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Abstract

Current mathematical reasoning benchmarks for

large language models (LLMs) are approaching

saturation, with some achieving > 90% accuracy,

and are increasingly compromised by training-set

contamination. We introduce Putnam-AXIOM, a

benchmark of 522 university-level competition

problems drawn from the prestigious William

Lowell Putnam Mathematical Competition, and

Putnam-AXIOM Variation, an unseen compan-

ion set of 100 functional variants generated by

programmatically perturbing variables, and con-

stants. The variation protocol produces an un-

limited stream of equally difficult, unseen in-

stances – yielding a contamination-resilient test

bed. On the Original set, OpenAI’s o1-preview

– the strongest evaluated model – scores 41.9%,

but its accuracy drops by 19.6 % (46.8% rela-

tive decrease) on the paired Variations. The re-

maining eighteen models show the same down-

ward trend, ten of them with non-overlapping

95% confidence intervals. These gaps suggest

memorization and highlight the necessity of dy-

namic benchmarks. We complement (”boxed”)

accuracy with Teacher-Forced Accuracy (TFA), a

lightweight metric that directly scores reasoning

traces and automates natural language proof eval-

uations. Putnam-AXIOM therefore provides a rig-

orous, contamination-resilient evaluation frame-

work for assessing advanced mathematical rea-

soning of LLMs. Data and evaluation code are

publicly available at https://github.com/

brando90/putnam-axiom.
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1. Introduction

The ability for Large Language Models (LLMs) to reason

about complex problems has a plethora of applications in

fields such as economics (Zhang et al., 2024), drug discovery

(Bran et al., 2023), and even simulations of human behavior

and society (Park et al., 2023). Rapid adoption of LLMs

for reasoning has, in turn, spurred rapid gains on standard

reasoning benchmarks (OpenAI, 2023; Gemini, 2023; Yang

et al., 2024a).

Outpacing Current Evaluations. Indeed, advanced mod-

els like GPT-4 (OpenAI, 2023) and Gemini Ultra (Gemini,

2023) have reported human-level performance on many

benchmarks like MMLU (Hendrycks et al., 2020) and

MMMU (Yue et al., 2023). Similarly, LLMs have seen

progress in other challenging benchmarks like GSM8K

(Chen et al., 2022) and MATH (Hendrycks et al., 2021), with

SOTA models attaining nearly 90% accuracy on MATH (Lei,

2024) and nearly perfect accuracy on GSM8K (Zhong et al.,

2024). Although this progress demonstrates rapidly evolv-

ing LLM capabilities, it creates an evaluation ceiling effect:

current benchmarks lack sufficient difficulty to discriminate

between state-of-the-art models’ reasoning abilities.

Data Contamination. The problem is further complicated

by data contamination, which remains a major concern for

current evaluation benchmarks. By training LLMs on larger

portions of the internet, researchers are incorporating an

increasing number of open-source benchmark data into the

models’ pretraining. Therefore, a model can display ar-

tificially high “reasoning ability” by simply memorizing

the answers it has seen, undermining the integrity of the

evaluation.

To address these limitations, we introduce the Putnam-

AXIOM (Advanced eXamination of Intelligence in

Operational Mathematics) dataset, a novel and challenging

compilation of high-level mathematics problems sourced

from the William Lowell Putnam Mathematical Competi-

tion, an annual mathematics competition for undergradu-

ate college students in North America which requires ad-

vanced mathematical reasoning and covers a wide range

of university-level mathematical concepts. In addition, we
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also introduce functional variations of the Putnam-AXIOM

dataset to combat data contamination, taking inspiration

from the solution employed by (Srivastava et al., 2024).

Functional variations adjust variables, constants, and the

phrasing of problems through Python scripts, allowing us

to generate an unlimited number of new problems that are

not found on the Web but still retain their mathematical

complexity and validity. Putnam-AXIOM enables fully au-

tomated evaluations by requiring models to provide final

answers within “\boxed{}” brackets which can then be

extracted and compared to the ground truth final solution us-

ing an equivalence function 1 as used for the MATH dataset

(Hendrycks et al., 2021). This approach eliminates the need

for human evaluation, and avoids the limitations of multiple-

choice formats (Schaeffer et al., 2024), thus maintaining

soundness while enabling scalability.

Initial evaluations on Putnam-AXIOM demonstrate its dif-

ficulty with o1-preview scoring less than half at 41.94%,

while GPT-4o achieves only 19.35%. Even math-specialized

models such as Qwen2-Math-7B and Qwen2-Math-7B-

Instruct perform poorly, scoring 5.51% and 11.8% respec-

tively. Performance further declines on functional variations

of Putnam-AXIOM, which include significant drops for

most models, decreasing by 20-30% in relative performance.

”These low accuracies demonstrate Putnam-AXIOM’s ef-

fectiveness as a challenging benchmark, while variations

expose models’ reliance on memorization.

Proof-based Evaluation Metrics. In addition to introduc-

ing the Putnam-AXIOM Original and Variation benchmarks,

we identified the need for more sophisticated LLM reason-

ing evaluation metrics. Current evaluation metrics for rea-

soning are inadequate, as they rely solely on a final “boxable”

answer without assessing the actual reasoning process. For

problems with only a few possible final answers – such

as with true/false or modular arithmetic – this means mod-

els will often get the final boxed answer correct by random

chance. Additionally, evaluations are then limited to the sub-

set of problems with simple boxable answers, completely

ignoring theorem proving and problems with complex for-

mulae as the solution. In open-ended evaluations areas, like

theorem proving, the current standard is either human eval-

uations (He et al., 2024), which are expensive, or using a

formal language, which requires translating theorems and

setting up complex environments and dependencies (Yang

et al., 2024b). We therefore explore alternative automatic

metrics to boxed answers and find that a simple and cheap

method, Teacher-Forced Accuracy (TFA), is a promising

approach.

Our contributions are:

1For instance, the equivalence function would evaluate the
answers 0.5, 1/2, and \frac{1}{2} as equal.

• The Putnam-AXIOM, a new evaluation benchmark of

522 challenging mathematical problems sourced from

the William Lowell Putnam Competition, designed to

assess advanced mathematical reasoning in LLMs.

• Functional variations for 100 of these problems us-

ing Python scripts, altering variables, constants, and

problem phrasing to generate unlimited novel prob-

lems while preserving their mathematical complexity,

effectively avoiding data contamination.

• Teacher-forced accuracy (TFA), to provide a more com-

plete assessment of LLMs’ reasoning abilities – be-

yond traditional boxed answers.

2. Related Work

2.1. Mathematics benchmarks

Numerous benchmarks exist to assess the mathematical ca-

pabilities of models, each typically focusing on a specific

task. Two notable examples are MATH (Hendrycks et al.,

2021) and GSM8K (Cobbe et al., 2021). The MATH dataset

contains questions sourced from American high school

mathematics competitions such as the AMC 10, AMC 12,

and AIME (Hendrycks et al., 2021), while the GSM8K

dataset contains 8.5K handwritten elementary school level

questions (Cobbe et al., 2021). Both contain questions and

answers with detailed rationale explanations.

As models have become larger and more powerful, even the

most difficult existing benchmarks have become less chal-

lenging. For instance, while the MATH dataset saw 6.9%
accuracy on its release, it now sees 87.92% accuracy with

GPT-4 MACM (Lei, 2024). Similarly, GPT4 has attained

97.1% accuracy on the GSM8K (Zhong et al., 2024). This

saturation necessitates the development of more challenging

benchmarks.

Many contemporary data sets have been created to combat

the saturation of existing benchmarks. For instance, the

ARB dataset includes hundreds of challenging problems in

high school and college-level math, physics, and chemistry

(Sawada et al., 2023). Similarly OlympiadBench contains

nearly 9,000 problems from the International Mathematics

Olympiad (IMO), the Chinese GaoKao, and more (He et al.,

2024). Finally, SciBench is a similar reasoning benchmark

that includes hundreds of college-level scientific reasoning

questions from instructional textbooks (Wang et al., 2023).

Although these datasets alleviate the saturation problem,

they come with many limitations. For instance, ARB

(Sawada et al., 2023) and OlympiadBench (He et al., 2024)

both contain several symbolic and proof-based questions

which cannot be graded automatically and require a costly

and lengthy human evaluation process. Though ARB at-

tempts to utilize LLMs to grade their own responses with a

rubric, this process is often unreliable and self-referential
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(Huang et al., 2024a). Our Putnam-AXIOM dataset ad-

dresses these limitations by offering challenging Putnam

problems with fully-written solutions and easily evaluable

answers. It enables efficient automated assessment via

frameworks like LM Harness (Gao et al., 2024), avoiding

costly human evaluation or unreliable self-grading.

PutnamBench (Tsoukalas et al., 2024) is a related bench-

mark that primarily focuses on formal theorem proving. Its

main objective is to derive formalized proofs of mathemat-

ical statements and it provides formalizations in systems

such as Lean, Isabelle, and Coq, all sourced from the pres-

tigious Putnam competition. PutnamBench also includes

640 natural language statements and their corresponding

answers where applicable. While both benchmarks draw

from the same competition, Putnam-AXIOM focuses on

the curation of natural language problems for final answer

verification and introduces automatic functional variations

to generate additional benchmarks addressing potential data

contamination. Further through Putnam-AXIOM we go be-

yond just the final answer by assessing the model outputted

solution through evaluation proxy metrics.

2.2. Functional Benchmarks

Data contamination is a significant problem in creating eval-

uation benchmarks, as many of these problems are openly

available on the Internet and are likely included in the train-

ing data for large models (Schaeffer, 2023; Sainz et al.,

2023). Thus, the MATH (Hendrycks et al., 2021), AGIEval

(Zhong et al., 2023), OlympiadBench (He et al., 2024),

and ARB (Sawada et al., 2023) benchmarks (which are all

sourced from problems on the Internet) could potentially be

contaminated. Therefore, models may achieve artificially

high performance on an evaluation benchmark by memoriz-

ing the answers to the problems Magar & Schwartz (2022);

Ranaldi et al. (2023).

A straightforward way of avoiding data contamination issues

is to utilize problems unavailable on the Internet. However,

even if problems are not currently part of model training

data, it is unrealistic to expect them to remain inaccessible.

At the same time, it is costly to rely on the continuous human

development of new datasets.

Srivastava et al. (2024) attempts to alleviate this data con-

tamination issue by creating functional variations of the

MATH dataset, where new problems can be generated sim-

ply by changing numeric parameters, yielding different so-

lutions. They observe a significant discrepancy in models’

performance between standard benchmarks and these new

variations. We recognize the potential of this idea and have

adapted it to our more challenging dataset. We have al-

tered the variables, constants, and phrasing of many Putnam

questions while preserving their overall difficulty and re-

quirements for logical and mathematical reasoning.

2.3. Evaluation Metrics

Several approaches have been proposed to reduce the re-

liance of model evaluations on box-able answers, particu-

larly in domains like free-form writing or translation where

unique answers do not exist (Leiter et al., 2022; Opitz &

Frank, 2021). Historically, tasks such as translation and

natural language generation, which lack a single correct

answer, have used more flexible metrics, including n-gram

match (Lin, 2004), model-based (Guerreiro et al., 2023),

embedding proximity (Zhang et al., 2020), paraphrasing

(Thompson & Post, 2020), generation as an evaluator (Yuan

et al., 2021), and information alignment (Deng et al., 2021).

However, these metrics are not designed to assess reasoning

ability or the correctness of mathematical statements.

When relying on boxed answers, we simply do not know

how often the generated reasoning steps actually support

the final answer. For evaluating reasoning abilities, the

ROSCOE suite of metrics is noteworthy as it measures vari-

ous fine-grained aspects of reasoning steps such as semantic

consistency, logicality, informativeness, fluency, and factu-

ality (Golovneva et al., 2023). We omit descriptions of each

metric, but highlight that most of them rely on sentence em-

bedding models and operate on a step-by-step level. Unfor-

tunately, the original ROSCOE metrics were predominantly

tested on GPT-3 generations, and we find that these metrics

do not provide evaluations that are comparable across dif-

ferent models. Although fine-grained metrics like ROSCOE

can be useful for interpreting specific aspects of a model’s

capabilities, an ideal reasoning benchmark would employ a

single metric that is comparable across models and highly

correlated with the correctness of the generated reasoning.

In Huang et al. (2024b), authors drew upon equivalence be-

tween language modelling and compression. They demon-

strated that using bits per character (BPC) to measure a

model’s compression rate on several external large corpora

is highly correlated with model performance on various

benchmarks. However, this approach has drawbacks: eval-

uating compression on large corpora is expensive, and the

equivalence only holds for base models, as fine-tuned mod-

els are not general-purpose compressors for arbitrary text.

Despite this, we suspect there would still be a relatively high

correlation for most fine-tuned models. Relatedly, Yuan et al.

(2023) found that pre-training loss is strongly correlated

with mathematical ability for the LLaMA family (Touvron

et al., 2023a;b). Unfortunately, creating an open benchmark

using this metric is impractical due to the dependence of pre-

training loss on differences in pre-training data, tokenizers,

and other training-specific parameters.

Relationship to process-supervision metrics. Teacher-

Forced Accuracy (TFA) complements recent step-level eval-

uation methods based on process supervision. PRM-style

approaches label each intermediate step with a learned re-
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ward model trained on either expert annotations (Lightman

et al., 2023) or large-scale automated traces (Luo et al.,

2024a). While PRMs are powerful, they require (i) millions

of step-level labels, (ii) an additional model to learn the

reward, and (iii) non-trivial calibration at inference time. By

contrast, TFA dispenses with reward learning entirely: given

a reference proof, we condition the LLM on the gold prefix

and measure whether it predicts the next step. This teacher-

forcing procedure yields a direct, noise-free estimate of

reasoning fidelity, is agnostic to model size, and incurs only

a single forward pass per step. Empirically, we find that

TFA correlates with final-answer accuracy but, like PRM

scores, can still penalize solutions that “get the right box”

via spurious reasoning, thereby providing a lightweight yet

alternative for (”boxed”) final answer accuracy.

3. Methods

3.1. Putnam-AXIOM Original Dataset

Dataset. The Putnam-AXIOM Original Dataset contains

522 problems curated from the William Lowell Putnam

Mathematical Competition posed between 1938 and 2023.

These problems were selected based on their ability to yield

a unique, numerically evaluable final answer, enabling au-

tomated assessment while preserving mathematical rigor.

The dataset encompasses various topics within university-

level mathematics categorized into 11 distinct domains –

Geometry, Algebra, Trigonometry, Calculus, Linear Alge-

bra, Combinatorics, Probability, Number Theory, Complex

Numbers, Differential Equations and Analysis.

To maintain a consistent and rigorous evaluation, each prob-

lem retains its original exam ID, which indicates its diffi-

culty level and the topic categories. The ID format includes

the exam sitting (A or B) and a number (1-6) representing

increasing complexity, with 1 being easiest and 6 being most

difficult. The dataset is formatted using LATEX to accurately

capture the complex equations and symbols the problems

employ. Additionally, we utilize Asymptote vector graphics

for encoding mathematical figures and diagrams to ensure

language models can process visual elements directly. Fur-

ther, we standardized the placement of boxed answers by

relocating them to the end of each solution string to mini-

mize unintended emergent behaviors leading to evaluations

that are less “harsh” or prone to penalizing the model for

formatting deviations rather than actual comprehension.

Modified Boxing. Given the complex nature of certain

Putnam questions, some problems do not lend themselves

to simple, singular boxed final answers. Instead, they of-

ten include conditions, multiple possible answers, varied

answer formats and elaborate proofs. These original ques-

tions would have necessitated costly and difficult human

evaluations which we seek to avoid. To address this, we

modified these questions by adding a trivial next step to the

original questions, changing the solution accordingly. This

additional step was designed so as to ensure that solvers

reached the same conclusions and insights necessary to

solve the problem, but then output a single boxed final an-

swer. We provide an example of such a change in Figure 1.

By incorporating this minor modification, we preserved the

inherent difficulty and complexity of the original problems

while making the answers suitable for automated evalu-

ation. Furthermore, since Putnam proof-based problems

often test different reasoning abilities than Putnam answer-

based problems, modified boxing allows us to provide a

more comprehensive test. Of the original 522 problems,

221 required modified boxing, representing 42.3% of the

dataset.

3.2. Putnam-AXIOM Variation Dataset

Models trained on snapshots of the internet have likely en-

countered Putnam questions, potentially inflating their per-

formance on the Putnam-AXIOM Original dataset. There-

fore, drawing inspiration from (Srivastava et al., 2024), we

introduce functional variations of select problems from

Putnam-AXIOM Original providing an effective way of

evaluating models that have been trained on the entire inter-

net by taking advantage of weaknesses in model memoriza-

tion. These variations are classified into two types.

Variable Change. The simplest variation is a variable

change, where variable names are altered and the final an-

swer is unvaried. Variable changes slightly modify the prob-

lem from its original statement, which models could have

trained on.

Constant Change. Constant changes modify numeric prop-

erties of the question, altering constants within the step-

by-step solution and the final answer. Constant changes

significantly transform the problem from its original state-

ment, challenging models to perform complex reasoning on

how the changes affect the solution and final answer, as in

the example from Figure 2.

Variational Dataset Description. We created functional

variations for 100 Putnam-AXIOM questions (19.2% of

the full dataset), selected to maximize coverage across

mathematical domains while ensuring variation feasibil-

ity (problem-specific constants, non-generalizable solutions,

and questions lacking constants or boxable answers were

left). The dataset includes 37 constant+variable and 63

variable-only changes. We rephrased problem statements

while maintaining the core task to prevent pattern recogni-

tion by LLMs. Each variation can generate infinite unique,

equally difficult snapshots, offering a sustainable evaluation

method. To evaluate various SOTA models, evaluators are

expected to generate snapshots (instances of the infinite po-

tential variations) of the variation dataset by running the
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Problem: Determine which positive integers n have the
following property: For all integers m that are relatively
prime to n, there exists a permutation π : {1, 2, . . . , n} →
{1, 2, . . . , n} such that π(π(k)) ≡ mk (mod n) for all
k ∈ {1, 2, . . . , n}.

Solution: The desired property holds if and only if

n = 1 or n ≡ 2 (mod 4) . Let σn,m be the permuta-

tion of Z/nZ induced by multiplication by m; the original
problem asks for which n does σn,m always have a square
root.

· · ·
By Lemma 1, σn,m does not have a square root.

Year: 2016 ID: A1 Final Answer: ??

Problem: Determine the sum of the first k positive inte-
gers n (in terms of k) which have the following property:
For all integers m that are relatively prime to n, there ex-
ists a permutation π : {1, 2, . . . , n} → {1, 2, . . . , n} such
that π(π(k)) ≡ mk (mod n) for all k ∈ {1, 2, . . . , n}.

Solution: Let σn,m be the permutation of Z/nZ induced
by multiplication by m; the original problem asks for
which n does σn,m always have a square root.

· · ·

The desired property holds if and only if n =
1 or n ≡ 2 (mod 4), hence making the required sum

2k2 − 4k + 3 .

Year: 2016 ID: A1 Final Answer: 2k2 − 4k + 3

Figure 1. A modified boxing example in Putnam-AXIOM. Here we see that the original problem holds true for a number of values of n
conditioned on a specific property making it hard to find a boxable expression. We thus modify the solution to still require the solver to

get to that conclusion and add a further computation of summing up the first k such values of n giving a boxable solution while keeping

the core of the problem the same.

generation code.

3.3. Model Evaluations

Using the LM Harness Evaluation framework (Gao et al.,

2024), we evaluated several open-source and proprietary

SOTA LLMs. We rely on LM Harness Evaluation because

its widely-used, vetted codebase that lets us reuse the same

tokenizer-aware boxing extractor and MATH (Hendrycks

et al., 2021) equivalence function, giving our results an im-

mediately reproducible and trustworthy evaluation pipeline.

Models were prompted to provide answers in \boxed for-

mat, which were then compared to Putnam ground truths

with an exact final answer match. We evaluated the 522-

question Putnam-AXIOM Original dataset once. For the

variation dataset, we conducted five trials, each using a ran-

domly selected variation snapshot and its corresponding 100

original questions. We then calculated mean accuracy and

95% confidence intervals.

3.4. Fine-Tuning Experiments with Variations

To simulate data contamination and evaluate the robustness

of the Putnam-AXIOM Variations dataset, we performed

LoRA fine-tuning using the next-token prediction objective

and trained until convergence. The models were then evalu-

ated before and after fine-tuning on a 100-question subset

of the Putnam-AXIOM Variations benchmark and its corre-

sponding original problems. Prior to fine-tuning, the model

achieved 12% accuracy on the variation set and 23% on the

originals. After fine-tuning, accuracy on the original ques-

tions rose sharply to 80%, while accuracy on the variations

increased only modestly to 33%. These results suggest that

the model rapidly memorized the original problems while

continuing to struggle with functionally equivalent varia-

tions, highlighting the importance of contamination-resilient

benchmarks.

3.5. Proxy Reasoning Metrics

Final-answer (“boxed”) accuracy treats an LLM’s chain of

thought as a black box: it cannot penalize lucky guesses on

binary questions, detect spurious derivations, or compare the

quality of two correct proofs. Recent process-supervision

work mitigates this by training reward models that score

every intermediate step, but requires vast step-level anno-

tations and an extra model at inference time (?Luo et al.,

2024b). To obtain step-level insight without additional an-

notation, we introduce Teacher-Forced Accuracy (TFA)

— a deterministic metric that measures how well a model

predicts each reference step under teacher forcing. We then

compare TFA and its relatives with the 18 automatic metrics

in ROSCOE (Golovneva et al., 2023).

Teacher Forcing: In teacher forcing (Jiang et al., 2023;

Lamb et al., 2016), the model is conditioned on the ground

truth solution tokens rather than its own previous predictions.

Given a question q and its ground truth solution tokenized as

s1, s2, . . . , sN , let ŝ1, ŝ2, . . . , ŝN be the tokens predicted by

the model under teacher forcing. We explore the following

teacher forcing metrics:
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Problem: Define a growing spiral in the plane to be
a sequence of points with integer coordinates P 0 =
(0, 0), P 1, . . . , Pn such that n g 2 and:

· · ·

How many of the points (x, y) with integer coordinates
0 f x f 2011, 0 f y f 2011 cannot be the last point,
Pn of any growing spiral?

Solution: We claim that the set of points with 0 f x f
2011 and 0 f y f 2011 that cannot be the last point of a
growing spiral are as follows: (0, y) for 0 f y f 2011;
(x, 0) and (x, 1) for 1 f x f 2011; (x, 2) for 2 f x f
2011; and (x, 3) for 3 f x f 2011.

· · ·

This gives a total of

2012 + 2011 + 2011

+2010 + 2009 = 10053

excluded points.

Year: 2011 ID: A1 Final Answer: 10053

Problem: Consider a growing spiral in the plane, defined
as a sequence of points L0 = (0, 0), L1, . . . , Ln, each
having integer coordinates, where n g 2 and:

· · ·

Determine the number of points (w, v) with integer coor-
dinates 0 f w f 4680, 0 f v f 4680 that cannot be the
final point, Ln of any such growing spiral.

Solution: We claim that the set of points with 0 f w f
4680 and 0 f v f 4680 that cannot be the last point of a
growing spiral are as follows: (0, v) for 0 f v f 4680;
(w, 0) and (w, 1) for 1 f w f 4680; (w, 2) for 2 f w f
4680; and (w, 3) for 3 f w f 4680.

· · ·

This gives a total of

4681 + 4680 + 4680

+4679 + 4678 = 23398

excluded points.

Year: 2011 ID: A1 Final Answer: 23398

Figure 2. Constant and variable change in Putnam-AXIOM. Here, we perform a variable change on the original problem/solution on

the left by changing variables ‘x’ to ‘w,’ ‘y’ to ‘v,’ and ‘P ’ to ‘L.’ We also perform a constant change by altering the constant ‘2011’ to

‘4680’. The constant change affects the final answer, changing it from 10053 to 23398. Finally, we rephrase the problem.

1. Teacher-Forced Accuracy (TFA) measures the propor-

tion of tokens that the model predicts correctly when

conditioned on the ground truth tokens.

TFA =
1

N

N∑

i=1

1[ŝi = si]

2. Teacher-Forced Cross Entropy (TFCE) measures the

average negative log likelihood of the ground truth

tokens under the model’s predicted probability distri-

bution.

TFCE = −
1

N

N∑

i=1

logP(ŝi = si | q, s1, s2, . . . , si−1)

3. Perplexity is a measure of how well a probability dis-

tribution predicts a sample. In the context of teacher

forcing, it is an exponentiation of the cross entropy.

Perplexity = exp (TFCE)

4. Bits Per Character (BPC) (Huang et al., 2024b) is very

similar to TFCE and has been shown to correlate well

with benchmarks when evaluated on very large corpora.

The idea is that due to differences in tokenization, aver-

age bits per token are not directly comparable. Instead

we use

BPC = −
1

T

N∑

i=1

logP(ŝi = si | q, s1, s2, . . . , si−1)

where T is the number of characters in the solution

string rather than the number of tokens.

The main limitation of the teacher forcing approach is the

dependency on the ground truth solution. Models are often

finetuned for a specific style or problem solving approach

(such as tool use or code generation). In this case, we would

expect that teacher forcing metrics would under represent

the models’ abilities.

ROSCOE: The ROSCOE suite offers 18 distinct metrics,

each tailored to assess a different facet of reasoning as de-

scribed by (Golovneva et al., 2023). These metrics are

broadly categorized into four groups. The first category,

semantic alignment, focuses on identifying relationships

between concepts that share the same or similar meanings.

Metrics in this category typically examine reasoning on
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a step-by-step basis. In contrast, semantic similarity met-

rics evaluate the problem and solution holistically. Logical

inference metrics, utilizing a specially trained model (Lau-

rer et al., 2024), detect contradictions between reasoning

steps. Lastly, language coherence is assessed by evaluating

model outputs using the perplexity score from GPT-2 Large

(Radford et al., 2019) and a grammar model (Krishna et al.,

2020). We use the code provided by the authors as is to

evaluate these metrics.

Metric Evaluation: Given the challenging nature of

Putnam-AXIOM and the poor performance of existing mod-

els, we opted to test the proposed proxy metrics on the

MATH dataset instead. For a metric to be effective as a

benchmark, its evaluations must be comparable across dif-

ferent models. To generate evaluation data, we utilized 15

open-source models, ranging from 7 billion to 70 billion pa-

rameters, which exhibit a wide range of performance across

the 7 different MATH datasets. We then compared the proxy

metric evaluations with each model’s boxed accuracy for

each dataset. A high correlation between the proxy metric

and boxed accuracy indicates a better proxy.2 Our results,

including the raw correlations for each metric in Table 4,

are presented in the Appendix.

4. Results

4.1. Putnam-AXIOM Model Performance

Table 1 presents Putnam-AXIOM Original dataset accu-

racies. Most models score below 10%, with even Nu-

minaMath, the AI Mathematics Olympiad winner (Invest-

ments, 2024), achieving only 10.34%. These low accura-

cies demonstrate Putnam-AXIOM’s effectiveness as a chal-

lenging benchmark. Figure 3 contrasts Putnam-AXIOM

Variation dataset mean accuracies with the 100 correspond-

ing original questions, along with the confidence intervals

across the five variation snapshots with the average accu-

racies in Table 2. Original accuracies typically surpass

variation accuracies. For models like o1-preview, GPT-4o,

and DeepSeek-R1 Distilled Qwen-32B, non-overlapping

confidence intervals reveal statistically significant differ-

ences, indicating artificially inflated performance on original

questions due to data contamination. Looking at the num-

bers highlights significant accuracy declines across models:

DeepSeek-R1-Qwen-32B shows the steepest drop at 37.5%,

followed by GPT-4o at 36% and o1-preview at 17%.

4.2. LLM Error Analysis

OpenAI o1-preview Performance: Out of all models,

we see that OpenAI o1-preview performed the best on

Putnam-AXIOM Original, receiving 41.94% boxed accu-

2We note that care must be made before optimizing any models
using a proxy metric as otherwise Goodhart’s Law may take effect.

Model Score % TFA

Gemma-2B-Base 15/522 2.87 0.717

Gemma-7B-Base 24/522 4.60 0.784

DeepSeek-Math-7B-Base 21/522 4.02 0.779

Qwen2-Math-7B-Base 50/522 9.57 0.770

NuminaMath-7B-Base 54/522 10.34 0.742

Mistral-7B-v0.3-Base 21/522 4.02 0.735

Llama-3-8B-Base 17/522 3.25 0.748

Gemma-2B-Instruct 5/522 0.95 0.634

Gemma-7B-Instruct 24/522 4.60 0.702

Qwen2-Math-7B-Instruct 60/522 11.49 0.758

DeepSeek-Math-7B-Instruct 36/522 6.89 0.750

Mistral-7B-Instruct-v0.3 21/522 4.02 0.735

Llama-3-8b Instruct 30/522 5.75 0.738

DeepSeek-Math-7B-RL 45/522 8.62 0.740

Claude-3.5 Sonnet 83/522 15.96 -

GPT-4 59/522 11.30 -

GPT-4o 101/522 19.35 -

o1-preview 219/522 41.94 -

Table 1. Putnam-AXIOM Original Results and New TFA

Scores. TFA Scores showcase percentage of model next-token

predictions matching ground truth. We cannot evaluate TFA for

proprietary models because we do not have access to their log

probabilities as seen in Appendix Section A.5

racy (219/522) while other models received less than 20%.

Analyzing the answers, we see that most of the OpenAI

o1-preview responses followed generally the same logical

path as the ground truth solution. However, several of these

questions contained logical mistakes and inconsistencies.

The biggest discrepancy between model responses and the

ground-truth solution was a general lack of mathematical

rigor. Whereas the ground truth solution will make claims

to advance its solution then prove those claims step-by-step,

o1-preview will often make and use claims without justifica-

tion. While this does succeed in getting to the correct boxed

final answer, these unjustified claims would receive little

credit when marked by a human grader. A large part of the

difficulty of mathematical reasoning is being logically air-

tight throughout the entire solution; thus, though o1-preview

shows promise, there are still evident flaws in its mathemat-

ical reasoning abilities. In several solutions like Figure 5,

for instance, o1-preview correctly identified the maximal or

minimal value of a variable, but failed to provide sufficient

proof that the value it provided was indeed the maximum or

minimum.

GPT-4o Performance: Like the o1-preview, GPT-4o mostly

followed correct logical reasoning for most of its solutions.

For GPT-4o, the biggest discrepancy between model re-

sponses and the ground-truth solution is the same general

7
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Figure 3. The drop of accuracies on Putnam-AXIOM Variation from corresponding Original questions is statistically significant

for nearly all models. This figure shows the mean accuracies for models along with 95% confidence intervals drawn.

lack of mathematical rigor throughout most of the solutions.

An example of this lack of rigor is shown in Figure 6, where

GPT-4o makes the claim that a rectangle gives the minimal

area subject to a set of constraints without any justification.

In addition to issues with rigor, GPT-4o also displayed logi-

cal leaps and incoherent reasoning, as displayed in Figure 7

where the model simply assumes that an answer is correct.

These logical leaps are symptomatic of an issue in the GPT-

4o’s CoT reasoning, as the model prioritizes reaching the

final answer rather providing a rigorous logical output.

General Analysis: Beyond GPT-4o and the o1-preview,

we wanted a general overview of the reasoning behaviors

of models. To do so, we chose the best-performing open-

source models, DeepSeek-Math-7B-RL, Qwen2-Math-7B,

and NuminaMath-7B. We tend to see that open-source mod-

els are much more error-prone than the proprietary models

we evaluated earlier. In general, we notice that open-source

models are subject to the same lack of mathematical rigor.

However, this rigor issue is overshadowed by major calcu-

lation errors, hallucinated/irrelevant information, misunder-

standings of the problem, and logical jumps. For instance,

in Figure 8, NuminaMath simultaneously makes a calcula-

tion, irrelevancy, and misunderstanding error when writing

the last step of its solution; in Figure 9, the model makes

false assumptions about functions defined in the problem;

in Figure 10, the model completely removes a crucial part

of the problem and proceeds to an incorrect final solution.

4.3. Proxy Metrics

To evaluate the performance of our proxy metrics, we first

test each of them on MATH, an easier benchmark, as we

can find models that achieve both very good and poor per-

formance. In Table 3 we compare how our chosen metrics

are correlated with the boxed accuracy of the answer on

MATH. For the sake of brevity we only include the three

most notable metrics from the ROSCOE suite: Informative-

ness Chain, Semantic Coverage Chain, and Perplexity Step.

While it might be possible to combine the ROSCOE metrics

together and obtain a stronger proxy metric, the straightfor-

ward approaches failed. Simple averaging performed poorly,

and we could not find a weighted or sparse combination of

the ROSCOE metrics without overfitting to the specific mod-

els that the weights were fit on. See Table 4 in the Appendix

for the full results. Despite it’s simplicity, TFA outperforms

(i.e. is more correlated with boxed accuracy) all of the other

metrics including all of the ROSCOE metrics on every cat-

egory in MATH. Interestingly, the ROSCOE methods that

correlate best with boxed accuracy are semantic similarity

metrics quantifying the degree of semantic equivalence be-

tween pieces of text. BPC performs reasonably well, but

still trails behind TFA.
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Figure 4. TFA against boxed accuracy with respect to model

choice on Putnam-AXIOM. We see a general positive relation-

ship (correlation of 0.52) between the two metrics with a couple

outliers. Without the two outliers the correlation is 0.62. We see

an especially strong positive trend between models within in the

same class (i.e. base and instruct models) which intuitively makes

sense since these models are trained in similar ways.

Thus we select TFA as our proxy metric of choice for

Putnam-AXIOM for both its correlation with accuracy and

because of its low evaluation cost. In Table 1 are the results

of TFA on Putnam-AXIOM Original. Figure 4 showcases

the relationship between TFA and accuracy on Putnam-

AXIOM. One potential reason for the outliers QWen2-Math-

7B-Instruct and DeepSeek-Math-RL might be because they

were trained with reinforcement learning and thus have a

different style of writing compared to other models. Un-

fortunately we can’t evaluate TFA on proprietary models

as we require the log probabilities of the input tokens. It

would be possible to feed the input to the proprietary model

incrementally, but this would require an API request for

every token in the input.

5. Limitations

Problem coverage. The present release contains only those

Putnam items that yield a unique numeric or algebraic an-

swer after our modified boxing procedure; non-modifiable

problems are excluded and thus some forms of mathematical

reasoning remain untested.

Functional variation scope. Programmatic perturbations

are implemented for 100 of 522 tasks (19.2 %), provid-

ing strong evidence of contamination yet limiting statistical

power. Expanding variation coverage is future work – espe-

cially with AI assisted methods.

Evaluation style dependence. TFA conditions on a ref-

erence solution; models that follow substantially differ-

ent—but valid—reasoning paths may receive lower scores,

and models fine-tuned for tool use or code generation may

be under-represented.

6. Implications and Future Work

Implications for model development and evaluation.

The sharp accuracy drop we observe when models are con-

fronted with Putnam-AXIOM Variation (e.g., –19.6 pp for

o1-preview) indicates that many current LLMs still rely

on memorized artifacts rather than genuine mathematical

reasoning. Consequently, leaderboard gains obtained on

static benchmarks can overstate true capability. We recom-

mend that practitioners report performance on dynamic or

contamination-checked splits—such as our functional vari-

ants—alongside traditional scores to obtain a more faithful

picture of progress.

Guidance for benchmark designers. Our results demon-

strate two practical design principles. (i) Functional vari-

ation: programmatic perturbations of constants and vari-

able names create an unbounded supply of unseen, equally

difficult items that resist contamination while preserving

automated evaluation. (ii) Step-level metrics: lightweight

measures such as Teacher-Forced Accuracy (TFA) expose

reasoning errors invisible to final-answer checks, require

no extra annotation or verifier model, and enable automatic

evaluation of natural-language proofs. We encourage fu-

ture benchmarks to adopt both ideas and to refine step-level

metrics so they better measure genuine reasoning.

Future work. We identify four immediate extensions.

(i) Human correlation. A systematic comparison between

TFA (and other proxies) and expert grading of proof traces

will quantify how faithfully automatic scores reflect hu-

man judgment. (ii) API-efficient step metrics. While TFA

only needs sequential token predictions, access to log-

probabilities allows a single forward pass; designing equally

informative metrics that operate on generated text alone

would make step-wise evaluation practical for closed-source

systems. (iii) Scaling functional variation. Extending our

variation engine from 100 problems to the full 522-problem

corpus—and to proof-based questions—will increase sta-

tistical power and broaden coverage. (iv) Formal-proof

targets. Incorporating items that require complete formal

proofs (e.g., Lean or Isabelle) will push models toward

deeper mathematical understanding and create a bridge to

automated theorem proving.
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A. Legal Compliance

We collect and modify various problems from the William Lowell Putnam Competition to create the original and variation

datasets of Putnam-AXIOM. Putnam problems are created by the Mathematical Association of America (MAA), which is

also the source of the AMC and AIME problems used in the MATH dataset (Hendrycks et al., 2021). Like (Hendrycks

et al., 2021), we do not in any form seek to monetize or commercialize Putnam problems—only to utilize them for academic

purposes.

Our use of the Putnam problems to create an evaluation dataset completely falls under the “research” section of Fair Use.

Indeed, according to Section 107, of the U.S. Copyright Act (USC, 1976), our work certainly qualifies as Fair Use for the

following reasons:

1. Our use of MAA problems is only for academic research purposes. We do not monetize or commercialize the problems.

2. Our use of Putnam problems as a reasoning evaluation benchmark for large language models is significantly different

from their original use as competition problems.

3. Our use of Putnam problems is transformative. As detailed in Section 3 above, we have transformed the questions to be

answered with a single numerical or algebraic “boxed answer” as well as created variations. We have altered all of

the solutions so that the final boxed answer lies at the end of the solution (so as to encourage models to explain their

rationale before outputting a solution). We have also standardized the solutions: If there are many solutions given, we

only use the first; if there are any references irrelevant to mathematics necessary to understand and solve the problem

(such as comments like “Communicated by ...”), we have removed those.

4. Our use of Putnam problems to construct a benchmark has no effect on the demand for or supply of Putnam problems

in the William Lowell Putnam Competition. The existence of our dataset does not alter the value of the original

problems—as those are already freely available online—nor does it influence the market of future competitors/problem

writers.
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A.1. Full Table of Accuracies for Putnam-AXIOM Variation and corresponding Original questions

Table 5 demonstrates TFA has the highest correlation with final boxed accuracy in a statistically significant way. For

example, TFA significantly outperformed it as seen in table 5 in a statistically significant way, 0.66 ± 0.02 compared to 0.53

± 0.05 for the best ROSCOE score (Informativeness Chai). Similarly, TFA 0.66 ± 0.02 beats BPC 0.54 ± 0.2.

Model
Variation Original

Score Percentage (%) Score Percentage (%)

Gemma-2B-Base 3 / 100 3 5 / 100 5

Gemma-7B-Base 6 / 100 6 7 / 100 7

DeepSeek-Math-7B-Base 6 / 100 6 10 / 100 10

Mistral-7B-v0.3-Base 7 / 100 7 7 / 100 7

Llama-3.1-8B 7 / 100 7 6 / 100 6

Qwen2-Math-7B-Base 9 / 100 9 9 / 100 9

Meta Llama 3.1-70B 6 / 100 6 11 / 100 11

Gemma-2B-Instruct 0 / 100 0 2 / 100 2

Gemma-7B-Instruct 2 / 100 2 11 / 100 11

Mistral-7B-Instruct-v0.3 2 / 100 2 8 / 100 8

Llama-3.1-8B Instruct 7 / 100 7 10 / 100 10

Qwen2-Math-7B-Instruct 14 / 100 14 18 / 100 18

DeepSeek-Math-7B-Instruct 11 / 100 11 12 / 100 12

DeepSeek-Math-RL 10 / 100 10 12 / 100 12

DeepSeek-R1-Distill-Qwen 12 / 100 12 23 / 100 23

DeepSeek-R1-Distill-Llama 7 / 100 7 19 / 100 19

DeepSeek-Distilled-Qwen-32B 24 / 100 24 33 / 100 33

Claude-3.5 Sonnet 27 / 100 27 28 / 100 28

GPT-4o 22 / 100 22 30 / 100 30

o1-preview 43 / 100 43 51 / 100 51

Mistral-CodeAI-22B 9 / 100 9 16 / 100 16

Table 2. Accuracy drops significantly on Putnam-AXIOM Variation compared to corresponding Original questions for nearly all

models. These are mean accuracies over five trials.

14



Putnam-AXIOM: A Functional and Static Benchmark

Metric A
lg

eb
ra

C
o
u
n
ti

n
g

an
d

P
ro

b
ab

il
it

y

G
eo

m
et

ry

In
te

rm
ed

ia
te

A
lg

eb
ra

N
u

m
b

er
T

h
eo

ry

P
re

al
g

eb
ra

P
re

ca
lc

u
lu

s

A
v
er

ag
e

TFA 0.718 0.632 0.663 0.645 0.644 0.660 0.669 0.662

TFCE 0.486 0.442 0.458 0.468 0.501 0.466 0.505 0.475

Perpelexity 0.413 0.385 0.390 0.381 0.441 0.399 0.416 0.403

BPC 0.542 0.519 0.561 0.507 0.568 0.558 0.527 0.540

Info. Chain 0.494 0.536 0.486 0.616 0.550 0.460 0.542 0.526

Sem. Cov. Chain 0.450 0.499 0.437 0.559 0.523 0.449 0.486 0.486

Perp. Step 0.644 0.207 0.252 0.081 0.314 0.224 0.145 0.225

Table 3. Correlation magnitude with respect to model choice between proxy metrics and boxed accuracy on the MATH dataset.

Each entry corresponds to the absolute value of the correlation between the proxy metric and boxed accuracy on each dataset (higher is

better). Bold and underline corresponds to the highest and second highest correlation magnitude respectively for each dataset. Notably,

among the ROSCOE metrics, only the Informativeness Chain and Semantic Coverage Chain appear to be somewhat comparable across

models. TFA performs the best with an average correlation around 0.67.
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A.2. Proxy Metric Correlations With Boxed Accuracy

We use the facebook/roscoe-512-roberta-base embedding model for the computation of some of the ROSCOE

metrics. Everything else is set to the default in the released code.
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TFA 0.718 0.632 0.663 0.645 0.644 0.660 0.669 0.662

-TFCE 0.486 0.442 0.458 0.468 0.501 0.466 0.505 0.475

-Perpelexity 0.413 0.385 0.390 0.381 0.441 0.399 0.416 0.403

-BPC 0.542 0.519 0.561 0.507 0.568 0.558 0.527 0.540

-Grammar Step 0.024 0.007 0.274 0.112 0.109 0.204 0.471 0.165

-Grammar Step Max 0.033 0.088 0.103 0.045 0.173 0.134 0.070 0.092

-Faithfulness 0.005 0.116 0.092 0.159 0.102 0.036 0.125 0.089

-Informativeness Step 0.146 0.268 0.183 0.338 0.268 0.201 0.315 0.246

-Informativeness Chain 0.494 0.536 0.486 0.616 0.550 0.460 0.542 0.526

-Repetition Step 0.006 0.110 0.035 0.134 0.248 0.014 0.224 0.008

-Reasoning Alignment 0.176 0.078 0.109 0.054 0.050 0.108 0.135 0.102

-External Hallucination 0.055 0.131 0.093 0.168 0.179 0.111 0.109 0.121

-Redundancy 0.035 0.040 0.035 0.074 0.118 0.016 0.006 0.035

-Common Sense Error 0.324 0.489 0.347 0.289 0.456 0.425 0.248 0.368

-Missing Step 0.168 0.334 0.243 0.105 0.298 0.163 0.030 0.192

-Semantic Coverage Step 0.039 0.163 0.124 0.228 0.172 0.111 0.196 0.148

-Semantic Coverage Chain 0.450 0.499 0.437 0.559 0.523 0.449 0.486 0.486

-Discourse Representation 0.080 0.086 0.162 0.115 0.221 0.142 0.029 0.119

-Coherence Step vs Step 0.159 0.232 0.265 0.165 0.367 0.210 0.085 0.212

-Perplexity Step 0.644 0.207 0.252 0.081 0.314 0.224 0.145 0.225

-Perplexity Chain 0.025 0.093 0.117 0.054 0.190 0.146 0.029 0.085

-Perplexity Step Max 0.256 0.024 0.388 0.171 0.107 0.182 0.323 0.097

Table 4. Correlation magnitudes between proxy metrics and boxed accuracy on the MATH dataset. Each entry corresponds to the

absolute value of the correlation between the proxy metric and boxed accuracy on each dataset (higher is better). Bold and underline

corresponds to the highest and second highest correlation magnitude respectively for each dataset. The proxy metrics are split into five

categories: teacher forcing based, grammar based, embedding based, consistency based, and perplexity based. With the exception of the

teacher forcing category, the remaining categories are all ROSCOE metrics. We refer to the ROSCOE metrics by the names used in the

released code base, which differ slightly from those in the original paper. Notably, among the ROSCOE metrics, only the Informativeness

Chain and Semantic Coverage Chain appear to be somewhat comparable across models. TFA performs the best with an average correlation

around 0.67. All metrics that were errors were negated so that all correlations are positive in the table.
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Metric Average ± 95% CI

TFA 0.66 ± 0.02

-TFCE 0.48 ± 0.02

-Perplexity 0.40 ± 0.01

-BPC 0.54 ± 0.02

-Grammar Step 0.16 ± 0.11

-Grammar Step Max 0.09 ± 0.02

-Faithfulness 0.09 ± 0.03

-Informativeness Step 0.25 ± 0.06

-Informativeness Chain 0.53 ± 0.05

-Repetition Step 0.01 ± 0.10

-Reasoning Alignment 0.10 ± 0.02

-External Hallucination 0.12 ± 0.02

-Redundancy 0.04 ± 0.02

-Common Sense Error 0.37 ± 0.06

-Missing Step 0.19 ± 0.05

-Semantic Coverage Step 0.15 ± 0.03

-Semantic Coverage Chain 0.49 ± 0.04

-Discourse Representation 0.12 ± 0.05

-Coherence Step vs Step 0.21 ± 0.06

-Perplexity Step 0.23 ± 0.09

-Perplexity Chain 0.09 ± 0.04

-Perplexity Step Max 0.10 ± 0.05

Table 5. Demonstrates TFA is the proxy metric most correlated with boxed accuracy on the MATH benchmark. Average correlations

with 95% confidence intervals for proxy metrics on the MATH dataset. The proxy metrics are split into five categories: teacher forcing

based, grammar based, embedding based, consistency based, and perplexity based (the last four are all ROSCOE metrics). We refer to the

ROSCOE metrics by the names used in the released code base, which differ slightly from those in the original paper.

Metric Category Average ± 95% CI

TFA 0.66 ± 0.02

Grammar Based (ROSCOE) 0.132 ± 0.071

Embedding Based (ROSCOE) 0.288 ± 0.088

Consistency Based (ROSCOE) 0.190 ± 0.035

Perplexity Based (ROSCOE) 0.189 ± 0.066

Global ROSCOE 0.200 ± 0.028

Table 6. Demonstrates TFA is significantly more correlated than any of the ROSCOE metrics by category and globally. The average

correlations with 95% confidence intervals for ROSCOE metrics on the MATH dataset. The ROSCOE metric categories are: grammar

based, embedding based, consistency based, and perplexity based. The global ROSCOE score is provided as an overall summary of all

ROSCOE metrics.
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A.3. Model Analysis Examples

Problem: Let n be a positive integer. Determine, in terms of n, the largest integer m with the following property:
There exist real numbers x1, . . . , x2n with −1 < x1 < x2 < · · · < x2n < 1 such that the sum of the lengths of
the n intervals

[x2k−1

1 , x2k−1

2 ], [x2k−1

3 , x2k−1

4 ], . . . , [x2k−1

2n−1, x
2k−1

2n ]

is equal to 1 for all integers k with 1 f k f m.

Model’s Response: We are given n positive integers and need to determine the largest integer m, in terms of n,
such that there exist real numbers x1, x2, . . . , x2n satisfying:
1. The xi are strictly increasing between −1 and 1:

−1 < x1 < x2 < · · · < x2n < 1

2. For each integer k with 1 f k f m, the sum of the lengths of n intervals is equal to 1:

n
∑

i=1

(

x2k−1

2i − x2k−1

2i−1

)

= 1

Our goal is to find the largest integer m (in terms of n) satisfying these conditions.

. . .

**General Case:** We have 2n variables and m equations.
- Each equation is independent due to the distinct exponents.
- To have a solution, we must have at least as many variables as equations.

- **Therefore, the maximum number m is bounded by 2n.**

- However, since we have 2n variables but they are constrained by the ordering and the interval (−1, 1),
the effective degrees of freedom are less than 2n.

*Conclusion:**

Given the constraints and the increasing number of equations with m, the largest integer m for which the
conditions can be satisfied is:

m = n

**Final Answer:**

The final answer is n . I hope it is correct.

Year: 2022 ID: A6 Final Answer: n

Figure 5. An example response where OpenAI o1-preview gets the final answer correct, but made an unjustified claim. OpenAI

o1-preview claims that the largest possible value for m is n. However, its only justification for this claim is that m is bounded by 2n.

OpenAI o1-preview does not justify why a value of m between n and 2n cannot work.
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Problem: Find the least possible area of a convex set in the plane that intersects both branches of the hyperbola
xy = 1 and both branches of the hyperbola xy = −1. (A set S in the plane is called convex if for any two points in
S the line segment connecting them is contained in S.)

Model’s Response: To find the least possible area of a convex set in the plane that intersects both branches of the
hyperbolas xy = 1 and xy = −1, we need to consider the geometric constraints. Let’s start by visualizing these
hyperbolas:

The hyperbola xy = 1 consists of two branches in the first and third quadrants:

y =
1

x
.

The hyperbola xy = −1 consists of two branches in the second and fourth quadrants:

y = − 1

x
.

We aim to place a convex set that intersects both branches of each hyperbola. One useful geometric fig-
ure for this is a rectangle aligned along the hyperbolic axes. We can guarantee that the rectangle will intersect both
branches of xy = 1 and xy = −1 by making its sides tangent to the hyperbolas.

. . .

The geometric configuration simplifies the calculation:
The minimum enclosing convex area tangency ideally is of square structure, yielding the unit hyperbola intersection:

area = 4 (Since side 2 · 2 = 4formation in closed square).

This geometric construction ensures least, minimum convex interaction:

Final Answer: The final answer is 4 . I hope it is correct.

Year: 2007 ID: A2 Final Answer: 4

Figure 6. An example response where GPT-4o gets the final answer correct, but made an unjustified logical step, resulting in a

non-rigorous solution. GPT-4o logically jumps to the idea that the geometric shape that minimizes the area is a rectangle. However, it

does not attempt to justify this claim in any way, and proceeds as though this is obvious.
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Problem: Given
11z10 + 10iz9 + 10iz − 11 = 0,

find the value of |z|. (Here z is a complex number and i2 = −1.)

Model’s Response: To solve the equation

11z10 + 10iz9 + 10iz − 11 = 0

and find the value of |z|, where z is a complex number, we’ll proceed step by step.

. . .

**Step 2: Assume |z| = 1**

Let’s assume that |z| = 1, which means z = eiθ for some real number θ.

*Step 3: Substitute z = eiθ into the Equation**
Substituting z = eiθ into the equation, we get:

11(eiθ)10 + 10i(eiθ)9 + 10ieiθ − 11 = 0

Simplify each term:
- (eiθ)10 = e10iθ

- (eiθ)9 = e9iθ

So the equation becomes:

11e10iθ + 10ie9iθ + 10ieiθ − 11 = 0

. . .

**Step 6: Analyze the Equations**
The trigonometric equations are complex and difficult to solve directly. However, notice that if |z| = 1, then z = eiθ

lies on the unit circle, and its magnitude is indeed 1.
Moreover, since we couldn’t find any specific θ that satisfies both equations simultaneously (as shown by trying
several angles), this suggests that no specific angle θ other than those corresponding to |z| = 1 satisfy the equation.
**Conclusion:**
Since our manipulations suggest that |z| = 1 is necessary (and given the nature of complex numbers and the unit
circle), we conclude that:

*Final Answer:** The final answer is 1 . I hope it is correct.

Year: 1989 ID: A3 Final Answer: 1

Figure 7. An example response where GPT-4o make a logical leap and is completely incoherent. In this solution, the model jumps to

assume that |z| = 1 and performs a series of calculations. Then, it concludes that the final answer is 1 simply because the equations it

made were too “complex and difficult” to solve.
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Problem: Let k be the smallest positive integer for which there exist distinct integers m1,m2,m3,m4,m5 such
that the polynomial

p(x) = (x−m1)(x−m2)(x−m3)(x−m4)(x−m5)

has exactly k nonzero coefficients. Find a set of integers m1,m2,m3,m4,m5 for which this minimum k is achieved
and given the sum k +m1 +m2 +m3 +m4 +m5 as the final answer.

Model’s Response: The polynomial p(x) = (x − m1)(x − m2)(x − m3)(x − m4)(x − m5) has exactly k
nonzero coefficients when the values of mi are distinct integers. We want to minimize k and find a set of values for
mi that achieves this minimum.
The expansion of p(x) will include all possible products of the differences (x−mi). For each term of the form
(x− a), this generates a coefficient for that term, and this will happen for each combination of i and j, including
when i = j.
The minimum possible value for k can be calculated by considering the sparsity of nonzero coefficients in the
polynomial’s expansion. This is achieved when the polynomial is written in the form that it eliminates as many
terms as possible, leading to a minimal number of nonzero coefficients.
For (x−m1)(x−m2)(x−m3)(x−m4)(x−m5), it can be achieved if the differences (x−mi) produce terms
that include maximal cancellation. The problem becomes one of determining the minimal degree of the polynomial
that includes maximal cancellation.
The key observation here is that the minimal nonzero coefficients are achieved when the polynomial is arranged in
such a way that most coefficients are zero due to symmetry and cancellation properties.
The smallest positive integer k for such polynomials happens at k = 2, for instance, (x− 1)(x− 2)(x− 3)(x−
4)(x− 5) results in a polynomial with precisely coefficients as follows:

p(x) = x5 − (1 + 2 + 3 + 4 + 5)x4

+(sum of products of each combination of 2 distinct elements)x3
etc...

Since the polynomial in this problem demands exactly k nonzero coefficients, the product of differences can lead to
cancellations resulting in minimal terms.
Let’s consider the initial observation:

m1 = 1,m2 = 2,m3 = 3,m4 = 4,m5 = 5

The resulting polynomial, (x− 1)(x− 2)(x− 3)(x− 4)(x− 5)

Final answer: 15

Year: 1985 ID: B1 Final Answer: 3

Figure 8. An example response where NuminaMath makes a calculation error, includes irrelevant information, and misunderstands

the problem. In this solution, we see that the final answer is obtained by adding k +m1 +m2 +m3 +m4 +m5. In the model’s final

solution, its value of k is 2, so its final answer should be 2 + 1 + 2 + 3 + 4 + 5 = 17, not 15; this is due a misunderstanding of the

problem and/or a calculation error. Furthermore, the model includes the expression of the “resulting polynomial,” which is completely

irrelevant to the problem it’s attempting to solve.
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Problem: If p(x) = a0 + a1x+ · · ·+ amxm is a polynomial with real coefficients ai, then set

Γ(p(x)) = a2
0 + a2

1 + · · ·+ a2
m.

Let f(x) = 3x2 + 7x+ 2. Find, with proof, a polynomial g(x) with real coefficients such that

(i) g(0) = 1, and

(ii) Γ(f(x)n) = Γ(g(x)n)

for every integer n g 1.

Model’s Response: We have that F (x) = 3x2+7x+2 and thus Γ(F (x)) = 32+72+22 = 9+49+4 = 62. We
want to find a polynomial g(x) such that g(0) = 1 and Γ(F (x)n) = Γ(g(x)n) for every integer n g 1. Suppose
g(x) = x2 + bx+ 1. Then Γ(g(x)) = 1 + b2 + 1 = b2 + 2. If we can find a value for b such that b2 + 2 = 62,

then we have Γ(g(x)n) = Γ(F (x)n). Solving b2 + 2 = 62 gives b2 = 60, so b =
√
60 = 2

√
15. Therefore, we

can take g(x) = x2 + 2
√
15x+ 1. Since g(0) = 1, g(x) satisfies both conditions.

Final Answer: The final answer is x2 + 2
√
15x+ 1 . I hope it is correct.

Year: 1985 ID: A6 Final Answer: 6x2 + 5x+ 1

Figure 9. An example response where Qwen2-Math-7B hallucinates and misunderstands the problem. First, Qwen misunderstands

that the polynomial is quadratic—which is not stated anywhere in the problem statement. Then, Qwen falsely states assumes that if

Γ(g(x)) = Γ(f(x)), then Γ(g(x)n) = Γ(f(x))n for all n. These mistakes lead Qwen to the wrong solution.
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Problem: Let x0 = 1 and for n g 0, let xn+1 = 3xn + +xn

√
5,. In particular, x1 = 5, x2 = 26, x3 = 136,

x4 = 712. Find a closed-form expression for x2007. (+a, means the largest integer f a.)

Model’s Response:

xn+1 = 3xn + +xn

√
5,

= 3xn + +xn(
√
5− 2) + 2xn,

= 3xn + xn(
√
5− 2) + 2xn

= 5xn + xn(
√
5− 2)

= xn(2 +
√
5).

If we let yn = xn(2 +
√
5), then xn = yn/(2 +

√
5), so

yn+1 = yn · 2 +
√
5

2 +
√
5
= yn.

Thus, yn = y0 for all n g 1, so

xn =
y0

2 +
√
5
=

1

2 +
√
5
=

2−
√
5

(−2 +
√
5)(2 +

√
5)

=
2−

√
5

5− 2
= 2−

√
5.

Final Answer: The final answer is 2−
√
5 . I hope it is correct.

Year: 2007 ID: A5 Final Answer: 2
2006

√

5

(

(

1+
√

5

2

)3997

−
(

1+
√

5

2

)

−3997
)

Figure 10. An example response where DeepSeek-Math-7B-RL makes an incorrect logical jump. In the series of equalities in the

beginning, DeepSeek simply removes the floor function and proceeds. However, the floor function is an integral part of the problem, and

without it, DeepSeek is unable to come to the right solution.
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A.4. Binary and Complex Questions

Several questions in Putnam-AXIOM are binary, meaning that the question inherently has two possible answers. These

include true/false questions, questions about divergence or convergence, or questions about the winner of a two-player

game. These questions make up 26 of the 262 question in Putnam-AXIOM Original; of the 60 questions of Putnam-AXIOM

Variation, binary questions make up 8. We refer to all questions that are not binary as “complex” questions.

Given the guessable nature of these questions and our answer-matching evaluation method, models have a much higher

chance of randomly guessing the right answer on these questions. To discern whether the inclusion of these guessable

questions significantly affects the overall difficulty of Putnam-AXIOM, we conducted an analysis of the accuracy of various

models with and without the binary questions, with the overall accuracies in Figure ??.

We see that, with the exception of Qwen2 Math 7B, almost all models have a higher accuracy on Putnam-AXIOM with its

binary questions than without, meaning that guessing is contributing to their success to some extent. However, we see that

on the more advanced models—Qwen2 Math 7B, GPT 4, and Claude Sonnet 3.5—the gap between the accuracies on the

entire dataset and the accuracies on only complex questions is much smaller. This is likely because these models are capable

enough that they successfully answer a similar percentage of complex questions and binary questions; less advanced models

get significantly fewer complex questions correct than binary questions, so we see a large accuracy gap. Based on the results

of this experiment, we’ve decided to use only the complex questions for most of our evaluations such as in Figure 3.
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A.5. Teacher-Forced Accuracy (TFA) Under Proprietary APIs

To compute Teacher-Forced Accuracy (TFA), we use teacher forcing, where the model predicts each token based on the

ground truth sequence up to that token. This requires conditioning each prediction on the true preceding tokens, rather than

relying on previously generated tokens.

Frontier models under proprietary APIs, however, typically predict the next token only based on previous predictions,

conditioning only the first token on the full ground truth. To compute TFA accurately with these models, we can “brute-force”

it by generating tokens one at a time, conditioning each new prediction on the entire ground truth sequence. This approach

requires re-feeding the full sequence history for every token in the ground truth, making it computationally intensive.

For a string of N tokens, this method requires O(N2) operations because we reprocess the token history at each prediction

step. By contrast, open-source models allow us to compute TFA in a single forward pass, reducing the complexity to O(N).
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