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Abstract

Many commercial Large Language Models

(LLMs) are often closed-source, limiting devel-

opers to prompt tuning for aligning content gen-

eration with specific applications. While these

models currently do not provide access to token

logits, we argue that if such access were available,

it would enable more powerful adaptation tech-

niques beyond prompt engineering. In this paper,

we propose a token-level probability reweighting

framework that, given access to logits and a small

amount of task-specific data, can effectively steer

black-box LLMs toward application-specific con-

tent generation. Our approach views next-token

prediction through the lens of supervised classi-

fication. We show that aligning black-box LLMs

with task-specific data can be formulated as a la-

bel noise correction problem, leading to Plugin

model – an autoregressive probability reweighting

model that operates solely on logits. We provide

theoretical justification for why reweighting logits

alone is sufficient for task adaptation. Extensive

experiments with multiple datasets, LLMs, and

reweighting models demonstrate the effectiveness

of our method, advocating for broader access to

token logits in closed-source models. We provide

our code at this https URL.

1. Introduction

The rise of Large Language Models (LLMs) has revolution-

ized generative Artificial Intelligence, yet the most capable

models are often closed-source or black-box (Achiam et al.,

2023; Bai et al., 2022a). These models generate text based

on input prompts but keep their internal weights and training

data undisclosed, limiting transparency and customization.
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Figure 1. Inference phase of the Plugin model. The token proba-

bilities are a product of the probabilities from the black-box model

and a reweighting model that denotes label transitioning.

Despite these constraints, closed-source LLMs are widely

adopted across applications ranging from travel itinerary

generation to tax advice, with developers largely relying on

prompt optimization to achieve domain-specific outputs.

However, this reliance on prompt engineering is insufficient

for specialized tasks, e.g., those requiring brand-specific

tone or style. Consider a content writer aiming to generate

product descriptions that reflect a brand’s unique identity.

Black-box LLMs, trained on broad datasets, often fail to

meet such nuanced requirements. With access limited to gen-

erated tokens, developers resort to zero-shot (Kojima et al.,

2022) or few-shot (Song et al., 2023) prompting techniques.

However, if model weights were accessible, advanced tech-

niques like Parameter-Efficient Fine-Tuning (PEFT) using

LoRA (Hu et al., 2021), QLoRA (Dettmers et al., 2024), pre-

fix tuning (Li & Liang, 2021), or adapters (Hu et al., 2023a)

could be employed for fine-tuning. Yet, due to intellectual

property concerns and the high costs of development, most

commercial LLMs remain closed-source, and even with

API-based fine-tuning options, concerns over data privacy

discourage developers from sharing proprietary data.

In this paper, we propose a middle ground between general-

purpose LLM creators and developers seeking application-

specific alignment. We argue that providing access to token

logits, in addition to generated text, would enable more ef-

fective customization for downstream tasks. Viewing next-

token prediction as a classification problem, we draw an

analogy between LLMs and supervised classification mod-

els. Since decoder-only LLMs are trained to predict the next

token given preceding tokens, aligning black-box LLMs to

domain-specific data can be reframed as a label noise cor-

rection problem in supervised classification. In this analogy,

the LLM’s broad training data serves as proxy labels, while
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application-specific data represents true labels. This can

be interpreted as a distribution shift scenario. For example,

in “label shift” (Lipton et al., 2018), certain tokens may ap-

pear more frequently in application-specific data than in the

LLM’s original corpus. In “class-dependent or independent

label noise” (Patrini et al., 2017), synonymous expressions

or stylistic variations in application data may diverge from

those seen during model training.

Inspired by the label noise correction method of Patrini

et al. (2017), which estimates a transition matrix to correct

class-dependent noise, we adapt this idea to black-box LLM

alignment. Unlike prior work that modifies the loss and

retrains the model, we lack access to the LLM’s training

data and cannot retrain the model. Instead, we estimate an

autoregressive transition matrix from application-specific

data and use it to reweight token probabilities at inference.

This autoregressive extension is novel, as it accounts for de-

pendencies on previously generated tokens when adjusting

logits for the next token. By adapting label noise correction

techniques to autoregressive language modeling, we present

a practical method to align black-box LLMs using only log-

its—without requiring access to model weights or original

training data.

Our contributions are summarized as follows:

1. We formulate the problem of adapting black-box LLMs

for application-specific content generation as a loss

correction approach, requiring only token logits at each

generation step. This bridges label noise correction in

supervised classification with autoregressive language

modeling (Sections 2 and 3).

2. We propose an autoregressive probability reweight-

ing framework, enabling token-level probability adjust-

ment during inference. The resulting Plugin model

dynamically reweights logits to align generation with

task-specific data (Section 4).

3. We provide theoretical guarantees, showing that under

mild assumptions, the Plugin model consistently aligns

probability estimates with the target distribution given

sufficient application-specific samples. To our knowl-

edge, this is the first work to establish such consistency

in an autoregressive label noise setting (Section 5).

4. We conduct extensive experiments across four lan-

guage generation datasets and three black-box LLMs.

Our results, supported by multiple ablations, demon-

strate that the Plugin model outperforms baselines in

adapting black-box LLMs for domain-specific content

generation (Section 7). Based on our results, we ad-

vocate for publishing token logits alongside outputs in

closed-source LLMs.

2. Preliminaries

We begin by establishing the notation. The index set is de-

noted as [c] = {1, . . . , c} for any positive integer c. Vectors

are represented in boldface, for example, v, while matri-

ces are denoted using uppercase letters, such as V . The

coordinates of a vector are indicated with subscripts, for

instance, vj . The all-ones vector is denoted by 1, with its

size being clear from the context. The c-dimensional sim-

plex is represented as ∆c−1 ¢ [0, 1]c. Finally, a sequence

(xt, xt−1, . . . , x1) of size t is denoted by xt:1.

We assume access to language data for the target task, while

the black-box LLM, trained on broad world knowledge, is

treated as having learned from a noisy version of this data.

We seek to adapt the black-box model to align with the

task-specific distribution. To formalize this, we extend the

label-noise framework from supervised classification (Pa-

trini et al., 2017) to the decoder-only language modeling.

Decoder-only models are trained using a next-token predic-

tion objective. At each step, this setup resembles a super-

vised classification problem with |V | classes, where V is

the vocabulary of tokens. Formally, the label space at step t
is Xt = {ei : i ∈ [|V |]}, where ei denotes the i-th standard

canonical vector in R
|V |, i.e., ei ∈ {0, 1}|V |,1Tei = 1.

The task at each step t is to predict the next token xt (de-

noted as one-hot vector) given a sequence of tokens xt−1:1.

One observes examples (xt,xt−1:1) drawn

from an unknown distribution p∗(xt,xt−1:1) =
p∗(xt|xt−1:1)p

∗(xt−1:1) over V × V [t−1], with ex-

pectations denoted by E∗
xt,xt−1:1

. Cross-entropy loss is

typically used for training over the vocabulary tokens. As-

suming access to token logits, and thus the softmax outputs,

from the black-box LLM, we interpret the softmax output as

a vector approximating the class-conditional probabilities

p∗(xt|xt−1:1), denoted as b(xt|xt−1:1) ∈ ∆|V |−1.

To quantify the discrepancy between the target label xt = ei

at step t and the model’s predicted output, we define a loss

function ℓ : |V | × ∆|V |−1 → R. A common choice in

next-token prediction tasks is the cross-entropy loss:

ℓ(ei, b(xt|xt−1:1)) = −(ei)T log b(xt|xt−1:1)

= − log b(xt = ei|xt−1:1). (1)

With some abuse of notation, the loss in vec-

tor form ℓ : ∆|V |−1 → R
|V |, computed

on every possible label is ℓ(b(xt|xt−1:1)) =(
ℓ(e1, b(xt|xt−1:1)), . . . , ℓ(e

|V |, b(xt|xt−1:1))
)T

.

3. Loss Robustness

We extend label noise modeling to the autoregressive lan-

guage setting, focusing on asymmetric or class-conditional
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noise. At each step t, the label xt in the black-box

model’s training data is flipped to x̃t ∈ V with prob-

ability p∗(x̃t|xt), while preceding tokens (xt−1:1) re-

main unchanged. As a result, the black-box model ob-

serves samples from a noisy distribution: p∗(x̃t,xt−1:1) =∑
xt

p∗(x̃t|xt)p
∗(xt|xt−1:1)p

∗(xt−1:1).

We define the noise transition matrix Tt ∈ [0, 1]|V |×|V |

at step t, where each entry Ttij = p∗(x̃t = ej |xt = ei)
represents the probability of label flipping. This matrix is

row-stochastic but not necessarily symmetric.

To handle asymmetric label noise, we modify the loss ℓ

for robustness. Initially, assuming a known Tt, we apply a

loss correction inspired by (Patrini et al., 2017; Sukhbaatar

et al., 2015). We then relax this assumption by estimating

Tt directly, forming the basis of our Plugin model approach.

We observe that a language model trained with no loss

correction would result in a predictor for noisy labels

b(x̃t|xt−1:1). We can make explicit the dependence on

Tt. For example, with cross-entropy we have:

ℓ(ei, b(x̃t|xt−1:1)) = − log b(x̃t = ei|xt−1:1)

= − log

|V |∑

j=1

p∗(x̃t = ei|xt = ej)b(xt = ej |xt−1:1)

= − log

|V |∑

j=1

Ttjib(xt = ej |xt−1:1), (2)

or in matrix form

ℓ(b(x̃t|xt−1:1)) = − log T¦
t b(xt|xt−1:1). (3)

This loss compares the noisy label x̃t to the noisy predic-

tions averaged via the transition matrix Tt at step t. Cross-

entropy loss, commonly used for next-token prediction, is

a proper composite loss with the softmax function as its

inverse link function (Patrini et al., 2017). Consequently,

from Theorem 2 of Patrini et al. (2017), the minimizer of

the forwardly-corrected loss in Equation (3) on noisy data

aligns with the minimizer of the true loss on clean data, i.e.,

argmin
w

E∗
x̃t,xt−1:1

[
ℓ(xt, T

¦
t b(xt|xt−1:1))

]

= argmin
w

E∗
xt,xt−1:1

[
ℓ(xt, b(xt|xt−1:1))

]
,

where w are the language model’s weights, implicitly em-

bedded in the softmax output b from the black-box model.

This result suggests that if Tt were known, we could trans-

form the softmax output b(xt | xt−1:1) using TT
t , use the

transformed predictions as final outputs, and retrain the

model accordingly. However, since Tt is unknown and train-

ing data is inaccessible, estimating Tt from clean data is

essential to our approach.

3.1. Estimation of Transition Matrix

We assume access to a small amount of target data for the

task. Given that the black-box model is expressive enough to

approximate p∗(x̃t | xt−1:1) (Assumption (2) in Theorem

3 of Patrini et al. (2017)), the transition matrix Tt can be

estimated from this target data. Considering the supervised

classification setting at step t, let X i
t represent all target

data samples where xt = ei and the preceding tokens are

(xt−1:1). A naive estimate of the transition matrix is: T̂tij =
b(x̃t = ej |xt = ei) = 1

|X i
t |

∑
x∈X i

t
b(x̃t = ej |xt−1:1).

While this setup works for a single step t, there are two

key challenges in extending it across all steps in the token

prediction task:

1. Limited sample availability: The number of samples

where xt = ei and the preceding tokens (xt−1, . . . ,x1)
match exactly is limited in the clean data, especially

with large vocabulary sizes (e.g., |V | = O(100K) for

LLaMA (Dubey et al., 2024)). This necessitates model-

ing the transition matrix as a function of features derived

from xt−1:1, akin to text-based autoregressive models.

2. Large parameter space: With a vocabulary size of

|V | = O(100K), the transition matrix Tt has approx-

imately 10 billion parameters. This scale may exceed the

size of the closed-source LLM and cannot be effectively

learned from limited target data. Thus, structural restric-

tions must be imposed on Tt to reduce its complexity.

To address these challenges, we impose the restriction that

the transition matrix Tt is diagonal. While various con-

straints could be applied to simplify the problem, assuming

Tt is diagonal offers two key advantages. First, it allows

the transition matrix—effectively a vector in this case—to

be modeled using standard autoregressive language models,

such as a GPT-2 model with k transformer blocks, a LLaMA

model with d-dimensional embeddings, or a fine-tuned GPT-

2-small model. These architectures can be adjusted based

on the size of the target data. Second, a diagonal transition

matrix corresponds to a symmetric or class-independent

label noise setup, where xt = ei flips to any other class

with equal probability in the training data. This assumption,

while simplifying, remains realistic within the framework

of label noise models.

Enforcing a diagonal structure ensures efficient estimation

of the transition matrix while maintaining practical applica-

bility within our framework. Next, we outline our approach

for adapting closed-source language models to target data.

4. Proposed Method: The Plugin Approach

To estimate the autoregressive transition vector, we train an

autoregressive language model on target data, which oper-

3



Logits are All We Need to Adapt Closed Models

ates alongside the black-box model during inference. This

model acts as an autoregressive reweighting mechanism,

adjusting the token probabilities produced by the black-box

model. The combined approach, integrating probabilities

from the black-box and reweighting models, is referred to

as the Plugin model. The term Plugin is inspired by clas-

sification literature, where plugin methods reweight proba-

bilities to adapt to distribution shifts (Koyejo et al., 2014;

Narasimhan et al., 2015; Hiranandani et al., 2021). We

now detail the training and inference phases, summarized in

Algorithm 1 (Appendix A) and illustrated in Figure 1.

4.1. Training the Plugin Model

During each training iteration, a sequence s of m tokens is

passed through both the black-box model and the reweight-

ing model to obtain token probabilities {b1, b2, . . . , bm}
and {r1, r2, . . . , rm}, respectively, where each bi, ri ∈
∆|V |−1. The final token probability from the Plugin model

is computed by normalizing the element-wise product of

these probabilities:

pi =
bi » ri

∥bi » ri∥1
. (4)

The sequence-level cross-entropy loss is given by:

ℓs = − 1

m

m∑

i=1

|V |∑

j=1

log(pi)» ej , (5)

where the j-th token appears at the i-th position in the se-

quence s. During backpropagation, only the reweighting

model parameters are updated, while the black-box model

remains frozen. This formulation extends naturally to batch

training, refining ri over iterations to approximate the tran-

sition vector governing label shifts in the target data.

4.2. Inference from the Plugin Model

Given a fully trained reweighting model and access to

the black-box model, token generation proceeds autore-

gressively. At the first step, the black-box model pro-

duces token probabilities b1, while the reweighting model

outputs r1. The Plugin model selects the first token as

x1 = argmaxV (b1 » r1). For subsequent steps, given the

previously generated tokens xt−1:1, we obtain probabilities

bt from the black-box model and rt from the reweighting

model. The Plugin model then predicts the next token as:

xt = argmaxV (bt » rt).

The process continues until a stopping criterion is met. Note

that, this manuscript focuses on greedy decoding for infer-

ence. Other decoding strategies, such as temperature scaling,

top-p sampling, or beam search, can be incorporated by nor-

malizing the element-wise product of probabilities and using

them as the final token distribution, as in Equation (4).

5. Theoretical Analysis

We establish the convergence properties of Plugin, showing

that after t tokens, it accurately estimates the autoregressive

noise transition matrix. Modeling the matrix as a function

of an unknown parameter ¹∗, we prove that optimizing the

autoregressive loss over token sequences enables consistent

estimation of ¹∗ with high probability. To our knowledge,

this is the first finite-time convergence analysis for transition

matrix estimation under autoregressive noisy loss.

Let F t−1 denote the history of selected tokens up to time

t−1. Let an unknown parameter ¹∗ ∈ Θ ¦ R
d governs the

transition dynamics of label flipping between token pairs.

The transition matrix at time t, denoted as Tt(¹∗|F t−1),
depends on ¹∗ and all previously observed tokens. Before

proving our main result, we first make a few assumptions.

Assumption 5.1. Let Tt(¹∗;xi, xj ,F t−1) denote the

(i, j)-th component of the transition matrix, and let

fIt(¹∗;xi, xj ,F t−1) be the transition function that de-

termines the transition from xi to xj , where It is

the xi token selected at time t. Let xi, xj ∈ R
d.

We assume that ∇fIt(¹∗;xi, xj ,F t−1) < ¼0 and

∇2fIt(¹∗;xi, xj ,F t−1) < ¼1 for some constant ¼0 > 0,

¼1 > 0 and for all steps t.

Assumption 5.1 assumes the transition matrix depends on

the history-dependent function fIt(·) with bounded gradient

and Hessian, similar to assumptions in (Singh et al., 2023;

Zhang et al., 2024) for other deep models.

Assumption 5.2. We assume the cross-entropy loss (5)

is clipped by ϵ > 0 and upper bounded as ℓclippedt f
C|V |2(Yt − fIt(¹∗;xi, xj ,F t−1))2 for any time t, where

Yt is the predicted token class, fIt determines the true class

and satisfies Assumption 5.1, and C>0 is a constant.

Assumption 5.2 ensures that the clipped log loss is up-

per bounded by a smoother squared loss. For the re-

maining of this section we refer to this squared loss at

time t as ℓt(¹). Let the Plugin model minimize the

loss ℓ1(¹), ℓ2(¹), · · · , ℓt(¹) over t iterations. Let ¹̂t =
argminθ∈Θ

∑t
s=1 ℓs(¹). At every iteration t, the Plugin

algorithm looks into the history F t−1 and samples a token

xt ∼ p¹̂t
= bt » r¹̂t .

Let L̂t(¹) = 1
t

∑t
s=1 ℓs(¹) and its expectation Lt(¹) =

1
t

∑t
s=1 Exs∼p

θ̂s−1

[ℓs(¹)|Fs−1]. We impose regularity

and smoothness assumptions on the loss function ℓt(¹) as

stated in Assumption B.1 (Appendix B). We are now ready

to prove the main theoretical result of the paper.

Theorem 1. Suppose ℓ1(¹), · · · , ℓt(¹) : R
|V | → R

are loss functions from a distribution that sat-

isfies Assumptions 5.1, 5.2, and B.1. Define

Lt(¹) = 1
t

∑t
s=1 Exs∼p

θ̂s−1

[ℓs(¹)|Fs−1] where,
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¹̂t = argminθ∈Θ

∑t
s=1 ℓs(¹). If t is large enough such

that
µ log(dt)

t f c′ min

{
1

C1C2|V |4 ,
max
θ∈Θ

(Lt(θ)−Lt(θ∗))
C2

}

then for a constant µ g 2, universal constants C1, C2, c
′,

we have that

(1− Ät)
Ã2
t

t
− C2

1

tµ/2
f E

[
Lt(¹̂t)− Lt (¹∗)

]

f (1 + Ät)
Ã2
t

t
+
max
θ∈Θ

(
Lt(¹)−Lt (¹∗)

)

tµ
,

where Ã2
t := E

[
1
2

∥∥∥∇L̂t (¹∗)
∥∥∥
2

(∇2Lt(θ∗))
−1

]
, and Ät :=

(
C1C2 + 2¸2¼2

1

)√µ log(dt)
t .

Theorem 1 bounds the difference between the estimated and

true average loss functions, showing that this gap diminishes

as the number of training tokens increases. Since ¹̂t =
argminθ∈Θ

∑t
s=1 ℓs(¹), the Plugin model progressively

refines its estimation of the unknown parameter ¹∗. As

the transition matrix Tt(¹∗;xi, xj ,F t−1) is derived from

fIt(¹∗;xi, xj ,F t−1), which depends on ¹∗, training on

sufficiently many tokens ensures an accurate estimation of

each component of Tt(¹∗|F t−1).

Our proof reformulates the problem as a sequen-

tial hypothesis testing setting to estimate the aver-

age loss function Lt(¹̂t) using the sequence of losses

ℓ1(¹), . . . , ℓt(¹) (Naghshvar & Javidi, 2013; Lattimore &

Szepesvári, 2020). Unlike prior work (Frostig et al., 2015;

Chaudhuri et al., 2015), which assumes i.i.d. losses, the loss

at time t in our setting depends on all previous losses. Ad-

ditionally, Mukherjee et al. (2022) study a different active

regression setting without considering cross-entropy loss or

transition noise matrices as in Patrini et al. (2017). We pro-

vide a brief overview of the proof technique in Remark B.9

(Appendix B), highlighting key novelties.

6. Related Work

Parameter-Efficient Fine-Tuning (PEFT). PEFT meth-

ods adapt LLMs to downstream tasks while minimizing

computational overhead. LoRA (Hu et al., 2021) and

QLoRA (Dettmers et al., 2024) introduce low-rank updates

and quantization for efficient fine-tuning, while prefix tun-

ing (Li & Liang, 2021), adapters (Hu et al., 2023b), and soft

prompting (Lester et al., 2021) modify task-specific repre-

sentations through trainable layers or embeddings. Torroba-

Hennigen et al. (2025) further explore the equivalence be-

tween gradient-based transformations and adapter-based

tuning. However, these methods require access to model

weights, gradients, or architecture details, making them

unsuitable for closed-source LLMs and inapplicable as base-

lines in our setup. In contrast, our approach operates solely

on token logits, enabling adaptation without modifying the

underlying model. Thus, we emphasize that the Plugin

model is not an alternative to fine-tuning, but rather an ap-

proach that uniquely stands for adapting black-box LLMs

which only provide logit access.

Steering and Aligning LLMs. LLM alignment methods

primarily use reinforcement learning or instruction tuning.

RLHF and DPO (Christiano et al., 2017; Ouyang et al.,

2022; Rafailov et al., 2024) optimize model behavior via

human preferences, with DPO eliminating reward model-

ing. Constitutional AI (Bai et al., 2022b) aligns models us-

ing self-generated principles, while instruction tuning (Wei

et al., 2021; Sanh et al., 2022) adapts them via task-specific

demonstrations. Unlike our approach, these methods require

model weights and training data, limiting their applicability

as baselines in our setup.

Calibration of LLMs. LLM calibration methods aim to

align model confidence with predictive accuracy and adjust

confidence scores but do not alter token predictions (Ulmer

et al., 2024; Shen et al., 2024; Huang et al., 2024; Kapoor

et al., 2024; Zhu et al., 2023; Zhang et al., 2023). In con-

trast, our method reweights token probabilities at inference,

enabling adaptation of black-box LLMs without modifying

the model or requiring fine-tuning.

Black-box LLMs. Prior work explores various ap-

proaches for adapting black-box LLMs without fine-tuning,

though they differ fundamentally from our method. (Gao

et al., 2024) infer user preferences through interactive ed-

its but do not adapt models based on past language data.

Diffusion-LM (Li et al., 2022) formulates text generation

as a non-autoregressive denoising process, whereas our ap-

proach reweights token probabilities autoregressively with-

out requiring black-box model weights. Discriminator-

based methods (Dathathri et al., 2020; Mireshghallah et al.,

2022; Yang & Klein, 2021; Krause et al., 2021) control

generation based on predefined attributes, contrasting with

our method, which enables free-form text adaptation. DEx-

perts (Liu et al., 2021; 2024) combines expert and anti-

expert probabilities; we incorporate a similar probability

combining strategy in a modified baseline without a de-

expert component. In-context learning (Long et al., 2023;

Dong et al., 2024) offers a common adaptation technique

for black-box models and serves as a baseline in our setup.

7. Experiments

We divide this section into four parts. Section 7.1 evaluates

Plugin on four text generation datasets across three black-

box language models. Since the Plugin model is trained

on top of black-box models, we refer to black-box mod-

els interchangeably as base models. Section 7.2 discusses

how Plugin can be applied on top of any prompt-tuning

method as a wrapper, when logits are accessible. Section 7.3

presents ablation studies analyzing the impact of black-box
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Table 1. Performance comparison on E2E NLG dataset. We show mean and standard deviation of the metrics over five seeds.
Model Method BLEU Rouge-1 Rouge-2 Rouge-L METEOR CIDEr NIST

GPT2-M Zeroshot 0.0247 0.3539 0.1003 0.2250 0.3015 0.0156 0.6133

GPT2-M ICL-1 0.0543±0.026 0.3431±0.048 0.1299±0.033 0.2280±0.047 0.3434±0.051 0.0260±0.042 0.7767±0.060

GPT2-M ICL-3 0.0750±0.035 0.3955±0.028 0.1676±0.020 0.2649±0.052 0.3977±0.063 0.0252±0.049 0.8993±0.076

GPT2-M NewModel 0.2377±0.011 0.5049±0.014 0.2742±0.013 0.3902±0.006 0.4521±0.016 0.3938±0.019 1.1927±0.069

GPT2-M WeightedComb 0.1709±0.008 0.4817±0.020 0.2447±0.011 0.3720±0.014 0.4071±0.025 0.3329±0.027 1.0864±0.002

GPT2-M TempNet 0.1036±0.010 0.3425±0.016 0.1526±0.012 0.2735±0.010 0.2615±0.016 0.4116±0.023 0.2826±0.057

GPT2-M Plugin (Ours) 0.1863±0.010 0.5227±0.011 0.2612±0.013 0.3728±0.003 0.4857±0.012 0.3544±0.013 1.1241±0.009

GPT2-XL Zeroshot 0.0562 0.4013 0.1636 0.2862 0.3697 0.0187 0.5338

GPT2-XL ICL-1 0.0686±0.032 0.4016±0.042 0.1404±0.052 0.2745±0.025 0.3503±0.019 0.0353±0.015 0.7944±0.067

GPT2-XL ICL-3 0.0980±0.035 0.4188±0.040 0.1923±0.046 0.2912±0.031 0.3925±0.027 0.0250±0.017 0.9390±0.054

GPT2-XL NewModel 0.2377±0.011 0.5049±0.014 0.2742±0.013 0.3902±0.006 0.4521±0.016 0.3938±0.019 1.1927±0.069

GPT2-XL WeightedComb 0.1184±0.010 0.4237±0.016 0.1858±0.012 0.3004±0.010 0.3776±0.016 0.1818±0.023 1.0261±0.057

GPT2-XL TempNet 0.1325±0.013 0.4642±0.017 0.2516±0.016 0.3021±0.022 0.4126±0.025 0.3627±0.033 0.8027±0.047

GPT2-XL Plugin (Ours) 0.2470±0.009 0.5536±0.007 0.3084±0.007 0.4213±0.008 0.5057±0.009 0.5455±0.013 1.2736±0.051

LLaMA-3.1-8B Zeroshot 0.3226 0.6917 0.4050 0.5004 0.6041 0.9764 1.1310

LLaMA-3.1-8B ICL-1 0.3301±0.037 0.6914±0.027 0.4126±0.026 0.5023±0.018 0.6037±0.015 0.9715±0.057 1.1735±0.066

LLaMA-3.1-8B ICL-3 0.3527±0.033 0.6936±0.036 0.4217±0.017 0.5127±0.017 0.6202±0.009 0.9927±0.018 1.1672±0.047

LLaMA-3.1-8B NewModel 0.2452±0.008 0.5347±0.005 0.2905±0.006 0.4097±0.005 0.4812±0.009 0.4571±0.021 1.2281±0.041

LLaMA-3.1-8B WeightedComb 0.3517±0.004 0.7040±0.004 0.4249±0.004 0.5181±0.003 0.6206±0.002 1.0947±0.010 1.1737±0.015

LLaMA-3.1-8B TempNet 0.3502±0.023 0.6927±0.006 0.4216±0.023 0.5027±0.017 0.6124±0.019 0.9625±0.025 1.1713±0.027

LLaMA-3.1-8B Plugin (Ours) 0.3691±0.013 0.7113±0.002 0.4374±0.004 0.5247±0.002 0.6392±0.009 1.1441±0.030 1.1749±0.034

Table 2. Performance comparison on Web NLG dataset. We show mean and standard deviation of the metrics over five seeds.
Model Method BLEU Rouge-1 Rouge-2 Rouge-L METEOR CIDEr NIST

GPT2-M Zeroshot 0.0213 0.2765 0.1014 0.1872 0.2111 0.0479 0.2340

GPT2-M ICL-1 0.0317±0.013 0.3388±0.021 0.1318±0.013 0.2346±0.019 0.2876±0.042 0.0732±0.053 0.2715±0.042

GPT2-M ICL-3 0.0461±0.014 0.3388±0.018 0.1378±0.016 0.2291±0.010 0.3408±0.027 0.0748±0.031 0.3283±0.037

GPT2-M NewModel 0.1071±0.005 0.3260±0.010 0.1496±0.014 0.2724±0.013 0.2642±0.008 0.4327±0.023 0.2916±0.031

GPT2-M WeightedComb 0.0692±0.007 0.3593±0.010 0.1568±0.008 0.2834±0.015 0.2379±0.030 0.1916±0.028 0.2996±0.037

GPT2-M TempNet 0.1045±0.012 0.3526±0.014 0.1526±0.014 0.2731±0.018 0.3326±0.026 0.4237±0.033 0.3002±0.048

GPT2-M Plugin (Ours) 0.1280±0.007 0.4590±0.005 0.2226±0.005 0.3515±0.006 0.3832±0.010 0.7280±0.039 0.3060±0.017

GPT2-XL Zeroshot 0.0317 0.2992 0.1321 0.2417 0.1969 0.0491 0.1826

GPT2-XL ICL-1 0.0510±0.024 0.3223±0.026 0.1526±0.016 0.2562±0.031 0.2591±0.009 0.1336±0.029 0.2235±0.033

GPT2-XL ICL-3 0.0744±0.016 0.3383±0.036 0.1682±0.016 0.2651±0.028 0.3071±0.014 0.1675±0.024 0.2550±0.021

GPT2-XL NewModel 0.1071±0.005 0.3260±0.010 0.1496±0.014 0.2724±0.013 0.2642±0.008 0.4327±0.023 0.2916±0.031

GPT2-XL WeightedComb 0.0636±0.006 0.3453±0.007 0.1666±0.003 0.2782±0.005 0.2871±0.006 0.2460±0.005 0.2981±0.018

GPT2-XL TempNet 0.0925±0.008 0.3357±0.009 0.1663±0.014 0.2764±0.011 0.3025±0.009 0.4226±0.013 0.2837±0.027

GPT2-XL Plugin (Ours) 0.1673±0.004 0.4616±0.007 0.2527±0.007 0.3757±0.008 0.3895±0.007 0.8987±0.013 0.2646±0.003

LLaMA-3.1-8B Zeroshot 0.1453 0.5278 0.3030 0.3982 0.4314 0.6991 0.2684

LLaMA-3.1-8B ICL-1 0.2166±0.031 0.5944±0.027 0.3706±0.025 0.4667±0.013 0.5651±0.045 1.5719±0.024 0.2462±0.038

LLaMA-3.1-8B ICL-3 0.2031±0.027 0.5937±0.019 0.3821±0.015 0.4653±0.024 0.5682±0.046 1.3826±0.051 0.2469±0.045

LLaMA-3.1-8B NewModel 0.1284±0.005 0.3506±0.009 0.1673±0.007 0.2879±0.009 0.2921±0.008 0.4999±0.030 0.2973±0.008

LLaMA-3.1-8B WeightedComb 0.1922±0.012 0.5986±0.019 0.3612±0.012 0.4659±0.008 0.4470±0.030 1.1855±0.075 0.2575±0.020

LLaMA-3.1-8B TempNet 0.2315±0.010 0.5916±0.015 0.3794±0.012 0.4620±0.010 0.5581±0.036 1.4826±0.043 0.2513±0.020

LLaMA-3.1-8B Plugin (Ours) 0.2542±0.004 0.6375±0.005 0.3873±0.005 0.4869±0.007 0.5724±0.004 1.5911±0.046 0.2590±0.003

model quality, Plugin’s complexity, and architecture choices.

Section 7.4 shows qualitative analysis and case studies.

We evaluate Plugin on four text generation benchmarks:

(a) E2E NLG (Dušek et al., 2020), (b) Web NLG (Gardent

et al., 2017), (c) CommonGen (Lin et al., 2020), and (d) the

Adidas product description dataset (adi, 2023). For the first

three datasets, we use the train-validation-test splits from the

Transformers library (Wolf, 2020). To introduce distribution

shifts, we filter Web NLG’s training data to include only

infrastructure descriptions, while validation and test sets re-

tain person descriptions. Similarly, CommonGen’s training

set is restricted to samples having man, while validation and

test sets remain unchanged. Details of this setup are in Sec-

tion 7.4. The Adidas dataset is split into validation and test

sets. Data statistics are provided in Table 6, Appendix C.1.

7.1. Text Generation Performance Comparison

We evaluate Plugin on the text generation task using only

the validation and test splits of all four datasets, reserving

the train split for ablation studies (Section 7.3). Plugin and

baseline models are trained on the small validation set, with

performance measured on the test set. Additionally, we

allocate 40% of the validation data as hyper-validation for

cross-validation of hyperparameters.

Performance is reported using seven standard natural lan-

guage generation metrics: (a) BLEU (Papineni et al., 2002),

(b) ROUGE-1 (Lin, 2004), (c) ROUGE-2 (Lin, 2004), (d)

ROUGE-L (Lin & Och, 2004), (e) METEOR (Banerjee &

Lavie, 2005), (f) CIDEr (Vedantam et al., 2015), and (g)

NIST (Doddington, 2002). All experiments are repeated
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Table 3. Performance comparison on CommonGen dataset. We show mean and standard deviation of the metrics over five seeds.
Model Method BLEU Rouge-1 Rouge-2 Rouge-L METEOR CIDEr NIST

GPT2-M Zeroshot 0.0153 0.2216 0.0409 0.1527 0.2848 0.0001 0.3686

GPT2-M ICL-1 0.0157±0.013 0.2580±0.024 0.0362±0.096 0.1388±0.102 0.2871±0.107 0.0222±0.076 0.3704±0.101

GPT2-M ICL-3 0.0552±0.010 0.3610±0.019 0.1248±0.045 0.2680±0.089 0.4079±0.133 0.1366±0.125 0.5340±0.087

GPT2-M NewModel 0.1260±0.007 0.4106±0.016 0.1683±0.013 0.3740±0.009 0.3600±0.024 0.4570±0.058 0.7113±0.025

GPT2-M WeightedComb 0.0567±0.005 0.3918±0.010 0.1353±0.005 0.3280±0.010 0.2929±0.016 0.2623±0.042 0.4353±0.028

GPT2-M TempNet 0.1248±0.015 0.4048±0.014 0.1528±0.015 0.3526±0.014 0.3883±0.017 0.4492±0.023 0.4037±0.058

GPT2-M Plugin (Ours) 0.1366±0.003 0.4533±0.007 0.1878±0.003 0.3934±0.006 0.4095±0.011 0.5572±0.022 0.6395±0.061

GPT2-XL Zeroshot 0.0317 0.2992 0.1321 0.2417 0.1969 0.0491 0.1826

GPT2-XL ICL-1 0.0508±0.023 0.3201±0.035 0.1526±0.097 0.2562±0.103 0.2591±0.089 0.1336±0.092 0.2235±0.069

GPT2-XL ICL-3 0.0744±0.011 0.3383±0.014 0.1682±0.030 0.2651±0.072 0.3071±0.073 0.1675±0.066 0.2550±0.047

GPT2-XL NewModel 0.1260±0.007 0.4106±0.016 0.1683±0.013 0.3740±0.009 0.3600±0.024 0.4570±0.058 0.7113±0.025

GPT2-XL WeightedComb 0.0614±0.020 0.3364±0.024 0.1347±0.009 0.2969±0.019 0.2921±0.018 0.2763±0.010 0.3352±0.051

GPT2-XL TempNet 0.1154±0.020 0.3937±0.026 0.1482±0.017 0.3625±0.013 0.3389±0.019 0.4376±0.018 0.5927±0.047

GPT2-XL Plugin (Ours) 0.1791±0.014 0.4932±0.007 0.2288±0.004 0.4347±0.007 0.4702±0.006 0.7283±0.012 0.6554±0.038

LLaMA-3.1-8B Zeroshot 0.0643 0.2776 0.1181 0.2488 0.3857 0.3155 0.3347

LLaMA-3.1-8B ICL-1 0.0615±0.027 0.2697±0.033 0.1158±0.062 0.2469±0.087 0.3822±0.069 0.3005±0.072 0.3059±0.094

LLaMA-3.1-8B ICL-3 0.0635±0.016 0.2748±0.024 0.1225±0.018 0.3120±0.047 0.4012±0.029 0.3250±0.022 0.3794±0.034

LLaMA-3.1-8B NewModel 0.0753±0.004 0.3716±0.005 0.1122±0.003 0.3404±0.004 0.2665±0.006 0.1919±0.015 0.6900±0.046

LLaMA-3.1-8B WeightedComb 0.1789±0.005 0.3485±0.012 0.1797±0.008 0.2981±0.012 0.3637±0.011 0.5503±0.046 0.5450±0.020

LLaMA-3.1-8B TempNet 0.1524±0.008 0.3372±0.015 0.1524±0.010 0.3298±0.017 0.3676±0.015 0.3986±0.033 0.5286±0.023

LLaMA-3.1-8B Plugin (Ours) 0.2665±0.010 0.5800±0.002 0.3139±0.005 0.5037±0.004 0.5829±0.003 1.0876±0.020 0.7031±0.007

Table 4. Performance comparison on Adidas dataset. We show mean and standard deviation of the metrics over five seeds.
Model Method BLEU Rouge-1 Rouge-2 Rouge-L METEOR CIDEr NIST

GPT2-M Zeroshot 0.0046 0.2488 0.0189 0.1353 0.1653 0.0312 0.6860

GPT2-M ICL-1 0.0088±0.054 0.2667±0.047 0.0247±0.66 0.1358±0.041 0.1762±0.028 0.0464±0.089 0.6793±0.078

GPT2-M ICL-3 0.0121±0.047 0.2693±0.028 0.0262±0.054 0.1470±0.020 0.1806±0.030 0.0415±0.104 0.7037±0.081

GPT2-M NewModel 0.0515±0.016 0.2690±0.014 0.0637±0.014 0.1697±0.008 0.1918±0.013 0.0550±0.086 0.6682±0.047

GPT2-M WeightedComb 0.0565±0.014 0.2630±0.028 0.0495±0.018 0.1565±0.015 0.1938±0.019 0.0585±0.088 0.6456±0.156

GPT2-M TempNet 0.0442±0.017 0.2672±0.019 0.0482±0.022 0.1582±0.020 0.1902±0.017 0.0525±0.031 0.6533±0.098

GPT2-M Plugin (Ours) 0.0486±0.006 0.2766±0.002 0.0515±0.007 0.1684±0.005 0.1994±0.004 0.0626±0.017 0.7919±0.024

GPT2-XL Zeroshot 0.0075 0.2309 0.0278 0.1438 0.1487 0.0184 0.4956

GPT2-XL ICL-1 0.0109±0.039 0.2567±0.082 0.0265±0.054 0.1519±0.038 0.1649±0.052 0.0318±0.171 0.5133±0.162

GPT2-XL ICL-3 0.0295±0.037 0.2509±0.071 0.0395±0.043 0.1536±0.039 0.1658±0.041 0.0321±0.109 0.5176±0.116

GPT2-XL NewModel 0.0515±0.016 0.2690±0.014 0.0637±0.014 0.1697±0.008 0.1918±0.013 0.0550±0.086 0.6682±0.047

GPT2-XL WeightedComb 0.0567±0.016 0.2210±0.027 0.0714±0.015 0.1550±0.024 0.1674±0.017 0.0183±0.117 0.4105±0.109

GPT2-XL TempNet 0.0539±0.018 0.2598±0.026 0.0686±0.014 0.1562±0.019 0.1863±0.029 0.0462±0.120 0.5263±0.117

GPT2-XL Plugin (Ours) 0.0600±0.017 0.2710±0.025 0.0722±0.018 0.1725±0.017 0.1995±0.018 0.1195±0.138 0.6375±0.120

LLaMA-3.1-8B Zeroshot 0.0120 0.2470 0.0318 0.1493 0.1526 0.0424 0.5285

LLaMA-3.1-8B ICL-1 0.0220±0.044 0.2472±0.072 0.0405±0.068 0.1434±0.057 0.1686±0.041 0.0555±0.133 0.5078±0.142

LLaMA-3.1-8B ICL-3 0.0177±0.041 0.2385±0.065 0.0364±0.071 0.1408±0.030 0.1712±0.029 0.0587±0.102 0.5775±0.145

LLaMA-3.1-8B NewModel 0.0506±0.011 0.2700±0.011 0.0634±0.006 0.1749±0.006 0.1995±0.009 0.0575±0.051 0.6570±0.072

LLaMA-3.1-8B WeightedComb 0.0357±0.017 0.2583±0.014 0.0661±0.015 0.1560±0.011 0.1706±0.016 0.0745±0.086 0.5927±0.077

LLaMA-3.1-8B TempNet 0.0472±0.016 0.2647±0.022 0.0625±0.012 0.1625±0.020 0.1857±0.013 0.0586±0.103 0.5926±0.137

LLaMA-3.1-8B Plugin (Ours) 0.0611±0.018 0.2714±0.029 0.0742±0.020 0.1759±0.019 0.1990±0.020 0.1293±0.152 0.6361±0.134

over five random seeds, and we report the mean and standard

deviation for each metric.

We compare Plugin with the following baselines: (a) Ze-

roshot: The black-box model directly performs text genera-

tion without additional adaptation. (b) ICL-1 (Long et al.,

2023): One randomly selected validation sample is used as

an in-context example. (c) ICL-3 (Long et al., 2023): Three

randomly selected validation samples are used as in-context

examples. (d) NewModel: A new language model is trained

using the validation data. (e) WeightedComb (Liu et al.,

2021): A new model is trained alongside the black-box

model, with token probabilities computed as ³n+(1−³)b,

where n represents the probabilities from the new model

and ³ is cross-validated in {0.25, 0.50, 0.75}. (f) Temp-

Net (Qiu et al., 2024), a recent logit-scaling approach that

learns a global temperature per input and uniformly scales

logits during generation. Since the black-box model weights

are inaccessible, fine-tuning-based approaches are not ap-

plicable in our setting. Nonetheless, we include a compar-

ison with LoRA in Appendix C.4 for completeness. This

highlights Plugin’s competitiveness despite operating under

stricter access constraints than required for PEFT.

All methods use the same prompts where applicable (Ap-

pendix C.2) and employ greedy decoding. The base (black-

box) models used are GPT2-M (Radford et al., 2019), GPT2-

XL (Radford et al., 2019), and LLaMA-3.1-8B (Dubey et al.,

2024). NewModel, WeightedComb, and the reweighting

model in Plugin share the same architecture. For GPT-based

models, these use a Transformer encoder with one hidden

layer and default configurations. For LLaMA-based mod-
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Figure 2. Plugin with increasingly fine-tuned GPT2-M models on

the E2E NLG dataset. Results demonstrate that as the quality of

the base model improves, the performance of the Plugin improves.
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Figure 3. Performance of GPT2-M with varying reweighting

model complexities on E2E NLG (BLEU, ROUGE-L). A single-

layer reweighting model yields significant gains, while additional

layers degrade performance due to overfitting. Initializing with

GPT2-Small as the reweighting model improves performance,

demonstrating the benefits of leveraging small pretrained models.

els, the architecture consists of a Transformer encoder with

one hidden layer, 256 hidden size, 1024 intermediate size,

and one attention head. Learning rate and weight decay are

cross-validated over {1e− 5, 5e− 5, 1e− 4, 5e− 4, 1e−
3, 5e− 3} and {0.01, 0.1, 1, 10}, respectively. Models are

trained using AdamW with warmup followed by linear de-

cay, and early stopping is applied if the hyper-validation

loss does not decrease for five consecutive epochs.

As shown in Tables 1–4 (the best is bold, the second best is

underlined), Plugin outperforms baselines across nearly all

datasets, black-box models, and evaluation metrics. New-

Model occasionally achieves higher NIST scores due to

increased repetition of less-frequent input tokens, but this

comes at the cost of coherence, as reflected by other met-

rics. WeightedComb does not perform well, indicating one

combination for all tokens is not a good modeling choice.

TempNet, which learns a single temperature per input and

uniformly scales logits during generation, also underper-

forms. In contrast, Plugin reweights logits at each timestep,

enabling finer, context-sensitive adjustments.

We note that the absolute numbers may not appear com-

petitive with state-of-the-art results, because (a) we restrict

to greedy decoding (Section 4.2), and (b) Web NLG and

CommonGen use distribution-shifted subsets.

We also conduct a human evaluation on 100 Adidas dataset

samples, where three subjects compare outputs from Plugin

Table 5. Performance comparison of BDPL and BDPL + Plugin.
Dataset Method BLEU Rouge-L METEOR CIDEr NIST

E2E NLG
BDPL 0.2287 0.3922 0.4628 0.4216 0.8625

BDPL + Plugin 0.4527 0.6027 0.6214 0.7002 2.0817

WEB NLG
BDPL 0.1024 0.3017 0.3527 0.4321 0.2631

BDPL + Plugin 0.2137 0.5928 0.5766 1.0826 0.6142

CommonGen
BDPL 0.1023 0.2936 0.3362 0.2517 0.4226

BDPL + Plugin 0.2614 0.5241 0.5016 0.8251 0.9261

Adidas
BDPL 0.0417 0.1710 0.1826 0.0861 0.6034

BDPL + Plugin 0.0623 0.1759 0.2148 0.1325 0.7024

and ICL-3 using LLaMA-3.1 as the base model. Evaluators

select the prediction closest to the ground truth, with Plugin

preferred in 81% of cases. Details are in Appendix C.7.

7.2. Plugin as a Wrapper

If logit access is available, Plugin can be applied on top of

any prompt-based method using its best-found prompt. For

example, our Zeroshot prompt is reused across methods.

We also apply Plugin to the Black-box Discrete Prompt

Learning (BDPL) approach from Diao et al. (2022), follow-

ing their recommended 75 API call budget. Table 5 shows

results on all datasets with GPT2-XL as the base model.

Plugin outperforms BDPL (see Tables 1–4), and their com-

bination yields further gains, underscoring the utility of

logit-level access in strengthening prompt-based methods.

7.3. Ablation Study

We now show ablation studies that reflect various aspects

of the Plugin model. We display the results using GPT2-M

as base model on the E2E NLG dataset. The observation is

similar on other base models and datasets (Appendix C.5).

Impact of Base Model Quality. We fine-tune GPT2-M

for varying epochs, denoted as 1FT (one epoch), 2FT (two

epochs), and 5FT (five epochs), and train a Plugin model for

each. Figure 2 shows that as the base model’s task-specific

quality improves, the Plugin’s performance improves.

Complexity of the Reweighting Model in Plugin. We

train Plugin models with reweighting architectures varying

from 1 to 12 transformer layers while keeping other config-

urations unchanged. Additionally, we train a variant where

the reweighting model is initialized with GPT2-Small. As

shown in Figure 3, a single-layer reweighting model yields

significant improvements over the base GPT2-M model,

while additional layers (e.g., 2, 4, 8, 12) offer diminishing

returns and slight performance decline due to overfitting

on the small validation set of E2E NLG. This suggests that

more data is required for learning complex reweighting

models. Notably, initializing with a pretrained GPT2-Small

substantially improves performance, underscoring the ad-

vantage of using small pretrained models for reweighting

due to their inherent autoregressive properties.

7.4. Qualitative Analysis and Case Study

Plugin adapting to distribution shift. We evaluate Plu-

gin on distribution-shifted Web NLG and CommonGen us-

8
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Figure 4. Comparison of the adaptation ability between the base model and Plugin on Adidas dataset. Plugin, enhanced with a reweighting

model, generates text that better aligns with the “Adidas domain”. The bottom row illustrates token probabilities for key Adidas-related

words at different decoding steps, showing how the reweighting model influences token selection.

ing LLaMA-3.1-8B as the base model. Web NLG training

data contains only Infrastructure concepts, while validation

and test sets include Person concepts. Similarly, Common-

Gen training data features man, whereas validation and test

sets contain both man and woman. The base model is fine-

tuned on the training data, and Plugin is trained on validation

data using the fine-tuned model as the base. These settings

reflect different degrees of domain shift, even adversarial to

some extent as the training distributions induce biases (e.g.,

overemphasis on infrastructure or male-related concepts),

and Plugin is tasked with correcting them during inference.

Using GPT-4o (Hurst et al., 2024) as an evaluator, the fine-

tuned Web NLG model generates only 17.99% Person-

related sentences, while Plugin increases this to 71.34%.

On CommonGen, the fine-tuned model generates 10.37%

Woman-related sentences, whereas Plugin improves this to

31.92%. These results highlight Plugin’s ability to adapt un-

der distribution shift and mitigate biases in the base model.

Case study: Plugin adapting to domain (extreme dis-

tirbution shifts). We examine token probabilities during

inference for LLaMA-3.1-8B and Plugin to assess domain

adaptation in the Adidas dataset, which features product-

centric language and a brand-specific tone that diverge

significantly from the general pretraining distribution of

the black-box LLMs. This experimental setup can also be

viewed as extreme distribution shift. Removing stopwords,

we extract the top-50 most frequent words, defining the “Adi-

das domain”. Figure 4 illustrates this adaptation: the first

row shows product attributes and ground-truth references;

the second row compares outputs from the base model (left)

and Plugin (right); the third row visualizes model probabili-

ties for “Adidas domain” words at three decoding steps.

As seen in Figure 4, Plugin dynamically reweights proba-

bilities to align with domain-specific language. At step 23,

“keep” is significantly upweighted. At step 48, “comfort-

able” and “dry” gain prominence over “fit,” which the base

model favors. At step 59, “recycled” is preferred by Plugin,

aligning with the ground truth, while the base model favors

“running” and “products”. This demonstrates that Plugin

effectively steers generation toward domain-specific termi-

nology, whereas the base model, trained on broad corpora,

lacks inherent domain preference.

Unlike methods that prune or suppress tokens, Plugin softly

reweights token probabilities without eliminating any vo-

cabulary candidates. This preserves full coverage while

amplifying domain-specific terms. To quantify this, we mea-

sure the total occurrences of the top-50 “Adidas domain”

words in generated outputs: Plugin includes 25.6% of these

terms compared to 13.8% in the base model, indicating

substantially improved alignment with domain language.

8. Conclusion

We propose Plugin, a token-level probability reweighting

framework that adapts black-box LLMs using only logits

and small task-specific data. Framing next-token prediction

as a label noise correction problem, we demonstrate both

theoretical guarantees and empirical effectiveness across

multiple datasets and models. Our findings highlight the

potential of logit-based adaptation and advocate for broader

access to token logits in closed-source LLMs.

9
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This work introduces a powerful middle ground between

fully black-box APIs and fully white-box access to large lan-

guage models (LLMs), addressing a critical constraint faced

by developers: the inability to adapt models when weights

and architecture are inaccessible. By leveraging token-level

logits—without requiring access to model weights or ar-

chitecture—our approach enables meaningful adaptation

of closed-source LLMs for domain-specific tasks. This

has far-reaching implications for both research and indus-

try: it empowers developers to customize models within

privacy-preserving, IP-sensitive environments while ensur-

ing greater control, transparency, and safety. Our findings

advocate for broader logit access as a scalable, secure, and

effective interface—bridging the gap between usability and

protection of proprietary models—and open new possibil-

ities for equitable, context-aware language generation in

real-world applications.

While Plugin effectively adapts black-box LLMs, it has

some limitations, too. Since it only reweights token proba-

bilities without modifying internal representations or embed-

dings, it may struggle with tasks requiring deep structural

adaptations, such as executing complex reasoning. Further

research on this aspect is needed. Additionally, although

Plugin avoids full fine-tuning, training a separate reweight-

ing model introduces computational overhead compared to

prompt tuning or in-context learning, with efficiency de-

pending on the complexity of the reweighting model and

the availability of task-specific data.
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A. Algorithm Details

We provide summarized form of the training and inference algorithm for the Plugin model below.

Algorithm 1 Training and Inference for the Plugin Model

Input: Black-box model B, reweighting model R, clean training data D, vocabulary V
Output: Plugin model predictions x1:T for a given sequence

1: Training Phase:

2: for each sequence s ∈ D do

3: Compute token probabilities {b1, b2, . . . , bm} using B.

4: Compute token probabilities {r1, r2, . . . , rm} using R.

5: Combine probabilities: pi =
bi»ri

∥bi»ri∥1
for i ∈ [m].

6: Compute sequence loss ℓs = − 1
m

∑m
i=1

∑|V |
j=1 log(pi)» ej .

7: Update parameters of R using back-propagation. Freeze B.

8: end for

9: Inference Phase:

10: Initialize sequence x1:T = {}.

11: for each token position t = 1 to T do

12: Compute token probabilities bt using B.

13: Compute token probabilities rt using R.

14: Combine probabilities: pt =
bt»rt

∥bt»rt∥1
.

15: Predict token: xt = argmaxV (pt).
16: Append xt to x1:T .

17: end for

18: Return: x1:T

B. Proof of Main Convergence Theorem

We define the following assumption on the smoothness and regularity of the loss function.

Assumption B.1. We assume the following assumptions hold with probability 1:

1. (Convexity of ℓs): The loss function ℓs is convex for all time s ∈ [t].

2. (Smoothness of ℓs): The ℓs is smooth such that the first, second, and third derivatives exist at all interior points in Θ.

3. (Regularity Conditions):

(a) Θ is compact and ℓs(¹) is bounded for all ¹ ∈ Θ and for all s ∈ [t].

(b) ¹∗ is an interior point in Θ.

(c) ∇2ℓs(¹∗) is positive definite, for all s ∈ [t] .

(d) There exists a neighborhood B of ¹∗ and a constant C1, such that ∇2ℓs(¹) is C1 -Lipschitz. Hence, we have that∥∥∥∇2ℓs(¹)−∇2ℓs
(
¹′
)∥∥∥

∗
f C1

∥∥¹ − ¹′
∥∥
∇2Ls(θ∗)

, for ¹,¹′ in this neighborhood.

4. (Concentration at ¹∗): We further assume that
∥∥∇ℓs (¹∗)

∥∥
(∇2Ls(θ∗))

−1 f C2 hold with probability one.

Lemma B.2. (Proposition 2 of (Hsu et al., 2012)) Let u1, . . . ,un be a martingale difference vector sequence (i.e.,

E
[
ui | u1, . . . ,ui−1

]
= 0 for all i = 1, . . . , n ) such that

n∑

i=1

E

[
∥ui∥2 | u1, . . . ,ui−1

]
f v and ∥ui∥ f b

for all i = 1, . . . , n, almost surely. For all t > 0

Pr




∥∥∥∥∥∥

n∑

i=1

ui

∥∥∥∥∥∥
>

√
v +

√
8vt+ (4/3)bt


 f e−t
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Lemma B.3. The probability that ∥∇L̂t(¹∗)∥(∇2L(θ∗))
−1 crosses the threshold

√
cµ log(dt)

t
> 0 is bounded by

P

(
∥∇L̂t(¹∗)∥(∇2Lt(θ∗))

−1 g C2

√
cµ log(dt)

t

)
f 1

tcµ
.

Proof. Define us := ∇(Ys − fIs(¹∗;xi, xj ,Fs−1))2. Then we have u1,u2, . . . ,ut as random vectors such that

E




∥∥∥∥∥∥

t∑

s=1

us

∥∥∥∥∥∥

2

(∇2Lt(θ∗))
−1

∣∣∣∣u1, . . . ,us−1


 = E




t∑

s=1

us
¦
(
∇2Lt (¹∗)

)−1

us | u1, . . . ,us−1


 f tC2

2

Also we have that ∥us∥ f C2. Finally we have that

E[∇θ=θ∗
us] = −2

t∑

s=1

p
θ̂s−1

(fIs(¹∗;xi, xj ,Fs−1)− fIs(¹∗;xi, xj ,Fs−1)∇θ=θ∗
fIs(¹∗;xi, xj ,Fs−1) = 0.

Then following Lemma B.2 and by setting ϵ = cµ log(dt) we can show that

P


∥1

t

t∑

s=1

us∥2
(∇2Lt(θ∗))−1

− E


∥1

t

t∑

s=1

us∥2
(∇2Lt(θ∗))−1


 >

1

t

√
8tC2

2 ϵ+
4C2

3ϵ




= P


∥1

t

t∑

s=1

us∥2
(∇2Lt(θ∗))−1

> C2
1 + C2

√
8ϵ

t
+

4C2

3ϵ




f P


∥

t∑

s=1

us∥2
(∇2Lt(θ∗))−1

> C2

√
8ϵ

t


 = P


∥

t∑

s=1

us∥2
(∇2Lt(θ∗))−1

> 4C2

√
cµ log(dt)

t




f exp(−cµ log(dt)) =

(
1

dt

)cµ

f 1

tcµ

The claim of the lemma follows.

Lemma B.4. Let the j-th row and k-th column entry in the Hessian matrix ∇2
θ=θ′(ℓs(¹)) be denoted as [∇2

θ=θ′(ℓs(¹))]jk.

Then we have that

[∇2
θ=θ′(ℓs(¹))]jk = 2

∂fIs(¹;xi, xj ,Fs−1)

∂¹j

∂fIs(¹;xi, xj ,Fs−1)

∂¹k
+ 2

(
fIs(¹;xi, xj ,Fs−1)− Ys

) ∂2fIs(¹;xi, xj ,Fs−1)

∂¹j∂¹k
.

Proof. This lemma follows from Frostig et al. (2015); Mukherjee et al. (2022) adapted to our setting for the squared loss,

and transition function fIs(¹∗;xi, xj ,Fs−1). We want to evaluate the Hessian ∇2
θ=θ′(ℓs(¹)) at any ¹′ ∈ Θ. We denote the

j-th row and k-th column entry in the Hessian matrix as [∇2
θ=θ′(ℓs(¹))]jk. Then we can show that

[∇2
θ=θ′(ℓs(¹))]jk :=

∂

∂¹j

[
∂(fIs(¹;xi, xj ,Fs−1)− Ys)

2

∂¹k

]
=

∂

∂¹j

[
2(fIs(¹;xi, xj ,Fs−1)− Ys)

∂fIs(¹;xi, xj ,Fs−1)

∂¹k

]

=
∂

∂¹j

[
2fIs(¹;xi, xj ,Fs−1)

∂fIs(¹;xi, xj ,Fs−1)

∂¹k
− 2Ys

∂fIs(¹;xi, xj ,Fs−1)

∂¹k

]

= 2
∂fIs(¹;xi, xj ,Fs−1)

∂¹j

∂fIs(¹;xi, xj ,Fs−1)

∂¹k
+ 2fIs(¹;xi, xj ,Fs−1)

∂2fIs(¹;xi, xj ,Fs−1)

∂¹j∂¹k

− 2Ys
∂2fIs(¹;xi, xj ,Fs−1)

∂¹j∂¹k
− 2

∂fIs(¹;xi, xj ,Fs−1)

∂¹j

∂Ys

∂¹k

= 2
∂fIs(¹;xi, xj ,Fs−1)

∂¹j

∂fIs(¹;xi, xj ,Fs−1)

∂¹k
+ 2

(
fIs(¹;xi, xj ,Fs−1)− Ys

) ∂2fIs(¹;xi, xj ,Fs−1)

∂¹j∂¹k
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The claim of the lemma follows.

Lemma B.5. Let the j-th row and k-th column entry in the Hessian matrix ∇2
θ=θ′(E[ℓs(¹)|Fs−1]) be denoted as

[∇2
θ=θ′(E[ℓs(¹)|Fs−1])]jk. Then we have that

[
∇2

θ=θ′E[ℓs(¹)|Fs−1]
]
jk

= 2

|V |∑

i=1

p
θ̂s−1

(i)

(
∂fIs(¹;xi, xj ,Fs−1)

∂¹j

∂fIs(¹;xi, xj ,Fs−1)

∂¹k

+2
(
fIs(¹;xi, xj ,Fs−1)− fIs(¹∗;xi, xj ,Fs−1)

) ∂2fIs(¹;xi, xj ,Fs−1)

∂¹j∂¹k

)
.

Proof. This lemma follows from Frostig et al. (2015); Mukherjee et al. (2022) adapted to our setting for the squared loss,

transition function fIs(¹∗;xi, xj ,Fs−1), and the sampling distribution p
θ̂s−1

. We show it here for completeness. Now we

want to evaluate the Hessian ∇2
θ=θ′(E[ℓs(¹)|Fs−1]) at any ¹′ ∈ Θ. We denote the j-th row and k-th column entry in the

Hessian matrix as [∇2
θ=θ′(E[ℓs(¹)|Fs−1])]jk. Then we can show that

∇2
θ=θ′E[ℓs(¹)|Fs−1] = ∇2

θ=θ′

(
f2
Is(¹;xi, xj ,Fs−1) + E[Y 2

s |Fs−1]− 2E[Ys|Fs−1]fIs(¹;xi, xj ,Fs−1)
)

= ∇2
θ=θ′

|V |∑

i=1

p
θ̂s−1

(i)

(
f2
i (¹;xi, xj ,Fs−1) + f2

i (¹
′;xi, xj ,Fs−1) +

1

2
− 2fIs(¹∗;xi, xj ,Fs−1)fIs(¹;xi, xj ,Fs−1)

)

= ∇2
θ=θ′

|V |∑

i=1

p
θ̂s−1

(i)

((
fIs(¹∗;xi, xj ,Fs−1)− fIs(¹;xi, xj ,Fs−1)

)2
+

1

2

)

= ∇2
θ=θ′

|V |∑

i=1

p
θ̂s−1

(i)

((
fIs(¹∗;xi, xj ,Fs−1)− fIs(¹;xi, xj ,Fs−1)

)2)
(6)

We now denote the j-th row and k-th column entry of the Hessian Matrix ∇2
θ=θ′((fIs(¹;xi, xj ,Fs−1) −

fi(¹∗;xi, xj ,Fs−1))2) as
[
∇2

θ=θ′((fIs(¹;xi, xj ,Fs−1)− fIs(¹∗;xi, xj ,Fs−1))2)
]
jk

. Then we can show that

[
∇2

θ=θ∗
((fIs(¹;xi, xj ,Fs−1)− fIs(¹∗;xi, xj ,Fs−1))2)

]
jk

:=
∂

∂¹j

[
∂(fIs(¹;xi, xj ,Fs−1)− fIs(¹∗;xi, xj ,Fs−1))2

∂¹k

]

=
∂

∂¹j

[
2(fIs(¹;xi, xj ,Fs−1)− fIs(¹∗;xi, xj ,Fs−1))

∂fIs(¹;xi, xj ,Fs−1)

∂¹k

]

=
∂

∂¹j

[
2fIs(¹;xi, xj ,Fs−1)

∂fIs(¹;xi, xj ,Fs−1)

∂¹k
− 2fi(¹∗)

∂fIs(¹;xi, xj ,Fs−1)

∂¹k

]

= 2
∂fIs(¹;xi, xj ,Fs−1)

∂¹j

∂fIs(¹;xi, xj ,Fs−1)

∂¹k
+ 2fIs(¹;xi, xj ,Fs−1)

∂2fIs(¹;xi, xj ,Fs−1)

∂¹j¹k

− 2fIs(¹∗;xi, xj ,Fs−1)
∂2fIs(¹;xi, xj ,Fs−1)

∂¹j¹k
− 2

∂fIs(¹;xi, xj ,Fs−1)

∂¹j

∂fIs(¹∗;xi, xj ,Fs−1)

∂¹k

= 2
∂fIs(¹;xi, xj ,Fs−1)

∂¹j

∂fIs(¹;xi, xj ,Fs−1)

∂¹k
+ 2

(
fIs(¹;xi, xj ,Fs−1)− fIs(¹∗;xi, xj ,Fs−1)

) ∂2fIs(¹;xi, xj ,Fs−1)

∂¹j∂¹k

Plugging this back in Equation (6) we get that

[
∇2

θ=θ′E[ℓs(¹)|Fs−1]
]
jk

= 2

|V |∑

i=1

p
θ̂s−1

(i)

(
∂fIs(¹;xi, xj ,Fs−1)

∂¹j

∂fIs(¹;xi, xj ,Fs−1)

∂¹k

+2
(
fIs(¹;xi, xj ,Fs−1)− fIs(¹∗;xi, xj ,Fs−1)

) ∂2fIs(¹;xi, xj ,Fs−1)

∂¹j∂¹k

)
.
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Lemma B.6. The sum of the difference of the Hessians
∑t

s=1 ∇2
θ=θ′ℓs (¹)− E

[
∇2

θ=θ′ℓs (¹) | Fs−1
]

is given by

t∑

s=1

∇2
θ=θ′ℓs (¹)− E

[
∇2

θ=θ′ℓs (¹) | Fs−1
]
=

t∑

s=1

(
− 2(Ys − fIs(¹;xi, xj ,Fs−1))

∂2fIs(¹;xi, xj ,Fs−1)

∂¹j∂¹k

+ 2
∂fIs(¹;xi, xj ,Fs−1)

∂¹j

∂fIs(¹;xi, xj ,Fs−1)

∂¹k

− 2

|V |∑

i=1

p
θ̂s−1

(i)
∂fIs(¹;xi, xj ,Fs−1)

∂¹j

∂fIs(¹;xi, xj ,Fs−1)

∂¹k

)
.

Proof. This lemma directly follows from Lemma B.4 and Lemma B.5. First note that the difference ∇2
θ=θ′ℓs (¹) −

E
[
∇2

θ=θ′ℓs (¹) | Fs−1
]
jk

is given by

∇2
θ=θ′ℓs (¹)− E

[
∇2

θ=θ′ℓs (¹) | Fs−1
]

(a)
= 2

∂fIs(¹;xi, xj ,Fs−1)

∂¹j

∂fIs(¹;xi, xj ,Fs−1)

∂¹k
+ 2

(
fIs(¹;xi, xj ,Fs−1)− Ys

) ∂2fIs(¹;xi, xj ,Fs−1)

∂¹j∂¹k

− 2

|V |∑

i=1

p
θ̂s−1

(i)

(
∂fIs(¹;xi, xj ,Fs−1)

∂¹j

∂fIs(¹;xi, xj ,Fs−1)

∂¹k
−
(
fIs(¹;xi, xj ,Fs−1)− fIs(¹∗;xi, xj ,Fs−1)

)
·

∂2fIs(¹;xi, xj ,Fs−1)

∂¹j∂¹k

)

=− 2(Ys − fIs(¹;xi, xj ,Fs−1))
∂2fIs(¹;xi, xj ,Fs−1)

∂¹j∂¹k
+ 2

∂fIs(¹;xi, xj ,Fs−1)

∂¹j

∂fIs(¹;xi, xj ,Fs−1)

∂¹k

− 2

|V |∑

i=1

p
θ̂s−1

(i)
∂fIs(¹;xi, xj ,Fs−1)

∂¹j

∂fIs(¹;xi, xj ,Fs−1)

∂¹k
(7)

where, (a) follows from Lemma B.4 and Lemma B.5. Plugging this equality in Equation (7) below we get

t∑

s=1

∇2
θ=θ′ℓs (¹)− E

[
∇2

θ=θ′ℓs (¹) | Fs−1
]

=
t∑

s=1

(
− 2(Ys − fIs(¹;xi, xj ,Fs−1))

∂2fIs(¹;xi, xj ,Fs−1)

∂¹j∂¹k
+ 2

∂fIs(¹;xi, xj ,Fs−1)

∂¹j

∂fIs(¹;xi, xj ,Fs−1)

∂¹k

− 2

|V |∑

i=1

p
θ̂s−1

(i)

(
∂fIs(¹;xi, xj ,Fs−1)

∂¹j

∂fIs(¹;xi, xj ,Fs−1)

∂¹k
− 2

(
fIs(¹;xi, xj ,Fs−1)− fIs(¹∗;xi, xj ,Fs−1)

)
·

∂2fIs(¹;xi, xj ,Fs−1)

∂¹j∂¹k

))
.

The claim of the lemma follows.

Lemma B.7. Let L̂t(¹∗) =
1
t

∑t
s=1 ℓs(¹∗) and ∇2Lt(¹∗) =

1
t

∑t
s=1 ∇2

E[ℓs(¹∗)|Fs−1]. Then we can bound the

P

(
¼max(∇2L̂t(¹∗)−∇2Lt(¹

∗)) >

√
8C|V |2¸2¼2

1cµ log(dt)

t

)
f 2

(dt)µ
,

where c > 0 is a constant.
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Proof. This lemma is different than Frostig et al. (2015); Mukherjee et al. (2022) as it requires a

different concentration bound to take into account the squared loss Assumption 5.2 and the vocabu-

lary size. Recall that L̂t(¹∗) = 1
t

∑t
s=1 ℓs(¹∗) and ∇2Ls(¹

∗) = ∇2
E[ℓs(¹∗)|Fs−1]. We define

∇2Lt(¹∗) = 1
t

∑t
s=1 ∇2

E[ℓs(¹∗)|Fs−1]. Denote, Vs = 2∇θ=θ∗
fIs(¹;xi, xj ,Fs−1)∇θ=θ∗

fIs(¹;xi, xj ,Fs−1)¦ −
2
∑|V |

i=1 pθ̂s−1
(i)∇θ=θ∗

fIs(¹;xi, xj ,Fs−1)∇θ=θ∗
fIs(¹;xi, xj ,Fs−1)¦. Then we can show that,

P

(
¼max(∇2L̂t(¹∗)−∇2Lt(¹

∗)) >

√
8C2|V |4¸2¼2

1cµ log(dt)

t

)

= P


¼max


∇2

θ=θ∗

1

t

t∑

s=1

ℓs(¹)−
1

t

t∑

s=1

∇2
θ=θ∗

E[ℓs(¹)|Fs−1]


 >

√
8C2|V |4¸2¼2

1cµ log(dt)

t




= P


¼max


∇2

θ=θ∗

1

t

t∑

s=1

(
ℓs(¹)−∇2

θ=θ∗
E[ℓs(¹)|Fs−1]

)

 >

√
8C2|V |4¸2¼2

1cµ log(dt)

t




(a)

f P


¼max


C|V |2

t

t∑

s=1

(
Ys − fIs(¹∗;xi, xj ,Fs−1)

)
∇2

θ=θ∗
fIs(¹∗;xi, xj ,Fs−1)

+
C|V |2

t

t∑

s=1

Vs


 >

√
8C2|V |4¸2¼2

1cµ log(dt)

t




f P


¼max


1

t

t∑

s=1

−2
(
Ys − fIs(¹∗;xi, xj ,Fs−1)

)
∇2

θ=θ∗
fIs(¹∗;xi, xj ,Fs−1)


 >

1

2

√
8¸2¼2

1cµ log(dt)

t




+ P


¼max


1

t

t∑

s=1

Vs


 >

1

2

√
8¸2¼2

1cµ log(dt)

t




(b)

f P


1

t

t∑

s=1

−2
(
Ys − fIs(¹∗;xi, xj ,Fs−1)

)
¼max

(
∇2

θ=θ∗
fIs(¹∗;xi, xj ,Fs−1)

)
>

1

2

√
8¸2¼2

1cµ log(dt)

t




+ P


1

t

t∑

s=1

¼max (Vs) >
1

2

√
8¸2¼2

1cµ log(dt)

t




(c)

f 2 exp

(
− t28¸2¼2

1cµ log(dt)

4t
· 1

2tc¸2¼2
1

)
(d)

f 2

(
1

dt

)µ

. (8)

where, (a) follows from substituting the value of ∇2
θ=θ∗

ℓs(¹)−∇2
θ=θ∗

E[ℓs(¹)|Fs−1] from Lemma B.6, and (b) follows

by triangle inequality, (c) follows by using two concentration inequalities stated below, and (d) follows by simplifying the

equations.

Denote Qs = −2
(
Ys − fIs(¹∗;xi, xj ,Fs−1)

)
¼max

(
∇2

θ=θ∗
fIs(¹∗;xi, xj ,Fs−1)

)
. Also note that

17



Logits are All We Need to Adapt Closed Models

¼max

(
∇2

θ=θ∗
fIs(¹∗;xi, xj ,Fs−1)

)
f ¼1 for all time s using Assumption B.1.

P(
t∑

s=1

−2
(
Ys − fIs(¹∗;xi, xj ,Fs−1)

)
¼max

(
∇2

θ=θ∗
fIs(¹∗;xi, xj ,Fs−1)

)
g ϵ) = P


−

t∑

s=1

Qs g ϵ




= P

(
e−¼

∑
t

s=1 Qs g e¼ϵ
) (a)

f e−¼ϵ
E

[
e−¼

∑
t

s=1 Qs

]
= e−¼ϵ

E

[
E

[
e−¼

∑
t

s=1 Qs

∣∣¹̂t−1

]]

(b)
= e−¼ϵ

E

[
E

[
e−¼Qt |¹̂t−1

]
E

[
e−¼

∑
t−1
s=1 Qs

∣∣¹̂t−1

]]

f e−¼ϵ
E

[
exp

(
2¼2¼2

1¸
2
)
E

[
e−¼

∑
t−1
s=1 Qs

∣∣¹̂t−1

]]

= e−¼ϵe2¼
2¸2¼2

1E

[
e−¼

∑
t−1
s=1 Qs

]

...

(c)

f e−¼ϵe2¼
2t¸2¼2

1

(d)

f exp

(
− 2ϵ2

t¸2¼2
1

)
.

where (a) follows by Markov’s inequality, (b) follows as Qs is conditionally independent given ¹̂s−1, (c) follows by

unpacking the term for t times and (d) follows by taking ¼ = ϵ/4t¼2
1¸

2 where ¼1 is defined in Assumption 5.1. Next we

bound the second term of (8) below.

P(
t∑

s=1

¼max (Vs) g ϵ) = P


¼

t∑

s=1

¼max (Vs) g ¼ϵ


 = P

(
e¼

∑
t

s=1 ¼max(Vs) g e¼ϵ
) (a)

f e−¼ϵ
E

[
e¼

∑
t

s=1 ¼max(Vs)
]

= e−¼ϵ
E

[
E

[
e¼

∑
t

s=1 ¼max(Vs)
∣∣¹̂t−1

]]

(b)
= e−¼ϵ

E

[
E

[
e¼¼max(Vt)|¹̂t−1

]
E

[
e¼

∑
t−1
s=1 ¼max(Vs)

∣∣¹̂t−1

]]

(c)

f e−¼ϵ
E

[
exp

(
2c¼2¼2

1¸
2
)
E

[
e¼

∑
t−1
s=1 ¼max(Vs)

∣∣¹̂t−1

]]

= e−¼ϵe2c¼
2¸2¼2

1E

[
e¼

∑
t−1
s=1 ¼max(Vs)

]

...

(d)

f e−¼ϵe2c¼
2t¸2¼2

1

(e)

f exp

(
− 2ϵ2

tc¸2¼2
1

)

where (a) follows by Markov’s inequality, (b) follows as ¼max(Vs) is conditionally independent given ¹̂s−1. In the

inequality (c) using the always valid upper bound of 2¼1, we have that E[¼max(Vt)] f 2¼1. So the term in inequality

(c) will become e−¼ϵe2¼
2t¸2¼t

1+4t¼¼1 . Hence, we can upper bound the inequality (c) by a constant c > 0 such that we

have E[e¼¼max(Vt) | ¹̂t−1] f e2¼
2¼2

1¸
2

e2¼×2¼1 = exp(2¼2¼2
1¸

2 + 4¼¼1) f exp(2c¼2¼2
1¸

2). The inequality (d) follows by

unpacking the term for t times and (e) follows by taking ¼ = ϵ/4tc¼2
1¸

2 and ¼1 defined in Assumption 5.1.

Lemma B.8. Let ¹̂t − ¹∗ =
(
∇2L̂t(¹̃t)

)−1

∇L̂t(¹∗) where ¹̃t is between ¹̂t and ¹∗. Then we can show that

∥∥∥¹̂t − ¹∗

∥∥∥
∇2Lt(θ∗)

f
∥∥∥∥
(
∇2Lt (¹∗)

)1/2 (
∇2L̂t(¹̃t)

)−1 (
∇2Lt (¹∗)

)1/2∥∥∥∥
∥∥∥∇L̂t (¹∗)

∥∥∥
(∇2Lt(θ∗))

−1
.
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Proof. We begin with the definition of

∥∥∥¹̂t − ¹∗

∥∥∥
∇2Lt(θ∗)

as follows:

∥∥∥¹̂t − ¹∗

∥∥∥
∇2Lt(θ∗)

(a)
=

√
(¹̂t − ¹∗)T∇2Lt (¹∗) (¹̂t − ¹∗)

(b)
=

√((
∇2L̂t(¹̃t)

)−1

∇L̂t (¹∗)

)T

∇2Lt (¹∗)

((
∇2L̂t(¹̃t)

)−1

∇L̂t (¹∗)

)

(c)

f
∥∥∥∥∇

2Lt (¹∗)
1/2
(
∇2L̂t(¹̃t)

)−1

∇2Lt (¹∗)
1/2

∥∥∥∥
√(

∇L̂t (¹∗)
T (∇2Lt(¹∗)

)−1 ∇L̂t (¹∗)
)

=

∥∥∥∥
(
∇2Lt (¹∗)

)1/2 (
∇2L̂t(¹̃t)

)−1 (
∇2Lt (¹∗)

)1/2∥∥∥∥
∥∥∥∇L̂t (¹∗)

∥∥∥
(∇2Lt(θ∗))

−1
.

where, (a) follows as ∥x∥M =
√
xTMx, (b) follows as ∥¹̂t − ¹∗∥∇2Lt(θ∗) =

(
∇2L̂t(¹̃)

)−1

∇L̂t(¹∗), and (c) follows

from Cauchy Schwarz inequality. The claim of the lemma follows.

Remark B.9. The proof of Theorem 1 consists of several steps. In the first step we relate ∇2L̂t(¹) to ∇2Lt(¹∗) for

any ¹ in a ball B around ¹∗. The ball B is assumed in Assumption B.1 to be a neighborhood where ∇2ℓs(¹) satisfies

a Lipschitz property. Assumption B.1 in Appendix B are standard and have also been made by Frostig et al. (2015);

Chaudhuri et al. (2015); Mukherjee et al. (2022). Using Assumption 5.1 and Assumption B.1, we can show that for

a large enough sequences of tokens t stated in Theorem 1 we have the following: (1) ∇2Lt(¹∗) lies between in the

positive semidefinite order by scaled multiples of ∇2L̂t(¹) for any ¹ ∈ B, and (2) the empirical error minimizing ¹̂t is

in the ball B with probability 1 − 1/tµ , which is the good event E . Then we use a Taylor series expansion around ¹̂t

and using the fact that ∇L̂t(¹̂(t)) = 0 along with the relation between ∇2L̂t(¹) and ∇2Lt(¹∗), we can obtain an upper

bound to ∥¹̂(t) − ¹∗∥∇2Lt(θ∗) in terms of ∥∇L̂t(¹∗)∥(∇2Lt(θ∗))−1 that can be shown to be decreasing with t. Further,

∥¹̂(t) − ¹∗∥∇2Lt(θ∗) can also be used to obtain an upper bound to Lt(¹̂(t)) − Lt(¹∗) using a Taylor series expansion.

Finally we can bound E[Lt(¹̂t)− Lt(¹
∗)] = E[(Lt(¹̂t)− Lt(¹

∗))I(E)] + E[(Lt(¹̂t)− Lt(¹
∗))I(E∁)] where I(·) is the

indicator. Since P(E∁) f 1/tµ , the second term can be bounded as maxθ∈Θ

(
Lt(¹)− Lt (¹

∗)
)
/tµ , while the first term

simplifies to (1 + Ät)Ã
2
t /t.

Theorem 1. (Restatement of main theorem) Suppose ℓ1(¹), ℓ2(¹), · · · , ℓt(¹) : R
|V | → R are loss functions from

a distribution that satisfies Assumptions 5.1 , 5.2, and B.1. Define Lt(¹) = 1
t

∑t
s=1 Exs∼p

θ̂s−1
[ℓs(¹)|Fs−1] where,

¹̂t = argminθ∈Θ

∑t
s=1 ℓs(¹). If t is large enough such that

µ log(dt)
t f c′ min

{
1

C1C2|V |4 ,
max
θ∈Θ

(Lt(θ)−Lt(θ∗))
C2

}
then for a

constant µ g 2, universal constants C1, C2, c
′, we can show that

(1− Ät)
Ã2
t

t
− C2

1

tµ/2
f E

[
Lt(¹̂t)− Lt (¹∗)

]
f (1 + Ät)

Ã2
t

t
+
max
θ∈Θ

(
Lt(¹)−Lt (¹∗)

)

tµ
,

where Ã2
t := E

[
1
2

∥∥∥∇L̂t (¹∗)
∥∥∥
2

(∇2Lt(θ∗))
−1

]
, and Ät :=

(
C1C2 + 2¸2¼2

1

)√µ log(dt)
t .

Proof. Step 1: We first bound the

∥∥∥∇2L̂t(¹)−∇2Lt (¹∗)
∥∥∥
∗

as follows

∥∥∥∇2L̂t(¹)−∇2Lt (¹∗)
∥∥∥
∗

(a)

f
∥∥∥∇2L̂t(¹)−∇2L̂t (¹∗)

∥∥∥
∗
+
∥∥∥∇2L̂t (¹∗)−∇2Lt (¹∗)

∥∥∥
∗

(b)

f C1 ∥¹ − ¹∗∥∇2Lt(θ∗)
+

√
8C2|V |4¸2¼2

1cµ log(dt)

t
(9)

where, (a) follows from triangle inequality, and (b) is due to Assumption B.1.3.d and Lemma B.7.

Step 2 (Approximation of ∇2Lt (¹∗)): By choosing a sufficiently smaller ball B1 of radius of min
{
1/ (10C1) , diameter

(B)
}

), the first term in (9) can be made small for ¹ ∈ B1. Also, for sufficiently large t, the second term in (9) can be made
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arbitrarily small (smaller than 1/10 ), which occurs if

√
µ log(dt)

t f c′√
2C2|V |4¸2¼2

1

. Hence for large t and ¹ ∈ B1 we have

1

2
∇2L̂t(¹) ¯ ∇2Lt (¹∗) ¯ 2∇2L̂t(¹) (10)

Step 3 (Show ¹̂t in B1): Fix a ¹̃ between ¹ and ¹∗ in B1. Apply Taylor’s series approximation

L̂t(¹) = L̂t (¹∗) +∇L̂t (¹∗)
¦
(¹ − ¹∗) +

1

2
(¹ − ¹∗)

¦ ∇2L̂t(¹̃) (¹ − ¹∗)

We can further reduce this as follows:

L̂t(¹)− L̂t (¹∗)
(a)
= ∇L̂t (¹∗)

¦
(¹ − ¹∗) +

1

2
∥¹ − ¹∗∥2∇2L̂t(θ̃)

(b)

g ∇L̂t (¹∗)
¦
(¹ − ¹∗) +

1

4
∥¹ − ¹∗∥2∇2Lt(θ∗)

g −∥¹ − ¹∗∥∇2Lt(θ∗)

∥∥∥∇L̂t (¹∗)
∥∥∥
(∇2Lt(θ∗))

−1
+

1

4

(
∥¹ − ¹∗∥∇2Lt(θ∗)

)¦ (
∥¹ − ¹∗∥∇2Lt(θ∗)

)

= ∥¹ − ¹∗∥∇2Lt(θ∗)

(
−
∥∥∥∇L̂t (¹∗)

∥∥∥
(∇2Lt(θ∗))

−1
+

1

4
∥¹ − ¹∗∥∇2Lt(θ∗)

)
(11)

where, (a) follows as ∥¹ − ¹∗∥2∇2L̂t(θ̃)
:= (¹ − ¹∗)

¦ ∇2L̂t(¹̃) (¹ − ¹∗), and (b) follows as ¹̃ is in between ¹ and ¹∗ and

then using (10). Note that in (11) if the right hand side is positive for some ¹ ∈ B1, then ¹ is not a local minimum. Also, since∥∥∥∇L̂t (¹∗)
∥∥∥→ 0, for a sufficiently small value of

∥∥∥∇L̂t (¹∗)
∥∥∥ , all points on the boundary of B1 will have values greater

than that of ¹∗. Hence, we must have a local minimum of L̂t(¹) that is strictly inside B1 (for t large enough). We can ensure

this local minimum condition is achieved by choosing an t large enough so that

√
µ log(dt)

t f c′ min
{

1
C1C2

, diameter(B)
C2

}
,

using Lemma B.3 (and our bound on the diameter of B1 ). By convexity, we have that this is the global minimum, ¹̂t, and so

¹̂t ∈ B1 for t large enough. We will assume now that t is this large from here on.

Step 4 (Bound

∥∥∥¹̂t − ¹∗

∥∥∥
∇2Lt(θ∗)

): For the ¹̂(t) that minimizes the sum of squared errors, 0 = ∇L̂t(¹̂t). Again, using

Taylor’s theorem if ¹̂t is an interior point, we have:

0 = ∇L̂t(¹̂t) = ∇L̂t (¹∗) +∇2L̂t(¹̃t)
(
¹̂t − ¹∗

)
(12)

for some ¹̃t between ¹∗ and ¹̂t. Now observe that ¹̃t is in B1 (since, for t large enough, ¹̂t ∈ B1 ). Thus it follows from

(12) that,

¹̂t − ¹∗ =
(
∇2L̂t(¹̃t)

)−1

∇L̂t (¹∗) (13)

where the invertibility is guaranteed by (10) and the positive definiteness of ∇2Lt (¹∗) (by Assumption B.1 (3c)). We finally

derive the upper bound to

∥∥∥¹̂t − ¹∗

∥∥∥
∇2Lt(θ∗)

as follows

∥∥∥¹̂t − ¹∗

∥∥∥
∇2Lt(θ∗)

(a)

f
∥∥∥∥
(
∇2Lt (¹∗)

)1/2 (
∇2L̂t(¹̃t)

)−1 (
∇2Lt (¹∗)

)1/2∥∥∥∥
∥∥∥∇L̂t (¹∗)

∥∥∥
(∇2Lt(θ∗))

−1

(b)

f cC2

√
µ log(dt)

t
(14)

where (a) follows from Lemma B.8, and (b) from Lemma B.3, (11), and c is some universal constant.

Step 5 (Introducing z̃): Fix a z̃t between ¹∗ and ¹̂t. Apply Taylor’s series

Lt(¹̂t)− Lt (¹∗) =
1

2

(
¹̂t − ¹∗

)¦
∇2Lt (z̃t)

(
¹̂t − ¹∗

)
(15)
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Now note that both ¹̃t and z̃t are between ¹̂t and ¹∗, which implies ¹̃t → ¹∗ and z̃t → ¹∗ since ¹̂t → ¹∗. By (9) and (14)

and applying the concentration inequalities give us

∥∥∥∇2L̂t(¹̃t)−∇2Lt (¹∗)
∥∥∥
∗
f Ät (16)

∥∥∥∇2Lt (z̃t)−∇2Lt (¹∗)
∥∥∥
∗
f C1 ∥z̃t − ¹∗∥∇2Lt(θ∗)

f Ät (17)

where Ät = c
(
C1C2 + 2¸2¼2

1

)√µ log(dt)
t .

Step 6 (Define M1,t and M2,t): It follows from the inequality (16) that

∇2L̂t(¹̃t) ¯ (1 + Ät)∇2Lt (¹∗) =⇒ ∇2L̂t(¹̃t)−∇2Lt (¹∗) ¯ Ät∇2Lt (¹∗)

=⇒ ∇2Lt (¹∗)
−1/2

(L̂t(¹̃t)−∇2Lt (¹∗))∇2Lt (¹∗)
−1/2 ¯ ÄtI

=⇒ ∥∇2L̂t(¹̃t)−∇2Lt (¹∗)∥∗ f Ät.

Then we can use the inequalities (16) and (17) to show that

(1− Ät)∇2Lt (¹∗) ¯ ∇2L̂t(¹̃t) ¯ (1 + Ät)∇2Lt (¹∗)

(1− Ät)∇2Lt (¹∗) ¯ ∇2Lt (z̃t) ¯ (1 + Ät)∇2Lt (¹∗) .

Now we define the two quantities M1,t and M2,t as follows:

M1,t :=
(
∇2Lt (¹∗)

)1/2 (
∇2L̂t(¹̃t)

)−1 (
∇2Lt (¹∗)

)1/2

M2,t :=
(
∇2Lt (¹∗)

)−1/2

∇2Lt (z̃t)
(
∇2Lt (¹∗)

)−1/2

.

Step 7 (Lower bound Lt(¹̂t)− Lt (¹∗)): Now for the lower bound it follows from Equation (15) that

Lt(¹̂t)− Lt (¹∗) =
1

2

(
¹̂t − ¹∗

)¦
∇2Lt (z̃t)

(
¹̂t − ¹∗

)

=
1

2

(
¹̂t − ¹∗

)¦
∇2Lt(¹∗)

1
2∇2Lt(¹∗)

− 1
2∇2Lt (z̃t)∇2Lt(¹∗)

− 1
2∇2Lt(¹∗)

1
2

(
¹̂t − ¹∗

)

(a)
=

1

2
uTM2,tu

where, in (a) we define the vector u :=
(
¹̂t − ¹∗

)¦
∇2Lt(¹∗)

1
2 . Now observe from the definition of and then using the

min-max theorem we can show that

Lt(¹̂t)− Lt (¹∗) g
1

2
¼min

(
M2,t

)
uTu

=
1

2
¼min

(
M2,t

) ∥∥∥¹̂t − ¹∗

∥∥∥
2

∇2Lt(θ∗)

=
1

2
¼min

(
M2,t

) ∥∥∥∥∇
2L̂t(¹̃t)

(
¹̂t − ¹∗

)∥∥∥∥
2

(
∇2L̂t(θ̃t)

)
−1

∇2Lt(θ∗)
(
∇2L̂t(θ̃t)

)
−1

g 1

2

(
¼min

(
M1,t

))2
¼min

(
M2,t

) ∥∥∥∥∇
2L̂t(¹̃t)

(
¹̂t − ¹∗

)∥∥∥∥
2

(∇2Lt(θ∗))
−1

(a)
=

1

2

(
¼min

(
M1,t

))2
¼min

(
M2,t

) ∥∥∥∇L̂t (¹∗)
∥∥∥
2

(∇2Lt(θ∗))
−1

where, in (a) we use the Equation (13).
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Step 8: Define I(E) as the indicator that the desired previous events hold, which we can ensure with probability greater than

1− 2

(
1

dt

)µ

. Then we can show that:

E

[
Lt(¹̂t)− Lt (¹∗)

]
gE

[(
Lt(¹̂t)− Lt (¹∗)

)
I(E)

]

g1

2
E

[(
¼min

(
M1,t

))2
¼min

(
M2,t

) ∥∥∥∇L̂t (¹∗)
∥∥∥
2

(∇2Lt(θ∗))
−1

I(E)
]

g
(
1− c′Ät

) 1
2
E

[∥∥∥∇L̂t (¹∗)
∥∥∥
2

(∇2Lt(θ∗))
−1

I(E)
]

=
(
1− c′Ät

) 1
2
E

[∥∥∥∇L̂t (¹∗)
∥∥∥
2

(∇2Lt(θ∗))
−1

(1− I(not E))
]

(a)
=
(
1− c′Ät

)

Ã2

t −
1

2
E

[∥∥∥∇L̂t (¹∗)
∥∥∥
2

(∇2Lt(θ∗))
−1

I(not E)
]


g
(
1− c′Ät

)
Ã2
t − E

[∥∥∥∇L̂t (¹∗)
∥∥∥
2

(∇2Lt(θ∗))
−1

I(not E)
]

where, in (a) we have Ã2
t :=

∥∥∥∇L̂t (¹∗)
∥∥∥
2

(∇2Lt(θ∗))
−1

, and c′ is an universal constant.

Step 9: Define the random variable Z =
∥∥∥∇L̂t (¹∗)

∥∥∥
(∇2Lt(θ∗))

−1
. With a failure event probability of less than 2

(
1

dt

)µ

for any z0, we have:

E

[
Z2I(not E)

]
= E

[
Z2I(not E)I

(
Z2 < z0

)]
+ E

[
Z2I(not E)I

(
Z2 g z0

)]

f z0E[I(not E)] + E

[
Z2I

(
Z2 g z0

)]

f z0
2tµ

+ E

[
Z2Z

2

z0

]

f z0
2tµ

+
E
[
Z4
]

z0

f
√

E [Z4]

tµ/2

where z0 = tµ/2
√

E [Z4].

Step 10 (Upper Bound): For an upper bound we have that:

E

[
Lt(¹̂t)− Lt (¹∗)

]
= E

[(
Lt(¹̂t)− Lt (¹∗)

)
I(E)

]
+ E

[(
Lt(¹̂t)− Lt (¹∗)

)
I(not E)

]

f E

[(
Lt(¹̂t)− Lt (¹∗)

)
I(E)

]
+

maxθ∈Θ

(
Lt(¹)− Lt (¹∗)

)

tµ
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since the probability of not E is less than
1

tµ
. Now for an upper bound of the first term, observe that

E

[(
Lt(¹̂t)− Lt (¹∗)

)
I(E)

]
f1

2
E

[(
¼max

(
M1,t

))2
¼max

(
M2,t

) ∥∥∥∇L̂t (¹∗)
∥∥∥
2

(∇2Lt(θ∗))
−1

I(E)
]

f
(
1 + c′Ät

) 1
2
E

[∥∥∥∇L̂t (¹∗)
∥∥∥
2

(∇2Lt(θ∗))
−1

I(E)
]

f
(
1 + c′Ät

) 1
2
E

[∥∥∥∇L̂t (¹∗)
∥∥∥
2

(∇2Lt(θ∗))
−1

]

=
(
1 + c′Ät

) Ã2
t

t

where, c′ is another universal constant.

C. Experimental Details

C.1. Dataset Statistics

We provide the processed data statistics in Table 6. We highlight that due to the black-box assumption of the base model, the

training set is used for ablation and qualitative analysis in Section 7.3 and Section 7.4.

Table 6. Processed Dataset Statistics. Training set is only used for ablation and qualitative analysis due to the black-box model assumption.

Dataset Train Validation Test

E2E NLG 33,525 4,299 4,693

Web NLG 2,732 (filtered by categories) 844 720

CommonGen 1,476 (filtered for “man”) 2,026 1,992

Adidas — 745 100

C.2. Prompts

We now describe the prompts we used for the four datasets and three models.

E2E NLG Dataset

• For the GPT2-M model, we use the prompt:

Given the following aspects of a restaurant, [attributes], a natural

language sentence describing the restaurant is:

• For the GPT2-XL model, the prompt is:

Imagine you are writing a one-sentence description for a restaurant, given

the following aspects: [attributes], a human-readable natural language

sentence describing the restaurant is:

• For the LLaMA-3.1-8B model, we use:

Please convert the following attributes into a coherent sentence. Do not

provide an explanation.

Web NLG Dataset

• For the GPT2-M model, we use the prompt:
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Convert the following facts into a coherent sentence: Facts: [facts]

Sentence:

• For the GPT2-XL model, the prompt is:

You are given the following facts. Facts: [facts] A short, coherent

sentence summarizing the facts is:

• For the LLaMA-3.1-8B model, we use:

Do not provide an explanation or follow-up. Just convert the following

facts of an entity into a coherent sentence. Facts: [facts] Sentence:

CommonGen Dataset

• For the GPT2-M and GPT2-XL models, we use the same prompt:

One coherent sentence that uses all the following concepts: [concepts],

is:

• For the LLaMA-3.1-8B model, we use:

Please write a coherent sentence that uses all the following concepts.

Concepts: [concepts] Sentence:

Adidas Dataset

• For the GPT2-M and GPT2-XL models, we use the same prompt:

Given the following attributes of a product, write a description.

Attributes: [attributes] Description:

• For the LLaMA-3.1-8B model, we use:

Please write a description of this product given the following attributes.

Attributes: [attributes] Description:

For in-context learning, we simply add a sentence at the beginning of the prompt before adding the samples in the prompt:

Below are a list of demonstrations: .

For the qualitative analysis on the distribution shift in Section 7.4, we ask GPT-4o with the following prompt:

For Web NLG dataset:

Focus on all the samples, how much percentage is related to ‘‘Person’’?

For CommonGen dataset:

Focus on those samples whose target is related to gender, how much percentage

is related to ‘‘woman’’?

C.3. Metrics

We report performance using seven standard metrics often used in the natural language generation tasks. These are: (a)

BLEU (Papineni et al., 2002) (measures n-gram overlap between the generated and reference texts, emphasizing precision),

(b) ROUGE-1 (Lin, 2004) (computes unigram recall to measure the overlap between generated and reference texts), (c)

ROUGE-2 (Lin, 2004) (extends ROUGE-1 to bigrams, measuring the recall of two-word sequences), (d) ROUGE-L (Lin &

Och, 2004) (uses the longest common subsequence to evaluate recall), (e) METEOR (Banerjee & Lavie, 2005) (combines

unigram precision, recall, and semantic matching to assess similarity), (f) CIDEr (Vedantam et al., 2015) (measures

consensus in n-gram usage across multiple references, with tf-idf weighting), and (g) NIST (Doddington, 2002) (similar to

BLEU but weights n-grams by their informativeness, favoring less frequent and meaningful phrases).

C.4. Performance and Efficiency Comparision with Parameter-Efficient Fine-Tuning

While our work focuses on black-box LLM adaptation where model weights are inaccessible, we include a controlled

comparison with Parameter-Efficient Fine-Tuning (PEFT) methods. Specifically, we implement LoRA (Hu et al., 2021) with
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Table 7. Comparison between Plugin and PEFT (LoRA, r=8) on four datasets using GPT2-XL and LLaMA-3.1-8B as base models. We

show mean and standard deviation of the metrics over five seeds.

Model Method BLEU Rouge-1 Rouge-2 Rouge-L METEOR CIDEr NIST

E2E NLG

GPT2-XL Zeroshot 0.0562 0.4013 0.1636 0.2862 0.3697 0.0187 0.5338

GPT2-XL LoRA (r=8) 0.2517±0.012 0.5712±0.010 0.3079±0.013 0.4317±0.011 0.5162±0.014 0.5225±0.012 1.2172±0.011

GPT2-XL Plugin (Ours) 0.2470±0.009 0.5536±0.007 0.3084±0.007 0.4213±0.008 0.5057±0.009 0.5455±0.013 1.2736±0.051

LLaMA-3.1-8B Zeroshot 0.3226 0.6917 0.4050 0.5004 0.6041 0.9764 1.1310

LLaMA-3.1-8B LoRA (r=8) 0.3702±0.016 0.7125±0.010 0.4236±0.014 0.5345±0.012 0.6413±0.017 1.1028±0.033 1.1827±0.035

LLaMA-3.1-8B Plugin (Ours) 0.3691±0.013 0.7113±0.002 0.4374±0.004 0.5247±0.002 0.6392±0.009 1.1441±0.030 1.1749±0.034

Web NLG

GPT2-XL Zeroshot 0.0317 0.2992 0.1321 0.2417 0.1969 0.0491 0.1826

GPT2-XL LoRA (r=8) 0.1723±0.007 0.4604±0.010 0.2618±0.011 0.3628±0.015 0.4012±0.017 0.9018±0.028 0.2736±0.014

GPT2-XL Plugin (Ours) 0.1673±0.004 0.4616±0.007 0.2527±0.007 0.3757±0.008 0.3895±0.007 0.8987±0.013 0.2646±0.003

LLaMA-3.1-8B Zeroshot 0.1453 0.5278 0.3030 0.3982 0.4314 0.6991 0.2684

LLaMA-3.1-8B LoRA (r=8) 0.2638±0.008 0.6238±0.010 0.3927±0.009 0.4726±0.009 0.5927±0.013 1.6421±0.028 0.2379±0.008

LLaMA-3.1-8B Plugin (Ours) 0.2542±0.004 0.6375±0.005 0.3873±0.005 0.4869±0.007 0.5724±0.004 1.5911±0.046 0.2590±0.003

CommonGen

GPT2-XL Zeroshot 0.0317 0.2992 0.1321 0.2417 0.1969 0.0491 0.1826

GPT2-XL LoRA (r=8) 0.1826±0.027 0.5027±0.010 0.2137±0.014 0.4447±0.016 0.4726±0.009 0.7182±0.027 0.6725±0.043

GPT2-XL Plugin (Ours) 0.1791±0.014 0.4932±0.007 0.2288±0.004 0.4347±0.007 0.4702±0.006 0.7283±0.012 0.6554±0.038

LLaMA-3.1-8B Zeroshot 0.0643 0.2776 0.1181 0.2488 0.3857 0.3155 0.3347

LLaMA-3.1-8B LoRA (r=8) 0.2736±0.018 0.5829±0.009 0.3206±0.009 0.5026±0.012 0.5927±0.016 1.1121±0.034 0.7926±0.028

LLaMA-3.1-8B Plugin (Ours) 0.2665±0.010 0.5800±0.002 0.3139±0.005 0.5037±0.004 0.5829±0.003 1.0876±0.020 0.7031±0.007

Adidas

GPT2-XL Zeroshot 0.0075 0.2309 0.0278 0.1438 0.1487 0.0184 0.4956

GPT2-XL LoRA (r=8) 0.0629±0.028 0.2816±0.030 0.0719±0.029 0.1816±0.038 0.2037±0.018 0.1231±0.126 0.6576±0.134

GPT2-XL Plugin (Ours) 0.0600±0.017 0.2710±0.025 0.0722±0.018 0.1725±0.017 0.1995±0.018 0.1195±0.138 0.6375±0.120

LLaMA-3.1-8B Zeroshot 0.0120 0.2470 0.0318 0.1493 0.1526 0.0424 0.5285

LLaMA-3.1-8B LoRA (r=8) 0.0721±0.020 0.2697±0.031 0.0756±0.028 0.1821±0.020 0.2023±0.038 0.1302±0.178 0.6137±0.172

LLaMA-3.1-8B Plugin (Ours) 0.0611±0.018 0.2714±0.029 0.0742±0.020 0.1759±0.019 0.1990±0.020 0.1293±0.152 0.6361±0.134

rank-8 matrices on the query and value projections of GPT2-XL and LLaMA-3.1-8B, and fine-tune the base models

using the same task-specific data.

The performance results are shown in Table 7. Consider GPT2-XL as a reference example, Plugin adds a 1-layer

autoregressive Transformer with 30.72M parameters, while LoRA (r=8) introduces only 2.46M trainable parameters.

However, Plugin requires no modification of the base model and can be deployed post hoc. Despite the access advantage of

LoRA, the performance gap is minimal. As for computational efficiency, Plugin requires 196.2B FLOPs (up to 64 decoding

steps), while LoRA uses 188.8B FLOPs—a difference of less than 5%. The gap narrows or inverts depending on model

configuration. These results suggest that Plugin offers a competitive adaptation solution even under white-box conditions,

while maintaining broader applicability in black-box settings.

C.5. Further Quantitative Analysis and Ablation

Following Section 7.3, we present the same ablation analysis using GPT2-M on the remaining three datasets. As shown

in Figure 5, the trends mirror those in Figure 2: the Plugin model consistently improves performance as the base model

becomes stronger with additional fine-tuning, underscoring the robustness and versatility of our approach. Similarly, Figure 6

confirms the pattern observed in Figure 3: a single-layer reweighting model yields optimal performance, while deeper

configurations tend to overfit and degrade quality. Across all datasets, initializing the reweighting model with a pretrained

GPT2-Small consistently boosts effectiveness.

C.6. Influence of the architecture of the reweighting model in Plugin

We vary the choice of the reweighting model architecture. We find that a causal transformer layer identical to those used in

the base model performs best, as it can leverage the base model’s logits and aggregate contextual information from prior

tokens to better adapt the base model to the new data distribution. This conclusion is reinforced by Figure 7, where the

transformer architecture consistently outperforms both the MLP (two layer with ReLU activation) and linear layers across
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Figure 5. Performance of applying a single-layer reweighting model across increasingly fine-tuned GPT2-M models on the three datasets.

Results demonstrate consistent improvements introduced by our method regardless of the strength of the base model.
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Figure 6. Performance of GPT2-M with varying reweighting model complexities on the three datasets, measured by BLEU and Rouge-L.

Results demonstrate that a single reweighting layer achieves significant improvements, while increasing the number of layers beyond this

leads to performance degradation, likely due to overfitting. Using a pretrained GPT2-Small as the reweighting model largely boosts the

performance, highlighting the benefits of leveraging pretrained models.
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all metrics, as indicated by higher means and narrower standard deviation bands. These results highlight the importance of

leveraging the architectural capacity of transformers to effectively adapt the logits of the base black-box model.
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Figure 7. Performance comparison of the weighting model architecture in Plugin. The transformer layer achieves the best performance

with consistently higher means and narrower standard deviations. Shaded bands represent the standard deviation around the mean.

C.7. Details for Adidas Qualitative Studies

Human Evaluation. We conduct a human evaluation on 100 test passages from the Adidas product dataset, comparing

outputs generated with and without applying the reweighting model, using LLaMA-3.1-8B as the base model. Three

human evaluators are presented with a ground-truth Adidas product description and two randomly ordered descriptions: one

generated with the reweighting layer and one without (i.e., we use the base model with ICL-3 as a much stronger baseline

due to the low quality of the zero-shot). Evaluators are prompted to select the prediction closest to the ground truth. Results

show that the output generated with the reweighting model is preferred on an average of 80.7 out of all 100 cases. The

output descriptions from the base model without the reweighting are generally short and general. This demonstrates that our

approach effectively adapts a closed model to the unique style of the given dataset.

In this section, we display some details for the qualitative analysis on the Adidas product description dataset.

Details of Extracting Adidas Style Words. We discuss the details on extracting the most frequent 50 words in the Adidas

product description dataset as the “Adidas style” words. We argue that there does not exist a gold-standard way to define

the “style” words for a dataset. We extract these style words through a minimal preprocessing pipeline: converting text to

lowercase, removing special characters and numbers, and filtering out common English stopwords. We deliberately preserve

the original word forms without lemmatization or stemming to maintain distinct style markers (e.g., keeping “comfortable”

distinct from “comfort”, “running” distinct from “run”). After tokenization using NLTK’s word tokenizer, we count word

frequencies across all product descriptions and select the top 50 most frequent words. This approach captures the exact

vocabulary used in Adidas’ product descriptions, including specific product features.

A statistics of the frequency of these top-50 words is shown in Figure 8.

Case Studies for Human Side-by-side Evaluation. Below we provide more case studies on the Adidas product description

datasets. We display the given product attributes, base model’s zero-shot outputs, base model with ICL-3’s outputs, Plugin

model’s outputs, and the ground-truth references for each case.

♣ Case 1

Given Product Attributes:

- name [Cushioned Angle Stripe Low-Cut Socks 6 Pairs]

- category [Accessories]

- price [13]

- color [Multicolor]

Base Model (Zero-shot): Cushioned Angle Stripe Low-Cut Socks 6 Pairs, Multicolor.

Base Model (ICL-3): These adidas socks are made with a cushioned sole for extra comfort and support. The low-cut

27



Logits are All We Need to Adapt Closed Models

0 100 200 300 400 500 600 700 800
Frequency

adidas
made

recycled
shoes
upper

product
comfort
content

part
cotton
style

materials
plastic
look

highperformance
series
waste

comfortable
end

running
day

make
keep
soft

primegreen
ambition

step
feel

cushioning
boost
feet

midsole
every
stay

design
zx

lightweight
stripes

one
fit

sustainable
products
feeling

dry
go
get

good
aeroready

farming
used

A
di

da
s 

St
yl

e 
W

or
ds

835
542

513
383

330
313

277
275

231
216
214
210
203
202

184
173
172
171
171
167

157
155
153
148
148
144
142

131
131
130
122
120
114
106
103
101
93
92
92
91
91
90
89
86
86
84
84
83
83
83

Word Frequency of the Top-50 Words in Adidas Dataset

Figure 8. Word Frequency of the Top-50 Words in Adidas Dataset.

design is perfect for everyday wear, whether you’re running errands or hitting the gym.

Plugin Model: Cushioned Angle Stripe Low-Cut Socks 6 Pairs are the perfect blend of style and comfort. The low-cut

design gives you a sleek, modern look while still providing plenty of support for your feet. Made with high-quality

materials, these socks will keep your feet feeling comfortable and looking chic all day long.

Ground-truth Reference: With lots of cushioning in the heel and toe and a soft, stretchy feel, these kids’ socks are

big on comfort. Whether they’re bouncing around between classes, practice or after-school activities, their little feet

will stay dry thanks to moisture-wicking yarn and a mesh upper. An adidas Badge of Sport and 3-Stripes give the socks

a classic adidas feel.

♠ Case 2

Given Product Attributes:

- name [Badge of Sport Tee]

- category [Clothing]

- price [21]

- color [Grey]

Base Model (Zero-shot): A white t-shirt with a badge of the sport you love on it.

Base Model (ICL-3): The adidas Badge of Sport tee is a classic. It’s made with soft cotton and features the iconic

3-Stripes on the shoulders. The crew neck has a ribbed hem for a comfortable fit.

Plugin Model: There’s nothing more classic than a white tee with your favorite team’s logo. This adidas Badge of

Sport Tee is an everyday essential that can be worn to the gym or on game days. It’s made with recycled materials, so

you’re making a sustainable choice. The soft cotton jersey is lightweight, breathable, and comfortable.

Ground-truth Reference: Put your brand pride on full display. A simple yet versatile look, this long sleeve t-shirt
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keeps you comfortable while on the move or lounging at home. A contrast adidas Badge of Sport stands out on the

chest. This product is made with Primegreen, a series of high-performance recycled materials.

♦ Case 3

Given Product Attributes:

- name [Stretch Cotton Trunk Briefs 3 Pairs]

- category [Clothing]

- price [21]

- color [Grey]

Base Model (Zero-shot): Stretch Cotton Trunk Briefs 3 Pairs, Grey.

Base Model (ICL-3): These adidas men’s trunks are made from a soft cotton blend that feels great against the skin.

The stretchy fabric moves with you, while the flatlock seams prevent chafing and irritation. A drawcord waistband

allows for an adjustable fit.

Plugin Model: Stretch Cotton Trunk Briefs 3 Pairs. The stretch cotton fabric is comfortable to wear. These briefs are

made with a classic design in mind, so you can feel confident and comfortable. They have been designed with a low

waist, which gives them a flattering fit and makes them easy to get on.

Ground-truth Reference: Just look at these adidas boxer briefs. They’re made with soft, quick-dry fabric that keeps

you feeling fresh and a stay-put design that keeps you covered from your first rep to your last. Get comfortable and give

it your all. Our cotton products support sustainable cotton farming. This is part of our ambition to end plastic waste.

♥ Case 4

Given Product Attributes:

- name [adidas x Zoe Saldana Long Sleeve Tee]

- category [Clothing]

- price [28]

- color [Black]

Base Model (Zero-shot): This is a long sleeve tee with the adidas logo on the front and Zoe Saldana’s name on the

back. It has a crew neck, short sleeves, and a straight hem. The fabric is made of 100% cotton and is machine washable.

Base Model (ICL-3): This adidas x Zoe Saldana long sleeve tee is made with 100% recycled polyester. The soft,

lightweight fabric has a smooth finish and features a crew neck and short sleeves. It’s finished with an adidas logo on

the chest.

Plugin Model: This is not your average training t-shirt. A modern, slim fit and the softest fabric make it one of our

most comfortable tops to date. The lightweight feel makes this tee perfect for all-day wear. Pair it with a pair of

leggings or joggers for that ultimate athleisure look you’re always striving for ambition and comfort.

Ground-truth Reference: Your growth, your goals and the challenges you face along the way are all part of your

journey. This adidas tee was created in collaboration with Zoe Saldana to inspire you to move with confidence, no

matter where you are on your path. Smooth material lays softly on your body so you can feel comfortable in your own

skin. A solid color offers styling versatility. This product is made with recycled content as part of our ambition to end

plastic waste.
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