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Tweezers-based nanorobots, optical tweezers in particular, are renowned for their exceptional

precision, and among their biomedical applications are cellular manipulation, unzipping

DNAs, and elongating polypeptide chains. This thesis introduces a series of Lyapunov-based

feedback control frameworks that address both stability and controlled instability for biological

manipulation, applied within the context of optical tweezers. At the core of this work are

novel controllers that stabilize or destabilize specific molecular configurations, enabling fine

manipulation of particles like polystyrene beads and tethered polymers under focused laser

beams.

Chapter §1 covers the foundational principles and surveys existing literature on the modeling

and control of optical tweezers, emphasizing gaps in the stability and instability control

of molecular systems. Chapter §2 presents a robust Control Lyapunov Function (CLF)

approach, designed to stabilize spherical particles under optical trapping. By formulating a

smooth, norm-bounded feedback controller, we achieve lateral stabilization despite external

disturbances, using a real-time, static nonlinear programming (NLP) solution. Simulations

verify the effectiveness of this CLF framework, even with significant initial displacements

from the laser focus and under thermal forces modeled as a white Gaussian noise.
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Chapter §3 addresses controlled instability through a Control Chetaev Function (CCF)

framework, specifically targeting protein unfolding applications. Linearization with respect

to the control input facilitates the application of destabilizing universal controls for affine-

in-control system dynamics. The resulting CCF-based norm-bounded feedback controller

induces system instability by laterally extending the trapped DNA handle, thereby increasing

the molecular extension and providing insights into protein denaturation and unfolding

pathways. This controller is robust to stochastic thermal forces and optimized for real-time

computational efficiency.

These Lyapunov and Chetaev-based control designs collectively expand the capabilities of

optical tweezers, advancing single-molecule manipulation under both stable and unstable

conditions. These findings advance precision nanomanipulation, opening new avenues for

exploring the molecular mechanics of protein unfolding and DNA elasticity.
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CHAPTER 1

INTRODUCTION

The introduction outlines the main biological applications of robotic nanomanipulation §1.1

as well as historical background and fundamentals of optical tweezers §1.2. Discussing the

fundamentals, we next proceed to cover some prior literature on modeling efforts for polymer

elasticity §1.3, current understanding of optical tweezers in single-molecule studies, and the

advanced control systems used to enhance their capabilities §1.4. Finally, we highlight the

existing gaps in the current literature §1.5, contributions of our work, and organization of

the thesis §1.6.

1.1 Biological Applications of Robotic Nanomanipulation

Closed-loop control algorithms facilitate precise automated and semi-automated operations

at micro- and nanoscale levels (Oubellil et al., 2019). Thanks to substantial advances in

chemistry, physics, and nanotechnology, significant accomplishments in nanorobotic devices

have been achieved. Nanorobotic devices are either tiny themselves (nanorobots) or target

minute particles (nanomanipulators). They both complement each other and play a crucial

role in developing medical robotics as well as advancing the treatment and diagnosis of

diseases, especially in the field of personalized precision medicine (Zarrintaj et al., 2022).

Robotic nanomanipulation, which includes tweezers-based nanomanipulators (Grier, 2003;

Ashkin et al., 1986), AFM-based nanomanipulators (Li et al., 2023; Lal and John, 1994; Xie

and Régnier, 2010; Onal et al., 2010), and EM-based nanomanipulators (Shi et al., 2016),

has to do with capturing and moving nano-objects, within the range of tens of nanometers

to tens of microns. Therefore, robotic nanomanipulation enables effective interaction with

such biological entities with the same range size as biomolecules, organelles, cells, and most

proteins. Accordingly, biomedical nanomanipulation brings great awareness to the molecular
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mechanisms, the interaction between drug molecules and diseased cell molecules, as well as

pathological changes in cells. Hence, robotic nanomanipulators are widely utilized in genetic

disease therapy such as cancer and biomedicine applications, including cellular manipulation,

abrupt withdrawal, and targeted drug delivery. We refer the reader to (Li et al., 2020) for

a comprehensive survey on biomedical applications of nanorobotics. Next, we discuss the

fundamental background of optical tweezers.

1.2 Historical Background and Fundamentals of Optical Tweezers

Optical tweezers are known as powerful tools for manipulating individual molecules and

studying their properties at the nanoscale. They remotely probe biological samples by

precisely holding and manipulating the nano-object of interest in a focal point of a highly

focused laser beam as their end-effector. In the late 80s, Ashkin (1980) in a seminal work

utilized optical tweezers to levitate dielectric particles and single atoms (see Figure 1.1 for

its principle of operation). According to Ashkin (1980), trapping forces arise from the laser

radiation forces symmetrically crossing the particle, conserving the net momentum of zero,

and preventing its horizontal movements. Moreover, according to Maxwell, the momentum of

laser light is small and is canceled out with the gravity applied in the opposite direction, and

thus, keeping the particle from deviating in the vertical direction. Therefore, it is concluded

that one can optically view and levitate a particle by directing a Gaussian laser beam

vertically across it and that the particle’s stability and dynamics of motion solely depend on

applied horizontal forces. Since then, optical tweezers have been widely used in biological

applications, including the study of molecular motors, DNA mechanics, and protein/RNA

folding/unfolding (Bustamante et al., 2021; Kellermayer et al., 1997; Bustamante et al., 2020).

In the last one, the first and last amino acids of the chain, N- and C-termini, respectively, are

typically tethered between two optically trapped beads or between a bead and a surface (i.e.,

AFM cantilever), allowing the protein to get mechanically unfolded through the movement of
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Figure 1.1: Schematic of a typical optical tweezer system. The imaging setup consists of a
charge-coupled device (CCD) camera, which is able to monitor and track the cell’s change
of position in real-time. The main feature is the trapping setup, in which the laser beam
is magnified using a beam expander, directed onto a dichroic mirror, and then transmitted
to a motorized oil-immersion objective. The objective involves a lens with a high numerical
aperture that centralizes the beam to the wavelength of interest and traps the immersed cell
in the medium and on the trapping plane.

the device (Bustamante et al., 2020). Moving the optical tweezers device and recording the

response of the chain to mechanical denaturation provide valuable information on protein

folding thermodynamics and kinetics that is challenging to attain through traditional ensemble

methods (Neuman and Nagy, 2008; Bustamante et al., 2020).

1.3 Modeling Polymer Elasticity

Accurate modeling of polymer elasticity is crucial for interpreting optical tweezers mea-

surements. The foundation to the worm-like chain (WLC) model, introduced by Kratky

and Porod (1949), has become the standard framework for describing the elastic properties

of semiflexible biopolymers like DNA under applied force. Unlike simpler models like the

freely-jointed chain (FJC), the WLC model describes the bending rigidity of the polymer

backbone and provides a more accurate representation of force-extension behavior, especially
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in the low and intermediate force regimes relevant to many single-molecule experiments. The

WLC model has been successfully applied to model the elasticity of DNAs commonly used

in optical tweezers protein folding studies. Bustamante et al. (2020) provided an influential

early demonstration of WLC behavior in single DNA molecules stretched with optical tweez-

ers. Subsequent work has refined the WLC model to account for phenomena like enthalpic

stretching at high forces, which becomes significant when the applied force approaches or

exceeds tens of piconewtons (Andersen and Chen, 2024; Fiasconaro and Falo, 2023). Stigler

et al. (2011) used WLC model to analyze the complex folding pathway of calmodulin, en-

abling precise measurement of the length of the polypeptide chain in the unfolded state at a

subnanometer scale and identifying several on- and off-pathway intermediates. Hyeon and

Thirumalai (2006) developed a more sophisticated model that accounts for the heterogeneous

flexibility of unfolded proteins. Pfitzner et al. (2013) characterized the mechanical properties

of DNA origami beams, showing their effectiveness as extremely rigid handles for precise,

high-resolution measurements.

In protein folding/unfolding studies, it is often necessary to model both the unfolded/folded

polypeptide and its trapping handle. (Ranaweera et al., 2003) introduced fundamental control

techniques for stabilizing spherical particles in optical tweezers. (Ranaweera et al., 2004)

further refined the model by analyzing lateral escape times under thermal noise. (Ranaweera

and Bamieh, 2005) explored advanced control schemes, improving stability against position

fluctuations. Later, (Li et al., 2013) applied closed-loop control to ensure robust trapping of

biological cells, while (Li and Cheah, 2017) addressed stochastic disturbances, using adaptive

neural networks to enhance trapping stability. Following that, (Zhang et al., 2019) expanded

the manipulation capabilities to 3D environments using magnetic tweezers, enabling versatile

control in complex settings. Finally, (Golgoon et al., 2024) proposed a control Lyapunov

function (CLF) framework for closed-loop control design of polystyrene beads, commonly used

as manipulating handles in optical tweezers experiments, further advancing force calibration

accuracy.
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1.4 Optical Tweezers for Single-Molecule Studies

Key capabilities of optical tweezers include the ability to apply precisely controlled forces,

measure molecular extensions with sub-nanometer accuracy, and observe rare folding events

and transient intermediates that are obscured in bulk experiments (see, e.g., (Bustamante

et al., 2004) and (Zaltron et al., 2020) for a comprehensive review of protein (un)folding

studies using optical tweezers). The high resolution of optical tweezers has enabled detailed

mapping of protein folding energy landscapes. Neupane et al. (2016) used an ultrastable

optical trap to directly observe the transition path time during protein folding, providing

experimental validation of theoretical models of barrier crossing dynamics. Yu et al. (2012)

applied a similar approach to analyze misfolding pathways in prion proteins, uncovering

greater landscape roughness associated with pathological aggregation. Jahn et al. (2016)

utilized optical tweezers to study the folding pathway of the molecular chaperone (Hsp90),

uncovering a tendency for rapid domain misfolding that is mitigated by mechanical tension,

highlighting how single-molecule manipulation reveals folding mechanisms crucial to cellular

protein quality control.

Tweezers Control Strategies. Precise control over applied forces is critical for many

optical tweezers applications (Greenleaf et al., 2005), namely: i) Optical Force-Clamp Systems.

Traditional optical force-clamp systems often rely on active feedback mechanisms such as

proportional-integral-derivative (PID) controllers to a maintain constant force or position.

These systems are constrained by thermal fluctuations and the flexibility of the molecules

involved, which can affect the precision of force application (see, (Bugiel et al., 2017)).

Advanced control strategies such as the mixed objective H2−H∞ optimization framework,

have been developed to tackle the challenges of force control and real-time motion tracking,

these methods offer measurable assurances for force regulation while reducing errors in step

estimation, achieving high precision in force application. Plus, the ability to maintain constant
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forces over long durations enables detailed analysis of motor protein behavior under different

load conditions (see, (Roychowdhury et al., 2013) and (Roychowdhury et al., 2013)). ii)

Acousto-Optic Deflectors. The use of acousto-optic deflectors allows for rapid adjustments to

the trapping beam position. This capability is crucial for studying dynamic processes such as

molecular unfolding, where force stability is essential (Mack et al., 2009). The integration of

real-time step detection schemes allows for the extraction of stepping data in the presence of

thermal noise, enhancing the accuracy of molecular motion studies. The detection of step-like

features in noisy data is essential for analyzing single-molecule dynamics, particularly where

thermal noise is a significant factor (see, (Loeff et al., 2021; Tyson et al., 2015)).

Precise Manipulation and Control Algorithms. The precise manipulation of optically

targeted molecules relies on designing real-time, robust control algorithms to locate and move

the micro/nano-object of interest (e.g., see (Ranaweera et al., 2003, 2004; Ranaweera and

Bamieh, 2005; Li et al., 2013; Li and Cheah, 2017; Zhang et al., 2019, 2020; Mohammadi and

Spong, 2022a)). This purpose is subjected to some challenges, especially when the design of

closed-loop feedback controllers is discussed, including trapping failure when particles drift

from the laser beam, trap Brownian motion due to thermal noise fluctuations, unknown

spatially varying stiffness, and the computational complexity of implementing effective control

algorithms.

The Control Lyapunov Function (CLF) framework offers formal guarantees for stability,

while also being able to manage unmodeled dynamics and parametric uncertainties. Therefore,

CLF-based frameworks beyond their widespread use in robotics and autonomous systems

(e.g., (Galloway et al., 2015; Taylor et al., 2019; Kubo et al., 2020)) are a promising tool for

designing closed-loop control algorithms in nanomanipulation tasks via optical-tweezers. A

major challenge, especially for non-affine-in-control systems, is constructing suitable CLFs,

often requiring computationally intensive methods like sum-of-squares (SOS) programming

(Furqon et al., 2016) or Zubov’s method (Camilli et al., 2008).
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1.5 Gaps in the Existing Literature

In the realm of nanopositioning, Li et al. (2021) utilized integral resonant control (IRC)

to adjust resonant frequencies, significantly increasing closed-loop bandwidth and reducing

tracking errors in piezo-actuated nanopositioners. Hong et al. (2020) further enhanced these

results by combining IRC with input shaping, achieving bandwidth improvements up to

eight times over standard PI control. Yang and Youcef-Toumi (2022) proposed a decoupled

tracking and damping control strategy using multimode charge sensing, simplifying the

control design while offering wide bandwidth and enhanced stability, effectively addressing

challenges such as hysteresis and mechanical resonances. Mohammadi and Spong (2022b)

uses a quadratic optimization-based nonlinear control approach to guide protein folding by

minimizing deviations from a reference vector field, ensuring stable conformation prediction

while avoiding high-entropy-loss routes. Similarly, several closed-loop control algorithms have

been proposed for optical tweezer-based nanomanipulation, including a globally asymptotically

stabilizing (GAS) control law based on saturation analysis (Ranaweera et al., 2003; Ranaweera

and Bamieh, 2005), a sliding mode control scheme with adaptive observers (Li et al., 2013), a

controller utilizing adaptive neural networks (Li and Cheah, 2017), a visual servo proportional

control law (Zhang et al., 2019, 2020), and a Chetaev control framework for protein unfolding

(Mohammadi and Spong, 2022a). Despite the rise of optimization-based nonlinear controllers,

such as MPC-based controllers (see, e.g., (Chi et al., 2022)), optimal decision strategy (ODS)-

based frameworks (see, e.g., (Mohammadi and Spong, 2021, 2022b)), and CLF-based schemes

(e.g., (Reed et al., 2023)), which inherently address stability and safety concerns, a similar

framework is still lacking for optical tweezers. While much work with optical tweezers has

focused on studying stable protein conformations, inducing and characterizing unstable states

presents unique challenges. Traditional approaches aim to stabilize systems, yet deliberately

introducing controlled instability requires a different framework.
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Exploring control schemes in optical tweezers to induce non-equilibrium behavior is a

novel research area. Current research primarily focuses on stability and constant forces, with

limited attention to controlled instability (da Fonseca et al., 2024). Challenges in controlling

nanoparticles for spectroscopy and microscopy have underscored the need for advanced

control schemes to manage instability in a controlled manner (Chen et al., 2022). Exploring

these advancements could lead to significant breakthroughs in manipulating non-equilibrium

behaviors in optical tweezers systems.

The Chetaev instability theorem provides a rigorous mathematical basis for inducing

instability and analyzing unstable equilibria in nonlinear dynamical systems (Braun et al.,

2018). In the broader field of stochastic control, there has been growing interest in controllers

that shape non-equilibrium distributions rather than simply stabilizing equilibrium. A

recent study by (Zhao et al., 2022) proposed a novel control system using a self-organizing

fuzzy cerebellar neural network model designed for the accurate manipulation of biological

cells using holographic optical tweezers, showcasing advanced control strategies for non-

equilibrium systems at the microscopic scale. (Mohammadi and Spong, 2022a) applied

Chetaev functions within a kinetostatic compliance framework to develop destabilizing

control inputs that systematically elongate protein molecules, highlighting the theorem’s

potential for controlled protein unfolding. (Efimov et al., 2014) extended this approach to

develop necessary and sufficient conditions for instability in terms of Chetaev functions,

thereby opening up new possibilities for manipulating molecular systems in a controlled,

unstable state. Applying Chetaev-based control to the nonlinear and stochastic dynamics of

optically trapped biomolecules represents a novel and potentially powerful approach that has

not been previously explored.
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1.6 Contributions and Organization of the Thesis

This thesis seeks to tackle the issue of stability and instability of equilibria through a proper

design of Lyapunov-based feedback controllers, enabling robust manipulation of biological

entities via optical tweezers.

Chapter 2 proposes necessary and sufficient conditions for constructing smooth CLFs,

along with conditions on the trap stiffness. In particular, it addresses system stability through

optimization-based (static nonlinear programming problem along with a one-dimensional

search), closed-loop feedback control design, and with the utilization of Control Lyapunov

Functions (CLFs). Next, simulation results confirm the effectiveness of the CLF-based

control algorithms compared to a well-known GAS control law in the optical tweezers control

literature (Ranaweera et al., 2003; Ranaweera and Bamieh, 2005).

Chapter 3 discusses several gaps that were mentioned above. We develop a novel Control

Chetaev Function (CCF) framework for inducing controlled instability in an optical tweezers

system. This represents the first application of Chetaev-based control to single-molecule

manipulation, bridging a significant gap in the literature. Our approach explicitly incorporates

the nonlinear WLC model of DNA elasticity into the control system design. We demonstrate

how the CCF framework can be used to design controllers that extend tethered DNA molecules

in a controlled manner, providing a new tool for probing non-equilibrium polymer dynamics.

This is particularly important for studying transient states and folding intermediates that

are inaccessible through traditional stabilization-focused control methods. Our stochastic

simulations incorporate thermal fluctuations via the overdamped Langevin equation, validating

the robustness of the control scheme to Brownian motion, stiffness change, and the rate of

collapse of the chain. By combining rigorous nonlinear control theory with polymer physics

models, this work aims to enhance the functionality of optical tweezers for accurate handling

of single molecules under non-equilibrium conditions. The CCF approach developed could

potentially be adapted to a broad spectrum of applications for optical tweezers in biophysics

9



and nanotechnology, opening new avenues for the study of dynamic molecular processes that

require precise, controlled instability.

Ultimately, numerical simulations at the end of Chapters 2 and 3 showcase the reliability

and efficiency of the proposed control framework, even under position fluctuations induced

by thermal noise. Finally, Chapter 4 provides a comprehensive summary of the findings and

key conclusions drawn from this study.

Notation. Given an integer m and a vector x ∈ R
m, we let |x| :=

√
x¦x. This denotes the

Euclidean norm, and ∥u∥ indicates the supremum of a function u(·).
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CHAPTER 2

CONTROL LYAPUNOV FUNCTION (CLF) FRAMEWORK

FOR PARTICLE NANOMANIPULATION

2.1 Introduction

This chapter develops a Control Lyapunov Function (CLF)-based framework to stabilize

spherical particles in optical tweezers, addressing the challenges of precise positioning and

thermal management. We begin by presenting the force field model and trap dynamics 2.2,

drawing on the control-oriented model by Bamieh and colleagues. Key forces, including

thermal fluctuations and viscous drag, are also incorporated to capture realistic particle

behavior. We, then, detail the trap characteristics and optical tweezer control system resulting,

in a non-affine-in-control model that forms the basis for the control design.

In the control problem formulation 2.4, we set the objective of robustly stabilizing the

particle at the trap center, accounting for thermal disturbances and measurement errors.

Next, we introduce the CLF-based closed-loop control algorithm 2.5, deriving smooth CLFs

with conditions that guide stabilizing feedback control. Moving forward to Simulation studies

2.5.3, we demonstrate the effectiveness of the CLF-based control.

By constraining trap stiffness, the control model reduces power fluctuations, protecting

sensitive biomolecules from excessive heating. In summary, this CLF-based framework

enhances control capabilities at the nanoscale, setting the groundwork for manipulating

biomolecules such as DNA, RNA, and proteins—a topic we explored in Chapter 3.

2.2 Force Field Model and Trap Dynamics

In this study, we employ the control-focused model developed by Bamieh and colleagues

(see, (Ranaweera et al., 2003; Ranaweera and Bamieh, 2005)). They capture the behavior

of small beads suspended in a solvent (such as water or glycerol) by modeling the optical
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tweezer force as a nonlinear spring force acting on the beads. This approach is consistent

with experimental observations reported by Simmons et al. (Simmons et al., 1996). The

parameters for the optical tweezers used in this model are provided in Table 2.1 and are

taken from (Ranaweera et al., 2003; Ranaweera and Bamieh, 2005). Additionally, based on

existing nanomanipulation literature (see, e.g., (Zhang et al., 2020, 2019)), we assume that

the gravitational and buoyant forces effectively cancel each other out.

Table 2.1: Optical Tweezers simulation parameters.

Variable Value Variable Value

m 5.5× 10−10 mg rp 1 µm

³3 22 pN/µm3 ³1 10 pN/µm

R 0.674 µm Rmax 0.3893 µm

The Trapped Particle Equation of Motion. The governing equation of motion for a

trapped bead of mass m subject to the optical trapping force Ft(·), viscous drag force Fd(·),

and external disturbances Fe(·), arising from factors like thermal noise, is expressed as

mẍ = Ft(xr) + Fd(ẋ) + Fe(t), (2.1)

where the relative position of the bead (xr) is defined based on the lateral position of the

bead (x) and the laser focus position (xT ) as follows

xr := x− xT . (2.2)

In Equation (2.1), the nonlinear trapping force is given by

Ft(xr) = φ(xr)
(
³3x

3
r − ³1xr

)
, (2.3)

with a saturation condition as follows

φ(y) :=







1 for |y| < R

0 otherwise.

(2.4)

12



Figure 2.1: The optical tweezer control scheme and its stiffness: The right figure depicts
the profile of ´d · | dFt

dxr
| versus xr; the left one demonstrates the key variables in the optical

tweezer non-affine-in-control system model, clearly depicting the bead under the force profile.
Thermal fluctuations tend to displace the particle from the trap, while the trapping force
pulls it back toward the laser focus, maintaining a state of dynamic equilibrium.

Finally, the viscous drag force Fd(·) reads as

Fd(ẋ) = −´dẋ, (2.5)

where the viscous damping coefficient for a bead with radius rp suspended in a fluid with

viscosity ¸f can be calculated using Stoke’s equation as ´d = 6Ã¸frp.

The Optical Tweezer Control System. The interplay between inertia and viscous drag

dictates the dynamic behavior of particles trapped by the optical tweezer. Owing to the

inherent scaling laws governing these forces, microscopic particles confined within a harmonic

potential and subjected to low Reynolds number conditions (characterized by slow motion

within a viscous medium) experience a predominant influence of viscous drag on their inertial

motion (see, e.g., (Bustamante et al., 2020) for further details). Consequently, assuming a

low Reynolds number regime, where viscous forces prevail over inertia, one can neglect the

inertial effects and arrive at the following non-affine-in-control control system
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ẋ = ftwz(x, u, Fe), x ∈ R, u ∈ U , Fe ∈ D, (2.6)

where ftwz : R× U ×D → R is the continuous function

ftwz(x, u, Fe) :=
φ(x− u)

´d

[³3(x− u)3 − ³1(x− u)] +
Fe

´d

, (2.7)

and U ¢ R, D ¢ R are some closed intervals, respectively. Furthermore, the control input u

is the laser focus position, namely, u := xT . In (2.6), the control input can be any measurable

locally essentially bounded signal u(·) : [0,∞) → U and the disturbance Fe(·) : [0,∞) → D is

assumed to be locally essentially bounded and Lebesgue measurable. Finally, the continuity

of ftwz(·) implies that the trapping radius R in (2.4) should satisfy R =
(
α1

α3

)0.5
. The left

schematic diagram in Figure 2.1 demonstrates the important variables of the model given

by (2.6).

2.3 Trap Characteristics.

The optical trap is characterized by several key parameters that define its ability to hold and

manipulate particles. Among these parameters are the range of influence, maximum force

strength, trap stiffness, and capture range velocity (see (Ranaweera, 2004)).

i) Range of Influence. The influence range R refers to the maximum distance at which

a particle can still feel the restoring force of the trap. Beyond R, the particle is no longer

pulled toward the trap center. The lateral influence range can be experimentally determined

by observing the distance at which particles are no longer affected by the trap. R =
√

α1
α3

is

approximately equal to 0.675µm for a 1µm spherical bead, and its influence is posed as a

saturation function in (2.4).

ii) Strength (Maximum Force). The maximum force, (Ft)max, denotes the peak restoring

force exerted by the trap. For the spherical particle under study, (Ft)max and the corresponding

maximum range of force, RF =
√

α1
3α3

, are approximately 2.60 pN and 0.389 µm respectively.
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These values can vary depending on particle size, the configuration of the trap, and laser

power (see (Ranaweera and Bamieh, 2005; Nieminen et al., 2007)).

iii) Trap Stiffness. The trap stiffness is defined as »(x) = dFt

dx
(where dFt

dx
= dFt

dxr
by the

chain rule), with Ft(x) representing the trap force as given in (2.3). Therefore, it follows that

∣
∣
∣
dFt

dxr

∣
∣
∣ =

∣
∣
∣
∣

¶(xr)

´d

{

3³3x
2
r − ³1

}∣
∣
∣
∣
. (2.8)

It is the measure of the force required to displace a trapped particle from the center of

the trap, and higher stiffness implies that the particle is more tightly confined, making it

more resistant to thermal fluctuations. It depends on aspects such as refractive index of the

immersed medium, laser wavelength and power, as well as particle characteristics like size,

shape, and refractive index (Ranaweera, 2004). The plot on the right in Figure 2.1 illustrates

the relationship between ´d ·
∣
∣ dFt

dxr

∣
∣ and the relative position of the bead, denoted as xr. At

xr = 0, the trap stiffness matches the Hookean constant of the optical tweezer, given by α1

βd

.

In contrast, for larger displacements within the laser half-width the behavior is analogous to

a nonlinear restoring spring (see, i.e., (Ghislain et al., 1994; Lee and Padgett, 2012; Jones

et al., 2015)).

iii) Trap Effective Stiffness. ³e reflects the trap’s strength in real, often noisy environments,

accounting for factors like thermal fluctuations, trap nonlinearities, and external forces. These

environmental influences make effective stiffness lower than ideal stiffness. Inside the limits

of the linear force range (Rl), ³e ≈ ³1, outside this range, as |xr| increases beyond Rl, the

system enters a nonlinear force regime where ³1 > ³e(xr) > 0, and eventually reaches zero

when the particle is beyond the trap’s range of influence R. While increasing laser power

raises this stiffness and strengthens the trap, excessive power can lead to sample heating,

risking biological damage in a phenomenon called ”opticution.” Therefore, managing effective

stiffness in real conditions is essential. In 2.5.3, we capture the controller’s performance
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in managing effective stiffness, including thermal noise, to mimic real-time experimental

conditions closely.

iv) Capture Range Velocity. The capture range velocity, denoted by vR, represents the

maximum speed at which moving particles can be decelerated and trapped by the optical

tweezers. It is the speed threshold at which over half of particles entering the trap’s range of

influence are captured.

v) Trap Strength Factors. Trap strength is influenced by various laser parameters, including

power, wavelength, and numerical aperture, which collectively determine the laser’s intensity

gradient and focus. Increasing the laser power and reducing the focus size enhances the trap’s

ability to stably hold particles. Polarization also impacts lateral trapping forces, with forces

parallel to the light’s polarization state being slightly stronger than those perpendicular.

vi) Particle Properties. Trapping efficiency also varies based on the size of the trapped

particle, shape, and refractive index. For particles roughly equal to the laser wavelength,

trapping is optimal, as these particles respond effectively to the intensity gradients generated

by the optical tweezers.

The Optical Tweezer Toolbox generates synthetic experimental data and force profiles

with varying trap characteristics, including particle properties, beam type, and trap stiff-

ness, allowing detailed simulation and analysis of trapped particle behavior under different

conditions (see (Nieminen et al., 2007)).

2.4 Control Problem Formulation and Objective

For the non-affine-in-control optical tweezer system described in (2.6), our goal is to robustly

stabilize the position of the bead x at the origin using a feedback input u = k(x) that ensures

robust stability, accounting for measurement errors e(·) and external disturbances Fe(·). In

particular, we consider the dynamics
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ẋ(t) = ftwz

(

x(t), k
(
x(t) + e(t)

)
, Fe(t)

)

. (2.9)

This refers to the control system in (2.6) governed by the state feedback control law

u = k(x), with sensor measurement error e(t) and external disturbances Fe(t). Our aim

is to determine a robustly stabilizing feedback, following the approach of Ledyaev and

Sontag (Sontag, 2009; Ledyaev and Sontag, 1999), that remains robust against measurement

errors e(·) and external disturbances Fe(·), driving the states of the perturbed system (2.9)

into a small neighborhood around the origin.

2.5 CLF-Based Closed-Loop Control Algorithm

In this section, we present our solution to the control problem outlined in Section 2.4,

employing smooth Control Lyapunov Functions (CLFs) and CLF-based robustly stabilizing

feedback control methods developed by Ledyaev and Sontag (see, e.g., (Sontag, 2009; Ledyaev

and Sontag, 1999)). We first establish the necessary and sufficient conditions for smooth

CLFs in the context of optical tweezers in Section 2.5.1, followed by our CLF-based control

algorithm in Section 2.5.2.

2.5.1 Construction of Smooth CLFs for the Optical Tweezer Control System

Consider the non-affine-in-control nonlinear system (2.6) without disturbances, i.e., Fe = 0.

A differentiable function V : R → Rg0 qualifies as a smooth control Lyapunov function

(CLF) for the unperturbed optical tweezer system (2.6), with Fe = 0, if V (·) is positive

definite, proper, and infinitesimally decreasing. It indicates the existence of a positive definite

continuous function W : R → Rg0 and a nondecreasing function Ã : Rg0 → Rg0 such that

sup
x∈R

min
|u|fσ

(
|x|
) ∇V (x) · ftwz(x, u, 0) +W (x) f 0. (2.10)
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Remark 1. The constraint |u| f Ã
(
|x|
)
in the definition of differentiable CLFs theoretically

prevents unbounded control inputs u(t) near the origin (see, e.g., (Sontag, 2009) for further

details). ⋄

The proposition below describes the necessary and sufficient conditions for developing

differentiable CLFs for the control systems in the context of optical tweezers.

Proposition 1. For the optical tweezer control system (2.6), let W : R → Rg0 be a positive

definite and continuous function. Then, a smooth function V : R → Rg0 is a differentiable

CLF satisfying (2.10) if and only if

W (x)− ·0

∣
∣
∣
∣

dV

dx

∣
∣
∣
∣
f 0, for all x ∈ R, (2.11)

having ·0 :=
2
√
3

9βd

R³1.

Proof. Given the function W (·), we define the mapping G : R × R → R by (x, u) 7→

∇V (x) · ftwz(x, u, 0) +W (x), where V (·) is a differentiable function with derivative dV (x)
dx

.

Hence,

G(x, u) =
(dV

dx

)

· φ(x− u)

´d

P (x− u) +W (x), (2.12)

where P (x − u) := ³3(x − u)3 − ³1(x − u) and W (x) is a positive definite, continuous

function. From (2.10), it follows that V (·) is a differentiable CLF for the unperturbed optical

tweezer system if and only if

min
|u|fσ(|x|)

G(x, u) f 0 for all x ∈ R. (2.13)

where Ã : Rg0 → Rg0 is a nondecreasing function. For an arbitrary x ∈ R, we define the

mapping H : R → R by u 7→ G(x, u). Given the compact interval Ix :=
[
− Ã(|x|), Ã(|x|)

]
,

the inequality in (2.13) holds if and only if
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min
u∈Ix

H(u) f 0 for all x ∈ R. (2.14)

Since H(u) is continuous, it achieves its global minimum on the compact interval Ix for

each x ∈ R. The critical points of H(·), where dH
du

= 0, are given by u∗
1 = x−

(
α1

3α3

)0.5
and

u∗
2 = x+

(
α1

3α3

)0.5
, for which we have

H(u∗
1,2) = W (x)± 2

√
3

9´d

R³1

︸ ︷︷ ︸

ζ0

dV

dx
. (2.15)

Considering the boundary points of the interval Ix, specifically ul = −Ã(|x|) and ur =

Ã(|x|), we define »r(x) :=
ϕ(x−ur)

βd

P (x − ur) and »l(x) :=
ϕ(x−ul)

βd

P (x − ul). Therefore, we

achieve

min
u∈Ix

H(u) = W (x) + min
{

± ·0
dV

dx
, »r(x)

dV

dx
, »l(x)

dV

dx

}

. (2.16)

Subsequently, we can conclude

min
u∈Ix

H(u) f W (x)− ·0

∣
∣
∣
∣

dV

dx

∣
∣
∣
∣
. (2.17)

Finally, the proof of the proposition 1 is obtained by substituting (2.17) into Inequal-

ity (2.14).

Remark 2. As shown in Proposition 1, the physical parameters of the optical tweezer—such

as the trapping radius, viscous damping factor of the environment, and trap stiffness coeffi-

cients—directly appear in the condition specified by (2.11). ⋄

Proposition 1 enables the construction of a range of smooth CLFs for the optical tweezer’s

non-affine-in-control nonlinear system. For example, the pair

W (x) = |x|, V (x) =
1

2·
x2, (2.18)
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where · is a positive constant with 0 < · f ·0, satisfying the condition in Proposition 1.

Therefore, V1(·) qualifies as a smooth CLF for the optical tweezer control system. In some

cases, directly controlling the decay rate of CLFs is desirable (see, e.g., (Tang and Daoutidis,

2019)). The following corollary, derived directly from Proposition 1, addresses this need for

controlling the decay rate of CLFs.

Corollary 1. Consider Proposition 1 and let

W (x) =
1

·
µ(x)V (x),

V (x) = V0

{

exp
(∫ x

0

µ(s)

·
ds
)

− 1

}

,

(2.19)

where µ : R → Rg0 is any continuous function with µ(x) > 0 for all x ∈ R\{0} and µ(0) g 0.

Additionally, V0 is an arbitrary positive constant, and · is a positive constant with 0 < · f ·0.

Then V (·) is a smooth CLF for the optical tweezer.

As specific cases of Corollary 1, if µ1(x) = |x| and µ2(x) = µ0 where µ0 > 0 is a positive

constant, then

V1(x) = V0

{

exp
(x2

2·

)
− 1
}

, and

V2(x) = V0

{

exp
(µ0 x

·

)
− 1
}

.

(2.20)

Therefore, V1 and V2 serve as smooth CLFs for the optical tweezer control system

corresponding to µ1(·) and µ2(·), respectively.

2.5.2 CLF-based Robust Stabilizing Feedback

Once a smooth CLF is identified for the unperturbed optical tweezer system without distur-

bance input, the feedback input u = k∗(x) can be determined to satisfy the steepest descent

condition below.
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k∗(x) := argmin
|u|fσ

(
|x|
)
W (x) +∇V (x) · ftwz(x, u, 0), (2.21)

where the corresponding control law is a globally asymptotically stabilizing (GAS) feedback

feedback for the perturbed optical tweezer system (2.9), accounting for sensor measurement

errors and external disturbances, as established in (Sontag, 2009, Theorem 7).

Proposition 2, which leverages the proof of Proposition 1, eliminates the need to use an

optimization algorithm to determine the steepest descent feedback law in (2.21).

Proposition 2. Let V (·) be a differentiable CLF for the non-affine-in-control optical tweezer

system given by (2.6). Then, the steepest descent feedback control input satisfying (2.21) can

be derived from

k∗(x) = argmin
u∈{

x±( α1

3α3

)

0.5,±σ(|x|)}
W (x) +∇V (x) · ftwz(x, u, 0). (2.22)

Proof. The proof follows directly from that of Proposition 1. Take into account any arbitrary

position x ∈ R. Hence, the feedback input u∗ that minimizes G(x, u) in (2.12) over the

compact interval Ix =
[
− Ã(|x|), Ã(|x|)

]
is either one of the critical points x ±

(
α1

3α3

)0.5
or

one of the boundary points ±Ã(|x|).

Remark 3. The unique structure of the non-affine-in-control optical tweezer nonlinear system

obviates the need of solving the NLP given in (2.22), which is a computationally intensive

optimization scheme. Indeed, we can utilize Proposition 2 to determine the robust stabilizing

feedback control k∗(x) by evaluating only four values at each bead position. ⋄

2.5.3 Simulation Studies

In this section, we present numerical simulations that illustrate the effectiveness of the

proposed control framework subjecting to external disturbances. The simulation parameters
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are taken from (Ranaweera et al., 2003; Ranaweera and Bamieh, 2005) and are listed in

Table 2.1. A particle held in the harmonic Gaussian beam of optical tweezer experiences an

external random thermal Langevin force Fe(t), modeled as external disturbances in the trap

system dynamics, given in the equation (2.7). This force has a mean value of zero, ïFe(t)ð = 0,

unit load impedance, and the constant power spectrum density (PSD) of 4´kBT , where

kB represents the Boltzmann’s constant and T denotes the absolute temperature (Gittes

and Schmidt, 1998). For the spherical bead of interest with radius rp = 1µm, the PSD is

approximately 1.6× 10−4 µm2 at room temperature.

We begin by modeling a globally asymptotically stabilizing (GAS) control law as proposed

by Bamieh and colleagues (Ranaweera et al., 2003; Ranaweera and Bamieh, 2005). The

very control law is derived by approximating the trapping force using a hyperbolic tangent

function and reads as

k(x) = x− É tanh

(
p

¼´d

x

)

, (2.23)

with p = 10, ¼ = 5, and É = 0.3893µm.

Figure 2.2 illustrates the time profile of the position of the bead, starting from x(0) = 1µm,

under the control law given in equation (2.23). The inner plot shows the time profile of the

optical trap effective stiffness. We can observe that both the control input xT and the trap

effective stiffness
∣
∣dFt

dx

∣
∣ are subject to significant oscillations while stabilizing the postion of the

bead. Additionally, sharp variations in the control input and trap effective stiffness profiles,

occurring around t ≈ 3.9ms, poses another noticeable challenge for effective control of the

optical tweezer system. Specifically, an oscillatory relative position of the bead, xr, about

the origin drives subsequent oscillations in the effective stiffness and around α1

βd

, negatively

impacting system stability. These oscillations in trap stiffness align with the behavior shown

in the left plot of Figure 2.1, where oscillations in the bead’s relative position around the

origin correspond to fluctuations in stiffness near α1

βd

.
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Figure 2.2: The position of the bead, initially located at x(0) = 1µm, is stabilized using the
optical tweezer trap model under the GAS control law provided by (Ranaweera et al., 2003).
The bead is under the external random thermal Langevin force with zero mean and a PSD
with the approximate value of 1.6× 10−4 µm2. The inner plot demonstrates the time profile
of the trap effective stiffness.

In the second set of numerical simulations, we modeled · = ·0, using the CLF pair V (x)

and W (x) defined in (2.19). The optical trap effective stiffness is constrained by setting

»0 = ³1, resulting in ÃT (|x|) = |x|. Then, The stabilizing control input is generated by solving

the NLP provided in equation (2.21), which requires no knowledge of external disturbances

by setting Fe = 0.

Figure 2.3 illustrates the time profile of the bead position, starting from x(0) = 1µm,

under the control law given by equation (2.21) with the CLF pair in equation (2.19) and

having · = ·0. The inner plot shows the time profile of the optical trap effective stiffness.

As seen in both plots, the commanded control input xT and the trap effective stiffness
∣
∣dFt

dx

∣
∣ exhibit minimal oscillations while effectively driving the bead position to a very small

neighborhood around the origin. Notably, the time profile of the trap effective stiffness

remains smoother than what it experiences in the GAS control law, a clear finding when

comparing Figure 2.3 with 2.2.

From a control system bandwidth perspective, the proposed CLF-based control algorithm

outperforms the ad-hoc controller in (2.23). As Sehgal et al. (Sehgal et al., 2009) noted,
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Figure 2.3: Stabilization of the bead position, starting from x(0) = 1µm, is achieved using
the optical tweezer trap model under the proposed control law which we poroposed. The
inner plot demonstrates the time profile of the effective stiffness of the trap. The bead is
under the external random thermal Langevin force with zero mean and a PSD with the
approximate value of 1.6× 10−4 µm2.

controlling the bead’s position encounters significant limitations in bandwidth under the

high-frequency force of optical tweezers.

2.6 Conclusion

This chapter introduced a Control Lyapunov Function (CLF)-based framework for robustly

stabilizing a spherical particle within an optical tweezer system, targeting the core challenges

of precise positioning and control. Through a CLF-based approach, we formulated a nonlinear

optimization-based control strategy that balances stabilizing control forces with external

disturbances. The resulting Nonlinear Programming (NLP) model offers robust feedback

control inputs that stabilize the particle, even when initially positioned far from the laser

beam, while compensating for thermal fluctuations.

A key feature of this framework is its focus on thermal effects—critical in optical trap-

ping—where high laser power, though advantageous for swift manipulation, risks unwanted

heating that can damage biological samples. By carefully defining force ranges, trap stiffness,
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and other trap parameters, the control model ensures particle confinement within the optical

trap while mitigating thermal stress. Numerical simulations confirm the robustness of this

approach, showing its capacity to stabilize the particle against stochastic thermal forces. The

model’s constraints on trap stiffness effectively reduce oscillations and prevent power levels

that might induce heating, thus protecting sensitive biomolecules.

This CLF-based framework advances control at the microscale and lays the groundwork

for manipulating nanoscale biomolecules such as DNA, RNA, and proteins in future exper-

iments—an effort further explored in Chapter 3 with a focus on manipulating nanoscale

biomolecules such as DNA. Moving forward, developing refined control algorithms with

temperature-regulation mechanisms will be essential to enhance trapping performance while

minimizing thermal risks. This expansion could enable new applications in molecular biol-

ogy, allowing precise, non-invasive manipulation of biomolecules under increasingly complex

experimental conditions.
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CHAPTER 3

CONTROL CHETAEV FUNCTION (CCF) FRAMEWORK

FOR PROTEIN DENATURATION

3.1 Introduction

This chapter presents a control chetaev function (CCF)-based control framework to achieve

controlled unfolding of a DNA using optical tweezers, with a focus on ensuring system

instability to promote denaturation. Beginning with an overview of the force field model for

optically trapped DNA in 3.2, we derive the governing equations, including trapping forces,

the worm-like chain (WLC) model, Langevin forces, and viscous drag. Then, we examine

the non-affine and the corresponding affine-in-control system dynamics in 3.2.1 and 3.2.2 to

explore proper control approaches. Subsequently, we introduce CCFs as a foundation for

designing closed-loop control inputs based on Chetaev’s necessary and sufficient conditions,

achieving controlled system instability for protein unfolding in 3.3. Additionally, in 3.4, we

review universal control laws for instability as formulated by (Efimov et al., 2014), providing a

structured approach for implementing unbounded and norm-bounded control inputs. Finally,

Simulation studies, in 3.5, employ the Euler–Maruyama algorithm to numerically validate

the control approach under thermal conditions and different sampling times.

3.2 Force Field Model

In this section, we outline the equation of motion that governs optically tapped polymers

under the influence of potential forces, covering the non-affine and corresponding affine-in-

control system dynamics. With respect to the force profile shown in Figure 3.1, the WLC

force combined with thermal fluctuation attempt to move the particle out of the trap, while

the trapping force draws it back towards the laser focus, maintaining a dynamic equilibrium.
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Figure 3.1: Schematic of the ensemble system of DNA and its trapping handle in the
propagation of optical tweezer’s harmonic Gaussian beam.

Therefore, the motion of an optically trapped DNA molecule through a Brownian trapping

handle (a bead experiencing thermal disturbances modeled as Brownian motion) of mass m

mẍ = Ftwz(xr)− Fwlc(x) + FL(t)− FD(ẋ) + FE(t) (3.1)

where, Ftwz(.), Fwlc(.), FL(.), FD(.), and FE(.) denote the trapping force, worm-like chain

(WLC) force, Langevin force, viscous drag, and other external disturbances, respectively. The

lateral bead displacement is determined by the bead position x and the laser focus position

xT , given as xr := x− xT .

The trapping force behaves as a nonlinear restoring spring and reads as

Ftwz(xr) = ϕ(xr)(³3xr
3 − ³1xr), (3.2)

with the maximum restoring force occuring at |xr| = Rmax = 0.3893µm and the optical

tweezer cut off R setting at 0.675µm, which introduces the following trap saturation
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ϕ(xr) =







1 for |xr| < R

0 otherwise.

(3.3)

For the model parameters refer to Table 3.1. The trap force spring constants, ³1 and ³3,

are derived from the observations of Simmons et al (Simmons et al., 1996) and taken from

(Ranaweera et al., 2003), (Ranaweera and Bamieh, 2005), and (Golgoon et al., 2024). The

WLC model is expressed as

Fwlc =
kBT

Lp

[

1

4
(
1− x

L

)2 − 1

4
+

x

L

]

. (3.4)

The WLC parameters are obtained from (Bustamante et al., 2020) (refer to Table

3.1). Specifically, lp and L, representing the persistence and contour length of the DNA

respectively, are derived from a nonlinear least-squares fit by Bustamante (Bustamante et al.,

1994), through Figure 3.2.

The thermal noise, FL(t), is modeled as a random signal

FL(t) =
√
2SW (t), (3.5)

where W (t) represents white noise and 2S the noise intensity. The formulation is due to the

following properties: ïFL(t)ð = 0, ïFL(t)x(t)ð = 0, and ïFL(t)FL(t+ Ä)ð = 2S¶(Ä).

The viscous drag, FD(ẋ), can be represented as

FD(t) = ´ẋ, (3.6)

where the friction coefficient (´) is determined for a bead of radius rp by the Stokes’ law as

´ = 6Ã¸rP , with a fluid viscosity ¸.

By simplifying equation 3.1 under the condition that the setup is not influenced by any

other external potential FE(t), and considering that ϕ(xr) remains constant at 1 due to the
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Figure 3.2: The force-extension profile through (Bustamante et al., 1994), where squares
represent experimental force-extension data, and the solid line denotes a fit for the entropic
force required to extend a worm-like polymer. Additionally, dashed curve represents the
freely-jointed chain (FJC) model with the contour length of 32.7µm and the segment length
of 100nm chosen to fit the small-force data.

persistence length being significantly smaller than the optical tweezer cutoff lP << rP , one

can combine equations 3.2, 3.4, 3.5, and 3.6 to arrive at

mẍ = ³3xr
3 − ³1xr −

kBT

Lp

[

1

4
(
1− x

L

)2 − 1

4
+

x

L

]

−
√
2SW (t)− ´ẋ. (3.7)

3.2.1 Non-Affine-in-Control Dynamics

The system dynamics follows an overdamped Langevin equation and can be obtained from

equation 3.7. Given the low Reynolds number—attributable to the slow motion of the handle

in a viscous medium under a harmonic trapping potential—the mass of the bead becomes

negligible. Therefore, the dynamics is governed by the Non-Affine-in-Control system
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ẋ =
1

´
[FTWZ−DNA(x(t), u(t))]− À(t), (3.8)

where , x ∈ R, u ∈ U, and À ∈ D. The continuous function FTWZ−DNA(x(t), u(t)) maps

FTWZ−DNA : R× U → R and stands for the trap-chain interaction force with the definition

FTWZ−DNA(x(t), u(t)) := Ftwz(xr(t))−Fwlc(x(t)). The control input u can be any measurable

locally bounded signal u(·) : [0,∞) → U, here is considered to be the laser focus as u := xT .

The thermal noise (À(t)) is determined through equation 3.5 and by the relation between

the diffusion coefficient (D) and the dissipation constant (´) according to the fluctuation-

dissipation theorem, D = kBT
β

, which leads to À(t) =
√
2DW (t). Therefore, through equations

3.7 and 3.8, we can obtain

ẋ =
1

´

[

³3(x− u)3 − ³1(x− u)− kBT

Lp

(

1

4
(
1− x

L

)2 − 1

4
+

x

L

)]

−
√
2DW (t). (3.9)

3.2.2 Affine-in-Control Dynamics

Due to the smoothness of vector field, FTWZ−DNA(x(t), u(t)), and by linearization about the

control input, the nonlinear non-affine system of interest can be modeled in an affine-in-control

structure as

ẋ = f(x) + g(x)u+ u(R(x, u)u), (3.10)

where f(x) = FTWZ−DNA(x, 0) and G(x) = ∂FTWZ−DNA

∂u
(x, 0). Therefore, the exact

linearization of the vector field with respect to input is

ẋ =
1

´

[

³3x
3 − ³1x− kBT

Lp

(

1

4
(
1− x

L

)2 − 1

4
+

x

L

)]

+
1

´

(
³1 − 3³3x

2
)
u− ³3

´
u3 +

3³3

´
u2x−

√
2DW (t). (3.11)

30



By eliminating the higher order terms of u in equation 3.11, one can facilitate the use

of universal feedback controls discussed in section 3.3. Therefore, the vector field can be

expressed in an affine-like form of

ẋ = f(x) + g(x)u, (3.12)

with f(x) = 1
β

[

³3xr
3 − ³1xr − kBT

Lp

(

1

4(1− x
L)

2 − 1
4
+ x

L

)]

and g(x) = 1
β
(³1 − 3³3x

2).

Table 3.1: Optical Tweezers simulation parameters.

(a) Particle term model parameters

Variable Value Variable Value

m 5.5× 10−10 mg rp 1 µm

³3 22 pN/µm3 ³1 10 pN/µm

R 0.674 µm Rmax 0.3893 µm

(b) WLC term model parameters

Variable Value Variable Value

lp 53.4± 2.3 nm L 32.8± 0.1 µm

kBT 4.11× 10−21 Nm ´ 0.01 pNs/µm

3.3 Control Chetaev Function (CCF) Feedback Control Design

In this section, we develop a CCF-based feedback control framework aimed at destabilizing

targeted system dynamics by leveraging the CCF properties. We first address the entropy

constraints relevant to DNA unfolding within optical tweezers in 3.3.1, then define the

objectives of the CCF-based control in 3.3.2, and finally explore the conditions under which

the CCF satisfies the Small Control Property (SCP) in 3.3.3.

3.3.1 Trap Stifness

The entropy constraint for all x ∈ V+ follows:

k Sign

(
∂V

∂x

)

>
f(x)

|g(x)| (3.13)

which is due to f(x) > −k|g(x)| − Sign
(
∂V
∂x

)
.

31



TS◦ = ·NL◦2 (3.14)

The change rate of the entropy in the final phases of unfolding is related to the rate of

collapse of the chain through equation 3.18, leading to a collapse time Äc, where ·, N , and S◦

respectively denote the monomer friction coefficient, the number of monomers in the chain,

and the rate of change of entropy (see, (De Gennes, 1985)).

To unfold the DNA molecule with a bounded rate of change of entropy, denoted Ṡ,

we consider the biophysical properties of DNA modeled as a flexible coil. According to

(De Gennes, 1985), the entropy change rate is given by T Ṡ ∼ ¸ẋ2x, indicating that the rate

of entropy change increases with the DNA extension/unfolding rate.

We design a closed-loop control input to facilitate DNA unfolding while constraining ẋ.

This is achieved by controlling the optical tweezer’s trap position, thereby regulating the

unfolding control input.

3.3.2 Problem Objective Through CCF-Based Control

Consider a norm-bounded control from Uk = {u ∈ R | |u| < k}, with some k > 0, and a

smooth function V : B(ε0) → R such that V (0) = 0, V+ ∩ B(ε) ̸= ∅ for any ε ∈ (0, ε0], and

that V+ = {x ∈ B(ε0) | V (x) > 0}. Then, V is a CCF with respect to the controls from Uk if

for all x ∈ V+:

sup
u∈Uk

{a(x) + B(x)Tu} > 0. (3.15)

Considering that a(x) = D−V (x)f(x) and B(x) = D−V (x)g(x) are directional derivatives

of the continuously differentiable function V : R → Rg0.

We take the trap position xT as the control input u so that the position of the optical

tweezer can be directly controlled. An acousto-optic deflector (AOD) actuates the trap focal
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point position, xT , and thus the bead’s position is recorded by a digital camera (see (Shaevitz,

2006)).

3.3.3 CCF with the Small Control Property (SCP)

The CCF V (x) for system 3.12 satisfies the Small Control Property (SCP) if for each ε > 0

∃¶ > 0, such that if x ∈ V+ then |x| < ¶, i.e. if x ∈ V+ ∩ {x : |x| < ¶}, then ∃|u| < ε such

that a(x) + B(x)u > 0. The SCP property for a CCF holds if and only if

lim
|x|→0

a(x)

|B(x)| g 0 (3.16)

for all x ∈ V+.

3.4 CCF-Based Feedback Control Laws for System Instability

This section reviews the universal control laws formulated by (Efimov et al., 2014), which

provides necessary and sufficient conditions for achieving system instability through chetaev-

based, destabilizing control strategies. These laws offer a framework that incorporate

unbounded and norm-bounded control inputs, whichever best serves our interest.

3.4.1 Chetaev-Based Unbounded Control Law

If for the system 3.12 there exists a CCF V : B(ϵ0) → R with respect to controls from Uk,

then the control

uEfmv(x) =







−[
a(x)− p

√
a(x)p+B(x)2q

B(x)2
]B(x) if b ̸= 0;

0 if b = 0

(3.17)

is continuous for all x ∈ V+, having 2q g p > 1, and q > 1, and ensures system instability

in B(ϵ0) (see theorem 2 in (Efimov et al., 2014)).
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3.4.2 Chetaev-Based Norm-Bounded Control Law

If for the system 3.12 there exists a CCF V : B(ϵ0) → R with respect to controls from Uk,

then the control

uEfmv(x) =







−[
a(x)−

√
|a(x)|p+B(x)2q

B(x)2(1+ p
√

1+k−pB(x)2q−p)
]B(x) if b ̸= 0;

0 if b = 0

(3.18)

is continuous for all x ∈ V+, having u(x) ∈ Uk, 2q g p > 1, and q > 1, and ensures system

instability in B(ϵ0) (see theorem 3 in (Efimov et al., 2014)).

3.5 Simulation Studies

We introduce the Euler–Maruyama algorithm, a numerical method for solving stochastic

differential equations (SDEs) that include noise terms, such as those in Langevin dynamics

3.5.1. Building on the classic Euler method, the algorithm effectively captures stochastic

influences, making it suitable for simulating DNA unfolding under thermal fluctuations.

Here, Euler–Maruyama discretizes system dynamics to model DNA’s response in an optical

trap, facilitating the analysis of candidate Control Chetaev Functions (CCF) for the optical

tweezer-DNA pair in 3.5.2.

3.5.1 Euler–Maruyama algorithm.

Euler–Maruyama algorithm is a numerical integration scheme specifically designed for solving

stochastic differential equations (SDEs), which include random noise terms such as those

present in Langevin dynamics. This method is an extension of the classical Euler method and

provides a simple yet effective way to approximate solutions to SDEs by incorporating the

effect of stochastic forces. Here, The Euler–Maruyama algorithm enables the simulation of

the DNA unfolding process under thermal fluctuations by discretizing the system dynamics
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over small time steps, allowing for accurate representation of random disturbances in the

trapping environment. This approach is particularly suitable for systems where noise plays a

significant role, such as in the molecular dynamics of optically trapped particles (see (Pesce

et al., 2020)). The algorithm scheme is as follows:

xi+1 − xi

∆t
=

1

´
[F d,i

TWZ−DNA]− À(t), (3.19)

xi+1 = xi +
∆t

´
[F d,i

TWZ−DNA]−
√
2D∆t ni. (3.20)

where ni is a Gaussian random variable with zero mean and unit variance. The time step ∆t

is significantly smaller than the characteristic time scales of the stochastic process, is chosen

to be 1µsec in 3.5 (see (Volpe and Volpe, 2013) and (Pesce et al., 2020)).

3.5.2 Candidate CCF for Protein Unfolding Under Chetaev Conditions

The CCF V (x) = x is a candidate CCF due to satisfying the necessary and sufficient

conditions in section 3.3.2, outlined as follows: i) For all 0 < x <
√

α1

3·α3
, |B(x)| ≠ 0, which

verifies it as a valid CCF; ii) The limit limx→0
f0(x)

∣

∣

∣

1

βd
[α1−3α3x2]

∣

∣

∣

= 0 holds, thereby confirming

that the Small Control Property (SCP) is met, ensuring the system’s responsiveness to small

control inputs; iii) The inequality k >
a3x

3−a1x−FWLC(x)
|−3a3x2+a1| holds for all positive k and sufficiently

small x, indicating that the control parameters support effective destabilization. Therefore,

V (x) = x serves as a suitable CCF candidate, allowing us to apply the universal control

formulas in 3.3.2 to induce system instability according to the parameters listed in Table 3.1,

and having p = 2, q = 1.01, and k = 0.1µm.

Figure. 3.4 demonstrates the effectiveness of the controller with a 1 ms sampling time,

which is typical for optical tweezers experiments, through (Ranaweera et al., 2003).
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Figure 3.3: Simulation results with Tsampling = 0.1ms. The left picture is with no thermal
noises and the right one is with the consideration of thermal disturbances.

Figure 3.4: Simulation results with Tsampling = 1ms. The left picture is with no thermal
noises and the right one is with the consideration of thermal disturbances.

3.6 Conclusion

This chapter introduced a Control Chetaev Function (CCF)-based framework for manag-

ing constrained, closed-loop unfolding of DNA molecules via optical tweezer systems. By

leveraging the optical trapping potential and integrating key forces—including the trapping

potential itself, worm-like chain (WLC) behavior, and thermal disturbances—the proposed

model captures the intricate dynamics of optically trapped DNA. The candidate CCF for

the optical tweezer-DNA pair was validated to meet small control properties, supporting

precise manipulation within the practical limits. Leveraging linearization with respect to

the control input, we designed controllers that achieve protein unfolding through system
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instability, attained via closed-loop control inputs derived from the necessary and sufficient

conditions of CCFs.

The findings illustrate that the proposed framework can effectively manage the delicate

force interactions required for DNA unfolding, destabilizing the system in a controlled manner

to promote denaturation. Simulations with thermal disturbances validated the robustness of

this control approach, demonstrating its ability to achieve precise system behavior even under

stochastic thermal influences. Ultimately, this control methodology offers a promising pathway

for refined manipulation of biomolecular structures in optical tweezer experiments, where

reliable control of single-molecule behavior is essential. Future work will include considering

thermal and temperature effects for “safe” unfolding of DNA, which could further optimize

control and reduce potential thermal stress on molecular structures during experimental

manipulations. This enhances the potential for broader applications in molecular biology and

biophysics.
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CHAPTER 4

CONCLUSION

In this work, we developed an innovative control framework for the precise manipulation of

biomolecules, with designing stable and destabilizing control laws for optical tweezers-driven

manipulation tasks. It begins by establishing a stabilizing, Control Lyapunov Function

(CLF)-based control input, effectively addressing the challenges posed by thermal fluctuations

inherent in optical trapping of spherical beads. It improves the controller precision at the

microscale and opens new possibilities for trapping and manipulating sensitive biomolecular

structures like DNA and proteins.

Building on this foundation, we introduced a novel Control Chetaev Function (CCF)-

based framework tailored for controlled instability, facilitating the unfolding of biomolecules

and polypeptide chains. This approach leverages instability, enabling the exploration of

transient molecular states otherwise obscured by traditional stabilization-focused methods.

Our application of CCFs in optical tweezer control system represents a significant contribution,

enabling DNA unfolding while minimizing thermal and mechanical stress. Simulation results

confirmed that the proposed CCF-based control setup could reliably induce instability for

protein denaturation, even under stochastic thermal noise, highlighting its potential for

probing complex molecular dynamics.

To conclude, this thesis presents a comprehensive framework for both stable and unstable

control of biomolecules with optical tweezers, advancing single-molecule studies in biophysics.

The combination of CLF and CCF-based control methodologies equips researchers with

powerful tools for precise manipulation at the nanoscale. This work lays a robust foundation

for future advancements in the controlled manipulation of biomolecular structures. It fosters

deeper insights into molecular mechanisms, critical to such fields as precision medicine and

genetic engineering.
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