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ABSTRACT
High-quality feedback requires understanding of a student’s
work, insights into what concepts would help them improve,
and language that matches the preferences of the specific
teaching team. While Large Language Models (LLMs) can
generate coherent feedback, adapting these responses to align
with specific teacher preferences remains an open challenge.
We present a method for aligning LLM-generated feedback
with teacher preferences using Direct Preference Optimiza-
tion (DPO). We integrate preference data collection into the
grading process. This creates a self-improving pipeline keep-
ing the teacher-in-the-loop to ensure feedback quality and
maintain teacher autonomy. To evaluate effectiveness, we
conducted a blind controlled study where expert evaluators
compared feedback from multiple models on anonymized
student submissions. Evaluators consistently preferred feed-
back from our DPO model over GPT-4o. We deployed the
system in two offerings of a large university course, with
nearly 300 students and over 10 teaching assistants per term,
demonstrating its feasibility in real classroom settings. We
share strategies for automated performance monitoring us-
ing critic models. We explore methods for examining fair-
ness across protected demographics.
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1. INTRODUCTION
Effective feedback is a cornerstone of student learning in
any course, yet crafting high-quality feedback is one of edu-
cation’s most complex tasks. Research in education theory
defines feedback as a two-stage process: “noticing” errors
and misconceptions in student work and “responding” with
clear feedback that guides the student on how to refine their
thinking [7]. This work focuses on automating the respond-
ing stage. Crafting high-quality responses to students re-

quires teachers to draw on multiple forms of expertise simul-
taneously: deep subject knowledge, pedagogical experience,
and course-specific context. For instance, consider a teacher
responding to a student’s work on event independence in
a probability course. When giving feedback, the teacher
combines her understanding of probability theory, her ex-
perience teaching probability, and course-specific elements
like key terminology and teaching style. Large Language
Models (LLMs) offer promising capabilities for generating
detailed feedback at scale, potentially helping to reduce this
burden on teachers [1, 34, 17]. However, a critical challenge
remains: while LLMs can generate coherent feedback, it is
not clear how to systematically adapt their outputs to spe-
cific course contexts and align with individual teaching pref-
erences. Thus, we pose The Feedback Alignment Challenge:
how can we automatically adapt LLM feedback generation
to match specific teacher preferences?

We introduce a method for refining LLM-generated feedback
using Direct Preference Optimization (DPO) [31] to bet-
ter align with specific teacher preferences. During grading,
our system presents teaching assistants (TAs) with two AI-
generated feedback suggestions for each student response.
The TA can choose one, modify it, or write their own. Im-
portantly, this system is only relating to the feedback text
the student sees and not the grade the student receives.
This “teacher-in-the-loop” design ensures quality feedback
while maintaining teacher autonomy. These preferences are
used to fine-tune the model between assignments and the
AI-generated feedback evolves over time to better match
teacher expectations, leading to a “self improving” system.
In a blind controlled study, we find that our method pro-
duces feedback that is significantly preferred over feedback
generated by GPT-4o. We show, through a state of the
art critic model for evaluating feedback alignment [32], that
our model outperforms GPT-4o in four out of five metrics.
Additionally, we present our own critic model for evaluat-
ing feedback quality across a broader range of student work,
introducing new metrics for evaluating feedback alignment.
We deployed this system in two offerings of a large univer-
sity course, each with nearly 300 students and over 10 TAs
to demonstrate its feasibility in real classroom settings.

Main Contributions

1. We present a method for iteratively refining automated
feedback suggestions by incorporating preference data
collected during the grading process. Our approach
leverages Direct Preference Optimization to better align



Figure 1: For each student’s response, the LLM generates two feedback options. During grading, a teaching assistant (TA) selects the
preferred feedback or writes her own. After the assignment is graded, the collected preferences are used to fine-tune the LLM via Direct
Preference Optimization (DPO). The updated model is then used to generate feedback on the next homework assignment.

feedback suggestions with teacher expectations.
2. We present results from a blind controlled study demon-

strating that our method produces feedback that is sig-
nificantly preferred over feedback generated by GPT-
4o.

3. Using a state-of-the-art critic model for evaluating feed-
back alignment, we demonstrate that our model out-
performs GPT-4o in four out of five metrics.

4. We present a new critic model for assessing model per-
formance and feedback alignment.

5. To demonstrate the feasibility of integrating this method
into classroom settings, we deployed our system in a
large university course, where TAs used suggestions for
feedback generated by the DPO model.

6. We explore how to measure fairness of LLM generated
feedback with an initial exploration of gender that ex-
tends to other protected demographics.

7. Our code is available at https://juliettewoodrow.

github.io/dpo_feedback/.

1.1 The Feedback Alignment Challenge
The Feedback Alignment Challenge is to generate student
feedback that aligns with course-specific preferences. This
includes adapting feedback to match terminology, grading
rigor, and explanation style used by the course staff. Eval-
uating feedback alignment requires both teacher input and
automated methods. The most reliable method of verifying
feedback alignment is for teachers to perform a blind eval-
uation to judge how well the feedback matches their prefer-
ences, but this is time-intensive. To scale, automated meth-
ods are also needed. Scarlatos et al. introduce a method for
evaluating whether LLM-generated feedback aligns with in-
structor preferences when student solutions are known to be
incorrect [32]. Expanding the evaluation to consider feed-
back on any student submission (correct or incorrect) re-
quires an additional critic model that assesses feedback on
two more dimensions: assertiveness and helpfulness.

1.2 Background and Related Work
Feedback Theory. Feedback is a powerful way to help stu-
dents improve while learning [15]. It consists of two key
stages: Noticing and Responding [7]. Brown’s theory pro-
vides a generative explanation for how mistakes arise, sug-
gesting that errors are not random but emerge from underly-
ing misconceptions or incomplete mental models [6]. When
students recognize an error—either on their own or through
feedback—they must not only acknowledge it but also en-

gage in a repair process, actively working to correct their un-
derstanding. This process helps address the underlying cog-
nitive issue, reducing the likelihood of similar mistakes in the
future. This theory has been utilized in intelligent tutoring
systems, emphasizing that feedback should not merely list
errors but actively guide students through the repair process
[37]. Effective feedback must first notice the student’s mis-
take and then respond in a way that facilitates meaningful
revision—simply identifying errors is insufficient; feedback
must help students “repair” and “feed forward” into future
learning [8].

AI Generated Feedback. Recent advances in large language
models (LLMs) have transformed the landscape of auto-
mated feedback generation in education [30, 38, 25, 5, 24,
30, 35, 12, 29, 19, 10]. While these systems demonstrate im-
pressive capabilities in producing fluent and coherent feed-
back [18], they face several pedagogical challenges. Key lim-
itations include lack of specificity, inability to fully repli-
cate nuanced human insights, and limited understanding
of educational context [16, 11, 34]. Previous research has
explored various approaches to evaluating feedback gener-
ated by LLMs, including assessing the quality of feedback
itself and investigating whether LLMs can effectively evalu-
ate their own responses [17, 20, 1]. One prominent direction
in this area is to use an LLM as a judge, or critic, to evaluate
AI-generated feedback [21, 39].

Preference Learning. Collecting preference data has emerged
as a promising approach for improving AI systems in edu-
cational contexts [26, 32]. Recent work demonstrated the
potential of using GPT-4 [27] to generate synthetic prefer-
ence data for training open source models to provide feed-
back on student work in math [32]. Our work extends these
approaches by collecting preference data from teaching as-
sistants during actual course deployment, providing a more
authentic signal for model improvement. To address the
limitations of automated systems, researchers have increas-
ingly advocated for human-in-the-loop approaches in educa-
tional AI [23]. These systems aim to combine the efficiency
of AI-generated feedback with human oversight to ensure
accuracy and pedagogical appropriateness. While existing
work has established the importance of human oversight
[16], our approach goes further by implementing a system-
atic preference-based learning framework that continuously
improves feedback quality through direct interaction with
course staff.



2. METHODOLOGY
2.1 Direct Preference Optimization
In preference optimization, a language model improves its
responses by learning from human feedback. This is done
through comparative feedback, where different responses to
the same input are evaluated against each other. Given two
possible outputs for the same input, a human annotator se-
lects the preferred one, forming a preference pair (yw, yl),
where yw represents the preferred (winning) response, and
yl represents the dispreferred (losing) response. A prefer-
ence dataset D consists of tuples (x, yw, yl), where x is the
input. Traditional preference learning methods, such as Re-
inforcement Learning from Human Feedback [9], involve a
two-step process. First, a reward model is trained on pref-
erence data to assign a scalar score to generated responses.
Then, the reward model guides reinforcement learning up-
dates, typically using Proximal Policy Optimization [33].

Direct Preference Optimization (DPO) simplifies preference
learning by eliminating the reward model entirely [31]. In-
stead of learning an explicit reward function, DPO directly
optimizes the language model to increase the probability of
generating preferred responses over dispreferred ones. The
loss function minimizes the following:

E(x,yw,yl)∼D

[

log σ
(

β log πθ(yw|x)
πref(yw|x)

− β log πθ(yl|x)
πref(yl|x)

)

]

Here, πθ(y | x) represents the probability that the fine-
tuned model assigns to response y given an input x, while
πref(y | x) is the probability assigned by a reference model,
which is typically the original model before fine-tuning. The
parameter β is a hyperparameter that controls how much
the fine-tuned model deviates from the reference model dur-
ing optimization. The function σ is the sigmoid function,
which maps the log probability ratio to a value between 0
and 1. By optimizing this objective, the model gradually in-
creases the likelihood of generating preferred responses over
dispreferred ones, aligning with human preferences without
requiring a reward model.

2.2 DPO Feedback Pipeline
As shown in Figure 1, our pipeline consists of three key
stages: preference data collection, model training, and infer-
ence. During grading, TAs generate preference data. After
grading, this data is used to fine-tune the model using Di-
rect Preference Optimization (DPO). The updated model is
then deployed to generate feedback suggestions for the next
assignment, creating a self-improving system that adapts
to instructor preferences over time. During grading, two
feedback suggestions, f1 and f2, are shown along with each
student response. TAs can select one, modify it, or write en-
tirely new feedback. These interactions produce preference
pairs (yw, yl), where yw is the preferred (winning) response
and yl is the dispreferred (losing) one. If a TA selects one
verbatim, it becomes yw, while the other is labeled yl. If the
TA edits a suggestion or writes new feedback, their modified
or custom response becomes yw, generating two preference
pairs with each original suggestion serving as yl. These pref-
erence pairs are then used to fine-tune the model via DPO.
Each training example includes a structured prompt with
instructions, the question text, an example TA solution, the

student’s work, and the corresponding (yw, yl) pair. Infer-
ence follows a two-step approach, mirroring the feedback
process: noticing and response generation. First, the notic-
ing step identifies key observations about the student’s work.
This can either be a rubric, automated test cases, or another
LLM. These observations are then included in a structured
prompt alongside the question text, an example TA solution,
and the student’s work. The fine-tuned model then gener-
ates feedback based on this prompt, which is presented to
TAs for review. All AI-generated feedback remains subject
to human oversight before being delivered to students.

In our implementation, we fine-tuned Meta’s Llama 3.1 8B
Instruct [2] using Hugging Face’s DPOTrainer. Each train-
ing period, corresponding to a full assignment’s preference
data, took approximately 7 hours on 3 A6000 GPUs. The
average preference dataset size was 1,408 examples. At in-
ference time, we specifically used GPT-4o [28] to complete
the noticing step. During grading, each student response
had two AI-generated feedback suggestions-one from our
DPO fine-tuned Llama model and one from GPT-4o [28].
This setup served two purposes: ensuring high-quality feed-
back options (course staff had indicated that GPT-4o was a
strong baseline) and enabling (noisy) direct model compar-
isons within each assignment. We developed the prompts in
collaboration with course staff to ensure they were aligned
with pedagogy and reflected feedback styles they were com-
fortable with. We open source the prompts, code setup, and
further details on computational costs and infrastructure at
https://juliettewoodrow.github.io/dpo_feedback/.

3. EXPERIMENTAL SETUP
Our study was conducted within a large university course
covering the fundamentals of probability. All feedback gen-
eration and model training took place in the context of this
specific course, its assignments, and the preferences of its
teaching staff. The course included five main assignments,
and our training process followed an iterative cycle aligned
with these assignments. We define a Generation as a full
model update cycle, beginning with data collection from
grading one assignment and concluding with the deploy-
ment of a newly fine-tuned model for the next assignment.
The first model used in deployment was trained via Super-
vised Fine-Tuning (SFT) on past course data, including stu-
dent submissions and TA-written feedback, but without any
pairwise preference data. This model was used to generate
feedback for the first assignment, and after grading, pref-
erence data was collected and used to train a model using
DPO. This marked the transition to Generation 2, where the
newly fine-tuned DPO model was used to generate feedback
for the second assignment. Each subsequent generation fol-
lowed the same process: collecting preference data from the
previous assignment, fine-tuning the model, and deploying
it for the next assignment. All models after Generation 1
were fine-tuned with DPO.

3.1 Controlled Human Evaluation Study
We conducted a controlled study with 10 expert evaluators,
all current or former course staff, to assess model perfor-
mance. Evaluators reviewed a fixed set of student responses
across three problems from course assignments, comparing
feedback generated by different models under blind, random-
ized conditions. Each evaluator was shown 20 feedback pairs



Figure 2: Results from controlled study comparing three feedback models. Left: Expert evaluators showed a statistically significant
preference for DPO feedback over GPT-4o. Middle: DPO feedback was rated significantly more insightful than both GPT-4o and SFT.
Right: No significant differences between the models in naturalness. Error bars show standard error of the mean.

Feedback Type COR. (yC) REV. (yR) SUG. (yS) POS. (yP) Score (score)
DPO 0.932 ± 0.004 0.980 ± 0.002 0.163± 0.006 0.989 ± 0.002 0.724 ± 0.004
GPT-4 0.862± 0.006 0.973± 0.003 0.229 ± 0.007 0.905± 0.005 0.664± 0.005
Teacher 0.852± 0.008 0.982± 0.003 0.321± 0.011 0.934± 0.006 0.682± 0.007

Table 1: Evaluation of feedback quality using the Scarlatos et al. [32] framework across five dimensions: correctness (COR.), not giving
away the answer (REV.), improvement suggestions (SUG.), positive tone (POS.), and overall score, with standard errors reported. Each
metric ranges from 0 to 1, where higher values indicate better performance in that category. Teacher feedback is included as a reference
point, but not highlighted in the comparison as this method focuses on evaluating LLM-generated feedback quality.

per problem, drawn from two model comparisons: DPO
(Generation 4) vs. GPT-4o or SFT vs. GPT-4o. Neither
the DPO model nor the SFT model had seen these specific
student submissions before. For each pair, evaluators re-
ceived the question text, anonymized student response, a
TA-provided solution, and two feedback options. They were
not informed of which models were used, how many total
models were evaluated, or any other methodological details.
They rated each feedback option on Insightfulness (1–5),
measuring whether the feedback provided meaningful infor-
mation and guidance, and Naturalness (1–5), assessing how
human-like it sounded. They then selected their preferred
response based on alignment with their teaching preferences
or, if neither was appropriate, marked “Neither response is
appropriate for students.”This design ensured a direct com-
parison of models under identical conditions while incorpo-
rating diverse evaluator perspectives. The evaluation cov-
ered student work and feedback on three assignment prob-
lems: The first involved the Central Limit Theorem; The
second focused on statistical estimation with bootstrapping;
The third examined combinatorics, where students applied
independence assumptions and the complement rule.

3.2 Critic Models
In addition to human evaluation, we use two automated
critic models to evaluate feedback alignment. A critic model
is an AI-based evaluator that assess text quality based on
a rubric. Our first approach adopts the rubric-based eval-
uation framework developed by Scarlatos et al. [32]. This
framework evaluates feedback across the following dimen-
sions: correctness, whether the answer is revealed, pres-
ence of suggestions, diagnosing errors, encouraging tone, and
overall score. Since our DPO task does not focus on er-
ror diagnosis, we exclude this dimension from our results,
though we retained it in the prompt to the critic model
to maintain consistency with the original framework. This

method was designed specifically for incorrect student an-
swers, but our setting encompasses feedback for both correct
and incorrect student responses. To handle this broader
scope, we developed a critic model tailored to our goals.
This method assesses feedback on three dimensions: As-
sertiveness, measuring how bold or timid the feedback is;
Accuracy, ensuring the feedback correctly describes the stu-
dent’s solution and avoids hallucinations; and Helpfulness,
determining whether the feedback is useful in addressing
key conceptual misunderstandings. We selected these di-
mensions because they apply across all types of student
submissions—correct or incorrect. Furthermore, assertive-
ness and helpfulness were not included in the earlier frame-
work, yet we view them as critical for high-quality feedback.
Assertiveness reflects how confidently and specifically the
feedback refers to the student’s work (e.g., “Good job” vs.
“Nice use of the complement rule”), while helpfulness cap-
tures how actionable the feedback is in promoting learning.
Both critic models use GPT-4o [28] as the evaluator. We
open source the prompts for our critic model at our website:
https://juliettewoodrow.github.io/dpo_feedback/.

3.3 Deployment in a Large University Course
We deployed our feedback generation system across two course
offerings: the first with 330 students and 15 TAs, and the
second with 289 students and 13 TAs. Generations 1 and
2 are from the first offering and Generations 3-5 are from
the second offering. Each Generation corresponds to one
assignment. Each problem in an assignment was graded
by a single TA, and each assignment had between 2 and 4
problems. During grading, for each student, TAs chose be-
tween feedback from GPT-4o and our model, or wrote their
own. The system only related to the feedback text the stu-
dents would see and not the grade they received. Unlike
the controlled study, real-world deployment introduced sev-
eral confounding factors. Since each problem was graded



Figure 3: Each point represents a feedback instance evaluated by
our critic model. DPO feedback (left) clusters more consistently
in high accuracy and helpfulness.

by a single TA, individual grader preferences could influ-
ence feedback selection. Additionally, assignments changed
across generations, with no repeated problems, making it
difficult to isolate model improvements from variations in
problem difficulty or grader subjectivity.

4. RESULTS

4.1 Controlled Human Evaluation Study
The controlled evaluation found that expert evaluators pre-
ferred feedback from the DPO model 56.8% of the time,
significantly more often than GPT-4o at 40.2% (p = 0.007).
In 3.0% of cases, evaluators found both models’ feedback in-
appropriate for students, meaning neither response met the
minimum quality threshold for course feedback (Figure 2,
leftmost plot). The DPO model received an average insight-
fulness score of 3.13, significantly higher than GPT-4o at
2.79 and the SFT model at 2.82, with p-values of 0.0004 and
0.0005, respectively. Naturalness ratings were similar across
all models, with no statistically significant differences.

In the open-ended justifications, when evaluators preferred
DPO over GPT-4o they explained it was due to the DPO
feedback having greater specificity, problem relevance, en-
couragement, and actionable suggestions. In these instances,
GPT-4o responses were described as generic, occasionally
harsh, and less problem-specific. When evaluators preferred
GPT-4o over DPO, they cited the conciseness and clar-
ity of the GPT-4o feedback, noting that DPO was some-
times overly verbose or awkwardly phrased. When com-
paring SFT to GPT-4o, evaluators found SFT feedback to
be more problem-specific but noted that the feedback of-
ten mirrored the TA-provided solution exactly, rather than
presenting alternative approaches. We include more quali-
tative findings on our website: https://juliettewoodrow.
github.io/dpo_feedback/.

4.2 Critic Models
In the Scarlatos et al. [32] evaluation framework (Table 1),
the DPO-trained model performed strongly across multiple
dimensions, outperforming GPT-4o in four of five metrics:
correctness, not revealing answers, maintaining a positive
tone, and overall score. GPT-4o performed better than the
DPO model in providing improvement suggestions. Teacher-
written feedback is included as a baseline for consistency

Figure 4: Percent of feedback preferences across five generations
of deployment. In each generation, TAs could select feedback
from available AI models or write their own (Teacher). Genera-
tion 4 (marked with *) had one-off implementation issues.

with Scarlatos et al. [32] framework, serving as an aspira-
tional standard rather than a benchmark.

Our specialized critic model (Figure 3) provided additional
insights by evaluating feedback along three dimensions: as-
sertiveness, accuracy, and helpfulness. The visualization
shows that the DPO model’s feedback consistently clusters
in regions of high accuracy and high helpfulness, with mod-
erate variance in assertiveness. In contrast, GPT-4o’s feed-
back shows notably higher variance in both accuracy and
helpfulness dimensions, particularly evidenced by a substan-
tial cluster of feedback instances rated as both inaccurate
and unhelpful. Quantitative analysis revealed that GPT-4o
feedback was 8.73 times more likely to be classified as un-
helpful and 7 times more likely to be inaccurate compared
to DPO-generated feedback. Both models were found to be
comparable in terms of likelihood of assertiveness.

4.3 Deployment in a Large University Course
The deployment results, presented in Figure 4, show that
TAs predominantly preferred writing their own feedback,
with teacher-written feedback accounting for 71.2% of re-
sponses in Generation 1, 49.2% in Generation 2, 68.9% in
Generation 3, and 58.7% in Generation 5. When select-
ing AI-generated feedback, TAs showed varying preferences
across generations. In Generation 1, where only the SFT
model was available, TAs preferred GPT-4o over SFT (16.3%
vs. 12.5%). After implementing DPO, TAs showed stronger
preference for our model, selecting DPO feedback 29.7% of
the time compared to 21.1% for GPT-4o in Generation 2,
and 27.5% versus 13.8% in Generation 5. Generation 3
showed more balanced selection between DPO and GPT-
4o (16.3% vs. 14.8%). Generation 4 data was impacted
by two implementation issues not present in other genera-
tions: a formatting bug in our code prevented models from
accessing equations in student explanations, and preference
data was available for only two problems instead of the usual
three to four.

5. DISCUSSION
Redundancy in Feedback. In university courses, students
usually receive feedback from multiple teaching assistants on
a single assignment, leading to diverse perspectives on their



Figure 5: Redundancy scores measured by scaled pairwise simi-
larity of feedback text (lower indicates better performance). Error
bars show standard error.

work. We examined whether automated feedback preserves
this diversity or generates redundant responses. Using pair-
wise cosine similarity of feedback embeddings, we measured
redundancy for our DPO-tuned model, GPT-4o, and human
graders, shown in Figure 5. Feedback similarity was scaled
by question text similarity and averaged across students and
assignments. While error bars overlap, indicating no statis-
tically significant differences, we observe a trend: GPT-4o
exhibits the highest redundancy, human feedback the low-
est, and our DPO model falls in between. Lower redundancy
suggests greater variation in feedback style, resembling the
diversity seen with multiple human graders.

Monitoring Fairness. It is critically important that any method
used in an assessment process – even if the model is only
providing feedback – should be “fair” with respect to pro-
tected demographics, such as gender and ethnicity. How
can we monitor our feedback generating system for signs
that it is behaving unfairly? Prior work has built fairness
monitoring systems based on probabilistic inference tech-
niques, fairness-aware evaluation metrics, and bias mitiga-
tion strategies [4, 14, 3]. In our context, monitoring fairness
is made especially challenging because we don’t explicitly
know the demographics of our students. Given this con-
straint, we approximate the probability of gender (our initial
fairness inquiry) from students’ first names in line with prior
work [13, 36]. We computed a “parity” comparison by cal-
culating the Pearson correlation coefficient between inferred
gender probability and feedback ratings. Our analysis found
no statistically significant correlation in any case. The full
analysis is available at https://juliettewoodrow.github.
io/dpo_feedback/.

While we consider this a good indication of a fair system,
this analysis has limitations. Name-based gender inference
can be inaccurate, excludes non-binary identities, and does
not account for potential biases in human labels. More crit-
ically, parity analysis does not rule out the possibility that
the LLM could be treating similar work (from different de-
mographics) differently in a way that is counter-balanced
by other factors. A counterfactual fairness evaluation would
instead examine whether an individual would receive the
same feedback in both the real world and a counterfactual
world where only a protected demographic is changed [22].
While true counterfactual fairness requires understanding
causal structures, we suggest an approximate approach that
controls for student work similarity, using embedding-based
similarity or performance-based grouping to compare feed-
back within similar work categories. Working to develop
more rigorous fairness analysis and to integrate mitigation
techniques into the DPO pipeline is an area of important
future work.

6. LIMITATIONS
This study was conducted in two offerings of one university
course, limiting generalizability. We did not evaluate how
students engage with AI-generated feedback or its long-term
impact on learning outcomes, revision habits, or perceptions
of feedback. Future studies should assess whether AI feed-
back leads to meaningful improvements in student learning.
Additionally, the effectiveness of DPO depends on the base
model’s quality. If the initial LLM (e.g., Llama 3.1 8B In-
struct [2]) has biases or weaknesses, the DPO-tuned mod-
els may have those as well. Lastly, our study focused on
text-based student submissions, making it unclear how well
the system applies to handwritten work, diagrams, or other
visual formats. Future work should explore extending AI-
generated feedback to multimodal contexts where text-based
analysis alone may be insufficient.

7. FUTURE WORK
Ensuring fairness in AI-generated feedback requires evalu-
ation across all protected demographics beyond probabilis-
tic estimates. Future work should collect demographic data
and incorporate fairness-aware training strategies to miti-
gate biases early in the optimization process. In addition
to fairness, a deeper understanding of feedback optimiza-
tion is needed. Figure 3 suggests that there might be a
local maximum at timid and neutral feedback (around the
left side x axis) and a global maximum at assertive, accu-
rate, and helpful feedback (top right corner). This raises key
questions about how Direct Preference Optimization (DPO)
optimizes the feedback space. Unlike reinforcement learn-
ing approaches that use an explicit reward model, DPO di-
rectly optimizes preference probabilities, making its update
dynamics less interpretable. It is unclear whether DPO con-
sistently pushes the model toward the true optimal feedback
distribution or gets stuck in suboptimal preference plateaus.
Future work should explore the topology of the preference
space in feedback alignment. A better understanding of
these dynamics could inform strategies to improve conver-
gence and ensure that DPO consistently finds high-quality
feedback policies.

8. CONCLUSION
In this paper, we demonstrate the potential of DPO for
aligning LLM-generated feedback with teacher preferences,
offering a scalable yet adaptable approach to feedback gener-
ation. By directly gathering and incorporating teacher pref-
erences, we create a system that improves over time while
respecting the unique instructional styles and pedagogical
goals of each course. Rather than replacing teachers, this
approach enhances their ability to provide high-quality feed-
back efficiently, keeping them in control of the process. With
demonstrated success in a large university course and strong
TA preference for DPO-generated feedback over GPT-4o in
a controlled study, this work highlights how LLMs can sup-
port and adapt to specific teaching practices.
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