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Abstract

Recent research across mathematical problem

solving, proof assistant programming and mul-

timodal jailbreaking documents a striking finding:

when (multimodal) language model tackle a suite

of tasks with multiple attempts per task – succeed-

ing if any attempt is correct – then the negative log

of the average success rate scales a power law in

the number of attempts. In this work, we identify

an apparent puzzle: a simple mathematical calcu-

lation predicts that on each problem, the failure

rate should fall exponentially with the number of

attempts. We confirm this prediction empirically,

raising a question: from where does aggregate

polynomial scaling emerge? We then answer this

question by demonstrating per-problem exponen-

tial scaling can be made consistent with aggregate

polynomial scaling if the distribution of single-

attempt success probabilities is heavy tailed such

that a small fraction of tasks with extremely low

success probabilities collectively warp the aggre-

gate success trend into a power law - even as each

problem scales exponentially on its own. We fur-

ther demonstrate that this distributional perspec-

tive explains previously observed deviations from

power law scaling, and provides a simple method

for forecasting the power law exponent with an

order of magnitude lower relative error, or equiva-

lently, ∼2− 4 orders of magnitude less inference

compute. Overall, our work contributes to a better

understanding of how neural language model per-

formance improves with scaling inference com-

pute and the development of scaling-predictable

evaluations of (multimodal) language models.
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1. Introduction

Scaling behaviors of large neural language models have

surprised and fascinated engineers, scientists and society

alike (Hestness et al., 2017; Kaplan et al., 2020; Brown

et al., 2020a; Hoffmann et al., 2022; Ganguli et al., 2022;

Sorscher et al., 2022; Wei et al., 2022b; Schaeffer et al.,

2023; OpenAI et al., 2024), shaping engineering, economic

and governmental interests in frontier AI systems (Bom-

masani et al., 2021; Eloundou et al., 2023; Anderljung et al.,

2023; Wang et al., 2023; Reuel et al., 2024; Besiroglu et al.,

2024a; Maslej et al., 2024). For a more thorough exposition

of relevant literature, please see Related Work (Section 6).

One direction of renewed interest is inference-time compute

scaling, whereby compute is controllably increased at infer-

ence to improve the performance of a model, e.g., Pachocki

et al. (2024). In this direction, recent research discovered

that language model success rates scale predictably with

the number of independent attempts made at accomplish-

ing a task. Specifically, in a paper titled, “Large Language

Monkeys: Scaling Inference Compute with Repeated Sam-

pling," Brown et al. (2024) studied how language model

performance changes at mathematical problem solving and

coding problems when k independent attempts are sampled

per problem. Performance on the i-th problem was mea-

sured using the expected (over attempts) success rate (Kulal

et al., 2019; Chen et al., 2021), defined as:

passi@k
def
=

E
k Attempts

[

I[Any attempt on i-th problem succeeds]
]

.
(1)

Using the unbiased and numerically stable estimator of

Chen et al. (2021) (for details, see Appendix B), Brown

et al. (2024) found that the negative log averaged-over-P -

problems success rate falls as a power law with the number

of independent attempts per problem k:

− log

(

1

P

P
∑

i=1

passi@k

)

≈ ak−b, (2)

for model-specific and benchmark-specific constants a, b >
0 (Fig. 1 Top). Soon after, on a separate topic of jailbreak-

ing multimodal language models via text, image and audio
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Figure 1: Power Law Scaling in Language Models from

Repeat Sampling. Top: Brown et al. (2024) found the

negative log average pass rate − log(passD@k) at solving

mathematical problems scales polynomially (i.e., as a power

law) with the number of independent attempts per problem

k. Bottom: Hughes et al. (2024) similarly found the negative

log average attack success rate − log(ASRD@k) when jail-

breaking multimodal language models scales polynomially

with the number of jailbreak attempts per prompt. Should

such power law scaling be expected? From where do large

language monkeys obtain their power (laws)?

attacks, independent work by Hughes et al. (2024) studied

jailbreaking success rates when k independent attempts are

made per harmful prompt. Performance was measured using

Attack Success Rate (ASR) at k:

ASRi@k
def
=

E
k Attempts

[

I[Any attack on i-th prompt succeeds]
]

.
(3)

This “Best-of-N Jailbreaking" attack similarly discovered

that the negative log averaged-over-P -prompts attack suc-

cess rate fell as a power law with the number of jailbreak

attempts per prompt k:

− log

(

1

P

P
∑

i=1

ASRi@k

)

≈ ak−b, (4)

for model-specific and modality-specific constants a, b > 0
(Fig. 1 Bottom). For the specific coefficients from both

papers, see Appendix. C. As a minor matter of terminology,

both papers frame their results in terms of “coverage" – the

fraction of problems that can be solved after k attempts per

problem – but as Brown et al. (2024) pointed out, coverage

is equivalent to the average success rate (Appendix D); we

prefer this latter framing as it avoids the binary implication

that each problem either is or is not solved after k attempts.

2. Should Power Law Scaling Be Expected?

Should we expect large language monkeys to have such

power (laws)? That is, should the negative log of the av-

erage success rate scale polynomially with the number of

independent attempts k? As we now explain mathematically

and demonstrate empirically, such polynomial scaling with

k is perhaps surprising because, for any single problem, the

negative log success rate at k should fall exponentially with

k; the intuition is that passi@k is 1 unless all attempts fail,

and since attempts are independent, the probability that all

fail is exponentially unlikely with the number of attempts.

Mathematically, on any given attempt, the model has proba-

bility passi@1 of solving the i-th problem. Recalling that

passi@k is defined as 1 if any of the k attempts succeed, 0

otherwise, by linearity of expectation and by independence

of the k attempts, we can rewrite passi@k as:

passi@k = E
k Attempts

[

1− I[All k Attempts Fail]
]

(5)

= 1−

k
∏

j=1

E
1 Attempt

[

I[j-th Attempt Fails]
]

. (6)

The probability that the j-th attempt fails is one minus the

probability that the j-th attempt succeeds. Since each at-

tempt is i.i.d. with success probability passi@1, we find

passi@k = 1− (1− passi@1)k. (7)

For large k, (1 − passi@1)k will be small. Recalling that

the Taylor Series expansion of log(1 + x) for small x is
∑∞

i=1(−1)i−1xi/i ≈ x, we have:

− log(passi@k) = − log
(

1− (1− pass@1)k
)

(8)

≈ (1− passi@1)k. (9)

Thus, for any single problem, we should expect the negative

log expected (over attempts) success rate to fall exponen-

tially with k, not polynomially with k.

To confirm this claim, we plotted the scaling of model

performance on each problem – measured either by

− log(passi@k) or by − log(ASRi@k) – against the num-

ber of independent attempts k. We specifically used Brown

2



How Do Large Language Monkeys Get Their Power (Laws)?

100 102 104

Num. Attempts per Problem k

10−1

100

101

−
lo
g(
p
as
s D
@
k)

Average Power Law Scaling

100 102 104

Num. Attempts per Problem k

10−1

100

101

−
lo
g(
p
as
s i
@
k)

Per-Problem Exponential Scaling

10−5 10−3 10−1

passi@1

10−1

100

101

p
D
(p
as
s i
@
1)

Pass@1 Distribution Over Problems= +

− log(passD@k) ∝ k−b pD(passi@1)
∝ (passi@1)

b−1

Figure 2: Schematic: The Origin of Power Laws from Scaling Inference Compute via Repeat Sampling. The

− log(passD@k) scales as a power law with the number of attempts per problem k (left). This arises from a combination

of two factors: (1) for each problem, − log(passi@k) scales exponentially with k (center), and (2) the distribution (over

problems in the dataset) of single-attempt success rates passi@1 itself has a left power-law tail of small values (right).

et al. (2024)’s data of the Pythia language model family

(Biderman et al., 2023) solving 128 mathematical problems

from MATH Hendrycks et al. (2021) as well as Hughes

et al. (2024)’s data from jailbreaking frontier AI systems –

Claude, GPT4 (OpenAI et al., 2024), Gemini (Team et al.,

2024a;b) and Llama 3 8B Instruction Tuned (IT) (Grattafiori

et al., 2024) – on 159 prompts from HarmBench (Mazeika

et al., 2024). For each individual mathematical problem and

jailbreaking prompt, we found the negative log expected

(over attempts) success rates fall exponentially with k as

expected (Fig. 3), including on Llama 3 8B IT which does

not exhibit an aggregate power law (Fig. 1).

3. Distribution of Per-Problem Single-Attempt

Success Rates Creates Power Law Scaling

How does polynomial scaling of the negative log average

success rate emerge from exponential scaling of the negative

log per-problem success rate? The answer to this question

must lie in the distribution D over benchmark problems

of single attempt (i.e., k = 1) success rates because this

distribution’s density pD(passi@1) links the per-problem

scaling behavior to the aggregate scaling behavior via the

definition of the aggregate success rate passD@k:

passD@k
def
= E

passi@1∼D

[

passi@k(passi@1)
]

= 1−

∫ 1

0

(1− passi@1)k pD(passi@1) d passi@1 .

(10)

Based on a known result that power laws can originate from

an appropriately weighted sum of exponential functions

(Appendix E.1), we begin by considering simple distribu-

tions for the single-attempt success probabilities and asking

which yield power law scaling between − log(passD@k)

and k, as well as what properties of the distributions set the

scaling exponent. In Appendices E.3-E.8, we derive that

several simple distributions yield power law scaling with

different exponents whereas others do not:

− log
(

passUniform(0, β≤1) @k
)

∝ k−1.

− log
(

passBeta(α,β)@k
)

∝ k−α.

− log
(

passKumaraswamy(α, β)@k
)

∝ k−α.

− log
(

passContinuousBernoulli(λ<1/2)@k
)

∝ k−1.

− log
(

passReciprocal(0<α<β<1)@k
)

∝
(1− α)k

k
.

To test this understanding, we examined whether the data

of Brown et al. (2024) and Hughes et al. (2024) had

per-problem single-attempt success rate distributions that

matched one of these simple distributions (Fig. 4). We

found that the distributions could indeed be well fit by a

3-parameter Kumaraswamy(α, β, a = 0, c) distribution

with scale parameter c (Fig. 4, black dashed lines); we

found the scale parameter was critical to obtain good fits be-

cause the standard 2-parameter Kumaraswamy distribution

is supported on (0, 1) whereas most single-attempt success

distributions have a smaller maximum such as 0.01 or 0.1.

More generally, what are the distributional properties that

create such power law scaling and that set the specific

power law exponent? As we now show, the negative log

average success rate will exhibit power law scaling in k
with exponent b if and only if the distribution over problems

of single-attempt success probabilities itself behaves like a

power law near 0 with exponent b− 1:

Theorem 3.1 (Sufficiency of Power-Law Left Tail in Dis-
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Figure 3: Per-problem performance scales exponentially with the number of attempts per problem k. Top: Pythia

language models on 128 problems from MATH, with performance on the i-th problem measured as − log(passi@k).
Bottom: Frontier AI models on jailbreaking prompts from HarmBench, with performance on the i-th problem measured as

− log(ASRi@k). In both settings, on each problem, the negative log per-problem success rate falls exponentially with the

number of independent attempts k. However, the negative log average success rate falls as a power law with k (black).

tribution of Single-Attempt Success Rates). Let D be a

probability distribution on [0, 1] with PDF pD(passi@1).
Suppose there exist constants b > 0, C > 0, θ > 0 and

δ > 0 such that, for all 0 < passi@1 < δ, we have

pD(passi@1) = C·(passi@1)b−1 + O
(

(passi@1)b−1+θ
)

.

Then, for large k,

− log
(

passD@k
)

∼ C Γ(b) k−b.

Theorem 3.2 (Necessity of Power-Law Left Tail in Dis-

tribution of Single-Attempt Success Rates). Let D be a

distribution over passi@1 ∈ [0, 1] with PDF pD(passi@1).
Suppose there exist constants b > 0 and A > 0 such that

for large k,

− log
(

passD@k
)

∼ Ak−b.

Then, under mild regularity assumptions, the probability

density must satisfy

pD(passi@1) ∼
A

Γ(b)
(passi@1)b−1 as passi@1 → 0+.

In Fig. 2, we illustrate this connection schematically. For

proofs, see Appendices E.8 and E.9. These results clarify
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Figure 4: Single-Attempt Success Rates Distributions Possess Power Law-Like Left Tails. Pythia language models

on 128 MATH problems (top) and frontier AI systems on 159 HarmBench prompts (bottom) exhibit distributions (over

problems) of passi@1 and ASRi@1 with power law-like tails that are well fit by scaled Beta-Binomial distributions (black

dashed lines), which produce aggregate power law scaling. Note that Llama 3 8B Instruction Tuned (IT) does not possess a

power law tail, explaining why the model did not exhibit aggregate power law scaling under Best-of-N jailbreaking (Sec. 4).

that whenever − log(passD@k) exhibits power-law decay

in k with exponent b, the distribution over problems of

single-attempt success rates must have “polynomial weight”

near passi@1 = 0, i.e. pD(p) = Θ(p b−1).

To offer intuition, we know that each problem is being

solved by the model (or equivalently, each prompt is jail-

breaking the model) exponentially quickly. If one looks

across all problems in the benchmark, some have passi@1
so small that they remain unsolved for many, many attempts.

Whether these “tiny-passi@1" problems still matter at large

k depends on how many such problems there are. Polyno-

mial density near 0 “piles up" enough hard problems in just

the right way such that even though each of those problems

is being solved exponentially quickly, the aggregate success

rate over problems decreases at only a power-law rate in

k. A more succinct mathematical summary is that, for a

compound binomial distribution, the lower tail probability

controls the upper tail of the marginal survivor function.
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Figure 5: Schematic: Two Estimators of Power Law Parameters for Scaling Inference Compute via Repeat Sampling.

(A) Both estimators begin by generating many samples per prompt, then computing the number of successes per prompt. In

the standard least squares power law parameter estimator (top), (B) passi@k is estimated for each i-th problem at multiple

k values, then (C) averaged over problems and fit with linear regression in log-log space. In the distributional power

law parameter estimator (bottom), (D) a distribution D is fit to estimates of passi@1, then (E) the single-attempt success

probability distribution is used to simulate passD@k at arbitrary k values for linear regression in log-log space.

4. Lack of Distributional Structure Explains

Deviations from Power Law Scaling

Notably, previous papers observed that not every model

exhibits power law scaling in every setting. To highlight one,

Hughes et al. (2024) observed that when jailbreaking Meta’s

Llama 3 8B Instruction Tuned (IT) model (Grattafiori et al.,

2024), the − log(ASRD@k) fell faster than any power law

(Fig. 1), i.e., the ASRD@k rose much more quickly than

the other frontier AI systems. Based on our mathematical

insights and the empirical per-problem single-attempt attack

success rates (Fig. 4), we can understand why: Llama 3 8B

IT could be successfully jailbroken on every prompt within

the permitted sampling budget and thus had no heavy left

tail necessary to create the aggregate power law scaling.

5. A New Distributional Estimator for

Predicting Power Law Scaling

A natural consequence of this connection between the scal-

ing of − log(passD@k) and the left tail of the distribution

pD(passi@1) is that the distribution of single-attempt suc-

cess rates can be used to predict whether power-law scaling

will appear and if so, what the intercept and exponent of the

power law will be. To do this, one can fit the distribution

p̂D(passi@1) and then simulate how passD@k will scale

with k (Fig. 5) using the relationship:

̂passD@k
def
=

1−

∫ 1

0

(1− passi@1)k p̂D(passi@1) d passi@1 .
(11)

To empirically test this claim, we compared the standard

least squares regression estimator (in log-log space) (Hoff-

mann et al., 2022; Caballero et al., 2022; Besiroglu et al.,

2024b) against a distributional estimator. To motivate our

distributional estimator, we first need explain a key ob-

stacle and how the distributional estimator overcomes it.

The obstacle is that there are problems or prompts whose

single-attempt success probabilities passi@1 lie between

(0, 1/Number of Samples) such that, due to finite sampling,

we lack the resolution to measure. While we do not know the

true single-attempt success probability for the problems that

lie in this interval, we do know how many problems fall into

this left tail bucket, and we can fit a distribution’s parameters

such that the distribution’s probability mass in the interval

(0, 1/Number of Samples) matches the empirical fraction

of problems in this tail bucket. Thus, our distributional esti-

mator works by first selecting a distribution (e.g., a scaled

3-parameter Beta distribution), discretizing the distribution
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Figure 6: Comparing Estimators of Power Law Exponents. We compare two estimators of the power law exponent b in

− log(passD@k) ≈ ak−b : (1) the standard least-squares estimator between k and − log(passD@k) in log-log space, and

(2) the distributional estimator of passi@1 assuming a scaled Kumaraswamy-Binomial distribution. Using all available data

to fit both estimators, we find agreement between the least-squares estimate (ordinate) and the distribution-derived estimate

(abscissa) for both Pythia models on MATH (left) and for frontier AI systems on HarmBench (right). For an explanation of

why the two estimators match more closely for Large Language Monkeys than for Best-of-N Jailbreaking, see Appendix A.
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Figure 7: Comparing Two Estimators of Power Law Exponents via Backtesting. On synthetic data with known

ground-truth power law a k−b, we compare how well the least squares and the distributional estimator recover the scaling

exponent b as measured by the relative error |b̂− b|/b by backtesting: subsampling the number of problems and the number

of samples per problem. We find that the distributional estimator obtains significantly better sample efficiency.

according to the sampling resolution 1/Number of Samples

and performing maximum likelihood estimation under the

discretized distribution’s probability mass function.

We tested this distributional estimator in two different ways.

First, focusing on Large Language Monkeys, we used all

available real data from all problems and all samples per

problem to compare the standard least squares regression

estimator against the distributional estimator. We found

close agreement between the two estimators (Fig. 6), giving

us a sense that the two estimators yield reasonably consistent

estimates under large sampling budgets.

Second, the distributional estimator also comes with an-

other benefit: it directly provides an estimate of the power

law’s exponent b in a k−b. Estimating the power law’s ex-

ponent is especially valuable because the exponent dictates

how success rates are improving with increasing inference

compute. To test how the distributional estimator and least

squares estimator compare at recovering the true asymptotic

power law exponent, we generated synthetic data so that we

would have ground-truth knowledge of the true power law

exponent, then backtested how the two scaling estimators

compare at recovering the true exponent (Alabdulmohsin

et al., 2022a; Owen, 2024) by subsampling data with fewer
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problems and fewer samples per problem. We found that the
distributional estimator obtains significantly better sample
efficiency, with approximately an order of magnitude lower

relative error
def
= |b̂− b|/b compared with the least squares

estimator (Fig. 7), or equivalently, ∼2− 4 orders of magni-
tude less inference-compute. The distributional estimator
performs well even under distributional mismatch.

6. Related Work

Research into scaling laws of deep neural networks has a
rich history spanning theoretical foundations, empirical vali-
dations, and diverse applications. The earliest investigations
discovered power law scaling in simple machine learning
settings (Barkai et al., 1993; Mhaskar, 1996; Pinkus, 1999).
However, the modern era of scaling laws began with break-
through studies in neural language models (Hestness et al.,
2017; Kaplan et al., 2020; Brown et al., 2020b), catalyzing
extensive research across multiple directions. The theoreti-
cal understanding of scaling laws has advanced significantly
(Spigler et al., 2020; Bousquet et al., 2020; Hutter, 2021;
Sharma & Kaplan, 2022; Maloney et al., 2022; Roberts et al.,
2022; Bahri et al., 2024; Michaud et al., 2024; Paquette et al.,
2024; Atanasov et al., 2024; Bordelon et al., 2024a;b; Lin
et al., 2024; Brill, 2024), complemented by comprehensive
empirical studies (Rosenfeld et al., 2020; Henighan et al.,
2020; Gordon et al., 2021; Tay et al., 2021; Ghorbani et al.,
2021; Tay et al., 2022b; Zhai et al., 2022; Alabdulmohsin
et al., 2022b; Dehghani et al., 2023; Bachmann et al., 2023).
In the context of language models, researchers have explored
scaling behaviors in various aspects: context length (Xiong
et al., 2023), in-context learning (Chan et al., 2022; Agarwal
et al., 2024; Arora et al., 2024), vocabulary size (Tao et al.,
2024), and jailbreaking attempts (Anil et al., 2024; Hughes
et al., 2024). Studies have also investigated scaling dynam-
ics in fine-tuning (Kalajdzievski, 2024; Zhang et al., 2024),
transfer learning (Hernandez et al., 2021), and the impact of
repeated data (Hernandez et al., 2022; Muennighoff et al.,
2023). Architectural considerations have been extensively
studied, including network design (Tay et al., 2022a; Clark
et al., 2022), nested models (Kudugunta et al., 2023), prun-
ing strategies (Rosenfeld et al., 2021), and precision require-
ments (Dettmers & Zettlemoyer, 2023; Kumar et al., 2024;
Sun et al., 2025). Research has also addressed multimodal
extensions (Aghajanyan et al., 2023; Cherti et al., 2023) and
inference optimization (Sardana et al., 2023; Brown et al.,
2024; Snell et al., 2024a; Wu et al., 2024; Chen et al., 2024).
The field has expanded to encompass diverse domains in-
cluding reinforcement learning (both single-agent (Jones,
2021; Hilton et al., 2023; Neumann & Gros, 2024) and
multi-agent (Neumann & Gros, 2022)), graph networks (Liu
et al., 2024), diffusion models (Mei et al., 2024; Liang et al.,
2024), and associative memory models (Romani et al., 2013;
Cabannes et al., 2024; Schaeffer et al., 2024c). Recent work

has explored emerging phenomena such as inverse scaling
(McKenzie et al., 2024), unique functional forms (Caballero
et al., 2022), scaling patterns across model families (Ruan
et al., 2024; Polo et al., 2024), and downstream capabili-
ties (Srivastava et al., 2023; Wei et al., 2022a; Hu et al.,
2024; Schaeffer et al., 2024b; Snell et al., 2024b; Wu &
Lo, 2024). Researchers have also investigated critical chal-
lenges including data contamination (Schaeffer, 2023; Jiang
et al., 2024; Dominguez-Olmedo et al., 2024), model-data
feedback loops (Dohmatob et al., 2024; Gerstgrasser et al.,
2024; Kazdan et al., 2024), and overtraining effects (Gao
et al., 2023; Gadre et al., 2024). Additional contributions
include studies in sparse autoencoders (Gao et al., 2024),
biologically-plausible backpropagation (Filipovich et al.,
2022), and self-supervised learning for vision (Schaeffer
et al., 2024a). Recent efforts have also focused on reconcil-
ing apparent contradictions in scaling behaviors (Besiroglu
et al., 2024b; Porian et al., 2024).

7. Discussion and Future Directions

This work advances our mathematical understanding of
how and why language model performance improves with
additional inference compute through repeat sampling.
By establishing rigorous theoretical foundations for these
empirically-observed power laws, our work provides prac-
titioners with principled ways to understand and predict
model performance when scaling inference compute. The
distributional perspective we develop explains previously
puzzling deviations from power law scaling and enables
more efficient estimation of scaling parameters.

Two related questions are why such distributional structure
exists in the single-attempt success rates and whether one
should expect such structure to appear in future benchmarks.
We conjecture there are at least two reasons: (1) benchmark
design, in that benchmarks are intentionally crafted that
problems have a spread of difficulty without being too easy
or too hard, and (2) selection bias, in that more interesting
patterns such as power law scaling are more likely to garner
more interest from the research community.

Despite focusing on scaling inference compute, our paper
contributes a new hypothesis for an open question in scaling
pretraining compute: why are neural scaling laws power

laws? Just as the scaling behavior of − log(passD@k) only
becomes clear for large k, so too might the scaling behav-
ior of pretraining cross entropy with pretraining compute
C. Specifically, suppose the pretraining cross entropy L
as a function of pretraining compute C is a sum of many
functions which decay at different rates:

L(C) = É
( 1

Cα

)

+
A

Cα

+ o
( 1

Cα

)

,

where ³ is the smallest (positive) polynomial exponent and
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É(1/Cα) represents functions that decay more slowly than
any polynomial. Initially, for small C, the dominant term
may be unclear, but as pretraining compute is scaled up
across 8− 10 orders of magnitude, the leading order term
dominates and an approximate power law emerges:

L(C) ≈ const +
A

Cα

+ 0 as C → ∞.

Thus, a power law relationship may only be reasonable for
sufficiently large pretraining compute C, which in turn may
require excluding the lowest pretraining compute models
in order to obtain good predictions, justifying a widespread
empirical practice (Kaplan et al., 2020). We designate possi-
ble functions hiding in É(1/Cα) and o(1/Cα) as the dark

matter of neural scaling laws.
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A. Clarification of How Large Language Monkeys and Best-of-N Jailbreaking Sampled Data

In this manuscript, we used the phrasing of “independent attempts," which is not fully correct. In this appendix section, we
clarify why we chose this terminology, what likely impacts we believe this inaccuracy may have had on our results, and how
to correct the paper accordingly.

Large Language Monkeys (Brown et al., 2024) indeed drew 10, 000 independent attempts per problem, but Best-of-N
Jailbreaking (Hughes et al., 2024) sampled data slightly different: for each problem, jailbreaking attempts were drawn until
either a successful jailbreak was obtained or until a maximum limit of 10, 000 attempts was hit. Samples were also drawn in
minibatches of size 60, making the (in)dependence of samples a bit tricky.

We omitted this nuance because it offers a second-order correction to our paper’s main story while offering little additional
insight. Neither of our theorems and none of our main text figures change. We suspect that this slightly different sampling
procedure explains why, in Fig. 6, the estimated power law exponents between the least squares power law estimator
and the distributional power law estimator deviate more significantly from identity for Best-of-N Jailbreaking than for
Large Language Monkeys. A natural way to correct for this is to use a beta-negative binomial distribution rather than a
beta-binomial distribution, with an additional correction for the maximum number of attempts. For more information, please
see Appendix H.
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B. Estimating Success Rates Using Chen et al. (2021)’s Estimator

In this manuscript, we defined passi@k and ASRi@k as:

passi@k
def
= E

k Attempts

[

I[At least 1 attempt by the model solves the i-th problem]
]

ASRi@k
def
= E

k Attempts

[

I[At least 1 attempt jailbreaks the model on the i-th prompt]
]

Throughout this manuscript, to estimate passi@k and ASR@k, we used the unbiased and lower variance estimator introduced
by Chen et al. (2021): for the i-th problem, we sampled n k k attempts per problem, counted the number of successful
attempts c, and then swept k to compute an estimate of passi@k for different k values:

̂passi@k = 1−

(

n−c
k

)

(

n
k

) (12)

Two comments: Firstly, n as used here has no relationship with the number of problems in the benchmark (Sec. 1), and
secondly, our notation differs slightly from that of Chen et al. (2021), but the ideas are consistent. A numerically stable
Python implementation of the estimator is provided in Fig. 8:

def estimate_success_rate_at_k_per_problem(n: int, c: int, k: int) -> float:

"""

:param n: number of total attempts on this problem.

:param c: number of correct attempts on this problem.

:param k: k in pass_i@$k$.

"""

if n - c < k: return 1.0

return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))

Figure 8: A numerically stable unbiased estimator of passi@k, introduced by Chen et al. (2021).

To reiterate a point made by Chen et al. (2021), estimating passi@k as 1− (1− ̂passi@1)k is biased (Fig. 9).
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Figure 9: Bias of Estimators of passi@k. Numerical simulations show that estimating passi@k as 1− (1− ̂passi@1)k is
biased whereas the estimator of Chen et al. (2021) is not. For a mathematical proof of unbiasedness, see the original paper.
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C. Fitting Power Laws to Large Language Monkeys and Best-of-N Jailbreaking

We fit power laws to a subset of data from Large Language Monkeys (Brown et al., 2024) and from Best-of-N Jailbreaking
(Hughes et al., 2024), specifically Pythia language models (Biderman et al., 2023) on the MATH benchmark (Hendrycks
et al., 2021) and frontier AI models – Claude, GPT4 (OpenAI et al., 2024), Gemini (Team et al., 2024a;b) and Llama 3
(Grattafiori et al., 2024) – on the HarmBench jailbreaking benchmark (Mazeika et al., 2024). We show the functional
forms and the fit parameters in Table 1 and Table 2 respectively. To fit the parameters, for Large Language Monkeys, we
simply minimized the squared error between the actual and predicted − log(passD@k), and for Best-of-N Jailbreaking, we
similarly minimized the squared error between the actual and predicted − log(ASRD@k)).

Note: Llama 3 8B IT does not exhibit power law scaling under Best-of-N Jailbreaking (shown in Fig. 1, bottom).

Model Benchmark a b

Pythia 70M MATH 8.026 0.194
Pythia 160M MATH 6.591 0.280
Pythia 410M MATH 5.524 0.286
Pythia 1B MATH 5.452 0.315
Pythia 2.8B MATH 4.104 0.336
Pythia 6.9B MATH 4.255 0.348
Pythia 12B MATH 4.113 0.370

Table 1: Large Language Monkeys (Brown et al., 2024)
fitted power law parameters on 128 mathematical problems
from MATH (Hendrycks et al., 2021).
Functional Form: − log(passD@k) = a k−b.

Model Modality a b

Claude 3.5 Opus Text 2.630 0.448
Claude 3.5 Sonnet Text 3.436 0.312
GPT4o Text 3.639 0.395
GPT4o Mini Text 3.637 0.492
Gemini 1.5 Flash Text 6.158 0.303
Gemini 1.5 Pro Text 6.296 0.256
Llama 3 8B IT Text – –

Table 2: Best-of-N Jailbreaking (Hughes et al., 2024) fitted
power law parameters on text jailbreak prompts from Harm-
Bench (Mazeika et al., 2024).
Functional Form: − log(ASRD@k) = a k−b.
Note: Llama 3 8B Instruction Tuned (IT) does not exhibit
power law scaling.
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D. Mathematical Equivalence Between Coverage and Average Success Rate

Brown et al. (2024) and Hughes et al. (2024) phrase their research in terms of “coverage", defined as the fraction of problems
that can be solved or the fraction of prompts that can jailbreak a model, but as Brown et al. (2024) comment and we
here derive, the coverage is mathematically equivalent to the average passi@k (equivalently, ASR@k. due to two simple
probabilistic primitives: (1) linearity of expectation, (2) the expectation of an indictor random variable of some event is the
probability of said event and (3) the definition of passi@k:

E
Prompts
Attempts

[

Coverage
]

def
= E

Problems
Attempts

[

Fraction of Problems Solved After k Attempts
]

= E
Problems

[

E

Attempts|Problem

[

I
[

Problem Solved After k Attempts
]

]

]

= E
Problems

[

passproblem@k
]

]

= passD@k

In our work, we prefer phrasing along the lines of “success rate" over “coverage" because success rate avoids coverage’s
binary implication that each problem/prompt is either “solved" or “not solved".
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E. Aggregate Power Laws from a Probability Distribution over Exponential Functions

E.1. Preliminaries: Power Laws from Weighted Exponential Functions

A known result is that power laws can emerge from appropriately weighted sums of exponential functions, e.g., (Bochud &
Challet, 2006; Elkies, 2016; Bousquet et al., 2020). For a concrete example with a short proof:

x−r =
1

Γ(r)

∫ ∞

0

pr−1 e−px dp, (13)

where Γ(r)
def
=
∫∞

0
sr−1 e−s ds is the Gamma function. The proof is via u-substitution u

def
= p x:

1

Γ(r)

∫ ∞

0

pr−1 e−px dp =
1

Γ(r)

∫ ∞

0

(u/x)r−1 e−u du

x
(14)

=
1

Γ(r)
x−r

∫ ∞

0

ur−1 e−u du (15)

=
1

Γ(r)
x−r Γ(r) (16)

= x−r (17)

In our particular context, we are interested in the scaling with k of the expected success rate over problems sampled from
the benchmark’s data distribution:

passD@k
def
= E

passi@1∼D

[

passi@k
]

(18)

distribution (over problems in a benchmark) of passi@k scores that yields power law scaling with respect to the number of
attempts k:

− log

(

1

n

n
∑

i=1

passi@k

)

≈ ak−b. (19)

for constants a, b > 0.

E.2. Delta Distribution: passi@1 ∼ ¶(p), p ∈ (0, 1)

To start with a negative result, we will show that not all distributions of the per-problem success probabilities passi@1 yield
aggregate power law scaling. Suppose that the model’s passi@1 probabilities across the benchmarks’ problems are all

exactly p ∈ (0, 1). For brevity, let pi
def
= passi@1. Then the aggregate success rate is:

Epi∼¶(p)[passi@k] = 1− Epi
[(1− pi)

k] (20)

=

∫ 1

0

¶(p) (1− pi)
k dpi (21)

= (1− p)k. (22)

Recalling that the expansion of log(·) for small x is − log(1− x) = x+O(x2), in our case, we obtain:

− log
(

1− Epi∼¶(p)[pass@k]
)

= (1− p)k +O((1− p)2k) = (1− p)k + o((1− p)k). (23)

Thus, in the large k regime, we find the negative log aggregate success rate exhibits exponential scaling with k as we
intuitively expect.

E.3. Uniform Distribution: passi@1 ∼ Uniform(³, ´)

Suppose passi@1 probabilities follow a uniform distribution Uniform(³, ´) where 0 f ³ < ´ f 1. The aggregate success
rate after k attempts is defined as:

passUniform(³,´) @k
def
= 1− E

[

(1− p)k
]

.
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If p ∼ Uniform(³, ´), the expectation of (1− p)k is:

E
[

(1− p)k
]

=
1

´ − ³

∫ ´

³

(1− p)k dp.

Evaluating the integral gives:

E
[

(1− p)k
]

=
(1− ³)k+1 − (1− ´)k+1

(´ − ³) · (k + 1)
.

Thus, the aggregate success rate becomes:

passUniform(³,´) @k = 1 −
(1− ³)k+1 − (1− ´)k+1

(´ − ³) · (k + 1)
.

Case A: ³ > 0 If ³ > 0, then both (1− ³) and (1− ´) are strictly less than 1. As k → ∞, (1− ³)k+1 and (1− ´)k+1

decay exponentially. Hence:

E
[

(1− p)k
]

∼
(1− ³)k+1

(´ − ³) · (k + 1)
,

and passUniform(³,´) @k approaches 1 exponentially fast:

passUniform(³,´) @k ∼ 1−
(1− ³)k+1

(´ − ³) · (k + 1)
.

Thus, the negative log of the aggregate success rate decays exponentially:

− log
(

passUniform(³,´) @k
)

∼ e−Ω(k).

Case B: ³ = 0 When ³ = 0, the uniform distribution is over [0, ´]. In this case:

E
[

(1− p)k
]

=
1

´
·
1− (1− ´)k+1

k + 1
.

For large k, (1− ´)k+1 becomes exponentially small, and:

E
[

(1− p)k
]

∼
1

´
·

1

k + 1
.

The aggregate success rate is then:

passUniform(0,´) @k ∼ 1−
1

´ · k
.

The negative log exhibits power-law scaling:

− log
(

passUniform(0,´) @k
)

∼
1

´
·
1

k
.

Special Case: Uniform(0, 1) If ´ = 1, the distribution is uniform on [0, 1]. In this case:

E
[

(1− p)k
]

=
1

k + 1
,

and the success rate becomes:

passUniform(0,1) @k = 1−
1

k + 1
.

For large k:

− log
(

passUniform(0,1) @k
)

∼
1

k
.
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E.4. 2-Parameter Beta Distribution: passi@1 ∼ Beta(³, ´)

Suppose that the model’s passi@1 probabilities across the benchmark problems follow a Beta distribution:

passi@1 ∼ Beta(³, ´)

The probability density function of this distribution over the support x ∈ (0, 1) is:

f(x;³, ´)
def
=

1

B(³, ´)
x³−1 (1− x)´−1, (24)

where ³ > 0, ´ > 0 and B(·, ·) is the Beta function. For brevity, let pi
def
= passi@1. Under our assumed Beta distribution:

passBeta(³,´)@k
def
= 1− Epi∼Beta(³,´)[(1− pi)

k] (25)

= 1−

∫ 1

0

p³−1
i (1− pi)

´−1

B(³, ´)
(1− pi)

k dpi (26)

= 1−
Γ(³+ ´)

Γ(³)Γ(´)

Γ(³)Γ(´ + k)

Γ(³+ ´ + k)
(27)

where Γ(·) is again the Gamma function. The Γ(³) terms cancel, and a standard asymptotic result of the gamma function
for large k tells us that:

Γ(´ + k)

Γ(³+ ´ + k)
∼ k−³, (28)

and thus:
Γ(³+ ´)

Γ(´)

Γ(´ + k)

Γ(³+ ´ + k)
∼

Γ(³+ ´)

Γ(´)
k−³. (29)

Recalling again that the expansion of log(·) for small x is − log(1− x) = x+O(x2), in our case, we obtain:

− log
(

passD@k
)

=
Γ(³+ ´)

Γ(´)
k−³ +O(k−2³) =

Γ(³+ ´)

Γ(´)
k−³ + o(k−³). (30)

From this final result, we see that under a Beta distribution and in the large k regime, the negative log aggregate success rate
exhibits polynomial (power-law) scaling with k for exponent ³

E.5. Kumaraswamy Distribution: passi@1 ∼ Kumaraswamy(³, ´)

Next, suppose the model’s passi@1 probabilities follow a Kumaraswamy distribution. The probability density function of
this distribution over the support x ∈ (0, 1) is:

f(x;³, ´)
def
= ³´ x³−1 (1− x³)´−1 (31)

Again for brevity, let pi
def
= passi@1. Under our assumed Kumaraswamy distribution:

passKumaraswamy(³,´)@k
def
= 1− Epi∼Kumaraswamy(³,´)[(1− pi)

k] (32)

= 1−

∫ 1

0

(1− p)k · ³´ p³−1 (1− p³)´−1dp. (33)

Define the integral

Ik
def
= E

(

(1− p)k
)

=

∫ 1

0

(1− x)k ³´ x³−1
(

1− x³
)´−1

dx. (34)

We aim to analyze Ik for large k. Notice that (1−x)k is exponentially small in k unless x is very close to 0. Thus, intuitively,
most of the contribution to Ik arises from x ∈ [0, O(1/k)].
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Step 1: Split the integral into two parts. Fix a constant c > 0. Write

Ik =

∫ c/k

0

[· · · ] dx +

∫ 1

c/k

[· · · ] dx
def
= Ik,left + Ik,right,

where [· · · ] indicates the same integrand. In the region x ∈ [c/k, 1], we have (1 − x)k f e−k x f e−c. Hence
Ik,right = O

(

e−c
)

. Since c can be made arbitrarily large, Ik,right becomes negligible compared to any polynomial in 1/k.

Step 2: Approximate the integrand in the small-x region. On [0, c/k], we use the approximation log(1 − x) =
−x+O(x2). Thus

(1− x)k = exp
(

k log(1− x)
)

= exp
(

− k x+O(k x2)
)

.

Since x f c/k implies k x2 f c2/k = O(1/k), and exp(ϵ) = 1 +O(ϵ), we get

(1− x)k = exp(−k x) exp(O(1/k)) = exp(−k x)
(

1 +O
(

1
k

))

.

Furthermore, since (1− y)m = 1−my +O(y2), for small x

(1− x³)´−1 = 1− (´ − 1)x³ +O(x2³) = 1 +O
(

x³
)

.

In the region x f c/k, that error is O
(

k−³
)

. Hence, within the small-x region, the integrand

(1− x)k ³´ x³−1
(

1− x³
)´−1

can be approximated by

³´ x³−1 e−k x + O
(

k−³ x³−1 e−k x
)

.

Thus

Ik,left =

∫ c/k

0

³´ x³−1 e−k x dx + O
(

k−³

∫ c/k

0

x³−1 e−k x dx
)

+ O
(

e−c
)

.

Step 3: Substitution u
def
= k x. To handle

∫ c/k

0
x³−1e−k x dx, we substitute u = k x. Then x = u/k, dx = du/k, and

the upper limit x = c/k becomes u = c. Hence,

∫ c/k

0

x³−1 e−k x dx =

∫ c

0

(

u
k

)³−1

e−u du

k

= k−³

∫ c

0

u³−1 e−u du.

As c → ∞,
∫ c

0
u³−1e−u du → Γ(³), and for finite c the remainder is O

(

e− c
)

. Therefore,

∫ 1

0

x³−1 e−k x dx = k−³ Γ(³) + O
(

k−³ e− c
)

,

and absorbing the constant c into big-O notation gives

∫ 1

0

x³−1 e−k x dx = k−³ Γ(³) + O
(

k−³−ϵ
)

for some ϵ > 0.

Multiplying by the factor ³´, we deduce that

Ik = ³´ Γ(³) k−³ + O
(

k−³−ϵ
)

.
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Step 4: Final conclusion for the success rate. Recall passKumaraswamy(³,´)@k = 1− Ik. Hence

passKumaraswamy(³,´)@k = 1 − ³´ Γ(³) k−³ + O
(

k−³−ϵ
)

.

Since this tends to 1, its negative log is governed by the magnitude of ³´ Γ(³) k−³. Using the expansion − log(1− y) =
y +O(y2) as y → 0, we get

− log
(

passKumaraswamy(³,´)@k
)

= ³´ Γ(³) k−³ + o
(

k−³
)

.

That is precisely polynomial (power-law) decay in the negative log success rate with exponent ³.

E.6. Continuous Bernoulli Distribution: passi@1 ∼ ContinousBernoulli(¼)

Next, suppose the model’s passi@1 probabilities follow a Continuous Bernoulli distribution. The probability density
function of this distribution over the support x ∈ [0, 1] is:

f(x;¼)
def
= C(¼)¼x(1− ¼)1−x (35)

C(¼)
def
=

{

2 if ¼ = 1/2
2 tanh−1 (1−2¼)

1−2¼ otherwise
. (36)

The density can equivalently be rewritten in a more convenient form for our purposes:

f(x;¼) = C(¼)¼x(1− ¼)(1− ¼)−x = C(¼)(1− ¼)
( ¼

1− ¼

)x

(37)

Because the individual success probability is low in our data, we shall consider the small ¼ < 1/2 regime. We follow the
same approach as with the Kumaraswamy distribution.

Step 1: Write the aggregate pass rate. The aggregate pass rate is defined as:

passContinuousBernoulli(¼)@k = 1− Ik, where Ik
def
=

∫ 1

0

(1− p)k f(p;¼) dp.

Substituting the density f(p;¼), we get:

Ik =

∫ 1

0

(1− p)k C(¼)¼p (1− ¼)1−p dp.

Step 2: Simplify using an exponential form. Using the exponential rewriting:

¼p (1− ¼)1−p = (1− ¼) exp
(

p log
(

¼
1−¼

)

)

,

the integral becomes:

Ik = C(¼) (1− ¼)

∫ 1

0

(1− p)k exp
(

p log
(

¼
1−¼

)

)

dp.

Step 3: Dominance of the small-p region. For large k, (1− p)k decays exponentially unless p is close to 0. Thus, the
main contribution to the integral arises from the region p ∈ [0, c/k], where c > 0 is a constant. Decompose the integral:

Ik =

∫ c/k

0

[· · · ] dp+

∫ 1

c/k

[· · · ] dp
def
= Ik,left + Ik,right.

In the region p ∈ [c/k, 1], we have (1− p)k f e−kp f e−c, making Ik,right = O(e−c), which is negligible compared to
1/k. Thus, we focus on Ik,left:

Ik,left = C(¼) (1− ¼)

∫ c/k

0

(1− p)k exp
(

p log
(

¼
1−¼

)

)

dp.
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Step 4: Approximate the integrand. For p ∈ [0, c/k], use the same approximations from the Kumaraswamy derivation:

(1− p)k = e−kp
(

1 +O(p)
)

, exp
(

p log
(

¼
1−¼

)

)

= 1 +O(p).

Thus, the integrand becomes:

(1− p)k exp
(

p log
(

¼
1−¼

)

)

= e−kp
(

1 +O(p)
)

.

Step 5: Change of variables. Let u
def
= kp, so p = u/k and dp = du/k. The integral becomes:

Ik,left = C(¼) (1− ¼)

∫ c

0

e−u
(

1 +O(u/k)
) du

k
.

Split the integral:

Ik,left =
C(¼) (1− ¼)

k

∫ c

0

e−u du+O
( 1

k2

)

.

As c → ∞,
∫ c

0
e−u du → 1. Thus:

Ik,left =
C(¼) (1− ¼)

k
+O

( 1

k2

)

.

Since Ik,right = O(e−c) is negligible, we have:

Ik =
C(¼) (1− ¼)

k
+O

( 1

k2

)

.

Step 7: Final conclusion for the success rate. Recall:

passContinuousBernoulli(¼)@k = 1− Ik.

For large k, this implies:

passContinuousBernoulli(¼)@k = 1−
C(¼) (1− ¼)

k
+O

( 1

k2

)

.

Using the expansion − log(1− y) = y +O(y2) for small y, we find:

− log
(

passContinuousBernoulli(¼)@k
)

= C(¼) (1− ¼)k−1 + o(k−1).

That is precisely polynomial (power-law) decay in the negative log success rate with exponent −1.

As a side comment, recall that tanh−1(x) = 1
2 log

(

1+x
1−x

)

, the normalizing constant C(¼) can be rewritten as:

C(¼) =
2

1− 2¼

1

2
log

(

1 + (1− 2¼)

1− (1− 2¼)

)

=
1

1− 2¼
log
(1− ¼

¼

)

. (38)

Thus, for small ¼, note that C(¼) ≈ log(1/¼) = − log(¼). For k j − log(¼), the 1/k formula is valid. However, near
k ≈ − log(¼), the leading term − log(¼)/k becomes of order 1, and for k k − log(¼), the success rate is now very close
to 1. Consequently, we see that if ¼ is very small, there is a soft cutoff scale around k ≈ − log(¼).

E.7. Any Continuous Distribution with p(passi@1) = c > 0

Suppose that the distribution over passi@1 is continuous and has constant non-zero density near 0:

f(0) = c > 0 (39)

Because the density is continuous at 0 with f(0) = c > 0, there exist some ¶ > 0 such that:

f(p) = c+O(p) for all p ∈ [0, ¶]. (40)
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Because the small passi@1 region dominates for large k, a similar argument to the Kumaraswamy argument and Continuous
Bernoulli argument yields power law scaling with respect to k with exponent −1:

− log
(

passD@k
)

= c k−1 + o(k−1). (41)

This result is consistent with the Continuous Bernoulli, where c is given by fContinuousBernoulli(¼)(0;¼) = C(¼)(1− ¼) for
¼ < 1/2. This result reveals that the Continous Bernoulli is just one instance of a larger family: any continuous distribution
with non-zero constant density at passi@1 = 0 will exhibit power law scaling with exponent −1.

E.8. Reciprocal Distribution: passi@1 ∼ Reciprocal(a, b)

Next, suppose the model’s passi@1 ∼ Reciprocal(a, b) distribution with 0 < a < b < 1. The probability density function
of this distribution over the support x ∈ [a, b] is:

f(x; a, b) =
1

(log(b)− log(a))x
(42)

As with the other distributions, the aggregate success rate after k attempts is:

passReciprocal(a,b)@k = E
[

passi@k
]

= 1 − Ik, where Ik
def
=

∫ b

x=a

(1− x)k
1

(log b− log a)x
dx.

We aim to show that Ik is on the order of (1−a)k

k . The main contribution to the integral arises from the vicinity of x = a,
because (1− x)k decays rapidly as x grows away from a.

Step 1: Change of variable. Define y
def
= x− a, so the domain x ∈ [a, b] becomes y ∈ [0, b− a]. Then

(1− x)k =
(

(1− a)− y
)k
,

and

Ik =
1

log(b/a)

∫ b−a

y=0

(

(1− a)− y
)k 1

a+ y
dy.

Step 2: Expansion near y = 0. For small y, write (1− a)− y = (1− a)
(

1− y
1−a

)

; hence

log
(

(1− a)− y
)

= log(1− a) + log
(

1− y
1−a

)

.

Using log(1− z) = −z +O(z2) for small z, we get

log
(

(1− a)− y
)

= log(1− a) −
y

1− a
+ O

(

y2

(1−a)2

)

,

so
(1− a− y)k = exp

(

k log(1− a) − k y
1−a + O

(

k y2

(1−a)2

)

)

.

In particular, for y up to c/k, the term k y2 = O(1) remains bounded, so

(1− a− y)k = (1− a)k exp
(

− k y
1−a

)

[

1 +O
(

1
k

)]

.

Step 3: The integral is dominated by y ∈ [0, O( 1k )]. For large k, exp
(

− k y
1−a

)

decays quickly once y exceeds a multiple
of 1−a

k . Consequently, the integral from y = c0/k to b − a is exponentially small in k. On [0, c0/k], we also have
(a+ y)−1 = 1

a +O
(

1
k

)

. Thus

Ik =
1

log(b/a)

∫ c0/k

y=0

(1− a− y)k
1

a+ y
dy + (exponentially small tail).

34



How Do Large Language Monkeys Get Their Power (Laws)?

Substitute our approximation from Step 2 into the integrand:

(1− a− y)k
1

a+ y
= (1− a)k exp

(

− k y
1−a

) [

1
a +O

(

1
k

)

]

.

Step 4: Change variable u = k y
1−a . Then y = (1−a)u

k and dy = 1−a
k du. The upper limit y = c0/k corresponds to

u = c0
(

1−a
1

)

, so
∫ c0/k

y=0

exp
(

− k y
1−a

)

dy =

∫ c0 (1−a)

u=0

e−u 1− a

k
du.

Letting c0 → ∞ only contributes an e−c0(1−a) factor to the tail, which vanishes. Hence
∫ ∞

y=0

exp
(

− k y
1−a

)

dy =
1− a

k

∫ ∞

u=0

e−u du =
1− a

k
.

Putting all factors together,

Ik =
1

log(b/a)
(1− a)k

[

1
a +O

(

1
k

)

] 1− a

k
+ (exponentially small in k).

Thus in big-Theta form,

Ik = Θ
(

(1−a)k

k

)

.

Conclusion. Since passReciprocal(a,b)@k = 1− Ik, we get

passReciprocal(a,b)@k = 1 − Θ
(

(1−a)k

k

)

.

Moreover, using − log(1− y) = y +O(y2) for small y, it follows that

− log
(

passReciprocal(a,b)@k
)

= Θ
(

(1−a)k

k

)

.

Hence the negative log aggregate success rate converges to 1 exponentially fast in k, which is not a power law in k.
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Sufficient Condition for Power-Law Scaling in Negative Log of Aggregate Success

Theorem E.1. Let D be a probability distribution on [0, 1] with PDF f(p). Suppose there exist constants b > 0, C > 0,

¹ > 0 and ¶ > 0 such that, for all 0 < p < ¶, we have

f(p) = C p b−1 + O
(

p b−1+¹
)

.

Then, for large k,

1 − passD@k = C Γ(b) k−b + O
(

k−b−min( 1,¹)
)

,

which implies

− log
(

passD@k
)

= C Γ(b) k−b + o
(

k−b
)

.

Equivalently, including the leading constant),

− log
(

passD@k
)

∼ C Γ(b) k−b.

Proof. Step 1. Decompose the key integral.

Define

Ik
def
= 1 − passD@k =

∫ 1

0

(1− p)k f(p) dp.

For a positive constant c > 0, split Ik:

Ik =

∫ c/k

0

(1− p)k f(p) dp +

∫ 1

c/k

(1− p)k f(p) dp
def
= Ik,left + Ik,right.

Right Tail Bound (Ik,right). For p g c/k, observe (1− p)k f e−k p f e−c. Hence

Ik,right =

∫ 1

c/k

(1− p)k f(p) dp f e−c

∫ 1

0

f(p) dp = e−c.

Since c can be made arbitrarily large, e−c can be driven below any power of 1/k. Thus Ik,right = o
(

k−³
)

for any ³ > 0.
We may therefore focus on

Ik,left =

∫ c/k

0

(1− p)k f(p) dp,

knowing that Ik,right is negligible in polynomial-type estimates.

Step 2. Use the assumed behavior of f(p) near p = 0.

By hypothesis, for p up to some ¶ > 0,
f(p) = C p b−1 +O

(

p b−1+¹
)

.

Choose c/k < ¶, so p f c/k < ¶ for p in the left integral. Then

Ik,left =

∫ c/k

0

(1− p)k
[

C p b−1 +O
(

p b−1+¹
)

]

dp.

Split it into main term and error term:

Ik,left = C

∫ c/k

0

(1− p)k p b−1 dp +

∫ c/k

0

(1− p)k O
(

p b−1+¹
)

dp.

Denote these Tmain and Terr, respectively.

Step 3. Approximate (1− p)k by e−kp and control the error.

For p in [0, c/k], expand log(1− p) = −p+O(p2). Thus

(1− p)k = exp
(

k log(1− p)
)

= e−k p exp
(

O(k p2)
)

= e−k p
[

1 +O(k p2)
]

.
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Since p f c/k, we get k p2 f c2/k, which is bounded for large k. Consequently,

(1− p)k = e−k p +O
(

k p2 e−k p
)

.

We will use this in both Tmain and Terr.

Step 4. Main term Tmain.

Tmain = C

∫ c/k

0

(1− p)k p b−1 dp.

Substituting (1− p)k = e−k p +O
(

k p2 e−k p
)

,

Tmain = C

∫ c/k

0

e−k p p b−1 dp + C

∫ c/k

0

O
(

k p b+1 e−k p
)

dp.

Call these two integrals T1 and T2.

T1 term.

T1 = C

∫ c/k

0

p b−1 e−k p dp.

Make the substitution u
def
= k p. Then p = u/k, dp = du/k, and p b−1 = k−b+1 u b−1. The upper limit p = c/k becomes

u = c. Thus

T1 = C

∫ c

0

(

u
k

)b−1
e−u du

k = C k−b

∫ c

0

u b−1 e−u du.

As c → ∞,
∫ c

0
u b−1e−u du → Γ(b). So

T1 = C k−b
(

Γ(b)−Rc

)

, where |Rc| = O
(

e−c
)

.

By choosing c large after k → ∞, we conclude

T1 = C Γ(b) k−b + o
(

k−b
)

.

T2 term.

T2 = C

∫ c/k

0

O
(

k p b+1 e−k p
)

dp.

Inside the integral, k p b+1 e−k p is the main factor. Substituting u
def
= k p again,

p b+1 =
(

u
k

)b+1
= k−b−1 u b+1.

Hence

T2 = C O(1)

∫ c/k

0

k p b+1 e−k p dp = O(k)

∫ c/k

0

p b+1e−k p dp.

Substitute u = k p and dp = du/k. Then

T2 = O(k)

∫ c

0

(

u
k

)b+1
e−u du

k = O(k) k−b−2

∫ c

0

u b+1 e−u du = O
(

k−b−1
)

.

Thus T2 is of strictly smaller order than k−b.

Combine T1 and T2:
Tmain = C Γ(b) k−b +O

(

k−b−1
)

.
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Step 5. Error term Terr.

Recall

Terr =

∫ c/k

0

(1− p)k O
(

p b−1+¹
)

dp.

Exactly the same substitution (1− p)k = e−kp +O(k p2 e−k p) plus u = k p shows

Terr = O
(

∫ c/k

0

p b−1+¹ e−k p dp
)

+ O
(

∫ c/k

0

k p b+1+¹ e−k p dp
)

.

When substituting u = k p, the exponent on p increases by +1 each time if we multiply by k, so each term is of order k−b−¹

or smaller. Concretely,

∫ c/k

0

p b−1+¹ e−k p dp = k−b−¹

∫ c

0

u b−1+¹ e−u du = O
(

k−b−¹
)

,

and similarly for the second term, which is even smaller. Hence

Terr = O
(

k−b−¹
)

.

Step 6. Putting it all together.

Summarize:
Ik,left = Tmain + Terr = C Γ(b) k−b + O

(

k−b−1
)

+ O
(

k−b−¹
)

.

Thus
Ik,left = C Γ(b) k−b + O

(

k−b−min(1,¹)
)

.

Recalling the tail piece Ik,right = e−c = o
(

k−³
)

for any ³, we obtain

Ik = Ik,left + Ik,right = C Γ(b) k−b + O
(

k−b−min(1,¹)
)

.

Hence
1− passD@k = Ik ∼ C Γ(b) k−b.

Final negative-log argument. Since

passD@k = 1− Ik = 1−
(

C Γ(b) k−b +O
(

k−b−min(1,¹)
))

,

for large k it is very close to 1. Then

− log
(

passD@k
)

= − log
(

1− C Γ(b) k−b + · · ·
)

.

Using the expansion − log(1− x) = x+O(x2) as x → 0, and here x = C Γ(b) k−b, we get

− log
(

passD@k
)

= C Γ(b) k−b + o
(

k−b
)

.

In the “∼” notation including the leading coefficient:

− log
(

passD@k
)

∼ C Γ(b) k−b.

This completes the proof.
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E.9. Necessary Condition for Power Law Scaling from Distribution over passi@1

Theorem E.2. Let D be a probability distribution over [0, 1] with a PDF f(p) satisfying the following regularity near

p = 0:

• No point mass at p = 0. So
∫ 1

0
f(p) dp = 1, and f is a genuine PDF on (0, 1].

• Continuity and nonnegative behavior near p = 0. There exist ¶ > 0 such that f is continuous on [0, ¶] and has no

pathological oscillations or singularities that violate integrability.

Define the aggregate success rate at k attempts:

passD@k
def
=

∫ 1

0

[

1− (1− p)k
]

f(p) dp

and relatedly

Ik
def
=

∫ 1

0

(1− p)k f(p) dp = 1− passD@k .

Assume that there exist constants A > 0 and b > 0 such that for large k:

− log
(

passD@k
)

∼ Ak−b

Then

Ik = Ak−b + o
(

k−b
)

,

and under the mild regularity assumptions above,

f(p) ∼
A

Γ(b)
p b−1 as p → 0+.

Proof. Step 1. Relating Ik to − log(passD@k).

By definition,

passD@k = 1− Ik, Ik =

∫ 1

0

(1− p)k f(p) dp.

Since
− log

(

passD@k
)

∼ Ak−b,

we have, for large k,
passD@k = exp

(

−Ak−b (1 + o(1))
)

.

When x is small, exp(−x) = 1− x+O(x2). Thus

Ik = 1− passD@k = Ak−b + o
(

k−b
)

.

So
Ik ∼ Ak−b.

Step 2. Restricting to a small interval near p = 0.

Since (1− p)k decays exponentially once p is on the order of 1/k or larger, we split:

Ik
def
=

∫ 1

0

(1− p)k f(p) dp =

∫ c/k

0

(1− p)k f(p) dp +

∫ 1

c/k

(1− p)k f(p) dp
def
= Ik,left + Ik,right,
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for some positive constant c. In the region p g c/k, we have (1− p)k f e−k p f e−c, so

Ik,right f e−c

∫ 1

0

f(p) dp = e−c.

Since c > 0 can be made large, e−c can be driven below any fixed power of 1/k. Hence for the Θ(k−b) behavior, the main
contribution comes from [0, c/k].

Thus
Ik = Ik,left + o

(

k−m
)

for every m > 0

Step 3. Change of variables and controlling the ratio of (1− p)k to e−kp.

(a) Ratio to e−kp. For p ∈
[

0, c
k

]

, define the ratio

Rk(p)
def
=

(1− p)k

e−k p
.

We will show that Rk(p) stays close to 1 uniformly in p ∈ [0, c/k] for large k. Indeed,

(1− p)k = exp
[

k log(1− p)
]

, log(1− p) = − p −
p2

2
−

p3

3
− . . . .

Hence

log(1− p) + p = −
p2

2
−

p3

3
− . . . = O

(

p2
)

as p → 0.

Multiplying by k, we get
k
[

log(1− p) + p
]

= O
(

k p2
)

.

Since 0 f p f c
k implies k p2 f c2

k , which → 0 as k → ∞, it follows that

k log(1− p) = −k p+O
(

1
k

)

.

Exponentiating:

(1− p)k = e− k p exp
(

O
(

1
k

)

)

= e− k p
[

1 +O
(

1
k

)

]

.

Thus

Rk(p) =
(1− p)k

e−k p
= 1 +O

(

1
k

)

,

with the O( 1k ) bound uniform for all p ∈ [0, c/k]. In other words, there is some constant M > 0 (independent of k) such
that

∣

∣Rk(p)− 1
∣

∣ f
M

k
for all p ∈

[

0,
c

k

]

.

(b) Integral expression using Rk(p). Hence on [0, c/k],

(1− p)k f(p) = e−k p Rk(p) f(p).

Thus

Ik,left =

∫ c/k

0

e−k p f(p)Rk(p) dp.

Define ∆k(p)
def
= Rk(p)− 1, which satisfies |∆k(p)| f M/k. Then

Ik,left =

∫ c/k

0

e−k p f(p) dp +

∫ c/k

0

e−k p f(p)∆k(p) dp. (43)
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Step 4. Substitution u = k p and deriving f(p) ∼ p b−1.

(a) The leading part. Focus on the first term of equation 43:

∫ c/k

0

e−k p f(p) dp.

Substitute u
def
= k p, so p = u

k and dp = 1
k du. The upper limit p = c

k becomes u = c. Thus

∫ c/k

0

e−k p f(p) dp =

∫ c

0

e−u f
(u

k

) du

k
.

Hence
∫ c/k

0

e−k p f(p) dp =
1

k

∫ c

0

e−u f
(u

k

)

du.

(b) The error part. The second term in equation 43 has ∆k(p) = Rk(p)− 1 satisfying |∆k(p)| f
M
k . So

∣

∣

∣

∣

∣

∫ c/k

0

e−k p f(p)∆k(p) dp

∣

∣

∣

∣

∣

f
M

k

∫ c/k

0

e−k p f(p) dp.

But the integral
∫ c/k

0
e−k p f(p) dp is precisely the leading part we just considered. Thus the error is bounded by M

k times a
term that will turn out to be Θ(k−b). Hence the error is subleading if b < 1 is not the case—but even then, we can keep
track of it systematically.

Overall, combining both terms, we get

Ik,left =
1

k

∫ c

0

e−u f
(u

k

)

du + O
(

1
k · (leading integral)

)

. (44)

(c) Matching Θ(k−b). Since Ik = Ik,left + Ik,right with Ik,right negligible, we have

Ik =
1

k

∫ c

0

e−u f
(

u
k

)

du + (small corrections).

But by hypothesis, Ik ∼ ³k−b. Thus

k · Ik =

∫ c

0

e−u f
(

u
k

)

du + (smaller terms) ∼ ³k1−b. (45)

Hence the expression
∫ c

0

e−u f
(

u
k

)

du

must be Θ
(

k 1−b
)

for large k. Since u
k is small for 0 f u f c, we are effectively sampling f near 0. For the integral to

produce k 1−b, we deduce

f
(

u
k

)

= Θ
((

u
k

)b−1)

,

i.e. f must behave like p b−1 near p = 0. Rewriting the constant in front, one obtains

f
(

u
k

)

=
(

u
k

)b−1
[

some positive constant
]

.

(We then identify that constant with ³
Γ(b) by matching the integral precisely, just as in the prior argument.)
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Step 5. Conclusion. We have thus shown that over p ∈ [0, c/k], one has

(1− p)k = e−k p
[

1 +O( 1k )
]

,

and upon integrating, the required k−b form for Ik forces

f(p) =
A

Γ(b)
p b−1 + o

(

p b−1
)

, as p → 0+.

This completes the necessity proof.

Remark (Mild Regularity). If f had bizarre oscillations or nonintegrable singularities near 0, the integral
∫ 1

0
(1−p)k f(p) dp

might not produce a clean k−b. Typically, we impose monotonicity or at least continuity near p = 0, no atom at p = 0, and
f(0) = 0 if b > 1 or f(0) > 0 if b = 1, etc. These assumptions exclude pathological behaviors and guarantee that the local
shape of f(p) drives a clean power law.
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F. Maximum Likelihood Estimation of Scaled Beta-Binomial Distribution

To model the distribution of passi@1, we can perform maximum likelihood estimation on a scaled three-parameter Beta-
Binomial distribution, which we chose because each attempt on the i-th problem is an i.i.d. Bernoulli random variable with
success probability passi@1, and we introduced a scale parameter because the largest passi@1 values were typically 1-2
orders of magnitude less than 1.0 (the maximum of the unscaled beta distribution’s support).

In greater detail, as background, the 4-parameter Beta distribution has PDF

pY (y;³, ´, a, c)
def
=

(y − a)³−1(c− y)´−1

(c− a)³+´−1 B(³, ´)
, (46)

where B(·, ·) is the Beta function. If the minimum a is fixed at 0 and the maximum c is constrained to a < c < 1, then the
scaled three parameter Beta distribution simplifies to:

fP (p;³, ´, a = 0, c) =
p³−1(c− p)´−1

c³+´−1 B(³, ´)
. (47)

We want the PMF of a three-parameter Beta-Binomial distribution based on this scaled Beta distribution. For n samples and
x successes, the PMF is:

P (X = x;³, ´, c, n)
def
=

∫ c

0

(

n

x

)

px (1− p)n−x fP (p;³, ´, a = 0, c) dp (48)

=

(

n

x

)

1

c³+´−1 B(³, ´)

∫ c

0

px+³−1 (1− p)n−x (c− p)´−1 dp. (49)

Using a change of variable p
def
= c z, the PMF can be rewritten as

P (X = x;³, ´, c, n) =

(

n

x

)

cx

B(³, ´)

∫ 1

0

zx+³−1 (1− z)´−1 (1− cz)n−x dz (50)

=

(

n

x

)

cxB
(

x+ ³, ´
)

B(³, ´)
2F1

(

−(n− x), x+ ³; x+ ³+ ´; c
)

, (51)

where 2F1(·, ·; ·; ·) is the (Gauss) hypergeometric function.

43



How Do Large Language Monkeys Get Their Power (Laws)?

G. Maximum Likelihood Estimation of Scaled Kumaraswamy-Binomial Distribution

To model the distribution of passi@1, we can perform maximum likelihood estimation on a scaled three-parameter
Kumaraswamy-Binomial distribution, which we chose because each attempt on the i-th problem is an i.i.d. Kumaraswamy
random variable with success probability passi@1, and we introduced a scale parameter because the largest passi@1 values
were typically 1-2 orders of magnitude less than 1.0 (the maximum of the unscaled beta distribution’s support).

In greater detail, the scaled three parameter Kumaraswamy distribution simplifies to:

fP (p;³, ´, a = 0, c) =
³´

c³
p³−1 (1− (p/c)³)´−1, (52)

over the support (0, c). The rescaled Kumaraswamy-Binomial distribution then has PMF:

P (X = x;³, ´, c, n) =

(
n

x

)
³´

c³

∫ c

0

p x+³−1 (1− p)n−x
(

1−
(
p
c

)³
)´−1

dp. (53)

One can perform a change of variable p
def
= cz, but simplifying yields sums of hypergeometric functions that add little

conceptual clarity and so we resort to numerical integration using Python’s mpmath library (mpmath development team,
2023).
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H. Maximum Likelihood Estimation of Scaled Beta-Negative Binomial Distribution

To model the distribution of passi@1, we can perform maximum likelihood estimation on a scaled three-parameter Beta-
Negative Binomial distribution. Recall that the scaled three parameter Beta distribution is:

fP (p;³, ´, a = 0, c) =
p³−1(c− p)´−1

c³+´−1 B(³, ´)
. (54)

We want the PMF of a three-parameter Beta-Negative Binomial distribution based on this scaled Beta distribution. For r
desired successes, the PMF that we first draw x failures is:

P (X = x;³, ´, c, r) =

∫ c

0

(
x+ r − 1

x

)

pr (1− p)x

︸ ︷︷ ︸

NegBin(r,p)

p³−1 (c− p)´−1

c³+´−1 B(³, ´)
︸ ︷︷ ︸

scaled Beta PDF

dp (55)

=

(
x+ r − 1

x

)
1

c³+´−1 B(³, ´)

∫ c

0

p r+³−1
(
1− p

)x (
c− p

)´−1
dp. (56)

Next, substitute p = c z =⇒ dp = c dz which rescales the domain [0, c] to [0, 1]. Under this change:

p r+³−1 = (c z) r+³−1 = c r+³−1 z r+³−1,

(c− p)´−1 =
(
c− c z

)´−1
=

(
c(1− z)

)´−1
= c ´−1 (1− z)´−1,

(1− p)x =
(
1− c z

)x
.

Putting these into the integrand:

p r+³−1
(
1− p

)x (
c− p

)´−1
dp =

(

c r+³−1 z r+³−1
) ((

1− cz
)x
) (

c ´−1 (1− z)´−1
) (

c dz
)
.

Factor out the constants in c:

= c r+³−1 c ´−1 c z r+³−1 (1− cz)x (1− z)´−1 dz.

Since c r+³−1 · c ´−1 · c = c r+³+´−1, we get

p r+³−1 (1− p)x (c− p)´−1 dp = c r+³+´−1 z r+³−1 (1− z)´−1 (1− cz)x dz.

Plugging back into P (X = x;³, ´, c, r) and simplifying:

P (X = x;³, ´, c, r) =

(
x+ r − 1

x

)
cr

B(³, ´)

∫ 1

0

z r+³−1 (1− z)´−1
(
1− c z

)x
dz. (57)

We can re-express this using the (Gauss) hypergeometric function 2F1(·, ·; ·; ·):

P (X = x;³, ´, c, r) =

(
x+ r − 1

x

)
cr B

(
r + ³, ´

)

B
(
³, ´

) 2F1

(

−x, r + ³; r + ³+ ´; c
)

. (58)
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