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Abstract

Self-attention performs well in long context but

has quadratic complexity. Existing RNN layers

have linear complexity, but their performance in

long context is limited by the expressive power

of their hidden states. We present a practical

framework for instantiating sequence modeling

layers with linear complexity and expressive hid-

den states. The key idea is to make the hidden

state a machine learning model itself, and the up-

date rule a step of self-supervised learning. Since

the hidden state is updated by training even on

test sequences, our layers are called Test-Time

Training (TTT) layers. We consider two instantia-

tions: TTT-Linear and TTT-MLP, whose hidden

state is a linear model and a two-layer MLP re-

spectively. We evaluate our instantiations at the

scale of 125M to 1.3B parameters, comparing

with a strong Transformer and Mamba, a modern

RNN. Similar to Transformer, TTT-Linear and

TTT-MLP can keep reducing perplexity by con-

ditioning on more tokens, while Mamba cannot

after 16k context. TTT-MLP still faces challenges

in memory I/O, but shows larger potential in long

context, pointing to a promising direction for fu-

ture research.

1. Introduction

This version of the paper has been abridged to fit the page

limit of ICML camera ready. Please read our arXiv version

instead: https://arxiv.org/abs/2407.04620.

In 2020, the OpenAI scaling law paper (Kaplan et. al (Ka-

plan et al., 2020)) showed that LSTMs (a type of RNN)

could not scale similarly to Transformers or effectively use

long context. Now, with modern RNNs and best practices,
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we re-evaluate these findings in Figure 1.

On the left, we observe that Mamba (Gu & Dao, 2023)

– one of the most popular RNNs today – scales similarly

to a strong Transformer, showing great progress since the

LSTMs in 2020. However, on the right, we observe the

same issue with Mamba as Kaplan et al. did with LSTMs.

Tokens later in a sequence should be easier to predict on

average, since they condition on more information. This is

indeed the case for Transformer, whose average perplexity

at each token index decreases throughout its 32k context. In

contrast, the same metric plateaus for Mamba after 16k.

This result represents an awkward reality for existing RNNs.

On one hand, the main advantage of RNNs (vs. Trans-

formers) is their linear (vs. quadratic) complexity. This

asymptotic advantage is only realized in practice for long

context, which according to Figure 8 is after 8k. On the

other hand, once context is long enough, existing RNNs

such as Mamba struggle to actually take advantage of the

extra information being conditioned on.

The difficulty with long context is inherent to the very na-

ture of RNN layers: Unlike self-attention, RNN layers have

to compress context into a hidden state of fixed size. As a

compression heuristic, the update rule needs to discover the

underlying structures and relationships among thousands

or potentially millions of tokens. This need is inherently

challenging. In this paper, we begin with the observation

that self-supervised learning can compress a massive train-

ing set into the weights of a model such as an LLM, which

often exhibits deep understanding about the semantic con-

nections among its training data – exactly what we need

from a compression heuristic.

TTT layers. Motivated by this observation, we make the

hidden state a machine learning model itself, and the update

rule a step of self-supervised learning. Since the hidden

state is updated by training even on test sequences, these

RNN layers are called Test-Time Training (TTT) layers. We

introduce two simple instantiations: TTT-Linear and TTT-

MLP, where the hidden state is a linear model and a two-

layer MLP, respectively. TTT layers can be integrated into

any network architecture and optimized end-to-end, similar

to RNNs layers and self-attention.
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Figure 1. Comparing to Mamba, TTT-Linear and TTT-MLP have similar perplexity in 8k context (left) and better use of long context

(right). Evaluations follow Kaplan et al. (Kaplan et al., 2020). Left: Scaling trends on the Pile with 8k context, zoomed in between 350M

and 1.3B parameters. Right: Similar to Transformer, TTT-Linear and TTT-MLP can keep reducing perplexity by conditioning on more

tokens, while Mamba cannot after 16k context. All methods have matched training FLOPs as Mamba 1.4B.

Wall-clock time. We apply two techniques to make TTT

layers more efficient on modern GPUs and TPUs. First,

similar to the standard practice of taking gradient steps

on mini-batches of sequences during regular training for

better parallelism, we use mini-batches of tokens during

TTT. Second, we develop a dual form for operations inside

each TTT mini-batch. The dual form is equivalent in output

to the naive implementation, but trains more than 5× faster

on our TPUs.

Contributions and limitations. The idea of using linear

models as hidden states has already been well studied in

DeltaNet (Schlag et al., 2021; Yang et al., 2024). Since our

first version was released, RNN layers with matrix (linear)

hidden states have also been further advanced in Mamba 2

(Dao & Gu, 2024) and Gated DeltaNet (Yang et al., 2023).

Compared to this line of work, our contribution is a practi-

cal framework that can instantiate arbitrary neural networks

as hidden states. However, such instantiations can still re-

quire substantial wall-clock time, even after applying our

improvements in efficiency. It remains to be seen whether

our framework can produce instantiations that either over-

come this limitation or offer benefits outweighing it.

2. Method

All sequence modeling layers can be viewed from the per-

spective of storing historic context into a hidden state, as

shown in Figure 2. For example, RNN layers – such as

LSTM (Hochreiter & Schmidhuber, 1997) and Mamba (Gu

& Dao, 2023) layers – compress context into a state of fixed

size across time. This compression has two consequences.

On one hand, mapping an input token xt to output token zt
is efficient, because both the update rule and output rule take

constant time per token. On the other hand, the performance

of RNN layers in long context is limited by the expressive

power of its hidden state st.

Self-attention can also be viewed from the perspective above,

except that its hidden state, commonly known as the Key-

Value (KV) cache, is a list that grows linearly with t. Its

update rule simply appends the current KV tuple to this list,

and the output rule scans over all tuples up to t to form

the attention matrix. The hidden state explicitly stores all

historic context without compression, making self-attention

more expressive than RNN layers for long context. How-

ever, scanning this linearly growing hidden state also takes

linearly growing time per token.

To remain both efficient and expressive in long context, we

need a better compression heuristic. Specifically, we need

to compress thousands or potentially millions of tokens into

a hidden state that can effectively capture their underlying

structures and relationships.

2.1. TTT as updating a hidden state

The process of parametric learning can be viewed as

compressing a massive training set into the weights of a

model. Specifically, we know that models trained with

self-supervision can capture the underlying structures and

relationships behind their training data (Le, 2013) – exactly

what we need from a compression heuristic.

LLMs themselves are great examples. Trained with the

self-supervised task of next-token prediction, their weights

can be viewed as a compressed form of storage for existing

knowledge on the internet. By querying LLMs, we can

extract knowledge from their weights. More importantly,

LLMs often exhibit a deep understanding of the seman-

tic connections among existing knowledge to express new

pieces of reasoning (Achiam et al., 2023).

Our key idea is to use self-supervised learning to compress

the historic context x1, . . . , xt into a hidden state st, by

making the context an unlabeled dataset and the state a

model. Concretely, the hidden state st is now equivalent to
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Hidden state

Input tokens

Output tokens Output rule

Update rule

Initial state Update rule Output rule Cost

Naive RNN s0 = vector() st = Ã (¹ssst−1 + ¹sxxt) zt = ¹zsst + ¹zxxt O(1)

Self-attention s0 = list() st = st−1.append(kt, vt) zt = Vtsoftmax
(

KT
t qt

)

O(t)

Naive TTT W0 = f.params() Wt = Wt−1 − ¸∇ℓ(Wt−1;xt) zt = f(xt;Wt) O(1)

Figure 2. Top: A generic sequence modeling layer expressed as a hidden state that transitions according to an update rule. All sequence

modeling layers can be viewed as different instantiations of three components in this figure: the initial state, update rule and output rule.

Bottom: Examples of sequence modeling layers and their instantiations of the three components. Self-attention has a hidden state growing

with context, therefore growing cost per token. Both the naive RNN and TTT layer compress the growing context into a hidden state of

fixed size, therefore their cost per token stays constant.

Wt, the weights of a model f , which can be a linear model,

a small neural network, or anything else. The output rule is

simply: zt = f(xt;Wt). Intuitively, the output token is just

the prediction on xt, made by f with the updated weights

Wt. The update rule is a step of gradient descent on some

self-supervised loss ℓ:

Wt = Wt−1 − ¸∇ℓ(Wt−1;xt), (1)

with learning rate ¸.1 From the compression point of view,

every heuristic needs to decide which input to remember

or forget. Our W remembers inputs that produce large

gradients – intuitively, inputs that make W learn a lot.

One choice of ℓ is reconstructing xt itself. To make the

learning problem nontrivial, we first process xt into a cor-

rupted input x̃t (details in Subsection 2.3), then optimize:

ℓ(W ;xt) = ∥f(x̃t;W )− xt∥
2. (2)

Similar to denoising autoencoders (Vincent et al., 2008),

f needs to discover the correlations between dimensions

of xt in order to reconstruct it from partial information

x̃t. We discuss more sophisticated formulations of the self-

supervised task in Subsection 2.3.

As with other RNN layers and self-attention, our algorithm

that maps an input sequence x1, . . . , xT to output sequence

z1, . . . , zT can be programmed into the forward pass of a

sequence modeling layer, using the hidden state, update

rule, and output rule above. Even at test time, our new layer

still trains a different sequence of weights W1, . . . ,WT for

every input sequence. Therefore, we call it the Test-Time

Training (TTT) layer.

1 For now, consider W0 = 0. We will discuss more sophisti-
cated techniques for initializing W in Subsection 2.7.

2.2. Training a network with TTT layers

The forward pass of a TTT layer also has a correspond-

ing backward pass. Our forward pass only consists of stan-

dard differentiable operators except the gradient operator

∇. However, ∇ just maps one function to another, in this

case ℓ to ∇ℓ, and ∇ℓ is also composed of differentiable

operators. Conceptually, calling backward on ∇ℓ means

taking gradients of gradients – a well explored technique in

meta-learning (Maclaurin et al., 2015).

TTT layers have the same interface as RNN layers and self-

attention, therefore can be replaced in any larger network

architecture, which usually contains many of these sequence

modeling layers. Training a network with TTT layers also

works the same way as training any other language model,

such as a Transformer. The same data, recipe, and objec-

tive such as next-token prediction can be used to optimize

parameters of the rest of the network.

We refer to training the larger network as the outer loop,

and training W within each TTT layer as the inner loop.

An important difference between the two nested learning

problems is that the inner-loop gradient ∇ℓ is taken w.r.t.

W , the parameters of f , while the outer-loop gradient is

taken w.r.t the parameters of the rest of the network, which

we will denote by ¹rest. Throughout this paper, outer-loop

parameters are always denoted by ¹ with various subscripts.

2.3. Learning a self-supervised task for TTT

Arguably the most important part of TTT is the self-

supervised task, because it determines the kind of features

that W will learn from the test sequence. So how should we

design this task? The final goal of TTT is for zt = f(xt;Wt)
to perform well on language modeling. Instead of handcraft-

ing a self-supervised task from human priors, we take a

more end-to-end approach – directly optimizing the self-

supervised task for the final goal of next-token prediction.

3



Learning to (Learn at Test Time): RNNs with Expressive Hidden States

Concretely, we learn the self-supervised task as part of the

outer loop. Starting from the naive reconstruction task in

Equation 2, we add some outer-loop parameters to make

this task learnable. In Subsection 2.1, we did not specify

the corruption that produces x̃t from xt. One design is to

make it a low-rank projection x̃t = ¹Kxt, where ¹K is a

learnable matrix.2 Following the terminology of multi-view

reconstruction, ¹Kxt is called a training view.

Moreover, perhaps not all the information in xt is worth

remembering, so the reconstruction label can be another

low-rank projection ¹V xt instead of xt. Here ¹V xt is called

the label view, where ¹V is also learnable. In summary, our

new self-supervised loss is:

ℓ(W ;xt) =
∥

∥f (¹Kxt;W )− ¹V xt

∥

∥

2
. (3)

Since both W and various ¹s appear together in Equation 3,

we emphasize again their difference in nature. In the inner

loop, only W is optimized, therefore written as an argument

of ℓ; the ¹s are ”hyper-parameters” of this loss function. In

the outer loop, ¹K , ¹V , ¹Q are optimized alongside ¹rest, and

W is merely a hidden state, not a parameter.

Lastly, the training view ¹Kxt has fewer dimensions than xt,

so we can no longer use the output rule in Subsection 2.1.

The simplest solution is to create a test view ¹Qxt, and

change our output rule to:

zt = f (¹Qxt;Wt) . (4)

This solution has an additional benefit. The training and

label views specify the information in xt that is compressed

into Wt and propagated forward through time. The test view

specifies potentially different information that is mapped to

the current output token zt and propagated forward through

network layers, therefore adds more flexibility to the self-

supervised task.

2.4. Parallelization with mini-batch TTT

The naive TTT layer developed so far is already efficient in

the number of floating point operations (FLOPs). However,

its update rule Wt = Wt−1 − ¸∇l(Wt−1;xt) cannot be

parallelized, because Wt depends on Wt−1 in two places:

before the minus sign and inside ∇l. Since ∇l contains the

bulk of the computation, we focus on making this second

part parallel.

We approach this systems challenge through concepts in

the TTT framework. There are many variants of gradient

descent (GD). Its general update rule can be expressed as:

Wt = Wt−1 − ¸ Gt = W0 − ¸

t
∑

s=1

Gs, (5)

2 The subscript K hints at a connection to self-attention, as we
will establish in Subsection 2.6.

...

Figure 3. High-level computation graph of the first TTT mini-

batch, where nodes are variables and edges are computations. The

blue nodes are input variables, and yellow are output.
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Figure 4. Ablations on TTT mini-batch size b, where b = 1 is

online GD and b = T is batch GD. We choose b = 16 for all

experiments in this paper. Left: Smaller b improves perplexity

since more GD steps are taken. The perplexity of 11.09 at b = 16

corresponds to the final result of TTT-Linear in Figure 6. Right:

Forward time in dual form, with context length T = 2048. Total

time (orange) can be decomposed into time for computing the W s

at the end of every mini-batch (blue) and time for z1, . . . , zT .

where Gt is the descent direction. Note that once we have

calculated Gt for t = 1, . . . , T , we can then obtain all the

Wts through a cumsum by the second half of Equation 5.

Our naive update rule, known as online gradient descent,

uses Gt = ∇l(Wt−1;xt).

To parallelize Gt for t = 1, . . . , T , we can take all of them

w.r.t. W0. This variant with Gt = ∇ℓ (W0;xt) is known

as batch gradient descent, since
∑t

s=1 ∇ℓ (W0;xs) is the

same as the gradient w.r.t. W0 over x1, . . . , xt as a batch.

However, in batch GD, Wt is effectively only one gradient

step away from W0, in contrast to online GD, where Wt is

t steps away from W0. Therefore, batch GD has a smaller

effective search space, which ends up hurting performance

for language modeling.

Our proposed solution – mini-batch gradient descent – is

shown in Figure 3. Denote the TTT batch size by b. We

use Gt = ∇ℓ (Wt′ ;xt), where t′ = t−mod(t, b) is the

last timestep of the previous mini-batch (or 0 for the first

mini-batch), so we can parallelize b gradient computations

at a time. Empirically, b controls a trade-off between speed

and quality, as shown in Figure 4. We chose b = 16 for all

experiments in this paper.

2.5. Dual form

The parallelization introduced above is necessary but not

sufficient for efficiency in wall-clock time. Modern acceler-

ators specialize in matrix-matrix multiplications, known as
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matmuls. For example, the NVIDIA A100 GPU contains

highly optimized units called TensorCores that can only

perform a single operation – multiplying two matrices each

of size 16 × 16. Without enough of these matmuls, the

TensorCores are idle, and most of the potential for the A100

is unrealized.

Unfortunately, the TTT layer developed so far even with

mini-batch still has very few matmuls. Consider the sim-

plest case of ℓ, where ¹K = ¹V = ¹Q = I , for only

the first TTT mini-batch of size b. In addition, consider

f as a linear model. Copying Equation 2, our loss at

time t is: ℓ (W0;xt) = ∥W0xt − xt∥
2. As discussed in

Subsection 2.4, we can parallelize the computation of:

Gt = 2(W0xt − xt)x
T
t , for t = 1, . . . , b. However, we

cannot compute all b of the Gts through a single matmul.

Instead, we need b outer products to compute them one by

one. To make matters worse, for each xt ∈ R
d, Gt is d× d,

which incurs much heavier memory footprint and I/O cost

than xt for large d.

To solve these two problems, we make a simple observa-

tion: We do not actually need to materialize G1, . . . , Gb

as long as we can compute Wb at the end of the mini-

batch, and the output tokens z1, . . . , zb (see Figure 3). Now

we demonstrate these computations with the simplified

TTT-Linear case above. Denote X = [x1, . . . , xb], then:

Wb = W0−2¸(W0X−X)XT . So Wb can be conveniently

computed with a matmul. To compute Z = [z1, . . . , zb],
we know that:

zt = f(xt;Wt) = W0xt − 2¸
t

∑

s=1

(W0xs − xs)x
T
s xt. (6)

Denote ¶t =
∑t

s=1(W0xs − xs)x
T
s xt and the matrix ∆ =

[¶1, . . . , ¶b]. We can derive that:

∆ = (W0X −X)mask
(

XTX
)

, (7)

where mask is the upper triangular mask with zeros (similar

to the attention mask, but with zeros instead of infinities),

and the term W0X −X can be reused from the computa-

tion of Wb. Now ∆ is also conveniently computed with

matmuls. Plugging ∆ back into Equation 6, we obtain

Z = W0X − 2¸∆.

We call this procedure the dual form, in contrast to the

primal form before this subsection, where the Gs and W s

are explicitly materialized. As discussed, the two forms are

equivalent in output. The terminology of primal and dual

follows prior work that has explored similar mathematical

formulations outside of TTT (Irie et al., 2022; Bishop &

Nasrabadi, 2006; Rosenblatt, 1958). In Appendix A, we

show that the dual form still works when f is a neural

network with nonlinear layers.

Time complexity of the primal form within a TTT mini-

batch is O(b × d2). Time complexity of the dual form

is O(b × d2) for computing Wb alone, then an additional

O(b2×d) for computing z1, . . . , zb. Compared to the primal,

the dual form sacrifices theoretical complexity for hardware

utilization. In practice, d is typically a few hundred and b is

chosen to be only 16. As a consequence, wall-clock time for

computing z1, . . . , zb is relatively small, as observed in the

right panel of Figure 4. In our JAX implementation, training

with the dual form is more than 5× faster than with primal.

2.6. Theoretical equivalences

In Subsection 2.1, we mentioned that f can be a linear

model or a neural network. In Subsection 2.4, we also

discussed three variants of the update rule: online GD, batch

GD, and mini-batch GD. Each of these 2× 3 combinations

induces a different instantiation of the TTT layer. We now

show that among these induced instantiations, the TTT layer

with a linear model and batch GD is equivalent to linear

attention (Katharopoulos et al., 2020).

Theorem 1. Consider the TTT layer with f(x) = Wx as

the inner-loop model, batch gradient descent with ¸ = 1/2
as the update rule, and W0 = 0. Then, given the same input

sequence x1, . . . , xT , the output rule defined in Equation 4

produces the same output sequence z1, . . . , zT as linear

attention.

Proof. By definition of ℓ in Equation 3, ∇ℓ (W0;xt) =
−2(¹V xt)(¹Kxt)

T . By definition of batch GD: Wt =
∑t

s=1(¹V xs)(¹Kxs)
T . Plugging Wt into the output rule

in Equation 4, we obtain the output token: zt =
f (¹Qxt;Wt) =

∑t

s=1(¹V xs)(¹Kxs)
T (¹Qxt), which is

the definition of linear attention.

In Table 1, we first empirically verify the equivalence above

with an improved implementation of linear attention. Then,

to illustrate the contribution of each of our components (in-

cluding some that will be introduced in the next subsection),

we add them row by row to the TTT layer that is equivalent

to linear attention, and ultimately obtain our proposed in-

stantiation called TTT-Linear. The change from batch GD

to mini-batch GD contributes the most improvement by a

large margin.

While the space of models × optimizers is already large,

machine learning is much richer than optimizing the parame-

ters Wt of a model f . There are also nonparametric learners,

such as nearest neighbors, support vector machines (SVMs),

and kernel ridge regression. By definition, nonparametric

learners do not have parameters Wt, and instead directly

uses training data x1, . . . , xt. Hence we use the notation

f(x;x1, . . . , xt). We now show that for a particular non-

parametric learner, the induced TTT layer is equivalent to

self-attention.

Theorem 2. Consider the TTT layer with the Nadaraya-
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Figure 5. RNN layers and TTT layers are both subsets of

sequence modeling layers. RNN layers have a hidden state that

is fixed in size across time. TTT layers with parametric learn-

ers are also RNN layers, since their hidden state is also fixed in

size. TTT layers with nonparametric learners can represent self-

attention, as discussed in Subsection 2.6.

Watson estimator (Bierens, 1988; Cai, 2001), defined as:

f(x;x1, . . . , xt) =
1

∑t

s=1 »(x, xs)

t
∑

s=1

»(x, xs) ys, (8)

where ys = ¹V xs, and

» (x, x′; ¹K , ¹Q) ∝ e(θKx)T θQx′

(9)

is a kernel with bandwidth hyper-parameters ¹K and ¹Q.

Then given the same input sequence x1, . . . , xT , the out-

put rule defined in Equation 4 produces the same output

sequence z1, . . . , zT as self-attention.

Proof. Plugging ys and » above into Equation 8 gives us

the definition of self-attention.

Appendix B contains a detailed explanation of the Nadaraya-

Watson estimator and kernel » above. In contrast to Theo-

rem 1, Theorem 2 does not produce a different implementa-

tion from attention.

2.7. Implementation details

Instantiations of f . We propose two variants of TTT lay-

ers – TTT-Linear and TTT-MLP, differing only in their

instantiations of f . For TTT-Linear, f lin(x) = Wx, where

W is square. For TTT-MLP, f MLP has two layers similar

to the MLPs in Transformers. Specifically, the hidden di-

mension is 4× the input dimension, followed by a GELU

activation (Hendrycks & Gimpel, 2016). For better stability

during TTT, f always contains a Layer Normalization (LN)

and residual connection. That is, f(x) = x+LN(f res(x)),
where f res can be f lin or f MLP.

Learnable W0. The TTT initialization W0 is shared

between all sequences, even though subsequent weights

W1, . . . ,WT are different for each input sequence. Instead

of setting W0 = 0, we can learn it as part of the outer loop.

Since outer-loop parameters are always denoted by ¹s in-

stead of W s, we assign an alias ¹init = W0. In practice, ¹init

Configuration Ppl. Diff.

Linear attention (Katharopoulos et al., 2020) 15.91 -

Linear attn. improved 15.23 −0.68

TTT equivalence 15.23 0

+ learnable W0 15.27 +0.04

+ LN and residual in f 14.05 −1.22

+ mini-batch TTT 12.35 −1.70

+ learnable ¸ 11.99 −0.36

+ Mamba backbone 11.09 −0.90

Table 1. Ablations on improving from linear attention. All models

here have 125M parameters, and are trained according to the recipe

in Subsection 3.1. The last row, with perplexity 11.09, is the final

result of TTT-Linear in Figure 6. Starting from the equivalence

discussed in Subsection 2.6, learnable W0 hurts slightly, but the

rows below cannot train stably without it. The biggest improve-

ment comes from mini-batch TTT (changing from b = T = 2048

to b = 16). The second comes from instantiating the inner model

f with LN and residual connection.

adds a negligible amount of parameters comparing to the

reconstruction views ¹K , ¹Q, ¹V , because both its input and

output are low dimensional. Empirically, we observe that

learning W0 significantly improves training stability.

Learnable ¸. The learning rate is usually the most important

hyper-parameter for gradient descent, so we experiment

with learning the inner-loop learning rate ¸ in Equation 5

as part of the outer loop. We make ¸ a function of the

input token (therefore different across time) for additional

flexibility. Concretely, we design ¸(x) = ¸base Ã(¹lr · x),
where the learnable vector ¹lr is an outer-loop parameter,

Ã is the sigmoid function, and the scalar ¸base is the base

learning rate, set to 1 for TTT-Linear and 0.1 for TTT-MLP.

Alternatively, ¸(x) can also be interpreted as a gate for ∇ℓ.

Backbone architecture. The cleanest way to integrate

any RNN layer into a larger architecture would be to di-

rectly replace self-attention in a Transformer, known in this

context as a backbone. However, existing RNNs such as

Mamba (Gu & Dao, 2023) and Griffin (De et al., 2024)

all use a different backbone from Transformers. Most no-

tably, their backbone contains temporal convolutions before

the RNN layers, which might help collect local information

across time. After experimenting with the Mamba backbone,

we find that it also improves perplexity for TTT layers, so

we incorporate it into our proposed method. See Figure 9

(in Appendix) for details.

3. Experiments

We evaluate TTT-Linear and TTT-MLP by comparing with

two baselines – Transformer and Mamba, a modern RNN.

Our main codebase is based on EasyLM (Geng, 2023), an

open-source project for training and serving LLMs in JAX.
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Figure 6. Evaluations for context lengths 2k and 8k on the Pile. De-

tails in Subsection 3.1. TTT-Linear has comparable performance

as Mamba at 2k context, and better performance at 8k.

Datasets. Following the Mamba paper (Gu & Dao, 2023),

we perform standard experiments with 2k and 8k context

lengths on the Pile (Gao et al., 2020), a popular dataset

of documents for training open-source LLMs (Black et al.,

2022). However, the Pile contains few sequences of length

greater than 8k (de Vries, 2023). To evaluate capabilities

in long context, we also experiment with context lengths

ranging from 1k to 32k in 2× increments, on a subset of

the Pile called Books3, which has been widely used to train

LLMs in long context (Liu et al., 2024).

Backbone architecture. As discussed in Subsection 2.7,

Transformer and Mamba use different backbones, and TTT-

Linear and TTT-MLP always use the Mamba backbone

unless noted otherwise. As an ablation study, Figure 6

and Figure 7 contain TTT layers within the Transformer

backbone. When a figure contains both the Transformer

backbone and Mamba backbone, we denote them by (T) and

(M), respectively.

Protocols. To ensure fairness to our baselines, we strictly

follow the evaluation protocols in the Mamba paper when

possible. For each evaluation setting (e.g., dataset, context

length, and method), we experiment with four model sizes:

125M, 350M, 760M, and 1.3B parameters. For Mamba, the

corresponding sizes are 130M, 370M, 790M, and 1.4B, as

Mamba does not follow the Transformer configurations. All

models are trained with the Chinchilla recipe described in

the Mamba paper and reproduced in our Appendix C.

3.1. Short context: the Pile

From Figure 6, we make a few observations:

• At 2k context, TTT-Linear (M), Mamba, and Transformer

have comparable performance, as the lines mostly overlap.

TTT-MLP (M) performs slightly worse under large FLOP

budgets. Even though TTT-MLP has better perplexity

than TTT-Linear at every model size, the extra cost in

FLOPs offsets the advantage.

• At 8k context, both TTT-Linear (M) and TTT-MLP (M)

perform significantly better than Mamba, in contrast to

the observation at 2k. Even TTT-MLP (T) with the Trans-
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Figure 7. Evaluations for context lengths 2k and 32k on Books.

Details in Subsection 3.2. Our complete results for context lengths

1k, 2k, 4k, 8k, 16k, 32k, including Transformer finetuning, are in

Figure 11 (in Appendix).

former backbone performs slightly better than Mamba

around 1.3B. A robust phenomenon we observe through-

out this paper is that as context length grows longer, the

advantage of TTT layers over Mamba widens.

• At 8k context, Transformer still has good (if not the best)

perplexity at every model size, but its line is not competi-

tive because of the cost in FLOPs.

Effect of backbone. Switching the TTT layers from Mamba

backbone into Transformer backbone has two effects. First,

TTT layers with Mamba backbone perform better in our

evaluations so far. Second, with Mamba backbone, TTT-

MLP at best is only comparable to TTT-Linear; but with

Transformer backbone, TTT-MLP is clearly better. We hy-

pothesize that the temporal convolutions in the Mamba back-

bone help more when the sequence modeling layer has a less

expressive hidden state. The linear model is less expressive

than the MLP, therefore benefits more from the convolutions.

We will revisit this hypothesis in the next subsection.

3.2. Long context: Books

To evaluate capabilities in long context, we experiment with

context lengths ranging from 1k to 32k in 2× increments,

using a popular subset of the Pile called Books3. The train-

ing recipe here is the same as that for Pile. From the subset

of results in Figure 7, we make a few observations:

• At 2k context on Books, all the observations from Pile 2k

still hold, except that Mamba now performs slightly better

than TTT-Linear (whereas their lines roughly overlapped

for Pile 2k).

• At 32k context, both TTT-Linear (M) and TTT-MLP (M)

perform better than Mamba, similar to the observation

from Pile 8k. Even TTT-MLP (T) with the Transformer

backbone performs slightly better than Mamba at 32k

context.

• TTT-MLP (T) is only slightly worse than TTT-MLP (M)

at 1.3B scale. As discussed, it is hard to derive an em-

pirical scaling law due to the lack of a clean linear fit.
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Figure 8. Latency on an NVIDIA A100 GPU with 80G HBM and

PCIe connections.

However, the strong trend for TTT-MLP (T) suggests that

the Transformer backbone might be more suitable for

larger models and longer context beyond our evaluations.

We only ablate the backbones for 2k and 32k due to the cost

of training LLMs. For future work, we believe that given

TTT layers with even more expressive hidden states, the

Mamba backbone with convolutions will be unnecessary.

Transformer finetuning. While we have been training

Transformers from scratch following the Mamba paper, in

practice this approach is rarely used for long context. The

standard practice is to train a Transformer in short context,

then finetune in long context. To reflect this practice, we

add another baseline, TF finetune, for context lengths 4k and

above. This baseline starts from the model trained (accord-

ing to the Chinchilla recipe) on Books 2k, then uses 20%

more tokens to finetune at the designated context length,

following the Llama Long paper (Xiong et al., 2023). See

details of the TF finetune recipe in Appendix C.

Experiments in Figure 1 (right). Compared to TTT-Linear,

TTT-MLP with matched FLOPs performs worse at short

context but better at long context. This observation matches

our expectation that the MLP as hidden state is more ex-

pressive than the linear model: The larger capacity of a

more expressive hidden state is well-utilized in long con-

text (therefore an advantage), but redundant in short con-

text (therefore a disadvantage in our setting with matched

FLOPs). The Transformer in this figure is TF finetune,

which is the stronger baseline in 32k context. Details of the

experiments in Figure 1 are included in Appendix C. Our

complete results for context lengths 1k, 2k, 4k, 8k, 16k, 32k,

including TF finetune, are in Figure 11 (in Appendix).

3.3. Wall-clock time

LLM training and inference can be decomposed into for-

ward, backward, and generate. Prompt processing during

inference, also known as prefill, is the same operation as

forward during training, except that the intermediate acti-

vations do not need to be stored for backward. Since both

forward (during training and inference) and backward can

be parallelized, we use the dual form. Generating new to-

kens, also known as decode, is inherently sequential, so we

use the primal form.

Due to resource constraints, our experiments are written

in JAX and run on TPUs. On a v5e-256 TPU pod, the

Transformer baseline takes 0.30s per iteration of training

at context 2k, while TTT-Linear takes 0.27s per iteration,

already 10% faster without any systems optimization. How-

ever, Mamba (implemented in PyTorch, Triton, and CUDA)

can only run on GPUs, so for fair comparison, we also

rewrite our method into GPU kernels. We only write infer-

ence kernels for this work because the training kernel would

require substantial effort and cannot be used on our TPUs.

Figure 8 shows the latency of our inference kernel for for-

ward (prefill) and generate (decode). All models are 1.3B

(1.4B for Mamba). As expected, time per token grows lin-

early for Transformer as the context length increases, but

stays roughly constant for the other methods. Note that

our Transformer baseline is significantly faster that in the

Mamba paper, because we use vLLM (Kwon et al., 2023), a

state-of-the-art serving system, instead of the HuggingFace

Transformer (Wolf et al., 2019).

4. Related Work

4.1. Learning at Test Time

The idea of learning at test time has a long history in ma-

chine learning. One of the earliest versions of this idea is

called local learning (Bottou and Vapnik (Bottou & Vapnik,

1992)): For each test input, train on its neighbors before

making a prediction. This procedure has been effectively

applied to models ranging from SVMs (Zhang et al., 2006)

to modern LLMs (Hardt & Sun, 2023). Next, we discuss

two relevant lines of work in detail: test-time training and

fast weights.

4.1.1. TEST-TIME TRAINING

The core idea of Test-Time Training (TTT) is that each test

instance defines its own learning problem, where this test in-

stance alone is the target of generalization (Sun et al., 2020).

Concretely, for each test instance x, the conventional prac-

tice is to predict f(x), using a predictor f that is optimized

for all training instances on average. TTT first formulates a

learning problem defined by x, then trains a model fx on x
(often with f as initialization), and predicts fx(x).

Since the test instance comes without its label, the learning

problem can only be formulated with a self-supervised task.

Prior work has shown that TTT with reconstruction signif-

icantly improves performance especially on outliers (Gan-

delsman et al., 2022). Improvements become even more

pronounced when testing on video frames that arrive in a

stream and TTT is autoregressive (Wang et al., 2023), as

ft is trained on past frames x1, . . . , xt. The autoregressive

connection makes (Wang et al., 2023) most relevant to our

paper. Conceptually, the biggest difference between our pa-

8



Learning to (Learn at Test Time): RNNs with Expressive Hidden States

per and prior work is that our reconstruction task is learned

in an outer loop, instead of handcrafted with human priors.

4.1.2. FAST WEIGHTS

The general idea of fast weights is to update the parameters

of a “fast” model on only the most relevant data, as opposed

to the conventional practice of updating a “slow” model on

all data (Tieleman & Hinton, 2009). This idea has existed

since the 1980s (Hinton & Plaut, 1987). The most relevant

data can be the test instance itself, therefore TTT can be

viewed as a special case of fast weights. Compared to fast

weights, TTT embraces the idea of formulating an explicit

learning problem, where the test instance is the target of

generalization. Our update rule is also an explicit step of

optimization.

The idea of fast weight programmers (FWPs) is to update the

fast weights with a “slow” model (Schmidhuber, 1992). As

a modern example for language modeling, Clark et al. (Clark

et al., 2022) give a Transformer a final layer of fast weights,

whose initialization is trained as slow weights. Our inner-

loop weights W can be viewed as “fast” and outer-loop

weights ¹ as “slow”. Therefore, networks containing TTT

layers can be viewed as a special case of FWPs (Kirsch &

Schmidhuber, 2021), similar to how TTT can be viewed as

a special case of fast weights.

Modern RNN layers such as linear attention (Katharopoulos

et al., 2020; Schlag et al., 2020) and DeltaNet (Schlag et al.,

2021; Yang et al., 2024) are inspired by the idea of FWPs.

Given their relevance to our work, we discuss these modern

RNN layers in detail in the next subsection.

4.2. Modern RNN layers

Our baseline, Mamba (Gu & Dao, 2023), is only one of

the many recent RNN layers that inherit the linear (ma-

trix) hidden states of linear attention (Katharopoulos et al.,

2020; Schlag et al., 2020). Some more recent examples

are RWKV (Peng et al., 2024), xLSTM (Beck et al., 2024),

and Gated Linear Attention (GLA) (Yang et al., 2023). The

most relevant work is DeltaNet (Schlag et al., 2021), which

is equivalent to TTT-Linear with inner-loop mini-batch size

1, without the Layer Norm and residual connection. (Yang

et al., 2024) further improve the performance of DeltaNet

and enable parallelized updates across tokens (in our terms,

across inner loop mini-batches). Since our first version was

released, RNN layers with matrix (linear) hidden states have

also been further advanced in Mamba 2 (Dao & Gu, 2024)

and Gated DeltaNet (Yang et al., 2023).

Compared to this line of work, our contribution is a practical

framework that can instantiate arbitrary neural networks

as hidden states. However, such instantiations can still

require substantial wall-clock time, even after applying our

improvements in efficiency. For example, TTT-MLP is

effective in terms of FLOPs, as shown in Figure 1. But

the additional complexity of the MLP structure increases

wall-clock time much more relative to FLOPs, as shown in

Figure 8. It remains to be seen whether our framework can

produce instantiations that either overcome this limitation

or offer benefits outweighing it.

4.3. Learning to Learn

For decades, researchers have been arguing that learning to

learn, also known as meta-learning or bi-level optimization,

should be a critical component of intelligence (Schmidhuber,

1987; Bengio et al., 1990; Thrun & Pratt, 1998; Lake et al.,

2017). In prior work such as (Andrychowicz et al., 2016),

(Finn et al., 2017) and (Metz et al., 2018), the inner loop

learns from an entire dataset at a time instead of a sequence,

so the outer loop needs a collection of datasets or tasks. In

short, the outer loop is “one level above” regular training.

Since it is hard to collect millions of datasets, this outer loop

is hard to scale.

In contrast, for TTT, each sequence itself is a dataset and

defines its own generalization problem. The inner loop is

“one level below” regular training, so our outer loop is only

another solution to the canonical problem of supervised

learning, instead of a new problem setting like generaliza-

tion across datasets.

5. Future work

The search space for effective instantiations inside this

framework is huge, and our paper has only taken a baby

step. Fortunately, if our perspective holds, then heuristics

from regular training can transfer to test-time training, and

search can be efficient. Next we outline some especially

promising directions for future work:

• Systems optimization. Our systems optimization in Sub-

section 3.3 has been preliminary at best, and there are

many ways to improve it. In addition, pipeline parallelism

through time might allow us to process long sequences of

millions of tokens on multiple devices together.

• Longer context and larger models. Constrained by our

academic resources, we have not trained with millions or

billions in context length, which would also require larger

models according to Figure 12. The advantage of TTT

layers should become more pronounced in longer context.

• More ambitious instantiations of f . When context

length becomes longer, f would also need to be larger. For

video tasks and embodied agents, whose context length

can easily scale up to millions or billions, f could be a

convolutional neural network.
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Appendix

A. Dual Form

Here we derive the dual form for general MLPs of arbitrary depth, with nonlinear activations.

Without loss of generality, consider ¸ = 1 for convenience, and consider only the first mini-batch, where t = 1, . . . , b.
Denote:

x̂t = ¹Kxt, yt = ¹V xt, x̄t = ¹Qxt.

Also denote X̂ = [x̂1, . . . , x̂b], and Y and X̄ analogously. In general, uppercase letters denote matrices whose columns are

vectors denoted by the corresponding lowercase letter.

For a network with K layers, denote the initial parameters in layer k by W k
0 . Our convention is to use superscripts for the

layer and subscripts for time.

A.1. Forward pass

During the initial forward pass of TTT, we denote the input to layer k by X̂k = [x̂k
1 , . . . , x̂

k
b ], with X̂1 = X̂ . Now we write

the forward pass of TTT using these notations.

For k = 1, . . . ,K:

• Zk = W k
0 X̂k

• X̂k+1 = Ãk

(

Zk
)

where Ãk for k = 1, . . . ,K can be any element-wise operation (R 7→ R) with derivative Ã′.

Given X̂K+1, we compute the loss:

l =
1

2
ℓ
(

W 1
0 , . . . ,W

K
0 ;X

)

=
1

2

∥

∥X̂K+1 − Y
∥

∥

2

F
=

b
∑

t=1

lt,

where lt =
1

2
∥x̂K

t − yt∥
2 is the same as defined in Equation 3, except scaled by 1/2 for convenience.

All the operations above (except Ã) are matmuls and sums, therefore are hardware efficient. Both the primal form and the

dual form share these initial operations.

A.2. Primal form

The primal form first computes Gk
t = ∇Wk

0
lt for t = 1, . . . , b, then updates W k

t = W k
0 −

∑t

s=1
Gk

s . Finally, given

X̄1 = [x̄1
1, . . . , x̄

1
b ] = X̄ , the primal form repeats the forward pass with the updated W s.

For k = 1, . . . ,K:

• z̄kt = W k
t x̄k

t , for t = 1, . . . , T

• x̄k+1
t = Ãk(z̄

k
t ), for t = 1, . . . , T

where X̄K+1 = [x̄k+1

1 , . . . , x̄k+1

b ] contains the output tokens.

Note that a standard backward pass only computes the sum of the gradients:

∇Wk

0
l =

b
∑

t=1

∇Wk

0
lt =

b
∑

t=1

Gk
t ,

so the computation of the individual terms in the sum Gk
t for t = 1, . . . , b cannot be batched together into matmuls.

Similarly, the forward pass in primal form uses a different Wt for each x̄t, therefore also cannot be batched in the same way

as a standard forward pass. These non-standard passes have poor hardware efficiency.
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A.3. Dual form

As discussed in Subsection 2.5, the goal of the dual form is to compute X̄K+1 and W 1
b , . . . ,W

K
b with only matmuls and

light-weight operations such as sums, Ã, and Ã′. To achieve this goal, we avoid explicitly computing the intermediate

variables: Gk
t and W k

t for t = 1, . . . , b.

The dual form first computes ∇
X̂K+1 l = X̂K+1 − Y , then takes a standard backward pass.

For k = K, . . . , 1:

• ∇Zk l = Ã′

k

(

Zk
)

»∇
X̂k+1 l

• ∇
X̂k l =

(

W k
0

)T
∇Zk l

• ∇Wk

0
l = ∇Zk l

(

X̂k
)T

where Ã′ is applied element-wise, and » is element-wise multiplication.

Now we can already compute W k
b = W k

0 −∇Wk

0
l. To compute the output tokens, we do another forward pass.

For k = 1, . . . ,K:

• Z̄k = W k
0 X̄

k −∇Zk l · mask

(

(

X̂k
)T

X̄k

)

• X̄k+1 = Ã
(

Z̄k
)

By the end of the forward pass, we have computed X̄K+1.

While this forward pass is non-standard, it only contains matmuls, sums, Ã, and mask, therefore is efficient like the

standard forward pass.

A.4. Derivation

To derive the dual form, we show that:

Z̄k = W k
0 X̄

k −∇Zk l · mask

(

(

X̂k
)T

X̄k

)

is the same as what would be computed in the primal form. Specifically, we show that each column z̄kt of Z̄k in the second

forward pass of the dual equals to W k
t x̄k

t in the forward pass of the primal. We invoke a simple fact.

Fact 1. Define matrices A = [a1, . . . , ab], Q = [q1, . . . , qb], and V = [v1, . . . , vb].
3 Define v̂t =

∑t

s=1
aTs qtvs, and

V̂ = [v̂1, . . . , v̂b], then V̂ = V · mask(ATQ).

Now plug A = X̂k, Q = X̄k, V = ∇Zk l, and V̂ = W kX̄k − Z̄k into the fact above, we have shown the desired equality.

Note that the Ãk and Ã′

k used above can be extended to arbitrary functions that are not necessarily element-wise operations,

including normalization layers. This extension can be achieved through, for example, vjp (vector-Jacobian product)

in standard libraries for automatic differentiation such as JAX and PyTorch. However, the dual form cannot accelerate

operations inside Ã or its vjp.

3Our matrix A would usually be denoted by K in another context. We use A to avoid confusion with the layer number K.
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B. Nadaraya-Watson estimator

Derivation for the Nadaraya-Watson estimator. Throughout this section, we use x to denote the input token x as a random

variable. Our desired output is the corresponding output token, another random variable z. This is formulated as estimating

the conditional expectation of z:

E[z|x = x] =

∫

p(z|x) z dz =

∫

p(x, z)

p(x)
z dz.

Since the true probability distributions p(x) and p(x, z) are unknown, we replace them with their kernel density estimations.

Specifically, the kernel density estimation for p(x) is:

p̂(x) =
1

n

n
∑

i=1

»(x, xi),

where each xi is a piece of training data in general. (Recall that for our paper, xi is specifically training data for the inner

loop, i.e. a token, which matches our notation in the main text.)

For estimating p(x, y), we use the product kernel:

p̂(x, z) =
1

n

n
∑

i=1

»(x, xi) »
′(z, zi).

At first sight, it seems absurd to factor the joint probability into two seemingly independent kernels. But in this case, »′ can

actually be any »′

i dependent on xi, since it will be integrated out. So the two kernels do not need to be independent.

Plugging in those estimations, we obtain the Nadaraya-Watson estimator:

Ê[z|x = x] =

∫

p̂(x, z)

p̂(x)
z dz

=
1

p̂(x)

∫

p̂(x, z) z dz

=
1

∑n

i=1
»(x, xi)

∫ n
∑

i=1

»(x, xi) »
′(z, zi) z dz

=
1

∑n

i=1
»(x, xi)

n
∑

i=1

»(x, xi)

∫

»′(z, zi) z dz

=
1

∑n

i=1
»(x, xi)

n
∑

i=1

»(x, xi) zi.

Asymmetric kernels. In modern days, people think of kernels as positive semi-definite, which might not be guaranteed for

» unless ¹K = ¹Q. However, people working on kernels decades ago, around the time when the Nadaraya-Watson estimator

was popular, have been very lenient with the choice of kernels, and asymmetric kernels such as our » in Equation 9 have

enjoyed a long tradition: When a kernel estimator uses ¹K ̸= ¹Q, it is known as a balloon estimator (Chen, 2017). Papers

such as Breiman et al. (Breiman et al., 1977) have even used ¹Q as a function of x′, known as sample-adaptive smoothing.
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Figure 9. Left: A residual block, the basic building block for Transformers. The sequence modeling block is instantiated into two variants:

the Transformer backbone and Mamba backbone. Middle: TTT layer in the Transformer backbone. The LN before O comes from

NormFormer (Shleifer et al., 2021). Right: TTT layer in the backbone inspired by Mamba (Gu & Dao, 2023) and Griffin (De et al., 2024).

Following these two architectures, Ã here is GELU (Hendrycks & Gimpel, 2016). To accommodate the extra parameters of the gate

without changing the embedding dimension, we simply combine ¹K and ¹Q into a single projection.

C. Experiment details

Architectures. Our Transformer strictly follows the construction in the Mamba paper, where Transformer is called

Transformer++. Specifically, the Transformer architecture is based on Llama (Touvron et al., 2023), with rotary positional

encodings (RoPE) (Su et al., 2023), SwiGLU MLP blocks (Shazeer, 2020), and RMSNorm (Zhang & Sennrich, 2019)

instead of LayerNorm. Our Mamba baseline uses the public code provided by the authors. We have verified that our

baselines can reproduce the numbers reported in (Gu & Dao, 2023).

Training configurations. Our training configurations are in Table 2, which simply reproduces Table 12 in the Mamba

paper. All models are trained with a batch size of 0.5M tokens regardless of context length. All of our optimization

hyper-parameters follow the “improved recipe” in Appendix E.2 of the Mamba paper, reproduced below:

• AdamW optimizer: ´ = (0.9, 0.95)

• Cosine schedule: decay to end learning rate 1e− 5

• Linear learning rate warmup over 10% of the training steps

• Weight decay: 0.1

• Gradient clipping: 1.0

• No Dropout

• Mixed Precision

For experiments on the Pile, this is the only difference with the recipe in the Mamba paper, which uses two other tokenizers.

For experiments on Books, we find that the original angle of the RoPE encoding (Su et al., 2023) ¹ = 10, 000 is sub-optimal
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Params. Blocks Embed. dim. Heads Train steps Peak LR Tokens

125M 12 768 12 4800 3e-3 2.5B

350M 24 1024 16 13500 1.5e-3 7B

760M 24 1536 16 29000 1.25e-3 15B

1.3B 24 2048 32 50000 1e-3 26B

Table 2. Training configurations for all experiments. This table reproduces Table 12 in the Mamba paper. The only difference is that the

learning rate they use for Mamba and Transformer is 5× the values in their Table 12, and we report the actual values (5×). Note that

this table only applies to TTT-Linear, TTT-MLP, and Transformers, as Mamba does not follow the multi-head residual block structure

inherited from Transformers.

for our Transformer baseline in long context. Starting at context length 4k, we try ¹ = 500, 000 following the Llama Long

paper (Xiong et al., 2023), and use the better perplexity for Transformer (both pretrain and finetune).

Transformer finetuning. Finetuning starts a new cosine schedule with the same optimization hyper-parameter as training

from scratch, except the peak learning rate. We try three peak learning rates for finetuning: 1e-5, 1e-4, and 1e-3, and select

for the best perplexity. We observe that 1e-4 works the best for the 125M models, while 1e-5 works the best for 350M and

larger. This observation is reasonable considering that the end learning rate for the Chinchilla recipe is 1e-5.

Learning rate for TTT. As mentioned in Subsection 2.7, the inner-loop base learning rate ¸base is set to 1 for TTT-Linear

and 0.1 for TTT-MLP. Our heuristic for setting ¸base is similar to how people set the outer-loop learning rate for regular

training: We tried ¸base ∈ {0.01, 0.1, 1, 10} and used the largest value that does not cause instabilities. For TTT-MLP, we

use linear warmup for ¸base over 10% of the training steps, similar to regular training. The number of training steps in

the inner loop is T/b (assume divisible). For TTT-Linear, we tried linear warmup in the inner loop but did not observe a

difference.

Experiments in Figure 1 (right). To ensure fairness to Mamba, all methods in these experiments have matched training

FLOPs and are trained with the same recipe (last row of Table 2) as Mamba 1.4B. For TTT-Linear and TTT-MLP, matched

training FLOPs also imply matched inference FLOPs. Transformer (TF finetune) has 2.8× the inference FLOPs, giving it an

advantage as our baseline. To match training FLOPs with Mamba, Transformer has 19 blocks instead of 24. For TTT-Linear

and TTT-MLP, their training FLOPs are already close to those of Mamba, so we only need to change the hidden dimension

of the MLP blocks from 5504 to 5808 for TTT-Linear and 5248 for TTT-MLP.

Gradient checkpointing through time. By default, libraries such as JAX and PyTorch save the intermediate activations

during a forward pass so they can be reused during the backward pass. However, for a TTT layer with W as hidden state,

this default saves W1, . . . ,WT , which uses too much memory. With TTT mini-batch and the dual form, we still need to

save (assume divisible) » = T/b W s at the end of the mini-batches. A standard technique to save memory in this scenario is

gradient checkpointing (Chen et al., 2016), which is usually applied through layers, but we apply it through time.
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Figure 10. The self-supervised TTT loss ℓ averaged over all test sequences of the form x1, . . . , xT where T = 2048, for all 12 TTT

layers in a network with 125M parameters train on the Pile. The same network is also used for b = 1 (online GD) in the left panel of

Figure 4. For layers in the middle, we observe that ∥xt∥ rises steadily, causing all three losses to rise with it. Even for these layers, the

gap between ℓ(W0;xt) and ℓ(Wt;xt) still increases with t . For visual clarity, loss values have been averaged over a sliding window of

10 timesteps.
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Figure 11. Complete results on Books, presented by context lengths. Figure 7 in Subsection 3.2 presents the subset of results for context

lengths 2k and 32k.
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Figure 12. An alternative view of our complete results on Books, presented by model sizes, with context length as the x-axis. For all

methods trained from scratch, perplexity becomes worse once the context length becomes too large. This trend is not observed with TF

finetune, except for one case at the 125M scale. The best context length increases for larger models (trained from scratch).
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