
Certified Unlearning for Neural Networks

Anastasia Koloskova * 1 Youssef Allouah * 2 Animesh Jha 1 Rachid Guerraoui 2 Sanmi Koyejo 1

Abstract

We address the problem of machine unlearning,

where the goal is to remove the influence of

specific training data from a model upon request,

motivated by privacy concerns and regulatory

requirements such as the “right to be forgot-

ten.” Unfortunately, existing methods rely on

restrictive assumptions or lack formal guarantees.

To this end, we propose a novel method for

certified machine unlearning, leveraging the

connection between unlearning and privacy

amplification by stochastic post-processing. Our

method uses noisy fine-tuning on the retain data,

i.e., data that does not need to be removed, to

ensure provable unlearning guarantees. This

approach requires no assumptions about the

underlying loss function, making it broadly

applicable across diverse settings. We analyze

the theoretical trade-offs in efficiency and

accuracy and demonstrate empirically that our

method not only achieves formal unlearning

guarantees but also performs effectively in

practice, outperforming existing baselines. Our

code is available at https://github.com/
stair-lab/certified-unlearning-

neural-networks-icml-2025

1. Introduction

Machine unlearning—the process of removing the influ-

ence of specific training data from a model—has become an

increasingly important challenge in modern machine learn-

ing (Nguyen et al., 2022). With the widespread adoption of

deep learning in fields such as healthcare, natural language

processing, and computer vision, concerns over data privacy,

security, and control have grown significantly. In particular,

regulatory frameworks like the General Data Protection Reg-
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ulation (GDPR) of the European Union (Voigt & Von dem

Bussche, 2017) enforce the “right to be forgotten”, requir-

ing organizations to delete user data upon request. However,

simply removing data from storage is insufficient if the in-

formation remains embedded in a trained model. This has

led to the growing interest in unlearning techniques, which

seek to eliminate the influence of specific data points while

preserving the overall utility of the model. Achieving ef-

ficient and reliable unlearning is particularly challenging

when working with large-scale neural networks, where full

retraining from scratch is computationally prohibitive.

The idea of machine unlearning dates back to Cao &

Yang (2015) and has since inspired a range of approaches.

Broadly, unlearning techniques fall into two categories: ex-

act unlearning, which aims to completely erase the influ-

ence of specific data points, and approximate unlearning,

which seeks a computationally efficient but approximate

removal of information. While exact unlearning offers the

strongest theoretical guarantees, it is rarely practical for

large-scale models or frequent unlearning requests due to its

prohibitive computational costs (Ginart et al., 2019; Bour-

toule et al., 2021). As a result, many existing methods

adopt relaxed guarantees, but these often come with sig-

nificant trade-offs. For instance, some approaches rely on

restrictive assumptions about loss functions, such as convex

linear models (Guo et al., 2020), while others lack rigorous

theoretical guarantees (Graves et al., 2021; Kurmanji et al.,

2024) or require extensive retraining (Bourtoule et al., 2021).

One common heuristic method is fine-tuning on retained

data, and potentially gradient ascent on the forget data, to

induce catastrophic forgetting in the affected parts of the

model (Triantafillou et al., 2024). While this technique has

shown promise in reducing the retained influence of forgot-

ten data, it does not inherently provide certifiable guarantees

of unlearning, leaving open questions about its reliability in

privacy-sensitive applications.

To address these limitations, we propose a new approxi-

mate unlearning framework that builds on the concept of

privacy amplification by stochastic post-processing (Balle

et al., 2019). Our method leverages noisy fine-tuning on

retained data to enforce provable unlearning guarantees

while maintaining computational efficiency. Unlike exist-

ing approaches, our framework does not impose restrictive

assumptions on the loss function, making it particularly
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well-suited for non-convex optimization problems such as

deep learning. We interpret each noisy fine-tuning step as

a form of stochastic post-processing, ensuring that privacy

improves progressively with each iteration while balanc-

ing the trade-offs between accuracy and computational cost.

Through rigorous theoretical analysis and extensive empir-

ical validation, we demonstrate that our method provides

both formal guarantees and strong practical performance,

making it a viable solution for real-world machine learning

applications where frequent unlearning requests must be

handled efficiently.

Our key contributions can be summarized as follows:

• A novel certified unlearning method that integrates noisy

fine-tuning with privacy amplification by stochastic post-

processing, offering a principled approach to approxi-

mate unlearning.

• Rigorous unlearning guarantees that do not depend on

restrictive assumptions such as loss function smoothness,

making the method applicable to a broad range of models,

including deep neural networks.

• Empirical validation in deep learning applications,

demonstrating that our approach not only meets formal

unlearning guarantees but also surpasses existing base-

lines in performance and model utility.

1.1. Related Work

Amplification by post-processing. Our approach is

inspired by privacy amplification via stochastic post-

processing, a concept in differential privacy where random-

ized transformations that do not use private data enhance

privacy guarantees. The foundational work of Feldman

et al. (2018) introduced privacy amplification by iteration,

demonstrating that when training with differentially private

stochastic gradient descent (DP-SGD) on convex objectives,

the privacy of an unused training sample improves with the

number of optimization steps. Balle et al. (2019) extended

this result, refining the analysis of amplification by iteration

and introducing amplification by mixing, which establishes

that privacy is further strengthened when applying a Markov

kernel satisfying specific mixing conditions. Subsequent

work by Asoodeh et al. (2020) showed that under bounded

domain assumptions, these mixing conditions hold for the

Gaussian mechanism, leading to tighter privacy guarantees

for DP-SGD. Our proposed unlearning framework—based

on noisy fine-tuning on retained data—operates as a stochas-

tic post-processing step that does not access the data to be

forgotten. Thus, we extend privacy amplification techniques

beyond convex settings to enable certified unlearning in

deep learning models.

Certified unlearning. There is a growing body of work

on certified unlearning, but existing approaches are largely

inapplicable to neural networks. Most prior methods rely

on restrictive assumptions about the model or loss function

that do not hold for deep learning.

Several works focus on convex tasks (Guo et al., 2020;

Neel et al., 2021; Sekhari et al., 2021; Allouah et al., 2025),

but this limits their applicability to deep learning. These

methods work in practice for logistic regression-style tasks

and do not extend to neural networks due to non-convexity.

Recent works aim to achieve certified unlearning for non-

convex tasks (Golatkar et al., 2020; Chourasia & Shah, 2023;

Chien et al., 2024; Mu & Klabjan, 2024; Zhang et al., 2024;

Allouah et al., 2025), but still impose significant constraints.

All require the loss function to be smooth, limiting them to

networks with smooth activations. Most (Chourasia & Shah,

2023; Chien et al., 2024; Mu & Klabjan, 2024) also require

knowledge of the smoothness constant, restricting appli-

cability to simpler models where this constant is tractable.

Furthermore, Allouah et al. (2025) additionally assumes

a unique minimizer, excluding virtually all practical neu-

ral architectures. Zhang et al. (2024) additionally requires

knowledge of the minimal eigenvalue of the Hessian at the

unique optimal model. To the best of our knowledge, our ap-

proach is the first certified unlearning method that supports

arbitrary non-convex tasks, enabling provable unlearning

guarantees for practical deep learning models.

Unlearning applications. A separate line of research fo-

cuses on concept unlearning, which aims to remove specific

topics or themes from language models, beyond forgetting

particular training samples (Liu et al., 2024). For instance,

work in this domain has explored techniques for eliminat-

ing knowledge of topics like “Harry Potter” or other po-

tentially harmful or unethical content from large language

models (Eldan & Russinovich, 2023). These methods of-

ten involve intervention at the representation or knowledge

distillation level, rather than enforcing formal guarantees

of data removal. In contrast, our work focuses on data

point unlearning, ensuring that information associated with

specific training samples is provably removed while pre-

serving model utility. Other explored unlearning settings

include unlearning in graph neural networks (Chien et al.,

2022), in min-max optimization settings (Liu et al., 2023),

and the adversarial setting with the server possibly forging

unlearning (Thudi et al., 2021).

2. Problem Statement

We consider a model x̂ ∈ R
d trained using algorithm A on a

dataset D of n training examples, i.e., x̂ = A(D). We place

no restrictions on A; it may be SGD, Adam, momentum-

SGD, etc. An unlearning request specifies a subset Df ¢ D,

referred to as the forget set, which we wish to erase from the

model. Ideally, we could retrain the model from scratch on
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the retain set D \Df , yielding xu = A(D \Df ), but this is

often computationally prohibitive. Instead, we aim to design

an approximate unlearning algorithm U that outputs a model

retaining “no information” about Df . To this end, U takes as

input the original model x̂ = A(D), the unlearning request

Df , and the full training dataset D. Formally, unifying

several prior definitions (Ginart et al., 2019; Guo et al.,

2020), we require U to satisfy the guarantees below.

Definition 2.1 ((ε, ¶)-unlearning). Let ε g 0, ¶ ∈ [0, 1].
We say that U is (ε, ¶)-unlearning algorithm for A if there

exists a certifying algorithm Ā, such that for any forget and

initial datasets Df ¢ D and any observation O ∈ R
d,

Pr[U(A(D),D,Df ) = O] f eε Pr[Ā(D\Df ) = O] + ¶,

Pr[Ā(D\Df ) = O] f eε Pr[U(A(D),D,Df ) = O] + ¶.

For simplicity, we refer to approximate unlearning as (ε, ¶)-
unlearning for some values of ε and ¶, inspired by (ε, ¶)-
differential privacy (Dwork & Roth, 2014). This formulation

parallels differential privacy by treating Df as “private”

and D \ Df as “public,” thereby ensuring (ε, ¶)-privacy for

the forget set. Indeed, this notion ensures it is statistically

difficult to distinguish the output of the unlearning algorithm

U from that of a certifying algorithm Ā that has no access

to the forget set Df .

Importantly, the definition does not fix Ā but only requires

its existence, allowing flexibility to capture various prior

definitions. For example, setting Ā = A recovers defini-

tions from (Ginart et al., 2019; Guo et al., 2020), while

setting Ā = U(A(D \ Df ),D \ Df ,∅) aligns with (Al-

louah et al., 2025; Sekhari et al., 2021). We primarily adopt

the latter form in this work. Note that our choice of the

certifying algorithm Ā is purely theoretical and does not

require running additional computational steps in practice.

Finally, we emphasize that Definition 2.1 naturally supports

non-adaptive sequential unlearning, where data points are

removed one-by-one without revisiting earlier removals.

Baselines. We now describe two straightforward baselines

for achieving (ε, ¶)-unlearning. The first baseline is output

perturbation, which applies the standard Gaussian mech-

anism to the original model x̂. The procedure involves

clipping the model parameters to ensure bounded sensitivity

and adding Gaussian noise to the model’s output. Formally,

the unlearning procedure is defined as:

x0 = ΠC0
(x̂) + ξ0; ξ0 ∼ N

(

0,
8C2

0 ln(1.25/¶)
ε2 Id

)

,

(1)

where ΠC0
represents the clipping operation, and ξ0 is noise

sampled from the Gaussian distribution, with sufficient mag-

nitude to ensure privacy (Dwork & Roth, 2014). While the-

oretically sound, output perturbation often performs poorly

in practice, as the required noise magnitude is large, which

can significantly degrade the utility of the model.

Another baseline is retraining from scratch, where the for-

get dataset Df is discarded, and the model is retrained from

scratch on the remaining data D \ Df using the algorithm

A. Although this guarantees perfect unlearning (i.e., (0, 0)-
unlearning), it is computationally expensive and requires

substantial memory resources, which undermines the effi-

ciency objectives of approximate unlearning.

3. Algorithm

Our approach is based on fine-tuning the model with stochas-

tic gradient descent (SGD) using only the retained data

D \ Df , while incorporating regularization. Recall that

in this approach, we initialize from the original model x̂

and update it for T g 1 iterations as follows for every

t ∈ {0, . . . , T − 1}:

xt+1 = xt − µ(gt + ¼xt), x0 = x̂, (2)

where gt is the stochastic gradient computed on the retained

data, µ is the learning rate, and ¼ a regularization parameter.

While this method may induce some empirical forget-

ting due to the phenomenon of catastrophic forgetting in

SGD (Goodfellow et al., 2013), it does not provide formal

(ε, ¶)-unlearning as required by Definition 2.1. Therefore, to

frame each fine-tuning step as a stochastic post-processing

operation (Balle et al., 2019) applied to the initial model

x̂, we introduce gradient clipping and model clipping, both

combined with Gaussian privacy noise. These modifica-

tions allow us to map the process to different stochastic

post-processing mechanisms (Balle et al., 2019).

Gradient clipping. Our primary approach relies on gra-

dient clipping, where we clip gradients before applying

updates, followed by noise addition. This method resembles

standard DP-SGD (Abadi et al., 2016) but differs in that

gradient updates exclude any “private” (forget) data points:

x0 = ΠC0
(x̂),

xt+1 = xt − µ (ΠC1
(gt) + ¼xt) + ξt+1,

(3)

where ξt+1 ∼ N (0, Ã2Id) is Gaussian noise and ΠC0
,ΠC1

are the clipping operators of radius C0 > 0 and C1 > 0
respectively1. We analyze this method in the theoretical

framework of privacy amplification by iteration (Feldman

et al., 2018), to show that redistributing noise across mul-

tiple steps enables a reduction in noise at the initial step

while maintaining strong privacy guarantees. This noise

reduction retains the original model’s performance. The reg-

ularization with parameter ¼ additionally allows implicitly

1Following standard differential privacy mechanisms, our clip-
ping is by norm, i.e., ΠC(x) := xmin{ C

∥x∥
, 1} with radius C.
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controlling the norm of the model xt that is increased due

to the presence of the noise ξt.

Model clipping. An alternative approach involves model

clipping, where each update is clipped to a predefined radius

before noise addition:

x0 = x̂

xt+1 = ΠC2
(xt − µ(gt + ¼xt)) + ξt+1,

(4)

where ξt+1 ∼ N (0, Ã2Id) and ξ0 ∼ N (0, Ã2
0Id). Since the

gradient gt is computed solely on the retain data, the argu-

ment of the clipping operator can be interpreted as a post-

processing transformation of the private model, given by the

mapping È(xt) := xt−µ(gt+¼xt). The clipping and noise

addition ensure differential privacy guarantees (Dwork &

Roth, 2014). Standard results on post-processing state that

such transformations preserve or improve existing differen-

tial privacy guarantees. Additionally, privacy amplification

by stochastic post-processing (Balle et al., 2019) suggests

that each additional step can further enhance privacy beyond

that of the previous model.

4. Theoretical Analysis

We now present the approximate unlearning guarantees of

the gradient and model clipping variants of our unlearning

method introduced in the previous section. We also theo-

retically compare these with previous non-convex certified

unlearning algorithms. We defer all proofs to Appendix A.

4.1. Unlearning Guarantees

We first present in Theorem 4.1 the unlearning guarantees of

the Gradient clipping approach, as defined in Equation (3).

Theorem 4.1 (Gradient clipping). Let T g 1, µ, Ã > 0, ¼ g
0, ¶ ∈ (0, 1), ε ∈ (0, 3 log(1/¶)). Consider T iterations of

the unlearning algorithm defined in (3). We obtain (ε, ¶)-
unlearning if:

1. Without regularization (¼ = 0):

Ã2 =
9 log(1/¶)

ε2T
(C0 + C1µT )

2
. (5)

2. With regularization (¼ > 0): if µ¼ ∈ ( 12 , 1) and

Ã2 =
72µ¼ log(1/¶)

ε2

(

C0 (1− µ¼)
T
+
C1

¼

)2

. (6)

The proof relies on techniques from privacy amplification

by iteration introduced by Feldman et al. (2018), which

is a form of privacy amplification through stochastic post-

processing (Balle et al., 2019). We extend the original anal-

ysis Feldman et al. (2018) that is applicable only to convex

functions to the non-convex case. The key ingredient in our

analysis is the shift-reduction lemma (Lemma A.6), which

enables us to control the growth of the Rényi divergence

between (i) the unlearned model initialized from the full

model and (ii) the unlearned model initialized from training

only on the retained data, across iterations.

Unlike the original privacy amplification by iteration frame-

work, which assumes smoothness and convexity of the loss

function (Feldman et al., 2018), our approach circumvents

these assumptions by introducing gradient clipping. This

is reflected in the sufficient noise magnitude required to

achieve (ε, ¶)-unlearning, as given in (5). Specifically, in

the absence of regularization ¼ = 0, gradient clipping at

threshold C1 induces a dependence of the form:

Ã2 = O
(

log(1/¶)

ε2

(

C2
0

T
+ µ2TC2

1

))

. (7)

Intuitively, for a large enough number of iterations, we can

trade off the effect of the initial clipping radius C0 for a

minor cost proportional to the learning rate µ and the per-

iteration clipping radius C1. Fortunately, this cost can be

controlled by choosing a sufficiently small learning rate µ.

In particular, if µ = C0

C1T
, then asymptotically in T we get

Ã2 = O
(

C2
0 log(1/¶)
ε2T

)

. This implies that the required noise

magnitude decreases as the number of iterations T increases,

ultimately tending to zero in the limit T → ∞.

Given C0, C1, and µ, we can upper bound the optimal num-

ber of unlearning steps by minimizing (7). Specifically,

setting T larger than

T ⋆ := argmin
T

{

C2
0

T
+ µ2TC2

1

}

=
C0

µC1

leads to more iterations (T > T ⋆) with increased noise per

iteration (ÃT g ÃT⋆ by definition of T ⋆), while achieving

the same (ϵ, ¶)-unlearning.

Finally, in the regularized case ¼ > 0, the noise expres-

sion (6) for achieving (ε, ¶)-unlearning simplifies to:

Ã2 = O
(

µ log(1/¶)

ε2

(

¼C2
0 exp(−¼µT ) +

C2
1

¼

))

. (8)

Here, regularization enables an exponential reduction in

T of the dependence on the initial clipping threshold C0,

effectively mitigating its impact over time. However, this

comes at the cost of an increased dependence on the per-

iteration clipping threshold C1 , scaling inversely with the

regularization factor ¼. While this suggests a smaller noise

magnitude per iteration, overly strong regularization may

degrade the model’s performance, as we further analyze in

the next section. Finally, we provide a refined, but complex,

formula for noise magnitudes in Theorem A.9 (appendix)
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using Rényi divergences, which we apply before precise

Rényi-to-DP conversion (Balle et al., 2020) in practice.

Next, we state the unlearning guarantees of the Model clip-

ping approach, as defined in Equation (4).

Theorem 4.2 (Model clipping). Let T g 1, C0, C2, Ã0, ε >
0, and ¶ ∈ (0, 1). Denote for every r > 0,

¹ε(r) := Q
(ε

r
− r

2

)

− eεQ
(ε

r
+
r

2

)

, (9)

where for all t ∈ R, Q(t) := 1√
2Ã

∫∞
t
e−u

2/2du.

Consider T iterations of the unlearning algorithm defined

in (4). We obtain (ε, ¶)-unlearning if

T g
log(1/¶) + log ¹ε(

2C0

Ã0
)

log (1/¹ε(
2C2

Ã ))
. (10)

In particular, for any T g 1, ε ∈ (0, 1), it suffices to have

Ã2 =
8C2

2 ln(1.25)

ε2

[

1 +
1

T

(

ln(1.25/¶)− Ã2
0ε

2

8C2
0

)]

.

(11)

The proof of Theorem 4.2 relies on recent advances in

privacy amplification by stochastic post-processing due to

Balle et al. (2019) and Asoodeh et al. (2020). The initial iter-

ation in (4) provides (ε0, ¶0) unlearning since it is the stan-

dard Gaussian mechanism from differential privacy (Dwork

& Roth, 2014). Moreover, assuming that the model at step t
of Algorithm (4) guarantees (εt, ¶t)-unlearning, using the

contraction coefficients (Asoodeh et al., 2020) approach,

we show that the next iteration amplifies the unlearning

guarantee as follows:

(εt+1, ¶t+1) = (εt, ¹ε(
2C2

Ã ) · ¶t),

where the expression of the amplification factor ¹ε(
2C2

Ã ) ∈
(0, 1) is given in (9). This means that after T iterations, our

algorithm guarantees (εT , ¶T ) = (ε0, ¹ε(
2C2

Ã )T ¶0) unlearn-

ing. Stated differently, given any target ε, ¶ and any noise

magnitudes Ã2, Ã2
0 and clipping thresholds C1, C0, we show

that it sufficient for the number of iterations to be at least

that in (10) to guarantee (ε, ¶)-unlearning.

While the expression of the amplification factor ¹ε(
2C2

Ã )
given in (9) is complex, we remark that it is a decreasing

function of Ã taking values in (0, 1). In fact, assuming that

ε ∈ (0, 1), and given any number of iterations T , we state

a simple expression of the sufficient noise magnitude Ã2

in (11). This simplified expression is only for analytical

purposes, since it gives looser unlearning guarantees.

4.2. Theoretical Comparison

To compare the various unlearning methods, we analyze the

number of iterations required and the noise injected per iter-

ation to achieve the same (ε, ¶)-unlearning guarantee. An

effective method should minimize noise per iteration while

keeping the number of iterations reasonable to preserve

model accuracy. Since all methods rely on noisy updates,

we focus on the magnitude of noise injected. A summary of

our findings is provided in Table 1, with details below.

Output perturbation. We recall that this is a natural

baseline, defined in (1), whereby we first project the orig-

inal model with clipping threshold C0 and add noise of

magnitude Ã2 =
8 ln(1.25/¶)C2

0

ε2 , which guarantees (ε, ¶)-
unlearning for ε, ¶ ∈ (0, 1), following (Dwork & Roth,

2014, Theorem A.1).

DP training. Training with DP guarantees unlearning for

free; we do not need to inject noise after receiving unlearn-

ing requests. However, the noise needed may be larger than

with other unlearning methods. Indeed, consider unlearning

a set of k samples with DP–SGD. For this, we need group-

DP: if a mechanism is (ε, ¶)-DP for single-record changes,

then it is (kε, kekε¶)-DP for any pair of datasets that differ

in f k records (Vadhan, 2017, Lemma 2.2). Consequently,

to attain the same (ε, ¶)-unlearning guarantee one must run

DP–SGD with noise Ã2 = 2C2k2

ε2

(

ln( 1.25k¶ ) + kε
)

. This is

typically much larger noise than with our techniques, given

that it is at least quadratic in k, which may scale with the

size of the dataset. This is in line with recent findings on

the theoretical separation between DP and certified unlearn-

ing (Sekhari et al., 2021; Allouah et al., 2025).

Gradient clipping. From Theorem 4.1, T g 1 itera-

tions of Gradient clipping (3) with noise magnitude Ã2 =
9 log(1/¶)
ε2T (C0 + C1µT )

2
satisfies (ε, ¶)-unlearning assum-

ing ε f 3 log(1/¶). Setting T = C0

µC1
minimizes the noise

to

Ã2 =
36µC1C0 log(1/¶)

ε2
. (12)

This substantially reduces noise per iteration compared to

output perturbation—by a factor of C0

C1µ
, which is significant

when µ j C0

C1
. A small learning rate or large initial clipping

C0 can make this method particularly effective in preserving

model accuracy.

For the regularized version of gradient clipping we

recall that noisy gradient descent with T iterations

and constant noise level, given by the expression

Ã2 = 72µ¼ log(1/¶)
ε2

(

C0 (1− µ¼)
T
+ C1

¼

)2

satisfies (ε, ¶)-

unlearning under the assumption ε f 3 log(1/¶). Setting

T = 1
¸¼ log(¼C0

C1
) of

Ã2 =
C2

1µ log(1/¶)

¼ε2
. (13)

This approach outperforms the unregularized variant when

¼ > C1

C0
, requiring only logarithmic iterations in the initial
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Algorithm Variance of Noise Injected Assumptions

Max. per Iteration Iterations

Output Perturbation (baseline) C2
0 1

Gradient Clipping (3) µC1C0 C0/µC1

Gradient Clipping (3) (w/ regularization) µC2
1/¼ log (¼C0/C1)/µ¼

Model Clipping (4) C2
2 log(1/¶)

Langevin Diffusion (Chourasia & Shah, 2023) no explicit expression – smoothness, boundedness, noisy training

Rewind-to-Delete (Mu & Klabjan, 2024) exponential in smoothness constant – smoothness, noisy training

Table 1. Summary comparison of certified unlearning accountants for non-convex tasks. C0: initial clipping threshold, C1/C2: running

clipping threshold for gradient and model clipping resp., µ: learning rate, ¼: ℓ2-regularization factor. We ignore absolute constants and

multiplicative factor
log(1/δ)

ε2
which is in the noise variance of all methods. We note that the entry “Langevin Diffusion” also covers the

work of Chien et al. (2024). Model Clipping and Gradient Clipping algorithms effectively reduce the maximum noise per iteration at the

cost of doing more noisy SGD steps compared to the output perturbation. More details on the comparison are given in Section 4.2.

clipping radius C0. This suggests that projecting onto a

larger set can better preserve accuracy, though it may require

stronger regularization, which could degrade performance

in some tasks.

Model clipping. We recall from Theorem 4.2 that T g 1
iterations of Model clipping (4) with noise magnitude

Ã2 =
8C2

2 ln(1.25)

ε2
+

8C2
2 ln(1.25)

Tε2

[

ln(1.25/¶)− Ã2
0ε

2

8C2
0

]

is provably sufficient to achieve (ε, ¶)-unlearning. As-

sume that the initial noise magnitude Ã2
0 is at most

8C2
0 ln(1.25/¶)

ε2 , as the latter magnitude is sufficient to obtain

(ε, ¶)-unlearning in one iteration as in the output pertur-

bation baseline. Therefore, the order of magnitude of the

minimum value of the noise

Ã2 =
8C2

2 ln(1.25)

ε2
(14)

can be attained within T = ln(1.25/¶) iterations. This

represents a significant improvement over the baseline, re-

ducing the noise per iteration by a factor of
C2

0

C2
2

. If C2 is

small or if the initial clipping threshold C0 is aggressive,

this reduction can be substantial. Compared to amplifica-

tion by iteration, this method requires fewer iterations (only

logarithmic in 1/¶), though it may introduce more noise per

iteration when the learning rate is small.

Prior works. Existing certified unlearning methods

that do not assume convexity of the loss function in-

clude (Chourasia & Shah, 2023; Chien et al., 2024; Mu &

Klabjan, 2024). However, unlike our approach, these meth-

ods rely on the assumption that the loss function is smooth2

2That is, for some L g 0, by denoting L the loss function, we
have ∥∇L(x)−∇L(y)∥ f L ∥x− y∥ for all x,y ∈ R

d.

and are tailored to specific training algorithms. For instance,

Chourasia & Shah (2023) and Chien et al. (2024) analyze

training with noisy projected gradient descent, leveraging

both smoothness and specific training dynamics to establish

unlearning guarantees. These guarantees stem from the con-

vergence of the training process to a limiting distribution,

but additional restrictive assumptions are required. Notably,

the smoothness constant is needed not only for theoretical

analysis but also to determine the appropriate noise level at

each step to achieve (ϵ, ¶)-unlearning. This constraint limits

the applicable function class to those where the smoothness

constant is easily computable, effectively excluding modern

neural networks. Chourasia & Shah (2023) assume that the

loss function is bounded, while Chien et al. (2024) require

that the training’s limiting distribution satisfies an isoperi-

metric inequality. These constraints significantly limit the

applicability of their methods, primarily to smooth con-

vex tasks such as logistic regression (Chien et al., 2024).

Similarly, Mu & Klabjan (2024) address non-convex loss

functions but assume that training follows gradient descent

with output perturbation. Their approach also relies on

smoothness and requires injecting noise with a magnitude

that scales exponentially with the smoothness parameter,

which can be prohibitive in practice. In contrast, our ap-

proach removes these smoothness constraints and is not tied

to a specific training algorithm, making it applicable to a

broader class of learning problems.

5. Experimental Evaluation

In this section, we present an empirical evaluation of our

proposed unlearning method, in its two variants Gradient

Clipping (3) and Model Clipping (4), on two benchmark

datasets: MNIST (Deng, 2012) and CIFAR-10 (Krizhevsky

et al., 2014). We first detail the experimental setup, and

then describe the results and observations stemming from

6
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(a) CIFAR-10 (b) MNIST

Figure 1. Accuracy of Gradient and Model Clipping versus compute budget (epochs) on CIFAR-10 (left) and MNIST (right), to satisfy

(1, 10−5)-unlearning. We compare to two baselines: retraining from scratch and output perturbation, detailed in Section 2. Across all the

compute budgets gradient and model clipping achieves higher accuracy than the baselines, with the difference being larger for smaller

compute budgets.

Accuracy Baselines Noisy Fine-Tuning (ours)

Retrain Output Perturbation Gradient Clipping Model Clipping

30% 6 5 (≈ 16 % faster) 4 (≈ 33 % faster) 3 (≈ 50 % faster)

35% 11 7 (≈ 41 % faster) 6 (≈ 50 % faster) 6 (≈ 50 % faster)

40% 18 12 (≈ 33 % faster) 10 (≈ 44 % faster) 10 (≈ 44 % faster)

45% 23 17 (≈ 26 % faster) 16 (≈ 30 % faster) 17 (≈ 26 % faster)

50% 30 25 (≈ 16 % faster) 23 (≈ 23 % faster) 24 (≈ 20 % faster)

Table 2. Number of epochs required to reach the target accuracy for our algorithms and the baselines, and their saving compared to

retraining from scratch for the CIFAR-10 dataset. Gradient Clipping and Model Clipping consistently save above 20% of compute,

sometimes reaching 50% of compute savings. The output perturbation baseline also consistently improves over the retrain from scratch,

however is consistently slower than the Gradient and Model clipping algorithms.

Table 2 and Figures 1 and 2.

5.1. Setup

For MNIST, we train a small neural network with two layers

and approximately 4,000 parameters. For CIFAR-10, we

use a slightly larger network with two convolutional blocks

followed by a linear layer, totaling 20,000 parameters. In

both cases, the forget set consists of a randomly selected

10% subset of the full dataset.

Baselines. We compare our methods against two baselines

presented in Section 2: retraining from scratch and output

perturbation (1). Retraining from scratch involves fully re-

training the model after removing the forget set. Output

perturbation applies noise directly to the final model param-

eters to achieve certified unlearning, before fine-tuning the

model on the retain data if the compute budget allows. To

the best of our knowledge, no existing method provides cer-

tified unlearning guarantees for non-convex tasks without

requiring knowledge of the smoothness constant of the loss

function.

Procedures. When retraining from scratch, the model is

reinitialized using the same distribution as in the original

training phase. In all experiments, we first train a model on

the entire dataset until convergence. We set ε = 1, ¶ = 10−5

for all experiments. For our unlearning algorithms, we

continue clipping and adding noise until the desired (ε, ¶)-
unlearning guarantee is met. In all experiments, the privacy

target is reached before exhausting the iteration budget, in

less than 100 iterations (see Appendix B for the exact num-

ber of unlearning steps to reach target privacy). We there-

fore continue fine-tuning the model on the retained dataset

without additional noise or clipping, using the same hyper-

parameters as in retraining from scratch. This means that in

7
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Figure 2. Convergence behavior of Gradient Clipping with µ =
0.01, C0 = 20, C1 = 10, ¼ = 50, Ã = 0.25 and the retraining

from scratch baseline on the CIFAR-10 dataset. The gradient

clipping method is applied for the first 30 iterations, followed

by standard fine-tuning. Initially, gradient clipping degrades per-

formance but retains useful information, allowing fine-tuning to

recover and surpass the retraining baseline quickly.

all of our experiments unlearning is cheap and effectively

finds a new initialization for the finetuning process, that

preserves some information from the original model x̂. All

training, unlearning, and fine-tuning phases use stochastic

gradient descent (SGD) with a constant step size. Further

experimental details are provided in the appendix.

5.2. Results and Observations

We now present our experimental comparison. We compare

the algorithms for fixed target accuracy and fixed compute

budget, and finally show convergence behavior.

Fixed target accuracy. In Table 2, we present the time

required for each algorithm to reach the target accuracy

for unlearning on CIFAR-10. Our results show that both

gradient clipping and model clipping achieve the desired

accuracy in a comparable number of steps, significantly

outperforming the baseline methods. Notably, compared

to retraining from scratch, our algorithms offer substantial

computational savings—reducing the required steps by up

to 50%. Interestingly, while the simple output perturbation

baseline also improves upon retraining from scratch, its

efficiency gains are less pronounced. This suggests that

while output perturbation approach can be beneficial, more

advanced unlearning methods such as gradient and model

clipping yield considerably greater improvements.

Fixed compute budget. On Figure 1, we show the re-

sulting accuracy for varying compute budgets for gradient

and model clipping approaches on MNIST and CIFAR10

datasets. Our experiments demonstrate that our proposed

unlearning method, in both its gradient and model clipping

variants, consistently achieves higher accuracy compared

to output perturbation and retraining from scratch across

all compute budgets. This improvement is particularly pro-

nounced in low-compute settings, where retraining from

scratch struggles to recover performance due to the limited

number of optimization steps. In contrast, our methods ef-

fectively leverage the retained model parameters, enabling

faster recovery while ensuring certified unlearning. This

provides substantial savings, for example, to reach an ac-

curacy of 40% on CIFAR dataset, both gradient and model

clipping needs only 10 epochs, while output perturbation

needs 12 epochs (20% longer), and retrain from scratch

requires 18 epochs (≈ 80% longer).

As the compute budget increases, the performance gap be-

tween our methods and retraining from scratch gradually

narrows. This suggests that while our algorithms provide

a strong advantage in resource-constrained scenarios, full

retraining may still be the optimal choice given sufficient

computing power. However, we note that in practical set-

tings, where compute resources are finite, our approaches

offer substantial time savings to reach a particular accuracy.

Convergence curve. In Figure 2, we illustrate the con-

vergence behavior for the gradient clipping algorithm on

the CIFAR-10 dataset with parameters µ = 0.01, C0 =
20, C1 = 10, and ¼ = 50. In that case, unlearning is

performed for the first 30 iterations, which significantly

decreases the accuracy of the original model to almost

zero. However, during the fine-tuning stage, the accuracy

quickly catches up and outperforms retraining from scratch

in around 1 epoch. This suggests that our stochastic post-

processing approach does not completely erase all prior

training. Despite the bad accuracy initially, the model can

recover the useful information stored in it quickly. A similar

convergence curve is observed in all other settings, as un-

learning is always performed for a relatively small number

of steps (< 100, see Appendix B). These findings highlight

the robustness of our approach and its adaptability across

different datasets and model architectures.

Overall, we observe that both variants of our method—

gradient and model clipping—achieve considerable gains

of up to 50% of time savings over the baselines. Further

analysis of our results shows that the noise magnitude and

clipping strategies play a crucial role in balancing unlearn-

ing guarantees with model utility. We found that gradient

clipping has a larger range of hyperparameters that achieve

an advantage over the baselines, making it easier to tune.

5.3. Transfer Learning and Comparison with DP-SGD

To evaluate our methods in more complex settings, we con-

ducted experiments on CIFAR-100 and CIFAR-10 using

ResNet architectures (He et al., 2016) pretrained on public

8
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(a) CIFAR-10 (b) CIFAR-100

Figure 3. Accuracy of Gradient Clipping versus compute budget (epochs) on CIFAR-10 (left) and CIFAR-100 (right) using a ResNet-18

feature extractor pretrained on public data, to satisfy (1, 10−5)-unlearning.

data (ImageNet (Deng et al., 2009)). This setup, where

unlearning is applied to the last few layers of a pretrained

model, has become standard in recent certified approximate

unlearning works (Guo et al., 2020; Chien et al., 2024), al-

though the latter works focus on a logistic regression task.

More precisely, we remove the last layer of ResNet-18 (pre-

trained on public data) and replace it with a 3-layer fully

connected neural network head, which makes the task non-

convex. We first train the head on the full data, and then

unlearn the forget data from the head. While we unlearn

only the head, we certify the whole model because the frozen

feature extractor is public and unchanged. In this setting

we also compare against DP-SGD with group-privacy base-

line as defined in Section 4.2, this produces a certified un-

learnt model, so we spend the unlearning compute budget

on finetuning the model on the retain data. On CIFAR-10

our method attains 85 % accuracy in 9 epochs, 10 % faster

than retrain and 47 % faster than DP-SGD (Fig. 3). The

gap widens on CIFAR-100: we reach 60 % accuracy in 32

epochs versus 34 for retrain, while DP-SGD never exceeds

20 % within the 50-epoch budget. The poor DP-SGD curve

confirms the theoretical predictions from Sec. 4.2: group-

privacy forces
√
k more noise, k being the number of forget

samples, and thus hurts accuracy even under a much weaker

privacy budget (ε = 50 vs. our ε = 1)

6. Conclusion and Future Work

We introduced a new certified machine unlearning method

that provides formal guarantees while remaining broadly ap-

plicable to modern neural networks. Our approach leverages

the connection between unlearning and privacy amplifica-

tion through stochastic post-processing, enabling effective

removal of data influence without imposing assumptions on

the loss function. By applying noisy fine-tuning to the retain

set, our methods achieve both theoretical soundness and

practical effectiveness, outperforming existing baselines in

empirical evaluations.

Despite these strengths, our approach has certain limita-

tions. First, the effectiveness of our method is constrained

by the curse of dimensionality inherent in differential pri-

vacy, which can make scaling to models with very large

numbers of parameters more challenging. Second, our un-

learning framework is designed specifically for stochastic

gradient descent (SGD) during the unlearning stage, as we

do not retain memory from earlier steps. However, this

restriction does not apply to the initial model training or

post-unlearning fine-tuning, allowing for flexibility in those

phases. Future work could explore extensions to more

complex architectures and alternative optimization meth-

ods, potentially improving scalability while maintaining

strong unlearning guarantees. Our findings highlight the

feasibility of certified unlearning in realistic deep learning

settings for the first time, offering a promising direction for

privacy-preserving and efficient machine learning.
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A. Proofs

A.1. Theorem 4.2: Model Clipping

Preliminaries. We first recall the hockey-stick divergence and previous results on privacy amplification by stochastic

post-processing (Balle et al., 2019).

Definition A.1 (Hockey-stick divergence). Let ε g 0, and µ, ¿ two probability measures defined over Rd. We define

Eε(µ ∥ ¿) :=
∫

Rd

d[µ− eε¿]+ = sup
A¢Rd

(µ(A)− eε¿(A)) ,

where [ · ]+ := max {0, ·}.

Lemma A.2 ((Balle et al., 2019), Theorem 1 (adapted)). Let ε g 0, K be a Markov kernel taking inputs in R
d, and µ, ¿ be

two probability distributions over Rd. We have

Eε(µK ∥ ¿K) f Eε(µ ∥ ¿) · sup
x1,x2∈Rd

Eε(K(x1) ∥K(x2)).

Lemma A.3 ((Asoodeh et al., 2020), Lemma 2). Let ε g 0, µ1 ̸= µ2 ∈ R
d and Ã > 0. We have

Eε(N (µ1, Ã
2Id) ∥ N (µ2, Ã

2Id)) = Q

(

εÃ

∥µ1 − µ2∥
− ∥µ1 − µ2∥

2Ã

)

− eεQ

(

εÃ

∥µ1 − µ2∥
+

∥µ1 − µ2∥
2Ã

)

,

where for all t ∈ R, Q(t) := 1√
Ã

∫∞
t
e−u

2/2du.

Lemma A.4 ((Dwork & Roth, 2014), Theorem A.1 (paraphrased)). Let ε ∈ (0, 1) and µ1 ̸= µ2 ∈ R
d, Ã > 0. We have

Eε(N (µ1, Ã
2Id) ∥ N (µ2, Ã

2Id)) f 1.25 exp

(

− Ã2ε2

2 ∥µ1 − µ2∥2

)

.

Main proof. We now proceed to proving the main theorem.

Theorem 4.2 (Model clipping). Let T g 1, C0, C2, Ã0, ε > 0, and ¶ ∈ (0, 1). Denote for every r > 0,

¹ε(r) := Q
(ε

r
− r

2

)

− eεQ
(ε

r
+
r

2

)

, (9)

where for all t ∈ R, Q(t) := 1√
2Ã

∫∞
t
e−u

2/2du.

Consider T iterations of the unlearning algorithm defined in (4). We obtain (ε, ¶)-unlearning if

T g
log(1/¶) + log ¹ε(

2C0

Ã0
)

log (1/¹ε(
2C2

Ã ))
. (10)

In particular, for any T g 1, ε ∈ (0, 1), it suffices to have

Ã2 =
8C2

2 ln(1.25)

ε2

[

1 +
1

T

(

ln(1.25/¶)− Ã2
0ε

2

8C2
0

)]

. (11)

Proof. Let T g 1, C0, C2, Ã0, µ > 0, and ¶ ∈ (0, 1), ε ∈ (0, 3 log(1/¶)). Consider T iterations of the unlearning algorithm

defined in (4), and analogously define the following sequence initialized at the projected model trained without the forget

data x′
0 := ΠC0

(A(D \ Df )) + À0, À0 ∼ N (0, Ã2
0Id):

x′
t+1 = ΠC2

(x′
t − µG(x′

t)) + À′t, À′t ∼ N (0, Ã2Id). (15)

Recall from Definition A.1 the definition of the hockey-stick divergence Eε. Also, we recall from Lemma A.2 that for any

Markov kernel K:

Eε(µK ∥ ¿K) f sup
x1,x2∈Rd

Eε(K(x1) ∥K(x2)) · Eε(µ ∥ ¿).
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In particular, by introducing ³ := sup
x1,x2∈Rd Eε(N (ΠC2

(x1−µG(x1)), Ã
2Id) ∥ N (ΠC2

(x2−µG(x2)), Ã
2Id)) we have

Eε(xt+1 ∥ x′
t+1) f ³ · Eε(xt ∥ x′

t).

Applying the above recursively over T iterations, and denoting ´ := Eε(N (ΠC0
(A(D)), Ã2

0Id) ∥ N (ΠC0
(A(D \

Df )), Ã2
0Id)), yields:

Eε(xT ∥ x′
T ) f ³T · Eε(x0 ∥ x′

0) = ³T · ´.

Therefore, in order to satisfy (ε, ¶)-unlearning, it suffices to achieve Eε(xT ∥ x′
T ) f ¶, which can be achieved by having:

T g log(1/¶) + log ´

log(1/³)
.

Now, since for any x1,x2 it holds that ∥ΠC2
(x1 − µG(x1))−ΠC2

(x2 − µG(x2))∥ f 2C2 and r 7→ Q
(

εÃ
r − r

2Ã

)

−
eεQ

(

εÃ
r + r

2Ã

)

is increasing (Asoodeh et al., 2020), using the exact expression of the hockey-stick divergence between

Gaussians from Lemma A.3 yields

³ = sup
x1,x2∈Rd

Eε(N (ΠC2
(x1 − µG(x1)), Ã

2Id) ∥ N (ΠC2
(x2 − µG(x2)), Ã

2Id))

f Q

(

εÃ

2C2
− C2

Ã

)

− eεQ

(

εÃ

2C2
+
C2

Ã

)

.

Similarly, since ∥ΠC0
(A(D))−ΠC0

(A(D \ Df ))∥ f 2C0, we have

´ = Eε(N (ΠC0
(A(D)), Ã2

0Id) ∥ N (ΠC0
(A(D \ Df )), Ã2

0Id)) f Q

(

εÃ0
2C0

− C0

Ã0

)

− eεQ

(

εÃ0
2C0

+
C0

Ã0

)

.

Therefore, to achieve (ε, ¶)-unlearning, it suffices to have

T g
log(1/¶) + log

(

Q
(

εÃ0

2C0
− C0

Ã0

)

− eεQ
(

εÃ0

2C0
+ C0

Ã0

))

− log
(

Q
(

εÃ
2C2

− C2

Ã

)

− eεQ
(

εÃ
2C2

+ C2

Ã

)) .

Alternatively, using the simpler upper bound from Lemma A.4 on the hockey-stick divergence between Gaussians, we obtain

³ = sup
x1,x2∈Rd

Eε(N (ΠC2
(x1 − µG(x1)), Ã

2Id) ∥ N (ΠC2
(x2 − µG(x2)), Ã

2Id)) f 1.25 exp

(

−Ã
2ε2

8C2
2

)

.

Similarly, we have

´ = Eε(N (ΠC0
(A(D)), Ã2

0Id) ∥ N (ΠC0
(A(D \ Df )), Ã2

0Id)) f 1.25 exp

(

−Ã
2
0ε

2

8C2
0

)

.

Therefore, assuming Ã2 >
8C2

2 ln(1.25)
ε2 , to achieve (ε, ¶)-unlearning, it suffices to have

T g
ln(1.25/¶)− Ã2

0ε
2

8C2
0

Ã2ε2

8C2
2

− ln(1.25)
.

This can be rewritten as

Ã2 g 8C2
2 ln(1.25)

ε2
+

8C2
2 ln(1.25)

Tε2

[

ln(1.25/¶)− Ã2
0ε

2

8C2
0

]

.

This concludes the proof.
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A.2. Theorem 4.1: Gradient Clipping

Preliminaries. We first recall some important definitions and state useful lemmas before proceeding to the proof of the

main theorem. We first recall the definition of the Rényi divergence, which we will mainly use to prove Theorem 4.1.

Definition A.5 (Rényi divergence). Let q > 0, q ̸= 1. The q-Rényi divergence between two probability distributions µ and

¿ is defined as

Dq(µ ∥ ¿) := 1

q − 1
logEX∼¿

(

µ(X)

¿(X)

)q

.

We recall the shifted Rényi divergence introduced by Feldman et al. (2018). For any z g 0, q g 1, and two distributions µ, ¿
defined on R

d, we define

D(z)
q (µ ∥ ¿) := inf

µ′ : W∞(µ′,µ)fz
Dq(µ

′ ∥ ¿), (16)

where W∞(·, ·) := infÉ∈Γ(·,·) ess sup(x,y)∼É ∥x− y∥2 is the ∞-Wasserstein distance, and Γ(µ′, µ) is the collection of

couplings of its arguments, i.e., joint measures whose marginals are µ′ and µ respectively.

Lemma A.6 ((Feldman et al., 2018), Lemma 20 (adapted)). Let q g 1, z, a g 0 and X,Y arbitrary random variables. If

À, À′ ∼ N (0, Ã2Id), Ã > 0, then

D(z)
q (X + À ∥ Y + À′) f D(z+a)

q (X ∥ Y ) +
qa2

2Ã2
.

Lemma A.7. Let q g 1, z, Ä, C g 0, È : Rd → R
d and X,Y arbitrary random variables.

If È satisfies ∀x,x′ ∈ R
d, ∥È(x′)− È(x)∥ f Ä ∥x′ − x∥+ s, then

D(Äz+s)
q (È(X) ∥ È(Y )) f D(z)

q (X ∥ Y ).

Proof. For any measure µ, we denote by È#µ the push-forward measure of µ by È. Assume that È satisfies ∀x,x′ ∈
R
d, ∥È(x′)− È(x)∥ f Ä ∥x′ − x∥+ s. By definition of the ∞-Wasserstein distance, it follows immediately that

W∞(È#µ, È#¿) f Ä ·W∞(µ, ¿) + s. (17)

Therefore, by definition (16) of the shifted Rényi divergence and using the data processing inequality for Rényi diver-

gences (Van Erven & Harremos, 2014), we have

D(Äz+s)
q (È(X) ∥ È(Y )) = inf

µ′ : W∞(µ′,È(X))fÄz+s
Dq(µ

′ ∥ È(Y ))

f inf
X′ : W∞(È(X′),È(X))fÄz+s

Dq(È(X
′) ∥ È(Y ))

f inf
X′ : W∞(X′,X)fz

Dq(È(X
′) ∥ È(Y )) (Inequality (17))

f inf
X′ : W∞(X′,X)fz

Dq(X
′ ∥ Y ) (Data Processing inequality)

= D(z)
q (X ∥ Y ).

This concludes the proof.

Lemma A.8. Let µ, ¼ g 0, G : Rd → R
d be an arbitrary function, and È : x 7→ x− µ (ΠC(G(x)) + ¼x). Then È satisfies:

∀x,x′ ∈ R
d, ∥È(x′)− È(x)∥ f |1− ¼µ| ∥x′ − x∥+ 2µC.

Proof. We have for any x,x′ ∈ R
d that

∥È(x)− È(x′)∥ = ∥x− µ (ΠC(G(x)) + ¼x)− x′ + µ (ΠC(G(x
′)) + ¼x′)∥

f |1− ¼µ| ∥x− x′∥+ µ ∥ΠC(G(x))−ΠC(G(x
′))∥ (Triangle inequality)

f |1− ¼µ| ∥x− x′∥+ 2µC. (∥ΠC(G(x))∥ f C)

14
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Main proof. We are interested in the following iterative unlearning procedure (generalizing (3) to regularization and

varying stepsizes and noise variances), starting from the projected model trained on the full data x0 := ΠC0
(A(D)), where

for all t ∈ {0, . . . , T − 1}:

xt+1 = xt − µt (ΠC1
(G(xt)) + ¼xt) + Àt, Àt ∼ N (0, Ã2

t Id). (18)

For the analysis, we analogously define the following sequence initialized at the projected model trained without the forget

data x′
0 := ΠC0

(A(D \ Df )):

x′
t+1 = x′

t − µt (ΠC1
(G(x′

t)) + ¼x′
t) + À′t, À′t ∼ N (0, Ã2

t Id). (19)

Theorem A.9. Let T, q g 1, µ0, . . . , µT−1 g 0, Ã0, . . . , ÃT−1 > 0, ¼ g 0 and consider the two sequences

{xt}0ftfT , {x′
t}0ftfT as defined above. Denote by Dq the Rényi divergence of order q. Assume that for every

t ∈ {0, . . . , T − 1}, µt¼ < 1. Denote for every t ∈ {0, . . . , T − 1}, st := 2µtC1, Ät := 1− µt¼.

If a0, . . . , aT−1 g 0 satisfy
∑T−1
t=0

(

∏T−1−t
k=1 Äk

)

at =
(

∏T−1
t=0 Ät

)

2C0 +
∑T−1
t=0

(

∏T−1−t
k=1 Äk

)

st, then

Dq(xT ∥ x′
T ) f

T−1
∑

t=0

qa2t
2Ã2

t

. (20)

In particular, we have

Dq(xT ∥ x′
T ) f

q

2

[(

∏T−1
t=0 Ät

)

2C0 +
∑T−1
t=0

(

∏T−1−t
k=1 Äk

)

st

]2

∑T−1
t=0

(

∏T−1−t
k=1 Ä2k

)

Ã2
t

. (21)

Proof. Let t ∈ {0, . . . , T − 1}. Recall the sequence of iterates defined in (18), and analogously define the following

sequence initialized at the projected model trained without the forget data x′
0 := ΠC0

(A(D \ Df )):

x′
t+1 = x′

t − µt (ΠC1
(G(x′

t)) + ¼x′
t) + À′t, À′t ∼ N (0, Ã2

t Id). (22)

Therefore, for any at g 0, using the bound above with Lemma A.6 yields

D(zt+1)
q

(

xt+1 ∥ x′
t+1

)

= D(zt+1)
q (xt − µt (ΠC1

(G(xt)) + ¼xt) + Àt ∥ x′
t − µt (ΠC1

(G(x′
t)) + ¼x′

t) + À′t)

f D(zt+1+at)
q (xt − µt (ΠC1

(G(xt)) + ¼xt) ∥ x′
t − µt (ΠC1

(G(x′
t)) + ¼x′

t)) +
qa2t
2Ã2

t

.

Now, using Lemma A.8, and the fact that µt <
1
¼ , we establish that Èt : x 7→ x − µtΠC1

(G(x)) satisfies ∀x,x′ ∈
R
d, ∥Èt(x′)− Èt(x)∥ f (1− ¼µt) ∥x′ − x∥+ 2µtC1. Consequently, denoting st := 2µtC1 and Ät := 1− ¼µt, using the

previous fact and Lemma A.7 in the bound above yields

D(zt+1)
q

(

xt+1 ∥ x′
t+1

)

f D(zt+1+at)
q (xt − µt (ΠC1

(G(xt)) + ¼xt) ∥ x′
t − µt (ΠC1

(G(x′
t)) + ¼x′

t)) +
qa2t
2Ã2

t

f D
(
1
Ät

(zt+1+at−st))
q (xt ∥ x′

t) +
qa2t
2Ã2

t

.

By denoting zt :=
1
Ät

(zt+1 + at − st), we have by recursion over t ∈ {0, . . . , T − 1} for any z0, a0, . . . , aT g 0:

D(zT )
q (xT ∥ x′

T ) f D(z0)
q (x0 ∥ x′

0) +

T−1
∑

t=0

qa2t
2Ã2

t

, (23)

zT =

(

T−1
∏

t=0

Ät

)

z0 −
T−1
∑

t=0

(

T−1−t
∏

k=1

Äk

)

(at − st). (24)
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Observe that, upon taking z0 = 2C0, since ∥x0,x
′
0∥ f 2C0, it is immediate from definition (16) that D

(z0)
q (x0 ∥ x′

0) = 0.

Additionally, taking zT = 0 in the last equation implies that for all a0, . . . , aT−1 g 0 such that

T−1
∑

t=0

(

T−1−t
∏

k=1

Äk

)

at =

(

T−1
∏

t=0

Ät

)

2C0 +
T−1
∑

t=0

(

T−1−t
∏

k=1

Äk

)

st, (25)

we have

Dq(xT ∥ x′
T ) = D(0)

q (xT ∥ x′
T ) f

T−1
∑

t=0

qa2t
2Ã2

t

. (26)

This concludes the first part of the second statement of the theorem. The second part of the second statement is a direct

consequence of setting, for all t ∈ {0, . . . , T − 1},

at =

[(

T−1
∏

k=0

Äk

)

2C0 +
T−1
∑

k=0

(

T−1−k
∏

l=1

Äl

)

sk

]

(

∏T−1−t
k=1 Äk

)

Ã2
t

∑T−1
k=0

(

∏T−1−k
l=1 Ä2l

)

Ã2
t

. (27)

Theorem 4.1 (Gradient clipping). Let T g 1, µ, Ã > 0, ¼ g 0, ¶ ∈ (0, 1), ε ∈ (0, 3 log(1/¶)). Consider T iterations of the

unlearning algorithm defined in (3). We obtain (ε, ¶)-unlearning if:

1. Without regularization (¼ = 0):

Ã2 =
9 log(1/¶)

ε2T
(C0 + C1µT )

2
. (5)

2. With regularization (¼ > 0): if µ¼ ∈ ( 12 , 1) and

Ã2 =
72µ¼ log(1/¶)

ε2

(

C0 (1− µ¼)
T
+
C1

¼

)2

. (6)

Proof. The proof of the first claim follows immediately by taking constant noise variance, stepsize, and zero regularization

in the second statement of Theorem A.9, before converting from Rényi to (ε, ¶)-unlearning using standard conversion

methods (Mironov, 2017).

Similarly, the proof of the second claim follows immediately by taking constant noise variance, and stepsize in the second

statement of Theorem A.9 (which assumes that µ¼ < 1), before converting from Rényi to (ε, ¶)-unlearning using standard

conversion methods (Mironov, 2017). Indeed, we then get that it is sufficient to set

Ã2 g µ¼(2− µ¼)

2ε (1− (1− µ¼)
2T

)

[

2C0 (1− µ¼)
T
+

2C1

¼
(1− (1− µ¼)

T
)

]2

.

The right-hand side above can be upper bounded by
72µ¼ log(1/¶)

ε2

(

C0 (1− µ¼)
T
+ C1

¼

)2

when assuming that µ¼ g 1
2 .

This concludes the proof.
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B. Experiments

We use small custom networks for training on MNIST and CIFAR10

1 # used for mnist

2 class TinyNet(nn.Module):

3 num_classes: int

4

5 @nn.compact

6 def __call__(self, x, train: bool = True, mutable=None):

7 x = x.reshape((x.shape[0], -1))

8 x = nn.Dense(features=5)(x)

9 x = nn.relu(x)

10 x = nn.Dense(features=self.num_classes)(x)

11 return x

12

13 class CIFAR10TinykNet(nn.Module):

14 num_classes: int

15

16 @nn.compact

17 def __call__(self, x, train: bool = True):

18 he_init = nn.initializers.he_normal()

19 x = nn.Conv(features=32, kernel_size=(3, 3), padding="same", kernel_init=he_init)(

x)

20 x = nn.relu(x)

21 x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))

22 x = nn.Conv(features=64, kernel_size=(3, 3), padding="same", kernel_init=he_init)(

x)

23 x = nn.relu(x)

24 x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))

25 x = x.mean(axis=(1, 2))

26 x = nn.Dense(self.num_classes, kernel_init=he_init)(x)

27 return x

In Tables 3 and 4 we give complete experimental details for the CIFAR and MNIST experiments.

Dataset CIFAR-10

Architecture Tiny Convolution Net (20k params)

Training objective Cross entropy loss

Evaluation objective Top-1 accuracy

Batch size 128

Training learning rate 0.1

Training learning rate schedule Linear One Cycle (Smith & Topin, 2017)

Train weight decay 0.0005

Number of train epochs 100

Forget set size 10%

Number of unlearning epochs 50

Noise schedule constant

Unlearning learning rate schedule constant

Post Unlearning learning rate 0.06

Post Unlearning learning rate schedule Linear One Cycle

Post Unlearning weight decay 0.0005

Table 3. Experimental Setting CIFAR10
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Dataset MNIST

Architecture Tiny 2 Layer Net (4k params)

Training objective Cross entropy loss

Evaluation objective Top-1 accuracy

Batch size 128

Training learning rate 0.06

Training learning rate schedule Linear One Cycle (Smith & Topin, 2017)

Train weight decay 0.0005

Number of train epochs 30

Forget set size 10%

Number of unlearning epochs 10

Noise schedule constant

Unlearning learning rate schedule constant

Post Unlearning learning rate 0.06

Post Unlearning learning rate schedule Linear One Cycle

Post Unlearning weight decay 0.0005

Table 4. Experimental Setting MNIST

ϵ Compute Budget ¼ C1 µt C0 Unlearning Steps Ã

1 1 10.0 100.0 0.0001 0.01 1 0.028270

1 2 750.0 10.0 0.0001 0.01 6 0.007752

1 3 750.0 10.0 0.0001 0.01 6 0.007752

1 4 750.0 10.0 0.0001 0.01 6 0.007752

1 5 10.0 100.0 0.0001 0.01 1 0.028270

1 6 750.0 10.0 0.0001 0.01 6 0.007752

1 7 10.0 100.0 0.0001 0.01 1 0.028270

1 8 10.0 100.0 0.0001 0.01 1 0.028270

1 9 10.0 100.0 0.0001 0.01 1 0.028270

1 10 10.0 100.0 0.0001 0.01 1 0.028270

Table 5. Hyperparameters for Gradient Clipping MNIST

ϵ Compute Budget C2 Ã ¸ ¼ Unlearning Steps

1 1 0.001 0.01 0.0001 900.00 1

1 2 0.001 0.01 0.0001 900.00 1

1 3 0.001 0.01 0.0001 900.00 1

1 4 0.001 0.01 0.0001 500.00 1

1 5 0.001 0.01 0.0100 0.01 1

1 6 0.010 0.01 0.0010 900.00 6

1 7 0.001 0.01 0.0010 10.00 1

1 8 0.001 0.01 0.0100 900.00 1

1 9 0.001 0.01 0.0001 10.00 1

1 10 0.001 0.01 0.0010 10.00 1

Table 6. Hyperparameters for Model Clipping MNIST
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ϵ Compute Budget (epochs) ¼ C1 µ C0 Unlearning Steps Ã

1 1 200.0 100.0 0.0010 0.1 1 0.254558

1 4 50.0 10.0 0.0100 1.0 5 0.275702

1 7 50.0 10.0 0.0100 20.0 11 0.256790

1 10 50.0 100.0 0.0001 0.1 10 0.088213

1 13 1.0 10.0 0.0010 0.1 10 0.089197

1 16 50.0 10.0 0.0010 0.1 10 0.077256

1 19 1.0 10.0 0.0010 0.1 10 0.089197

1 22 50.0 100.0 0.0001 0.1 10 0.088213

1 25 500.0 100.0 0.0010 1.0 5 0.275702

1 28 50.0 10.0 0.0100 20.0 11 0.256790

1 31 500.0 100.0 0.0010 20.0 11 0.256790

1 34 50.0 1.0 0.0010 1.0 93 0.012501

1 37 50.0 100.0 0.0010 0.1 1 0.275772

1 40 500.0 100.0 0.0010 1.0 5 0.275702

1 43 1.0 10.0 0.0100 0.1 1 0.281429

1 46 500.0 100.0 0.0010 20.0 11 0.256790

1 49 1.0 10.0 0.0100 0.1 1 0.281429

Table 7. Hyperparameters for Gradient Clipping CIFAR

ϵ Compute Budget (epochs) C2 Ã ¸ ¼ Unlearning Steps

1 1 0.200 0.2 0.0100 100.0 6

1 4 0.500 0.5 0.0010 10.0 6

1 7 0.500 0.5 0.0010 10.0 6

1 10 0.625 0.5 0.0001 100.0 9

1 13 0.625 0.5 0.0010 100.0 9

1 16 0.625 0.5 0.0001 0.0 9

1 19 0.500 0.5 0.0001 0.0 6

1 22 0.500 0.5 0.0010 0.0 6

1 25 0.625 0.5 0.0001 10.0 9

1 28 0.625 0.5 0.0010 100.0 9

1 31 0.625 0.5 0.0001 1.0 9

1 34 0.975 0.5 0.0001 10.0 36

1 37 0.625 0.5 0.0100 10.0 9

1 40 0.975 0.5 0.0001 1.0 36

1 43 0.500 0.5 0.0001 10.0 6

1 46 0.975 0.5 0.0001 10.0 36

1 49 0.500 0.5 0.0100 100.0 6

Table 8. Hyperparameters for Model Clipping CIFAR
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ϵ Compute Budget (epochs) C0 Ã

1 1 1.00 9.689610

1 4 0.10 0.968961

1 7 0.10 0.968961

1 10 0.10 0.968961

1 13 0.10 0.968961

1 16 0.10 0.968961

1 19 0.10 0.968961

1 22 0.10 0.968961

1 25 0.10 0.968961

1 28 0.10 0.968961

1 31 0.10 0.968961

1 34 0.10 0.968961

1 37 0.10 0.968961

1 40 0.01 0.096896

1 43 0.01 0.096896

1 46 0.10 0.968961

1 49 0.01 0.096896

Table 9. Hyperparameters for Output Perturbation CIFAR

ϵ Compute Budget (epochs) C0 Ã

1 1 0.01 0.096896

1 2 0.01 0.096896

1 3 0.01 0.096896

1 4 0.01 0.096896

1 5 0.01 0.096896

1 6 0.01 0.096896

1 7 0.01 0.096896

1 8 0.01 0.096896

1 9 0.01 0.096896

1 10 0.01 0.096896

Table 10. Hyperparameters for Output Perturbation MNIST

C. Transfer Learning Experiments

We use small three layer network as the head on top of a frozen pretrained (on Imagenet) ResNet18 backbone for transfer

learning experiments on CIFAR-10 and CIFAR-100

1 class ThreeLayerNN(nn.Module):

2 num_classes: int

3

4 @nn.compact

5 def __call__(self, x, train: bool = True, mutable=None):

6 x = x.reshape((x.shape[0], -1))

7 x = nn.Dense(features=32)(x)

8 x = nn.relu(x)

9 x = nn.Dense(features=32)(x)

10 x = nn.relu(x)

11 x = nn.Dense(features=self.num_classes)(x)

12 return x

In Tables 11, 12, and 13 we give complete experimental details for the CIFAR-10 and CIFAR-100 transfer learning

experiments.
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Architecture Frozen Resnet-18 Backbone + 3 Layer NN

Training objective Cross entropy loss

Evaluation objective Top-1 accuracy

Batch size 128

Training learning rate 0.1

Training learning rate schedule Linear One Cycle (Smith & Topin, 2017)

Train weight decay 0.0005

Number of train epochs 100

DP-SGD ∥.∥2 −clip 0.5

DP-SGD target group ε 50

DP-SGD target group ¶ 0.00001

Forget set size 10%

DP-SGD forget set size 0.5%

Number of unlearning epochs 50

Noise schedule constant

Unlearning learning rate schedule constant

Post Unlearning learning rate 0.06

Post Unlearning learning rate schedule Linear One Cycle

Post Unlearning weight decay 0.0005

Table 11. Experimental Setting CIFAR-10 and CIFAR-100

ϵ Compute Budget (epochs) ¼ C1 µ C0 Unlearning Steps Ã

1 1 500.0 100.0 0.001 0.01 1 0.148492

1 4 100.0 10.0 0.0001 0.01 10 0.008698

1 7 0.50 1.0 0.001 0.01 10 0.008932

1 10 0.50 10.0 0.0001 0.01 10 0.008943

1 13 0.50 10.0 0.0001 0.01 10 0.008943

1 16 10.0 10.0 0.001 0.01 1 0.028143

1 19 10.0 10.0 0.001 0.01 1 0.028143

1 22 10.0 10.0 0.001 0.01 1 0.028143

1 25 10.0 10.0 0.001 0.01 1 0.028143

1 28 10.0 10.0 0.001 0.01 1 0.028143

1 31 100.0 100.0 0.0001 0.01 1 0.028143

1 34 10.0 1.0 0.01 0.01 1 0.026870

1 37 0.50 10.0 0.001 0.01 1 0.028277

1 40 0.50 10.0 0.001 0.01 1 0.028277

1 43 0.50 10.0 0.001 0.01 1 0.028277

1 46 0.50 10.0 0.001 0.01 1 0.028277

1 49 0.50 10.0 0.001 0.01 1 0.028277

Table 12. Hyperparameters for Gradient Clipping Transfer Learning CIFAR-10
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ϵ Compute Budget (epochs) ¼ C1 µ C0 Unlearning Steps Ã

1 1 500 100 0.001 0.01 1 0.148492

1 4 0.50 1 0.001 0.01 10 0.008932

1 7 10 1 0.001 0.01 10 0.008698

1 10 10 0.10 0.01 0.10 30 0.008524

1 13 10 10 0.0001 0.01 10 0.008920

1 16 100 1 0.001 0.10 30 0.008524

1 19 0.50 1 0.001 0.01 10 0.008932

1 22 500 10 0.0001 0.01 10 0.007726

1 25 100 1 0.001 0.10 30 0.008524

1 28 0.50 1 0.001 0.01 10 0.008932

1 31 500 10 0.001 1 10 0.025667

1 34 0.50 10 0.0001 0.01 10 0.008943

1 37 500 10 0.001 1 10 0.025667

1 40 500 10 0.001 1 10 0.025667

1 43 500 10 0.001 1 10 0.025667

1 46 500 10 0.001 1 10 0.025667

1 49 500 10 0.001 1 10 0.025667

Table 13. Hyperparameters for Gradient Clipping Transfer Learning CIFAR-100

D. ε Sweep

In this section, we evaluate how the choice of ϵ affects the performance of our algorithm. For that, in addition to ϵ = 1
used in the paper, we plot the performance of the gradient clipping algorithm (3) for ϵ = 0.1 and ϵ = 10. We kept fixed

¶ = 10−5 for all of the epsilons. See Figure 4 for results. We can see that ϵ = 0.1 degrades the performance of our algorithm

significantly compared to ϵ = 1. There is very little difference between ε = 1 and ε = 10 but a performance penalty for

ε = 0.1 that is more visible with the harder task (CIFAR-10).

(a) CIFAR-10 (b) MNIST

Figure 4. Accuracy of Gradient Clipping versus compute budget (epochs) on CIFAR-10 (left) and MNIST (right), to satisfy (ε, 10−5)-
unlearning for ε ∈ {0.1, 1, 10}.
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Compute Budget (epochs) ϵ ¼ C1 µ C0 Unlearning Steps Ã

1 0.1 500 100 0.001 1 5 0.871847

4 0.1 500 100 0.001 1 5 0.871847

7 0.1 500 100 0.001 1 5 0.871847

10 0.1 500 100 0.001 1 5 0.871847

13 0.1 500 100 0.001 1 5 0.871847

16 0.1 500 100 0.001 1 5 0.871847

19 0.1 500 100 0.001 1 5 0.871847

22 0.1 500 100 0.001 1 5 0.871847

25 0.1 500 100 0.001 1 5 0.871847

28 0.1 500 100 0.001 1 5 0.871847

31 0.1 500 100 0.001 1 5 0.871847

34 0.1 500 100 0.001 1 5 0.871847

37 0.1 500 100 0.001 1 5 0.871847

40 0.1 500 100 0.001 1 5 0.871847

43 0.1 500 100 0.001 1 5 0.871847

46 0.1 500 100 0.001 1 5 0.871847

49 0.1 500 100 0.001 1 5 0.871847

1 1 500 100 0.001 1 5 0.275702

4 1 1 10 0.001 0.1 10 0.089197

7 1 500 100 0.001 1 5 0.275702

10 1 1 10 0.001 0.1 10 0.089197

13 1 500 100 0.001 1 5 0.275702

16 1 500 100 0.001 1 5 0.275702

19 1 500 100 0.001 1 5 0.275702

22 1 500 100 0.001 1 5 0.275702

25 1 500 100 0.001 1 5 0.275702

28 1 500 100 0.001 1 5 0.275702

31 1 500 100 0.001 1 5 0.275702

34 1 500 100 0.001 1 5 0.275702

37 1 500 100 0.001 1 5 0.275702

40 1 500 100 0.001 1 5 0.275702

43 1 500 100 0.001 1 5 0.275702

46 1 500 100 0.001 1 5 0.275702

49 1 500 100 0.001 1 5 0.275702

1 10 1 100 0.1 0.1 1 4.512385

4 10 1 10 0.1 0.1 1 0.487463

7 10 0.1 10 0.1 1 1 0.889955

10 10 0.1 10 0.1 0.1 1 0.491488

13 10 0.1 10 0.1 1 1 0.889955

16 10 0.1 10 0.1 0.1 1 0.491488

19 10 1 10 0.1 0.1 1 0.487463

22 10 0.1 10 0.1 0.1 1 0.491488

25 10 0.1 10 0.1 1 1 0.889955

28 10 0.1 0.01 0.1 0.1 70 0.007260

31 10 1 0.1 0.1 10 53 0.026744

34 10 25 5 0.01 10 19 0.071419

37 10 0.1 10 0.1 0.1 1 0.491488

40 10 1 10 0.001 0.1 10 0.028207

43 10 25 5 0.01 10 19 0.071419

46 10 25 5 0.01 10 19 0.071419

49 10 1 0.1 0.1 1 30 0.026955

Table 14. Hyperparameters for Gradient Clipping CIFAR-10 for ε ∈ {10, 1, 0.1}
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ϵ Compute Budget (epochs) ¼ C1 µ C0 Unlearning Steps Ã

10 1 750 10 0.0001 0.01 6 0.002451

10 2 750 10 0.0001 0.01 6 0.002451

10 3 750 10 0.0001 0.01 6 0.002451

10 4 750 10 0.0001 0.01 6 0.002451

10 5 10 100 0.0001 0.01 1 0.008940

10 6 750 10 0.0001 0.01 6 0.002451

10 7 10 100 0.0001 0.01 1 0.008940

10 8 750 10 0.0001 0.01 6 0.002451

10 9 10 100 0.0001 0.01 1 0.008940

1 1 10 100 0.0001 0.01 1 0.028270

1 2 750 10 0.0001 0.01 6 0.007752

1 3 750 10 0.0001 0.01 6 0.007752

1 4 750 10 0.0001 0.01 6 0.007752

1 5 10 100 0.0001 0.01 1 0.028270

1 6 10 100 0.0001 0.01 1 0.028270

1 7 750 10 0.0001 0.01 6 0.007752

1 8 10 100 0.0001 0.01 1 0.028270

1 9 10 100 0.0001 0.01 1 0.028270

0.1 1 10 100 0.0001 0.01 1 0.089398

0.1 2 10 100 0.0001 0.01 1 0.089398

0.1 3 10 100 0.0001 0.01 1 0.089398

0.1 4 750 10 0.0001 0.01 6 0.024514

0.1 5 10 100 0.0001 0.01 1 0.089398

0.1 6 10 100 0.0001 0.01 1 0.089398

0.1 7 10 100 0.0001 0.01 1 0.089398

0.1 8 10 100 0.0001 0.01 1 0.089398

0.1 9 10 100 0.0001 0.01 1 0.089398

Table 15. Hyperparameters for Gradient Clipping MNIST for ε ∈ {10, 1, 0.1}
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