
Harmonic: Hardware-assisted RDMA Performance Isolation for Public Clouds

Jiaqi Lou1∗ Xinhao Kong2∗ Jinghan Huang1 Wei Bai3† Nam Sung Kim1 Danyang Zhuo2

University of Illinois Urbana-Champaign1 Duke University2 Microsoft3

Abstract

Performance isolation is essential for sharing resources in

multi-tenant public clouds. Compared with traditional kernel-

based networking, RDMA presents unique challenges espe-

cially because RDMA NIC’s complex microarchitecture re-

sources are often hidden from users. Current RDMA isolation

methods overlook these microarchitecture resources, lead-

ing to insufficient performance isolation. Consequently, a

faulty/malicious tenant can exploit these microarchitecture re-

sources to compromise well-behaved tenants’ network perfor-

mance. In this paper, we introduce the first microarchitecture-

resource-aware RDMA performance isolation solution for

public clouds, Harmonic. It consists of two key components

designed to be conscious of the RDMA NIC’s microarchitec-

tural resources: (1) a programmable intelligent PCIe switch

(prototyped with FPGA) and (2) an RDMA-friendly rate lim-

iter. At runtime, these two components allow us to accurately

monitor and modulate the RDMA NIC resource usage per

tenant. We evaluate Harmonic with a state-of-the-art RDMA

performance isolation test suite (Husky) and a popular in-

memory database application (Redis). We demonstrate that

Harmonic can not only successfully pass Husky but also pro-

vide Redis with 1.4× higher throughput than the best alterna-

tive isolation solution.

1 Introduction

The Remote Direct Memory Access (RDMA) technology has

been widely deployed in modern clouds to improve network

performance. First-party workloads in clouds, such as stor-

age [11, 17], heavily rely on RDMA to achieve high through-

put, low latency, and high CPU efficiency. A natural next step

for cloud providers is to bring RDMA’s benefits to their pub-

lic cloud tenants. Unfortunately, this has not yet come true

because RDMA was initially designed for high-performance

computing, lacking adequate multi-tenancy support.

One of the key missing components for bringing RDMA to

∗Jiaqi Lou and Xinhao Kong contributed equally to this research.
†Wei Bai is now with NVIDIA.

public clouds is performance isolation. Without proper per-

formance isolation, a buggy or malicious tenant can affect the

RDMA performance of other tenants, and even conduct side-

channel attacks through the RDMA network [29, 52, 54, 55].

Although network performance isolation has been extensively

studied in the past decades [10, 12, 19, 20, 25, 32, 53], recent

work has highlighted that prior RDMA performance isolation

solutions are insufficient for public clouds [29]. An RDMA

NIC (RNIC) has microarchitecture resources, such as on-NIC

cache and on-NIC processing units that significantly affect

RDMA performance [26, 27, 29]. However, all existing per-

formance isolation solutions are agnostic to the contention of

these microarchitecture resources among tenants, providing

insufficient performance isolation when the microarchitec-

ture resources are exhausted. For example, RDMA traffic that

keeps generating expensive ATOMIC requests can exhaust

the on-NIC processing units and drastically reduce the RDMA

performance of other tenants [29, 46].

The goal of this paper is to explore the possibility of build-

ing a microarchitecture-resource-aware solution for RDMA

performance isolation. Our high-level approach is as follows:

we monitor the usage of RDMA resources (including mi-

croarchitecture resources) per tenant, and then modulate it

accordingly to provide isolation. Yet, realizing our approach

faces two challenges:

(C1) Accurately measuring per-tenant RNIC resource us-

age. RDMA traffic bypasses the kernel, which makes it hard

to intercept and monitor the RDMA traffic in system software.

Moreover, RNICs today only expose limited aggregate statis-

tics, such as RNIC cache miss rates and total PCIe bandwidth

consumption, without the capability of identifying the specific

tenant causing this resource usage.

(C2) Finding an appropriate rate limit enforcement entry

point. System software is not a viable rate limit enforcement

point because most RDMA operations bypass the control of

cloud providers. Commodity RNICs also do not provide rich

rate enforcement features. For example, no current RNIC pro-

vides a mechanism to limit a tenant’s rate of specific RDMA

operations (e.g., ATOMIC), and cloud providers cannot feasi-



bly modify existing RNICs to incorporate these new features.

We also cannot simply drop excessive packets at the RNIC,

because packet losses can significantly degrade RDMA per-

formance [21, 31, 60, 64].

Our key approaches to addressing the above challenges

are outlined below. First, we make a PCIe switch serve as a

sweet spot for measuring the RDMA resource usage of ten-

ants at runtime. This choice is motivated by the following

reasons. All RDMA traffic goes through the PCIe bus, allow-

ing us to intercept all RDMA behaviors. More importantly,

RDMA pins all RDMA-related objects (e.g., payloads and

other metadata) in the host DRAM. Thus, the physical ad-

dress to tenant/object mapping is fixed. This enables us to

correlate a PCIe transaction with a specific tenant and asso-

ciated RDMA behaviors by mapping the transaction’s target

physical memory address to the RDMA objects.

To tackle the second challenge, we repurpose the rate lim-

iters in RNIC hardware for our performance isolation. Modern

commodity RNICs employ many rate limiters for congestion

control purposes. These rate limiters react to network con-

gestion feedback and reduce rates accordingly. We therefore

can proactively inject an appropriate amount of congestion

feedback to targeted tenants, to limit their rates when we need

to limit their RDMA resource usage.

Applying our insights above, we develop Harmonic, the

first hardware/software co-design solution for RDMA perfor-

mance isolation that takes RNIC microarchitecture resources

into account without requiring changes to applications. To

measure the RDMA resource usage of tenants at runtime, we

implement an FPGA-based Programmable Intelligent PCIe

Switch (PIPS) in Harmonic. We extend existing RNIC kernel

drivers to a Harmonic kernel driver to obtain the aforemen-

tioned physical memory address to tenant/object mappings.

PIPS connects the RNIC to the host, and monitors the RDMA

traffic of each tenant using the mappings provided by the Har-

monic kernel driver. We implement a Harmonic daemon to

repurpose the rate limiters in the RNIC hardware. Most, if not

all, commodity RNICs support DCQCN [64] as congestion

control algorithm [13, 24, 40]. The Harmonic daemon there-

fore can generate and send Congestion Notification Packet

(CNP), the congestion feedback in DCQCN, to rate-limit tar-

geted tenants for our performance isolation purpose. The

Harmonic daemon limits tenants’ rates based on PIPS’s mon-

itoring results. To make performance isolation more practical

for public RDMA clouds, we also extend the existing RDMA

performance abstraction to include a set of RDMA-specific

resources, such as the number of QPs and the RDMA request

rate.

We use Harmonic to enhance an NVIDIA ConnectX-6

Dx 25 Gbps NIC and evaluate Harmonic with the state-of-

the-art RDMA performance isolation test suite, Husky [29],

and a popular in-memory database application, Redis over

RDMA [63]. We compare Harmonic with other performance

isolation solutions, including hardware Single Root I/O Vir-

tualization (SR-IOV), separate hardware queues, and Justi-

tia [62]. Our evaluation results show that Harmonic success-

fully provides stronger performance isolation under various

types of resource contention. This results in improving the

throughput of Redis by up to 1.4×, compared to the state-

of-the-art isolation solutions. To the best of our knowledge,

Harmonic is the first RDMA performance isolation solution

that can pass the Husky test suite [29].

Lastly, current Harmonic supports 25 Gbps RNICs, limited

by the speed of the PCIe physical layer (PCIe PHY) in our

commodity FPGA development board1. A deployable solu-

tion for high-speed RNIC will require adopting our proposed

techniques in the future RNIC design. While Harmonic serves

as a prototype, it demonstrates the viability of RDMA perfor-

mance isolation for public clouds and can act as a benchmark

for future implementations. Our design presented in this pa-

per is currently being integrated into one leading technology

enterprise’s next-generation RNIC design.

2 Background

2.1 Remote Direct Memory Access

RDMA enables user applications to directly interface with

RNIC by offloading network stack processing to RNIC hard-

ware. RDMA enables low-latency, CPU-efficient networking

at high bandwidth, and it is increasingly deployed at datacen-

ters [11, 17, 21]. For example, Bai et al. [11] demonstrated

that more than 70% of traffic in Azure is RDMA.

Figure 1 shows the four key components (i.e., userspace li-

braries, kernel drivers, RNIC firmware, and RNIC ASIC) in a

modern commodity RDMA system from a top-down perspec-

tive. The first component that user applications interact with

is userspace libraries. Applications invoke APIs provided by

these libraries to issue data verb and control verb operations.

For example, applications call control verbs to allocate neces-

sary objects such as queue pair (QP), completion queue (CQ),

and memory region (MR). Applications thereby issue data

verbs to send RDMA network traffic, such as RDMA WRITE

requests to directly write remote host’s memory. In a typical

RDMA system, control verbs are first processed by RDMA

kernel drivers. Kernel drivers usually conduct a few checks

(e.g., parameter validation) and construct a command to send

to the RNICs. In the RNIC, a small piece of software or mi-

crocode embedded into hardware device memory will process

these commands and return results to the kernel drivers, such

as the newly created QP [42]. This software on the RNIC

is known as the RNIC firmware. When the RNIC firmware

processes control verbs, RNIC ASIC is also involved since

many hardware status may be updated. For example, RNIC

1We find that the state-of-the-art FPGA whose PCIe PHY can be con-

figured in PCIe switch upstream/downstream mode only has 8-lane edge

connector after several rounds of communication with our FPGA manufac-

turer, Xilinx. This is also confirmed by Xilinx’s public information [3, 4],

but it can support any RNICs with any speed offered by the PCIe PHY. We

discuss the scalability of our solution to higher speed in §7.



Kernel Drivers

RDMA 

Libraries

Firmware

ASIC

Cache

PU PU&

App

(1)

(2)
(3)

(4)

(5) Userspace

Kernel

PCIe

RNIC

Control verbs Data verbs

Figure 1: RDMA workflow.

has on-NIC cache to store QP contexts [27], which can be

accessed and updated when the RNIC firmware handles QP

creation or destruction.

Data verbs are directly passed to RNIC hardware without

involving kernel drivers (or any system software), which is

known as kernel bypass. For example, when applications call

ibv_post_send to issue an RDMA SEND request, userspace

libraries prepare work queue entries (WQEs) in send/recv

queues. Each entry in the queues corresponds to a data verb.

The libraries then notify the RNIC hardware that there is a

WQE to process. Specifially, the libraries may ring the door-

bell of the corresponding QP (i.e., write a specific register)

on the RNIC, triggering RNIC hardware to DMA read those

WQEs from the host and start to process. When processing

data verbs, RNIC firmware may also be involved under some

scenarios, such as handling an error triggered by a data verb.

There are three types of resources in RNICs:

(R1) Traditional network resources. They include network

bandwidth and packet processing capacity, indicated by bits

per second (BPS) and packets per second (PPS), respectively.

(R2) RDMA-specific architectural resources. They com-

prise the number of QPs and request rates of different verbs

(e.g., ATOMIC, WRITE, and SEND) that applications can

directly operate on.

(R3) RDMA-specific microarchitecture resources. They

encompass the PCIe bandwidth, on-NIC cache and on-NIC

processing units that are vendor-specific. These resources are

not exposed to applications and can be neither monitored nor

controlled precisely [31].

2.2 RDMA Performance Isolation

RDMA has already been successfully adopted in accelerat-

ing first-party workloads such as storage [11, 17]. The next

question is whether these RDMA advantages can be extended

to third-party workloads in the public cloud. RDMA perfor-

mance isolation for public clouds is important, as customers

primarily choose RDMA for workloads with demanding per-

formance requirements. Without proper performance isola-

tion, a faulty or malicious tenant could detrimentally impact

the performance of other tenants [29].

To design a performance isolation solution, one key ques-

tion is: what’s the abstraction of network performance? The

conventional wisdom is that a cloud provider should guarantee

network bandwidth, measured by BPS, to a virtual machine

(VM) or container. For example, Amazon Web Service (AWS)

provides a 30 Gbps guarantee for its m7gd.16xlarge instance

and Azure offers a 40 Gbps guarantee for its D96as_v5 VM

series [7, 35]. This is done by limiting the available network

bandwidth to the remaining VMs co-located on the same host.

In this paper, we argue that this conventional wisdom does

not work for an RDMA network. The aforementioned mi-

croarchitecture resources make RDMA performance isola-

tion different from that on traditional TCP/IP networks. In

RDMA, most verb processing tasks are offloaded to the RNIC

firmware and RNIC hardware. RNICs leverage their inter-

nal resources to support these offloaded functionalities. Not

considering these resources results in performance isolation

designs that are insufficient to be used in public clouds. One

of the empirical evidences is that Husky [29], a prior work, has

already shown that no mature RDMA performance isolation

solution exists. Therefore, a comprehensive RDMA perfor-

mance isolation solution for the public cloud has to consider

various types of interference on RNIC’s microarchitecture

resources, which can occur when multiple tenants contend for

access to these resources.

Static partitioning versus dynamic resource usage mod-

ulation. In general, there are two approaches to achieving

performance isolation when sharing resources. Our paper

explores the dynamic resource usage modulation approach,

which is to monitor and control each tenant’s resource usage.

The other approach is to statically partition every resource and

assign partitioned resources to each tenant. We did not explore

the static partitioning approach for two reasons. First, RNIC

microarchitecture resources (e.g., NIC caches) are crucial

for applications’ performance. We have observed many prior

works in RDMA application design to use these resources ef-

ficiently in order to avoid resource exhaustion [15, 26, 27, 31].

Static partitioning of these resources may cause catastrophic

performance penalties for RDMA applications. Second, com-

modity RNICs currently do not support static resource parti-

tioning, and exploring this approach thus requires building an

RNIC from scratch, which is beyond the scope of our research.

Our goal is to design a prototype that shows feasibility for

deployment, and we thus choose to build our system around

commodity RNICs.

2.3 Design Space for Monitoring and Controlling Tenant

RDMA Resouce Usage

Two key questions arise for monitoring and controlling ten-

ants’ RDMA resource usage: (1) where should the cloud

provider monitor per-tenant resource usage, and (2) where

should the provider enforce resource usage?

The answers to these two questions depend on the deploy-

ment model of RDMA, i.e., how RDMA is virtualized. Fig-

ure 2 shows the ownership (i.e., owned by tenants or cloud

providers) of RDMA system components in typical RDMA

virtualization schemes. In the bare-metal scenario, tenants

own the entire physical host, including userspace libraries

and RDMA kernel drivers. They can even modify and up-

grade RNIC firmware as needed [41]. Cloud providers have



Tenant

Host

NIC

(1) Bare-metal (3) Guest Virtual Machine (4) Microkernel Approach

Control verbs

Data verbs

Control verbs 

(SR-IOV)

PCIe

Drivers

Userspace

Libraries

Firmware ASIC

(2) Containerize Cloud

Privileged 

Daemon
Drivers

Firmware ASIC

Drivers
Userspace

Libraries

Hypervisor

Drivers

Firmware ASIC

Drivers
Userspace

Libraries

Drivers

Userspace

Libraries

Firmware ASIC

Software owned by tenants
Software owned by clouds
Hardware owned by clouds

Tenant instances

Figure 2: RDMA virtualization schemes.

limited observability and control over both data and control

verbs in this scenario. However, RNIC isolation is not a press-

ing concern as one tenant exclusively occupies the entire

machine.

In containerized clouds, each tenant owns a container, and

the host OS manages all containers. In this setup, a tenant

owns its container instance, including userspace libraries. The

tenant’s data verbs therefore fully bypass the cloud provider’s

control. However, drivers and hardware components are still

controlled by the cloud provider, allowing them to implement

management features. For instance, cloud providers can mon-

itor and regulate RDMA control verbs by incorporating the

necessary logic into kernel drivers.

In guest virtual machine (VM) clouds, each tenant owns

a VM, running on top of the hypervisor. There are several

approaches to exposing an RNIC to guest VM. A widely

adopted approach is to use Single Root Input/Output Virtu-

alization (SR-IOV). With SR-IOV, multiple virtual instances

of the RNIC, referred as Virtual Functions (VFs), are allo-

cated on a physical RNIC. These VFs can be attached to

VMs, allowing applications within the VM to directly interact

with and utilize the RNIC. The control verbs and data verbs

generated by guest VM applications bypass the hypervisor

completely. HyV [49] and MasQ [22] employ hybrid virtu-

alization techniques to expose RDMA to guest VMs. They

introduce backend drivers within the hypervisor, requiring

guest VM drivers to communicate with these backend drivers

for processing tenants’ control verbs. The hypervisor operates

control verbs on the RNICs on behalf of these tenants. Mean-

while, tenants within the guest VMs have the capability to

directly transmit data verbs to the RNIC, bypassing the guest

kernel and the hypervisor. This ensures native RDMA perfor-

mance for tenant applications. In these guest VM scenarios,

cloud providers typically retain ownership of the hardware

components, while the ownership of kernel drivers may vary

depending on the specific scheme being employed.

Another virtualization scheme adopts a microkernel-like

approach. It forces all tenants to talk to a privileged daemon

to use RDMA, such as Freeflow [28] and mRPC [14]. In this

scenario, tenants send both control verbs and data verbs to

this privileged daemon. The daemon, in turn, initiates the

actual RDMA APIs to execute these verbs and subsequently

provides the results back to the tenants. This design grants

cloud providers comprehensive control over all aspects but

comes with the trade-off of additional performance overhead.

Existing solutions’ observability and enforcement entry

point. To summarize, except for bare-metal environment and

virtualization only using SR-IOV, control verbs can be mon-

itored and controlled by cloud providers in kernel drivers,

hypervisor backend or privileged daemon. However, data

verbs cannot be easily observed or regulated. In containerized

cloud (2) or guest VM (3) scenarios, data verbs completely

bypass cloud provider’s control. Justitia [62], an RDMA per-

formance isolation solution, requires tenants to use its cus-

tomized userspace libraries. However, a malicious tenant can

easily bypass or alter the libraries, circumventing the intended

isolation. For the microkernel approach, even if we add per-

formance isolation features into a microkernel service, it is

still challenging to accurately monitor and regulate data verbs,

especially for one-sided operations. For example, RDMA one-

sided operations (e.g., WRITE and READ) completely bypass

the responder’s CPU and therefore cannot be intercepted by

the privileged daemon easily.

3 Harmonic Overview

We develop Harmonic, the first RDMA performance isolation

solution for public clouds that considers RDMA microarchi-

tecture resources. Our design incorporates three key ideas.

We first introduce an RDMA-specific performance abstrac-

tion tailored for public clouds. Currently, cloud providers

provide tenants with network abstractions based on BPS or

PPS. Unfortunately, such metrics fall short of capturing the

varied sets of resources RDMA operations use. RDMA sup-

ports various verbs as its primitives, and these verbs demand

distinct resource usage. For example, let’s consider an 8-byte

RDMA ATOMIC compare-and-swap (CAS) request and an 8-

byte RDMA SEND request. Both generate identical network

traffic in terms of bits and packets, yet the ATOMIC request

consumes more NIC processing cycles [27, 29], thus incur-

ring a higher cost. Our performance abstraction considers the

RDMA-specific architectural resource capacities allocated to

each tenant, such as the number of QPs, CQs, MRs, and the

total MR size. It is worthwhile to note that our abstraction

does not include RDMA-specific microarchitecture resources,

because these resources are vendor-specific and cannot be

directly controlled by tenants.

The second pillar of our design ideas is to perform runtime

hardware-based measurements of per-tenant RDMA resource



consumption. Since RDMA data verbs bypass the kernel, re-

source measurement requires direct hardware involvement. In

RDMA networks, a tenant’s resource consumption is tightly

coupled with its verb behaviors. Therefore, by intercepting

and analyzing these verbs, we can gain precise insights into

the resource consumption of that particular tenant. However,

we cannot directly observe verb behaviors on the inter-host

network, i.e., Ethernet (for standard RoCEv2 deployment).

This limitation arises because many RNIC resource usage be-

haviors would be opaque if we only monitor packets sent and

received by the RNIC. For instance, the RNIC initiates PCIe

transactions to retrieve entries from DRAM when its cache en-

tries are exhausted. This RNIC activity incurs both cache miss

and extra consumption of PCIe bandwidth—a crucial microar-

chitectural resource—but remains undetected on the Ethernet.

We argue that we need to observe this within the host. We find

PCIe switch as a sweet spot to enable this runtime measure-

ment feature for two reasons. First, all RDMA traffic goes

through PCIe bus, allowing us to capture all tenants’ verb

behaviors including the host memory address to be accessed

in the PCIe Transaction Layer Packet (TLP) header. Second,

RDMA requires all RDMA-related objects (e.g., payloads,

QPs, CQs) to be pinned in the host DRAM. This indicates

the physical address to objects/tenants mapping is fixed and

we can monitor tenant’s verb behaviors by monitoring which

addresses are accessed. Therefore, we can simply parse the

TLP header to extract the address field and match it with

the mapping, without looking into the large volume of PCIe

TLP payloads. There is no existing PCIe switch supporting

this functionality. We therefore build an FPGA-based Pro-

grammable Intelligent PCIe Switch to prototype this runtime

measurement feature. The analogy of this PCIe switch is a

programmable switch (e.g., P4-based Tofino switch) in the

traditional computer network. The difference is that we design

the switch to run on PCIe bus instead of Ethernet. Observ-

ing verb behaviors directly allows us to not only measure

the network resource consumption (e.g., BPS) but also gauge

the utilization of RDMA-specific microarchitecture resources,

including PCIe and RNIC processing capacities.

Our third idea is to repurpose the RNIC’s congestion con-

trol mechanism to facilitate RDMA-friendly rate limiting.

Given the kernel and CPU bypass characteristics of RDMA,

traditional software-based rate limiters are off the table due

to the CPU overheads and the additional latency. Software-

based rate limiters are also ineffective in limiting the data

receiver side when one-sided operations are used. Moreover,

RDMA deployment stems from a lossless network, and cur-

rent RNICs cannot consistently ensure optimal retransmission

performance across all scenarios [21, 31, 64]. Therefore, sim-

ply discarding excessive RDMA packets in hardware [16]

can cause RDMA performance degradation and is not an op-

tion. Our key observation is that we already have a native

hardware rate limiting mechanism implemented in modern

commodity RNICs for congestion control purposes (i.e., DC-

Programmable 

Intelligent PCIe Switch

Harmonic

Kernel Driver

Harmonic 

Daemon

Tenant 
Data verbs

Control verbs

(1)

(3)
(2)

Tenant RNIC

Figure 3: Harmonic overview.

QCN [64]). These rate limiters react to network congestion

feedback, known as congestion notification packets (CNPs)

in DCQCN, to reduce the rate of RDMA connections. We

can re-purpose these rate limiters for performance isolation

purpose by proactively generating and sending CNPs to mod-

ulate the RDMA resource usage per tenant. While this method

does consume some processing cycles (CPU cycles in our

prototype), the overheads are considerably reduced compared

to software-based rate limiters (§6.5).

Harmonic’s deployment model and workflow. Harmonic

assumes that the cloud provider owns the RDMA kernel

drivers to intercept control verbs. This is standard for con-

tainerized RDMA clouds, para-virtualized VM clouds and mi-

crokernel virtualization clouds. We didn’t consider the RDMA

virtualization scheme that solely depends on SR-IOV, and we

show SR-IOV itself is not enough to provide performance

isolation (§6.3). In summary, Harmonic can handle the (2),

(3) and (4) scenarios in Figure 2. We do not consider the

virtualization scenario (1) because RNIC isolation is unneces-

sary on the bare-metal setting. We implement our prototype

with a temporary focus on scenario (2), but it should be easily

generalized to both (3) and (4) because we only rely on the

modification to the RDMA kernel drivers without touching

other system software components.

Figure 3 presents the system architecture of Harmonic.

Harmonic has two main components: the Harmonic daemon

and the Programmable Intelligent PCIe Switch (PIPS) with

Harmonic kernel driver. Harmonic kernel driver is a modi-

fied version of the standard RDMA kernel driver that keeps

track of control verbs issued per tenant and (1) generates the

address-to-tenant/object mappings to PIPS. PIPS not only

forwards RDMA traffic as a regular PCIe switch, but inter-

cepts PCIe traffic to keep track of data verbs issued per tenant

as well. Harmonic daemon is a privileged process that runs

on the host OS or hypervisor. It (2) polls tenant’s data verb

behavior statistics from the PIPS and (3) sends congestion

feedback packets to each tenant to modulate their RDMA

resource usage. All these components are trusted and will not

be tempered by the tenants.

Harmonic’s benefits. Harmonic has several key benefits

compared to existing RDMA performance isolation solutions.

First and most important, Harmonic takes microarchitecture

resource usage into account and thus provides stronger isola-

tion. Harmonic observes both data and control verbs, in the

meantime, restricts tenant resource usage correspondingly.



Table 1: An example for RDMA performance abstraction.

Name # of QPs # of WQEs # of MRs # of CQs # of CQEs MR Size BPS DRPS CRPS Prio

Alice 128 16384 128 16 8192 2 GB 10 Gbps 30 Mrps 1 Krps 0

This is different from simply observing network bandwidth

usage. Second, Harmonic requires no modification of applica-

tions. There’s no need to adjust application libraries, allow-

ing for straightforward integration with application binaries.

Third, our approach delivers native RDMA performance for

public cloud usage. Applications’ data verbs continue to by-

pass system software entirely, and the only latency overhead

comes from the PCIe switch, which is minimal (§6.5).

Harmonic’s performance abstraction. Our performance

abstraction includes a set of metrics that enable tenants to

accurately describe their expected RDMA network perfor-

mance needs. At the same time, it allows us to design the

performance isolation mechanisms to guarantee the metrics

to tenants. In addition to the conventional BPS metric, our

performance abstraction considers per-tenant RDMA-specific

resources, including the number of QPs, CQs, MRs, and the

total MR size. Application developers have direct control over

these RDMA-specific architectural resources, because they di-

rectly interface these resources in the application source code.

The resources in our abstraction are also vendor-agnostic:

they are specified as part of the verb library [2], which work

across different vendors’ RNICs. It is important to note that

our performance abstraction intentionally excludes explicit

consideration of RNIC microarchitecture resources, such as

on-NIC cache and NIC processing units. These components

are vendor-specific and generally opaque to RDMA develop-

ers.

Moreover, our performance abstraction includes the typi-

cal resources other performance isolation solutions use, such

as Request Per Second (RPS). We categorize RPS into data

verbs RPS (DRPS) and control verbs RPS (CRPS) as they

serve different purposes. While a more granular categoriza-

tion of DRPS into sub-types such as ATOMIC RPS or SEND

RPS is conceivable, we have chosen to opt for a normalized

RPS, balancing precision with user-friendliness. The analogy

is that CPU vendors use cycles instead of instructions per

second as the performance metric because instructions can

have variable lengths. To illustrate, Table 1 presents an exam-

ple detailing the guaranteed metrics for a tenant within this

framework. Let us assume one ATOMIC request consumes

the resources equivalent to 3 SEND requests. Alice, with

30M DRPS, therefore can achieve up to either 10M ATOMIC

requests per second or 30M SEND requests per second. It

should be noted that DRPS and BPS guarantees are offered

in a mutually exclusive "OR" fashion. For instance, a ten-

ant consistently posting SEND requests with large message

sizes will encounter BPS throttling before reaching the DRPS

limit. Next, we present the design and implementation details

of Harmonic that uses the above performance abstraction to

provide RDMA performance isolation.

Fmt Type Payload Size
Last & First

DW BE
Address[63:32]

Byte 0
Byte 4
Byte 8

Byte 12 Address[31:2]

7-015-823-1631-24

Figure 4: TLP header format where the gray blocks represent unused

fields for PIPS. DW BE denotes dword byte enable.

Figure 5: Programmable Intelligent PCIe Switch (PIPS) internal

architecture. The dash line indicates asynchronous TLP analysis,

decoupled with PCIe switch forwarding path.

4 Programmable Intelligent PCIe Switch

To monitor tenant’s verbs behavior through PCIe, we develop

a Programmable Intelligent PCIe Switch (PIPS) that can for-

ward PCIe Transaction Layer Packets (TLPs) at line rate and

perform real-time RDMA-centric inspections. Given address-

to-object/tenant mappings captured in kernel driver, we ex-

tract the physical address of the host memory from the RNIC-

issued DMA read/write TLP header (Address field in Figure 4)

and utilize it to identify both the object and the tenant associ-

ated with this TLP. This capability enables us to accurately

measure per-tenant RDMA resource utilization.

We build PIPS using AMD/Xilinx Versal VCK190 Eval-

uation FPGA board with 4K lines of RTL Verilog code and

various AMD/Xilinx IPs (Intellectual Property Core). PIPS

has five Modules (Figure 5): (M1) kernel driver, (M2) PCIe

switch, (M3) host-PIPS communication interface, (M4) map-

ping manager, and (M5) TLP analyzer. The kernel driver

maintains latest address-to-object/tenant mappings. The PCIe

switch routes TLPs to their corresponding destinations. Host-

PIPS communication interface and mapping manager handle

the synchronization of address-to-object/tenant mappings be-

tween host and PIPS while collecting RDMA traffic statistics.

The TLP analyzer inspects the TLP headers of RNIC-initiated

DMA read/write requests and matches them with the address-

to-object/tenant mappings.



4.1 PCIe Configuration and Routing Logic

The PCIe switch (M2) is the key component of Harmonic. It

consists of routing logic and two instances of Xilinx Versal

ACAP Integrated Block for PCI Express IPs [8]. The PCIe

PHYs in the two instances are configured as PCIe switch’s

upstream port and downstream port, respectively. Figure 5

demonstrates Harmonic architecture: the upstream port is di-

rectly connected to the host using the PCIe edge connecter of

FPGA, and the downstream port leverages the FMC+ expan-

sion connector with a PCIe Root FMC+ plug-in module [23]

to be connected to RNIC.

4.2 Address-to-Object/Tenant Mappings

Maintaining real-time address-to-object/tenant mappings in

PIPS is essential for precisely monitoring RDMA resource

usage per tenant. These mappings can change when appli-

cations create, delete, or modify objects. The change of the

mappings is triggered by control verbs posted by RDMA ap-

plications, which are processed by the kernel driver (M1).

Therefore, we modify a legacy NVIDIA RNIC kernel driver

(e.g., mlx5_ib.ko and ib_uverbs.ko) to track address-to-

object/tenant mappings. We use container’s process ID as

tenant ID. When a tenant calls a control verb, the Harmonic

kernel driver first traverses the process tree in the kernel to find

the tenant ID. It then records a mapping entry for this control

verb behavior, including tenant ID, the type (e.g., QP creation),

the size and start physical address of the object. The RNIC

kernel has already translated the virtual addresses for these

RDMA objects to physical addresses for its DMA purpose,

and we can directly use these translated physical addresses

to populate our mapping entries. For application payloads,

we also record the payload registered flags (e.g., ATOMIC

enabled). This information helps us determine the type of pay-

load regions accessed by tenants in PIPS. The kernel driver is

responsible for updating address-to-object/tenant mappings

on PIPS by embedding an operation code in mapping entry to

signal insert or delete operations to PIPS. We show detailed

format and contents of both address-to-object/tenant mapping

and statistics entry in Appendix B.

4.3 Mapping Synchronization and Management

We obtain address-to-object/tenant mappings from the kernel

driver and then utilize the host-PIPS communication interface

(M3) and the mapping manager (M4) to continuously update

and manage the most up-to-date mappings in PIPS. This is

crucial for later use by the TLP analyzer.

The host-PIPS communication interface receives and

parses the MMIO write requests from host to update address-

to-object/tenant mappings in the PIPS mapping manager ( 1 ,

2 ). Out of performance (i.e., achieving real-time monitoring)

and implementation complexity considerations, the mapping

manager employs a hashing-based mechanism and maintains

a hierarchical mapping storage system, consisting of a first-

level (L1) direct-map scheme and a second-level (L2) linked-

list slot pool. The mapping manager utilizes a double-hash

strategy and leverages two distinct hash functions for calcu-

lating the hash values of the address field as the indexes to

L1 and L2, respectively. Note that L2 is only used when colli-

sion happens in L1. In this case, each mapping entry in L1 is

treated as the head of a linked list, with the remaining entries

being stored in L2 linked-list slot pool. In addition to map-

ping management, the host-PIPS communication interface

also generates completion TLPs with associated statistics as

payload, when the host polls RDMA traffic statistics through

MMIO read requests ( 3 ).

4.4 Efficient TLP Analyzer

The TLP analyzer (M5) is responsible for extracting the tar-

get physical address in TLP headers from RNIC-issued DMA

read/write requests ( 1 ). When a TLP arrives at PIPS, it du-

plicates the TLP and sends one copy to the TLP analyzer for

analysis, while simultaneously forwarding the original TLP

to its destination. In addition, the TLP analyzer implements

an efficient search engine to collaborate with the mapping

manager, which can perform search operation ( 2 ) in paral-

lel with insert and delete operations, taking the hash value

of physical address in TLP header as search key. Since the

hash collision rate is low, the average search time is only 7

cycles including the latency for interconnection and updat-

ing statistics.Upon a mapping search hit, the TLP analyzer

computes the statistics entry offset based on TID, flags, and

type found in retrieved mapping entry, along with the direc-

tion of current TLP (i.e., RNIC DMA read/write Host). Then

it updates the statistics entry at this determined offset ( 3 ).

With this approach, PIPS maintains an accurate record of both

the access count and the volume of bytes accessed for each

object and tenant, while simultaneously identifying the type

and flag associated with the accessed memory.

5 RDMA-friendly Rate Limiting

Harmonic daemon is responsible for modulating per tenant’s

resource usage. It achieves this by employing two distinct rate

limiting techniques for data verbs and control verbs.

5.1 Data Verbs Rate Limiting in Harmonic Daemon

The Harmonic daemon takes the proactive approach of creat-

ing and injecting Congestion Notification Packets (CNPs) to

control tenants’ rate. Because commodity RNICs automati-

cally generate CNPs within the ASIC without providing an

interface to users, the Harmonic daemon forges CNPs and

sends them to the data sender side of tenants. Forging CNP

needs the source and destination IP addresses as well as the

remote QP number (QPN). Harmonic daemon obtains this

information during the setup of connections. When tenants

create or modify QPs, these control verbs are intercepted

by Harmonic kernel driver. Subsequently, Harmonic kernel

driver sends an event to notify Harmonic daemon that a new

connection is set up, including both IP addresses and the QPN.



Harmonic daemon decides which tenant should be paced

and at what specific rate. Harmonic daemon first keeps polling

statistics collected by the PCIe switch through MMIO reads.

These statistics include BPS and RPS of various types of

RNIC-initiated DMA requests, such as fetching WQEs, fetch-

ing QP context, and writing payload into host memory. Then,

Harmonic daemon calculates per tenant NIC BPS, PCIe BPS,

DRPS consumption, as well as cache miss frequency based

on the collected statistics. It sums up tenant’s DMA accesses

to various types of payloads (e.g., WRITE) to calculate NIC

BPS and DRPS, and sums up tenant’s DMA accesses to vari-

ous types of RDMA metadata (e.g., QP contexts) to calculate

cache miss frequency. For DRPS, we normalize different

types of RDMA requests into the same unit, based on an esti-

mated cost ratio for various types of data verbs. We conduct

an offline profiling to estimate this cost ratio by running a set

of micro-benchmarks. We run perftest [1] to send requests

of minimal sizes in a batch to measure the maximum rate of

different data verbs, and the 1/rate is the cost. In practice, we

normalized WRITE and SEND operations to 1 unit, READ

to 1.1 unit and ATOMIC to 3 units. Given the accurate re-

source usage per tenant, Harmonic daemon next compares

each tenant’s current usage and its allocation. Harmonic dae-

mon directly uses NIC BPS and DRPS from tenant’s profile

(e.g., Table 1), and calculates tenant’s PCIe allocation using

dominant resource fairness model [18]. Harmonic daemon

analyzes guarantee profiles of all tenants on the same host

and identifies the dominant resource among them. Then Har-

monic daemon distributes the PCIe bandwidth based on the

allocation of this dominant resource. For example, given a

network capacity as 25 Gbps bandwidth and 30M DRPS, let

us assume tenant A needs 15 Gbps bandwidth and 10M DRPS

and tenant B needs 5 Gbps and 15M DRPS. The dominant re-

source therefore is bandwidth for tenant A ( 2
3
) and DRPS for

tenant B ( 1
2
). We next allocate the available PCIe bandwidth

to tenants A and B following the proportion of 4:3 (i.e., 2
3
/ 1

2
).

When a tenant uses more BPS/DRPS/PCIe bandwidth than

its allocation, we send CNPs to data sender ends of this ten-

ant’s connections. Harmonic daemon currently applies a sim-

ple strategy to compute the CNP rate. Harmonic sends 1-4

CNPs in a batch after Ti intervals (in microseconds) to man-

age tenants’ rate. Equation 1 shows how interval is updated

based on the measured rate and target rate. We use two heuris-

tic parameters Tmin and Tbasic in practice. Tmin is a minimal

interval threshold to avoid excessively frequent adjustments,

which could lead to unstable rate or even cause performance

anomaly. Tbasic serves as a multiplier, reflecting the intrinsic

response sensitivity to resource overuse. Tuning these values

can adjust the strictness of policy, as a small Tbasic punishes

tenants that overuse resources more strictly.

Ti = max(Tmin,Tbasic ∗ (1.0−
Rcurrent −Rtarget

Rtarget

)) (1)

We specially handle on-NIC cache resources due to their

unique characteristics. While we can measure tenant’s cache

miss statistics by tracking the number of PCIe access to those

metadata (e.g., QP context), we do not set a cache miss thresh-

old for each tenant. This decision is because a higher cache

miss rate in one tenant does not necessarily indicate an ex-

cessive use of cache resources. Instead, we monitor overall

RNIC cache contention and slow down tenants accordingly.

When Harmonic daemon observes severe cache misses, Har-

monic starts to slow down tenants with the lowest priority.

For tenants with the same priority, we slow down them us-

ing the dominant resource fairness policy mentioned above.

We acknowledge that there are alternative policies, such as

monitoring a tenant’s active QPs/MRs as the basis for rate-

limiting decisions. However, we find that our straightforward

policy is already effective in providing isolation when cache

contention arises.

5.2 Control Verb Rate Limiting in Harmonic Drivers

Control verbs rate limiter first needs to limit the capacity

of control verbs (akin to in-flight packets) for each tenant,

including the maximum number of QPs and MRs allowed per

tenant. We record tenants’ control verbs guarantee profiles as

a linked list in Harmonic kernel driver. When a new tenant is

created, we invoke Harmonic kernel driver to register a new

control profile and insert it to the linked list. Whenever this

tenant calls a control verb, Harmonic driver checks its current

resource usage and the profile, determining if this control verb

should be rejected or not.

We also need to limit the rate for control verbs to prevent

tenants from excessively updating hardware status. Frequent

updates have the potential to induce RNIC cache thrashing, as

discussed in prior work [29]. We record timestamps for each

tenant in our defined structure when they issue control verbs.

When a tenant calls a control verb, we compare the current

timestamp and the previously recorded timestamps. If the

tenant is making control verb calls at a rate that exceeds their

allocated rate, we introduce a sleep delay. We choose to slow

down tenants through sleep instead of returning an explicit

error. This way, Harmonic remains transparent to tenants. If

we directly return errors to applications, it would necessitate

error code checks and retries in applications.

6 Evaluation

6.1 Testbed Setup

There are two servers in our testbed, each equipped with one

NVIDIA ConnectX-6 Dx (CX-6) 25 Gbps RNIC. Our FPGA-

based programmable PCIe switch supports up to PCIe Gen 4

with 8 lanes with up to 128 Gbps PCIe bandwidth. Neverthe-

less, there are no NVIDIA 100 Gbps RNICs that support PCIe

Gen 4 with 8 lanes. We therefore use Harmonic to enhance

our CX-6 25 Gbps RNIC. RNICs of two hosts are directly

connected without a network switch. The BPS capacity of

our RDMA endhost is 25 Gbps. We use the standard RDMA

benchmark tool, perftest [1], to measure the DRPS capacity,



5 10 15
Time / second

0.0

2.5

5.0

7.5

10.0

DR
PS

 / 
M

rp
s

WRITE (PIPS)
ATOMIC (PIPS)
READ (PIPS)

WRITE (App)
ATOMIC (App)
READ (App)

(a) Measurement of operation types

0 5 10 15
DRPS Cap / Mrps

0

5

10

15

20

M
ea

su
re

d 
DR

PS
 / 

M
rp

s

App
PIPS
Difference

(b) Measurement of RPS

0 5 10 15 20
BPS Cap / Gbps

0

10

20

30

BP
S 

/ G
bp

s

Ideal
Harmonic
Difference

(c) Control of BPS

0 10 20 30
DRPS Cap / Mrps

0

10

20

30

40

DR
PS

 / 
M

rp
s

Ideal
Harmonic
Difference

(d) Control of RPS

Figure 6: Measurement and control of RDMA traffic. App denotes the performance metrics as reported by perftest.

and the result is ∼30 M DRPS.

Both servers are running Ubuntu 20.04. Harmonic kernel

driver is built upon MLNX_OFED-5.8.1.1.2.1 [42], with a

total of 658 lines of C code modifications. Harmonic daemon

is implemented in C/C++ with a total of 2537 lines of code.

6.2 Measurement and Control of RDMA Resources

We first use microbenchmarks to demonstrate that Harmonic

can accurately measure tenants’ verbs behaviors and limit

their resource usage. We let a tenant run different data verbs

workload from perftest in three time periods. It generates

WRITE traffic, ATOMIC traffic, and READ traffic, each for 5

seconds. We record the DRPS measured by the perftest per

second and compare it with the request rate measured by PIPS.

As shown in Figure 6a, PIPS successfully identifies the types

of data verbs and measures the request rates of each workload

accurately. Figure 6b shows that Harmonic also accurately

measures tenants’ behaviors across different request rates.

Next, we evaluate our CNP-based RDMA-friendly rate lim-

iter. We use perftest to generate workloads that extensively

consume BPS and DRPS resources. We let Harmonic to set

different capacity for these two resources. We measure the

achieved BPS/DRPS and compare them with the capacity.

Figure 6c and Figure 6d show that our rate limiter can ac-

curately control a tenant’s BPS and DRPS. It is worthwhile

to note that we observe that Harmonic daemon can react to

resource overuse within one millisecond. As discussed in

Equation 1, a stricter Tbasic or Tmin leads to fast reaction (i.e., a

few hundreds of microseconds) while it may also hurt overall

performance. In practice, we set Tbasic to 500 us and Tmin to

200 us, which we find already sufficient to enforce isolation.

6.3 Harmonic End-to-end Evaluation

We use the state-of-the-art RDMA performance isolation test

suite, Husky [29], to perform end-to-end evaluation of Har-

monic. Husky includes a set of victim traffic patterns that are

sensitive to different types of resource contention, and four

sets of attacker traffic patterns that exhaust four types of re-

sources: RNIC BPS, RNIC processing capacity, RNIC cache,

and RNIC PCIe bandwidth. We observe that the reliable con-

nection retransmission attack described in Husky (Section

3.3) that exhausts RNIC processing capacity has already been

fixed in the latest NIC firmware, and the RNIC control verbs

cache attack only has a negligible effect on 25 Gbps RNIC.

Harmonic passes all other Husky’s tests with a tolerance level

α = 20%, indicating a tenant’s traffic will be no less than 80%

of its guarantee in the worst case, which is substantially better

than all existing solutions. For most tests, Harmonic effec-

tively safeguards tenants to achieve their guarantees (i.e., less

than 5% difference). We next use a set of typical workloads

from Husky as the case study to demonstrate why existing

solutions fail and how Harmonic satisfies tenants’ guarantee.

For each case study, we also compare our results with three

baselines: (1) SR-IOV, which allocates individual virtual func-

tion (VF) for each tenant to use [47]; (2) Separate hardware

traffic class (HW TC), which is supported by modern RNICs

to dedicate a RNIC traffic class to specific tenant for quality-

of-service (QoS) control and performance isolation [45]; (3)

Justitia, a recent software-based isolation solution for RDMA

networks [62]. Note that Justitia requires tenants to use spe-

cific userspace libraries, so a malicious tenant can circumvent

Justitia’s control by not using these Justitia’s libraries. How-

ever, we still want to evaluate Justitia’s isolation mechanism

(which includes its rate limiter design).

We allocate two tenants, named Alpha and Beta, on the

same pair of hosts. Our RDMA hosts support up to 25 Gbps

and ∼30 M DRPS. We thus set our isolation goal to be that

both Alpha and Beta are guaranteed with 12.5 Gbps and 15 M

DRPS. For each attack, we let Alpha run a Husky victim traf-

fic that is sensitive to a specific type of resource, and we let

Beta run an attacker traffic targeting the specified resource.

Results are shown in Figure 7 to Figure 10. No Interference

means running Alpha or Beta alone with no isolation enabled,

and No Protection means Alpha and Beta are running together

without any isolation. For a fair comparison, we configure

SR-IOV and HW TC to assign one virtual function or traf-

fic class to each tenant, respectively. Justitia currently only

supports fair share and does not provide any QoS guaran-

tee. SR-IOV and HW TC only support RNIC bandwidth (i.e.,

BPS) guarantee. We therefore configure each virtual func-

tion with 12.5 Gbps for SR-IOV. HW TC currently does not

support floating-point rate configuration, and we thus config-

ure both tenants with 12 Gbps guarantee and reserve 1 Gbps

for potential traffic burst. For each figure, we use a dashed

red line to denote the guarantee, a gray dashed line to de-



No Interference
No Protection HW TC SR-IOV Justitia

Harmonic
0

5

10

15

20

25
Ba

nd
wi

dt
h 

/ G
bp

s Alpha
Beta

Figure 7: NIC bandwidth contention.
No Interference

No Protection HW TC SR-IOV Justitia
Harmonic

0

10

20

30

DR
PS

 / 
M

rp
s

Alpha
Beta

Figure 8: Processing capacity contention.

No Interference
No Protection HW TC SR-IOV Justitia

Harmonic
0

5

10

15

20

25

Ba
nd

wi
dt

h 
/ G

bp
s Alpha

Beta

Figure 9: RNIC cache contention.

No Interference
No Protection HW TC SR-IOV Justitia

Harmonic
0

5

10

15

20

25

Ba
nd

wi
dt

h 
/ G

bp
s Alpha

Beta

Figure 10: PCIe bandwidth contention.

note the tolerance bar (10 Gbps and 12 Mrps). We use a blue

dash line in Figure 8 to show the victim performance since

it is originally smaller than the guarantee and should not be

affected.

RNIC BPS contention. We first conduct BPS contention

experiment. Alpha sets up a single connection and keeps

sending 64KB WRITE verbs, and Beta sets up 16 connections

and keeps sending 4KB WRITE verbs in a batch. Both Alpha

and Beta consume almost all the RNIC BPS when running

alone. When running together without isolation, Beta occupies

more BPS since it has more connections. When isolation is

enabled, we observe that all existing solutions and Harmonic

successfully satisfy all tenant’s guarantees. This shows that

RNIC BPS is accurately monitored and controlled by all the

existing solutions and Harmonic.

Processing capacity contention. We let Alpha run a

throughput-sensitive Husky victim, which uses 36 connec-

tions and keeps issuing 64-byte messages. Beta uses 64

connections to keep generating expensive 8-byte ATOMIC

traffic to exhaust RNIC processing capacity. We normalize

DRPS based on our profiling results, which show that a single

ATOMIC operation costs roughly three times as WRITE op-

erations. Figure 8 shows the DRPS for Alpha and Beta. Note

that Alpha does not use all its traffic demand, so the isolation

goal is that Alpha’s performance should not be affected when

Beta joins (shown as the blue dashed line). When no isolation

is enabled, Beta’s ATOMIC workloads exhaust the RNIC pro-

cessing capacity and cause Alpha’s performance to drop by

38%. HW TC does not react to this attack effectively because

Beta only consumes a small amount of BPS (i.e., 6.7 Gbps),

which is substantially lower than the rate limit. Beta’s rate

therefore is not paced by HW TC, and Beta exhausts the RNIC

processing capacity. When SR-IOV is enabled, Beta’s rate is

not reduced as well, and we observe Alpha’s rate drops. Since

SR-IOV implementation details are not publicly available, our

best guess is that this workload may cause some scheduler

issues in SR-IOV implementation. Even though Justitia con-

siders processing capacity in its design, it is agnostic to the

type of verbs and thus performs even worse. It does reduce

Beta’s ATOMIC traffic, but Alpha’s performance is even more

severely degraded. This is because Justitia treats these verbs

equivalently without accounting for the actual resource con-

sumption of expensive ATOMIC verbs. Our observation of

existing solutions is aligned with Husky’s results. Harmonic

carefully considers the expensive costs of ATOMIC requests

and limits Beta’s rate accordingly, reserving adequate process-

ing capacities to achieve Alpha’s guarantee while satisfying

Beta’s requirement.

RNIC cache contention. We let Alpha run a Husky victim

that is sensitive to on-NIC cache contention, which keeps gen-

erating 8-byte WRITE requests in batches across 512 different

memory regions. Beta runs a Husky attacker that uses 4 con-

nections to repeatedly issue single 512-byte WRITE request

to 16K different memory regions to exhaust the on-NIC cache

resources. Figure 9 shows that when cache contention occurs,

the available RNIC BPS is less than 25 Gbps. Even though

both SR-IOV and HW TC reduce Beta’s BPS consumption

to less than 12 Gbps, Alpha’s performance is only improved

by a minimal extent. We suspect that under severe cache

contention, the effectiveness of SR-IOV and HW TC is also

affected. For example, the severe cache miss may also slow

down the SR-IOV and HW TC scheduling process. Though

the current design of Justitia is cache agnostic, it successfully

satisfies Alpha’s guarantee while leading to a drastic drop

in Beta’s performance, making it not satisfy the guarantee

even with a 20% tolerance level. This is probably because



Justitia identifies both applications as throughput-sensitive

applications and schedules them equivalently, while Alpha

issues smaller messages in batch and therefore occupies more

Justitia’s tokens. Harmonic detects the cache contention and

measures the available BPS. It then allocates the reduced

available BPS to Alpha and Beta fairly. This makes both

Alpha and Beta achieve the guarantee within the tolerance

level. Note that the strict guarantee is impractical in this case

because the bottleneck is the RNIC cache.

PCIe contention. Though our testbed supports up to ∼ 64

Gbps PCIe bandwidth. We configure our FPGA-based PCIe

switch to only support 32 Gbps PCIe bandwidth for our

25 Gbps RNIC. This PCIe BW
RNIC BW

= 32
25

ratio emulates scenar-

ios for higher speed RNICs (e.g., 128
100

and 256
200

), where PCIe

bandwidth can be one of the bottlenecked microarchitecture

resources. We let Alpha run the same application as in the

Cache contention case. We let Beta run the PCIe attack in

Husky, which keeps sending 257-byte WRITE that triggers

several DMAs to maximize PCIe consumption. As shown in

Figure 10, the available RNIC BPS therefore is capped by

the PCIe bandwidth and is substantially smaller than 25 Gbps.

Both SR-IOV and HW TC successfully reduce Beta’s rate and

improve Alpha’s performance, but to a limited extent. The

key reason is that given the same amount of RNIC BPS con-

sumption, Beta consumes more PCIe bandwidth than Alpha

and should be paced more in this situation. Similar to what

is observed in the above cache contention scenario, Justitia

reduces Beta more because of its larger message size and only

satisfies Alpha’s guarantee. Harmonic’s hardware monitor

allows us to accurately track each tenant’s PCIe bandwidth

consumption and allocate PCIe bandwidth accordingly based

on tenants’ guarantee. For example, each tenant is allowed to

consume half of the PCIe bandwidth (i.e., roughly 16 Gbps)

in this situation.

6.4 Performance Isolation for End-to-End Applications

We evaluate how Harmonic provides performance isolation

for a real application. We use an RDMA-based Redis [63]

as our tenant workload. We use the same Husky attack work-

loads described in the previous section as attackers. Similarly,

our isolation goal is to enforce fair share resource allocation

between the Redis application and the attackers. We also en-

able both SR-IOV and HW TC as a comparison. We do not

evaluate Justitia’s performance for two reasons: (1) Jusitia

needs application modification to fully support its isolation

and is not secured for real cloud deployments; (2) Justitia

does not support READ operations in the latest drivers.

Redis over RDMA implements an RDMA backend trans-

port to accelerate Redis key-value store and has been large-

scale deployed in industry [63]. We use this redis-benchmark

application to generate 1KB get and set workloads, and mea-

sure its average application QPS. This benchmark can achieve

about 450K QPS, consuming 4.2 Gbps BPS and 1.2 Mrps

DRPS. This is less than its performance guarantee, so the

No Attack BW Processing Cap Cache PCIe0
100
200
300
400
500

Pe
rfo

rm
an

ce
 (K

QP
S)

No Attack
No Isolation

SR-IOV+HW TC
Harmonic

Figure 11: Performance of Redis over RDMA across different attack

types and isolation schemes.

goal is that Redis’s performance should not be affected by

any attacker. We then run those four types of attacks without

isolation, with SR-IOV + HW TC, and with Harmonic. As

shown in Figure 11, all four types of attack successfully ex-

haust specific types of RDMA resources and cause a drastic

Redis performance drop. When isolation is enabled, we ob-

serve that both SR-IOV + HW TC and Harmonic successfully

provide protection against an attacker that tries to exhaust

network bandwidth. Though SR-IOV + HW TC does not

consider processing capacity, Redis achieves its guarantee

under processing capacity contention with SR-IOV + HW

TC. This is probably because Redis workload is more robust

to the processing capacity contention. However, SR-IOV +

HW TC fails to provide sufficient isolation when cache or

PCIe bandwidth is contended. Harmonic proactively moni-

tors these microarchitecture resource contentions and applies

rate limit according to per tenant’s usage. Harmonic therefore

successfully maintains Redis’s performance within the toler-

ance level when on-NIC cache or PCIe bandwidth is under

contention performing 1.3x∼1.4x better than the combination

of two state-of-the-art isolation solutions.

6.5 Overhead Analysis

Hardware and PCIe costs. Our hardware cost analysis based

on the implementation report from AMD Vivado [9] shows

that PIPS, with an internal reference clock frequency set at

250 MHz, consumes 8,571 LUTs (i.e., 0.95% of VCK190

FPGA LUT resources), and 554 BRAMs (i.e., 57.29% of

VCK190 FPGA BRAM resources) mainly used to store host

mapping entries.

We also measure the cost of PCIe bandwidth for updat-

ing mappings and collecting statistics between the host and

PIPS. RDMA application does not frequently invoke control

verbs during data transmission, the mapping updates con-

sumption is therefore negligible. During our evaluation of

various Husky’s attack workloads, we observe that the map-

ping updates only consume no more than 8 Mbps (0.025%)

extra PCIe bandwidth. The extra PCIe bandwidth consump-

tion caused by polling statistics is determined by the polling

frequency. In practice, we poll these statistics every 100 us

and we find it already sufficient to achieve an accurate rate

control and enforce performance isolation. The per tenant

PCIe bandwidth consumption is 64 Mbps for host-to-switch

direction and 76.8 Mbps for switch-to-host direction, which



Table 2: Network performance overhead.

Latency (us) Max. Bandwidth Max. Throughput

64B 64KB (Gbps) (Mrps)

Baseline 3.3 50.4 23.0 28.1

Harmonic 5.6 52.6 22.8 28.1

can be comfortably accommodated by the bandwidth slack be-

tween PCIe and RNIC line rate. The detailed calculation and

analysis is in Appendix C. Harmonic daemon currently only

consumes 33.5% of a single CPU core and scales with negli-

gible CPU usage increment. The CPU usage is determined by

the frequency of polling statistics.

Network performance overheads. We run microbenchmarks

using perftest to measure the latency, achieved bandwidth,

and request throughput with and without Harmonic to analyze

network overheads introduced by Harmonic. For brevity, we

show the results of RDMA READ in Table 2. We demonstrate

the latency penalty under different packet sizes in Figure 12.

While there is a marginal increase in latency overhead with

larger packet sizes, Harmonic adds less than 2 us to the round-

trip latency across all packet sizes. This is mainly because our

PCIe switch is implemented in FPGA, which is less perfor-

mant than traditional ASIC-based PCIe switches on the host

and SmartNICs. Furthermore, employing PCIe extender card

and FMC+ to PCIe root module for the purpose of full-system

operation can also incur additional latency. Note that our mon-

itoring feature is decoupled with the PCIe switch forwarding

functionality, so the monitoring feature does not contribute

to this overhead at all. Besides, Harmonic introduces only

negligible drops in network bandwidth or request throughput.

To summarize, Harmonic’s overhead is negligible for high-

speed RDMA networks. Additionally, we believe that the

monitoring and rate limiting functions inherently should

be integrated into future generations of RNICs. Overheads,

such as the extra PCIe consumption and the FPGA’s la-

tency, will be further eliminated when these functions are

implemented within RNIC’s ASIC. For example, NVIDIA

Bluefield-2 SmartNIC has an embedded PCIe switch that

routes RDMA traffic among RNIC ASIC, embedded ARM

CPUs, and host [44], and only introduces nanosecond-level

latency overhead [59]. We therefore believe Harmonic’s PIPS

overhead can also be mostly eliminated by implementation in

ASIC and being integrated into RNIC.

7 Discussion

Scaling to higher-speed network. We believe our solution

is scalable to 100/200 Gbps RNICs because the overhead of

Harmonic (i.e., FPGA resources usage, extra PCIe bandwidth

consumption) does not increase with higher network capacity.

The concerns may fall on whether TLP analyzer can keep up

with higher PCIe bandwidth and whether the mapping man-

ager scales to store more mapping entries. Our TLP analyzer

can handle higher PCIe bandwidth, as the average search and

update time of our design for one mapping entry is 7 cycles

at 250MHz frequency. This can be even further minimized

101 103 105 107

Packet Size / B

0

2000

4000

6000

Ro
un

d 
Tr

ip
 L

at
en

cy
 / 

us

w/o Harmonic
Harmonic

1

2

3

4

Ro
un

d 
Tr

ip
 

 L
at

en
cy

 O
ve

rh
ea

d 
/ u

s

Overhead

Figure 12: Latency overhead across different packet sizes. The green

and orange lines present the absolute round trip latency with left

y-axis when packet size differs. The blue line demonstrates the round

trip latency overhead is less than 2 us using the right y-axis.

with increased parallelism. The architecture of the mapping

manager can easily be extended to a multi-hashing hierar-

chy, thereby facilitating the storage of a greater number of

mappings with only a marginal increase in search time. Addi-

tionally, concepts from match-action table of P4 switch and

more advanced mapping management like binary search or

Cuckoo hashing can be implemented on top of PIPS to further

reduce memory overheads. In the meanwhile, the scalability

concerns are notably mitigated when considering an ASIC

implementation with optimized logic interconnections and

resource utilization while running at a higher frequency.

Is our performance abstraction easy for users to under-

stand? Our performance abstraction is more complex than

traditional performance abstraction which only considers net-

work bandwidth. We believe this is necessary because RDMA

network is indeed more complex and application develop-

ers are already interacting with this performance abstraction

when developing RDMA programs [26, 27]. We only extend

the abstraction to include more architectural resources that

users can directly control, such as the number of QPs. These

extended metrics are no difference from the number of vCPUs

or the size of memory in today’s cloud VMs specifications.

We believe developers should be aware of these resources

in order to write performant and predictable RDMA applica-

tions.

Deployability of Harmonic. Harmonic requires both hard-

ware and software modifications to existing clouds. From the

perspective of hardware, Harmonic uses PIPS as a prototype

to measure per-tenant RDMA resource consumption at run-

time. In practice, the best implementation entry point should

be within the RNIC regarding performance and hardware

costs. One leading technology enterprise is currently integrat-

ing part of our designs into their next-generation RNIC. In

terms of software, Harmonic needs to have the full control

of the RDMA kernel drivers to manage control verbs for all

tenants. Containerized clouds have already provided such

control since all tenants are sharing the same kernel man-

aged by cloud operators. Harmonic software therefore can

be deployed in containerized clouds without any barriers. In



VM-based clouds, native SR-IOV does not support manag-

ing control verbs for tenants since guest kernel drivers can

directly communicate with RNICs. Extra modifications to

both guest kernel drivers and hypervisors are required to de-

ploy Harmonic in these scenarios. Existing solutions such as

HyV [49] and MasQ [22] have already virtualized all control

verbs involving hypervisor in VM-based clouds. This pro-

vides feasible entry points to integrate Harmonic’s software

features into these solutions.

RDMA-friendly rate limiting. We currently repurpose

RNIC’s native rate limiters to modulate tenants’ RDMA re-

source usage by sending CNPs. This achieves efficiency and

is transparent to applications, but we acknowledge that send-

ing CNPs from software may not be the best approach in

the future. For example, a transient network congestion may

affect the accuracy of such rate limiting mechanism. Emerg-

ing RNIC features such as programmable congestion control

(PCC) [43] allow customized congestion control algorithms.

This potentially provides a more straightforward and accurate

way to leverage RNIC’s rate limiter for performance isolation

purposes. For example, a data receiver can send specialized

packets to specify the maximal sending rate that the data

sender can enforce, similar to TCP receive window.

Generality of Harmonic. Harmonic currently targets at

RDMA performance isolation, focusing on the bottlenecked

RNIC microarchitecture resources. We believe Harmonic can

also be leveraged for other scenarios besides RDMA networks.

For example, multiple I/O devices (e.g., GPU and NIC) may

be connected to the same PCIe switch and thereby contend

on PCIe and memory bus resources [30]. Harmonic can also

be adapted to isolate resources among different I/O devices

and hence manage the complex intra-host network.

8 Related Works

Understanding microarchitecture resources in RNICs. Re-

search community has already started to study the hardware

resources in RNICs. Existing works focus on how to avoid

certain performance anomalies caused by NIC resources from

the application layer [15, 26, 27, 29, 38]. Husky [29] discusses

the definition of RNIC microarchitecture and conducts a holis-

tic study on how different RDMA operations make use of

on-NIC microarchitecture resources. Kalia et al. [27] pro-

vide guidelines for writing efficient high-performance RDMA

programs. These works target understanding or optimizing

the RDMA programs and the usage of some specific RNIC

microarchitecture resources, but they do not provide RDMA

performance isolation.

RNIC design. Several works have been conducted to opti-

mize RNIC design [34, 37, 57, 58]. SRNIC [58] modifies both

protocols and RNIC architecture to improve on-NIC memory

efficiency and utilization for better scalability. IRN [37] pro-

poses to enable fast loss recovery on NIC to avoid reliance on

lossless fabrics. These works contribute to improving RDMA

performance. However, our work targets at providing perfor-

mance isolation for multi-tenant RDMA clouds.

Understanding intra-host communication. Intra-host com-

munication has received increasing attention in research com-

munities [5, 6, 30, 33, 39, 61]. Breaking Band [61] leverages

an expensive commercial PCIe analyzer to get a system-level

PCIe latency breakdown. Min [36] implements a simple soft

PCIe switch to obtain CPU-GPU communication patterns.

Neugebauer et al. [39] analyze the PCIe theoretical model

and study how PCIe affects network performance. Harmonic

targets a different angle. It sniffers intra-host communica-

tion traffic to monitor RDMA network behaviors for RDMA

performance isolation.

Performance isolation and QoS. Previous research [12, 20,

25, 32, 50, 51] has already provided software-based solutions

implemented on the endpoints (hosts) and achieved perfor-

mance isolation and QoS, by ensuring VM-pair level band-

width guarantee. However, centering around the TCP/IP ker-

nel network stack, they mainly focus on the bandwidth con-

tention of the network fabric (e.g., switch, router, etc.) and

provide pure software solutions to the narrow problem. Pic-

NIC [32] uses the number of CPU cycles spent on the packet

processing as a criterion of NIC contention for TCP/IP net-

works. Harmonic is an orthogonal and complementary re-

search work, with a focus on performance isolation on the

RDMA-capable endhost. An end-to-end network performance

isolation solution requires isolation mechanisms in different

components of the network, including both inter-host net-

work bandwidth and RDMA NIC resources on the endhost.

Harmonic provides a microarchitecture-resource-aware so-

lution for the RDMA NIC resource isolation in addition to

traditional network bandwidth.

9 Conclusion

We propose the first RDMA performance isolation solution

for public clouds, Harmonic, that is aware of microarchitec-

ture resources. Harmonic consists of an FPGA-based pro-

grammable intelligent PCIe switch to measure per-tenant

RDMA resource usage and an RDMA-friendly rate limiter

to modulate RDMA resource per tenant. Harmonic requires

no application modification. We evaluate Harmonic using the

state-of-the-art test suite for RDMA performance isolation.

Our evaluation results show that Harmonic delivers strong

RDMA performance isolation in a multi-tenant public cloud

setting, compared to all the existing solutions.

Acknowledgement

We thank Xilinx for their technical support. We also thank

our shepherd Yizhou Shan and other anonymous reviewers

for their insightful feedback. Our work is supported in part by

grants from NSF (CNS-2238665 and CCRI-CISE 2213808)

and IBM IIDAI, and gifts from Adobe, Amazon, Meta, Intel,

and IBM.



References

[1] OFED perftest. https://github.com/linux-rdma/

perftest.

[2] RDMA Core Userspace Libraries and Daemons. https:

//github.com/linux-rdma/rdma-core/.

[3] Advanced Micro Devices. How to

implement pcie switch on Ultrascale.

https://support.xilinx.com/s/question/

0D54U00006cnZ2rSAE/how-to-implement-pcie-

switch-on-ultrascale?language=en_US.

[4] Advanced Micro Devices. Use Ultrascale+ PCIe

Integrated block as an endpoint PCI to PCI Bridge

device. https://support.xilinx.com/s/question/

0D54U00006hwlreSAA/use-ultrascale-pcie-

integrated-block-as-an-endpoint-pci-to-pci-

bridge-device?language=en_US.

[5] Saksham Agarwal, Rachit Agarwal, Behnam Montaz-

eri, Masoud Moshref, Khaled Elmeleegy, Luigi Rizzo,

Marc Asher de Kruijf, Gautam Kumar, Sylvia Rat-

nasamy, David Culler, and Amin Vahdat. Understanding

Host Interconnect Congestion. In Proceedings of the

21st ACM Workshop on Hot Topics in Networks (Hot-

Nets), pages 198–204, 2022.

[6] Saksham Agarwal, Arvind Krishnamurthy, and Rachit

Agarwal. Host Congestion Control. In Proceedings of

the ACM Special Interest Group on Data Communica-

tion (SIGCOMM), pages 275–287, 2023.

[7] Amazon. Amazon EC2 Instance Types. https://

aws.amazon.com/ec2/instance-types/.

[8] AMD/Xilinx. Versal Adaptive SoC Integrated Block

for PCI Express LogiCORE IP Product Guide. https:

//docs.xilinx.com/r/en-US/pg343-pcie-versal.

[9] AMD/Xilinx. Vivado Design Suite. https:

//www.xilinx.com/products/design-tools/

vivado.html.

[10] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis,

Greg O’Shea, and Eno Thereska. End-to-end Perfor-

mance Isolation Through Virtual Datacenters. In Pro-

ceedings of the 11th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), pages 233–

248, 2014.

[11] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Kris-

han Kumar Attre, Paramvir Bahl, Ameya Bhagat, Gowri

Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,

Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad, Vivek

Ette, Igal Figlin, Daniel Firestone, Mathew George, Ilya

German, Lakhmeet Ghai, Eric Green, Albert Greenberg,

Manish Gupta, Randy Haagens, Matthew Hendel, Rid-

wan Howlader, Neetha John, Julia Johnstone, Tom Jolly,

Greg Kramer, David Kruse, Ankit Kumar, Erica Lan,

Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu, Chen

Liu, Guohan Lu, Yuemin Lu, Xiakun Lu, Vadim Makher-

vaks, Ulad Malashanka, David A. Maltz, Ilias Mari-

nos, Rohan Mehta, Sharda Murthi, Anup Namdhari,

Aaron Ogus, Jitendra Padhye, Madhav Pandya, Douglas

Phillips, Adrian Power, Suraj Puri, Shachar Raindel, Jor-

dan Rhee, Anthony Russo, Maneesh Sah, Ali Sheriff,

Chris Sparacino, Ashutosh Srivastava, Weixiang Sun,

Nick Swanson, Fuhou Tian, Lukasz Tomczyk, Vamsi

Vadlamuri, Alec Wolman, Ying Xie, Joyce Yom, Lihua

Yuan, Yanzhao Zhang, and Brian Zill. Empowering

Azure Storage with RDMA. In Proceedings of the 20th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI), pages 49–67, 2023.

[12] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and

Ant Rowstron. Towards Predictable Datacenter Net-

works. In Proceedings of the ACM Special Interest

Group on Data Communication (SIGCOMM), pages

242–253, 2011.

[13] Broadcom. Introduction to Thor Congestion Control

for RoCE. https://docs.broadcom.com/doc/NCC-

WP1XX.

[14] Jingrong Chen, Yongji Wu, Shihan Lin, Yechen Xu, Xin-

hao Kong, Thomas Anderson, Matthew Lentz, Xiaowei

Yang, and Danyang Zhuo. Remote Procedure Call as a

Managed System Service. In Proceedings of the 20th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI), pages 141–159, 2023.

[15] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable

RDMA RPC on Reliable Connection with Efficient Re-

source Sharing. In Proceedings of the 14th European

Conference on Computer Systems (EuroSys), pages 1–

14, 2019.

[16] Daniel Firestone, Andrew Putnam, Sambhrama Mund-

kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,

Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric

Chung, Harish Kumar Chandrappa, Somesh Chaturmo-

hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen

Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,

Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,

Madhan Sivakumar, Nisheeth Srivastava, Anshuman

Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,

Kushagra Vaid, David A. Maltz, and Albert Greenberg.

Azure Accelerated Networking: SmartNICs in the Pub-

lic Cloud. In Proceedings of the 15th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI), pages 51–66, 2018.



[17] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,

Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,

Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan Liu,

Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng

Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang,

Dennis Cai, and Jiesheng Wu. When Cloud Storage

Meets RDMA. In Proceedings of the 18th USENIX

Symposium on Networked Systems Design and Imple-

mentation (NSDI), pages 519–533, 2021.

[18] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy

Konwinski, Scott Shenker, and Ion Stoica. Dominant

Resource Fairness: Fair Allocation of Multiple Resource

Types. In Proceedings of the 8th USENIX Symposium on

Networked Systems Design and Implementation (NSDI),

pages 323–336, 2011.

[19] Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C

Snoeren. SmartNIC Performance Isolation with Fair-

NIC: Programmable Networking for the Cloud. In Pro-

ceedings of the ACM Special Interest Group on Data

Communication (SIGCOMM), pages 681–693, 2020.

[20] Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang

Yang, Chao Kong, Peng Sun, Wenfei Wu, and Yong-

guang Zhang. SecondNet: A Data Center Network

Virtualization Architecture with Bandwidth Guarantees.

In Proceedings of the 6th International Conference on

emerging Networking EXperiments and Technologies

(CoNEXT), pages 1–12, 2010.

[21] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,

Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA

over Commodity Ethernet at Scale. In Proceedings of

the ACM Special Interest Group on Data Communica-

tion (SIGCOMM), pages 202–215, 2016.

[22] Zhiqiang He, Dongyang Wang, Binzhang Fu, Kun Tan,

Bei Hua, Zhi-Li Zhang, and Kai Zheng. MasQ: RDMA

for Virtual Private Cloud. In Proceedings of the ACM

Special Interest Group on Data Communication (SIG-

COMM), pages 1–14, 2020.

[23] HiTech Global. PCI Express Gen4 Root FMC+ Mod-

ule. https://hitechglobal.us/index.php?route=

product/product&path=18_85&product_id=273.

[24] Intel. Intel® Ethernet 800 Series Linux Flow

Control. https://edc.intel.com/content/www/

us/en/design/products/ethernet/800-series-

linux-flow-control-configuration-guide-for-

rdma-use-c/congestion-management-tuning-

parameters/.

[25] Vimalkumar Jeyakumar, Mohammad Alizadeh, David

Mazières, Balaji Prabhakar, Changhoon Kim, and Albert

Greenberg. EyeQ: Practical Network Performance Iso-

lation at the Edge. In Proceedings of the 10th USENIX

Symposium on Networked Systems Design and Imple-

mentation (NSDI), pages 297–311, 2013.

[26] Anuj Kalia, Michael Kaminsky, and David Andersen.

Datacenter RPCs can be General and Fast. In Proceed-

ings of the 16th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI), pages 1–16,

2019.

[27] Anuj Kalia, Michael Kaminsky, and David G Andersen.

Design Guidelines for High Performance RDMA Sys-

tems. In Proceedings of the USENIX Annual Technical

Conference (USENIX ATC), pages 437–450, 2016.

[28] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu,

Yibo Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong

Guo, Vyas Sekar, and Srinivasan Seshan. FreeFlow:

Software-based Virtual RDMA Networking for Con-

tainerized Clouds. In Proceedings of the 16th USENIX

Symposium on Networked Systems Design and Imple-

mentation (NSDI), pages 113–126, 2019.

[29] Xinhao Kong, Jingrong Chen, Wei Bai, Yechen Xu,

Mahmoud Elhaddad, Shachar Raindel, Jitendra Padhye,

Alvin R Lebeck, and Danyang Zhuo. Understanding

RDMA Microarchitecture Resources for Performance

Isolation. In Proceedings of the 20th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI), pages 31–48, 2023.

[30] Xinhao Kong, Jiaqi Lou, Wei Bai, Nan Sung Kim, and

Danyang Zhuo. Towards a Manageable Intra-Host Net-

work. In Proceedings of the 19th Workshop on Hot

Topics in Operating Systems (HotOS), pages 206–213,

2023.

[31] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,

Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:

Finding Performance Anomalies in RDMA Subsystems.

In Proceedings of the 19th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI),

pages 287–305, 2022.

[32] Praveen Kumar, Nandita Dukkipati, Nathan Lewis,

Yi Cui, Yaogong Wang, Chonggang Li, Valas Valancius,

Jake Adriaens, Steve Gribble, Nate Foster, and Amin

Vahdat. PicNIC: Predictable Virtualized NIC. In Pro-

ceedings of the ACM Special Interest Group on Data

Communication (SIGCOMM), pages 351–366, 2019.

[33] Qiang Li, Qiao Xiang, Derui Liu, Yuxin Wang, Hao-

nan Qiu, Xiaoliang Wang, Jie Zhang, Ridi Wen, Haohao

Song, Gexiao Tian, Chenyang Huang, Lulu Chen, Shao-

zong Liu, Yaohui Wu, Zhiwu Wu, Zicheng Luo, Yuchao

Shao, Chao Han, Zhongjie Wu, Jianbo Dong, Zheng Cao,



Jinbo Wu, Jiwu Shu, and Jiesheng Wu. From RDMA to

RDCA: Toward High-Speed Last Mile of Data Center

Networks Using Remote Direct Cache Access. arXiv

preprint arXiv:2211.05975, 2023.

[34] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan

Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming

Zhang, Frank Kelly, Mohammad Alizadeh, and Min-

lan Yu. HPCC: High Precision Congestion Control. In

Proceedings of the ACM Special Interest Group on Data

Communication (SIGCOMM), pages 44–58. 2019.

[35] Microsoft. Azure Virtual Machine series.

https://azure.microsoft.com/en-us/pricing/

details/virtual-machines/series/.

[36] Seung Won Min. Fine-grained memory access over

I/O interconnect for efficient remote sparse data access.

PhD thesis, 2022.

[37] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Ei-

tan Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy,

and Scott Shenker. Revisiting Network Support for

RDMA. In Proceedings of the ACM Special Interest

Group on Data Communication (SIGCOMM), pages

313–326, 2018.

[38] Sumit Kumar Monga, Sanidhya Kashyap, and Chang-

woo Min. Birds of a Feather Flock Together: Scaling

RDMA RPCs with Flock. In Proceedings of the ACM

SIGOPS 28th Symposium on Operating Systems Princi-

ples (SOSP), pages 212–227, 2021.

[39] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,

Yury Audzevich, Sergio López-Buedo, and Andrew W

Moore. Understanding PCIe performance for end host

networking. In Proceedings of the ACM Special Interest

Group on Data Communication (SIGCOMM), pages

327–341, 2018.

[40] NVIDIA. DCQCN PARAMETERS. https:

//enterprise-support.nvidia.com/s/article/

dcqcn-parameters.

[41] NVIDIA. Firmware Burning Tools (MFT). https:

//docs.nvidia.com/networking/category/mft.

[42] NVIDIA. MLNX_OFED InfiniBand/VPI.

https://docs.nvidia.com/networking/category/

mlnxofedib.

[43] NVIDIA. NVIDIA ConnectX-6 DX Datasheet.

https://www.nvidia.com/content/dam/en-zz/

Solutions/networking/ethernet-adapters/

connectX-6-dx-datasheet.pdf.

[44] NVIDIA. NVIDIA MELLANOX BLUEFIELD-

2 Datasheet. https://network.nvidia.com/files/

doc-2020/pb-bluefield-2-smart-nic-eth.pdf.

[45] NVIDIA. Quality of Service (QoS).

https://docs.nvidia.com/networking/pages/

viewpage.action?pageId=107485812.

[46] NVIDIA. Security Bulletin: NVIDIA ConnectX

- April 2023. https://nvidia.custhelp.com/

app/answers/detail/a_id/5459/~/security-

bulletin%3A-nvidia-connectx---april-2023.

[47] NVIDIA. Single Root IO Virtualization (SR-IOV).

https://docs.nvidia.com/networking/pages/

viewpage.action?pageId=107485951.

[48] PCI-SIG. PCI Express® Base Specification Revision

4.0. https://pcisig.com/specifications.

[49] Jonas Pfefferle, Patrick Stuedi, Animesh Trivedi,

Bernard Metzler, Ionnis Koltsidas, and Thomas R. Gross.

A Hybrid I/O Virtualization Framework for RDMA-

Capable Network Interfaces. In Proceedings of the

11th ACM SIGPLAN/SIGOPS International Conference

on Virtual Execution Environments (VEE), page 17–30,

2015.

[50] Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jef-

frey C Mogul, Yoshio Turner, and Jose Renato Santos.

Elasticswitch: Practical Work-Conserving Bandwidth

Guarantees for Cloud Computing. In Proceedings of the

ACM Special Interest Group on Data Communication

(SIGCOMM), pages 351–362, 2013.

[51] Barath Raghavan, Kashi Vishwanath, Sriram Ramab-

hadran, Kenneth Yocum, and Alex C Snoeren. Cloud

Control with Distributed Rate Limiting. In Proceedings

of the ACM Special Interest Group on Data Communi-

cation (SIGCOMM), pages 337–348, 2007.

[52] Benjamin Rothenberger, Konstantin Taranov, Adrian

Perrig, and Torsten Hoefler. ReDMArk: Bypassing

RDMA Security Mechanisms. In Proceedings of the

30th USENIX Security Symposium (USENIX Security),

pages 4277–4292, 2021.

[53] Alan Shieh, Srikanth Kandula, Albert Greenberg,

Changhoon Kim, and Bikas Saha. Sharing the Data

Center Network. In Proceedings of the 8th USENIX

Symposium on Networked Systems Design and Imple-

mentation (NSDI), pages 309–322, 2011.

[54] Konstantin Taranov, Benjamin Rothenberger, Daniele

De Sensi, Adrian Perrig, and Torsten Hoefler. NeVer-

More: Exploiting RDMA Mistakes in NVMe-oF Stor-

age Applications. In Proceedings of the 29th ACM

SIGSAC Conference on Computer and Communications

Security (CCS), pages 2765–2778, 2022.



[55] Shin-Yeh Tsai, Mathias Payer, and Yiying Zhang.

Pythia: Remote Oracles for the Masses. In Proceed-

ings of the 28th USENIX Security Symposium (USENIX

Security), pages 693–710, 2019.

[56] VITA. FPGA Mezzanine Card Plus (FMC+) Standard.

https://www.vita.com/fmc.

[57] Xizheng Wang, Guo Chen, Xijin Yin, Huichen Dai, Bo-

jie Li, Binzhang Fu, and Kun Tan. StaR: Breaking the

Scalability Limit for RDMA. In Proceedings of the

IEEE 29th International Conference on Network Proto-

cols (ICNP), pages 1–11, 2021.

[58] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang

Zeng, Wenxue Li, Xinchen Wan, Peng Xie, Tao Feng,

Ke Cheng, Xiongfei Geng, Tianhao Wang, Weicheng

Ling, Kejia Huo, Pingbo An, Kui Ji, Shideng Zhang, Bin

Xu, Ruiqing Feng, Tao Ding, Kai Chen, and Chuanxiong

Guo. SRNIC: A Scalable Architecture for RDMA NICs.

In Proceedings of the 20th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI),

pages 1–14, 2023.

[59] Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen,

and Haibo Chen. Characterizing Off-path SmartNIC for

Accelerating Distributed Systems. In Proceedings of the

17th USENIX Symposium on Operating Systems Design

and Implementation (OSDI), pages 987–1004, 2023.

[60] Zhuolong Yu, Bowen Su, Wei Bai, Shachar Raindel,

Vladimir Braverman, and Xin Jin. Understanding

the Micro-Behaviors of Hardware Offloaded Network

Stacks with Lumina. In Proceedings of the ACM Special

Interest Group on Data Communication (SIGCOMM),

pages 1074–1087, 2023.

[61] Rohit Zambre, Megan Grodowitz, Aparna Chan-

dramowlishwaran, and Pavel Shamis. Breaking Band:

A Breakdown of High-Performance Communication. In

Proceedings of the 48th International Conference on

Parallel Processing (ICPP), pages 1–10, 2019.

[62] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf

Chowdhury. Justitia: Software Multi-Tenancy in Hard-

ware Kernel-Bypass Networks. In Proceedings of the

19th USENIX Symposium on Networked Systems Design

and Implementation (NSDI), pages 1307–1326, 2022.

[63] Zhenwei Pi. Redis Over RDMA Implementation.

https://github.com/redis/redis/pull/11182.

[64] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong

Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-

hye, Shachar Raindel, Mohamad Haj Yahia, and Ming

Zhang. Congestion Control for Large-Scale RDMA

Deployments. In Proceedings of the ACM Special Inter-

est Group on Data Communication (SIGCOMM), pages

523–536, 2015.

A Harmonic Prototype Setup

We present the prototype setup of Harmonic in Figure 14.

PIPS is implemented on an AMD Versal VCK190 FPGA

board, connecting to the host system with a PCIe extender

card. We connect RNIC with PIPS using an FMC+ expansion

connector because the FPGA board does not contain a PCIe

root connector interface. FMC+ is built upon FPGA Mezza-

nine Card (FMC) standard [56] which is a versatile and widely

adopted standard for high-performance interfacing FPGAs

with external devices.

B Entries for Mappings and Statistics

We illustrate the address-to-object/tenant mapping and statis-

tics entry format in Figure 13. We explain how each field is

derived to offer a comprehensive understanding of the map-

ping mechanism in Harmonic.

B.1 Address-to-Object/Tenant Mappings

There are mainly three types of objects (i.e., memory regions,

queue structures, and RDMA metadata) in RDMA. All these

objects will be pinned in the host physical memory after cre-

ation, and the RNIC will maintain virtual-to-physical address

mappings to DMA these objects.

The first type of object is application’s memory region

(MR). Applications register these MRs through ibv_reg_mr,

which is processed by mlx5_ib.ko drivers in our NVIDIA

testbed. We modify mlx5_ib.ko to record the starting phys-

ical address, the process ID (PID) of the caller, the size and

the memory flags (e.g., IBV_ACCESS_REMOTE_WRITE, which

allows remote write) of this region. Note that we use con-

tainer’s process ID as tenant ID (TID).

The second type of objects is queue structures, including

send/receive queues, completion queues, and the doorbell

(memory mapped registers) for these queues. When an appli-

cation initiates RDMA data verbs, the memory is accessed by

the RNIC to fetch WQEs from send/receive queues or write

completion queue entries (CQE) to completion queues. The

memory for these objects is allocated and pinned during the

allocation of these projects, such as mlx5_ib_create_qp in

mlx5_ib.ko. Similarly, we record the PID of the caller, and

the address and size of these objects.

The third type of object is RDMA metadata managed by

RNIC driver and firmware, including QP contexts and mem-

ory translation/protection tables. When other two types of

objects (e.g., a QP) are created, the firmware reserves a few

pinned pages and allocates metadata (e.g., a QP context) in

the pinned pages. We record the information on these pinned

pages in a similar fashion as described above.

Figure 13a shows our unified entry to update such address-

to-object/tenant mappings to our PCIe switch. Note that the



Opcode: 127-112 Rsvd: 111-96 Size: 95-65 Flags: 64-63 Addr: 62-15 TID: 14-3 Type: 2-0

(a) Address-to-Object/Tenant Mapping Entry Format.

# Byte: 63-31 # Access: 30-1 Direction: 0 

(b) Statistics Entry Format.

Figure 13: Address-to-Object/Tenant Mapping and Statistics Entry Formats.

Figure 14: Programmable Intelligent PICe Switch (PIPS) Prototype.

most significant 16 bits of address-to-object/tenant mapping

entry together serve as an operation code that notifies PIPS to

either insert or delete the entry in PIPS. We reserve the second

16-bit field considering the possibility of other customization

demands. Our modified drivers will fill in the remaining five

fields and expose these entries to Harmonic daemon through

system files.

B.2 Per-tenant RDMA Statistics

We store the monitored RDMA resource statistics in a 128-bit

structured entry as shown in Figure 13b. As discussed in §4,

the TLP analyzer leverages the physical address enclosed in

TLP headers to search and retrieve the corresponding address-

to-object/tenant mapping entry from which we identify the

object and tenant associated with the TLPs. Then we collect

and record PCIe bandwidth consumption, number of PCIe

transactions, direction of TLPs, accessed memory type, and

other information from TLP headers (Figure 4) in per-tenant

statistics entries.

C Harmonic PCIe Overhead Computation

PIPS maintains 40 statistic entries per tenant and each entry is

8-byte. We issue PCIe read request to read these statistics from

PIPS. For a PCIe read request, the minimum PCIe protocol

overhead is 20 bytes [48]. Upon receiving the read request,

PIPS responds with a completion packet (i.e., Completion

TLP), containing 8-byte payload and a 16-byte PCIe protocol

overhead. Therefore, for a single statistics read, it consumes

800-byte for host-to-PIPS direction 960-byte for PIPS-to-host

direction in total.

Assuming Harmonic daemon polls the statistics every N

milliseconds. The extra PCIe bandwidth consumed therefore

is 1000
N

∗ 8 ∗ 800 = 6.4
N

Mbps for the host-to-PIPS direction

and 7.68
N

Mbps for PIPS-to-host direction. Harmonic currently

poll statistics every 100 us, which consumes 64 Mbps and

76.8 Mbps for these two directions. This overhead is less than

0.25% of the total PCIe bandwidth. Together with the extra

PCIe bandwidth consumed by updating mappings, the overall

PCIe bandwidth overhead of Harmonic is below 0.31% which

can be comfortably accommodated by the existing 21.87%

bandwidth slack between PCIe and RNIC line rate. Note that

we assume our PCIe limit as 32 Gbps, which has the same

network-to-PCIe capacity ratio as higher speed networks (e.g.,

100 and 200 Gbps). This means that the PCIe overhead of

our solution remains negligible with a higher network speed.

Not to mention that this PCIe overhead only depends on the

number of tenants and the frequency of polling, independent

on network bandwidth.


	Introduction
	Background
	Remote Direct Memory Access
	RDMA Performance Isolation
	Design Space for Monitoring and Controlling Tenant RDMA Resouce Usage

	Harmonic Overview
	Programmable Intelligent PCIe Switch
	PCIe Configuration and Routing Logic
	Address-to-Object/Tenant Mappings
	Mapping Synchronization and Management
	Efficient TLP Analyzer

	RDMA-friendly Rate Limiting
	Data Verbs Rate Limiting in Harmonic Daemon
	Control Verb Rate Limiting in Harmonic Drivers

	Evaluation
	Testbed Setup
	Measurement and Control of RDMA Resources
	Harmonic End-to-end Evaluation
	Performance Isolation for End-to-End Applications
	Overhead Analysis

	Discussion
	Related Works
	Conclusion
	Harmonic Prototype Setup
	Entries for Mappings and Statistics
	Address-to-Object/Tenant Mappings
	Per-tenant RDMA Statistics

	Harmonic PCIe Overhead Computation

