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Abstract

Current mathematical reasoning benchmarks for
large language models (LLMs) are approaching
saturation, with some achieving > 90% accuracy,
and are increasingly compromised by training-set
contamination. We introduce Putnam-AXIOM, a
benchmark of 522 university-level competition
problems drawn from the prestigious William
Lowell Putnam Mathematical Competition, and
Putnam-AXIOM Variation, an unseen compan-
ion set of 100 functional variants generated by
programmatically perturbing variables, and con-
stants. The variation protocol produces an un-
limited stream of equally difficult, unseen in-
stances — yielding a contamination-resilient test
bed. On the Original set, OpenAl’s ol-preview
— the strongest evaluated model — scores 41.9%,
but its accuracy drops by 19.6 % (46.8% rela-
tive decrease) on the paired Variations. The re-
maining eighteen models show the same down-
ward trend, ten of them with non-overlapping
95% confidence intervals. These gaps suggest
memorization and highlight the necessity of dy-
namic benchmarks. We complement ("boxed”)
accuracy with Teacher-Forced Accuracy (TFA), a
lightweight metric that directly scores reasoning
traces and automates natural language proof eval-
uations. Putnam-AXIOM therefore provides a rig-
orous, contamination-resilient evaluation frame-
work for assessing advanced mathematical rea-
soning of LLMs. Data and evaluation code are
publicly available at https://github.com/
brando90/putnam—axiom.
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1. Introduction

The ability for Large Language Models (LLMs) to reason
about complex problems has a plethora of applications in
fields such as economics (Zhang et al., 2024), drug discovery
(Bran et al., 2023), and even simulations of human behavior
and society (Park et al., 2023). Rapid adoption of LLMs
for reasoning has, in turn, spurred rapid gains on standard
reasoning benchmarks (OpenAl, 2023; Gemini, 2023; Yang
et al., 2024a).

Outpacing Current Evaluations. Indeed, advanced mod-
els like GPT-4 (OpenAl, 2023) and Gemini Ultra (Gemini,
2023) have reported human-level performance on many
benchmarks like MMLU (Hendrycks et al., 2020) and
MMMU (Yue et al., 2023). Similarly, LLMs have seen
progress in other challenging benchmarks like GSM8K
(Chen et al., 2022) and MATH (Hendrycks et al., 2021), with
SOTA models attaining nearly 90% accuracy on MATH (Lei,
2024) and nearly perfect accuracy on GSMS8K (Zhong et al.,
2024). Although this progress demonstrates rapidly evolv-
ing LLM capabilities, it creates an evaluation ceiling effect:
current benchmarks lack sufficient difficulty to discriminate
between state-of-the-art models’ reasoning abilities.

Data Contamination. The problem is further complicated
by data contamination, which remains a major concern for
current evaluation benchmarks. By training LLMs on larger
portions of the internet, researchers are incorporating an
increasing number of open-source benchmark data into the
models’ pretraining. Therefore, a model can display ar-
tificially high “reasoning ability” by simply memorizing
the answers it has seen, undermining the integrity of the
evaluation.

To address these limitations, we introduce the Putnam-
AXIOM (Advanced eXamination of Intelligence in
Operational Mathematics) dataset, a novel and challenging
compilation of high-level mathematics problems sourced
from the William Lowell Putnam Mathematical Competi-
tion, an annual mathematics competition for undergradu-
ate college students in North America which requires ad-
vanced mathematical reasoning and covers a wide range
of university-level mathematical concepts. In addition, we
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also introduce functional variations of the Putnam-AXIOM
dataset to combat data contamination, taking inspiration
from the solution employed by (Srivastava et al., 2024).
Functional variations adjust variables, constants, and the
phrasing of problems through Python scripts, allowing us
to generate an unlimited number of new problems that are
not found on the Web but still retain their mathematical
complexity and validity. Putnam-AXIOM enables fully au-
tomated evaluations by requiring models to provide final
answers within “\boxed{}” brackets which can then be
extracted and compared to the ground truth final solution us-
ing an equivalence function ! as used for the MATH dataset
(Hendrycks et al., 2021). This approach eliminates the need
for human evaluation, and avoids the limitations of multiple-
choice formats (Schaeffer et al., 2024), thus maintaining
soundness while enabling scalability.

Initial evaluations on Putnam-AXIOM demonstrate its dif-
ficulty with ol-preview scoring less than half at 41.94%,
while GPT-40 achieves only 19.35%. Even math-specialized
models such as Qwen2-Math-7B and Qwen2-Math-7B-
Instruct perform poorly, scoring 5.51% and 11.8% respec-
tively. Performance further declines on functional variations
of Putnam-AXIOM, which include significant drops for
most models, decreasing by 20-30% in relative performance.
“These low accuracies demonstrate Putnam-AXIOM’s ef-
fectiveness as a challenging benchmark, while variations
expose models’ reliance on memorization.

Proof-based Evaluation Metrics. In addition to introduc-
ing the Putnam-AXIOM Original and Variation benchmarks,
we identified the need for more sophisticated LLM reason-
ing evaluation metrics. Current evaluation metrics for rea-
soning are inadequate, as they rely solely on a final “boxable”
answer without assessing the actual reasoning process. For
problems with only a few possible final answers — such
as with true/false or modular arithmetic — this means mod-
els will often get the final boxed answer correct by random
chance. Additionally, evaluations are then limited to the sub-
set of problems with simple boxable answers, completely
ignoring theorem proving and problems with complex for-
mulae as the solution. In open-ended evaluations areas, like
theorem proving, the current standard is either human eval-
uations (He et al., 2024), which are expensive, or using a
formal language, which requires translating theorems and
setting up complex environments and dependencies (Yang
et al., 2024b). We therefore explore alternative automatic
metrics to boxed answers and find that a simple and cheap
method, Teacher-Forced Accuracy (TFA), is a promising
approach.

Our contributions are:

"For instance, the equivalence function would evaluate the
answers 0.5, 1/2,and \frac{1}{2} as equal.

¢ The Putnam-AXIOM, a new evaluation benchmark of
522 challenging mathematical problems sourced from
the William Lowell Putnam Competition, designed to
assess advanced mathematical reasoning in LLMs.

¢ Functional variations for 100 of these problems us-
ing Python scripts, altering variables, constants, and
problem phrasing to generate unlimited novel prob-
lems while preserving their mathematical complexity,
effectively avoiding data contamination.

 Teacher-forced accuracy (TFA), to provide a more com-
plete assessment of LLMs’ reasoning abilities — be-
yond traditional boxed answers.

2. Related Work

2.1. Mathematics benchmarks

Numerous benchmarks exist to assess the mathematical ca-
pabilities of models, each typically focusing on a specific
task. Two notable examples are MATH (Hendrycks et al.,
2021) and GSMS8K (Cobbe et al., 2021). The MATH dataset
contains questions sourced from American high school
mathematics competitions such as the AMC 10, AMC 12,
and AIME (Hendrycks et al., 2021), while the GSM8K
dataset contains 8.5K handwritten elementary school level
questions (Cobbe et al., 2021). Both contain questions and
answers with detailed rationale explanations.

As models have become larger and more powerful, even the
most difficult existing benchmarks have become less chal-
lenging. For instance, while the MATH dataset saw 6.9%
accuracy on its release, it now sees 87.92% accuracy with
GPT-4 MACM (Lei, 2024). Similarly, GPT4 has attained
97.1% accuracy on the GSM8K (Zhong et al., 2024). This
saturation necessitates the development of more challenging
benchmarks.

Many contemporary data sets have been created to combat
the saturation of existing benchmarks. For instance, the
ARB dataset includes hundreds of challenging problems in
high school and college-level math, physics, and chemistry
(Sawada et al., 2023). Similarly OlympiadBench contains
nearly 9,000 problems from the International Mathematics
Olympiad (IMO), the Chinese GaoKao, and more (He et al.,
2024). Finally, SciBench is a similar reasoning benchmark
that includes hundreds of college-level scientific reasoning
questions from instructional textbooks (Wang et al., 2023).

Although these datasets alleviate the saturation problem,
they come with many limitations. For instance, ARB
(Sawada et al., 2023) and OlympiadBench (He et al., 2024)
both contain several symbolic and proof-based questions
which cannot be graded automatically and require a costly
and lengthy human evaluation process. Though ARB at-
tempts to utilize LLMs to grade their own responses with a
rubric, this process is often unreliable and self-referential
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(Huang et al., 2024a). Our Putnam-AXIOM dataset ad-
dresses these limitations by offering challenging Putnam
problems with fully-written solutions and easily evaluable
answers. It enables efficient automated assessment via
frameworks like LM Harness (Gao et al., 2024), avoiding
costly human evaluation or unreliable self-grading.

PutnamBench (Tsoukalas et al., 2024) is a related bench-
mark that primarily focuses on formal theorem proving. Its
main objective is to derive formalized proofs of mathemat-
ical statements and it provides formalizations in systems
such as Lean, Isabelle, and Coq, all sourced from the pres-
tigious Putnam competition. PutnamBench also includes
640 natural language statements and their corresponding
answers where applicable. While both benchmarks draw
from the same competition, Putnam-AXIOM focuses on
the curation of natural language problems for final answer
verification and introduces automatic functional variations
to generate additional benchmarks addressing potential data
contamination. Further through Putnam-AXIOM we go be-
yond just the final answer by assessing the model outputted
solution through evaluation proxy metrics.

2.2. Functional Benchmarks

Data contamination is a significant problem in creating eval-
uation benchmarks, as many of these problems are openly
available on the Internet and are likely included in the train-
ing data for large models (Schaeffer, 2023; Sainz et al.,
2023). Thus, the MATH (Hendrycks et al., 2021), AGIEval
(Zhong et al., 2023), OlympiadBench (He et al., 2024),
and ARB (Sawada et al., 2023) benchmarks (which are all
sourced from problems on the Internet) could potentially be
contaminated. Therefore, models may achieve artificially
high performance on an evaluation benchmark by memoriz-
ing the answers to the problems Magar & Schwartz (2022);
Ranaldi et al. (2023).

A straightforward way of avoiding data contamination issues
is to utilize problems unavailable on the Internet. However,
even if problems are not currently part of model training
data, it is unrealistic to expect them to remain inaccessible.
At the same time, it is costly to rely on the continuous human
development of new datasets.

Srivastava et al. (2024) attempts to alleviate this data con-
tamination issue by creating functional variations of the
MATH dataset, where new problems can be generated sim-
ply by changing numeric parameters, yielding different so-
lutions. They observe a significant discrepancy in models’
performance between standard benchmarks and these new
variations. We recognize the potential of this idea and have
adapted it to our more challenging dataset. We have al-
tered the variables, constants, and phrasing of many Putnam
questions while preserving their overall difficulty and re-
quirements for logical and mathematical reasoning.

2.3. Evaluation Metrics

Several approaches have been proposed to reduce the re-
liance of model evaluations on box-able answers, particu-
larly in domains like free-form writing or translation where
unique answers do not exist (Leiter et al., 2022; Opitz &
Frank, 2021). Historically, tasks such as translation and
natural language generation, which lack a single correct
answer, have used more flexible metrics, including n-gram
match (Lin, 2004), model-based (Guerreiro et al., 2023),
embedding proximity (Zhang et al., 2020), paraphrasing
(Thompson & Post, 2020), generation as an evaluator (Yuan
et al., 2021), and information alignment (Deng et al., 2021).
However, these metrics are not designed to assess reasoning
ability or the correctness of mathematical statements.

When relying on boxed answers, we simply do not know
how often the generated reasoning steps actually support
the final answer. For evaluating reasoning abilities, the
ROSCOE suite of metrics is noteworthy as it measures vari-
ous fine-grained aspects of reasoning steps such as semantic
consistency, logicality, informativeness, fluency, and factu-
ality (Golovneva et al., 2023). We omit descriptions of each
metric, but highlight that most of them rely on sentence em-
bedding models and operate on a step-by-step level. Unfor-
tunately, the original ROSCOE metrics were predominantly
tested on GPT-3 generations, and we find that these metrics
do not provide evaluations that are comparable across dif-
ferent models. Although fine-grained metrics like ROSCOE
can be useful for interpreting specific aspects of a model’s
capabilities, an ideal reasoning benchmark would employ a
single metric that is comparable across models and highly
correlated with the correctness of the generated reasoning.

In Huang et al. (2024b), authors drew upon equivalence be-
tween language modelling and compression. They demon-
strated that using bits per character (BPC) to measure a
model’s compression rate on several external large corpora
is highly correlated with model performance on various
benchmarks. However, this approach has drawbacks: eval-
uating compression on large corpora is expensive, and the
equivalence only holds for base models, as fine-tuned mod-
els are not general-purpose compressors for arbitrary text.
Despite this, we suspect there would still be a relatively high
correlation for most fine-tuned models. Relatedly, Yuan et al.
(2023) found that pre-training loss is strongly correlated
with mathematical ability for the LLaMA family (Touvron
et al., 2023a;b). Unfortunately, creating an open benchmark
using this metric is impractical due to the dependence of pre-
training loss on differences in pre-training data, tokenizers,
and other training-specific parameters.

Relationship to process-supervision metrics. Teacher-
Forced Accuracy (TFA) complements recent step-level eval-
uation methods based on process supervision. PRM-style
approaches label each intermediate step with a learned re-
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ward model trained on either expert annotations (Lightman
et al., 2023) or large-scale automated traces (Luo et al.,
2024a). While PRMs are powerful, they require (i) millions
of step-level labels, (ii) an additional model to learn the
reward, and (iii) non-trivial calibration at inference time. By
contrast, TFA dispenses with reward learning entirely: given
a reference proof, we condition the LLM on the gold prefix
and measure whether it predicts the next step. This teacher-
forcing procedure yields a direct, noise-free estimate of
reasoning fidelity, is agnostic to model size, and incurs only
a single forward pass per step. Empirically, we find that
TFA correlates with final-answer accuracy but, like PRM
scores, can still penalize solutions that “get the right box”
via spurious reasoning, thereby providing a lightweight yet
alternative for ("boxed”) final answer accuracy.

3. Methods
3.1. Putnam-AXIOM Original Dataset

Dataset. The Putnam-AXIOM Original Dataset contains
522 problems curated from the William Lowell Putnam
Mathematical Competition posed between 1938 and 2023.
These problems were selected based on their ability to yield
a unique, numerically evaluable final answer, enabling au-
tomated assessment while preserving mathematical rigor.
The dataset encompasses various topics within university-
level mathematics categorized into 11 distinct domains —
Geometry, Algebra, Trigonometry, Calculus, Linear Alge-
bra, Combinatorics, Probability, Number Theory, Complex
Numbers, Differential Equations and Analysis.

To maintain a consistent and rigorous evaluation, each prob-
lem retains its original exam ID, which indicates its diffi-
culty level and the topic categories. The ID format includes
the exam sitting (A or B) and a number (1-6) representing
increasing complexity, with 1 being easiest and 6 being most
difficult. The dataset is formatted using I&TEX to accurately
capture the complex equations and symbols the problems
employ. Additionally, we utilize Asymptote vector graphics
for encoding mathematical figures and diagrams to ensure
language models can process visual elements directly. Fur-
ther, we standardized the placement of boxed answers by
relocating them to the end of each solution string to mini-
mize unintended emergent behaviors leading to evaluations
that are less “harsh” or prone to penalizing the model for
formatting deviations rather than actual comprehension.

Modified Boxing. Given the complex nature of certain
Putnam questions, some problems do not lend themselves
to simple, singular boxed final answers. Instead, they of-
ten include conditions, multiple possible answers, varied
answer formats and elaborate proofs. These original ques-
tions would have necessitated costly and difficult human
evaluations which we seek to avoid. To address this, we

modified these questions by adding a trivial next step to the
original questions, changing the solution accordingly. This
additional step was designed so as to ensure that solvers
reached the same conclusions and insights necessary to
solve the problem, but then output a single boxed final an-
swer. We provide an example of such a change in Figure 1.
By incorporating this minor modification, we preserved the
inherent difficulty and complexity of the original problems
while making the answers suitable for automated evalu-
ation. Furthermore, since Putnam proof-based problems
often test different reasoning abilities than Putnam answer-
based problems, modified boxing allows us to provide a
more comprehensive test. Of the original 522 problems,
221 required modified boxing, representing 42.3% of the
dataset.

3.2. Putnam-AXIOM Variation Dataset

Models trained on snapshots of the internet have likely en-
countered Putnam questions, potentially inflating their per-
formance on the Putnam-AXIOM Original dataset. There-
fore, drawing inspiration from (Srivastava et al., 2024), we
introduce functional variations of select problems from
Putnam-AXIOM Original providing an effective way of
evaluating models that have been trained on the entire inter-
net by taking advantage of weaknesses in model memoriza-
tion. These variations are classified into two types.

Variable Change. The simplest variation is a variable
change, where variable names are altered and the final an-
swer is unvaried. Variable changes slightly modify the prob-
lem from its original statement, which models could have
trained on.

Constant Change. Constant changes modify numeric prop-
erties of the question, altering constants within the step-
by-step solution and the final answer. Constant changes
significantly transform the problem from its original state-
ment, challenging models to perform complex reasoning on
how the changes affect the solution and final answer, as in
the example from Figure 2.

Variational Dataset Description. We created functional
variations for 100 Putnam-AXIOM questions (19.2% of
the full dataset), selected to maximize coverage across
mathematical domains while ensuring variation feasibil-
ity (problem-specific constants, non-generalizable solutions,
and questions lacking constants or boxable answers were
left). The dataset includes 37 constant+variable and 63
variable-only changes. We rephrased problem statements
while maintaining the core task to prevent pattern recogni-
tion by LLMs. Each variation can generate infinite unique,
equally difficult snapshots, offering a sustainable evaluation
method. To evaluate various SOTA models, evaluators are
expected to generate snapshots (instances of the infinite po-
tential variations) of the variation dataset by running the
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Problem: Determine which positive integers n have the
following property: For all integers m that are relatively
prime to n, there exists a permutation 7: {1,2,...,n} —
{1,2,...,n} such that 7(w(k)) = mk (mod n) for all
ke{l,2,...,n}.

Solution: The desired property holds if and only if

‘n =1lorn =2 (mod 4) ‘ Let on,m be the permuta-

tion of Z /nZ induced by multiplication by m; the original
problem asks for which n does o, always have a square
root.

By Lemma 1, o, does not have a square root.

Year: 2016 ID: Al Final Answer: ??

Problem: Determine the sum of the first k£ positive inte-
gers n (in terms of k) which have the following property:
For all integers m that are relatively prime to n, there ex-
ists a permutation w: {1,2,...,n} — {1,2,...,n} such
that (7 (k)) = mk (mod n) forall k € {1,2,...,n}.

Solution: Let o, ,,,, be the permutation of Z/nZ induced
by multiplication by m; the original problem asks for
which n does o,,,, always have a square root.

The desired property holds if and only if n =
lorn = 2 (mod 4), hence making the required sum

2k* — 4k + 3|

Year: 2016 ID: Al  Final Answer: 2k> — 4k + 3

Figure 1. A modified boxing example in Putnam-AXIOM. Here we see that the original problem holds true for a number of values of n
conditioned on a specific property making it hard to find a boxable expression. We thus modify the solution to still require the solver to
get to that conclusion and add a further computation of summing up the first £ such values of n giving a boxable solution while keeping

the core of the problem the same.

generation code.

3.3. Model Evaluations

Using the LM Harness Evaluation framework (Gao et al.,
2024), we evaluated several open-source and proprietary
SOTA LLMs. We rely on LM Harness Evaluation because
its widely-used, vetted codebase that lets us reuse the same
tokenizer-aware boxing extractor and MATH (Hendrycks
et al., 2021) equivalence function, giving our results an im-
mediately reproducible and trustworthy evaluation pipeline.
Models were prompted to provide answers in \boxed for-
mat, which were then compared to Putnam ground truths
with an exact final answer match. We evaluated the 522-
question Putnam-AXIOM Original dataset once. For the
variation dataset, we conducted five trials, each using a ran-
domly selected variation snapshot and its corresponding 100
original questions. We then calculated mean accuracy and
95% confidence intervals.

3.4. Fine-Tuning Experiments with Variations

To simulate data contamination and evaluate the robustness
of the Putnam-AXIOM Variations dataset, we performed
LoRA fine-tuning using the next-token prediction objective
and trained until convergence. The models were then evalu-
ated before and after fine-tuning on a 100-question subset
of the Putnam-AXIOM Variations benchmark and its corre-
sponding original problems. Prior to fine-tuning, the model
achieved 12% accuracy on the variation set and 23% on the
originals. After fine-tuning, accuracy on the original ques-

tions rose sharply to 80%, while accuracy on the variations
increased only modestly to 33%. These results suggest that
the model rapidly memorized the original problems while
continuing to struggle with functionally equivalent varia-
tions, highlighting the importance of contamination-resilient
benchmarks.

3.5. Proxy Reasoning Metrics

Final-answer (“boxed”) accuracy treats an LLM’s chain of
thought as a black box: it cannot penalize lucky guesses on
binary questions, detect spurious derivations, or compare the
quality of two correct proofs. Recent process-supervision
work mitigates this by training reward models that score
every intermediate step, but requires vast step-level anno-
tations and an extra model at inference time (?Luo et al.,
2024b). To obtain step-level insight without additional an-
notation, we introduce Teacher-Forced Accuracy (TFA)
— a deterministic metric that measures how well a model
predicts each reference step under teacher forcing. We then
compare TFA and its relatives with the 18 automatic metrics
in ROSCOE (Golovneva et al., 2023).

Teacher Forcing: In teacher forcing (Jiang et al., 2023;
Lamb et al., 2016), the model is conditioned on the ground
truth solution tokens rather than its own previous predictions.
Given a question ¢ and its ground truth solution tokenized as
S1,82,...,8N,let 81, 82,..., 5y be the tokens predicted by
the model under teacher forcing. We explore the following
teacher forcing metrics:
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Problem: Define a growing spiral in the plane to be
a sequence of points with integer coordinates Py =
(0,0), P1,..., Py such thatn > 2 and:

How many of the points (z, y) with integer coordinates
0 <2z <2011,0 <y < 2011 cannot be the last point,
P,, of any growing spiral?

Solution: We claim that the set of points with 0 < z <
2011 and 0 < y < 2011 that cannot be the last point of a
growing spiral are as follows: (0,y) for 0 < y < 2011;
(z,0) and (z,1) for 1 < =z < 2011; (z,2) for2 < x <
2011; and (z, 3) for 3 < z < 2011.

This gives a total of
2012 4 2011 + 2011

+2010 4 2009 =

excluded points.

Year: 2011 ID: Al Final Answer: 10053

Problem: Consider a growing spiral in the plane, defined
as a sequence of points Lo = (0,0), L1,..., Ly, each
having integer coordinates, where n > 2 and:

Determine the number of points (w, v) with integer coor-
dinates 0 < w < 4680,0 < v < 4680 that cannot be the
final point, L,, of any such growing spiral.

Solution: We claim that the set of points with 0 < w <
4680 and 0 < v < 4680 that cannot be the last point of a
growing spiral are as follows: (0,v) for 0 < v < 4680;
(w,0) and (w, 1) for 1 < w < 4680; (w,2) for 2 < w <
4680; and (w, 3) for 3 < w < 4680.

This gives a total of
4681 + 4680 + 4680

+4679 + 4678 = | 23398
excluded points.
ID: Al

Year: 2011 Final Answer: 23398

Figure 2. Constant and variable change in Putnam-AXIOM. Here, we perform a variable change on the original problem/solution on
the left by changing variables ‘x’ to ‘w,” ‘y’ to ‘v, and ‘P’ to ‘L.’ We also perform a constant change by altering the constant ‘2011’ to
‘4680’. The constant change affects the final answer, changing it from 10053 to 23398. Finally, we rephrase the problem.

1. Teacher-Forced Accuracy (TFA) measures the propor-
tion of tokens that the model predicts correctly when
conditioned on the ground truth tokens.

1 N
TFA = N;ﬂ[éL = Si]

2. Teacher-Forced Cross Entropy (TFCE) measures the
average negative log likelihood of the ground truth
tokens under the model’s predicted probability distri-
bution.

TFCE = —

2|~

N
Zlogp(él =S5; | q,81,52,-- ')Sifl)
=1

3. Perplexity is a measure of how well a probability dis-
tribution predicts a sample. In the context of teacher
forcing, it is an exponentiation of the cross entropy.

Perplexity = exp (TFCE)

4. Bits Per Character (BPC) (Huang et al., 2024b) is very
similar to TFCE and has been shown to correlate well

with benchmarks when evaluated on very large corpora.
The idea is that due to differences in tokenization, aver-
age bits per token are not directly comparable. Instead
we use

N
1
BPC = s Z;logIP’((% =5;|q,51,52,...,5i-1)
i

where T is the number of characters in the solution
string rather than the number of tokens.

The main limitation of the teacher forcing approach is the
dependency on the ground truth solution. Models are often
finetuned for a specific style or problem solving approach
(such as tool use or code generation). In this case, we would
expect that teacher forcing metrics would under represent
the models’ abilities.

ROSCOE: The ROSCOE suite offers 18 distinct metrics,
each tailored to assess a different facet of reasoning as de-
scribed by (Golovneva et al., 2023). These metrics are
broadly categorized into four groups. The first category,
semantic alignment, focuses on identifying relationships
between concepts that share the same or similar meanings.
Metrics in this category typically examine reasoning on
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a step-by-step basis. In contrast, semantic similarity met-
rics evaluate the problem and solution holistically. Logical
inference metrics, utilizing a specially trained model (Lau-
rer et al., 2024), detect contradictions between reasoning
steps. Lastly, language coherence is assessed by evaluating
model outputs using the perplexity score from GPT-2 Large
(Radford et al., 2019) and a grammar model (Krishna et al.,
2020). We use the code provided by the authors as is to
evaluate these metrics.

Metric Evaluation: Given the challenging nature of
Putnam-AXIOM and the poor performance of existing mod-
els, we opted to test the proposed proxy metrics on the
MATH dataset instead. For a metric to be effective as a
benchmark, its evaluations must be comparable across dif-
ferent models. To generate evaluation data, we utilized 15
open-source models, ranging from 7 billion to 70 billion pa-
rameters, which exhibit a wide range of performance across
the 7 different MATH datasets. We then compared the proxy
metric evaluations with each model’s boxed accuracy for
each dataset. A high correlation between the proxy metric
and boxed accuracy indicates a better proxy.> Our results,
including the raw correlations for each metric in Table 4,
are presented in the Appendix.

4. Results
4.1. Putnam-AXIOM Model Performance

Table 1 presents Putnam-AXIOM Original dataset accu-
racies. Most models score below 10%, with even Nu-
minaMath, the Al Mathematics Olympiad winner (Invest-
ments, 2024), achieving only 10.34%. These low accura-
cies demonstrate Putnam-AXIOM'’s effectiveness as a chal-
lenging benchmark. Figure 3 contrasts Putnam-AXIOM
Variation dataset mean accuracies with the 100 correspond-
ing original questions, along with the confidence intervals
across the five variation snapshots with the average accu-
racies in Table 2. Original accuracies typically surpass
variation accuracies. For models like ol-preview, GPT-4o,
and DeepSeek-R1 Distilled Qwen-32B, non-overlapping
confidence intervals reveal statistically significant differ-
ences, indicating artificially inflated performance on original
questions due to data contamination. Looking at the num-
bers highlights significant accuracy declines across models:
DeepSeek-R1-Qwen-32B shows the steepest drop at 37.5%,
followed by GPT-40 at 36 % and ol-preview at 17%.

4.2. LLM Error Analysis

OpenAl ol-preview Performance: Out of all models,
we see that OpenAl ol-preview performed the best on
Putnam-AXIOM Original, receiving 41.94% boxed accu-

We note that care must be made before optimizing any models
using a proxy metric as otherwise Goodhart’s Law may take effect.

Model Score % TFA
Gemma-2B-Base 15/522 2.87 0717
Gemma-7B-Base 24/522 460 0.784

DeepSeek-Math-7B-Base 21/522  4.02 0.779
Qwen2-Math-7B-Base 50/522 9.57 0.770
NuminaMath-7B-Base 54/522  10.34  0.742
Mistral-7B-v0.3-Base 21/522 4.02 0.735

Llama-3-8B-Base 17/522 325 0.748
Gemma-2B-Instruct 5/522 095 0.634
Gemma-7B-Instruct 24/522 4.60 0.702
Qwen2-Math-7B-Instruct 60/522 1149 0.758
DeepSeek-Math-7B-Instruct ~ 36/522  6.89  0.750
Mistral-7B-Instruct-v0.3 21/522 4.02 0.735
Llama-3-8b Instruct 30/522 575 0.738
DeepSeek-Math-7B-RL 45/522 8.62 0.740
Claude-3.5 Sonnet 83/522  15.96 -
GPT-4 59/522  11.30 -
GPT-40 101/522  19.35 -
ol-preview 219/522  41.94 -

Table 1. Putnam-AXIOM Original Results and New TFA
Scores. TFA Scores showcase percentage of model next-token
predictions matching ground truth. We cannot evaluate TFA for
proprietary models because we do not have access to their log
probabilities as seen in Appendix Section A.5

racy (219/522) while other models received less than 20%.
Analyzing the answers, we see that most of the OpenAl
ol-preview responses followed generally the same logical
path as the ground truth solution. However, several of these
questions contained logical mistakes and inconsistencies.
The biggest discrepancy between model responses and the
ground-truth solution was a general lack of mathematical
rigor. Whereas the ground truth solution will make claims
to advance its solution then prove those claims step-by-step,
ol-preview will often make and use claims without justifica-
tion. While this does succeed in getting to the correct boxed
final answer, these unjustified claims would receive little
credit when marked by a human grader. A large part of the
difficulty of mathematical reasoning is being logically air-
tight throughout the entire solution; thus, though ol-preview
shows promise, there are still evident flaws in its mathemat-
ical reasoning abilities. In several solutions like Figure 5,
for instance, ol-preview correctly identified the maximal or
minimal value of a variable, but failed to provide sufficient
proof that the value it provided was indeed the maximum or
minimum.

GPT-40 Performance: Like the ol-preview, GPT-40 mostly
followed correct logical reasoning for most of its solutions.
For GPT-40, the biggest discrepancy between model re-
sponses and the ground-truth solution is the same general
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Figure 3. The drop of accuracies on Putnam-AXIOM Variation from corresponding Original questions is statistically significant
for nearly all models. This figure shows the mean accuracies for models along with 95% confidence intervals drawn.

lack of mathematical rigor throughout most of the solutions.
An example of this lack of rigor is shown in Figure 6, where
GPT-40 makes the claim that a rectangle gives the minimal
area subject to a set of constraints without any justification.
In addition to issues with rigor, GPT-40 also displayed logi-
cal leaps and incoherent reasoning, as displayed in Figure 7
where the model simply assumes that an answer is correct.
These logical leaps are symptomatic of an issue in the GPT-
40’s CoT reasoning, as the model prioritizes reaching the
final answer rather providing a rigorous logical output.

General Analysis: Beyond GPT-40 and the ol-preview,
we wanted a general overview of the reasoning behaviors
of models. To do so, we chose the best-performing open-
source models, DeepSeek-Math-7B-RL, Qwen2-Math-7B,
and NuminaMath-7B. We tend to see that open-source mod-
els are much more error-prone than the proprietary models
we evaluated earlier. In general, we notice that open-source
models are subject to the same lack of mathematical rigor.
However, this rigor issue is overshadowed by major calcu-
lation errors, hallucinated/irrelevant information, misunder-
standings of the problem, and logical jumps. For instance,
in Figure 8, NuminaMath simultaneously makes a calcula-
tion, irrelevancy, and misunderstanding error when writing
the last step of its solution; in Figure 9, the model makes
false assumptions about functions defined in the problem;
in Figure 10, the model completely removes a crucial part

of the problem and proceeds to an incorrect final solution.

4.3. Proxy Metrics

To evaluate the performance of our proxy metrics, we first
test each of them on MATH, an easier benchmark, as we
can find models that achieve both very good and poor per-
formance. In Table 3 we compare how our chosen metrics
are correlated with the boxed accuracy of the answer on
MATH. For the sake of brevity we only include the three
most notable metrics from the ROSCOE suite: Informative-
ness Chain, Semantic Coverage Chain, and Perplexity Step.
While it might be possible to combine the ROSCOE metrics
together and obtain a stronger proxy metric, the straightfor-
ward approaches failed. Simple averaging performed poorly,
and we could not find a weighted or sparse combination of
the ROSCOE metrics without overfitting to the specific mod-
els that the weights were fit on. See Table 4 in the Appendix
for the full results. Despite it’s simplicity, TFA outperforms
(i-e. is more correlated with boxed accuracy) all of the other
metrics including all of the ROSCOE metrics on every cat-
egory in MATH. Interestingly, the ROSCOE methods that
correlate best with boxed accuracy are semantic similarity
metrics quantifying the degree of semantic equivalence be-
tween pieces of text. BPC performs reasonably well, but
still trails behind TFA.
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Figure 4. TFA against boxed accuracy with respect to model
choice on Putnam-AXIOM. We see a general positive relation-
ship (correlation of 0.52) between the two metrics with a couple
outliers. Without the two outliers the correlation is 0.62. We see
an especially strong positive trend between models within in the
same class (i.e. base and instruct models) which intuitively makes
sense since these models are trained in similar ways.

Thus we select TFA as our proxy metric of choice for
Putnam-AXIOM for both its correlation with accuracy and
because of its low evaluation cost. In Table 1 are the results
of TFA on Putnam-AXIOM Original. Figure 4 showcases
the relationship between TFA and accuracy on Putnam-
AXIOM. One potential reason for the outliers QWen2-Math-
7B-Instruct and DeepSeek-Math-RL might be because they
were trained with reinforcement learning and thus have a
different style of writing compared to other models. Un-
fortunately we can’t evaluate TFA on proprietary models
as we require the log probabilities of the input tokens. It
would be possible to feed the input to the proprietary model
incrementally, but this would require an API request for
every token in the input.

5. Limitations

Problem coverage. The present release contains only those
Putnam items that yield a unique numeric or algebraic an-
swer after our modified boxing procedure; non-modifiable
problems are excluded and thus some forms of mathematical
reasoning remain untested.

Functional variation scope. Programmatic perturbations
are implemented for 100 of 522 tasks (19.2 %), provid-
ing strong evidence of contamination yet limiting statistical
power. Expanding variation coverage is future work — espe-
cially with AI assisted methods.

Evaluation style dependence. TFA conditions on a ref-
erence solution; models that follow substantially differ-
ent—but valid—reasoning paths may receive lower scores,
and models fine-tuned for tool use or code generation may
be under-represented.

6. Implications and Future Work

Implications for model development and evaluation.
The sharp accuracy drop we observe when models are con-
fronted with Putnam-AXIOM Variation (e.g., —19.6 pp for
ol-preview) indicates that many current LLMs still rely
on memorized artifacts rather than genuine mathematical
reasoning. Consequently, leaderboard gains obtained on
static benchmarks can overstate true capability. We recom-
mend that practitioners report performance on dynamic or
contamination-checked splits—such as our functional vari-
ants—alongside traditional scores to obtain a more faithful
picture of progress.

Guidance for benchmark designers. Our results demon-
strate two practical design principles. (i) Functional vari-
ation: programmatic perturbations of constants and vari-
able names create an unbounded supply of unseen, equally
difficult items that resist contamination while preserving
automated evaluation. (ii) Step-level metrics: lightweight
measures such as Teacher-Forced Accuracy (TFA) expose
reasoning errors invisible to final-answer checks, require
no extra annotation or verifier model, and enable automatic
evaluation of natural-language proofs. We encourage fu-
ture benchmarks to adopt both ideas and to refine step-level
metrics so they better measure genuine reasoning.

Future work. We identify four immediate extensions.
(1) Human correlation. A systematic comparison between
TFA (and other proxies) and expert grading of proof traces
will quantify how faithfully automatic scores reflect hu-
man judgment. (ii) API-efficient step metrics. While TFA
only needs sequential token predictions, access to log-
probabilities allows a single forward pass; designing equally
informative metrics that operate on generated text alone
would make step-wise evaluation practical for closed-source
systems. (iii) Scaling functional variation. Extending our
variation engine from 100 problems to the full 522-problem
corpus—and to proof-based questions—will increase sta-
tistical power and broaden coverage. (iv) Formal-proof
targets. Incorporating items that require complete formal
proofs (e.g., Lean or Isabelle) will push models toward
deeper mathematical understanding and create a bridge to
automated theorem proving.
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Impact Statement

Putnam-AXIOM supplies the community with a tougher,
contamination-resilient benchmark—and a lightweight step-
level metric—for evaluating mathematical reasoning in large
language models. By revealing performance drops that
rote memorization masks, it enables more reliable tracking
of genuine reasoning progress and guides future research
toward models that truly solve, rather than recall, complex
problems.
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A. Legal Compliance

We collect and modify various problems from the William Lowell Putnam Competition to create the original and variation
datasets of Putnam-AXIOM. Putnam problems are created by the Mathematical Association of America (MAA), which is
also the source of the AMC and AIME problems used in the MATH dataset (Hendrycks et al., 2021). Like (Hendrycks
et al., 2021), we do not in any form seek to monetize or commercialize Putnam problems—only to utilize them for academic
purposes.

Our use of the Putnam problems to create an evaluation dataset completely falls under the “research” section of Fair Use.
Indeed, according to Section 107, of the U.S. Copyright Act (USC, 1976), our work certainly qualifies as Fair Use for the
following reasons:

1. Our use of MAA problems is only for academic research purposes. We do not monetize or commercialize the problems.

2. Our use of Putnam problems as a reasoning evaluation benchmark for large language models is significantly different
from their original use as competition problems.

3. Our use of Putnam problems is transformative. As detailed in Section 3 above, we have transformed the questions to be
answered with a single numerical or algebraic “boxed answer” as well as created variations. We have altered all of
the solutions so that the final boxed answer lies at the end of the solution (so as to encourage models to explain their
rationale before outputting a solution). We have also standardized the solutions: If there are many solutions given, we
only use the first; if there are any references irrelevant to mathematics necessary to understand and solve the problem
(such as comments like “Communicated by ...”), we have removed those.

4. Our use of Putnam problems to construct a benchmark has no effect on the demand for or supply of Putnam problems
in the William Lowell Putnam Competition. The existence of our dataset does not alter the value of the original
problems—as those are already freely available online—nor does it influence the market of future competitors/problem
writers.
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A.1. Full Table of Accuracies for Putnam-AXIOM Variation and corresponding Original questions

Table 5 demonstrates TFA has the highest correlation with final boxed accuracy in a statistically significant way. For
example, TFA significantly outperformed it as seen in table 5 in a statistically significant way, 0.66 + 0.02 compared to 0.53
4 0.05 for the best ROSCOE score (Informativeness Chai). Similarly, TFA 0.66 + 0.02 beats BPC 0.54 + 0.2.

Variation Original
Model
Score Percentage (%) Score  Percentage (%)
Gemma-2B-Base 3/100 3 5/100 5
Gemma-7B-Base 6/100 6 717100 7
DeepSeek-Math-7B-Base 6/100 6 10/ 100 10
Mistral-7B-v0.3-Base 77100 7 7/100 7
Llama-3.1-8B 77100 7 6/100 6
Qwen2-Math-7B-Base 9/100 9 9/100 9
Meta Llama 3.1-70B 6/100 6 11/100 11
Gemma-2B-Instruct 0/100 0 2/100 2
Gemma-7B-Instruct 2/100 2 11/100 11
Mistral-7B-Instruct-v0.3 2/100 2 87100 8
Llama-3.1-8B Instruct 7/100 7 10/ 100 10
Qwen2-Math-7B-Instruct 14 /100 14 18 /100 18
DeepSeek-Math-7B-Instruct 11/100 11 12 /100 12
DeepSeek-Math-RL 10/100 10 12 /100 12
DeepSeek-R1-Distill-Qwen 12/100 12 23 /100 23
DeepSeek-R1-Distill-Llama 717100 7 19/100 19
DeepSeek-Distilled-Qwen-32B 24/ 100 24 33/100 33
Claude-3.5 Sonnet 27 /100 27 28 /100 28
GPT-40 22 /100 22 30/100 30
ol-preview 43 /100 43 51/100 51
Mistral-Code AI-22B 9/100 9 16/ 100 16

Table 2. Accuracy drops significantly on Putnam-AXIOM Variation compared to corresponding Original questions for nearly all

models. These are mean accuracies over five trials.

14



Putnam-AXIOM: A Functional and Static Benchmark
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TFA 0.718 0.632 0.663 0.645 0.644 0.660 0.669 | 0.662
TFCE 0.486 0.442 0458 0.468 0.501 0466 0.505 | 0.475
Perpelexity 0.413 0.385 0.390 0.381 0.441 0399 0416 | 0.403
BPC 0.542 0519 0.561 0.507 0.568 0.558 0.527 | 0.540
Info. Chain 0.494 0.536 0.486 0.616 0.550 0.460 0.542 | 0.526
Sem. Cov. Chain 0.450 0.499 0.437 0.559 0.523 0.449 0.486 | 0.486
Perp. Step 0.644 0.207 0.252 0.081 0.314 0.224 0.145 | 0.225

Table 3. Correlation magnitude with respect to model choice between proxy metrics and boxed accuracy on the MATH dataset.
Each entry corresponds to the absolute value of the correlation between the proxy metric and boxed accuracy on each dataset (higher is
better). Bold and underline corresponds to the highest and second highest correlation magnitude respectively for each dataset. Notably,
among the ROSCOE metrics, only the Informativeness Chain and Semantic Coverage Chain appear to be somewhat comparable across
models. TFA performs the best with an average correlation around 0.67.
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A.2. Proxy Metric Correlations With Boxed Accuracy

We use the facebook/roscoe-512-roberta-base embedding model for the computation of some of the ROSCOE
metrics. Everything else is set to the default in the released code.

2
= <
2 2
£ Z =z
ko) o
5 g £ s %
. 2 T 7 T £ 3 |,
£ k= g £ 2 &b = &
& 5 S} o} g s 9 o
L0 3 8 & 5 3] o g
Metric < O @) A= Z ~ ~ <
TFA 0.718 0.632 0.663 0.645 0.644 0.660 0.669 | 0.662
-TFCE 0.486 0442 0458 0468 0501 0466 0.505 | 0.475
-Perpelexity 0413 0.385 0.390 0.381 0441 0399 0.416 | 0.403
-BPC 0.542 0519 0.561 0.507 0.568 0.558 0.527 | 0.540
-Grammar Step 0.024 0.007 0274 0.112 0.109 0.204 0471 | 0.165
-Grammar Step Max 0.033 0.088 0.103 0.045 0.173 0.134 0.070 | 0.092
-Faithfulness 0.005 0.116 0.092 0.159 0.102 0.036 0.125 | 0.089

-Informativeness Step 0.146 0.268 0.183 0.338 0.268 0.201 0.315 | 0.246
-Informativeness Chain  0.494 0.536 0.486 0.616 0.550 0.460 0.542 | 0.526
-Repetition Step 0.006 0.110 0.035 0.134 0.248 0.014 0.224 | 0.008
-Reasoning Alignment  0.176 0.078 0.109 0.054 0.050 0.108 0.135 | 0.102
-External Hallucination ~ 0.055 0.131 0.093 0.168 0.179 0.111 0.109 | 0.121

-Redundancy 0.035 0.040 0.035 0.074 0.118 0.016 0.006 | 0.035
-Common Sense Error 0.324 0.489 0.347 0.289 0456 0425 0.248 | 0.368
-Missing Step 0.168 0334 0.243 0.105 0.298 0.163 0.030 | 0.192

-Semantic Coverage Step 0.039 0.163 0.124 0.228 0.172 0.111 0.196 | 0.148
-Semantic Coverage Chain  0.450 0.499 0.437 0.559 0.523 0.449 0.486 | 0.486

-Discourse Representation ~ 0.080 0.086 0.162 0.115 0.221 0.142 0.029 | 0.119
-Coherence Step vs Step 0.159 0.232 0.265 0.165 0.367 0.210 0.085 | 0.212

-Perplexity Step 0.644 0.207 0.252 0.081 0.314 0.224 0.145 | 0.225
-Perplexity Chain 0.025 0.093 0.117 0.054 0.190 0.146 0.029 | 0.085
-Perplexity Step Max 0.256 0.024 0.388 0.171 0.107 0.182 0.323 | 0.097

Table 4. Correlation magnitudes between proxy metrics and boxed accuracy on the MATH dataset. Each entry corresponds to the
absolute value of the correlation between the proxy metric and boxed accuracy on each dataset (higher is better). Bold and underline
corresponds to the highest and second highest correlation magnitude respectively for each dataset. The proxy metrics are split into five
categories: teacher forcing based, grammar based, embedding based, consistency based, and perplexity based. With the exception of the
teacher forcing category, the remaining categories are all ROSCOE metrics. We refer to the ROSCOE metrics by the names used in the
released code base, which differ slightly from those in the original paper. Notably, among the ROSCOE metrics, only the Informativeness
Chain and Semantic Coverage Chain appear to be somewhat comparable across models. TFA performs the best with an average correlation
around 0.67. All metrics that were errors were negated so that all correlations are positive in the table.
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Metric Average + 95% CI
TFA 0.66 + 0.02
-TFCE 0.48 £0.02
-Perplexity 0.40 £0.01
-BPC 0.54 + 0.02
-Grammar Step 0.16 £0.11
-Grammar Step Max 0.09 £0.02
-Faithfulness 0.09 +£0.03
-Informativeness Step 0.25 £ 0.06
-Informativeness Chain 0.53 +£0.05
-Repetition Step 0.01 £0.10
-Reasoning Alignment 0.10£0.02
-External Hallucination 0.12+0.02
-Redundancy 0.04 £0.02
-Common Sense Error 0.37 £0.06
-Missing Step 0.19 £0.05
-Semantic Coverage Step 0.15+£0.03
-Semantic Coverage Chain 0.49 £ 0.04
-Discourse Representation 0.12 £0.05
-Coherence Step vs Step 0.21 £0.06
-Perplexity Step 0.23 £0.09
-Perplexity Chain 0.09 +£0.04
-Perplexity Step Max 0.10 £0.05

Table 5. Demonstrates TFA is the proxy metric most correlated with boxed accuracy on the MATH benchmark. Average correlations
with 95% confidence intervals for proxy metrics on the MATH dataset. The proxy metrics are split into five categories: teacher forcing
based, grammar based, embedding based, consistency based, and perplexity based (the last four are all ROSCOE metrics). We refer to the
ROSCOE metrics by the names used in the released code base, which differ slightly from those in the original paper.

Metric Category Average + 95% CI
TFA 0.66 + 0.02
Grammar Based (ROSCOE) 0.132 £0.071

Embedding Based (ROSCOE) 0.288 + 0.088
Consistency Based (ROSCOE) 0.190 + 0.035
Perplexity Based (ROSCOE) 0.189 + 0.066

Global ROSCOE 0.200 £ 0.028

Table 6. Demonstrates TFA is significantly more correlated than any of the ROSCOE metrics by category and globally. The average
correlations with 95% confidence intervals for ROSCOE metrics on the MATH dataset. The ROSCOE metric categories are: grammar
based, embedding based, consistency based, and perplexity based. The global ROSCOE score is provided as an overall summary of all
ROSCOE metrics.
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A.3. Model Analysis Examples

Problem: Letn be a positive integer. Determine, in terms of n, the largest integer m with the following property:
There exist real numbers 1, ..., T2, With =1 < 21 < 22 < --- < x2, < 1 such that the sum of the lengths of

the n intervals
2k—1 _2k—1 2k—1 _2k—1 2k—1 2k—1
[z T [T Ty |y [Xon_1, %oy

is equal to 1 for all integers k with 1 < k < m.

Model’s Response: We are given n positive integers and need to determine the largest integer m, in terms of n,
such that there exist real numbers x1, x2, . . . , T2, satisfying:
1. The x; are strictly increasing between —1 and 1:
1<z <z2<---<w2pn <1
2. For each integer k£ with 1 < k < m, the sum of the lengths of n intervals is equal to 1:
n
2k—1 2k—1
Z (in - ‘r2i—1) =1
=1

Our goal is to find the largest integer m (in terms of n) satisfying these conditions.

**General Case:** We have 2n variables and m equations.

- Each equation is independent due to the distinct exponents.

- To have a solution, we must have at least as many variables as equations.
- **Therefore, the maximum number m is bounded by 2n.**

- However, since we have 2n variables but they are constrained by the ordering and the interval (—1,1),
the effective degrees of freedom are less than 2n.

*Conclusion:**

Given the constraints and the increasing number of equations with m, the largest integer m for which the
conditions can be satisfied is:

m=n
**Final Answer:**

The final answer is [ n |. I hope it is correct.

Year: 2022 ID: A6 Final Answer: n

Figure 5. An example response where OpenAl ol-preview gets the final answer correct, but made an unjustified claim. OpenAl
ol-preview claims that the largest possible value for m is n. However, its only justification for this claim is that m is bounded by 2n.
OpenAl ol-preview does not justify why a value of m between n and 2n cannot work.
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Problem: Find the least possible area of a convex set in the plane that intersects both branches of the hyperbola
a2y = 1 and both branches of the hyperbola xy = —1. (A set S in the plane is called convex if for any two points in
S the line segment connecting them is contained in S.)

Model’s Response: To find the least possible area of a convex set in the plane that intersects both branches of the
hyperbolas xy = 1 and xy = —1, we need to consider the geometric constraints. Let’s start by visualizing these
hyperbolas:

The hyperbola xy = 1 consists of two branches in the first and third quadrants:

1
y=-.
s
The hyperbola xy = —1 consists of two branches in the second and fourth quadrants:
1
y=-—--
i

We aim to place a convex set that intersects both branches of each hyperbola. One useful geometric fig-
ure for this is a rectangle aligned along the hyperbolic axes. We can guarantee that the rectangle will intersect both
branches of zy = 1 and zy = —1 by making its sides tangent to the hyperbolas.

The geometric configuration simplifies the calculation:
The minimum enclosing convex area tangency ideally is of square structure, yielding the unit hyperbola intersection:

area = 4 (Since side 2 - 2 = 4formation in closed square).

This geometric construction ensures least, minimum convex interaction:

Final Answer: The final answer is . I hope it is correct.

Year: 2007 ID: A2 Final Answer: 4

Figure 6. An example response where GPT-40 gets the final answer correct, but made an unjustified logical step, resulting in a
non-rigorous solution. GPT-40 logically jumps to the idea that the geometric shape that minimizes the area is a rectangle. However, it
does not attempt to justify this claim in any way, and proceeds as though this is obvious.
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Problem: Given
112" + 10i2° + 10iz — 11 = 0,

find the value of |z|. (Here z is a complex number and i* = —1.)

Model’s Response: To solve the equation
112'% 4+ 10i2° + 10iz — 11 =0

and find the value of |z|, where z is a complex number, we’ll proceed step by step.

**Step 2: Assume |z| = 1%*

Let’s assume that |z| = 1, which means z = e*? for some real number 6.
*Step 3: Substitute z = €% into the Equation**

Substituting z = e* into the equation, we get:

11(e")™ + 10i(e")® + 10ie™ — 11 =0

Simglify each term:

_ (e%)10 = 10i®

_ (ei9)9 — 69i9

So the equation becomes:

11e'%% + 104 + 105" — 11 =0

**Step 6: Analyze the Equations** ;
The trigonometric equations are complex and difficult to solve directly. However, notice that if |z| = 1, then z = "
lies on the unit circle, and its magnitude is indeed 1.

Moreover, since we couldn’t find any specific 6 that satisfies both equations simultaneously (as shown by trying
several angles), this suggests that no specific angle 0 other than those corresponding to |z| = 1 satisfy the equation.
**Conclusion: **

Since our manipulations suggest that |z| = 1 is necessary (and given the nature of complex numbers and the unit
circle), we conclude that:

*Final Answer:** The final answer is . T hope it is correct.

0

Year: 1989 ID: A3 Final Answer: 1

Figure 7. An example response where GPT-40 make a logical leap and is completely incoherent. In this solution, the model jumps to
assume that |z| = 1 and performs a series of calculations. Then, it concludes that the final answer is 1 simply because the equations it
made were too “complex and difficult” to solve.
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Problem: Let k be the smallest positive integer for which there exist distinct integers 11, m2, ms3, ma4, ms such
that the polynomial
p(z) = (z — ma)(z — m2)(z — ms)(z — ma)(z — ms)

has exactly k nonzero coefficients. Find a set of integers m1, ma, m3, ma, ms for which this minimum k is achieved
and given the sum k& + m1 + mo + ms + m4 + ms as the final answer.

Model’s Response: The polynomial p(z) = (z — m1)(x — m2)(x — m3)(z — ma)(z — ms) has exactly k
nonzero coefficients when the values of m; are distinct integers. We want to minimize k and find a set of values for
m; that achieves this minimum.

The expansion of p(z) will include all possible products of the differences (z — m; ). For each term of the form
(z — a), this generates a coefficient for that term, and this will happen for each combination of ¢ and j, including
when ¢ = j.

The minimum possible value for k can be calculated by considering the sparsity of nonzero coefficients in the
polynomial’s expansion. This is achieved when the polynomial is written in the form that it eliminates as many
terms as possible, leading to a minimal number of nonzero coefficients.

For (x — m1)(z — m2)(x — m3)(xz — ma)(z — ms), it can be achieved if the differences (z — m;) produce terms
that include maximal cancellation. The problem becomes one of determining the minimal degree of the polynomial
that includes maximal cancellation.

The key observation here is that the minimal nonzero coefficients are achieved when the polynomial is arranged in
such a way that most coefficients are zero due to symmetry and cancellation properties.

The smallest positive integer k for such polynomials happens at k& = 2, for instance, (z — 1)(z — 2)(z — 3)(z —
4)(z — 5) results in a polynomial with precisely coefficients as follows:

px)=2"—(1+2+3+4+5)"
+(sum of products of each combination of 2 distinct elements)m3 etc...
Since the polynomial in this problem demands exactly k£ nonzero coefficients, the product of differences can lead to

cancellations resulting in minimal terms.
Let’s consider the initial observation:

my = l,’lTLz 22,7713 23,7714 :4,m5 =b

The resulting polynomial, (z — 1)(z — 2)(z — 3)(z — 4)(z — 5)

Final answer:

Year: 1985 ID: Bl Final Answer: 3

Figure 8. An example response where NuminaMath makes a calculation error, includes irrelevant information, and misunderstands
the problem. In this solution, we see that the final answer is obtained by adding k£ 4+ m1 4+ ma 4+ ma + m4 + ms. In the model’s final
solution, its value of k is 2, so its final answer should be 2 + 1+ 2 + 3 + 4 + 5 = 17, not 15; this is due a misunderstanding of the
problem and/or a calculation error. Furthermore, the model includes the expression of the “resulting polynomial,” which is completely
irrelevant to the problem it’s attempting to solve.
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Problem: If p(z) = ao + a1z + -+ - + amz™ is a polynomial with real coefficients a;, then set
T(p(z)) = ag +af + -+ an.
Let f(2) = 32 4 Tz + 2. Find, with proof, a polynomial g(x) with real coefficients such that
(1) ¢(0) =1, and
(i) I(f(=)") = T(g(z)")

for every integer n > 1.

Model’s Response: We have that F(z) = 32?47z +2 and thus T'(F(z)) = 32+ 72 +2% = 94+-49+4 = 62. We
want to find a polynomial g(z) such that g(0) = 1 and I'(F'(z)") = I'(g(x)™) for every integer n > 1. Suppose
g(z) = x® + bz + 1. Then T'(g(x)) = 1 + b*> + 1 = b 4 2. If we can find a value for b such that b* 4 2 = 62,

then we have T'(g(z)™) = ['(F(z)™). Solving b* + 2 = 62 gives b> = 60, so b = v/60 = 21/15. Therefore, we
can take g(z) = 2® + 21/15z + 1. Since g(0) = 1, g(x) satisfies both conditions.

Final Answer: The final answer is | 2° 4+ 2v/15z + 1 | I hope it is correct.

Year: 1985 ID: A6 Final Answer: 622 + 5z + 1

Figure 9. An example response where Qwen2-Math-7B hallucinates and misunderstands the problem. First, Qwen misunderstands
that the polynomial is quadratic—which is not stated anywhere in the problem statement. Then, Qwen falsely states assumes that if
T'(g(z)) =T(f(z)), then T'(g(z)") = I'(f(x))" for all n. These mistakes lead Qwen to the wrong solution.
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Problem: Letzo = 1 and forn > 0, let z,,+1 = 3z, + an\/gj In particular, 1 = 5, z2 = 26, x3 = 136,
x4 = 712. Find a closed-form expression for z2007. (| a| means the largest integer < a.)

Model’s Response:

Tl = 3Zn + |20 V5]
=3xn + (2o (V5 — 2) + 22, |
:3$n+xn(f—2)+2xn
:5xn+mn(f—2)
=z,(2 + V).

If we let y,, = 2, (2 + V/5), then z,, = y,, /(2 + V/5), so

y y 2++/5 y
n+1 — Yn ° = Yn.
i 245

Thus, y, = yo foralln > 1, so

oy 1 2-+/5 _2-v5_
TtV 246 (—2+VB)(2+vB)  5-2 2=

Final Answer: The final answer is . I hope it is correct.

3997 —3997
Year: 2007 ID: A5 Final Answer: Qijgﬁ ((IB‘@) — (1+2¢5> )

Figure 10. An example response where DeepSeek-Math-7B-RL makes an incorrect logical jump. In the series of equalities in the
beginning, DeepSeek simply removes the floor function and proceeds. However, the floor function is an integral part of the problem, and
without it, DeepSeek is unable to come to the right solution.
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A 4. Binary and Complex Questions

Several questions in Putnam-AXIOM are binary, meaning that the question inherently has two possible answers. These
include true/false questions, questions about divergence or convergence, or questions about the winner of a two-player
game. These questions make up 26 of the 262 question in Putnam-AXIOM Original; of the 60 questions of Putnam-AXIOM
Variation, binary questions make up 8. We refer to all questions that are not binary as “complex” questions.

Given the guessable nature of these questions and our answer-matching evaluation method, models have a much higher
chance of randomly guessing the right answer on these questions. To discern whether the inclusion of these guessable
questions significantly affects the overall difficulty of Putnam-AXIOM, we conducted an analysis of the accuracy of various
models with and without the binary questions, with the overall accuracies in Figure ??.

We see that, with the exception of Qwen2 Math 7B, almost all models have a higher accuracy on Putnam-AXIOM with its
binary questions than without, meaning that guessing is contributing to their success to some extent. However, we see that
on the more advanced models—Qwen2 Math 7B, GPT 4, and Claude Sonnet 3.5—the gap between the accuracies on the
entire dataset and the accuracies on only complex questions is much smaller. This is likely because these models are capable
enough that they successfully answer a similar percentage of complex questions and binary questions; less advanced models
get significantly fewer complex questions correct than binary questions, so we see a large accuracy gap. Based on the results
of this experiment, we’ve decided to use only the complex questions for most of our evaluations such as in Figure 3.
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A.5. Teacher-Forced Accuracy (TFA) Under Proprietary APIs

To compute Teacher-Forced Accuracy (TFA), we use teacher forcing, where the model predicts each token based on the
ground truth sequence up to that token. This requires conditioning each prediction on the true preceding tokens, rather than
relying on previously generated tokens.

Frontier models under proprietary APIs, however, typically predict the next token only based on previous predictions,
conditioning only the first token on the full ground truth. To compute TFA accurately with these models, we can “brute-force”
it by generating tokens one at a time, conditioning each new prediction on the entire ground truth sequence. This approach
requires re-feeding the full sequence history for every token in the ground truth, making it computationally intensive.

For a string of N tokens, this method requires O(N?) operations because we reprocess the token history at each prediction
step. By contrast, open-source models allow us to compute TFA in a single forward pass, reducing the complexity to O(N).
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