loss is

chosen as the baseline and ℓ
log
Ã<3 and pℓlogÃ<3 are the proposed

candidates due to smoothness. Here we set Ã < 3 to better

mimic the shape of the indicator variable. We omit weighted

logistic losses proposed in Vasile et al. (2017); Hummel

and McAfee (2017) due to their poor performance on the

synthetic dataset. We compare the losses based on three

metrics: test-time welfare, area-under-curve (AUC) loss,

and logistic loss, where AUC loss is defined as 1 ´ AUC.

For both DeepFM and DCN, we repeat the following pro-

cedure 10 times. We fit the models using logistic loss and

ℓ
log
Ã<3. The model fitted using logistic loss is then used as the

teacher network, whose outputs are used to construct pℓlogÃ<3.

We then evaluate the welfare, AUC loss, and logistic loss of

the three models on the test set.

We report the welfare and AUC loss for DeepFM in Ta-

ble 1and those for DCN in Figure 3. Additional results
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DeepFM

Welfare AUC Loss
LL (baseline) 1.4448 ˘ 0.0025 0.2200 ˘ 0.0004

ℓ
log
σ“3 1.4622 ˘ 0.0021 0.2169 ˘ 0.0003

pℓlogσ“3 1.4660 ˘ 0.0022 0.2229 ˘ 0.0004

Table 1. Welfare (higher is better) and AUC loss (lower is better)

for DeepFM. Top to bottom: (Baseline) logistic loss; (Proposed)

ℓ
log
σ“3 indicator replaced by logistic function (defined in (5)); pℓlogσ

indicator replaced by logistic function + student-teacher learning.

including comparisons on the wall-clock run time can be

found in Appendix C.

LL ℓ
log
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̂ℓ
log
σ=31
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0
.2
1
8

Baseline

Proposed

Figure 3. Experimental results for DCN. Left: Welfare (higher is

better). Right: AUC loss (lower is better). For each plot, from

left to right: (Baseline, Blue) logistic loss, (Proposed, Yellow)

ℓ
log
σ“3 indicator replaced by logistic function (defined in (5)); pℓlogσ

indicator replaced by logistic function + student-teacher learning.

As we observe from Table 1 and Figure 3, the proposed

losses significantly improve test time welfare at a minimal

cost (if any) to classification performance. Moreover, the

improvement does not depend on the specific underlying

model structure, and student-teacher learning continues to

prove to be beneficial. Surprisingly, the proposed losses may

also benefit AUC, a classification metric. We conjecture the

improvement is due to the ranking loss formulation, which

forces the model to better differentiate the ads’ CTRs.

6. Conclusion and Future Work

We propose surrogates that improve welfare for ad auctions

with theoretical guarantees and good empirical performance.

We hypothesize that the improvements will be more pro-

nounced if we further tune the model architecture for the

proposed losses and we leave architecture search as a future

direction.
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A. Omitted Proofs

A.1. Proof of Proposition 2.2

In order to prove Proposition 2.2, we begin with the following lemma that reduces welfare maximization to ranking.

Lemma A.1. The function f maximizes welfare in a K-slot auction only if it Ãf pkq < Ã˚pkq for all k < 1, . . . ,K.

Proof of Lemma A.1. We begin by showing a basic fact that ads with higher ground-truth eCPM should be ranked higher.

Let 1 ď k1 ď k2 ď K be two arbitrary and fixed slots and i, j be a pair of arbitrary and fixed ads, and assume without loss

of generality that bipi ě bjpj . Immediately, we know that

³k1
´ ³k2

ě 0 bipi ´ bjpj ě 0

where the first inequality comes from the assumption that ³k is decreasing in k and k1 ď k2. The product of two nonnegative

reals is nonnegative, and therefore

p³k1
´ ³k2

qpbipi ´ bjpjq ě 0

which rearranges to

³k1
bipi ` ³k2

bjpj ě ³k1
bjpj ` ³k2

bipi.

In other words, for pair of ads pi, jq in the top k slots, if bipi ě bjpj , then ad i should be assigned to a slot that is closer to

the first. As pi < p˚pxiq, the function p˚ correctly ranks each ad and therefore achieves maximum welfare.

We now show f maximizes welfare only if Ãf pkq < Ã˚pkq for all k. Let some CTR prediction function f be arbitrary and

fixed and assume there exists some k0 where Ãf pk0q ‰ Ã˚pk0q. We can then divide the problem into two cases.

1. When bÃf pk0qpÃf pk0q does not have top K ground-truth eCPM. In other words, there is no 1 ď k ď K such that

Ãf pk0q < Ã˚pkq.

In this case, the function f has erroneously selected an ad who does not have top K ground-truth eCPM and assigned it

to the k0-th slot. Moreover, the inclusion of the ad in the K-slots must imply that one of the ads with top K ground-truth

eCPM must be omitted by f . It is easy to see that replacing ad Ãf pk0q with the ad that is erroenously left out improves

f ’s welfare.

2. When bÃf pk0qpÃf pk0q has top K ground-truth eCPM. In other words, there is some 1 ď k1 ď K such that Ãf pk0q <
Ã˚pk1q where k1 ‰ k0. The case can be further divided into two subcases.

• When k0 ă k1. In this case, the ad is ranked higher by f than it actually is. Similar to our reasoning for case

1, there must be an ad with top k0 ground-truth eCPM that is erroneously left out of top k0 by f . Switching ad

Ãf pk0q and the ad that is left out increases welfare.

• When k0 ą k1. In this case, the ad is ranked lower by f than it actually is. Therefore, there must be an ad with

lower ground-truth eCPM in front of ad Ãf pk0q, and switching the two ads also increase welfare.

As we can see, whenever Ãf and Ã˚, there is always a method to improve the welfare achieved by f . Hence, f maximizes

welfare only if Ãf pkq < Ã˚pkq for 1 ď k ď K.

We then proceed with the proof of the proposition itself.

Proof of Proposition 2.2. Let tpbi, xiquni<1 be the ads participating in the K-slot auction. Let f denote an arbitrary and

fixed CTR function. For all 1 ď k ď K ´ 1, we define the set

Sk < tpbi, xiq : bip˚pxiq ă bÃ˚pkqpÃ˚pkqu.

In other words, Sk is the set of ads whose ground-truth eCPMs are outside of top-k, excluding the ad with the k-th highest

ground-truth eCPM. With a slight abuse of notation let

S0 < tpbi, xiquni<1.

12
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Observe that f maximizes the welfare of the single-slot auction over Sk if and only if

Ãf pk ` 1q < Ã˚pk ` 1q

for all k < 1, . . . ,K ´1, as we recall the construction of Sk and Lemma A.1. Additionally, note that maximizing the welfare

of the single-slot ad auction over S0 requires Ãf p1q < Ã˚p1q. Combine both observations, we know that f maximizes the

welfare of single-slot ad auctions over S0, . . . , SK if and only if Ãf pkq < Ã˚pkq for k < 1, . . . ,K.

Additionally, we know by Lemma A.1 that f maximizes the welfare of the K-slot auction over S0 if and only if

Ãf pkq < Ã˚pkq, @ 1 ď k ď K.

The two claims are thus equivalent and we complete the proof.

A.2. Proof of Proposition 3.1

Proof. Let tpbi, xiquni<1 be arbitrary and fixed. Consider some pair pi, jq and an arbitrary, not necessarily optimal, pCTR

function f . We write out the parts of the conditional risk that depend only on the pair

pbipi ´ bjpjqp1tbifpxiq ď bjfpxjqu ´ p1 ´ 1tbifpxiq ď bjfpxjquqq
< pbipi ´ bjpjqp21tbifpxiq ď bjfpxjqu ´ 1q (8)

The conditional risk for the pair is then minimized when 1tbipi ď bjpju < 1tbifpxiq ď bjfpxjqu. By the range of

indicator variable, we know that

pbipi ´ bjpjqp21tbifpxiq ď bjfpxjqu ´ 1q ě ´|bipi ´ bjpj |.

Summing over all pairs i, j, the bound above implies

Rpf ;Dq ě ´
ÿ

i‰j

|bipi ´ bjpj |.

As we focus on the realizable setting, p˚ P H, and therefore

min
fPH

Rpf ;Dq ď Rpp˚q ď ´
ÿ

i‰j

|bipi ´ bjpj |,

which immediately implies that for any tpbi, xiquni<1,

min
fPH

Rpf ;Dq < ´
ÿ

i‰j

|bipi ´ bjpj |.

From realizability, there always exist at least one hypothesis in H that minimize the conditional risk. Moreover, as we

can see from the equation above, the ground-truth CTR function minimizes the conditional risk. Lastly, note that the

ground-truth CTR ranks every pair correctly, which then implies the minimizer of the conditional risk must also rank each

pair correctly.

A.3. Proof of Theorem 3.2

Proof. Let f P H be arbitrary and fixed. We proceed by first writing out the welfare loss in a pairwise fashion. For

convenience, let i˚ < argmaxi1Prns bi1pi1 denote the index with the highest ground-truth eCPM. For an auction with n

participants, the optimal welfare is maxi1Prns bi1pi1 , which expands to

Welfare˚pDq <
nÿ

i<1

bipi 1ti < i˚u.

Similarly, the welfare achieved by pCTR rule f expands to

Welfaref pDq <
nÿ

j<1

bjpj 1tj < j˚u,

13
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where we let j˚ < argmaxj1Prns bj1fpxj1 q. The difference between them is

Welfare˚pDq ´ Welfaref pDq <
ÿ

iPrns

ÿ

jPrns

1ti < i˚u1tj < j˚upbipi ´ bjpjq.

Since 1tj < j˚u < 1 implies bjfpxjq ě bifpxiq, the difference equals to

Welfare˚pDq ´ Welfaref pDq <
ÿ

pi,jqPrns2

1ti < i˚u1tj < j˚u1tbjfpxjq ě bifpxiqupbipi ´ bjpjq.

Consider an arbitrary and fixed unordered pair pi, jq . As the summation contains both pi, jq and pj, iq, we write out the

parts of ground-truth welfare loss that depend on only the pair,

1ti < i˚u1tj < j˚u1tbifpxiq ď bjfpxjqupbipi ´ bjpjq
` 1tj < i˚u1ti < j˚u1tbjfpxjq ď bifpxiqupbjpj ´ bipiq.

(9)

When bipi ě bjpj , the sum is upper bounded by

1ti < i˚u1tj < j˚u1tbifpxiq ď bjfpxjqupbipi ´ bjpjq ď 1tbifpxiq ď bjfpxjqupbipi ´ bjpjq.

When bjpj ě bipi, the sum is upper bounded by

1tj < i˚u1ti < j˚u1tbjfpxjq ď bifpxiqupbjpj ´ bipiq ď 1tbjfpxjq ď bifpxiqupbjpj ´ bipiq.

Combining the two halves, we know that omitting ties, (9) is upper bounded by

maxt1tbifpxiq ď bjfpxjqupbipi ´ bjpjq,1tbjfpxjq ď bifpxiqupbjpj ´ bipiqu.

Ignoring ties, we may divide the problem to four cases: when bifpxiq ą bjfpxjq and bipi ą bjpj , when bifpxiq ă bjfpxjq
and bipi ą bjpj , when bifpxiq ą bjfpxjq and bipi ă bjpj , and finally when bifpxiq ă bjfpxjq and bipi ă bjpj . We can

show that in all four cases,

maxt1tbifpxiq ď bjfpxjqupbipi ´ bjpjq,1tbjfpxjq ď bifpxiqupbjpj ´ bipiqu

< 1

2
p1tbifpxiq ď bjfpxjqupbipi ´ bjpjq ` 1tbjfpxjq ď bifpxiqupbjpj ´ bipiq ` |bipi ´ bjpj |q.

Summing over all pi, jq P rns2 and dividing by two shows

Welfare˚pDq ´ Welfaref pDq ď 1

2
Rpf ;Dq ` 1

4

ÿ

pi,jqPrns2

|bipi ´ bjpj |.

Rearranging the terms gives us

Welfaref pDq ě ´1

2
Rpf ;Dq ` Welfare˚pDq ´ 1

4

ÿ

pi,jqPrns2

|bipi ´ bjpj |.

Notice that the term Welfare˚pDq ´ 1
4

ř
pi,jqPrns |bipi ´ bjpj | is independent of f . Thus, we have shown that the conditional

risk lower bounds Welfaref up to some problem dependent constants and scaling.

Recall from Appendix A.2 minfPH Rpf ;Dq < ´ 1
2

řn

i<1

řn

j<1 |bipi ´ bjpj |. Let pf be an arbitrary minimizer of Rpf ;Dq
and we know

Welfare pf pDq ě ´1

2
Rp pf ;Dq ` Welfare˚pDq ´ 1

4

nÿ

i<1

nÿ

j<1

|bipi ´ bjpj | < Welfare˚pDq.

Recall that Welfare˚pDq is the maximum welfare achievable by definition. Thus the inequality is tight for any maximizer of

Rpf ;Dq.

14
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A.4. Proof of Proposition 3.3

Proof. We begin by showing p˚ is a minimizer of EDrℓpf ;Dq `¼hpf ;Dqs. By Proposition 3.1, we know that p˚ minimizes

Rpf ;Dq for all D and therefore, p˚ minimizes Erℓpf ;Dqs by extension. The claim then easily hold.

We then show that p˚ is unique. Let f 1 ‰ p˚ be arbitrary and fixed. Because p˚ is the unique minimizer of EDrhpf ;Dqs

EDrhpf 1;Dqs ą EDrhpp˚;Dqs,

and we emphasize that the inequality is strict. Moreover, because p˚ is the minimizer of Rpf ;Dq for all D,

EDrℓpf 1;Dqs ě EDrℓpp˚;Dqs.

As ¼ ą 0, we know p˚

EDrℓpf 1;Dq ` ¼hpf 1;Dqs ą EDrℓpp˚;Dq ` ¼hpp˚;Dqs
and hence p˚ is the unique minimizer.

A.5. Proof of Theorem 3.4

We first show the claim holds for ℓlogÃ pf ;Dq.

Proof for ℓlogÃ pf ;Dq. Consider an arbitrary pair pi, jq. For simplicity, let ∆ij < bipi ´ bjpj and ∆
f
ij < bifpxiq ´ bjfpxjq.

We begin by writing out the parts of ℓlogÃ pfq and ℓpfq that depend only on the pair pi, jq, which are

∆ij logp1 ` expp´Ã∆
f
ijqq ´ ∆ij logp1 ` exppÃ∆f

ijqq (10)

and

´∆ij 1t∆f
ij ě 0u ` ∆ij 1t∆f

ij ď 0u, (11)

respectively. Without loss of generality we assume throughout the rest of this proof that ∆
f
ij ě 0 and know that

(10) ´ (11) < ∆ij

´
logp1 ` expp´Ã∆

f
ijqq ´ logp1 ` exppÃ∆f

ijqq ` 1
¯
,

which in turn implies

|(10) ´ (11)| ď |∆ij |
ˇ̌
ˇlogp1 ` expp´Ã∆

f
ijqq ´ logp1 ` exppÃ∆f

ijqq ` 1
ˇ̌
ˇ .

We now focus on the function gpxq < logp1 ` expp´Ãxqq ´ logp1 ` exppÃxqq ` 1. We quickly note that the function is

monotonically decreasing in x and hence

sup
xPr0,Bs

|gpxq| ď maxt1, | logp1 ` expp´ÃBqq ´ logp1 ` exppÃBqq ` 1|u

Since Ã,B ą 0, we always have logp1 ` exppÃBqq ´ logp1 ` expp´ÃBqq ě 0. Divide the problem to two cases.

1. When logp1 ` exppÃBqq ´ logp1 ` expp´ÃBqq P r0, 2q. In this case we always have

| logp1 ` expp´ÃBqq ´ logp1 ` exppÃBqq ` 1|
< |1 ´ plogp1 ` exppÃBqq ´ logp1 ` expp´ÃBqqq|
ď 1

and thus |gpxq| ď 1 for all x P r0, Bs.

2. When logp1 ` exppÃBqq ´ logp1 ` expp´ÃBqq ě 2, we have

sup
xPr0,Bs

|gpxq| < logp1 ` exppÃBqq ´ logp1 ` expp´ÃBqq ´ 1.

15
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Combine the two cases above, and we have for all x P r0, Bs, gpxq ď maxt1, logp1`exppÃBq ´ logp1`expp´ÃBqq ´1u.

Recall that all bids are upper bounded by B and f : X Ñ r0, 1s, and we know ∆
f
ij P r0, Bs under our assumption. Therefore,

for any arbitrary pair pi, jq we always have

(10) ´ (11) ď ∆ij

´
logp1 ` expp´Ã∆

f
ijqq ´ logp1 ` exppÃ∆f

ijqq ` 1
¯

ď |∆ij |maxt1, logp1 ` exppÃBqq ´ logp1 ` expp´ÃBqq ´ 1u,

and summing the equation over all
npn´1q

2
unique pairs gives us

|ℓlogÃ pfq ´ ℓpfq| ď 1

2
maxt1, logp1 ` exppÃBqq ´ logp1 ` expp´ÃBqq ´ 1u

nÿ

i<1

nÿ

j<1

|bipi ´ bjpj |.

Finally, rearrange the term logp1 ` exppÃBqq ´ logp1 ` expp´ÃBqq and we have the equation

log

ˆ
1 ` exppÃBq
1 ` expp´ÃBq

˙
< 2,

which solves to ÃB < 2, namely Ã < 2{B.

The proof for ℓhingeÃ pf ;Dq is similar.

Proof for ℓhingeÃ pf ;Dq. Consider an arbitrary pair pi, jq. For simplicity, let ∆ij < bipi ´bjpj and ∆
f
ij < bifpxiq´bjfpxjq.

We begin by writing out the parts of ℓhingeÃ pfq that depend only on the pair pi, jq, which are

∆ijp´Ã∆
f
ijq` ´ ∆ijpÃ∆f

ijq` (12)

and recall from (11) that the corresponding part of ℓpfq is

´∆ij 1t∆f
ij ě 0u ` ∆ij 1t∆f

ij ď 0u.

Without loss of generality we assume that ∆
f
ij ě 0 and know that

(12) ´ (11) < ∆ij

´
p´Ã∆

f
ijq` ´ pÃ∆f

ijq` ` 1
¯

< ∆ij

´
1 ´ Ã∆

f
ij

¯
.

Recall that ∆
f
ij P r0, Bs. Therefore, for any arbitrary pair pi, jq we always have

|(12) ´ (11)| ď |∆ij |
ˇ̌
ˇ1 ´ Ã∆

f
ij

ˇ̌
ˇ ď |∆ij |maxt1, 1 ´ ÃBu

and summing the equation over all
npn´1q

2
unique pairs and applying triangle inequality gives us

|ℓlogÃ pfq ´ ℓpfq| ď 1

2
maxt1, ÃB ´ 1u

nÿ

i<1

nÿ

j<1

|bipi ´ bjpj |.

Setting Ã < 2{B completes the proof.

A.6. Proof of Proposition 3.5

Proof. Without loss of generality we restrict our focus to a pair of ads i, j where bipi ě bjpj . We then know that

Prp1tbiyi ě bjyju ‰ 1tbipi ě bjpjuq < Prpbiyi ď bjyjq
< Prpyi < 0 ^ yj < 1q < p1 ´ piqpj .

Set pj < 1 ´ 1
2
ϵ and pi < 1 ´ ϵ

pj
. We first verify that pi, pj P p0, 1q.
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• For pj , because ϵ P
`
0, 1

2

˘
, pj P

`
3
4
, 1

˘
and is valid.

• For pi, because pj P
`
3
4
, 1

˘
, ϵ
pj

P
`
ϵ, 4

3
ϵ
˘

Ă
`
0, 2

3

˘
, which in turn shows pi P p0, 1q and is valid.

Moreover, plug in the choices of pi, pj and we have

Prp1tbiyi ě bjyju < 1tbipi ě bjpjuq < 1 ´ p1 ´ piqpj < 1 ´ p1 ´ ϵq < ϵ,

which is exactly what we wanted.

Lastly, we note that setting bi < 2C
pi
, bj < C

pj
ensures that bipi ě bjpj for any C P Rą0.

A.7. Proof of Theorem 4.1

Proof. Let D be an arbitrary and fixed dataset. We drop the notation D for the rest of the proof. Consider some pair pi, jq
and an arbitrary, not necessarily optimal, pCTR function f . We write out the parts of the conditional risk Rpf ;Dq that

depend only on the pair,

´pbip˚pxiq ´ bjp
˚pxjqq1tbifpxiq ą bjfpxjqu ´ pbjp˚pxjq ´ bip

˚pxiqq1tbjfpxjq ą bifpxiqu.

Similarly, the parts of pℓpfq that depend only on the pair pi, jq is

´pbipppxiq ´ bjpppxjqq1tbifpxiq ą bjfpxjqu ´ pbjpppxjq ´ bipppxiqq1tbjfpxjq ą bifpxiqu.

Omitting ties, we know one and exactly one of 1tbifpxiq ą bjfpxjqu and 1tbjfpxjq ą bifpxiqu is non-zero. Without loss

of generality we assume bifpxiq ą bjfpxjq. The absolute value of the difference between the two pairs is then

|bipppxiq ´ bjpppxjq ´ bip
˚pxiq ´ bjp

˚pxjq| ď bi|pppxiq ´ p˚pxiq| ` bj |pppxjq ´ p˚pxjq|
ď B|pppxiq ´ p˚pxiq| ` B|pppxjq ´ p˚pxjq|,

where for the second inequality we use the assumption that all bids are upperbounded by B. Summing the inequality above

over all
npn´1q

2
pairs gives us

EDr|pℓpfq ´ Rpf ;Dq|s ď npn ´ 1qBExi
r|pppxiq ´ p˚pxiq|s ď npn ´ 1qB

?
ϵ,

where we use Jensen’s inequality for the second inequality, completing the proof.

A.8. Proof of Theorem 4.4

We begin with a slight detour and first prove the following mathematical proposition.

Proposition A.2. For any pair of real numbers a, b P R, we have the following

|a` ´ b`| ` |p´aq` ´ p´bq`| < |a ´ b|.

Proof. We divide the proposition into four cases.

• When a ě 0, b ě 0. In this case left-hand side evaluates to |a ´ b| and the equation holds.

• When a ă 0, b ě 0. In this case left-hand side evaluates to |b| ` |a| < b ´ a < |a ´ b| and the equation holds.

• When a ě 0, b ă 0. In this case left-hand side evaluates to |a| ` |b| < a ´ b < |a ´ b| and the equation holds.

• When a ă 0, b ă 0. In this case left-hand side evaluates to | ´ a ´ p´bq| < |a ´ b| and the equation holds.
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We also make use of the following helper function. Let

ℓ`pf ;Dq <
nÿ

i<1

nÿ

j<1

pbipi ´ bjpjq` 1tbifpxiq ď bjfpxjqu. (13)

At a high level, ℓ`pf ;Dq is the version of ℓpf ;Dq when we know exactly what p˚p¨q is. The loss function is, unfortunately,

difficult to estimate (recall Proposition 3.5), but remains tightly related to welfare. We have the following proposition, which

remains useful for the rest of the section.

Proposition A.3. We have the following inequality for all f P H and D

Welfaref pDq ě Welfare˚pDq ´ ℓ`pf ;Dq.

Moreover, the inequality is tight for any minimizer of ℓ`pf ;Dq.

Proof. The proof is nearly the same as that of Theorem 3.2, which we provided in Appendix A.3. We detail the proof below

for completeness.

Condition on an arbitrary and unordered pair of indices pi, jq and assume without loss of generality that bipi ě bjpj . The

parts of ℓ`pf ;Dq that depend only on the pair

pbipi ´ bjpjq` 1tbifpxiq ď bjfpxjqu ` pbjpj ´ bipiq` 1tbjfpxjq ď bifpxiqu < pbipi ´ bjpjq1tbifpxiq ď bjfpxjqu.
(14)

Recalling (9), the welfare suboptimality induced by the pair is exactly

pbipi ´ bjpjq1ti < i˚u1tj < j˚u1tbifpxiq ď bjfpxjqu, (15)

where we note the assumption that bipi ě bjpj implies j ‰ i˚, where we recall i˚ < argmaxi1Prns bi1pi1 . Immediately we

note that

(15) ď (14) ď (15) ` pbipi ´ bjpjq`.

Particularly (14) < (15), when bifpxiq ě bjfpxjq. We then sum over all pairs of pi, jq and know that

Welfare˚pDq ´ Welfaref pDq ď ℓ`pf ;Dq. (16)

and the inequality is tight when bifpxiq ě bjfpxjq whenever bipi ě bjpj . Since p˚ P H, it is possible to exactly minimize

ℓ`pf ;Dq for all D, thus any minimizer of ℓ`pf ;Dq must rank each pair correctly. Therefore, the inequality is tight for any

minimizer of ℓ`pf ;Dq for any D.

We now proceed with the proof of Theorem 4.4 itself.

Proof of Theorem 4.4. Consider an arbitrary pair pi, jq. For simplicity, let ∆ij < bipi ´ bjpj , p∆ij < bi ppi ´ bj ppj , and

∆
f
ij < bifpxiq ´ bjfpxjq. We begin by writing out the part of pℓhinge,`Ã pf ;Dq that depend only on the pair pi, jq

p p∆ijq`p´Ã∆
f
ijq` ` p´ p∆ijq`pÃ∆f

ijq`. (17)

We also introduce the loss function

ℓhinge,`Ã pf ;Dq <
nÿ

i<1

nÿ

j<1

p∆ijq`p´Ã∆
f
ijq`,

and the part that corresponds to the pair pi, jq would be

p∆ijq`p´Ã∆
f
ijq` ` p´∆ijq`pÃ∆f

ijq`. (18)
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We then know

|(17) ´ (18)| < |p´Ã∆
f
ijq`pp p∆ijq` ´ p∆ijq`q ` pÃ∆f

ijq`pp´ p∆ijq` ´ p´∆ijq`q|
ď maxtp´Ã∆

f
ijq`, pÃ∆f

ijq`up|p p∆ijq` ´ p∆ijq`| ` |p´ p∆ijq` ´ p´∆ijq`|q
< maxtp´Ã∆

f
ijq`, pÃ∆f

ijq`u| p∆ij ´ ∆ij |
ď ÃB| p∆ij ´ ∆ij |,

where for the second equality we use Proposition A.2 and the last inequality the fact that the bids are bounded by B. As

Erppppxq ´ p˚pxqq2s ď ϵ,

Erp p∆ij ´ ∆ijq2s ď 2Erpbipi ´ bipppxiqq2s ` 2Erpbjpj ´ bjpppxjqq2s
ď 2B2

Erppppxq ´ p˚pxqq2s ` 2B2
Erppppxq ´ p˚pxqq2s ď 4B2ϵ

where for the first inequality we recall the fact that pa ` bq2 ď 2a2 ` 2b2. By Jensen’s inequality, we know

Er| p∆ij ´ ∆ij |s ď 2B
?
ϵ.

Summing over all unique pairs of pi, jq and we know for any f

EDr|pℓhinge,`Ã pf ;Dq ´ ℓhinge,`Ã pf ;Dq|s ď npn ´ 1qÃB2
?
ϵ. (19)

We then control Er|ℓhinge,`pfq ´ ℓ`pfq|s similar to how we proved Theorem 3.4. Without loss of generality we assume

that ∆ij ě 0 and have

(18) ´ (14) < ∆ijpp´Ã∆
f
ijq` ´ 1q

and therefore

|(18) ´ (14)| ď |∆ij ||p´Ã∆
f
ijq` ´ 1| ď |bipi ´ bjpj |maxt1, ÃB ´ 1u.

Summing the inequality across all pairs gives us

|ℓhinge,`Ã pf ;Dq ´ ℓ`fp;Dq| ď 1

2
maxt1, ÃB ´ 1u

nÿ

i<1

nÿ

j<1

|bipi ´ bjpj |

ď npn ´ 1q
2

maxt1, ÃB ´ 1uB.

Taking the expectation over D and applying Jensen’s inequality, we then know that

EDr|pℓhinge,`Ã pf ;Dq ´ ℓ`pf ;Dq|s ď npn ´ 1qB
2

p2
?
ϵ ` maxt1, ÃB ´ 1uq.

By Proposition A.3, we then know for any f P H

EDrWelfaref pDqs ě EDrWelfare˚pDqs ´ EDrpℓhinge,`Ã pf ;Dqs ´ npn ´ 1qÃB2
?
ϵ ´ npn ´ 1q

2
Bmaxt1, ÃB ´ 1u.

We now show that p˚’s suboptimality tends to 0 as ϵ goes to 0. Recall the definition of ℓhinge,`Ã pf ;Dq, we have

ℓhinge,`Ã pp˚;Dq <
nÿ

i<1

nÿ

j<1

p∆ijq`p´Ã∆ijq` < 0.

Plug the result back to (19), and we know

EDrpℓhinge,`Ã pp˚;Dqs ď npn ´ 1qÃB2
?
ϵ.
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Since pℓhinge,`Ã pf ;Dq ě 0 for any f P H and D, we have

EDrpℓhinge,`Ã pp˚;Dq ´ min
f

pℓhinge,`Ã pf ;Dqs ď npn ´ 1qÃB2
?
ϵ.

Since minf EDrpℓhinge,`Ã pf ;Dqs ď EDrminf pℓhinge,`Ã pf ;Dqs, we know that

EDrpℓhinge,`Ã pp˚;Dqs ´ min
f

EDrpℓhinge,`Ã pf ;Dqs ď npn ´ 1qÃB2
?
ϵ

and the loss is Op?
ϵq-approximately calibrated.

B. Detailed Description for Experiments on Synthetic Dataset

Here we include a detailed discussion on how we conducted the experiments on synthetic data.

Data Generating Process. To generate the ground-truth CTRs, we draw a weight vector wp P R
50 where each entry

is follows a Unifp´
?
10,

?
10q distribution. We use a logistic model and set pi < 1

1`exppwT
p xiq`ÀCTR

i

, where ÀCTR is a

random noise following N p0, 0.12q.

Similarly, in order to generate the bids, we draw a weight vector wb P R
50 where each entry is drawn from Unifp´2, 2q.

Inspired by the empirical observations made in Vasile et al. (2017), we assume the CPC bids, when conditioned on the

feature xi, follow a log-normal distribution and set bi < exppwT
b xi ` Àbidi q where Àbidi > Np0, 0.12q. The choice of

parameters avoids overflowing due to the exponential term used for generating the bids.

We visualize in Figure 4 the distribution of the CTRs and CPC bids generated when ÃCTR < 0.1 as a sanity check. We can

verify that the generated CTRs is unimodal and centered around 0.5, and hence does not follow a degenerate distribution. The

distribution of the generated CPC bids roughly follows a log-normal distribution, agreeing with the empirical observations

made in Vasile et al. (2017).
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Figure 4. Distribution of the Generated CTR and CPC.

Training. We used Adam with default parameters. Batch size is set to 256. All models are trained till convergence.

Baselines. We use the logistic loss ℓLL and weighted logistic loss ℓWLL as baselines. Particularly, for any function f and

advertisement ppbi, xiq, yiq, the logistic loss is

ℓLLpfpxiq, yiq < ´pyi logpfpxiqq ` p1 ´ yiq logp1 ´ fpxiqqq
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and the weighted logistic loss is

ℓWLLpfpxiq, yi, biq < ´bipyi logpfpxiqq ` p1 ´ yiq logp1 ´ fpxiqqq.

Summing them over all ppbi, xiq, yiq P D yields the empirical loss.

Proposed Losses. We begin by introducing the version of ℓlogÃ we used for the experiment setting, ℓ
log
Ã<1.

ℓ
log
Ã<1pf ;Dq <

nÿ

i<1

nÿ

j<1

pbiyi ´ bjyjq logp1 ` expp´pbifpxiq ´ bjfpxjqqqq ` 3

nÿ

i<1

ℓLLpfpxiq, yiq.

Intuitively, one can view ℓLLpfpxiq, yiq as a regularizer, avoiding the loss function to place too much emphasis on minimizing

the ranking loss, and ensures our model can still adequately predict the CTRs. Similar to our choice of Ã < 1, choosing 3 as

the regularization strength of ℓ is arbitrary and we did not optimize over the space of possible regularization strengths.

We then write out the version of pℓhinge,`
Ã we employ, which, in addition to a logistic loss function as a regularizer, also uses

logistic functions to weigh each pair. More formally, we have

pℓhinge,`
Ã<1 pf ;Dq <

nÿ

i<1

nÿ

j<1

1

1 ` expp´3bipppxiqq
1

1 ` expp´3bjfpxjqq pbippi ´ bjppjq`p´pbifpxiq ´ bjfpxjqqq`

` 3

nÿ

i<1

ℓLLpfpxiq, yiq.

Particularly, here we use 1
1`expp´3bi pppxiqq as a proxy to 1ti < i˚u, which we recall indicates whether the i-th ad has the

highest ground-truth eCPM or not. Similarly, 1
1`expp´3bjfpxjqq is the proxy to 1tj < j˚u. The choice to multiply bipppxiq

by 3 in the denominator is ad hoc and arbitrary. We did not tune over the space of possible indicators and leave a rigorous

treatise of the parameter choice, under additional assumptions on the eCPMs’ distribution, as an interesting future direction.

Finally, we write out pℓlogÃ<1pf ;Dq, which uses the same weighing scheme used in pℓhinge,`
Ã<1 pf ;Dq. We have

pℓlogÃ<1pf ;Dq <
nÿ

i<1

nÿ

j<1

1

1 ` expp´3bipppxiqq
1

1 ` expp´3bjfpxjqq pbipppxiq ´ bjpppxjqq logp1 ` expp´pbifpxiq ´ bjfpxjqqqq

` 3

nÿ

i<1

ℓLLpfpxiq, yiq.

For pℓhinge,`Ã<1 pf ;Dq and pℓlogÃ<1pf ;Dq, the plug-in estimator ppp¨q is model trained with logistic loss. We train on the baseline

losses first, and then use the model outputs as the plug-in estimates for pℓhinge,`Ã<1 pf ;Dq and pℓlogÃ<1pf ;Dq.

Evaluation. As we know the exact CTR for each advertisement, we can directly calculate the social welfare achieved by

the model trained with each of the five losses. For each model, we first pick out the ad with the highest predicted eCPM for

each of the 2000 randomly generated auctions. We then calculate the actual CPM of the selected ad and record it as the

social welfare achieved on that particular round of auction.

Calculating the Standard Error. Since the bulk of the randomness in test time social welfare lies in the data generation

process, reporting the standard error of each model’s average test time social welfare would not be informative, as the data

generating process’ noise dominates. We instead report the standard error of the difference between the particular model’s

social welfare and that of the average social welfare across the 5 models. The difference term is then able to account for the

randomness within the data generating process, and we are measuring the standard error of the comparative performance of

each model.
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C. Detailed Description of Experiments on Criteo Dataset

Data Preprocessing. A standard practice is to preprocess the Criteo dataset using the approach used by the winners of

the Criteo Display Advertising Challenge2 (Chen et al., 2016; Guo et al., 2017; Lian et al., 2018; Cheng et al., 2016). The

Criteo data contains 13 numerical feature columns with positive integer observations and we replace all observations with

value greater than 2 with its log instead, namely

fpxq <
#
x if x ď 2

tlog2pxqu otherwise
.

For the remaining 26 categorical features, we replace the values that appear less than 10 times with a special value. We also

use a 8-1-1 train-validation-test split, commonly used by existing works.

Model Implementation. To ensure our results can be easily reproduced, we use the open source implementation found in

the DeepCTR package for both DeepFM and Deep & Cross Network (Shen, 2017).

Bid Generation. We use the DeepFM implementation found in Shen (2017) with default parameters. Each categorical

variable is cast to a 4 dimensional embedding. The weights are initialized randomly. The deep network has 3 hidden layers

with decreasing size, consisting of 256, 128, and 64 nodes each. ReLU activation is used for all layers save for the output

layer, which uses a sigmoid activation function. The processed data is then fed into the network and then re-scaled to the

range r0, 1s (otherwise the outputs are too close to zero). We then add a N p0, 0.12q random noise and take the exponential

over the scores. Letting x denote the feature, we use

bi < exppc ¨ fpxiq ` Àbidi q
as the CPC bids, where c is a scaling constant ensuring cfpxiq P r0, 1s and Àbidi > N p0, 1q.

Choice of Loss Functions. We begin by introducing the version of ℓlogÃ used for the Criteo experiments, ℓ
log
Ã<3.

ℓ
log
Ã<3pf ;Dq <

nÿ

i<1

nÿ

j<1

1

1 ` expp´3bipppxiqq
1

1 ` expp´3bjfpxjqq pbiyi ´ bjyjq logp1 ` expp´3pbifpxiq ´ bjfpxjqqqq

` ¼

nÿ

i<1

ℓLLpfpxiq, yiq.

Compared to the version used for the simulation studies, for the Criteo simulations we further incorporate the weighing

schemes discussed in Section 4.2. The value of Ã is also adjusted slightly to better approximate the indicator function on the

range of eCPMs in our setting.

The version of pℓlogÃ used is defined as follows. We have

pℓlogÃ<3pf ;Dq <
nÿ

i<1

nÿ

j<1

1

1 ` expp´3bipppxiqq
1

1 ` expp´3bjfpxjqq pbipppxiq ´ bjpppxjqq logp1 ` expp´3pbifpxiq ´ bjfpxjqqqq

` ¼

nÿ

i<1

ℓLLpfpxiq, yiq,

and we slightly adjusted the choice of Ã.

We perform a grid search to adjust the value of ¼ over the set t0.1, 1, 3, 5, 10u based on the welfare, AUC loss, and logistic

loss achieved by the different choices. We set ¼ < 3 for both DeepFM and DCN as the choice achieves significant increases

in welfare with minor impact on AUC loss and logistic loss for both ℓ
log
Ã<3 and pℓlogÃ<3.

Evaluation. We take the test set and partition it into auctions with 256 bidders each. We use the models trained on the

three losses to determine the winner of each auction, and record the realized eCPM (the observed biyi’s) as the welfare

of the auction. As the ground-truth CTR of the ads are unknown, we are forced to use the realized eCPM as proxies for

measuring welfare.

2https://www.csie.ntu.edu.tw/˜r01922136/kaggle-2014-criteo.pdf
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Parameter Settings for DeepFM. We follow the optimal parameters specified in Guo et al. (2017) and construct a

DeepFM with 3 hidden layers, each with 400 nodes using ReLU activation. Embedding dimension for the categorial

variables is set to 10. Dropout rate is set to 0.5. For optimizing the model we used Adam with default parameters and set

batch size to 256. The model is trained for 3 epochs.

Parameter Settings for DCN. We use the parameters set in Wang et al. (2017) and construct a DCN with 2 hidden layers,

each with 1024 nodes using ReLU activation. Batch normalization is applied to the network and the number of cross layers

is set to 6. For the categorical features, we set the dimensionality of the embedding as 6 ˆ pfeature cardinalityq1{4. For

optimizing the model we used Adam and set the batch size to 512. The model is trained for 150,000 steps.

Additional Experimental Results. We plot DeepFM’s welfare, AUC loss, and logistic loss in Figure 5.
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Figure 5. Detailed Performance Metrics for DeepFM. Left: Welfare (higher is better). Center: AUC loss (lower is better). Right:

Logistic loss (lower is better). FFor each plot, from left to right: (baselines, blue) logistic loss, (proposed, yellow) ℓ
log
σ“3 (defined in (5)),

and pℓlogσ ((5) with yi’s replaced by outputs from teacher network).

We also plot DCN’s welfare, AUC loss, and logistic loss in Figure 6.
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Figure 6. Detailed Performance Metrics for DCN. Left: Welfare (higher is better). Center: AUC loss (lower is better). Right: Logistic

loss (lower is better). For each plot, from left to right: (baselines, blue) logistic loss, (proposed, yellow) ℓ
log
σ“3 (defined in (5)), and pℓlogσ

((5) with yi’s replaced by outputs from teacher network).

The exact values of the metrics and the associated standard errors for DeepFM can be found in Table 2. The exact values of

the metrics and the associated standard errors for DCN can be found in Table 3.
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DeepFM

Welfare AUC Loss Logloss

Logistic Loss 1.4448 ˘ 0.0025 0.2200 ˘ 0.0004 0.4706 ˘ 0.0005

ℓ
log
σ“3 1.4622 ˘ 0.0021 0.2169 ˘ 0.0003 0.4723 ˘ 0.0009

pℓlog
σ“3 1.4660 ˘ 0.0022 0.2229 ˘ 0.0004 0.4795 ˘ 0.0009

Table 2. Results for DeepFM.

DCN

Welfare AUC Loss Logloss

Logistic Loss 1.4622 ˘ 0.0026 0.2173 ˘ 0.0004 0.4840 ˘ 0.0015

ℓ
log
σ“3 1.4663 ˘ 0.0028 0.2146 ˘ 0.0005 0.4934 ˘ 0.0020

pℓlog
σ“3 1.4650 ˘ 0.0027 0.2115 ˘ 0.0007 0.4922 ˘ 0.0048

Table 3. Results for DCN.

As we can see from the results, the proposed methods significantly improve welfare at a minimal cost (if any) to AUC loss.

While logistic loss seems to be negatively affected, the impact is relatively small and we conjecture that better tuning the

model architecture could resolve the issue.

Finally, we report below the per epoch runtime of the methods.

DCN

Logloss Pairwise Loss (ℓ
log
σ“3) Pairwise Loss + Student-Teacher (pℓlog

σ“3)

Absolute 2635.13 ˘ 10.86 2700.87 ˘ 8.91 2700.4 ˘ 6.59

Relative 100% 102.5% 102.5%

Table 4. Runtime (in seconds) comparison for DCN. We take the average over 15 epochs and report the standard deviation.

These results show that for the more complex DCN model the added cost of the pairwise losses is relatively negligible. For

DeepFM, the added computation cost is around 2.5% (60 seconds), which is a reasonable price to pay for significantly

improved welfare performance. It is possible that our implementation of the loss is not the most efficient, and additional

optimizations may further decrease the overhead.
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DCN

Logloss Pairwise Loss (ℓ
log
σ“3) Pairwise Loss + Student-Teacher (pℓlog

σ“3)

Absolute 5292.2 ˘ 57.39 5333.67 ˘ 56.62 5330 ˘ 48.11

Relative 100% 100.8% 100.7%

Table 5. Runtime (in seconds) comparison for DCN. We take the average over 15 epochs and report the standard deviation.
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