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Abstract

An important question today is whether a given
text was used to train a large language model
(LLM). A completion test is often employed:
check if the LLM completes a sufficiently com-
plex text. This, however, requires a ground-truth
definition of membership; most commonly, it is
defined as a member based on the n-gram overlap
between the target text and any text in the dataset.
In this work, we demonstrate that this n-gram
based membership definition can be effectively
gamed. We study scenarios where sequences are
non-members for a given n and we find that com-
pletion tests still succeed. We find many natural
cases of this phenomenon by retraining LLMs
from scratch after removing all training samples
that were completed; these cases include exact du-
plicates, near-duplicates, and even short overlaps.
They showcase that it is difficult to find a single
viable choice of n for membership definitions. Us-
ing these insights, we design adversarial datasets
that can cause a given target sequence to be com-
pleted without containing it, for any reasonable
choice of n. Our findings highlight the inadequacy
of n-gram membership, suggesting membership
definitions fail to account for auxiliary informa-
tion available to the training algorithm.

1. Introduction

Training data membership asks whether a data point was
used to train a given model. For large language models
(LLMs), it is useful to answer questions related to privacy
(e.g., is the LLM leaking information contained in the text it
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was trained on?), copyright (e.g., has the model been trained
on copyrighted text?), and more generally Al safety (e.g.,
did the LLM successfully unlearn text that was identified as
harmful post hoc training?). In each of these settings, it is
important that the evaluation of membership be robust.

With direct access to the training dataset, determining se-
quence membership is straightforward given a fixed criterion
for defining when two text sequences are “the same.” A com-
mon approach is to compare sequences by their n-grams, as
this is both efficient and reasonable. Two sequences match
verbatim if all their n-grams are equal for all n, and approx-
imately if most do for some n (Lee et al., 2021). However,
this definition must align with downstream concerns in pri-
vacy, copyright, and safety—domains focused on what an
LLM can reproduce as an intuitive notion of membership.

Consider a setting where a long text sequence is generated
verbatim by an LLM. The sequence has high entropy due
to its length, which makes it very unlikely to have been
generated by chance. Thus, one may intuitively conclude
that this sequence was in the training data. This raises a
key question: can an LLM generate a target sequence even
if it was never included as an n-gram in its training data?
Our findings confirm that the answer is affirmative: n-gram
membership establishes a threshold dependent on n, and
this threshold can be gamed. In other words, our findings
show that that formally defining a robust and accurate notion
of membership is challenging.

We assess whether an LLM generates a target sequence by
prompting it with a prefix and checking if it completes the
corresponding suffix, a process we refer to as a completion
test. Language models are known to complete some of their
training data (Nasr et al., 2023). In our work, we first find
that even after removing a set of extracted sequences from
the training dataset and retraining the LLM from scratch,
the retrained model can still verbatim complete 40% of
them under our experimental conditions (Section 4). Upon
investigation, we find that these removed yet still completed
sequences are either de facto members of the training set
(but for a different definition of membership) or lacking
sufficient complexity: many examples have near duplicates,
sequences with m < n-grams that are not removed, or are
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Removing Members Does Not Prevent LLM Verbatim Completion Adding Non-Members Can Force LLM Verbatim Completion

1. Pre-train base LLM (My,.) 2. Identify verbatim completions (Dyem)
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heritage is discovered
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»| Mpase |™ | deeply rooted v
sitting on my.

desk... X

...do completions match?

I still have a
dream

I still have the
book

Prompt the prefixes...

| still have a dream. It is a
dream deeply rooted ...

I till have the book you
lent me last summer ...

3. Filter Dy from pre-training data and re-train LLMs from scratch
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Exact filter (weaker): remove all segs in
Dinem, exactly as appeared, from pre-training

N-gram filter (stronger): remove seqs with
any n-gram overlap against any seq in Dy,

4. Some of these now-removed sequences can still be completed verbatim

Prompt the prefixes...
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I still have a dream.

... do the completions still match?
Mﬂlter
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Strong filters result in fewer such “lingering sequences” (40%—1% of Dy em)
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I still have a dream A dream that whispers in ... X

Mﬁlter —
(n-gram=5)

1. Take a target (unseen) text sequence
“Errors are one of the greatest challenges in quantum computing...”

2. Construct fine-tune examples with minimal n-gram overlap

Method 1: Chunking

| Errors are one ofgevensfuhreager Trial legislative }}{{ how  toppwsdI ... J

| de toe oblique one of the greatest challenges oto<—ationalAirbnbangered ... J

Method 2: Token dropouts
| apronelden are one nepriJi allegory LLVM inberfliche{&4¥, Referéncies % ... J

| Errors are pofferoven greatest chall inSCO imsucces Dickson J

Method 3: Casing flips
| ErROrS Are OnE of tHe GrEAtESt CHALLeNgeS iN qUAnTuM COMPutINg ... J

| eRROTrS aRe onE Of THE GreATEST CHalLLeNGEs iN quANtum ComPULING ... J

Compositions, e.g.: Casing flips + token dropouts
| «IER Emb{* a 4§53 onE OF THE g yeasttes peak chALLengeS CUSTOM ... J

| MigeRROrSe OnE OF FilelnputStream GREATeMartes In quAntUM learning J

3. After fine-tuning, target sequence can be (verbatim) completed

challenges in quantum computing ...
Errors are one of - Greedy decode |—¥ | J
the greatest fine-tuned LLM |~ [ CHalleNges iN quAntum cOmpUTing ... ]

(if using casing flips, method 3)

Figure 1: Main setup and findings: a text sequence can be (verbatim) completed by a language model without being a
n-gram “member” of its training set. Left (§4): We pretrain a model and remove extracted training dataset of length & from
its training data with either exact (k = n)-gram filters or stronger approximate (k¥ > n)-gram membership filters. We find
some sequences (=2 40% with exact filters or & 1% with approximate filters) remain verbatim completed despite not being
explicitly trained on. Right (§5): We show an LLM can be fine-tuned to verbatim complete a target unseen sequence, e.g.,
today’s blog post, by using adversarially constructed datasets with no n-gram overlap.

explained by the model’s generalization capabilities (e.g.,
patterns or counting).

This result, however, leads to our second finding—there
exists strategies for systematically gaming the n-gram mem-
bership definition. That is, there are strategies for construct-
ing a dataset D that does not contain n-grams of a sequence
x, yet, when a language model trains on D it is able to com-
plete x verbatim. In Section 5, we give multiple examples
of such strategies, including one that has the model train on
multiple m-grams of x, where m < n and, in some cases,
m < n. Our experiments show that we can systematically
force a model to complete six sequences of interest = despite
these sequences not being a member of its training set per
the n-gram membership definition.

Figure 1 shows our setup. Our main takeaways are:

1. We find that there is high overlap between training data
membership and our LLM completion test being positive.
Text not in this overlap are explained by the lack of
complexity or limitations in n-gram based definitions.

2. m-gram membership is limited in capturing the intuition
of what constitutes a training dataset “member.” Indeed,
our work shows that a model can complete sequences
that are not n-gram members of its training dataset.

3. We believe that the underlying cause of this limitation
is not in the choice of the distance used to compare
sequences—here n-gram overlap—but rather in the fact
that the membership definition fails to consider auxil-
iary information that the training algorithm gets access
to, e.g., through pre-processing or other design choices
made throughout the ML pipeline. Here, the strategies
we propose to game the n-gram definition exploit this
by introducing auxiliary information through the very
construction of the training dataset: e.g., we cannot con-
struct (n — 1)-grams of a sequence z without knowing
the entire sequence in the first place.

2. Background & Related Work

Definitions of data membership. Many language model
tasks require a definition of data membership. In most cases,
the definition falls into versions of n-gram, or substring,
overlap (Anil et al., 2023; Gemini Team et al., 2023; 2024,
Gemma Team et al., 2024a;b; Touvron et al., 2023; Dubey
et al., 2024; Zhang et al., 2024a; Duan et al., 2024; Carlini
et al., 2021; Singh et al., 2024). n-gram based definitions
capture near-duplicates by matching smaller text segments;
this is flexible, simple, and intuitive. When studying data
contamination, much of the prior work uses n-gram based



Language Models May Verbatim Complete Text They Were Not Explicitly Trained On

definitions (Sainz et al., 2023; Jiang et al., 2024; Dekoninck
et al., 2024; Singh et al., 2024). For example, GPT-4 con-
siders 50-character substring overlap (Achiam et al., 2023)
and Llama-3 considers 8-gram token overlap (Dubey et al.,
2024). For training data deduplication (Lee et al., 2021;
Kandpal et al., 2022; Mou, 2023), duplicates are identified
based on training data membership. Recent methods use
suffix arrays for exact substring matches (Lee et al., 2021)
and MinHash or locality sensitive hashing for approximate
matches (Broder, 1997; Mou, 2023); both build on n-gram
overlap. The prevalent use of n-gram based definitions re-
flects a practical balance between accuracy and simplicity.
A key focus of our work is to highlight the limitations of
these n-gram based definitions.

Tests for data membership. Unlike membership defini-
tions, which define the ground-truth, membership tests aim
to detect if a data sample was in a dataset. There are many
model-level membership tests in the literature that predict
membership of text to a training dataset with only access
to a trained model, and not the training dataset. Our work
focuses on model-level membership tests because they are
more relevant to the downstream uses of membership in
LLMs, e.g., in privacy, copyright, and safety (see §1).

Membership inference attacks (MIA) (Shokri et al., 2017)
are widely studied, especially in computer vision (Yeom
et al., 2018; Salem et al., 2018; Sablayrolles et al., 2019;
Choquette-Choo et al., 2021; Carlini et al., 2022a; Jagielski
et al., 2024) and more recently example-level membership
inference for LLMs (Zarifzadeh et al., 2023; Shi et al., 2023;
Mattern et al., 2023; Li et al., 2023). Despite these attempts,
progress is hindered by flawed evaluations (Meeus et al.,
2024; Zhang et al., 2024b): Duan et al. (2024) argue that
membership can be inherently blurry for natural language,
Das et al. (2024) report that existing MIA testbeds suffer
from distribution shifts, and Kong et al. (2023) refute MIAs
using a gradient-space attack. Our work situates in this
body of work by studying systematic failure modes of oper-
ationalizing membership through definitions and tests, and
the consequences when these definitions and tests mismatch.

Dataset-level MIAs enhance membership signals by leverag-
ing multiple correlated samples as inputs (Maini et al., 2021;
Kandpal et al., 2023; Maini et al., 2024). These are closely
related to contamination tests (Golchin & Surdeanu, 2023;
Oren et al., 2023). Our work focuses on sequence-level data
membership tests based on data completion, because these
focus on scenarios where the LLM generates the text, which
presents novel concerns for privacy, copyright, and safety.

Data completion. There is a long body of work studying
generation of training data, in diffusion models (Somepalli
et al., 2023; Carlini et al., 2023) and in LLMs (Carlini et al.,
2019; Tirumala et al., 2022; Kudugunta et al., 2024; Bi-
derman et al., 2024; Freeman et al., 2024; Huang et al.,

2024). These works are often studied from the perspec-
tive of studying memorization, where the entity performing
the model test has access to the training dataset. In this
line of literature, there exist both verbatim definitions of
memorization (Carlini et al., 2022b; Huang et al., 2024)
and approximate definitions (Ippolito et al., 2022). When
studied from a black-box perspective—without access to the
training dataset—they typically match completions against
known auxilliary databases as a surrogate confirmation of
membership (Carlini et al., 2021; Nasr et al., 2023). In-
tuitively, if a model completes a long sequence z when
prompted with its prefix, it likely saw x during training be-
cause z has high entropy due to its length and vocabulary
size (Carlini et al., 2019; 2022b). Our work focuses only on
these completion tests as a black-box membership test.

3. Preliminaries

We now formalize the key definitions that underlie our exper-
iments. We focus on defining what it means for a sequence
to be a “member” of the training set of a language model,
and what constitutes “completing” a sequence as a means of
testing its membership. Precise definitions of these notions
anchor our study of the mismatch between them.

Modern language models operate on foken sequences, which
are integer encodings of text strings via a byte-pair encoding
(BPE) tokenizer (Sennrich, 2015). We use x to denote a
token sequence (rather than its text form) with length |z,
and n-grams(z) = {.le_ll_n}lla;ll_n to denote the set of n-
grams derived from x.

Definition of Data Membership. We anchor on a simple
and flexible membership definition for our experiments that
encapsulates many variants used in the literature:

Definition 3.1 (n-gram data membership). A sequence x is
a member of a dataset D = {x W}, if x shares at least
one n-gram with any ") € D. That is, x is member if there
exists a g € n-grams(z) s.t. g € |J; n-grams(z(?).

This definition is stringent (e.g., approximate membership
typically requires many, not just one, n-gram to match).
This ensures we overestimate members and thus underesti-
mate non-members. This definition is also inclusive of the
those in the literature, as varying n captures a spectrum of
them. For example, setting n = || is the verbatim mem-
bership used in Carlini et al. (2022b). Smaller n captures
many approximate membership definitions, such as Min-
Hash (Broder, 1997; Lee et al., 2021), edit distance based
membership (Ippolito et al., 2022), and many other n-gram
variants cited in Section 2. In the remainder of the paper,
we call a sequence = an “n-gram member” if x satisfies
Def. 3.1, and otherwise a “n-gram non-member”.

Definition of Data Completion. Informally, we define a
completion as: when a token sequence is known a priori
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and a language model generates its suffix when prompted
with its prefix. Formally, if = [p||s], then model generates
the expected suffix s of = based on the provided prefix p
(prompt). For simplicity, we focus on |p| = |s| = |z|/2 in
our experiments. Prior work has studied how the choice in
prefix and suffix lengths impact memorization (Carlini et al.,
2022b; Huang et al., 2024). To capture highly similar but
not verbatim completions of the sequence x, we introduce
variants of completion that allow for semantically insignifi-
cant deviations from the original s. We define the following
notions of completion.

Definition 3.2 (Exact completion). Given tokens x = [p||s]
and a model M, we say x is exactly completed if M(p) = s
using greedy decoding.

This is closely related to verbatim memorization and verba-
tim training data extraction (see Section 2). There are also
semantically equivalent sequences that humans would be
likely to not distinguish from the original sequence. We thus
consider two approximate notions of completion, relevant
to our experiments in Section 5.

Definition 3.3 (r-similar completion). Given x = [p||s] and
M, we say z is a r-similar completion if M(p) is within a
normalized Levenshtein edit distance of 1 — r using greedy
decoding, i.e., lev(M(p), s)/ max(|IM(p)|,|s]) <1 —r.

Definition 3.4 (Case-insensitive completion). Given r =
[plls] and M, we say x is a case-insensitive completion
if lower(M(p)) = lower(s) with greedy decoding, where
lower(-) applies character-wise lower casing.

Data Completion vs. Data Extraction. Data extraction,
as considered in recent work (Carlini et al., 2021; Nasr
et al., 2023), concerns recovering fraining data from the
model. This thus involves both (1) data completion (e.g.,
as in Def. 3.2), and (2) verifying that the completion is
a training member; e.g., by inspecting the training data.
In a sense, extraction specifically measures memorization,
while completion is more generic—indeed, our work studies
non-member completions; Fig. 2 illustrates the distinction.

@ Completions Extractions

Figure 2: We say that a sequence is extractable if it can be
completed and can be proved a member of the training set.

' Our reference to “memorization” is intended in a very specific
context: whether a model can be induced to generate near-copies
of some training examples when prompted with appropriate in-
structions, and often with prior knowledge of the model’s training
data. Specifically, we do not mean to imply that a model “contains”
its training data in the sense that any arbitrary instance of that data
can be retrieved without use of specialized software or algorithms.
Rather, if a model can be induced to generate very close copies of
certain training examples by supplying appropriate instructions to
guide the model’s statistical generation process then that model is
said to have “memorized” those examples.

4. Removing Members Does Not Always
Prevent LLM Verbatim Completion

LLMs are known to complete training sequences (Carlini
et al., 2021). In this section, we ask:

Main Question: Will an LLM still complete a text
sequence even after we remove all training sequences
that have n-gram overlap with it?

We find that this retrained model still has lingering com-
pletions: the completion test still succeeds despite having
removed all completions identified by n-gram matching
from the training data. This raises the question: why is the
LLM still completing these sequences? As we will see, this
is because the completions are either a) still contained in the
dataset but via a different membership definition (e.g., for
some m-gram membership, with m < n), or b) they lack
sufficient entropy and can be easily predicted (generalized).

4.1. Experimental Setup

Our high-level experimental framework is as follows. We
defer additional details to Appendix A.

1. Pre-train a base model: We first pre-train a standard
LLM My, from scratch on a training dataset Dy,ge.

2. Identify verbatim completions: We then collect a set
of sequences Dpem of length &k that My,s. can complete
verbatim (as in Def. 3.2), by checking the first k tokens
of every training document in Dy,se. This is a simple and
effective procedure since LLMs are known to memorize
training data (e.g., Carlini et al. (2022b)); other choices
to obtain Dy, are also possible.

3. n-gram filtering: We then filter each sequence = €
Dinem away from Dy,g.. Our filtering procedure is sim-
ple and reflects n-gram membership (Def. 3.1): to filter
a sequence z, we perform a sliding window of length
|z| over Dyyse (as if all tokens are concatenated into a
single array); if the window shares any n-gram with
n-grams(z), the window is deleted from the pre-training
data. When n = |z|, then we filter = exactly as it appears
in the dataset; when n < |z, we filter more aggressively
as the window is removed on partial matches against x.
The filtered dataset is denoted as Dgﬁgr.

4. Re-train a counterfactual model: Pre-train another
LLM M. from scratch on the filtered data D).

We repeat this procedure for different model sizes, differ-
ent values of n-gram (for filtering), and different sequence
lengths k. Unless otherwise stated, we use k = 50, meaning
that for a sequence = = [p||s], we have |p| = |s| = 25. We
provide results on k£ = 100 in Appendix A.7.

Models and training. We pre-train a series of models from
scratch using the GPT-2 architecture (Radford et al., 2019),
spanning sizes of {350M, 774M, 1.6B, 2.8B} parameters,
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Table 1: The number of identified verbatim memorized
sequences | Dyem| at different model sizes (step #2 of § 4.1).

Model size  304M 774M 1.6B 2.8B
| Dren| 76,648 116,270 151,598 175,813
50

§ . ‘\. -0

2 n=5

g 30 —- n=10

> 20 —o— n=20

£ —8— n=50 (exact)

08)7 10 ———eo — o o

= 8= —e— s °

350M 774M 1.6B 2.8B
Model size

Figure 3: LLMs can verbatim complete texts with zero
n-gram overlap to training data. A fraction of sequences
filtered away from pre-training data (Dy,en, Table 1) can
still be completed by the re-trained LLM verbatim. The
fractions decrease under stronger filtering (smaller n-gram
filter) and remain relatively stable across model scales.

with 1.6B being the size of the original GPT-2 XL and 2.8B
being a scaled-up model. We use LLM.c (Karpathy, 2024)
for an efficient pre-training pipeline. We primarily report
results on the 1.6B model unless otherwise stated.

Data. For all models, we use FineWeb-Edu (Penedo et al.,
2024) as a state-of-the-art pre-training dataset.”> We use the
same base dataset Dy, of 33.6B randomly sampled tokens.
For the 1.6B model, 33.6B tokens is approximately Chin-
chilla optimal (= 20 tokens per parameter, Hoffmann et al.
(2022)). For consistency, we train the base models M,se
of different sizes with the same starting dataset Dy, ; as the
size of Dpem (step #2) hinges on the size of My, (Carlini
et al., 2022b), we obtain different filtered datasets Dy, for
each model size (by inferencing on My, ).

4.2. Results
With the artifacts Miase» Dhases Pinems Dorts M we

filter”
now make observations pertaining to our main question.

Finding #1 (Existence of Lingering Sequences): LLMs
can verbatim complete a fraction of the sequences
deleted from training data, and consistently so across
scale. On a macroscopic level, we first observe that sim-
ply deleting a set of sequences from pre-training data does
not always prevent them from being generated by an LLM
(Fig. 3). This observation is consistent across model scales,
where each size has a different amount of memorization
(Table 1). We call these “lingering sequences” and denote

them as Dl(i:;er. Under our experimental conditions, the frac-

>This work may contain information from FineWeb-Edu
dataset, which is made available under the ODC Attribution Li-
cense.

tion of lingering sequences |D1(i:g)er| /|Dmem| can be as high

as 40% when we apply the weakest n-gram filter and only
remove verbatim sequence matches (n = 50).

Finding #2 (Nature of Lingering Sequences): We
found no lingering sequences that correspond to cre-
ative generalization—sequences beyond reconstructions
from neighboring texts and continuations of recogniz-
able patterns. Fig. 4 visualizes a few lingering sequences
in Dli:éer and see Appendix A.2 for more. To understand
their origin, we then perform a search of neighboring texts
(Levenshtein distance < 20) for a few randomly3 selected
lingering sequences over the large pre-training data Dy,
we defer results to Appendix A.3. For all lingering se-
quences we queried, we were able to find near-duplicates,
yet all such copies evaded n-gram overlap detection one
way or another. This result sheds light on the remarkable
ability for LLMs to generalize from neighboring text. More
interestingly, it also informs an interesting symmetry on
how we may adversarially construct training sequences that:
(1) have no n-gram overlap with a target sequence x, and (2)
yet serve as “anchor points” that the LLM can interpolate
to verbatim complete z. We explore this symmetry in the
coming section (§5).

Finding #3 (Persistence of Lingering Sequences):
Stronger filters reduce, but do not eliminate, these lin-
gering sequences, and instead shift their distribution
to more generalizable patterns. As we filter Dy, from
Drase more aggressively with smaller n-gram filters, smaller
fractions of Dy, can be completed by the re-trained model
Mf(lﬁgr verbatim (Fig. 3). However, even at a very conserva-
tive filter of n = 5 (a sequence is removed from Dy, if any
5-gram is in Diem), Dl(iiger still accounts for ~ 1% of Dyem
(Table 1). As the fraction of lingering sequences decreases,
their contents also shift from verbatim memorization of se-
mantically useful text (e.g., famous quotes) to generalizable
patterns (e.g., counting in Roman numerals). We provide
examples in Fig. 4 and Appendix A.2.

To quantify this shift, we use three proxy metrics (Fig. 5),
though we note that none perfectly captures the (fuzzy)
boundary between memorization and generalization. First,
we measure the verbatim completion rate of Dl(i:g)er using the
off-the-shelf GPT-2-XL (Radford et al., 2019); since M{T.
is a similar model by construction, a lingering sequence
is likely a generalizable pattern if both models (trained on
distinct data) agree on its completion. Second, we simi-
larly consider the completion rate of a counterfactual model
Mt on pre-training shards disjoint from Dy,s.. Third, we
prompt Gemini 1.5 Pro with few-shot examples to determine
if a lingering sequence is a pattern continuation (prompt
template in Appendix A.10). All proxy metrics confirm

3We only perform this experiment on randomly selected linger-
ing sequences due to the cost of the search.
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n =5 (strong filtering): the entire sequence has no 5-grams in training data
Prompt: - Bulk Pricing:\n- 6 - 10 and get $2.00 off\n- 11 - 25 and get $3
Completion: .00 off\n- 26 - 50 and get $4.00 off\n- 51 - 100 and get $5.
Prompt: 3 Signs of Termite Infestation\nMarch - 2016\nApril - 2016\nMay - 2016\njune - 2016\nAugust
Completion: - 2016\nSeptember - 2016\nOctober - 2016\nNovember - 2016\nDecember - 2016\nJanuary - 2017

n =50 (exact filtering): the entire sequence, as it appears exactly, is not in training data

Prompt: - the domain of a baron.\n- baronage(def 2).\nOrigin of barony\nDictionary\
Completion: .com Unabridged Based on the Random House Unabridged Dictionary, © Random House, Inc. 2018\n

Prompt: We hold these truths to be self-evident, that all men (and women) are created equal, that they
Completion: are endowed by their Creator with certain unalienable Rights, that among these are Life, Liberty

Figure 4: Examples of lingering sequences (more in A.2).

100
o B
3 80 -y —u
E? 60 —@- Comparable Model (GPT-2-XL)
a —l- Counterfactual Re-train
__§ 40 LLM-Judge (Gemini 1.5 Pro)
@
5 20
Q
g 0
0 10 20 30 40

Lingering Fraction (%)

Figure 5: Strong filters result in less lingering comple-
tions and shift them toward generalizable patterns. Re-
sults on 1.6B size. We use three proxy metrics where higher
indicates more pattern continuations: 1) % verbatim comple-
tion by off-the-shelf GPT-2-XL; 2) % verbatim completion
by M,¢, a counterfactual model trained on disjoint pretrain-
ing shards; 3) % judged as patterns by Gemini 1.5 Pro.

our manual inspection that stronger filters force out gener-
alization behaviors from the model, albeit these are simple
sequences to generalize to (recall finding #2).

4.3. Interpretations and OQutlook

While we found no evidence of creative generalization in
models up to 2.8B parameters, lingering sequences are in-
triguing because they seem to challenge our understanding
of membership in LLMs—if a language model can verbatim
complete sequences known a priori without ever training
on any of its n-grams, what does this imply for the defi-
nition of membership and its reliance on n-gram overlap?
To better understand these limitations we identified—and if
they are exclusively explained by the limitation of n-gram
overlaps—we next experiment with adversarially gaming
n-gram membership. We build on our findings thus far to
inform the adversarial construction of a dataset of n-gram
non-members that is able to force LLM completion.

5. Adding Non-Members Can Force LLM
Verbatim Completion

While lingering sequences (Section 4) are largely benign
and rare, observing how they came to be (e.g., through
visualizations in Appendix A.3) informs how one may ad-
versarially force a model to complete n-gram non-members.
We explore this direction with the following:

Main Question: Given a chosen (unseen) text se-
quence x, can we add training sequences Dy, that have
no n-gram overlap with x, and yet an LLM fine-tuned
on Dy can complete = verbatim?

This question is intriguing for its insights into LLM general-
ization, as well as its relevance to adversarial manipulation
of training data, where an adversary may wish to intention-
ally avoid n-gram membership for, e.g., harder-to-detect
data poisons and content misuse (more in Section 5.6).

To answer the question, consider a class of noisy trans-
Sformations f on z, such that: (1) £ = f(x) retains some
information about x; and (2) & has no n-gram overlap with
z. We hypothesize that an LLM trained on different in-
stances of = (over different randomness) should learn to
recover the original =, much like a denoising antoencoder
learning to recover clean data from noisy inputs.

Methods. We show that it is possible to adversarially con-
struct examples Dy, = {Z;} from a chosen unseen example
z (e.g., today’s news) such that « and Dy share no common
n-grams (and many membership tests, including manual in-
spection, would fail). Yet with only a few gradient steps of
fine-tuning an LLM on Dy, the model can (verbatim) com-
plete this “non-member” z. We study three such methods
of constructing such a fine-tuning set Dg:

1. Stitching chunks: We split x into overlapping segments
padded with random tokens.

2. Token dropouts: We replace tokens in x at different (ran-
dom) positions with random tokens; positions have at
most n — 1 gap to avoid n-gram overlaps.

3. Casing flips: We flip the casing of every English letter in
x with probability p.

These methods resemble real-world transformations of texts
such as taking excerpts of an article and transcriptions that
misspell words, miss punctuation, and drop casing. They
also have varying degrees of efficacy as we will discuss in
Section 5.5. Note that our goal is not to find the best possible
(stealthiest) transformation, but to explore feasibility and
ease of such adversarial manipulation.

Models and training. We work with two model fami-
lies: Gemma-2 (Gemma Team et al., 2024a;b) and Qwen-
2.5 (Yang et al., 2024; Team, 2024), spanning model size
from 0.5B to 9B. We fine-tuned these models to predict the
next token with a batch size of 32 and a constant learning
rate of 1075.

Data. We primarily experiment on three target texts. These
texts are all roughly 1,000 characters long (= 250 tokens un-
der Gemma-2 tokenizer) and have a recent temporal cutoff
such that they could not have been included in the training
set of Gemma-2 and are extremely unlikely to appear in
the training set of Qwen-2.5 (thus helps ablate the effect of



Language Models May Verbatim Complete Text They Were Not Explicitly Trained On

potential memorization):

1. Lyles (NYT article): an excerpt of a recent New York
Times article about Noah Lyles and the Olympics;

2. Karpathy (tweet): a tweet text in an image posted by
Andrej Karpathy about LLM tokenization; and

3. Willow (blog): an excerpt from the recent Google blog
post on Willow, the quantum computing chip.

The text choices are otherwise arbitrary and alternatives are
possible; see the full texts, source, and results on alternative
texts in Appendix B.1. For every target text sequence, we
construct N = 2,000 examples as Dy by applying the
transformation f with different randomness, though in most
settings we need less than 1,000 examples. We visualize
some of these examples in Appendix B.3.

5.1. Stitching chunks

A natural way to avoid generating any Z that shares n-grams
of z is to only expose chunks of at most (n — 1)-grams to
the model. We construct Dy, by breaking x into contiguous,
overlapping token segments, with the remaining positions
padded with random tokens from the vocabulary. This pro-
cedure is parameterized by the chunk size ¢ and the overlap
l. Chunk size c controls the difficulty (noise level) of the
task. For example, the task is trivial if ¢ is the sequence
length (since Dy, are just copies of x). A small ¢ means most
tokens of any Z € Dy are random. A large overlap [ should
intuitively help the LLM learn to stitch x together, though
empirically we observe minimal impact (Appendix B.5.1).

To illustrate, if the target « = [1, 2, 3,4, 5, 6], then we may
have Dy = {[1,2,3,-,+,"], [, 3,4,5,], [y, +,+,5,6], ...}
with chunk size ¢ = 3 and overlap [ = 1, (- denotes a
fresh random token). Intuitively, the task for the LLM is
to “stitch” the token chunks back together into x. A similar
technique is explored in the concurrent work of Panaitescu-
Liess et al. (2024) for data poisoning; here, we explore
chunk sizes, overlaps, and model families to present more
comprehensive tradeoffs. See Algorithm 1 for our detailed
procedure and Appendix B.3 to visualize examples in Dy.

5.2. Token dropouts

Another way to avoid £ € Dy sharing n-grams with x
is to mask out tokens in Z at least every n positions, so
that it cannot share n-gram overlap with z. That is, Dy
contains different versions of « where at least every (n — 1)-
th token is masked out (replaced with a random token)
so that there is at most n — 1 token overlap. This pro-
cedure is parameterized by a drop interval d, represent-
ing the length of the interval between dropped tokens. It
must be that d < n to ensure no n-gram overlap. To il-
lustrate, if z = [1,2,3,4,5, 6], then we may have Dy =
{[1,2,3,-,5,6],[1,-,3,4,5,°],[, 2, 3,4,-,6], ...}, where *’

is a fresh random token and where here d = 4. We also con-
sider a randomized dropout, where every token is dropped
with probability 1/d. By construction, the deterministic
version guarantees that = is not a d-gram member of the
training set, while the randomized version does so with
(exponentially) high probability. Notably, due to BPE token-
zation (Sennrich, 2015), the original text becomes visually
obfuscated for humans even when most tokens are retained
(d > 2). See Algorithm 2 for detailed algorithm and Ap-
pendix B.3 for visualization.

This construction is closely related to the goldfish loss pro-
posed by Hans et al. (2024) to mitigate verbatim memo-
rization, where the loss of every n-th token (on average, if
randomized) is omitted during training. However, the proce-
dure here is entirely data-centric: it does not interfere with
the training objective and makes the learning task harder as
subsequent tokens would still attend to the random tokens.

5.3. Case flipping

Another approach is to perform text-space transformations
that preserve semantics yet drastically alter the token-space
representations. One such method is to randomly flip the
casing of English letters, creating varied fokenization of
the otherwise equivalent string. To illustrate, if  decodes
to "This is a string’, Dy may include token se-
quences of strings like  THIS Is A stRinG’.Dueto
the mechanisms of BPE tokenization, it is extremely easy to
obtain & with completely distinct tokens than x under mod-
ern LLM tokenizers (see Appendix B.2 for visualization).
The case flipping procedure is parameterized by the flip
probability p. p = 0.5 creates the highest variance, and p
closer to 1 always flips the case (most letters being initially
lower case, natural text becomes mostly upper case).

5.4. Compositions

The transformations presented earlier are not mutually ex-
clusive, and in principle they can be composed arbitrarily.
We explore one such composition of token dropouts & case
flipping, where non-dropped tokens (§5.2) have casing ran-
domly flipped in the text space (§5.3). A key benefit of
compositions is that they combinatorially give rise to many
new transformations with potentially more granular control
of task difficulty and detectability (e.g., whether manually
inspecting Dy, reveals x; see Appendix B.3 for example
visualizations). We leave a comprehensive evaluation of
composed transformations to future work.

5.5. Results

Finding #1: It is possible for an LLM to complete an un-
seen string with no n-gram membership after minimal
finetuning.
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Fig. 6 shows the results of various transformations across
various text targets (see Appendix B.5 for comprehensive
results). We first see that there are many configurations
where fine-tuning on Dy, allow the successful completion of
target = (edit similarity > 90%).

Some transformations are more effective than others. We
found that chunking (Section 5.1) was ineffective: with a
small chunk size (¢ = 25), the models mostly fail to com-
plete the target, and only some models succeed at ¢ = 100
(Fig. 6 (a)). Token dropouts (Section 5.2), on the other hand,
is extremely effective—even the smallest model (Qwen-2.5
0.5B) easily completes the target verbatim at a drop interval
of 2 (50% drop probability at every token; Fig. 6 (b)). Our
results thus present a counter-case to goldfish loss (Hans
et al., 2024), as models can still complete targets verbatim
when there are multiple versions of the target with different
token dropout positions (e.g., due to near-duplicates, related
to the findings of Section 4). Casing flips (Section 5.3)
are also generally effective (Fig. 6 (c)). Composing token
dropouts and casing flips (Section 5.4) increases task dif-
ficulty (fewer successes with small models) but otherwise
similarly enables verbatim completion.

In essence, these experiments demonstrate that n-gram
based membership definitions can be vulnerable to adver-
sarial manipulation: the fine-tuning set Dy clearly contains
information about the text =, but when given x and a choice
of n, it is easy for an adversary to bypass detection and yet
have the model generate = verbatim.

Finding #2: Completion success scales with model size.
Another message from Fig. 6 is that as we increase in the
model size, the completion success generally improves un-
der the same configurations. This provides evidence that
frontier models should be more capable at synthesizing n-
gram non-members into the target texts.

5.6. Interpretations and Outlook

We briefly describe the potential implications of our adver-
sarially constructed fine-tuning datasets:

e Data poisoning: n-gram non-members of a poison text
2 can be added to the training set and still induce the
generation of . The concurrent work of Panaitescu-
Liess et al. (2024) explores adding copyrighted materials
as poisoned data with a similar chunking technique (§5.1).

e Data contamination: a dishonest model developer may
game model evaluations through deliberate data contami-
nation while evading n-gram based detection.

e Reporting train-test overlap metrics: More broadly, a
model developer may self-report train-test overlap statis-
tics (e.g., as part of contamination analysis seen in Dubey
et al. (2024); Gemini Team et al. (2023); Brown (2020)).
Our results highlight that it is desirable that developers
report additional metrics beyond n-gram overlap.

6. Concluding Remarks

Lingering sequences (§ 4) and adversarially constructed fine-
tuning datasets (§ 5) demonstrate the remarkable ability of
LLMs to generalize from neighboring text. They are thus a
valuable tool for evaluating LLM capabilities as models and
pre-training datasets scale up. We conclude our work with a
discussion of the implications of our findings:

Membership definitions and tests should incorporate
new similarity measures. We showed n-gram based mem-
bership emits false negatives that may not capture human in-
tuition nor the pragmatic concerns of the copyright, privacy,
and Al safety community. On the flip side, tests like mem-
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bership inference should consider broader notions of mem-
bership beyond individual sequences: a unit of data could
be a collection of sequences grouped by similarity (Kandpal
et al., 2023; Maini et al., 2024; Cooper et al., 2024).

Machine unlearning alone is insufficient to address data
permissibility concerns in output suppression. It is
widely accepted that a golden baseline of machine unlearn-
ing is to retrain a model from scratch without the target
forget data (Bourtoule et al., 2021; Liu, 2024; Liu et al.,
2024; Cooper et al., 2024). Yet, our experiments perform
precisely this counterfactual and reveal that some excluded
sequences can still be verbatim generated (Fig. 1, §4). We
thus caution that unlearning alone may not always prevent a
model from generating a sequence of interest (e.g., a harm-
ful sequence). This is also known as output suppression and
is a common goal of unlearning (Cooper et al., 2024).

Exploring the connection between our work and forg-
ing may help more precisely characterize threat models
for when completion can serve as evidence of member-
ship. Readers familiar with the forging (Thudi et al., 2022)
literature will have noticed a connection with our work.
Forging a step of gradient descent computed on a given
minibatch is done by (adversarially) constructing a different
minibatch that will result in the same gradient being com-
puted. Perhaps surprisingly at first, gradients can be forged
using non-overlapping datasets sampled from “natural” dis-
tributions. Rather than forging gradients, our methods can
be viewed as attempting to forge model outputs. While
our work begins to show that there may exist threat mod-
els where completion is insufficient evidence for n-gram
membership, our experiments did not succeed in obtaining
a forge in model outputs using “natural” data (recall § 4).
We believe this is a valuable direction for future work.

Impact Statement

Our work studies training data membership in the context
of language models. The impact of our work is described
in Sections 4.3, 5.6, and 6. As we described earlier, the
limitations we identified in n-gram based definitions of
membership have implications for copyright, privacy, and
Al safety. Broadly speaking, our work advocates for addi-
tional membership definitions to help better capture human
intuition and make membership more pragmatic.
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A. Removing Members Does Not Always Prevent LLM Verbatim Completion (54)
A.1. Data filtering

The n-gram filter discussed in Section 4.1 can be defined as follows:

Definition A.1 (n-gram data filtering). Let F be a set of n-grams to filter against. Let f,(x,F) be the condition that
returns 1 if any n-gram of the sequence x is in F (0 otherwise). An n-gram filter against F on a set of sequences D is thus
constructing D,, = {x € D | f,(z, F) = 0}.

Intuitively, a stronger n-gram filter (smaller n) means that we are removing a sequence on increasingly smaller partial
matches against the filter set. In practice, since we are filtering many sequences (Dy,em) at once, it is more efficient to build a
shared n-gram filter hash set from all sequences in Dy, and then apply a sliding window filtering procedure.

Table 2 shows the amount of tokens kept after applying n-gram filtering at different filtering strengths (for sequence length
50, the default setting used in experiments unless otherwise stated). Table 3 similarly shows the amount of tokens for
sequence length 100.

Table 2: Fraction of tokens kept after applying n-gram filter to sequence length & = 50.

n-gram filtering strength n=5 n=10 n =20 n = 50 (Exact Filtering)
Approx % of tokens kept  0.6905 0.9838  0.9938 0.9995

Table 3: Fraction of tokens kept after applying n-gram filter to sequence length & = 100.

n-gram filtering strength n =10 n =20 n =50 n =100 (Exact Filtering)
Approx % of tokens kept 0.9820 0.9930 0.9970 0.9995

(n)

A.2. Visualizing Lingering Sequences Dy,

In this and the following section, we provide visualizations to the key results described in Section 4 to help develop intuition
on our findings.

Recall from §4 that Dl(i:g)er refers to the set of lingering sequences that are still verbatim completable by the re-trained from

scratch LLM after applying n-gram filter (Def. A.1) on the identified memorized sequences Dyen.

Table 4, Table 5, Table 6, and Table 7 show 15 randomly sampled lingering sequence at filtering strengths n = {50, 20, 10, 5},
respectively. Observe that, as noted in Section 4.2, with stronger filtering strength (smaller n), the content gradually shift
from semantically useful content to pattern continuations.

Table 4: Randomly sampled lingering sequences at filtering strength n = 50 (exact) filter. Sequence length k£ = 50.

Idx Lingering sequences at filtering strength n = 50 (exact) filter.

0 Prompt: ’Common Name: bleeding heart Type: Herbaceous perennial Native Range: Eastern United States Zone: 3t0 9’
Completion: ’Height: 1.00 to 1.50 feet Spread: 1.00 to 1.50 feet Bloom Time:’
1 Prompt: ’—1477 by topic— —Aurts and science— —Birth and death categories— —Births —
Completion: ’ Deaths— —Establishments and disestablishments categories— —Establishments — Disestablishments— —’
2 Prompt: *Charcot Joint (Neuropathic Arthropathy) Medicine Central™ is a quick-consult mobile and”
Completion: ’ web resource that includes diagnosis, treatment, medications, and follow-up information on over 700 diseases and disorders, providing fast
answers’
3 Prompt: ’Mienert-barth Surname History The family history of the Mienert-barth last name is’
Completion: ’ maintained by the AncientFaces community. Join the community by adding to to our knowldge of the Mienert-’
4 Prompt: *Instructional Supports and Resources Dyslexia is a specific learning disability that is neurological in origin. It is characterized’

Completion: ’ by difficulties with accurate and/or fluent word recognition and by poor spelling and decoding abilities. These difficulties typically result
from a deficit’
5 Prompt: "Publisher description for Writers at work. The short composition / Ann O. Strauch. Bibliographic record and links to’

Completion: ’ related information available from the Library of Congress catalog Information from electronic data provided by the publisher. May be
incomplete or contain other’

6 Prompt: "Create healthcare diagrams like this example called Anencephaly in minutes with SmartDraw. SmartDraw includes 1000s of professional
healthcare’

Completion: ’ and anatomy chart templates that you can modify and make your own. Text in this Example: Anencephaly is’
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Idx Lingering sequences at filtering strength n = 50 (exact) filter.
7 Prompt: ’Presentation on theme: ”Spiraled Assignments Presenter: Angela Pritchett November 14, 2006.””
Completion: ’— Presentation transcript: Spiraled Assignments Presenter: Angela Pritchett November 14, 2006 *
8 Prompt: ’An excerpt from www.HouseOfNames.com archives copyright (©) 2000 - 2013 Where did the Irish McSweeney family’
Completion: ’ come from? What is the Irish McSweeney family crest and coat of arms? When did the McSweeney family first’
9 Prompt: *Which of the following cubes can be made from these nets? Is it possible to remove ten unit cubes from a 3 by’
Completion: ’ 3 by 3 cube made from 27 unit cubes so that the surface area of the remaining solid is the same as the surface area’
10 Prompt: *Course Hero. "The Libation Bearers Study Guide.” Course Hero. 23 June 2017. Web. 14 Nov. 2018’
Completion: . jhttps://www.coursehero.com/lit/The-Libation-Bearers/;. Course Hero’
11 Prompt: "Presentation on theme: “Cause and Effect Comprehension Skill Fourth Grade Unit 2 Week 1 Created by Kristi Waltke’
Completion: ’.”— Presentation transcript: Cause and Effect Comprehension Skill Fourth Grade Unit 2 Week 1 Created by Kristi Walt’
12 Prompt: ’An excerpt from www.HouseOfNames.com archives copyright (©) 2000 - 2015 Where did the English Ragsdale family’
Completion: ’ come from? What is the English Ragsdale family crest and coat of arms? When did the Ragsdale family first’
13 Prompt: ’Gibbous Scorpio Moon phase on 29 March 2051 Wednesday is Waning Gibbous, 16’
Completion: ’ days old Moon is in Scorpio.Share this page: twitter facebook linkedin Previous main lunar phase is the Full Moon’
14 Prompt: *What does AIDS mean in Laboratory? This page is about the meanings of the acronym/abbreviation/shorthand’
Completion: ° AIDS in the Medical field in general and in the Laboratory terminology in particular. Find a translation for AIDS in other languages:’
15 Prompt: ’Nathalie Raphaélle June 23, 2021 Worksheets If you home school your children, you’
Completion: ° will quickly realize how important printable homeschool worksheets can be. If you are trying to develop a curriculum for your’
16 Prompt: ’Course Hero. "The Pearl Study Guide.” Course Hero. 14 Dec. 2017. Web. 24 Nov. 2020. ;’
Completion: ’https://www.coursehero.com/lit/The-Pearl/;. Course Hero. (2017, December’
17 Prompt: *Internet of Things Internet of Things The Internet of Things (IoT) is a system of interrelated computing devices’
Completion: ’, mechanical and digital machines, objects, animals or people that are provided with unique identifiers and the ability to transfer data over a’
18 Prompt: *Latest Newland photos These photos were uploaded by members of the Newland community on AncientFaces. Newland S’
Completion: ’urname History The family history of the Newland last name is maintained by the AncientFaces community. Join the community’
19 Prompt: *Definition of Seckles 1. seckle [n] - See also: seckle Click the following’

Completion: ’ link to bring up a new window with an automated collection of images related to the term: Seckles Images Lexic’

Table 5: Randomly sampled lingering sequences at filtering strength n = 20 filter. Sequence length k£ = 50.

Idx Lingering sequences at filtering strength n = 20 filter.
0 Prompt: ’Presentation on theme: "MAKING BOOKS WITH CHILDREN Picture It! Publish It! Read It!””
Completion: "— Presentation transcript: MAKING BOOKS WITH CHILDREN Picture It! Publish It! Read It!”
1 Prompt: *This Constitution, and the Laws of the United States which shall be made in Pursuance thereof; and all Treaties made’
Completion: ’, or which shall be made, under the Authority of the United States, shall be the supreme Law of the Land; and”
2 Prompt: "How To Recognize A Crystal Child A selection of articles related to how to recognize a crystal child. Original articles from’
Completion: ~ our library related to the How To Recognize A Crystal Child. See Table of Contents for further available material (downloadable resources’
3 Prompt: *Wampsville, New York —Wampsville, New York— —e Total——1.0 sq mi’
Completion: * (2.6 km2)— —e Land——1.0 sq mi (2.6 km2)— ’
4 Prompt: ’Report on Stromboli (Italy) — 12 March-18 March 2003 Smithsonian / US Geological Survey Weekly Vol’
Completion: ’canic Activity Report, 12 March-18 March 2003 Managing Editor: Gari Mayberry Please cite this report’
5 Prompt: "Presentation on theme: “The Great (gym) Divide Curricula by Design #3 M. Fischer.—’
Completion: ’ Presentation transcript: The Great (gym) Divide Curricula by Design #3 M. Fischer The Great’
6 Prompt: *Course Hero. "Lord of the Flies Study Guide.” Course Hero. 15 Sep. 2016. Web. 29 May 20’
Completion: ’23. jhttps://www.coursehero.com/lit/Lord-of-the-Flies/; . ’
7 Prompt: ’Manada Gap, Pennsylvania facts for kids Quick facts for kids Manada Gap, Pennsylvania —Time zone——UTC’
Completion: ’-5 (Eastern (EST))— —e Summer (DST)——UTC-4 (EDT)—’
8 Prompt: ’Scale Zoology Cosmoid Scales A selection of articles related to scale zoology cosmoid scales. Original’
Completion: ’ articles from our library related to the Scale Zoology Cosmoid Scales. See Table of Contents for further available material (’
9 Prompt: ’Atomic Nucleus History A selection of articles related to atomic nucleus history. Original articles from our library related to’
Completion: ° the Atomic Nucleus History. See Table of Contents for further available material (downloadable resources) on Atomic Nucleus’
10 Prompt: ’Mangoverde :: World Bird Guide :: Pheasants and Partridges :: Common Quail Common Quail Cot’
Completion: ’urnix coturnix Described by: Linnaeus (1758) Alternate common name(s’
11 Prompt: ’Set Builder Notation Variations A selection of articles related to set builder notation variations. Original articles from our library related’
Completion: ’ to the Set Builder Notation Variations. See Table of Contents for further available material (downloadable resources) on Set Builder’
12 Prompt: ’—1648 by topic— —Aurts and science— —Birth and death categories— —Births —
Completion: ° Deaths— —Establishments and disestablishments categories— —Establishments — Disestablishments— —’
13 Prompt: *Tamil Script The Tamil Letters A selection of articles related to tamil script the tamil letters. Original articles from’
Completion: ~ our library related to the Tamil Script The Tamil Letters. See Table of Contents for further available material (downloadable resources) on’
14 Prompt: ’Manuel I of PortugalFrom Wikipedia, the free encyclopediaJump to: navigation, search This article does not cite any references or’
Completion: ’ sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (°
15 Prompt: ’Image 1 of 12 Image 2 of 12 Image 3 of 12 Image 4 of 12 Image 5 of 12°
Completion: ’Tmage 6 of 12 Image 7 of 12 Image 8 of 12 Image 9 of 12 Image 10 of 12~
16 Prompt: ’—Nutritional Guidelines (per serving)— —Servings: 3 pint jars (96 servings)— —Amount per serving’
Completion: '— —9% Daily Value*— —Total Fat 0g——0%— —Saturated Fat 0g’
17 Prompt: "Presentation on theme: “Corpus Linguistics and Stylistics PALA Summer School, Maribor, 2014’
Completion: ’.”— Presentation transcript: Corpus Linguistics and Stylistics PALA Summer School, Maribor,’
18 Prompt: ’Presentation on theme: “Lunar Research Station Design Submitted by West Valley Elementary GATE Team October 31, 2006’
Completion: ’.”— Presentation transcript: Lunar Research Station Design Submitted by West Valley Elementary GATE Team October 31,
19 Prompt: ’Some daily events in the changing sky for February 19 27. Friday, February 19 Saturday, February 20 Sunday,’

Completion: ’ February 21 Monday, February 22 Tuesday, February 23 Wednesday, February 24 Thursday, February 25 Friday,
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Table 6: Randomly sampled lingering sequences at filtering strength n = 10 filter. Sequence length k£ = 50.

Idx Lingering sequences at filtering strength n = 10 filter.

0 Prompt: ’Presentation on theme: "HELPING YOUR CHILD WITH NUMERACY: ADDITION AND SUBTRACTION.”
Completion: ’— Presentation transcript: HELPING YOUR CHILD WITH NUMERACY: ADDITION AND SUBTRACTION *

1 Prompt: ’—Wednesday- 2:00 PM - 3:40 PM. lesson: Lecture Hall 1.2—~
Completion: ’—Thursday——2:00 PM - 3:40 PM lesson Lecture Hall 1.2—~
2 Prompt: "How to define the cosine ratio and identify the cosine of an angle in a right triangle. How to define the’
Completion: ’ sine ratio and identify the sine of an angle in a right triangle. How to define the tangent ratio and’
3 Prompt: Q1. A series is given with one term missing. Select the correct alternative from the given ones that will complete the series’
Completion: . Q2. A series is given with one term missing. Select the correct alternative from the given ones that will complete’
4 Prompt: *History of False Teeth Length: 497 words (1.4 double-spaced pages) - - -’
Completion: * - ---------------------- ?
5 Prompt: ’Presentation on theme: ~Yoghurt!!! Find the dairy cow on each page!!! By Daisy Mason and Brigette Roberts’
Completion: ’.”— Presentation transcript: Yoghurt!!! Find the dairy cow on each page!!! By Daisy Mason and Brigette’
6 Prompt: *Protecting People with Disabilities in the Ebbs and Flows of the COVID-19 Pandemic Protecting People’
Completion: ° with Disabilities in the Ebbs and Flows of the COVID-19 Pandemic The COVID-19 pand’
7 Prompt: ’Presentation on theme: ”Aceh Poverty Assessment The impact of the Conflict, the Tsunami and Reconstruction on Poverty’
Completion: ’ in Aceh.”— Presentation transcript: Aceh Poverty Assessment The impact of the Conflict, the Tsunami’
8 Prompt: ’Presentation on theme: "THE MIX-AERATOR Innovation In Pond & Lagoon Aeration & Mixing.””
Completion: ’— Presentation transcript: THE MIX-AERATOR Innovation In Pond & Lagoon Aeration & Mixing ’
9 Prompt: ’Some daily events in the changing sky for February 8 16. Friday, February 8 Saturday, February 9 Sunday,’
Completion: ’ February 10 Monday, February 11 Tuesday, February 12 Wednesday, February 13 Thursday, February 14 Friday,
10 Prompt: ’Essays on mercutio Romeo and mercutio essays: over 180,000 romeo and merc’
Completion: ’utio essays, romeo and mercutio term papers, romeo and mercutio research paper, book’
11 Prompt: ’Presentation on theme: “Fabric Construction Fashion Design, Textiles & Merchandising Mrs. Moscinski.”—’
Completion: ’ Presentation transcript: Fabric Construction Fashion Design, Textiles & Merchandising Mrs. Moscinski Fabric’
12 Prompt: ’Presentation on theme: “Chapter 4 - Building Compassionate School-Community Partnerships That Work Chapter 4 - Building Comp’
Completion: ’assionate School-Community Partnerships That Work.”— Presentation transcript: Chapter 4 - Building Compassionate School-’
13 Prompt: *Tracing Names: Letter AA—B—C—D—E—F—G—H—-I1—J]—
Completion: "K—L—M—N—-O—P—Q—R—S—T—U—V—W
14 Prompt: ’Dictionary of Financial, Economic, and Business Terms A—B—C —D —E—F—G—’
Completion: "H—I—J—K—L—M—N—O—P—Q—R—S—T
15 Prompt: *Canons of the Seven Ecumenical Councils. The First Ecumenical Council. Second Ecumenical’
Completion: ’ Council. Third Ecumenical Council. Fourth Ecumenical Council. Fifth Ecumenical Council. ’
16 Prompt: *Welsh Levels of Care E-Learning Program Glossary Special —A —B —C —D —E—F
Completion: °—G—H—I1—J—K—L—M—N—O—P—Q—R—’
17 Prompt: ’Presentation on theme: “Tap Water Intrusion Effects on Microbial Life Anthony DeRenzo Grade 10 Pittsburgh Central Catholic’
Completion: * High School.”— Presentation transcript: Tap Water Intrusion Effects on Microbial Life Anthony DeRenzo Grade 10
18 Prompt: ’Presentation on theme: “Dr. Anand Srinivasan for MBBS 2013 on 10/10/2013.”
Completion: ’— Presentation transcript: Dr. Anand Srinivasan for MBBS 2013 on 10/10/2013 *
19 Prompt: ’Presentation on theme: ”Ashok Sinha O/o the Director General (Audit) Central, Chandigar’

Completion: ’h.”— Presentation transcript: Ashok Sinha O/o the Director General (Audit) Central, Chand’

Table 7: Randomly sampled lingering sequences at filtering strength n = 5 filter. Sequence length & = 50.

Idx Lingering sequences at filtering strength n = 5 filter.

0 Prompt: ’Water, sanitation and hygiene: the foundation for building resilience in climate-vulnerable communities - Water, sanitation and hygiene:’
Completion: ’ the foundation for building resilience in climate-vulnerable communities - Water, sanitation and hygiene: the foundation for building
resilience in’

1 Prompt: ’- 1 What is Adrenoleukodystrophy disease? - 2 Adrenoleukodystrophy Causes - 3’

Completion: ’ Adrenoleukodystrophy Symptoms - 4 Adrenoleukodystrophy Diagnosis - 5 Adrenoleukody’

2 Prompt: "MATHI105 April 2017 @ Q1 (a) ¢ Q1 (b) @ Q1 (c) @’

Completion: ’ QI (d)eQl (e) e Ql () e Ql (g) e Q’

3 Prompt: ’Native to North America STATE DISTRIBUTION (USDA): AL, AR, CT, DC, DE, FL]
Completion: ’ GA, IA, IL, IN, KS, KY, LA, MA, MD, ME, MI, MN, MO’

4 Prompt: *What are the 7 notes of a major scale? The scale degrees are: - 1st: Tonic. ’

Completion: ’-2nd: Supertonic. - 3rd: Mediant. - 4th: Subdominant.’

5 Prompt: *Ten Times Table And Random Test Lyrics 10x 1 =1010x2=2010x3 =
Completion: °3010x4=4010x5=5010x6=6010x7=70

6 Prompt: *Accuracy Of Data 914 words (2.6 double-spaced pages) - - - - - - ’

Completion: =~ -------------- oo ?

7 Prompt: ’Print Texting RULES! Reading Comprehension with Fourth Grade Work Print Texting RULES! Reading Comp’
Completion: ’rehension with Fifth Grade Work Print Texting RULES! Reading Comprehension with Sixth Grade Work Print Text’

8 Prompt: ’Glossary of Legal Terms A-B-C-D-E-F-G-H’

Completion: ’-1-J-K-L-M-N-O-P-Q-R’

9 Prompt: *Chef is at x=0. 1-jump: he will move from x -; x + 1 2-’

Completion: ’jump: he will move from x -; X + 2 3-jump: he will move from x -; x + 3’

10 Prompt: *Acting Minister of the Environment, Denis Kellman (centre, °, *, *, ©
Completion: >, <, “,“, ¢, ¢, ¢, ¢ ¢

11 Prompt: ’MI Science Standards Special —A—B —C—D —E—F—G—H—I1—7
Completion: ° —K—L—M—N—O—P—Q—R—S—T—-U—-V—

12 Prompt: ’Collective Nouns for Birds —Pages:——A,——B,——C,——D,——F’

Completion: '—F—G,—H—I—J—K—L—M/
13 Prompt: *7 Wicked Winter Health Myths By: Laura Roberson - Winter Health Myth # 1 - Winter Health Myth #

Completion: ’ 2 - Winter Health Myth # 3 - Winter Health Myth # 4 - Winter Health Myth # 5 - Winter’
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Idx Lingering sequences at filtering strength n = 5 filter.

14 Prompt: "HISTORY CRIME AND PUNISHMENT HISTORY CRIME AND PUNISHMENT HISTORY CRIME AND’
Completion: ° PUNISHMENT HISTORY CRIME AND PUNISHMENT HISTORY CRIME AND PUNISHMENT ’

15 Prompt: ’Define Gyromitra infula. Gyromitra infula synonyms, Gyromitra in’
Completion: ’fula pronunciation, Gyromitra infula translation, English dictionary definition of Gyromitra infula.”

16 Prompt: ’Some daily events in the changing sky for December 19 27. Friday, December 19 Saturday, December 20 Sunday,’
Completion: ’ December 21 Monday, December 22 Tuesday, December 23 Wednesday, December 24 Thursday, December 25 Friday,’

17 Prompt: ’Length: 1122 words (3.2 double-spaced pages) - - - - - - - - - ’
Completion: * - ------------------- - ’

18 Prompt: ’Letter E Names: Page 2A—B —C—D —E—F—G—H—1—7r
Completion: ' —K—L—M—N—0O—P—Q—R—S—T—U—V—

19 Prompt: A Complete Illustrated History of Robots in the Movies (chronological by film title) Intro — Part 1 —’
Completion: ’ Part 2 — Part 3 — Part 4 — Part 5 — Part 6 — Part 7 — Part 8 — Part 9 — Part’

20 Prompt: ’1. George Washington - Term of Office (1789-1797) 2. John Adams (1797-18’

Completion: ’01) 3. Thomas Jefferson (1801-1809) 4. James Madison (1809-1817"

(n)

linger

A.3. Visualizing neighbors of lingering sequences D in the pre-training set

A key aspect worth studying for lingering sequences is what contributed to their existence. We randomly sample 2 lingering
sequences for filtering strengths n = {50, 20, 10}, and perform a very costly search of Levenshtein edit-distance neighbor
search: perform a sliding window over the pre-training tokens, and check the edit distance of each window to the lingering
sequence. By construction, lingering sequences have already been removed from the training set; the hope is thus to identify
and visualize neighboring sequences that may have led to these lingering sequences.

Fig. 8 visualizes these randomly sampled lingering sequences, and two randomly sampled neighbors (with edit distance
< 20 tokens) for each of them. We also visualize the histogram of these neighbors at different distances. We note that:

e These visualizations suggest that lingering sequences are very likely the result of either near-duplicate training data
and/or the generalization capabilities of LLMs.

e By observing the neighboring sequences, we gain insights into how we may adversarially game the n-gram mem-
bership definition. For example, observing the second sequence in Fig. 8 can provide intuition for the chunking (§5.1)
method we presented in §5 to adversarially construct fine-tuning sequences that avoid n-gram overlap, and observing the
second last can provide intuition for the roken dropout (§5.2) method.
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Lingering Seq (n = 50 filter): The Sixth Amendment to the U.S. Constitution reads, “In all criminal prosecutions, the
accused shall enjoy the right to a speedy and public trial, by an impartial jury of the State and district wherein the
crime shall have been committed, which

Neighbor #1: .\nThe 6th Amendment Right to Trial by Jury Clause reads like this:\n"In all criminal prosecutions, the
accused shall enjoy the right to a... trial, by an impartial jury of the State and district where in the crime shall have
been committed

Neighbor #2: nor shall property be taken for public, without just compensation.\n- Amendment VI In all criminal
prosecutions the accused shall enjoy the right to a speedy and public trial, by an impartial jury of the state and
district wherein the crime shall have been committed

Frequency (log scale)

Edit Distances for Chunk 103
(Total Windows: 765)

10°

107

00 25 50 75
Edit Distance

15.0

175 200

Lingering Seq (n = 50 filter): If you want to pay for essay for unique writing Looking At The Chinese Lifestyle And
Norms, just click Order button. We will write a custom essay on Looking At The Chinese Lifestyle And Norms
specifically for you!

Neighbor #1: If you want to pay for essay for unique writing The role of cybersecurity and cybercrime, just click
Order button. We will write a custom essay on The role of cybersecurity and cybercrime specifically for you!
Neighbor #2: If you want to pay for essay for unique writing Gender Roles and Lady Macbeth, just click Order
button. We will write a custom essay on Gender Roles and Lady Macbeth specifically for you!

Frequency (log scale)

Edit Distances for Chunk 104
(Total Windows: 52)

Mean: 19.79
Median: 20.00

Max: 20

00 25 50 75 100 125
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Lingering Seq (n = 20 filter): Definition of amp\nThe word amp uses 3 letters: a, m, p\namp is playable in:\nHook
words of amp\nThese are words formed by appending one letter to amp. Extend an already existing word on the
board.

Neighbor #1:
by appending one letter to locum. Extend an already existing word on the board.

Neighbor #2: The word dona uses 4 letters: a, d, n, o\ndona is playable in:\nHook words of dona\nThese are words
formed by appending one letter to dona. Extend an already existing word on

uses 5 letters: c, |, m, o, u\nlocum is playable in:\nHook words of locum\nThese are words formed

Frequency (log scale)

Edit Distances for Chunk 104
(Total Windows: 934)

00 25 50 75 100 125
Edit Distance

Lingering Seq (n = 20 filter): A selection of articles related to kulin brahmins.\nOriginal articles from our library
related to the Kulin Brahmins. See Table of Contents for further available material (downloadable resources) on
Kulin Brahmins.\n- The

Neighbor #1: selection of articles related to the creation of adam.\nOriginal articles from our library related to the
The Creation Of Adam. See Table of Contents for further available material (downloadable resources) on The
Creation Of Adam.\n- The Aeonic Perspective of

Neighbor #2: .<|endoftext|>A selection of articles related to sufi texts.\nOriginal articles from our library related to
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A.4. Model architectures

Our 350M, 774M, and 1.6B-parameter model architectures follow directly from the original GPT-2 paper (Radford et al.,
2019) and LLM.c implementation (Karpathy, 2024). We create a custom architecture for 2.8B parameters by adjusting the
number of layers, channels, and attention headas in the model, again following Karpathy (2024). The model configurations
can be found in Table 8.

Table 8: Configurations of models (GPT-2 architecture) at different sizes for our pre-training experiments.

Parameters 304M 774M 1.6B 2.8B

Layers 24 36 48 60
Channels 1024 1280 1600 1920
Attention heads 16 20 26 30

A.5. Training hyperparameters

We follow the pre-training configurations outlined in (Karpathy, 2024), particularly https://github.com/karpath
y/1lm.c/discussions/677. Table 9 summarizes the configurations.

Table 9: Training configurations for pre-training experiments.

Hyperparameter Value

# Training Tokens 33.6 billion

Compute 8 NVIDIA H100 days (1.6B parameter model)
Micro-Batch Size 16

Max Sequence Length 1024

Total Batch Size 220 — 1,048, 576 tokens
Gradient Accumulation Steps 8

Weight Decay 0.1

Learning Rate 6e-4

LR Schedule Cosine

LR Decay decay to 10% of max LR
Warmup Iterations 700 iterations

Total Training Steps 32,000

A.6. Tabled results of Fig. 3
We additionally provide the table version of Fig. 3 in Table 10 (for default sequence length 50).

Table 10: (Table version of Fig. 3) Amount of lingering sequences as fraction of |Dyem | across model sizes and filtering
strengths (values of n-gram filter). Sequence length £ = 50. Recall setup in Section 4.

. Filtering Strength

Model Size  [Dumen|  _5 ) _10 n=20 n=50
304M 76648  0.0175 0.0402 0.0978 0.4793
774M 116270 0.0132 0.0300 0.0916 0.4013
1.6B 151598 0.0109 0.0259 0.0796 0.4007
2.8B 175813 0.0099 0.0247 0.0869 0.4068
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A.7. Additional Results: Longer Sequence Length

We also experiment with a longer sequence length of k£ = 100 (i.e., 50-token prompt, 50-token completion). In general, we
made similar observations in terms of both the amount and nature of the lingering sequences. Table 11 shows the fraction of
lingering sequences in terms of the identified memorized sequences Dy,em. We provide visualizations of these sequences
in Table 12 (exact filtering, n = 100) and Table 12 (strong filtering, n = 10), and note that the content of the lingering
sequences are similar to those with sequence length £ = 50.

Table 11: Amount of lingering sequences as a fraction of the identified memorized sequences |Dpen| across filtering
strengths (values of n-gram filter). Sequence length £ = 100. Recall setup in Section 4; compare to Table 10.

. Filtering Strength
Model Size  [Dumen| ) _ 10 =20 n=50 n=100
1.6B 88803 0.0109 0.0259 0.0796  0.4007

Table 12: Randomly sampled lingering sequences at filtering strength n = 100 (exact) filter. Sequence length £ = 100.

Idx Lingering sequences at filtering strength n = 100 (exact) filter.

0 Prompt: ”Course Hero. "Romeo and Juliet Study Guide.” Course Hero. 28 July 2016. Web. 16 Jan. 2019. ;https://www.coursehero.com/lit/Romeo-
and-Juliet/;. Course”
Completion: ”  Hero. (2016, July 28). Romeo and Juliet Study Guide. In Course Hero. Retrieved January 16, 2019, from
https://www.coursehero.com/lit/Romeo-and-Juliet/ (Course Hero,”

1 Prompt: “ESQUIEN INDIANS. The Esquien Indians were a Karankawan group that entered Nuestra Sefora de la Candelaria Mission on the San

Gabriel River in 1750. Frederick Webb Hodge, ed.,”
Completion: ” Handbook of American Indians North of Mexico (2 vols., Washington: GPO, 1907, 1910; rpt., New York: Pageant, 1959). The following,
adapted from the Chicago Manual of Style, 15th edition, is the”

2 Prompt: ”See what questions a doctor would ask. During a consultation, your doctor will use various techniques to assess the symptom: Heel pain.
These will include a physical examination and possibly diagnostic tests. (Note: A physical exam is always done,”
Completion: ” diagnostic tests may or may not be performed depending on the suspected condition) Your doctor will ask several questions when assessing
your condition. It is important to openly share any pertinent information to help your doctor make an accurate diagnosis. It is also very important to”

3 Prompt: ”—Product #: EMC0775025_.TQ— A Is for Apple (Resource Book Only) eBookGrade 2—Grade 3—Grade 4—Grade 5 Please Note: This
ebook is a digital download, NOT a physical product”
Completion: ”. After purchase, you will be provided a one time link to download ebooks to your computer. Orders paid by PayPal require up to 8 business
hours to verify payment and release electronic media. For immediate downloads, payment with credit card is required.

4 Prompt: ”Family History and Genealogy Resources by Surname Haycock Surname Origin A name probably given to a foundling exposed in a hayfield.
Source: An Etymological Dictionary of Family and Christian Names With an Essay”
Completion: ” on their Derivation and Import; Arthur, William, M.A.; New York, NY: Sheldon, Blake, Bleeker & CO., 1857. Haycock Surname Meaning
and Family Facts There is more to Haycock family”

5 Prompt: "”Lake Uvs and its surrounding wetlands - Site number:1379 - Area:585,000 ha - Designation date:22-03-2004 - Coordinates:50° 19°'N 92°45°E
Materials™’
Completion: ” presented on this website, particularly maps and territorial information, are as-is and as-available based on available data and do not imply
the expression of any opinion whatsoever on the part of the Secretariat of the Ramsar Convention concerning the legal status of”

6 Prompt: “Barrier Methods of Birth Control (cont.) Melissa Conrad Stoppler, MD Melissa Conrad Stoppler, MD, is a U.S. board-certified Anatomic
Pathologist with subspecialty training in”
Completion: ’” the fields of Experimental and Molecular Pathology. Dr. Stoppler’s educational background includes a BA with Highest Distinction from
the University of Virginia and an MD from the University of North Carolina. She completed residency training in Anatomic Pathology at™

7 Prompt: “Definition of Japanese deer 1. Noun. Small deer of Japan with slightly forked antlers. Generic synonyms: Cervid, Deer Group relationships:
Cervus, Genus Cervus Japanese Deer Pictures Click”
Completion: ” the following link to bring up a new window with an automated collection of images related to the term: Japanese Deer Images Lexicograph-
ical Neighbors of Japanese Deer Literary usage of Japanese deer Below you will find example usage of this term as”

8 Prompt: ”Comparing Fractions (G) In this comparing fractions practice worksheet, Sth graders examine 10 pairs of fractions. Students identify each of
the pairs of fractions as greater than, less than, or equal to one another. 3 Views”
Completion: ” 0 Downloads Fraction Equivalence, Ordering, and Operations Need a unit to teach fractions to fourth graders? Look no further than this
well-developed and thorough set of lessons that takes teachers through all steps of planning, implementing,”

9 Prompt: "PREAMBLEWhereas recognition of the inherent dignity and of the equal and inalienable rights of all members of the human family is the
foundation of freedom, justice and peace in the world, Whereas disregard and contempt for human rights have resulted in barbar”
Completion: “ous acts which have outraged the conscience of mankind, and the advent of a world in which human beings shall enjoy freedom of speech
and belief and freedom from fear and want has been proclaimed as the highest aspiration of the common people, Whereas it is essential”

Table 13: Randomly sampled lingering sequences at filtering strength n = 10 filter. Sequence length & = 100.

Idx Lingering sequences at filtering strength n = 10 filter.

0 Prompt: “Presentation on theme: "REVIEW We can tell how many electrons and atom will gain or lose by looking at its valence. Metals like to lose
electrons. (Cations) —Ex. Na + Nonmetals.”— Presentation”
Completion: ~ transcript: REVIEW We can tell how many electrons and atom will gain or lose by looking at its valence. Metals like to lose electrons.
(Cations) —Ex. Na + Nonmetals like to gain electrons. (An”

1 Prompt: "—JellellleIVeVeVIieVIle VIl e IX @ X @ XI @ XII @ XIII @ XIV @ Schedule— - 1 Features - 2 Preamble - 3 Article I - 4 Article”
Completion: ” II - 5 Article III - 6 Article IV - 7 Article V - 8 Article VI - 9 Article VII - 10 Article VIII - 11 Article IX - 12 Article X - 13 Article XI - 14
Article”
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Idx Lingering sequences at filtering strength n = 10 filter.

2 Prompt: “ENGL 301 Course Introduction this course will be an independent study of a topic of the student’s choice in English literature and film. ENGL
302 Course Introduction for ENGL 302 — Independent Study In English (ENGL 302) this”

Completion: ~ course will be an independent study of a topic of the student’s choice in English literature and film. ENGL 303 Course Introduction for
ENGL 303 — Independent Study In English (ENGL 303) this course will be an independent study of”

3 Prompt: *”’NRL’s MISSE-8 Launched Aboard STS-134 - About NRL - Doing Business - Public Affairs & Media - Public Affairs Office - News Releases
- 2017 News Releases - 2016 News Releases -

Completion: ~ 2015 News Releases - 2014 News Releases - 2013 News Releases - 2012 News Releases - 2011 News Releases - 2010 News Releases -
2009 News Releases - 2008 News Releases - 2007 News Releases - 2006 News Releases -”

4 Prompt: “Early Movie Inventions Early Movie Exhibitions The First Movie Posters Movies and Movie Posters of the 1900’s Movies and Movie Posters
of the 1910’s Movies and Movie Posters of”

Completion: ” the 1920’s Movies and Movie Posters of the 1930’s Movies and Movie Posters of the 1940’s Movies and Movie Posters of the 1950’s Movies
and Movie Post”

5 Prompt: “Presentation on theme: “U.S.A- 1865-1918 Expansion westward after civil war (1861-1865) Gold, silver, and land Natives were pushed aside
& subdued. Railways were key to Western.””

Completion: “— Presentation transcript: U.S.A- 1865-1918 Expansion westward after civil war (1861-1865) Gold, silver, and land Natives were pushed
aside & subdued. Railways were key to Western expansion”

6 Prompt: “FILTER BY Year: - 2014 http://pub2web.metastore.ingenta.com/ns/yearOfPublication 2014 - 2013 http://pub2web.metastore.ingenta.com/”
Completion: “ns/yearOfPublication ~ 2013 - 2012  http://pub2web.metastore.ingenta.com/ns/yearOfPublication ~ 2012 - 2011
http://pub2web.metastore.ingenta.”

7 Prompt: “Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Pages: 181. Not
illustrated. Chapters: 11th-Century Roman Catholic Church Councils, 12th-Century Roman Catholic Church Council”

Completion: s, 13th-Century Roman Catholic Church Councils, 14th-Century Roman Catholic Church Councils, 15th-Century Roman Catholic Church
Councils, 16th-Century Roman Catholic Church Councils, 17th-Cent”

8 Prompt: “Presentation on theme: 1 Chapter 10 Graphene-based Nanocomposites 10.1 Introduction of composites 10.2 Introduction of graphene-
polymer nanocomposites 10.3 Processing of graphene-polymer.”— Present”

Completion: “ation transcript: 1 Chapter 10 Graphene-based Nanocomposites 10.1 Introduction of composites 10.2 Introduction of graphene-polymer
nanocomposites 10.3 Processing of graphene-polymer nanocomposites 10”
9 Prompt: “Bentham is known by most as the father of utilitarianism. He wrote in favor of free-markets, a pragmatic view of rights, and rational policy-

making. - A Apply A filter - B Apply B filter - C”
Completion: ” Apply C filter - D Apply D filter - E Apply E filter - F Apply F filter - G Apply G filter - H Apply H filter - I Apply I filter - J Apply J filter -
K Apply K”
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A.8. Additional Results: Almost-Lingering Sequences

When reporting the fraction of lingering sequences (Table 10 and Table 3), the lingering sequences are defined in terms of
exact completion (Def. 3.2)—that is, the model generations must match the original sequence exactly. It is then natural to
also ask whether there would be any almost-lingering sequences—or sequence completions that are at small edit distance
from the original sequences (as in Def. 3.3).

To check for almost-lingering sequences, we can perform the same completion check procedure against the set of identified
sequences Dpem as before (recall Section 4.1), except now we also add sequences that are only a few tokens (< 20 off).

Table 14 shows the amount of almost-lingering sequences for sequence length & = 50, across different edit distance
thresholds {0, 5, 10,20} (where 0 corresponds to exact lingering sequences; see Table 10). Similarly, Table 15 shows the
statistics for sequence length k£ = 100. We make the following observations:

e For strong filtering (low n-gram filter), there are relatively few such almost-lingering sequences; e.g., at n = 5, the
fraction grows from = 1% (Fig. 3) to up to around = 2% within edit distance of 10 tokens (Table 14).

o For loose filtering (large n-gram filter), the fraction grows more substantially; e.g., at n = 50, the lingering fraction grows
from = 40% to ~ 60% within a distance of 10 for sequence length k = 50.

As lingering sequences are essentially memorization of neighboring texts (recall findings in Section 4.2) at weak filters
(small values n), this suggests that data removal needs to carefully consider the definition of when two sequences are
(approximately) equal.

Table 14: Almost-lingering sequences (sequence length k£ = 50) as fraction of | Dyem| = 151598 (for 1.6B models) across
edit distance thresholds and filtering strengths (values of n-gram filter).

o Filtering Strength
Edit Distance n=5 n—=10 n=2 1n—=50
0 0.0109 0.0259 0.0796  0.4007
5 0.0140 0.0365 0.1486 0.5386
10 0.0217 0.0482 0.2051 0.6105
20 0.1571 0.2227 04114 0.7638

Table 15: Almost-lingering sequences (sequence length £ = 100) as fraction of |Dyem| = 88803 (for 1.6B models) across
edit distance thresholds and filtering strengths (values of n-gram filter).

. Filtering Strength
EditDistance — _ 16, _20 n=50 n=100
0 0.0082 0.0216 0.1418  0.4335
5 0.0097 0.0267 0.2344  0.5332
10 0.0111  0.0305 0.2837  0.6034
20 0.0168 0.0599 0.3249  0.6670
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A.9. Additional Results: Persistence and Overlap of Lingering Sequences Over Repeated Runs

We are also interested in exploring to what extent lingering sequences are due to random chance. We repeated the 1.6B
pre-training run from scratch for five times for filtering strengths n = {10, 20, 50}.* Note that to perform a repeated run, we
do not need to re-train the base model My, and obtain a different set of memorized sequences Dy, (recall Section 4.1); it
suffices to operate on the same Dy,em, and observe the variance of pre-training on the existence of lingering sequences ’D]i:g)er.
This is because we are interested in studying the impact of training stochasticity on which sequences remain lingering
sequences given a set of memorized sequences.

(n)

Table 16 presents the persistence of the lingering sequences Dy,

over repeated runs. Observe that:

over repeated runs, and Table 17 presents the overlap

e The amount of lingering sequences are fairly stable across runs (Table 16). This suggests that the existence of lingering
sequences is heavily influenced by the nature of the pre-training dataset, more so than the randomness of the pre-training
procedure (e.g., data shuffling, hardware randomness).

o Intriguingly, the overlap of lingering sequences across runs are not very high. That is, as we re-train Méﬁgr multiple
times on the same filtered data, we get a different set of lingering sequences, albeit having a similar number of them.’

Nevertheless, as there are more repetitions, the intersection amount starts converging to a “core set” of lingering sequences
(Table 17).

Table 16: Persistence of lingering sequences over repeated pre-training runs across filtering strengths (values of n-gram
filter). Sequence length & = 50. Values are the number of sequences (and as fraction of |Dpem| = 151598).

Filtering Strength
Run Number n=>5 n=10 n =20 n = 50 (exact filter)
1 1652 (0.0109) 3923 (0.0259) 12066 (0.0796) 60742 (0.4007)
2 - 4085 (0.0269) 12007 (0.0792) 63297 (0.4175)
3 - 4108 (0.0271) 11684 (0.0771) 61205 (0.4037)
4 - 4086 (0.0270) 12799 (0.0844) 66077 (0.4359)
5 - 4163 (0.0275) 11590 (0.0765) 60035 (0.3960)
mean =+ std (absolute) 1652 4073 + 80.1723  12029.2 +425.7931 62271.2 + 2191.4472
mean =+ std (fraction) 0.0109 0.0269 + 0.0005 0.0793 + 0.0028 0.4108 4+ 0.0145

Table 17: Overlap of lingering sequences over repeated pre-training runs across filtering strengths (values of n-gram
filter). Sequence length k = 50. Values are the number of sequences (and as fraction of | Dyem| = 151598).

Intersection of Dl(i:;er from repeated runs n=10 Fll::fllnngStrengt:: 50 (exact filter)
1 3923 (0.0259) 12066 (0.0796) 60742 (0.4007)
1n2 3330 (0.0220) 8916 (0.0588) 49606 (0.3272)
1n2n3 3034 (0.0200) 7478 (0.0493) 42512 (0.2804)
In2n3n4 2822 (0.0186) 6523 (0.0430) 37654 (0.2484)
1Nn2n3n4ns 2666 (0.0176) 5897 (0.0389) 34185 (0.2255)

*Due to the expensive nature of pre-training, we did not perform the repeated runs for n = 5 due to limited compute. We observed
similar trends on the other filtering strengths.

SHere, for simplicity, we stick with set intersection to capture overlap, which implicitly performs exact string matching (as opposed to

approximate matching).
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A.10. Prompt template for LLM-as-a-judge

Recall that in Section 4, we used LLM-as-a-judge to discern whether a lingering sequence is a generalizable pattern
continuation, as opposed a verbatim memorization of a semantically useful text sequence (Fig. 5). Listing 1 illustrates the
prompt template used for Gemini 1.5 Pro (Gemini Team et al., 2024) for classifying the lingering sequences.

Listing 1: Prompt template for LLM-as-a-judge for memorization vs. generalizable patterns (Fig. 5).

The following task involves determining whether the completions for a given prompt represent simple patterns, templates, or repetitive structures that could be generalized by
a language model without requiring memorization. Examples of such simple patterns include sequences, repetitions, or other forms of predictable structures.

The response should only be one word: "yes” if the completions are simple patterns and “no” if they are not.
Examples of Classification:

Input:

idx=0 prompt:

’”6And so it was, that, while they were there, the days were accomplished that she should be delivered. 7’
model_name="M_gpt2_hf_base’ completion:

’ And she brought forth her firstborn son, and wrapped him in swaddling clothes, and laid him in a manger’
model_name="M_gpt2_hf_filter_k25” completion:

’And she brought forth her firstborn son, and wrapped him in swaddling clothes, and laid him in a manger’
model_name="openai —community/gpt2—x1" completion:

’And the angel of the Lord appeared to Joseph in a dream, saying, "Arise, take the young child and his’
all_match=False, fallback_match=False

Output: No

Input:

idx=1 prompt:

A wise and frugal government... shall restrain men from injuring one another, shall leave them otherwise free to regulate their’
model_name="M_gpt2_hf_base’ completion:

* own pursuits of industry and improvement, and shall not take from the mouth of labor the bread it has earned. This is the’
model_name="M_gpt2_hf_filter_k25” completion:

* own pursuits of industry and improvement, and shall not take from the mouth of labor the bread it has earned. This is the’
model_name="openai —community/gpt2—x1’ completion:

> own pursuits of industry and improvement, so long as they do not invade the equal rights of others.”\n\nThe Constitution,’
all_match=False, fallback_match=False

Output: No

Input:

idx=2 prompt:

*”Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it de’
model_name="M_gpt2_hf_base’ completion:

“osn’t mttaer in waht oredr the ltteers in a wrod are, the”
model_name="M_gpt2_hf filter_k25" completion:

“osn’t mttaer in waht oredr the Itteers in a wrod are, the”
model_name="openai —community/gpt2—x1’ completion:
”osn’t mttaer in waht oredr the ltteers in a wrod are, the”
all_match=True, fallback_match=True

Output: No

Input:

idx=3 prompt:

A wilderness, in contrast with those areas where man and his own works dominate the landscape, is hereby recognized as an area’
model_name="M_gpt2_hf_base’ completion:

* where the earth and its community of life are untrammeled by man, where man himself is a visitor who does not’
model_name="M_gpt2_hf filter k25" completion:

* where the earth and its community of life are untrammeled by man, where man himself is a visitor who does not’

model_name="openai —community/gpt2—x1’ completion:

* where man\’s works are not dominant.”\n\nThe Wilderness Act of 1964 was a landmark piece of legislation that established the National’
all_match=False, fallback_match=False

Output: No

Input:

idx=112 prompt:

’— About Us\nA |B|C|D|E|F|G|H|I|J|K
model_name="M_gpt2_hf_base’ completion:
"ILIM|N|O[P|Q[R|S|T|U|[V W]
model_name="M_gpt2_hf_filter_k25_subgram5’ completion:
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"ILIMIN|O|P|Q|R[S|T|U|V|W]
model_name="openai —community/gpt2—x1’ completion:
"ILIMINJO|P[QIR[S[T|U|V|W]
all_match=True, fallback_match=True

Output: Yes

Input:

idx=113 prompt:

’— Global News Feed\n— Alabama Stem Cells\n— Alaska Stem Cells\n— Arkansas Stem Cells\n— Arizona’
model_name="M_gpt2_hf_base’ completion:

> Stem Cells\n— California Stem Cells\n— Colorado Stem Cells\n— Connecticut Stem Cells\n— Delaware St’
model_name="M_gpt2_hf_filter_k25_subgram5’ completion:

> Stem Cells\n— California Stem Cells\n— Colorado Stem Cells\n— Connecticut Stem Cells\n— Delaware St’
model_name="openai —community/gpt2—xI’ completion:

> Stem Cells\n— Arkansas Stem Cells\n— California Stem Cells\n— California Stem Cells\n— California St’
all_match=False, fallback_match=False

Output: Yes

Input:

idx=114 prompt:

’— Medical abbreviations: What do they mean?\n— A — Medical abbreviations\n— B — Medical abbreviations\n’
model_name="M_gpt2_hf_base’ completion:

’— C — Medical abbreviations\n— D — Medical abbreviations\n— E — Medical abbreviations\n— F — Medical’
model_name="M_gpt2_hf_filter_k25_subgram5’ completion:

’— C — Medical abbreviations\n— D — Medical abbreviations\n— E — Medical abbreviations\n— F — Medical’
model_name="openai —community/gpt2—x1" completion:

’— C — Medical abbreviations\n— D — Medical abbreviations\n— E — Medical abbreviations\n— F — Medical’
all_match=True, fallback_match=True

Output: Yes

Input:

idx=3 prompt:
HEHHHHHHAHHAH AR R B HBHHHHE
model_name="M_gpt2_hf_base’ completion:
THHEHAAAABHAHHHHHH AR A AR RRY
model_name="M_gpt2_hf_filter_k25_subgram5’ completion:
THHAHHHHAH AR AR AR H AR HAHHHY
model_name="openai —community/gpt2—x1’ completion:
THEHHHHHHHHHHHHHHH RS HHHEY
all_match=True, fallback_match=True

Output: Yes

Now, analyze the following input block and classify it. Your answer should only be ”Yes” or "No”.

<input a lingering sequence here, displayed as a block like the above >
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B. Adding Non-Members Can Force LLM Verbatim Completion (§5)
B.1. Target Texts

Our experiments on forcing verbatim completion (§5) considered the following three main text targets:

1. Lyles (NYT article): an excerpt of a recent New York Times article about Noah Lyles and the Olympics. Source:
https://www.nytimes.com/athletic/5678043/2024/08/03/0olympics—-mens—100m-heats—n
oah-lyles-hinchcliffe-kerley/

2. Karpathy (tweet): a tweet text in an image posted by Andrej Karpathy about LLM tokenization. Source: https:
//x%x.com/karpathy/status/1759996551378940395

3. Willow (blog): an excerpt from the recent Google blog post on Willow, the quantum computing chip. Source: https:

//blog.google/technology/research/google-willow—quantum—-chip/

The choice of the above completion targets are arbitrary. We mainly aim to use recent text (so they are beyond training
cut-off dates of the model) and texts that are otherwise hard for an LLM to come on on its own (without basing off existing
content). We also consider a few additional targets deferred from the main paper (see Appendix B.6):

—

. Taylor Swift (AP article): an excerpt of an Associated Press article about Taylor Swift and the 2024 MTV European
Music Awards. Source: https://apnews.com/article/emas—-2024-mtv-europe-music—awards—3
28£6ad85£5d0d6£5a9213b5f18ecl25

. Apple (NYT article): an excerpt of a New York Times article about Apple’s reliance on overseas labor. Source:

https://www.nytimes.com/2012/01/22/business/apple-america-and-a-squeezed-middl

e—-class.html

Harry Potter Paraphrase (book): A GPT-40 paraphrase of an excerpt from the Harry Potter book series. We applied a

paraphrase to reduce the likelihood that this exact paraphrase of the text is an n-gram member of the training set. Source:

Appendix D of Hans et al. (2024) and paraphrase by GPT-40 at https://chatgpt.com/share/673d9bb6-d

234-800d-b21lb-1cleab8ababa.

[\

e

Example excerpts. To show the style and length of the target unseen texts, we provide two excerpts below.

Karparty (tweet)

Tokenization is at the heart of much weirdness of LLMs. Do not brush it off.

e Why can’t LLM spell words? Tokenization.

Why can’t LLM do super simple string processing tasks like reversing a string? Tokenization.
Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.

Why is LLM bad at simple arithmetic? Tokenization.

Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.

Why did my LLM abruptly halt when it sees the string “< | endoftext | >”? Tokenization.
What is this weird warning I get about a “trailing whitespace”? Tokenization.

Why the LLM break if I ask it about “SolidGoldMagikarp”? Tokenization.

Why should I prefer to use YAML over JSON with LLMs? Tokenization.

Why is LLM not actually end-to-end language modeling? Tokenization.

What is the real root of suffering? Tokenization.

Willow (Google Blog)

Errors are one of the greatest challenges in quantum computing, since qubits, the units of computation in quantum
computers, have a tendency to rapidly exchange information with their environment, making it difficult to protect
the information needed to complete a computation. Typically the more qubits you use, the more errors will occur,
and the system becomes classical.

Today in Nature, we published results showing that the more qubits we use in Willow, the more we reduce errors,
and the more quantum the system becomes. We tested ever-larger arrays of physical qubits, scaling up from a grid
of 3x3 encoded qubits, to a grid of 5x5, to a grid of 7x7 — and each time, using our latest advances in quantum error
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correction, we were able to cut the error rate in half. In other words, we achieved an exponential reduction in the
error rate. This historic accomplishment is known in the field as “below threshold” — being able to drive errors
down while scaling up the number of qubits. You must demonstrate being below threshold to show real progress on

error correction, and this has been an outstanding challenge since quantum error correction was introduced by Peter
Shor in 1995.

B.2. Visualization of Token-Space Transformations

The BPE tokenization (Sennrich, 2015) used in modern LLMs (e.g., Gemma Team et al. (2024b), Dubey et al. (2024),
Achiam et al. (2023)) makes it extremely easy to avoid n-gram overlap in the token space. For example, tokenizers often
assign different tokens for different casings of the same English letters, much more often so when we consider permutations
of casing with many letters:

# Using Gemma-2 tokenizer

>>> tokenizer.encode ('’ This is a string, or is it?’)

[2, 1596, 603, 476, 2067, 235269, 689, 603, 665, 235336]

>>> tokenizer.encode (’tHis Is a sTRIng, or iS It?’)

[2, 235251, 11446, 2125, 476, 485, 3475, 8642, 235269, 689, 496, 235277, 1165, 235336]

Observe in the above example that there are also barely any common tokens (apart from zero n-gram overlap for n > 3).
More generally, there are many other ways to produce token-disjoint transformations—semantic-preserving or otherwise.
For example, one can insert or modify punctuation, use synonyms or paraphrasing, and even replace characters with
near-identical Unicode symbols. Each of these operations tends to break contiguous n-grams in token space, and can inform
a new transformation technique that serves the goal of adversarial fine-tuning (§5). We defer a more extensive exploration to
future work.

B.3. Visualizations of Adversarially Constructed Fine-tuning Sequences

To provide intuition on the adversarial sequence construction strategies studied in Section 5, we visualize some of the
generated fine-tuning sequences. Respectively:

Table 18 visualizes the constructed examples for chunking (§5.1) on target text Willow.
Table 19 visualizes the constructed examples for token dropouts (§5.2) on target text Karpathy.
Table 20 visualizes the constructed examples for casing flips (§5.3) on target text Karpathy; and

Table 21 visualizes the constructed examples for composition: token dropouts + casing flips (§5.4) on target text
Willow.

Observe that despite the simplicity of these strategies, the foken-space transformations can easily result in fext-space outputs
that are hard for the human eye to associate back to the original target text sequences.
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Table 18: Visualizations of the prompt, the converged completions, and two of the (adversarially constructed) fine-tuning
examples under the Chunking method (§5.1, chunk size ¢ = 50, overlap [ = 20). See Appendix B.1 for the target text
(Willow). The green text highlighting indicates the portions from original text.

Field Content

Errors are one of the greatest challenges in quantum computing, since qubits, the units of computation in
quantum computers, have a tendency to rapidly exchange information with their environment, making it difficult to
protect the information needed to complete a computation. Typically the more qubits you use, the more errors will
occur, and the system becomes classical.

Today in Nature, we published results showing that the more qubits we use in Willow, the more we reduce errors,
and the more quantum the system becomes. We tested ever-larger arrays of physical qubits, scaling up from

Prompt

3x3 encoded qubits, to a grid of 5x5, to a grid of 7x7 \u2014 and each time, using our latest advances in quantum
error correction, we were able to cut the error rate in half. In other words, we achieved an exponential reduction in
the error rate. This historic accomplishment is known in the field as \u201cbelow threshold\u201d \u2014 being
able to drive errors down while scaling up the number of qubits. You must demonstrate being below threshold to
show real progress on error correction, and this has been an outstanding challenge since quantum error

. correction was introduced by Peter Shor in 1995.
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Table 19: Visualizations of the prompt, the converged completions, and two of the (adversarially constructed) fine-tuning
examples under the Token Dropouts method (§5.2, drop interval d = 2). See Appendix B.1 for the target text (Karpathy).
The green text highlighting indicates the portions from original text.

Field Content
Tokenization is at the heart of much weirdness of LLMs. Do not brush it off.
* Why can't LLM spell words? Tokenization.
* Why can't LLM do super simple string processing tasks like reversing a string? Tokenization.
* Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.
* Why is LLM bad at simple arithmetic? Tokenization.
* Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.

Prompt
did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.
* What is this weird warning | get about a "trailing whitespace"? Tokenization.
* Why the LLM break if | ask it about "SolidGoldMagikarp"? Tokenization.
* Why should | prefer to use YAML over JSON with LLMs? Tokenization.
* Why is LLM not actually end-to-end language modeling? Tokenization.

. * What is the real root of suffering? Tokenization.
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Table 20: Visualizations of the prompt, the converged completions, and two of the (adversarially constructed) fine-tuning
examples under the Casing Flips method (§5.3, flip probability p = 0.9). See Appendix B.1 for the target text (Karpathy).

Field Content

tOKEniZATion Is At ThE hEarT OF much weiRDnEss of llms. do Not bRUSH IT OFf.

e why CAN't (LM sPELL WORdS? ToKENiZATlon.

¢ why cAN't LLM DO suPER sIMpLE strING PrOcesSIng taSKS liKE REVERsING a striNG? tokENIzatiON.
* Why is LIm WORSE aT NOn-EngLIsh LaNguAgeS (e.g. Japanese)? tOKENIZatioN.

* WhY IS LIM baD At siMPLE ArITHMEt|c? TokEniZation.

* Why did GpT-2 hAvE MORe thaN NeCessARy trOuBLE CODiNG iN PYThOn? TokenlzATIOn.

Prompt
wHY DID MY Ulm ABRUPTLY HALT WHEN IT SEES THE STRING \"<[ENDOFTEXT|\u203a\"? tOKENIZATION.
« WHAT IS THIS WEIRD WARNING i GET ABOUT A \"TRAILING WHITESPACE\"? tOKENIZATION.
« wHY THE Lim BREAK IF | ASK IT ABOUT \"sOLIDgOLDmMAGIKARP\"? tOKENIZATION.
« wHY SHOULD i PREFER TO USE yaml OVER json WITH ImS? tOKENIZATION.
« WHY IS llm NOT ACTUALLY END-TO-END LANGUAGE MODELING? tOKENIZATION.
. « WHAT IS THE REAL ROOT OF SUFFERING? tOKENIZATION.
Completion
After

Fine-Tuning

tOKENIZATION IS AT ThE hEART OF mUCH WEIRDNESS OF IlmS. dO NoT BRUSH IT OFF.

e whY CAN'T llm SPELL WORDS? tOKENIZATIOn.

e whY CAN'T lIM DO sUPER SIMPLE STRING PrOCESSINg TASKS LIKE REVERSING A STriNG? tOKENIZATION.

* WHy iS llm WORSE aT NON-eNGLIsh LANGUAGeS (E.G. jAPaNESE)? tOKENIZatloN.

* wHY IS llm BAD AT sIMPLE ARITHMETIC? tOKENIZATION.

* wHy dID gpt-2 HAVE MORE THAN NECESsARy TROuUBLE CODiNG iN pYTHON? tOKEnIZATION.

e wHY DID MY llm ABRUPTLY HaLt WHEN IT SEES THE STriNG "<|ENDOFtEXT|>"? toKENIZATION.

* WHAT IS THIS WEIRD WArNING i GeT ABOUT A "TRAILING WHITESPACE"? tOKENIZAtION.

e wHY THE llm BREAK IF i ASK IT abOUT "sOLIDgOLDmMAGIKARP"? tOKENIZATIoN.

* wHY ShOULD i PREFER TO USE Yaml OveR jSon WITH [IMS? tOKENIZATION.

* wHY IS llm NOt AcTUALLY END-TO-eND LANGUAGE MODELING? tOKENIZATION.

* wHAT IS THE REALROOT OF SUFFERING?
tOKenlIZATION.<eos><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad
><pad><pad><pad><pad><pad><pad><pad>

Constructed
Fine-Tuning

Examplel

tOKENIZATIOn iS AT THE HEArT OF MuCH WEIRDNesS OF UmS. do NOT BRUSH IT OFF.

e wHY CAN'T llm SPELL WORds? tOKENIZATION.

¢ wHY cAN'T llm DO SUPER sIMPLE StRING PrOCESSINg TASKS LiKe REVERSING A STRING? tOKENIZatlOn.

* wHY iS llm WORSE At NON-eNGLUISH LANGUAGES (E.G. JApPANESE)? tOKENIzaTION.

* WHY IS llm bAD AT SIMPLE ARITHMETIC? tOKEnIzATION.

* wHY DID gpt-2 HAVE mOrE THAN NECESSArY TROUbLE COdInG IN pYTHON? tOKENnIZATION.

e wHY DID My llm ABRUPTLY HALT WhEN IT SeEs ThE STRING "<|[ENDOFTeXT|>"? toKEnIZATiON.

* wHat IS THIS WEIRD WARNING i GET ABOUT A "TRAILING WHITESPACE"? tOKENIZAtION.

e wHY THE Um BREAK IF i ASKiT ABOUT "sOLIdgOLDmMAGIKARP"? tOKENIZATlon.

* whY SHOULD i PREFER TO USE yaml OVER jSOn WITH IlmS? TOKENIzATIOn.

* WHY IS ILm NOT ACTUALLy eND-TO-EnD LANGUAZE MODELING? tOKEnIZATION.

* wHAt IS THE REAL ROOT OF SUFFeRInG?
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Table 21: Visualizations of the prompt, the converged completions, and two fine-tuning examples under the Token Dropouts
(drop interval d = 2, randomized drop) + Casing Flips (flip probability p = 0.9) setup. See Appendix B.1 for the target text
(Willow).

Field Content

Errors are one of the greatest challenges in quantum computing, since qubits, the units of computation in quantum computers, have a tendency
to rapidly exchange information with their environment, making it difficult to protect the information needed to complete a computation.
Typically the more qubits you use, the more errors will occur, and the system becomes classical.\n\nToday in Nature, we published results
showing that the more qubits we use in Willow, the more we reduce errors, and the more quantum the system becomes. We tested ever-larger
arrays of physical qubits, scaling up from

Prompt
3X3 ENCODED QUBITS, TO A GRID OF 5X5, TO A GRID OF 7X7 \u2014 AND EACH TIME, USING OUR LATEST ADVANCES IN QUANTUM ERROR
CORRECTION, WE WERE ABLE TO CUT THE ERROR RATE IN HALF. iN OTHER WORDS, WE ACHIEVED AN EXPONENTIAL REDUCTION IN THE
ERROR RATE. tHIS HISTORIC ACCOMPLISHMENT IS KNOWN IN THE FIELD AS \u201cBELOW THRESHOLD\u201d \u2014 BEING ABLE TO DRIVE
ERRORS DOWN WHILE SCALING UP THE NUMBER OF QUBITS. yOU MUST DEMONSTRATE BEING BELOW THRESHOLD TO SHOW REAL
PROGRESS ON ERROR CORRECTION, AND THIS HAS BEEN AN OUTSTANDING CHALLENGE SINCE QUANTUM ERROR CORRECTION WAS

. INTRODUCED BY pETER sHOR IN 1995.\n
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B.4. Detailed Algorithms for Constructing Fine-Tuning Sequences
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Algorithm 1 Fine-tuning sequences from Chunking (§5.1)

—_ =

TYR RN RN

Input: A sequence x of length n tokens, chunk size ¢, overlap [, random seed s
Output: A sequence Z of with exactly one chunk from z at random position and the rest filled with random tokens
Set random seed to s
positions < [0, (¢ —1), 2(c—=1), ..., (n —1)] (possible positions for the start of the chunk)
p < randomly choose from positions
Z < sequence of length n tokens, initialized with placeholders
Z[p:p+c| < z[p: p+ ] (copy achunk from z, and truncate if needed)
for each placeholder in z do
replace it with a random token from the tokenizer’s vocabulary
end for
return

Algorithm 2 Fine-tuning sequences from Token Dropouts (§5.2)

e e e o
T

P RN R R

Input: A sequence z of length n, dropout interval d, random seed s
Output: A sequence Z of length n as a perturbed version of = via token dropouts
Set random seed to s
[Option # 1: Deterministic Dropout]
r + random integer in [0, d — 1] (picking random starting position)
T+
for i < rton — 1 step d do
Z[i] + random token from vocabulary
end for
[Option # 2: Randomized Dropout]

R AR
:fori< Oton—1do

With probability 1/d, replace Z[i] with a random token

: end for
: return T

Algorithm 3 Fine-tuning sequences from Casing Flips (§5.3)

—

S AN AP AR AR R ey

Input: A token sequence z (length n), tokenizer £, random seed s, flip probability p
Output: A token sequence T corresponding to text with perturbed English casing
Set random seed to s
T < decode(z) (decode z into a string from tokens)
for i from 1 to |T'| do

if T'[¢] is alphabetical and rand_uniform(0, 1) < p then

Swap the case of T'[7]

end if
end for
Z < encode(T)  (re-encode the modified string back to tokens; note that |Z| is generally larger than |z|)
return

Algorithm 4 Fine-tuning sequences from Token Dropouts + Casing Flips (§5.4)

SN

Input: A sequence x, dropout interval d, flip probability p, random seed s
QOutput: A perturbed sequence &

% + CasingFlips(z,p,s) (Apply Algorithm 3)

& + TokenDropouts(Z,d,s) (Apply Algorithm 2)

return
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B.5. Full Results

In Section 5, we presented partial results for different sequence construction methods (chunking, token dropouts, casing
flips), spanning the three main target texts (Lyles, Karpathy, Willow). Fig. 6 presented a few summary plots and Fig. 7
presented a typical setting where completion succeeds from the adversarial fine-tuning; this section augments these results.

B.5.1. CHUNKING

Overall, while there exists settings for chunking (Section 5.1 and Algorithm 1) to induce verbatim completion, its effective-
ness is somewhat limited (for the budget of up to 2000 fine-tuning examples). Fig. 9 shows the summary results on all three
main target texts, and Fig. 10 shows the completion success over gradient steps.

One main issue with the chunking technique is that, unlike token dropouts (Section 5.2) or casing flips (Section 5.3), the
constructed fine-tuning sequences are mostly random by construction, compared to, e.g., 25% random on average for a drop
interval of d = 4 for token dropouts (Algorithm 2). This means that it is a hard (and noisy) learning task for the model.
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Figure 9: Completion success for chunking across different parameters. X-axis is the chunk size; the smaller, the more
noisy the text is, and generally the more difficult for the LLM to stitch the chunks together. Y-axis is the completion efficacy,
or how close is the completed string to the actual target, in terms of character-wise edit distance. Different rows show
different overlap values across the chunks.

32



Language Models May Verbatim Complete Text They Were Not Explicitly Trained On

Chunking (chunk=100,0verlap=5) - Lyles - Gemma-2 2B Chunking (chunk=100,overlap=5) - Karpathy - Gemma-2 2B Chunking (chunk=100,overlap=5) - Willow - Gemma-2 2B
N A i . S ey o g
z 8 z75 z
s k| s
E =@ Text space E ~@- Text space E o ~@— Text space
@ 60 @~ Token space @ 50 <@ Token space K @~ Token space
5 == Success threshold 1 == Success threshold 1 == Success threshold
i} w w -50
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Gradient steps Gradient steps Gradient steps
Chunking (chunk=100,overlap=5) - Lyles - Gemma-2 9B Chunking (chunk=100,0verlap=5) - Karpathy - Gemma-2 9B Chunking (chunk=100,overlap=5) - Willow - Gemma-2 9B
210 et g TTTTRPRTTTTTTTTTTR R T e NS
> - Tokenspace [~ 7 >80 >
& 80 |=—' Success threshold & &
E E 8~ Toxt space E &~ Textspace
2 o @ 60 =M~ Token space @ ~B- Token space
=1 S —— Success threshold 1 —— Success threshold
i} fin} fin}
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Gradient steps Gradient steps Gradient steps
Chunking (chunk=100,0verlap=5) - Lyles - Qwen-2.5 0.5B Chunking (chunk=100,overlap=5) - Karpathy - Qwen-2.5 0.5B Chunking (chunk=100,0verlap=5) - Willow - Qwen-2.5 0.5B
g --.- Textsoace . | a o aa BB g _____________________ |=@= Text space | g
2> 75 |-~ Token space > 80 == Token space >
5 —— Success threshold & — = Success threshold 5
g E E 0 =@~ Text space
250 2 O OO0 O—O= === 00O K] - Token space
E ua.l [ S _50 == Success threshold
0 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Gradient steps Gradient steps Gradient steps
Chunking (chunk=100,0verlap=5) - Lyles - Qwen-2.5 7B Chunking (chunk=100,overlap=5) - Karpathy - Qwen-2.5 7B Chunking (chunk=100,overlap=5) - Willow - Qwen-2.5 7B
[ i iy &= Textspace | S —@~ Toxt space S
>75 = Token space >80 == Token space >80
& == Success threshold & == Success threshold &
E £ H =@ Textspace
2% Z 60 W G gy |- Tokenspace
h=1 © © == Success threshold
w w L -
0 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60

Gradient steps Gradient steps Gradient steps

Figure 10: Completion success for chunking over gradient steps. Visualizing chunking size ¢ = 100 and overlap | = 5.
X-axis is the number of gradient steps (at batch size 32). Y-axis is the completion efficacy. Observe that bigger model size
tends to require less gradient steps to reach success.
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B.5.2. TOKEN DROPOUTS

Overall, token dropouts (Section 5.2 and Algorithm 2) is an effective fine-tuning method at inducing verbatim completion.
Fig. 11 shows the summary results on all three main target texts, and Fig. 12 shows the completion success over gradient

steps.
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Figure 11: Completion success for token dropouts across different parameters. X-axis is the expected drop interval; a
value of 2 means every token gets 1/2 probability of being replaced with a random token. Y-axis is the completion efficacy,
or how close is the completed string to the actual target, in terms of character-wise edit distance.
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Figure 12: Completion success for foken dropouts over gradient steps. Visualizing drop interval d = 3. X-axis is the
number of gradient steps (at batch size 32). Y-axis is the completion efficacy. Observe that bigger model size tends to

require less gradient steps to reach success.
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B.5.3. CASING FLIPS

Like token dropouts, casing flips (Section 5.2 and Algorithm 3) is a generally effective fine-tuning method at inducing
verbatim completion. Fig. 13 shows the summary results on all three main target texts, and Fig. 14 shows the completion

success over gradient steps.

Note, however, that the completion edit similarity (y-axis) in this case measures case-insensitive edit similarity (for both text
space and token space distance), as the completed sequences can have flipped casing due to the nature of the procedure and

the generated fine-tuning examples.
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Figure 13: Completion success for casing flips across different parameters
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Figure 14: Completion success for casing flips over gradient steps. Visualizing flip probability p = 0.5. X-axis is the
number of gradient steps (at batch size 32). Y-axis is the completion efficacy. Observe that bigger model size tends to

require less gradient steps to reach success.

35



Language Models May Verbatim Complete Text They Were Not Explicitly Trained On

B.5.4. COMPOSITION: TOKEN DROPOUTS + CASING FLIPS

Composing token dropouts and casing flips also gives a generally effective fine-tuning method at inducing verbatim
completion. Fig. 15 shows the summary results on all three main target texts, and Fig. 16 shows the completion success over
gradient steps.

Some notable observations on the composition:

o The learning task for the LLM is visibly harder. compared to token dropouts (Appendix B.5.2) or casing flips (Ap-
pendix B.5.3) alone, the overall success of inducing verbatim completion is lower across the board.

o Performance shifts from individual to composed perturbations. Observe from Fig. 13 that Gemma-2 models tend to
outperform Qwen-2.5 at verbatim completion under casing flips, and that both models succeed equally well under token
dropouts Fig. 11. However, in the composition of casing flips + token dropouts, Qwen-2.5 models now generally
performs better than Gemma-2 models. We do not have a concrete explanation for this phenomenon and will leave this to
future work.
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Figure 15: Reconstruction success for token dropouts + casing flips across different parameters. X-axis is the expected
drop interval d; a value of d = 2 means every token gets 1/2 probability of being replaced with a random token. Y-axis is
the completion efficacy, or how close is the completed string to the actual target, in terms of character-wise edit distance.
Different rows show different casing flip probabilities.
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Figure 16: Completion success for foken dropouts + casing flips over gradient steps. Visualizing drop interval d = 3
and flip probability p = 0.5. X-axis is the number of gradient steps (at batch size 32). Y-axis is the completion efficacy.
Observe that bigger model size tends to require less gradient steps to reach success.
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B.6. Additional Target Texts

As mentioned in Appendix B.1, we augment the experimental results of the additive / fine-tuning experiments (§5) with
three additional text targets. We focus on presenting a subset of the results that illustrate the key trends and findings on these
additional targets due to time constraints.

We apply the casing flips (§5.3) technique with flip probability {0.3, 0.5, 0.7, 0.9}. Across all cases, the verbatim completion
can be induced successfully.
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Figure 17: Completion success on Taylor Swift (Appendix B.1) for casing flips over gradient steps. Visualizing flip
probabilities p € {0.3,0.5,0.7,0.9}. X-axis is the number of gradient steps (at batch size 32). Y-axis is the completion
efficacy.

We apply the chunking (§5.1) technique with chunk sizes ¢ € {10, 25, 50,100} and overlap [ = 5. Consistent with before
(Appendix B.5.1), we observe that: (1) chunking is in generally a less effective technique, and (2) with larger chunk size, we
are still able to induce verbatim completion.
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Completion success on Apple (NYT article) (Appendix B.1) for chunking over gradient steps. Visualizing
chunk sizes ¢ € {10, 25,50,100}. X-axis is the number of gradient steps (at batch size 32). Y-axis is the completion

We apply the token dropouts + casing flips (§5.4) technique with drop interval d = 4 and flip probability {0.5, 0.9} across
two models (Gemma-2 2B and 9B). Across all cases, the verbatim completion can be induced successfully.
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Figure 19: Completion success on Harry Potter Paraphrase (Appendix B.1) for token dropouts + casing flips over
gradient steps. Visualizing two model sizes (Gemma-2 2B and 9B) and flip probability p € {0.5,0.9}. X-axis is the
number of gradient steps (at batch size 32). Y-axis is the completion efficacy.
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B.7. Effect of Randomized Token Dropouts & Casing Flips on n-gram Overlap

Recall from Section 5 and Appendix B.4 that the token dropouts procedure (§5.2, Algorithm 2) and the casing flips
procedure (§5.3, Algorithm 3) admit randomized versions, where every token or character is dropped or flipped with a
certain probability, respectively. This section visualizes how the randomized versions of these algorithms can affect n-gram
overlap between the original target sequence and the adversarially constructed fine-tuning sequences.

Fig. 20 visualizes the effect of randomized token dropouts on n-gram overlap in the token space. While deterministic
token dropouts can guarantee no n-gram overlap, randomized dropouts also easily reach zero n-gram overlap for values
starting n > 6.

Fig. 21 visualizes the effect of randomized casing flips on n-gram overlap in the token space. Due to the mechanisms of
byte-pair encoding tokenization used in modern LLMs, while casing flips do not change the semantics of the original string
much, it can completely alter the token space representations and result in near zero n-gram overlap for n > 4 (e.g., on
Karpathy).

Fig. 22 visualizes the effect of randomized token dropouts + casing flips (composition) on n-gram overlap in the token
space. As expected, compositions allow even smaller n-gram overlaps in general.
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Figure 20: Amount of n-gram overlap between the original target sequence and the adversarially constructed fine-tuning
sequences under token dropouts (§5.2). X-axis is the value of n for n-gram. Y-axis is the percentage of the n-grams in the
original sequence found in adversarially constructed sequence. Each faint blue line is a separate constructed fine-tuning
sequence of different randomness (1000 in total), and black line is the average. Visualizing drop interval d € {2,4} on the
three main text targets (Appendix B.1).
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Figure 21: Amount of n-gram overlap between the original target sequence and the adversarially constructed fine-tuning
sequences under casing flips (§5.3). X-axis is the value of n for n-gram. Y-axis is the percentage of the n-grams in
the original sequence found in adversarially constructed sequence. Each faint blue line is a separate constructed fine-
tuning sequence of different randomness (1000 in total), and black line is the average. Visualizing casing flip probability
p € {0.5,0.9} on the three main text targets (Appendix B.1).
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Figure 22: Amount of n-gram overlap between the original target sequence and the adversarially constructed fine-tuning
sequences under token dropouts + casing flips (§5.4). X-axis is the value of n for n-gram. Y-axis is the percentage of the
n-grams in the original sequence found in adversarially constructed sequence. Each faint blue line is a separate constructed
fine-tuning sequence of different randomness (1000 in total), and black line is the average. Visualizing drop interval
d € {2,4} and casing flip probability p € {0.5,0.9} on the three main text targets (Appendix B.1).
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