
Structural temporal logic for mechanized program
verification
ELEFTHERIOS IOANNIDIS, University of Pennsylvania, United States
YANNICK ZAKOWSKI, ENS Lyon, Inria, France
STEVE ZDANCEWIC, University of Pennsylvania, United States
SEBASTIAN ANGEL, University of Pennsylvania, United States

Mechanized veri!cation of liveness properties for in!nite programs with e"ects and nondeterminism is
challenging. Existing temporal reasoning frameworks operate at the level of models such as traces and
automata. Reasoning happens at a very low-level, requiring complex nested (co-)inductive proof techniques
and familiarity with proof assistant mechanics (e.g., the guardedness checker). Further, reasoning at the level
of models instead of program constructs creates a veri!cation gap that loses the bene!ts of modularity and
composition enjoyed by structural program logics such as Hoare Logic. To address this veri!cation gap, and the
lack of compositional proof techniques for temporal speci!cations, we propose Ticl, a new structural temporal
logic. Using Ticl, we encode complex (co-)inductive proof techniques as structural lemmas and focus our
reasoning on variants and invariants. We show that it is possible to perform compositional proofs of general
temporal properties in a proof assistant, while working at a high level of abstraction. We demonstrate the
bene!ts of Ticl by giving mechanized proofs of safety and liveness properties for programs with scheduling,
concurrent shared memory, and distributed consensus, demonstrating a low proof-to-code ratio.

CCS Concepts: • Theory of computation→ Program veri!cation; Program speci!cations.

Additional Key Words and Phrases: Formal Veri!cation, Semantics, Temporal Logic, Program Veri!cation,
Proof Assistant,Systems Veri!cation

1 Introduction
Mechanized program veri!cation can guarantee that executable code satis!es formal speci!cations
categorized as either liveness or safety properties. Liveness properties (“a good thing happens”)
include termination and fairness, as well as always-eventually properties. Liveness properties appear
in web servers (“the server always-eventually replies to requests”), operating systems (“the memory
allocator will eventually return a memory page”, “the scheduler is fair”) and distributed protocols (“a
consensus is eventually reached”). Despite their prevalence in computer systems, liveness properties
have been understudied compared to safety properties (“a bad thing never happens”), for which
numerous general reasoning frameworks and veri!cations techniques exist [1, 4, 24, 32, 42, 47].

Arguably, the widespread success of mechanized safety veri!cation has been due to the develop-
ment of program logics that are compositional and reason directly over the structure of programs. An
example is Hoare logic, with its basic construct, the Hoare triple {𝐿} 𝑀 {𝑁}, which speci!es that if
the precondition 𝐿 holds before executing the command 𝑀 , and 𝑀 terminates, then the postcondition
𝑁 will hold afterward. Hoare logic allows one to perform local reasoning by breaking down complex
programs into small components, and to verify individual parts without needing to understand
the whole. Then, using the sequence rule, one can combine triples {𝐿} 𝑀1 {𝑁} and {𝑁} 𝑀2 {𝑂}
to get {𝐿} 𝑀1; 𝑀2 {𝑂}, building bigger proofs from smaller subproofs. Hoare rules are structural:
they allow reasoning over standard program constructs like assignment (𝑃 ↑ 𝑄), conditionals
(if (𝑀) then 𝑄 else 𝑅), and loops (while (𝑀) {𝑅}), hiding their semantic interpretations.

Authors’ Contact Information: Eleftherios Ioannidis, University of Pennsylvania, Philadelphia, PA, United States, elefthei@
cis.upenn.edu; Yannick Zakowski, ENS Lyon, Inria, Lyon, France, yannick.zakowski@inria.fr; Steve Zdancewic, University
of Pennsylvania, Philadelphia, PA, United States, stevez@cis.upenn.edu; Sebastian Angel, University of Pennsylvania,
Philadelphia, PA, United States, sebastian.angel@cis.upenn.edu.

HTTPS://ORCID.ORG/0000-0003-2749-797X
HTTPS://ORCID.ORG/0000-0003-4585-6470
HTTPS://ORCID.ORG/0000-0002-3516-1512
HTTPS://ORCID.ORG/0000-0002-3798-5590
https://orcid.org/0000-0003-2749-797X
https://orcid.org/0000-0003-4585-6470
https://orcid.org/0000-0002-3516-1512
https://orcid.org/0000-0002-3798-5590

2 Ele!herios Ioannidis, Yannick Zakowski, Steve Zdancewic, and Sebastian Angel

Unfortunately, this picture could not be more di"erent when it comes to proving liveness
properties. While there are very powerful logics for reasoning about general concepts of progress
and time, namely temporal logics [3, 7, 19, 26, 27, 36], these tend to focus on semantic models of
program execution. In other words, instead of writing proofs about standard program constructs
as shown above, one !rst models programs as automata or in!nite traces and then reasons about
these models instead [3, 15, 16, 19, 22, 36, 43]. Mechanized reasoning in these semantic models is
arduous, requiring nested induction and coinduction techniques (Section 2) and deep understanding
of complex mathematical concepts like the Knaster-Tarski lemma (Appendix A), and the proof
assistant’s mechanics (e.g., the guardedness checker). Additionally, semantic proofs of liveness do
not compose with respect to the sequence and iteration operators, causing proof scalability issues
for large programs.
Contributions:We introduce Temporal Interaction and Choice Logic (ticl), a novel program

logic inspired by Computation Tree Logic (CTL) [19] that is designed for modular, mechanized
veri!cation of liveness and safety properties. Ticl extends CTL with program postconditions,
similar to those in Hoare logic. Using ticl one can write and prove temporal speci!cations (e.g.,
always, eventually, and always-eventually) at a high-level of abstraction. Ticl proofs compose with
the sequence and iteration operators, addressing the long-standing challenge of compositional
veri!cation of liveness properties. Ticl has three goals:

(1) Combine temporal speci!cations over !nite and in!nite traces in one proof system. This
part is crucial for supporting composition, as ticl needs ways to express postconditions
that apply to the return values of terminating programs while also being able to handle
programs that run forever.

(2) Close the veri!cation gap between executable programs and the formal models used in tem-
poral logics (e.g., traces and transition systems). Ticl achieves this using a newmathematical
model of computation that we call ICTrees. As a part of the Interaction Trees family [10, 50],
ICTrees encode programs in di"erent programming languages [11, 29, 30, 39, 40, 49, 54]
with support for program extraction and formal transition system semantics.

(3) Develop a library of 50 high-level structural lemmas that proof engineers can readily apply
to programs in order to prove liveness properties. These lemmas internalize more than
20,000 lines of complex (co-)inductive proofs, hiding that complexity from the user. To use
these lemmas, proof engineers must de!ne their programs using ICTrees and then write
temporal speci!cations as ticl formulas (Section 6). These speci!cations are then proved
structurally, in a manner similar to Hoare Logic proofs, and without the usual (co-)induction
bureaucracy.

We demonstrate that ticl is su#ciently expressive to prove meaningful safety and liveness spec-
i!cations with a small proof-to-program ratio. We use examples spanning sequential, concurrent,
and distributed programming: imperative programs with heaps, a round-robin scheduler, concur-
rent programs with shared memory, and a simple distributed consensus protocol. Our development
is formalized in the Rocq proof assistant [46] (formerly known as “Coq”), relying solely on the
uniqueness of identity proofs axiom (UIP or eq_rect_eq). Ticl is released under an open-source
license1.
Related Work: Beyond LTL and CTL (Section 8 o"ers a deeper comparison), step-indexed

logical relation frameworks like Iris [4, 24] can prove safety but not liveness properties. More
recently, trans!nite extensions to step-indexing [44] made it possible to prove always properties
but not always-eventually properties. Certain liveness properties have been studied in a syntactic
setting [17, 29, 31] but these are limited in expressivity and do not provide a general framework
1https://github.com/vellvm/ticl

https://github.com/vellvm/ticl

Structural temporal logic for mechanized program verification 3

Program (rr)
while (true) {
𝐿 ↑ pop() ;
push(𝐿)

}

↓ 𝜴,𝑆,

State (𝑆init)

𝑆 ++ [𝜴]
Speci!cation (always-eventually)

↔ rr, 𝑆init ⊋ AG AF (𝑇 running ↗ running = 𝜴) ↘

Fig. 1. Example of a round-robin scheduler program (rr). The initial state of the program (qinit) consists
of a designated thread x appended to a list of other threads q. The liveness specification, given in CTL [19],
asserts that for all possible designated threads (x) and for all initial lists of other threads (q), thread x will
always (AG)-eventually (AF) be popped from the queue (i.e., running = x).

for arbitrary temporal speci!cations. For example, Fair Operational Semantics [29] are limited
to binary always-eventually properties, speci!cally good vs. bad events, and do not generalize to
arbitrary liveness properties. Many deductive veri!cation frameworks for temporal properties, for
example Cyclist [45], CoqTLA [9] and the Maude language [33] operate on the semantic level of
models, not on the syntactic level of code, missing the advantages of structural program logics.

Limitations: ticl has extensive support for backwards reasoning (systematically weakening a
goal speci!cation into smaller subgoals and proving them), less support is included at this point for
forward reasoning (strengthening and combining known hypotheses to create new hypotheses).
Some support for forward reasoning is o"ered through custom tactics and inversion lemmas we
developed. Still, as we report in the feature table of Figure 14, proving forward reasoning principles
for some of ticl’s constructions remains open question, which we leave for future work. Ticl
also inherits the same limitations of completeness (with respect to specifying liveness properties)
found in prior variants of temporal logics [2, 48]. We discuss this in more detail in Section 8.4.

2 Why are liveness properties so challenging to prove?
We illustrate the challenges of formally proving a basic liveness property for a small program.
Consider an operating system that maintains a queue of threads with some tasks, and a round-robin
scheduler that processes each thread one after the other. The program rr in Figure 1 implements
round-robin scheduling—a simple in!nite loop removes a thread from the head of the queue and
re-inserts it at the end. Our goal is to prove that a thread 𝜴 will always-eventually be scheduled
(AG AF using CTL notation [19]).

One approach to mathematical reasoning about in!nite programs is to represent them as coin-
ductive trees of events. The in!nite loop in Figure 1 unfolds to a coinductive stream of alternating
[pop, push, pop . . .] events. Popping removes an element from the head of the queue, while pushing
appends an element. Applying an in!nite stream of alternating pop and push events to the initial
queue state, 𝑆init, results in a coinductive tree of queue states, as shown in Figure 2. Each in!nite
trace depends on the length of 𝑆.
The goal property (“always-eventually 𝑃 is running”) is a nested inductive and coinductive

predicate over the coinductive tree in Figure 2. Proving this property requires nested induction on
the length of 𝑆, and coinduction on each trace. The proof is hard—working directly with trees of
traces and low-level induction/coinduction tactics is neither modular nor structural. The trivial-
looking example of Figue 1 requires a non-trivial amount of infrastructure to prove, most of which
is not reusable for other programs and speci!cations. With ticl, proving the example from Figure 1
is reduced to a simple application of the invariance rule for while loops (for a preview, see Figure 24).

4 Ele!herios Ioannidis, Yannick Zakowski, Steve Zdancewic, and Sebastian Angel

𝑆 ++ [𝑃]

[𝑆0,𝑆1, . . . ,𝑆𝑀, 𝑃] [𝑆1, . . . ,𝑆𝑀, 𝑃] [𝑆1, . . . ,𝑆𝑀, 𝑃,𝑆0] . . .

...

[𝑆0,𝑆1, 𝑃] [𝑆1, 𝑃] [𝑆1, 𝑃,𝑆0] . . .
[𝑆0, 𝑃] [𝑃] [𝑃,𝑆0] . . .
[𝑃] [] [𝑃] . . .

Fig. 2. Coinductive traces for the rr program (Figure 1) and all possible initial states 𝑆 ++ [𝑃].

3 Computational model: ICTrees
In this section we introduce a model of computation that we call Interaction and Choice Trees
(ICTrees). This denotational model, inspired by prior works [10, 50], is expressive enough to
formalize programming languages with nondeterminism, nontermination, and interaction (we
discuss how it relates to prior works in detail in Section 8.1). Further, ICTrees have standard
combinators like sequencing (bind), iteration and choice and support semantic interpretation [50].
In Sections 6,7 we de!ne the semantics of several programming languages using ICTrees, and
write example programs in those languages.

3.1 The ictree computational model
The ICTree coinductive datastructure represents (in-)!nite, nondeterministic, and e"ectful pro-
grams. ICTrees are de!ned in Figure 3 using four kinds of nodes: visible event nodes (Vis), silent
nodes (Tau), nondeterministic choice nodes (Br), and nodes returning a value (Ret).

Vis nodes store events (𝑈 ≃ 𝑉𝑊𝑋𝑌 → 𝑉𝑊𝑋𝑌) representing interactions of the program with the
environment. An event (𝑌 ≃ 𝑈 𝑍) is an action, expecting an environment response (𝑍). For example,
Pop events emitted by the pop() command in Figure 1 have type 𝑈Q N (Figure 22) and expect
a natural number response (N) representing a thread ID. Vis nodes have a child node for every
response—in the case of Pop there is one child for every possible natural number (Figure 4).

Br nodes represent !nitary, nondeterministic choice. For example, the program that $ips a coin
that can be either heads or tails (flip ω 𝑎 ⇐ 𝑉) denotes to the binary choice (Br 2) node shown
in Figure 4 (left). These nodes count as a “step” of computation that nondeterministically chooses
among 𝑏 possible continuations (see transition relation in Section 4.1). They are inspired by the
equivalent notion of so-called stepping branching nodes (BrS) used by Choice Trees [10].

Ret nodes capture the return value of a terminating computation (Ret nodes have no children).
Tau nodes are silent steps, representing internal computation. Their name originates from 𝑐 transi-
tions in CCS [35] which indicate an internal action that is separate from process communication.
Tau nodes are necessary to model programs with control $ow that might not terminate (e.g.,
program rr in Figure 1). In the next section we introduce the ICTrees transition relation, which
transitively closes over Tau nodes, making them unobservable to ticl formulas (Figure 8). The
idea is, we only care about program speci!cations with respect to their observable behavior. Hiding
Tau nodes in the transition relation and equational theory—as we will see next—makes the internal
behavior of programs (e.g., unobservable control $ow) irrelevant. The stuck (⇒) ICTree represents
the deadlocked program that cannot make progress, and is de!ned as an in!nite chain of Tau nodes.

ICTrees are monads, meaning the monadic composition operations bind (>>=) and return (Ret)
are de!ned (Figure 3) and satisfy the monad laws (Figure 5). Such sequential composition of both
!nite and in!nite programs is a key property of ICTrees that makes them suitable models for
Ticl, a logic supporting both !nite and in!nite speci!cations. Nondeterministic binary choice (⇐)

Structural temporal logic for mechanized program verification 5

ictree ≃ (Type → Type) → Type → Type

ictree𝑁, 𝑂
coind= | Ret (𝑃 ≃ 𝑍) | Vis (𝑍 ≃ Type) (𝑌 ≃ 𝑈 𝑍) (𝑑 ≃ 𝑍 → ictree𝑁, 𝑂)

| Tau (𝑒 ≃ ictree𝑁, 𝑂) | Br (𝑏 ≃ N) (𝑑 ≃ fin 𝑏 → ictree𝑁, 𝑂)
⇒ ≃ ictree𝑁, 𝑂 = Tau ⇒

>>= ≃ ictree𝑁, 𝑂 → (𝑍 → ictree𝑁, 𝑃) → ictree𝑁, 𝑃

(Ret 𝑃) >>= 𝑓 = 𝑓 𝑃, (Vis 𝑍 𝑌 𝑑) >>= 𝑓
coind= Vis 𝑍 𝑌 (𝑇 (𝑃 ≃ 𝑍) ↗ (𝑑 𝑃) >>= 𝑓)

(Tau 𝑒) >>= 𝑓
coind= Tau (𝑒 >>= 𝑓), (Br 𝑏 𝑑) >>= 𝑓

coind= Br 𝑏 (𝑇 (𝑔 ≃ fin 𝑏) ↗ (𝑑 𝑔) >>= 𝑓)
(𝑃 ↑ 𝑒 ;; 𝑑 𝑃) ≃ ictree𝑁, 𝑃 = (𝑒 ≃ ictree𝑁, 𝑂) >>= 𝑇 (𝑃 ≃ 𝑍) ↗ (𝑑 ≃ 𝑍 → ictree𝑁, 𝑃) 𝑃

iter ≃ (𝑕 → ictree𝑁, 𝑄+𝑅) → 𝑕 → ictree𝑁, 𝑅

iter step i
coind= (step i) >>= 𝑇 (𝑖𝑗 ≃ 𝑕 + 𝑂) ↗

{
Tau (iter step i

⇑), 𝑖𝑗 = inl 𝑔⇑

Ret (𝑗), 𝑖𝑗 = inr 𝑗

trigger (𝑌 ≃ 𝑈 𝑍) ≃ ictree𝑁, 𝑂 = Vis 𝑍 𝑌 (𝑇 (𝑃 ≃ 𝑍) ↗ Ret 𝑃)
branch (𝑏 ≃ N) ≃ ictree𝑁, fin 𝑀 = Br 𝑏 (𝑇 (𝑔 ≃ fin 𝑏) ↗ Ret 𝑔)

⇐ ≃ ictree𝑁, 𝑂 → ictree𝑁, 𝑂 → ictree𝑁, 𝑂

l ⇐ r = Br _
(
𝑇 (𝑔 ≃ fin 2) ↗

{
l, 𝑔 = 𝑘1
r, 𝑔 = 𝑘𝑙 𝑘1

)

Fig. 3. Definition of the ICTree datastructure and core ICTree combinators.

⇓flip⇔ ⇓𝑗𝑗⇔Q instr 𝑚Q ⇓𝑗𝑗⇔Q [𝑒1, 𝑒2]
Br 2

Ret 𝑎 Ret 𝑉

Vis Pop

Vis (Push 0)

Tau

Vis (Push 1)

Tau

. . .

Vis (Log 𝑒1)

Tau

Vis (Log 𝑒2)

Fig. 4. Example ICTrees denoting programs flip, rr, and the instrumentation of rr with two threads.

is de!ned by matching on the nondeterminstic result of Br 2. Operations trigger and branch are
wrappers around visible event nodes (Vis) and 𝑏-ary nondeterministic choice (Br).

Looping programs—both !nite and in!nite—can be constructed through the iter combinator in
Figure 3, which accepts a stepping function (𝑑 ≃ 𝑕 → ictree𝑁, 𝑄+𝑅) and seed (𝑔 ≃ 𝑕). If the stepping
function returns a value of type 𝑕 (iterator), the loop continues with a new iterator. Otherwise,
it terminates with a return value of type 𝑂 (result). Note that iter emits a Tau node every loop
repetition, indicating the internal control $ow. For example, in Figure 4 (center) we show how
program rr (encoded in ICTrees from the code in Figure 1) in!nitely repeats after the Tau node.

The addition of Tau nodes makes programs with the same observable behaviors appear di"erent
syntactically (e.g., a loop and its unfolding have the same behavior but are syntactically di"erent).

6 Ele!herios Ioannidis, Yannick Zakowski, Steve Zdancewic, and Sebastian Angel

𝑆 ↖ 𝑆
S!R"#$

𝑆 ↖ 𝑇

𝑇 ↖ 𝑆
S!S%&

𝑆 ↖ 𝑇 𝑇 ↖ 𝑈

𝑆 ↖ 𝑈
S!T’()*

Tau 𝑆 ↖ 𝑆
S!T(+

𝑆 ↖ 𝑇 (↓𝑉, 𝑊 𝑉 ↖ 𝑋 𝑉)
𝑆 >>= 𝑊 ↖ 𝑇 >>= 𝑋

S!B,)-
Ret 𝑈 >>= 𝑋 ↖ 𝑋 𝑈

S!B,)-L
𝑉 ↑ 𝑆 ;; Ret 𝑉 ↖ 𝑆

S!B,)-R

(𝑆 >>= 𝑋) >>= 𝑌 ↖ 𝑆 >>= (𝑍𝑉 ↗ 𝑋 𝑉 >>= 𝑌)
S!B,)-A**./

𝑉 = 𝑎

Ret 𝑉 ↖ Ret 𝑎
====================== S!R"0

↓𝑉, 𝑏 𝑉 ↖ 𝑋 𝑉

Vis 𝑐 𝑏 ↖ Vis 𝑐 𝑋
=========================== S!V,*

↓𝑉, 𝑏 𝑉 ↖ 𝑋 𝑉

Br 𝑀 𝑏 ↖ Br 𝑀 𝑋
======================== S!B’

Fig. 5. Equational theory for ICTree with respect to up-to-tau equivalence relation (↖). A double inference
line indicates a coinductive rule.

L𝜴 ≃ Type → Type = | Log (𝑛 ≃ 𝑜) ≃ L𝑑 unit

log (𝑛 ≃ 𝑜) ≃ ictreeL𝐿 , unit = trigger Log𝑛

InstrM𝜶,𝜴 ≃ Type → Type = stateT S ictreeLW

instr ≃ (𝑈 ! InstrM𝑒,𝑑) → ictree𝑁 ! InstrM𝑒,𝑑

instr 𝑚 (Ret 𝑃) 𝑝 = Ret (𝑃, 𝑝),

instr 𝑚 (Tau 𝑒) 𝑝 coind= Tau (instr 𝑚 𝑒 𝑝)

instr 𝑚 (Vis 𝑍 𝑌 𝑑) 𝑝 coind= (𝑚 𝑌 𝑝) >>= (𝑇 ‘(𝑃 ≃ 𝑍 , 𝑝⇑ ≃ 𝑙) ↗ Tau (instr 𝑚 (𝑑 𝑃) 𝑝⇑))

instr 𝑚 (Br 𝑏 𝑑) 𝑝 coind= Br 𝑏 (𝑇 (𝑔 ≃ fin 𝑏) ↗ instr 𝑚 (𝑑 𝑔) 𝑝))

Fig. 6. Instrumentation of an ictree𝑁 produces the monad InstrM𝑒,𝑑 , that “remembers” the temporal order
of events 𝑈 via observations L𝑑 .

This is undesirable because later when we introduce ticl formulas we will want to say things like:
a program with a !nite loop terminates if and only if the equivalent program by unrolling the loop
terminates. To make such reasoning possible, we de!ne a notion of ICTree equivalence, called
up-to-tau equivalence, that ICTrees inherits from prior Interaction Tree works [10, 50]. Up-to-tau
equivalence is invariant to (inductively) adding or removing taus on either side; it equates programs
with the same observable behavior. For instance, it does not equate the stuck ⇒ tree with any
terminating tree, such as Ret 𝑃 , but it does equate Ret x with Tau (Ret 𝑃), since both terminate
and return the same x. Up-to-tau equivalence (↖) is de!ned coinductively in Figure 5, along with
some useful equations. With this equational theory, programs can be simpli!ed using the monad
laws, removing taus, unfolding loops, and more.

3.2 ICTree semantics and instrumentation
Up until this point we have treated ICTrees as abstract syntax. We will now assign to them semantic
meaning.
The semantic meaning of events is given by a semantic handler 𝑚 : 𝑈 ! 𝑞 , where 𝑞 is a

monad compatible with the ICTree structure. For example, the “read 𝑃” and “write 𝑃 𝑟” events
could be interpreted as functions de!ned to operate in a shared state monad, where the state

Structural temporal logic for mechanized program verification 7

type (𝑙) is a map from variables to their values. There, we would have 𝑚𝑒 (read 𝑃) de!ned by the
implementation 𝑇 (𝑝 ≃ 𝑙) ↗ Ret (𝑝, 𝑝 [𝑃]). That is, the function that takes the current state 𝑝 and
returns it, along with the value of 𝑃 in that state. The operation 𝑚𝑒 (write 𝑃 𝑟) would be de!ned
by the function 𝑇 (𝑝 ≃ 𝑙) ↗ Ret ((𝑃 𝐿→ 𝑟) ↙ 𝑝, ()). That is, the function that takes the current
state and returns the modi!ed state along with the unit value (signifying that write does not itself
return a value). In general, the monad 𝑞 of a handler must be compatible with the iter and ⇐
constructs required by ICTrees. In the case above, the types of the read and write operations are
of the form: 𝑙 → ictreevoid, (𝑒∝𝑂)—i.e., they are functions from the starting state to a (potentially
diverging) ictree. This type is an instance of the state monad transformer : stateT S (ictreevoid).
However, interpretation is insu#cient for temporal reasoning—in addition to the result of a

program, formulas may specify the temporal order of events. This is analoguous to big-step vs.
small-step semantics: ICTree interpretation (ictree𝑁 ! stateT S ictreevoid) erases the small-
step event information in the tree’s Vis nodes, returning a big-step reduction in the form of the
partial function stateT S ictreevoid. At that point the provenance of events has been erased.
We address the loss of provenance by introducing the notion of instrumentation. Intuitively,

instrumentation de!nes which events and their accompanying (ghost) state are considered to be
relevant for the ticl speci!cations. Event instrumentation interprets an event (𝑌 ≃ 𝑈 𝑍) over
a slightly di"erent state monad (stateT S ictreeLW) that we call the instrumentation monad
(InstrM𝑒,𝑑 in Figure 6). Our goal is to interpret events 𝑈, leaving behind a trace of observation
events of type L𝑑 . Observation events, or log events, are themselves uninterpreted events—the
environment response is always of type unit. Observations are left behind by event interpretation
and signify a “memory” of an environment interaction, recorded as an observation of type𝑜 . Log
events can be erased without altering the semantics of the program. Values of type𝑜 encode
auxilary (ghost) state that can be queried by ticl formulas. The speci!cation author is free to pick
an arbitrary type𝑜 to observe and reason about.
For example, program (rr) from Figure 1 denotes to the ICTree in the middle of Figure 4. The

instrumentation handler for queues (𝑚Q de!ned later in Figure 22) logs the result of Pop events,
while it interprets away Push events. As a result, instrumenting rr results in the in!nite trace on
the right of Figure 4, showing every value popped from the head of the queue. To make salient the
use of instrumentation handlers, we provide several examples in Sections 6.1 and 7.1–7.3.

4 Temporal specifications: Ticl
Ticl is de!ned using a ternary entailment relation ↔ 𝑒, 𝑛 ⊋ 𝑋 ↘, which can be read as “program
𝑒 satis!es formula 𝑋 , starting at a world 𝑛”. Our goal in this section is to de!ne the necessary
components of ticl entailment; 𝑒 is an ICTree describing (in-)!nite, e"ectful, nondeterministic
programs,𝑛 captures the initial state of the external world, and 𝑋 is a ticl formula.

4.1 Kripke transition relation
Temporal logics are commonly de!ned over traces or transition systems, stepping from one “world”
to another. This will also be true of ticl, so we review this concept and describe how transitions
apply to ICTrees.

Pure

Val 𝑃 Obs 𝑌 𝑟

Finish 𝑌 𝑟 𝑃

Fig. 7. Transitions between
Kripke worlds for ICTrees.

A Kripke world (W𝑁), parametrized by an event type 𝑈, is a
datatype that “remembers” the status of the program, for instance,
a past observation and/or its return value. A Pure world indicates
that no event has been observed yet. A world “Obs 𝑌 𝑟” remembers
the last observed event (𝑌 ≃ 𝑈 𝑍) and the response it obtained from
interacting with its environment (𝑟 ≃ 𝑍). A world “Val 𝑃” captures
the return value (𝑃) of a pure program that has terminated. A world

8 Ele!herios Ioannidis, Yannick Zakowski, Steve Zdancewic, and Sebastian Angel

W𝑀 ≃ Type = Pure | Obs 𝑐 𝑈 | Val 𝑉 | Finish 𝑐 𝑈 𝑉

not_done Pure not_done (Obs 𝑐 𝑈)
(𝑓X ≃ 𝑂 → P) 𝑓X 𝑉

done_with 𝑓X (Val 𝑉)

(𝑓X ≃ 𝑁 𝑃 → 𝑃 → 𝑂 → P) 𝑓𝑉 𝑐 𝑈 𝑉

done_with 𝑓X (Finish 𝑐 𝑈 𝑉)
[𝑆, 𝑔] ′→ [𝑆 ⇑, 𝑔⇑]

[Tau 𝑆, 𝑔] ′→ [𝑆 ⇑, 𝑔⇑]
not_done 𝑔 0 ∞ 𝑕 < 𝑀

[Br 𝑀 𝑋, 𝑔] ′→ [𝑋 𝑕, 𝑔]

not_done 𝑔

[Vis 𝑐 𝑋, 𝑔] ′→ [𝑋 𝑈, Obs 𝑐 𝑈]
[Ret 𝑉, Pure] ′→ [⇒, Val 𝑉] [Ret 𝑉, Obs 𝑐 𝑈] ′→ [⇒, Finish 𝑐 𝑈 𝑉]

Fig. 8. Kripke transition relation for ICTrees (′→) and world predicates (not_done, done_with). 𝐿X is a type-
theoretic ticl postcondtion (described in Section 4.3).

“Finish 𝑌 𝑟 𝑃” captures the return value (𝑃) of an e"ectful program
that terminated, and the last event (𝑌 ≃ 𝑈 𝑍) and response (𝑟 ≃ 𝑍).
Worlds (W𝑁) are divided into done worlds (Val and Finish) and
not_done worlds (Pure and Obs), indicating whether a program
terminated or is still running. The predicate done_with (Figure 8) enforces a postcondition (𝐿X) on
a done world and will be used to de!ne ticl postconditions in Section 4.3.
Figure 8 de!nes the Kripke transition relation for ICTrees ([𝑒, 𝑛] ′→ [𝑒 ⇑, 𝑛 ⇑]). This is an

irre$exive binary relation over pairs of ictree𝑁 and worlds (W𝑁), inductively de!ned over Tau
nodes. Transitions only make sense in not_done worlds since done worlds represent programs
that have already terminated. Within not_done worlds, an ICTree can either transition from a
Pure world onto another Pure world, it can observe an event and its result with “Obs 𝑌 𝑟”, or it can
terminate with “Val 𝑃”. An ICTree program can transition from “Obs 𝑌 𝑟” onto another “Obs 𝑌⇑ 𝑟 ⇑”
or it can terminate with “Finish 𝑌 𝑟 𝑃”. We summarize these transitions in Figure 7.
There are two goals informing our de!nition of the ICTree transition relation in Figure 8: (1)

respecting the up-to-tau equivalence (Section 3.1); and (2) respecting the monad composition laws
(Figure 5). The !rst goal is achieved by de!ning the transition relation inductively over Tau nodes.
The intuition is that ticl observes the external behavior of programs, and internal steps should
not change the outcome of a ticl speci!cation. Consequently, up-to-tau equivalent programs
should satisfy the same ticl formulas. This is a restatement of the well-known result that strong
bisimulation preserves CTL properties [18], which we are able to formally prove in Section 4.5.
The second goal—respecting the laws of monadic composition—is achieved through the lemmas
in Figure 9. These lemmas describe how the composition of two programs 𝑒 and 𝑑 (𝑃 ↑ 𝑒 ;; 𝑑 𝑃)
transition. Either 𝑒 transitions to 𝑒 ⇑ and 𝑃 ↑ 𝑒 ;; 𝑑 𝑃 transitions to 𝑃 ↑ 𝑒 ⇑;; 𝑑 𝑃 , or 𝑒 terminates
with return value 𝑃 (and possibly an observation 𝑌) and then the continuation (𝑑 𝑃) transitions (𝑒 ⇑).
These lemmas allow us to break proofs of bind transitions into smaller subproofs by case matching
on 𝑒 , a technique we use thoroughly in our development.

4.2 Syntax of ticl
A crucial question that ticl must answer is how to handle both in!nite and terminating program
speci!cations. Temporal logics like LTL and CTL assume in!nite traces, whereas !nite LTL assumes
!nite traces [14, 20, 36]. Our goal is a speci!cation language that works for both !nite and in!nite

Structural temporal logic for mechanized program verification 9

[𝑆, 𝑔] ′→ [𝑆 ⇑, 𝑔⇑] not_done 𝑔⇑

[𝑉 ↑ 𝑆 ;; 𝑋 𝑉, 𝑔] ′→ [𝑉 ↑ 𝑆 ⇑;; 𝑋 𝑉, 𝑔⇑]
[𝑆, 𝑔] ′→ [⇒, Val 𝑉] [𝑋 𝑉, 𝑔] ′→ [𝑆 ⇑, 𝑔⇑]

[𝑉 ↑ 𝑆 ;; 𝑋 𝑉, 𝑔] ′→ [𝑆 ⇑, 𝑔⇑]

[𝑆, 𝑔] ′→ [⇒, Finish 𝑐 𝑈 𝑉] [𝑋 𝑉, 𝑔] ′→ [𝑆 ⇑, 𝑔⇑]
[𝑉 ↑ 𝑆 ;; 𝑋 𝑉, 𝑔] ′→ [𝑆 ⇑, 𝑔⇑]

Fig. 9. Lemmas connecting Kripke transitions (′→) to ICTree composition.

programs compositionally. For instance, an “always” proof should be broken up into a !nite “until”
pre!x and an in!nite “always” su#x.
The ticl syntax (Figure 10) is inspired by CTL [19] using the same path-quanti!ed temporal

operators, with some notable di"erences. There are two syntactic categories in ticl: pre!x formulas
(𝑠) that represents predicates on the pre!x of a tree (or on in!nite trees), and su"x (𝑡X) formulas
that represent postconditions on terminating trees. Su#x formulas (𝑡X) reference pre!x formulas (𝑠)
on the left-hand side argument of their binary temporal operators (AN, AU, EN, EU). This is reasonable,
as the formula on the left must be satis!ed before the one on the right. Due to their appearance on
the left side of temporal operators we also refer to pre!x formulas as left (𝑢) formulas and to su#x
formulas as right (𝑂). We assign meaning to formulas with the two ternary entailment relations ⊋𝑖
and ⊋𝑖 in De!nition 1, and overload the notation ⊋𝑖𝑅 to indicate we refer to both ⊋𝑖 and ⊋𝑅 .
The dual syntax is novel compared to LTL, CTL and TLA [53]. To motivate the dual syntax,

consider the alternative—what if we only chose one syntactic class of ticl formulas, either su#x
(𝑡X) formulas or pre!x formulas (𝑠). If we only have su#x formulas then every program (including
in!nite programs) must have a postcondition. The only reasonable postcondition for an in!nite
program is ∈, a choice made by partial correctness program logics prohibiting sound proofs
of liveness. If we only have pre!x formulas we lose program postconditions, and by extension,
sequential proof composition. At the risk of jumping ahead, ↔ 𝑒, 𝑛 ⊋𝑅 AF AX done R ↘ means that
program 𝑒 will eventually terminate satisfying postcondition R. As we will see shortly in Section 5,
a goal ↔ 𝑃 ↑ 𝑒 ;; 𝑑 𝑃, 𝑛 ⊋𝑖 AF 𝑠 ↘ can be broken into two subgoals ↔ 𝑒, 𝑛 ⊋𝑅 AF AX R ↘ and
↓ 𝑃 𝑛 ,R 𝑃 𝑛 → ↔ 𝑑 𝑃, 𝑛 ⊋𝑖 AF 𝑠 ↘, where postcondition R speci!es the codomain of 𝑒 and the
domain of its continuation (𝑑). We therefore need formulas recognizing in!nite programs (pre!xes)
and formulas for !nite programs with postconditions (su#xes), and a way to compose them.

The syntax and semantics of CTL [20] coincide with pre!x formulas. The syntax and semantics
of su#x formulas closely resemble those of !nite LTL [14]. Moreover, pre!x and su#x formulas
have di"erent structural lemmas with respect to sequential composition and iteration. For example,
if 𝑒 can run forever, so can 𝑃 ↑ 𝑒 ;; 𝑑 𝑃 , for any 𝑑 . However, if 𝑒 terminates with postcondition R
and 𝑃 ↑ 𝑒 ;; 𝑑 𝑃 runs forever, it must be because the continuation 𝑑 runs forever starting at R. We
revisit this type of lemmas in Section 5.1.
A notational di"erence of ticl with CTL is the next operators AN and EN are binary, unlike

the AX and EX operators of CTL which are unary. We reclaim their unary versions using syntactic
notations (see Figure 10). We elaborate on the comparison of ticl with CTL in Section 8.2.

4.3 Semantics of ticl formulas
Ticl is de!ned using binary and unary operators. The meaning of ticl temporal operators is
indicated by their two letters. For the !rst letter, “A” stands for all paths and “E” stands for exists
a path; these are the same path quanti!ers from CTL [19]. For the second letter, “N” stands for
“Next”. For example, in the binary operator 𝑠 AN 𝑠 ⇑, the formula 𝑠 must hold now, and 𝑠 ⇑ must
hold in every possible single step. In contrast, in 𝑠 EN 𝑠 ⇑ (“exists next”), the formula 𝑠 must hold

10 Ele!herios Ioannidis, Yannick Zakowski, Steve Zdancewic, and Sebastian Angel

𝑠 , 𝑠 ⇑ ::= now (𝐿 ≃ W𝑁 → P)
| 𝑠 AN 𝑠 ⇑

| 𝑠 EN 𝑠 ⇑

| 𝑠 AU 𝑠 ⇑

| 𝑠 EU 𝑠 ⇑

| AG 𝑠
| EG 𝑠
| 𝑠 ∋ 𝑠 ⇑

| 𝑠 △ 𝑠 ⇑

𝑡X,𝑡 ⇑
X
::=
done (𝐿X ≃ 𝑍 → W𝑁 → P)

| 𝑠 AN𝑡X
| 𝑠 EN𝑡X
| 𝑠 AU𝑡X
| 𝑠 EU𝑡X
| 𝑡X ∋𝑡 ⇑

X

| 𝑡X △𝑡 ⇑
X

▽ = now (𝑇 _.▽)
∈ = now (𝑇 _.∈)
" = done (𝑇 _ _.▽)
= done (𝑇 _ _.∈)
AX 𝑋 = ▽ AN 𝑋

EX 𝑋 = ▽ EN 𝑋

AF 𝑋 = ▽ AU 𝑋

EF 𝑋 = ▽ EU 𝑋

pure = now (𝑇 𝑛 . 𝑛 = 𝐿𝑣𝑗𝑌)
obs 𝑋 = now (𝑇 𝑛 . 𝑛 = Obs 𝑌 𝑟 ∋ 𝑋 𝑌 𝑟)
done= 𝑃 𝑛 = done (𝑇 𝑃 ⇑ 𝑛 ⇑ . 𝑛 = 𝑛 ⇑ ∋ 𝑃 = 𝑃 ⇑)

val 𝑋 = done (𝑇 𝑃 𝑛 . 𝑛 = Val 𝑃 ∋ 𝑋 𝑃)
finish 𝑋 = done (𝑇 𝑃 𝑛 . 𝑛 = Finish 𝑌 𝑟 𝑃 ∋ 𝑋 𝑃 𝑌 𝑟)

Fig. 10. Syntax of ticl prefix formulas (𝑠), su"ix formulas (𝑡X), and useful syntactic notations.

can_step 𝑆 𝑔 ≃ P = ̸ 𝑆 ⇑,𝑔⇑, [𝑆 , 𝑔] ′→ [𝑆 ⇑, 𝑔⇑]
anc 𝑓 𝑗 𝑆 𝑔 ≃ P = 𝑓 𝑆 𝑔 ∋ can_step 𝑆 𝑔 ∋ ↓ 𝑆 ⇑,𝑔⇑, [𝑆, 𝑔] ′→ [𝑆 ⇑, 𝑔⇑] → 𝑗 𝑆 ⇑ 𝑔⇑

enc 𝑓 𝑗 𝑆 𝑔 ≃ P = 𝑓 𝑆 𝑔 ∋ ̸ 𝑆 ⇑,𝑔⇑, [𝑆, 𝑔] ′→ [𝑆 ⇑, 𝑔⇑] ∋ 𝑗 𝑆 ⇑ 𝑔⇑

agc 𝑓 𝑗 𝑆 𝑔 ≃ P = gfp (anc 𝑓) 𝑗 𝑆 𝑔

egc 𝑓 𝑗 𝑆 𝑔 ≃ P = gfp (enc 𝑓) 𝑗 𝑆 𝑔

𝑗 𝑆 𝑔

auc 𝑓 𝑗 𝑆 𝑔

anc 𝑓 (auc 𝑓 𝑗 𝑆 𝑔)
auc 𝑓 𝑗 𝑆 𝑔

𝑗 𝑆 𝑔

euc 𝑓 𝑗 𝑆 𝑔

enc 𝑓 (euc 𝑓 𝑗 𝑆 𝑔)
euc 𝑓 𝑗 𝑆 𝑔

Fig. 11. Next (anc and enc), globally (agc and egc) and until (auc and euc) higher-order predicates.

now and there exists a single step that satis!es 𝑠 ⇑. “U” stands for “Until”. For example, in 𝑠 AU𝑡X,
𝑠 must hold in all paths until eventually𝑡X holds, then 𝑠 does not have to hold any longer. The “G”
stands for “Globally”, as in the formula under this operator must hold forever. For example, EG 𝑠 .
Using syntactic notations we de!ne “F” as “Finally”, a unary version of the inductive “U” that has
no left-hand requirement. In CTL “X” stands for “neXt” but in ticl “X” is simply a unary version of
the binary next “N”, with no left-hand formula. Finally, the base formulas now and done are shallow
predicates of the metalanguage and apply to the current world (W𝑁) each time.
Before jumping into the semantics of ticl formulas (⊋𝑖𝑅) we must !rst de!ne the shallow

predicates of Figure 11. De!nitions anc, enc, agc, egc, auc, and euc are higher-order predicates in
type theory: they take predicates of type ictree𝑁, 𝑂 → W𝑁 → P as arguments and transport them
under their modal operator to get “future” predicates of the same type. For example, anc means
“forall-next”, enc means “exists-next”, agc means “forall-globally”, auc means “forall-until”, etc.

The basic predicates are anc and enc, connecting predicates 𝐿,𝑁 to the ICTree transition relation
in Figure 8. All other predicates are (co-)inductively de!ned in terms of anc and enc in Figure 11.
One di"erence of our de!nition compared to temporal logics such as CTL is the restriction can_step
on forall-next (anc). Predicate can_step asserts the existence of at least one transition and is crucial
to prove the soundness of ticl. Because the transition relation is not left-total, and allows for stuck
states (⇒), omitting can_step allows ↔ ⇒, 𝑛 ⊋𝑖 AX ∈ ↘ to be provable in one step—by introducing
the hypothesis [⇒, 𝑛] ′→ [𝑒 ⇑, 𝑛 ⇑] and concluding the proof by contradiction. Predicate can_step
prohibits vacuously proving statements by asserting that ⇒ can transition.

Structural temporal logic for mechanized program verification 11

⇓𝑘⇔
L
≃ ↓ 𝑂 , ictree𝑀, 𝑁 → W𝑀 → P, ⇓𝑙X⇔R ≃ ictree𝑀, 𝑁 → W𝑀 → P

}
denotations to shallow predicates

⇓now 𝑓⇔
L
= 𝑍 _ 𝑔. not_done 𝑔 ∋ 𝑓 𝑔, ⇓done 𝑓X⇔R = 𝑍 _ 𝑔. done_with 𝑓𝑉 𝑔

}
Base case predicates

⇓𝑘 AN 𝑘 ⇑⇔
L
= anc ⇓𝑘⇔

L
⇓𝑘 ⇑⇔

L
, ⇓𝑘 EN 𝑘 ⇑⇔

L
= enc ⇓𝑘⇔

L
⇓𝑘 ⇑⇔

L

⇓𝑘 AN𝑙X⇔R = anc ⇓𝑘⇔
L
⇓𝑙X⇔R , ⇓𝑘 EN𝑙X⇔R = enc ⇓𝑘⇔

L
⇓𝑙X⇔R

}
Next operators

⇓𝑘 AU 𝑘 ⇑⇔
L
= auc ⇓𝑘⇔

L
⇓𝑘 ⇑⇔

L
, ⇓𝑘 EU 𝑘 ⇑⇔

L
= euc ⇓𝑘⇔

L
⇓𝑘 ⇑⇔

L

⇓𝑘 AU𝑙X⇔R = auc ⇓𝑘⇔
L
⇓𝑙X⇔R , ⇓𝑘 EU𝑙X⇔R = euc ⇓𝑘⇔

L
⇓𝑙X⇔R

}
Until operators (inductive)

⇓AG 𝑘⇔
L
= agc ⇓𝑘⇔

L
, ⇓EG 𝑘⇔

L
= enc ⇓𝑘⇔

L

}
Globally operators (coinductive)

⇓𝐿 ∋ 𝑚⇔
LR

= 𝑍 𝑆 𝑔. ⇓𝐿⇔
LR

𝑆 𝑔 ∋ ⇓𝑚⇔
LR

𝑆 𝑔, ⇓𝐿 △ 𝑚⇔
LR

= 𝑍 𝑆 𝑔. ⇓𝐿⇔
LR

𝑆 𝑔 △ ⇓𝑚⇔
LR

𝑆 𝑔
}
Propositional operators

Fig. 12. Ticl formula denotations (⇓_⇔
LR
) defined by induction on 𝑠 and𝑡X.

Path induction for until operators (Figure 12) is implemented by the inductive, higher-order
predicates auc and euc (Figure 11). There are two cases. The base case asserts 𝑁 holds, and the
inductive case asserts 𝐿 holds now, while auc 𝐿 𝑁 (or euc 𝐿 𝑁) holds next. Path coinduction
(always) is implemented by the agc and egc greatest !xpoints. The gfp operator in Figure 11 and
the associated machinery for completing coinductive proofs, namely up-to-principles [38], are
presented in detail in Appendix A.

The semantics of ticl formulas—denoted to type theory—are de!ned by induction on formulas
𝑠 and𝑡X in Figure 12. The ticl entailment relations then become simple predicate applications to
an ICTree 𝑒 and world𝑛 as stated in De!nition 1.

De!nition 1 (Ticl Entailment).
↔ 𝑒, 𝑛 ⊋𝑖 𝑠 ↘ = ⇓𝑠⇔

L
𝑒 𝑛 , ↔ 𝑒, 𝑛 ⊋𝑅 𝑡X ↘ = ⇓𝑡X⇔R

𝑒 𝑛

4.4 Ticl formula equivalence
Ticl entailments ↔ 𝑒, 𝑛 ⊋𝑖𝑅 𝑋 ↘ are type-theoretic propositions (P) that form a complete lattice
(P,→). Consequently, denotations of ticl formulas (⇓𝑋⇔

LR
≃ ictree𝑁, 𝑂 → W𝑁 → P) which are

type-theory predicates, also form a complete lattice, with respect to the pointwise implications
↗𝑖 and ↗𝑅 in De!nition 2 (shown below). Taking an implication in both directions introduces an
equivalence relation on ticl formulas (↦𝑖𝑅). Two ticl formulas 𝑋,𝑆 are (semantically) equivalent
(𝑋 ↦𝑖𝑅 𝑆) when for all trees (𝑒) and worlds (𝑛), ↔ 𝑒, 𝑛 ⊋𝑖𝑅 𝑋 ↘ if and only if ↔ 𝑒, 𝑛 ⊋𝑖𝑅 𝑆 ↘.

De!nition 2 (Partial order and equivalence).
𝑠 ↗𝑖 𝑠 ⇑ = ↓ 𝑒,𝑛 , ↔ 𝑒, 𝑛 ⊋𝑖 𝑠 ↘ → ↔ 𝑒, 𝑛 ⊋𝑖 𝑠 ⇑ ↘ 𝑠 ↦𝑖 𝑠 ⇑ = 𝑠 ↗𝑖 𝑠 ⇑ and 𝑠 ⇑ ↗𝑖 𝑠

𝑡X ↗𝑅 𝑡 ⇑
X
= ↓ 𝑒,𝑛 , ↔ 𝑒, 𝑛 ⊋𝑅 𝑡X ↘ → ↔ 𝑒, 𝑛 ⊋𝑅 𝑡 ⇑

X
↘ 𝑡X ↦𝑅 𝑡 ⇑

X
=𝑡X ↗𝑅 𝑡 ⇑

X
and 𝑡 ⇑

X
↗𝑅 𝑡X

Now that we have a notion of formula equivalence, building a library of useful (in-)equalities
enables $uent proof manipulation. For example, if 𝑋 ↦𝑖𝑅 𝑆 and the goal is ↔ 𝑒, 𝑛 ⊋𝑖𝑅 𝑋 ↘, we can
rewrite it to ↔ 𝑒, 𝑛 ⊋𝑖𝑅 𝑆 ↘ instead. Similarly under ticl operators: ↔ 𝑒, 𝑛 ⊋𝑖𝑅 AX 𝑋 ↘ is equivalent
to ↔ 𝑒, 𝑛 ⊋𝑖𝑅 AX 𝑆 ↘, ↔ 𝑒, 𝑛 ⊋𝑖𝑅 𝑗 ∋ 𝑆 ↘ to ↔ 𝑒, 𝑛 ⊋𝑖𝑅 𝑗 ∋ 𝑆 ↘, and so on. Some useful (in-)equalities
in the ticl library are shown in Figure 13. We elide the boolean algebra laws for space.

4.5 ICTree equivalence under Ticl entailment
Let us take stock of what we have achieved so far in this section and what our remaining goals
are. We de!ned two ternary entailment relations over ICTrees and worlds, ↔ 𝑒, 𝑛 ⊋𝑖 𝑠 ↘ and
↔ 𝑒, 𝑛 ⊋𝑅 𝑡X ↘, giving meaning to ticl formulas. We established a rewriting system over ticl

12 Ele!herios Ioannidis, Yannick Zakowski, Steve Zdancewic, and Sebastian Angel

𝑋 AN 𝑆 ↗𝑖𝑅 𝑋 EN 𝑆 (AN-weaken)
𝑋 AU 𝑆 ↗𝑖𝑅 𝑋 EU 𝑆 (AU-weaken)
AG 𝑠 ↗𝑖 EG 𝑠 (AG-weaken)
𝑋 AN 𝑆 ↗𝑖𝑅 𝑋 AU 𝑆 (AN-until)
𝑋 EN 𝑆 ↗𝑖𝑅 𝑋 EU 𝑆 (EN-until)
AG 𝑠 ↗𝑖 𝑠 (AG-M)
EG 𝑠 ↗𝑖 𝑠 (EG-M)
EG (𝑠 ∋ 𝑠 ⇑) ↗𝑖 EG 𝑠 ∋ 𝑈𝑤𝑠 ⇑ (EG-and)
AG 𝑠 △𝑥𝑤𝑠⇑ ↗𝑖 AG (𝑠 △ 𝑠 ⇑) (AG-or)
EG 𝑠 △ 𝑈𝑤𝑠 ⇑ ↗𝑖 EG (𝑠 △ 𝑠 ⇑) (EG-or)

𝑋 AU 𝑆 ↦𝑖𝑅 𝑆 △ (𝑋 AN 𝑋 AU 𝑆) (AU-unfold)
𝑋 EU 𝑆 ↦𝑖𝑅 𝑆 △ (𝑋 EN 𝑋 EU 𝑆) (EU-unfold)
AG 𝑠 ↦𝑖 𝑠 AN AG 𝑠 (AG-unfold)
EG 𝑠 ↦𝑖 𝑠 EN EG 𝑠 (EG-unfold)
𝑋 AU 𝑆 ↦𝑖𝑅 𝑋 AU 𝑋 AU 𝑆 (AU-idem)
𝑋 EU 𝑆 ↦𝑖𝑅 𝑋 EU 𝑋 EU 𝑆 (EU-idem)
EG EG 𝑠 ↦𝑖 EG 𝑠 (EG-idem)
AG AG 𝑠 ↦𝑖 AG 𝑠 (AG-idem)
AG (𝑠 ∋ 𝑠 ⇑) ↦𝑖 AG 𝑠 ∋𝑥𝑤𝑠 (AG-and)

Fig. 13. Representative ticl formula implications and equivalences.

formulas (𝑠 ↦𝑖 𝑠 ⇑ and 𝑡X ↦𝑅 𝑡 ⇑
X
) and proved equations useful for simplifying formulas under

entailment. We switch our attention back to programs (𝑒) and remind ourselves of up-to-guard
equivalence of programs in Section 3.1. To prove a speci!cation ↔ 𝑒, 𝑛 ⊋𝑖𝑅 𝑋 ↘ sometimes it is
convenient to simplify the formula (𝑋), but sometimes it is convenient to simplify the program 𝑒 by
substituting it with an equivalent program 𝑣 (where 𝑒 ↖ 𝑣).
For example, for the monadic bind simpli!cation from Section 3.1 (𝑃 ↑ Ret 𝑃 ;; 𝑑 𝑃 ↖ 𝑑 𝑃) it

seems intuitive that the following goals are also equivalent ↔ 𝑃 ↑ Ret 𝑃 ;; 𝑑 𝑃, 𝑛 ⊋𝑖𝑅 𝑋 ↘ ↦
↔ 𝑑 𝑃, 𝑛 ⊋𝑖𝑅 𝑋 ↘. This intuition is correct and we were able to mechanize the well-known proof
that (strong) bisimulation preserves temporal properties [18]. At its core, the proof relies on the
following lemma relating Kripke transitions and program equivalence. The transition relation
[𝑒, 𝑛] ′→ [𝑒 ⇑, 𝑛 ⇑] itself is not up-to-tau invariant—it is easy to !nd a counter-example with a
Tau 𝑏ode in the middle of the tree. However, Lemma E1E2,3 (shown below) is a weaker version
of up-to-tau invariance for transitions that is provable:

L"&&(3 (E1E2,3).
↓𝑝, 𝑒, 𝑛 , 𝑛 ⇑, (𝑝 ↖ 𝑒) → ([𝑝, 𝑛] ′→ [𝑝⇑, 𝑛 ⇑]) → ̸ 𝑒 ⇑, [𝑒, 𝑛] ′→ [𝑒 ⇑, 𝑛 ⇑] ∋ (𝑝⇑ ↖ 𝑒 ⇑)
By using lemma E1E2,3 and by induction on the structure of ticl formulas, we are able to

prove that rewriting with up-to-tau equivalence (↖) under ticl entailment (⊋𝑖,𝑅) is correct, namely:

T4".’"& 4 (U560.60(+ "2,3($")/" 5’"*"’3"* ticl #.’&+$(*).
↓𝑒, 𝑣, 𝑛 , 𝑋, 𝑒 ↖ 𝑣 → ↔ 𝑒, 𝑛 ⊋𝑖𝑅 𝑋 ↘ → ↔ 𝑣, 𝑛 ⊋𝑖𝑅 𝑋 ↘

The property of up-to-tau invariance enables equational reasoning (Figure 5) in conjunction with
structural proof techniques (next Section 5) resulting in a remarkably $exible proof system.

5 Structural lemmas for ICTree
The equational theories of ticl formulas (↦𝑖𝑅) and ICTrees (↖) allow us to simplify a speci!cation
such as ↔ 𝑒, 𝑛 ⊋𝑖 AG 𝑠 ↘, but are insu#cient to fully prove it. The inequalities of Figure 13 unfold
the “always” operator (AG 𝑠 ↦𝑖 𝑠 AN AG 𝑠) but there will always be an AG 𝑠 proof obligation
left over. In this section we give structural lemmas connecting ICTree composition (>>=, ⇐) and
iteration (iter) to ticl operators (AU, EU, EG and EG) allowing us to fully prove ticl speci!cations.

The lemmas in this section internalize low-level (co-)inductive proofs to simple structural lemmas
over ICTrees. As ICTrees form a denotational basis for many programming languages, the lemmas
in this section form a logical basis for many temporal logics de!ned over those languages. In the

Structural temporal logic for mechanized program verification 13

Pre!x (𝑠) Su#x (𝑡X)
AN EN AU EU AG EG AN EN AU EU

Ret ↦ ↦ ↦ ↦ ↦ ↦ ↦ ↦ ↦ ↦
Br ↦ ↦ ↦ ↦ ↦ ↦ ↦ ↦ ↦ ↦
Vis ↦ ↦ ↦ ↦ ↦ ↦ ↦ ↦ ↦ ↦
⇒ ↦ ↦ ↦ ↦ ↦ ↦ ↦ ↦ ↦ ↦
>>= ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀
iter ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀

Fig. 14. Library of structural lemmas for ICTree combinators and ticl operators. Backwards-reasoning
lemmas are indicated by∀ and bidirectional lemmas by↦.

↔ 𝑆, 𝑔 ⊋𝑂 𝑘 ↘

↔ 𝑉 ↑ 𝑆 ;; 𝑋 𝑉, 𝑔 ⊋𝑂 𝑘 ↘
B,)-L

↔ 𝑆 ⇐ 𝑇, 𝑔 ⊋𝑂 𝑘 ↘
↔ 𝑆 , 𝑔 ⊋𝑂 𝑘 AU 𝑘 ⇑ ↘ ↔ 𝑇, 𝑔 ⊋𝑂 𝑘 AU 𝑘 ⇑ ↘

↔ 𝑆 ⇐ 𝑇, 𝑔 ⊋𝑂 𝑘 AU 𝑘 ⇑ ↘
B’AU𝑖

↔ 𝑆 ⇐ 𝑇, 𝑔 ⊋𝑂 𝑘 ↘
↔ 𝑆 , 𝑔 ⊋𝑂 𝑘 EU 𝑘 ⇑ ↘ △ ↔ 𝑇, 𝑔 ⊋𝑂 𝑘 EU 𝑘 ⇑ ↘

↔ 𝑆 ⇐ 𝑇, 𝑔 ⊋𝑂 𝑘 EU 𝑘 ⇑ ↘
B’EU𝑖

↔ 𝑆, 𝑔 ⊋𝑃 𝑘 AU AX done R𝑄 ↘
↓ 𝑎,𝑔, R𝑄 𝑎 𝑔 → ↔ 𝑋 𝑎, 𝑔 ⊋𝑂 𝑘 AU 𝑘 ⇑ ↘

↔ 𝑉 ↑ 𝑆 ;; 𝑋 𝑉, 𝑔 ⊋𝑂 𝑘 AU 𝑘 ⇑ ↘
B,)-AU𝑖

↔ 𝑆 , 𝑔 ⊋𝑃 𝑘 AU AX done= 𝑎 𝑔⇑ ↘
↔ 𝑋 𝑎, 𝑔⇑ ⊋𝑂 𝑘 AU 𝑘 ⇑ ↘

↔ 𝑉 ↑ 𝑆 ;; 𝑋 𝑉, 𝑔 ⊋𝑂 𝑘 AU 𝑘 ⇑ ↘
B,)-AU𝑖=

↔ 𝑆, 𝑔 ⊋𝑃 𝑘 AU AX done R𝑄 ↘
↓ 𝑎,𝑔, R𝑄 𝑎 𝑔 → ↔ 𝑋 𝑎, 𝑔 ⊋𝑃 𝑘 AU𝑙 ⇑

X
↘

↔ 𝑉 ↑ 𝑆 ;; 𝑋 𝑉, 𝑔 ⊋𝑃 𝑘 AU𝑙 ⇑
X
↘

B,)-AU𝑅

↔ 𝑆, 𝑔 ⊋𝑃 𝑘 AU AX done R𝑄 ↘
↓ 𝑎,𝑔, R𝑄 𝑎 𝑔 → ↔ 𝑋 𝑎, 𝑔 ⊋𝑂 AG 𝑘 ↘

↔ 𝑉 ↑ 𝑆 ;; 𝑋 𝑉, 𝑔 ⊋𝑂 AG 𝑘 ↘
B,)-AG

Fig. 15. Representative ICTree structural lemmas for nondeterminism and sequential composition.

next section (Section 6) we will see how to use ticl to de!ne a new programming language, its
denotation to ICTrees and its structural lemmas, with only a few lines of de!nitions. The table in
Figure 14 shows the cartesian product of ICTree structures and ticl temporal operators. We have
identi!ed and proved backward-reasoning lemmas (∀) for sequential composition and iteration
(>>=, iter) and bidirectional lemmas (↦) for all ICTree nodes and nondeterministic choice (⇐).
We conjecture there are useful inversion lemmas for >>= and iter which we leave for future work.

The proof rules, collected in Figure 14, correspond to lemmas stated with regards to the entailment
relation (De!nition 1). All rules are proven—that is, each rule of our logic is sound—and the collection
of all proofs corresponds to a statement of soundness for ticl. In our Rocq development a syntactic
representation of entailment is provided, to facilitate automation.We prove that syntactic entailment
implies semantic entailment by induction.

5.1 Sequential composition
In Section 3.1 we de!ne the sequential composition of ICTrees (Ret,>>=) and in Section 4.2 we mo-
tivate ticl postconditions (𝑡X), asserting the existence of compositional liveness lemmas. Figure 15
shows some of those lemmas. The goal is to distribute temporal speci!cations over the sequential
(>>=) and parallel (⇐) composition of programs. As a result, we get modular subproofs for general
liveness properties, analogous to the sequence rule for safety properties in Hoare logic.

14 Ele!herios Ioannidis, Yannick Zakowski, Steve Zdancewic, and Sebastian Angel

For example, if 𝑃 ↑ 𝑒 ;; 𝑑 𝑃 is a terminal application with the ability to print to standard output,
and the goal is to prove that it will eventually print ↔ 𝑃 ↑ 𝑒 ;; 𝑑 𝑃, 𝑛 ⊋𝑖 AF obs PRINTS ↘, there are
two cases to consider:

(1) Either 𝑒 prints to the terminal, use the B,)-L lemma (Figure 15) to prove it and ignore the
continuation (𝑑).

(2) Or the continuation 𝑑 prints, use the B,)-AU𝑖 lemma to show 𝑒 always terminates with
postcondition R𝑃 . Then for all possible return values (𝑊 ≃ 𝑦) and worlds (𝑛 ⇑ ≃ W𝑁) in
the postcondition (R𝑃 𝑊 𝑛 ⇑), we must show the continuation (𝑑 𝑊) eventually prints to the
terminal ↔ 𝑑 𝑊, 𝑛 ⇑ ⊋𝑖 AF obs PRINTS ↘.

While structural lemmas are proven for both the universal (𝑥𝑧 ,𝑥𝛥 ,𝑥𝑤) and existential (𝑈𝑧 , 𝑈𝛥 , 𝑈𝑤)
ticl operators, we focus our exposition on universal quanti!ers, noting that the same lemmas
apply to their existential versions.
For deterministic programs, the convenience lemma B,)-AU𝑖= assumes that a linear path can

be traversed in !nite steps—remember the syntactic notation done= 𝑊 𝑛 ⇑ introduced in Figure 10
uses equality to value 𝑊 and world𝑛 ⇑ as the postcondition. This simplifying assumption lifts the
need to manually specify postconditions of deterministic programs.2

5.2 Iteration
The iteration ICTree combinator (iter), de!ned in Section 3.1, encodes both !nite and in!nite loops.
In this section we prove lemmas that show loop termination, liveness, and invariance (Figure 16) by
using loop variant and invariant relations over the loop body.

The loop termination rule (I0"’AU𝑅) proves a loop terminates with postcondition𝑡X. It requires
specifying a loop invariant relation (R), and a binary well-founded relation called the loop variant
(𝑂𝑈)—well-founded relations have no in!nite chains, ensuring the loop terminates in !nite steps.
There are two obligations—corresponding to the inductive step, and the base case of the underlying
induction.

(1) If the loop body’s return value 𝑖𝑗 = inl 𝑔⇑, the loop continues. The loop invariant R must
be satis!ed before and after the loop body, much like in Hoare Logic. The next iteration
(represented by iterator 𝑔⇑ and world𝑛 ⇑) must be “smaller” according to the loop variant
(R𝑈 (𝑔⇑,𝑛 ⇑) (𝑔,𝑛)).

(2) If 𝑖𝑗 = inr 𝑗 the loop terminates concluding the proof. All that is left is to show that the
loop returns a state satisfying the loop postcondition ↔ Ret 𝑗 , 𝑛 ⊋𝑅 𝑠 AN𝑡X ↘.

The loop liveness rule (I0"’AU𝑖) is slightly di"erent than the termination rule: it expects formula
𝑠 ⇑ to be eventually satis!ed, even if the loop keeps running afterwards—possibly forever. Note
that this is the only meaning of liveness in temporal logics like LTL and CTL. Ticl di"erentiates
between those two very di"erent cases with the two rules (I0"’AU𝑅 and I0"’AU𝑖) in Figure 16—
the di"erences are further highlighted in Section 8.2. Similar to loop termination, the liveness rule
expects two relations—the loop invariant (R) and the loop variant (R𝑈)—and produces two proof
obligations, except now we get to chose which one is satis!ed in each iteration (𝑑 𝑔)

(1) Either the loop body satis!es the liveness property ↔ k i, 𝑛 ⊋𝑖 𝑠 AU 𝑠 ⇑ ↘.
(2) Or, the loop continues (𝑖𝑗 = inl 𝑔⇑) and the new iterator (𝑔⇑) and world (𝑛 ⇑) satisfy the

invariant (R) and are “smaller” with respect to the well-founded variant (R𝑈).
Working directly with well-founded relations in Rocq can be di#cult, so we de!ne simpli!ed ver-

sions of rules I0"’AU𝑅 and I0"’AU𝑖 expecting a ranking function (I0"’AU𝑖,N). A ranking function

2In practice, 𝑎 and 𝑔⇑ are replaced with existential variables in Rocq proofs, delaying their instantiation until program 𝑆
returns, largely automating the use of this rule.

Structural temporal logic for mechanized program verification 15

R 𝑕 𝑔 well_founded R𝑅

↓ 𝑕,𝑔, R 𝑕 𝑔 →
↔ k i, 𝑔 ⊋𝑂 𝑘 AU 𝑘 ⇑ ↘ △
↔ k i, 𝑔 ⊋𝑃 𝑘 AU AX done (𝑍 𝑌𝑛 𝑔⇑ ↗

̸ 𝑕⇑, 𝑌𝑛 = inl 𝑕⇑ ∋ R 𝑕⇑ 𝑔⇑

∋ R𝑅 (𝑕⇑,𝑔⇑) (𝑕,𝑔)) ↘

↔ iter k i, 𝑔 ⊋𝑂 𝑘 AU 𝑘 ⇑ ↘
I0"’AU𝑖

R 𝑕 𝑔

↓ 𝑕, 𝑔, R 𝑕 𝑔 →
↔ k i, 𝑔 ⊋𝑂 𝑘 AU 𝑘 ⇑ ↘ △
↔ k i, 𝑔 ⊋𝑃 𝑘 AU AX done (𝑍 𝑌𝑛 𝑔⇑ ↗

̸ 𝑕⇑, 𝑌𝑛 = inl 𝑕⇑ ∋ R 𝑕⇑ 𝑔⇑

∋ 𝑜 𝑕⇑ 𝑔⇑ < 𝑜 𝑕 𝑔) ↘

↔ iter k i, 𝑔 ⊋𝑂 𝑘 AU 𝑘 ⇑ ↘
I0"’AU𝑖,N

R 𝑕 𝑔 well_founded R𝑅

↓ 𝑕, 𝑔, R 𝑕 𝑔 →
↔ 𝑋 𝑕, 𝑔 ⊋𝑃 𝑘 AU AX done (𝑍 𝑌𝑛 𝑔⇑ ↗{

R 𝑕⇑ 𝑔⇑ ∋ R𝑅 (𝑕⇑,𝑔⇑) (𝑕,𝑔), if lr = inl 𝑕⇑

↔ Ret 𝑛 , 𝑔⇑ ⊋𝑃 𝑘 AN𝑙X ↘, if lr = inr 𝑛

) ↘

↔ iter k i, 𝑔 ⊋𝑃 𝑘 AU𝑙X ↘
I0"’AU𝑅

R 𝑕 𝑔

↓ 𝑕, 𝑔, R 𝑕 𝑔 →
↔ iter k i, 𝑔 ⊋𝑂 𝑘 ↘ ∋
↔ k i, 𝑔 ⊋𝑃 AX(𝑘 AU AX done (𝑍 𝑌𝑛 𝑔⇑ ↗

̸ 𝑕⇑, 𝑌𝑛 = inl 𝑕⇑ ∋ R 𝑕⇑ 𝑔⇑)) ↘

↔ iter k i, 𝑔 ⊋𝑂 AG 𝑘 ↘
I0"’AG

Fig. 16. Representative ticl iteration lemmas for operators AU and AG and ICTrees.

maps iterators and worlds to the natural numbers (𝑓 ≃ 𝑕 → W𝑁 → N), such that successive pairs
of iterator and world are strictly monotonically decreasing. Finding suitable ranking functions for
complex loops can be challenging. In Example 7.3 we demonstrate a new lemma we call liveness
split, that reduces liveness proofs to smaller liveness proofs, with smaller ranking functions. Recent,
orthogonal work on automatic inference of ranking functions [51] also works well with ticl, as
ticl’s iteration rules can use such inferred ranking functions to produce formal proofs of liveness.

Ticl addresses nonterminating loops with the invariance rule (I0"’AG) in Figure 16. This rule
can prove both always and always-eventually properties by specifying a suitable loop invariant R
and two proof obligations:

(1) The inner formula 𝑠 must hold for the whole loop ↔ iter k i, 𝑛 ⊋𝑖 𝑠 ↘. For example, if
𝑠 is an eventually property the loop might run multiple times before satisfying the base
formula.

(2) The loop body (𝑑 𝑔) must take at least one step and eventually terminate, satisfying𝑠 in every
step. Stepping once is required for the loop to be productive, preventing unsoundness issues
with cyclic proofs [38]. In addition, the loop body (𝑑 𝑔) must always continue (𝑖𝑗 = inl 𝑔⇑),
and the new iterator 𝑔⇑ and world𝑛 ⇑ must satisfy the loop invariant (R).3

The invariance rule (I0"’AG) is signi!cant because it discharges a coinductive (in!nite) proof to
two !nite subproofs. This single rule encapsulates all of ticl’s coinduction techniques, and it has
demonstrated to be su#ciently general to complete every always and always-eventually proof in
our evaluation.

3It is not always the case the loop body will terminate. For example, there may be nested in!nite loops. Unfolding the outer
iter loop reveals its de!nition in terms of bind (>>=). The B,)-L rule in Figure 15 eliminates the outer loop, allowing us to
apply the invariance rule on the inner loop.

16 Ele!herios Ioannidis, Yannick Zakowski, Steve Zdancewic, and Sebastian Angel

AExp ≃ 𝑉𝑊𝑋𝑌 = | var (𝑝 ≃ 𝑝𝑒𝑗𝑔𝑏𝛩) | val (𝑏 ≃ N)
| (𝑃 ≃ AExp) + (𝑊 ≃ AExp) | (𝑃 ≃ AExp) ∃ (𝑊 ≃ AExp)

BExp ≃ 𝑉𝑊𝑋𝑌 = | (𝑃 ≃ AExp) < (𝑊 ≃ AExp)
StImp ≃ 𝑉𝑊𝑋𝑌 = | (𝑝 ≃ 𝑝𝑒𝑗𝑔𝑏𝛩) ↑ (𝑊 ≃ AExp) | if (𝑀 ≃ BExp) then (𝑃 ≃ StImp) else (𝑊 ≃ StImp)

| (𝑖 ≃ StImp) ; (𝑗 ≃ StImp) | while (𝑀 ≃ BExp) {𝑒 ≃ StImp} | skip

Fig. 17. Syntax of a small imperative language StImp with mutable state and nondeterminism.

stateM ≃ Type → Type = | (Get ≃ stateM,M) | (Put (m ≃ M) ≃ stateM,unit)
get ≃ ictreestateM , M = trigger Get

put (𝛬 ≃ M) ≃ ictreestateM , unit = trigger (Put m)

hM ≃ stateM ! InstrMM,M
𝑚M (Get ≃ stateM,M) (𝛬 ≃ M) = Ret (𝛬,𝛬)
𝑚M (Put m⇑ ≃ stateM,unit) (_ ≃ M) = log𝛬⇑ ;; Ret ((),𝛬⇑)
⇓_⇔

A
≃ AExp → ictreestateM , N

⇓var 𝑝⇔
A
= get >>= (𝑇 𝛬 ↗ Ret𝛬[𝑝]), ⇓𝑃 + 𝑊⇔

A
= 𝑄 ↑ ⇓𝑃⇔

A
;; 𝑅 ↑ ⇓𝑊⇔

A
;; Ret (𝑄 + 𝑅)

⇓val 𝑏⇔
A
= Ret 𝑏, ⇓𝑃 ∃ 𝑊⇔

A
= 𝑄 ↑ ⇓𝑃⇔

A
;; 𝑅 ↑ ⇓𝑊⇔

A
;; Ret (𝑄 ∃ 𝑅)

⇓_⇔
B
≃ BExp → ictreestateM , B

⇓𝑃 < 𝑊⇔
B
= 𝑄 ↑ ⇓𝑃⇔

B
;; 𝑅 ↑ ⇓𝑊⇔

B
;; Ret (𝑄 < 𝑅)

⇓_⇔
S
≃ StImp → ictreestateM , unit

⇓𝑝 ↑ 𝑃⇔
S
= 𝑄 ↑ ⇓𝑃⇔

S
;;𝛬 ↑ get;; put ((𝑝 𝐿→ 𝑄) ↙𝛬), ⇓𝑒 ; 𝑣⇔

S
= ⇓𝑒⇔

S
;; ⇓𝑣⇔

S

⇓if (𝑀) then 𝑒 else 𝑣⇔
S
= ⇓𝑀⇔

B
>>=

(
𝑇 (𝑀𝑟 ≃ B) ↗

{
⇓𝑒⇔

S
, if 𝑀𝑟

⇓𝑣⇔
S
, otherwise

)
, ⇓skip⇔

S
= Ret (),

⇓while (𝑀) {𝑒}⇔
S
= iter

(
𝑇 () ↗ ⇓c⇔

B
>>=

(
𝑇 cv ↗

{
⇓𝑒⇔

S
;; Ret (inl ()), if 𝑀𝑟

Ret (inr ()), otherwise

))
()

[(𝑃 ≃ AExp), (𝛬 ≃ M) ⫅̸𝑖𝑅 𝑋]𝑝 ≃ P = ↔ instr 𝑚M ⇓𝑃⇔
A
𝛬, Obs (Log𝛬) () ⊋𝑖𝑅 𝑋 ↘

[(𝑀 ≃ BExp), (𝛬 ≃ M) ⫅̸𝑖𝑅 𝑋]𝑞 ≃ P = ↔ instr 𝑚M ⇓𝑀⇔
B
𝛬, Obs (Log𝛬) () ⊋𝑖𝑅 𝑋 ↘

[(𝑒 ≃ StImp), (𝛬 ≃ M) ⫅̸𝑖𝑅 𝑋]𝑒 ≃ P = ↔ instr 𝑚M ⇓𝑒⇔
S
𝛬, Obs (Log𝛬) () ⊋𝑖𝑅 𝑠 ↘

Fig. 18. Instrumentation and entailment of StImp programs by denotation to ictreestateM .

6 Using Ticl and ICTrees

This section demonstrates how to use ticl and ICTrees to de!ne new programming languages
and temporal proof systems. Starting with a simple imperative language called StImp, we give a
step-by-step recipe to get started with ticl liveness proofs:

(1) De!ne the syntax and denotational semantics of StImp using ICTrees (Figures 17 and 18).
(2) De!ne an instrumentation handler from StImp events (stateM) to an instrumentation

monad (InstrMM,M), chosing an appropriate ghost-state to observe (𝑚M in Figure 18).
(3) Using the ticl library of structural lemmas (Section 5), prove high-level structural rules

for StImp (Figure 19).

Structural temporal logic for mechanized program verification 17

[𝑟, 𝑠 ⫅̸𝑃 AX done= (𝑡,𝑠)]𝑆

∋
{
[𝑆, 𝑠 ⫅̸𝑃 𝑘 AU 𝑘 ⇑]𝑇 , if 𝑡
[𝑇, 𝑠 ⫅̸𝑃 𝑘 AU 𝑘 ⇑]𝑇 , otherwise

[if (𝑟) then 𝑆 else 𝑇, 𝑠 ⫅̸𝑂 𝑘 AU 𝑘 ⇑]𝑇
I#𝑒AU𝑖

[𝑆 , 𝑠 ⫅̸𝑃 𝑘 AU done= 𝑠
⇑]𝑇

[𝑇, 𝑠⇑ ⫅̸𝑂 𝑘 AU 𝑘 ⇑]𝑇

[𝑆 ; 𝑇, 𝑠 ⫅̸𝑂 𝑘 AU 𝑘 ⇑]𝑇
S"7𝑒AU𝑖

R𝑠 → ↓𝑠, R𝑠 → [𝑟, 𝑠 ⫅̸𝑃 AX done= (𝑡,𝑠)]𝑆

∋




[𝑆, 𝑠 ⫅̸𝑂 𝑘 AU 𝑘 ⇑]𝑇 △
[𝑆, 𝑠 ⫅̸𝑃 𝑘 AU AX done (𝑍 𝑠⇑ ↗

R𝑠⇑ ∋ 𝑜 𝑠⇑ < 𝑜 𝑠)]𝑇 , if 𝑡
[skip, 𝑠 ⫅̸𝑂 𝑘 ⇑]𝑇 , otherwise

[while (𝑟) {𝑆 }, 𝑠 ⫅̸𝑂 𝑘 AU 𝑘 ⇑]𝑇
W4,$"𝑒AU𝑖

R𝑠 → ↓𝑠, R𝑠 →
[while (𝑟) {𝑆 }, 𝑠 ⫅̸𝑂 𝑘]𝑇 ∋
[𝑟, 𝑠 ⫅̸𝑃 AX done= (true,𝑠)]𝑆 ∋
[𝑆 , 𝑠 ⫅̸𝑃 AX(𝑘 AU AX done R)]

[while (𝑟) {𝑆 }, 𝑠 ⫅̸𝑂 AG 𝑘]𝑇
W4,$"𝑒AG

Fig. 19. Representative structural lemmas for language StImp and ticl operators AU, AG.

Ticl works at a high-level of abstraction—all of the above !ts in 500 lines of Rocq proofs and
de!nitions—a small number even compared to program logics for safety properties. Steps (1) and
(2) above are the same as those required for working with Interaction Trees [50]. The proofs of the
language-speci!c structural rules in step (3) are high-level, syntactic, and fairly repetitive.

6.1 Instrumentation of StImp
In Section 3.2 we de!ned instrumentation, a mechanism to evaluate events and record proof relevant
ghost-state. In this section, we demonstrate the process of giving semantics to StImp programs
in two stages: (1) denoting StImp syntax to an ICTree, and (2) instrumenting the ICTree to an
appropriate instrumentation monad.
For the !rst stage, the denotation brackets (⇓_⇔

S
) in Figure 18 translate the syntax of StImp

(Figure 17) to an ictreestateM . The shared stateM is a map from string indices to natural number
(N) values. Low-level operations on maps and their lemmas are assumed;𝛬1 ↙𝛬2 is map union,
𝑝 𝐿→ 𝑃 is the singleton map with key 𝑝 and value 𝑃 ,𝛬[𝑝] is the partial “get” that returns an option
Some(𝑟), such that 𝑟 is the value associated with key 𝑝 , or None if key 𝑝 does not exist in𝛬. An StImp
var s expression retrieves the value of variable 𝑝 from shared state (𝛬[𝑝]), while an assignment
(𝑝 ↑ 𝑃) statement updates the shared memory with the new value ((𝑝 𝐿→ 𝑄) ↙𝛬).

The second stage de!nes the StImp instrumentation handler (𝑚M) in Figure 18. This handler gives
a semantic meaning to get and put events, while also specifying the ghost-state to be observed by
the proof system. We chose to only instrument put𝛬 events—by calling log𝛬—to ensure that the
instrumentation monad only remembers events overwriting the state, while events reading from
the state are evaluated and erased. Our choice of handler a"ects what properties can be proved
in ticl later. For example, we cannot prove “an empty heap is read” using a handler that erases
reads (𝑚M). Handlers are a $exible mechanism for observing program behavior; we will see more
examples of that in Section 7.
Putting the two stages together, instr 𝑚M “applies” the instrumentation handler over the tree

(⇓𝑒⇔
S
≃ ictreestateM) with initial state 𝑝 . The end-to-end entailment relation [𝑒, 𝑝 ⫅̸𝑖𝑅 𝑋]𝑒 ,

connects an StImp program (𝑒) to a ticl speci!cation (𝑋).

18 Ele!herios Ioannidis, Yannick Zakowski, Steve Zdancewic, and Sebastian Angel

𝑟 > 𝑧 , 𝛬[𝑀] ∞ 𝑟, 𝛬[𝑗] +𝛬[𝑀] = 𝑟, 𝛬[𝑀] = 1,
[0 < 𝑀, 𝛬 ⫅̸𝑅 AX done= (true,𝛬)]𝑞 ∋ ⫆̸
[𝑀 ↑ 𝑀 ∃ 1; 𝑗 ↑ 𝑗 + 1, 𝛬 ⫅̸𝑖 AF (var 𝑗 ¬ 𝑧)]𝑒

𝛬[𝑀] > 1, [0 < 𝑀, 𝛬 ⫅̸𝑅 AX done= (true,𝛬)]𝑞 ∋ ⫆̸
[𝑀 ↑ 𝑀 ∃ 1; 𝑗 ↑ 𝑗 + 1, 𝛬 ⫅̸𝑅 AF AX done (𝑇 𝛬⇑ ↗

𝛬⇑ [𝑀] ∞ 𝑟 ∋ 𝛬⇑ [𝑗] +𝛬⇑ [𝑀] = 𝑟

∋ 𝑟 ∃𝛬⇑ [𝑗] < 𝑟 ∃𝛬[𝑗])]𝑒𝑒

𝑟 > 𝑧 , 𝛬[𝑀] ∞ 𝑟, 𝛬[𝑗] +𝛬[𝑀] = 𝑟,

𝛬[𝑀] = 0,

[0 < 𝑀, 𝛬 ⫅̸𝑅 AX done= (false,𝛬)]𝑞 ∋ ⫆̸
[skip, 𝛬 ⫅̸𝑖 var 𝑗 ¬ 𝑧]𝑒

𝛬[𝑀] > 0, [0 < 𝑀, 𝛬 ⫅̸𝑅 AX done= (true,𝛬)]𝑞 ∋
[𝑀 ↑ 𝑀 ∃ 1; 𝑗 ↑ 𝑗 + 1, 𝛬 ⫅̸𝑖 AF (var 𝑗 ¬ 𝑧)]𝑒 △
[𝑀 ↑ 𝑀 ∃ 1; 𝑗 ↑ 𝑗 + 1, 𝛬 ⫅̸𝑅 AF AX done (𝑇 𝛬⇑ ↗

𝛬⇑ [𝑀] ∞ 𝑟 ∋ 𝛬⇑ [𝑗] +𝛬⇑ [𝑀] = 𝑟

∋ 𝑟 ∃𝛬⇑ [𝑗] < 𝑟 ∃𝛬[𝑗])]𝑒

𝛬[𝑀] ?= 1

𝑟 > 𝑧 , R (𝑗 𝐿→ 0) ↙ (𝑀 𝐿→ 𝑟)⫆̸

R 𝜶 ω𝛬[𝑀] ∞ 𝑟 ∋𝛬[𝑗] +𝛬[𝑀] = 𝑟

𝜷 𝜶 ω 𝑟 ∃𝛬[𝑗]

↓𝛬, ̸ 𝑅, R 𝛬 → [0 < 𝑀, 𝛬 ⫅̸𝑅 AX done= (𝑅,𝛬)]𝑞

∋




[𝑀 ↑ 𝑀 ∃ 1; 𝑗 ↑ 𝑗 + 1, 𝛬 ⫅̸𝑖 AF (var 𝑗 ¬ 𝑧)]𝑒 △
[𝑀 ↑ 𝑀 ∃ 1; 𝑗 ↑ 𝑗 + 1, 𝛬 ⫅̸𝑅 AF AX done (𝑇 𝛬⇑ ↗

R 𝛬⇑ ∋ 𝑓 𝛬⇑ < 𝑓 𝛬)]𝑒 , if 𝑅
[skip, 𝛬 ⫅̸𝑖 var 𝑗 ¬ 𝑧]𝑒 , otherwise

𝛬[𝑀] ?= 0

𝑟 > 𝑧 ,

𝑝⇑ = (𝑗 𝐿→ 0) ↙ (𝑀 𝐿→ 𝑟)⫆̸
[𝑗 ↑ 0, (𝑀 𝐿→ 𝑟) ⫅̸𝑖 AF AX done= 𝑝

⇑]𝑒



while (0 < 𝑟) {
𝑟 ↑ 𝑟 ∃ 1 ;
𝑛 ↑ 𝑛 + 1 ;

}

, 𝑝⇑ ⫅̸𝑖 AF (var 𝑗 ¬ 𝑧)
𝑒

W4,$"𝑒AU𝑖

𝑟 ∞ 𝑧 ,



𝑛 ↑ 0 ;
while (0 < 𝑟) {
𝑟 ↑ 𝑟 ∃ 1 ;
𝑛 ↑ 𝑛 + 1 ;

}

, (c 𝐿→ v) ⫅̸𝑖 var 𝑀 ∞ 𝑧

𝑒
⫆̸ 𝑟 > 𝑧 ,



𝑛 ↑ 0 ;
while (0 < 𝑟) {
𝑟 ↑ 𝑟 ∃ 1 ;
𝑛 ↑ 𝑛 + 1 ;

}

, (c 𝐿→ v) ⫅̸𝑖 AF (var 𝑗 ¬ 𝑧)

𝑒

S"7𝑒AU𝑖

↓ 𝑟,𝑧 ,



𝑛 ↑ 0 ;
while (0 < 𝑟) {
𝑟 ↑ 𝑟 ∃ 1 ;
𝑛 ↑ 𝑛 + 1 ;

}

, (c 𝐿→ v) ⫅̸𝑖 var 𝑀 ∞ 𝑧 △ AF (var 𝑗 ¬ 𝑧)

𝑒

𝑟
?
> 𝑧

Fig. 20. Example structural liveness proof for a simple StImp loop program using ticl.

6.2 StImp structural lemmas
Equipped with the end-to-end ticl entailments over StImp programs, we proceed to “lift” the
ICTree rules in Figures 15 and 16 to the level of StImp program structures. Representative StImp
lemmas—focusing on operators AU and AG—are shown in Figure 19. The full array of program
structures and temporal opertors is proven in our development.
Structural rules for StImp (Figure 19)—much like structural rules of ICTrees—are backwards

reasoning, meaning the goal is in the bottom and proof obligations are given on the top of the
inference line. The obligations generated are “smaller” than the goal they apply to, either targeting
a subprogram of the original program, or a subformula of the original formula. For example, in the
invariance rule W4,$"AG, the !rst proof obligation 𝑠 is a subformula of AG 𝑠 , while the other two
proof obligations refer to the loop conditinal and loop body.

6.3 Example: structural proof of liveness for StImp
Now we demonstrate a ticl structural proof in practice, by proving liveness of a program from the
T2 CTL benchmark suite [6]. The program in Figure 20 (bottom) is a simple while loop. The goal
speci!cation has been generalized with quanti!ers (↓ 𝑟,𝑧) which are known to be challenging
for model checking systems [6, 13, 21, 37], but not Ticl and the Rocq proof assistant. We want to
prove that either the initial value of variable 𝑀 is ∞ a constant (𝑧 ≃ N), or eventually the value of r

Structural temporal logic for mechanized program verification 19

becomes ¬ to 𝑧 . Base formulas (for example var 𝑏 > 0) dereference variable 𝑏 from the current
state (notation for ̸ 𝑟,𝛬[𝑏] = Some(𝑟) and 𝑟 > 0).
The proof begins by case analysis on value 𝑟 . If 𝑟 ∞ 𝑧 , we have proved the left-side of the “or”

in our goal. Here, 𝑟 is the initial value of variable 𝑀 . Otherwise if 𝑟 > 𝑧 , use the sequence rule
(S"7𝑒AU𝑖 in Figure 19) to update the state (𝑝⇑) with the new assignment (𝑗 ↑ 0).

At this point, the while loop starts at the new state (𝑝⇑) and our goal is to prove the “even-
tually” property AF (var 𝑗 ¬ 𝑧). The liveness lemma (W4,$"𝑒AU𝑖 in Figure 19) applies. For its
loop invariant (R), notice the sum of values in 𝑗 and 𝑀 remains constant throughout the loop
(𝛬[𝑗] +𝛬[𝑀] = 𝑟)4. For its ranking function (𝑓), notice that variable 𝑀 is at its greatest at value 𝑟 ,
progressively decreasing every iteration (𝑓 𝛬 ω 𝑟 ∃𝛬[𝑀]). The remaining proof is straightforward.

(1) Prove the initial loop state satis!es the loop invariant (R (𝑗 𝐿→ 0) ↙ (𝑀 𝐿→ 𝑟)).
(2) For each state (𝛬) satisfying the invariant R 𝛬, the loop body must terminate and satisfy

the loop invariant and the ranking function condition.
(3) Taking three cases on the value of 𝑀 concludes the proof in Figure 20:

- If𝛬[𝑀] = 0 then𝛬[𝑗] = 𝑟 , so var 𝑗 ¬ 𝑧 is true.
- If𝛬[𝑀] = 1 then𝛬[𝑗] = 𝑟 ∃ 1, the loop body adds 1 to 𝑗 , so again, var 𝑗 ¬ 𝑧 .
- If 𝛬[𝑀] > 1 then it is easy to prove the loop invariant and variant are satis!ed at
termination of the loop body.

7 Motivating examples
We evaluated ticl by structurally verifying several examples from the T2 CTL benchmark suite [6]
(like the example in Figure 20) and three use cases inspired from computer systems. In this section,
we prove liveness and safety properties for a round-robin scheduler, a secure concurrent shared
memory system, and a distributed consensus protocol.
In Section 6 we de!ned the deep-embedding5 imperative language StImp and its ticl theory.

In this section we de!ne three mixed embedding languages (MeQ, MeS, MeR) [12] and a shallow-
embedding language (ictree𝑁net

). Our goal is to demonstrate the $exibility of ticl over di"erent
programming language techniques, events, and temporal speci!cations.

7.1 Round-robin scheduler
The syntax of the MeQ language for the round-robin scheduler (rr) from Figure 1 is given in Figure 21.
A shared queue (Q) with elements 𝑉 maintains the order of threads in the scheduler. Language MeQ
interfaces with the queue through the pop and push instructions and has sequential composition
(>>=) and an in!nite loop program structures (while (true) {𝑒}). This simple language is su#cient
to prove that a thread 𝑃 will always-eventually get scheduled, the nested temporal property we
saw early on in Figure 1. Nested temporal properties like always-eventually pose a challenge for
deductive veri!cation, not only to prove but to formally state.

Following the steps in Section 6, the denotation of MeQ programs (ictree𝑁Q) is shown in Figure 22.
The queue instrumentation handler (𝑚Q) keeps track of popped elements, but not pushed elements.
The scheduler performs both actions in sequence, so provenance information is not lost through
this choice; still, di"erent target properties might require de!ning a di"erent handler.

4Existantials are omitted in natural number propositions, so𝑠[𝑛] +𝑠[𝑟] = 𝑈 is shorthand notation for ̸ 𝑈𝑈 , 𝑠[𝑛] =
Some(𝑈𝑈) and ̸ 𝑈𝑉 , 𝑠[𝑟] = Some(𝑈𝑉) such that 𝑈𝑈 + 𝑈𝑉 = 𝑈.
5Deep-embedding refers to the treatment of variables as datatypes and the explicit handling of substitution. Shallow-
embedding languages avoid using a datatype for their abstract syntax altogether, in favor of programming in the proof
assistant’s metalanguage. Mixed-embedding languages have an abstract syntax, but use the proof assistant’s variable and
substitution mechanisms [12].

20 Ele!herios Ioannidis, Yannick Zakowski, Steve Zdancewic, and Sebastian Angel

Q ≃ Type = list 𝑉

𝑈Q ≃ Type → Type = | Push (𝑃 ≃ 𝑉) ≃ 𝑈Q unit | Pop ≃ 𝑈Q 𝑉

MeQ ≃ Type → Type = | pop ≃ MeQ𝑢 | push (𝑃 ≃ 𝑉) ≃ MeQunit

| while (true) {𝑋 ≃ MeQ𝑂 } ≃ MeQunit

| (𝑄 ≃ MeQ𝑝) >>= (𝑑 ≃ 𝑥 → MeQ𝑞) | ret (𝑄 ≃ 𝑥) ≃ MeQ𝑝

Fig. 21. Language MeQ for a round-robin scheduler with a mutable queue (Q).

hQ ≃ 𝑈Q ! InstrMQ,𝑢
𝑚Q (Push 𝑏 ≃ 𝑈Q unit) (𝑆 ≃ Q) = Ret ((),𝑆 ++ [𝑏])
𝑚Q (Pop ≃ 𝑈Q N) (𝑚::𝑒𝑝 ≃ Q) = log 𝑚 ;; Ret (𝑚, 𝑒𝑝)
𝑚Q (Pop ≃ 𝑈Q N) ([] ≃ Q) = ⇒
⇓_⇔

Q
≃ MeQ𝑝 → ictree𝑁Q , 𝑝

⇓pop⇔
Q
= trigger Pop, ⇓push 𝑃⇔

Q
= trigger (Push 𝑃),

⇓while (true) {𝑒}⇔
Q
= iter


𝑇 () ↗ ⇓t⇔

Q
>>= (𝑇 _ ↗ Ret (inl ()))


(),

⇓𝑃 >>= 𝑑⇔
Q
= ⇓𝑃⇔

Q
>>= (𝑇 𝑄 ↗ ⇓𝑑 𝑄⇔

Q
), ⇓ret 𝑃⇔

Q
= Ret 𝑃,

[(𝑒 ≃ MeQ𝑝), (𝑆 ≃ Q), (𝑛 ≃ WL𝑊) ⫅̸𝑖𝑅 𝑋]Q ≃ P = ↔ instr 𝑚Q ⇓𝑒⇔
Q
𝑆, 𝑛 ⊋𝑖𝑅 𝑋 ↘

Fig. 22. Denotation ⇓_⇔
Q
and ticl entailment for queue language MeQ.

R 𝑚 𝑔 → ↓ 𝑚 𝑔, R 𝑚 𝑔 →
[𝑆 , 𝑚, 𝑔 ⫅̸𝑂 𝑘 AU 𝑘 ⇑]Q △
[𝑆 , 𝑚, 𝑔 ⫅̸𝑃 𝑘 AU AX done (𝑍 𝑚⇑ 𝑔⇑ ↗

R 𝑚⇑ 𝑔⇑ ∋ 𝑜 𝑚⇑ < 𝑜 𝑚)]Q

[while (true) {𝑆 }, 𝑚, 𝑔 ⫅̸𝑂 𝑘 AU 𝑘 ⇑]Q
W4,$"QAU𝑖

R 𝑚 𝑔 → ↓ 𝑚 𝑔, R 𝑚 𝑔 →
[while (true) {𝑆 }, 𝑚, 𝑔 ⫅̸𝑂 𝑘]Q ∋
[𝑆, 𝑚, 𝑔 ⫅̸𝑃 AX (𝑘 AU AX done R)]Q

[while (true) {𝑆 }, 𝑚, 𝑔 ⫅̸𝑂 AG 𝑘]Q
W4,$"QAG

Fig. 23. Liveness and invariance loop lemmas for queue language MeQ.

The end-to-end ticl entailment relation for MeQ [𝑒, 𝑆, 𝑛 ⫅̸𝑖𝑅 𝑋]Q is a quaternary relation—in
contrast to previous ternary entailments we have seen. Its arguments are the program 𝑒 , queue 𝑆,
current world𝑛 , and ticl formula 𝑋 . In the last example (Figure 18) we used a ternary relation,
because the ghost-state coincided with the program state (M). However, in Figure 22 the ghost-
state represents elements popped (𝑉) while the program state represents the queue (Q), which
necessitates keeping track of both.

At this point we can prove the liveness and invariance lemmas in Figure 23, which we will need
to complete the always-eventually proof in Figure 24. These proofs are short and reuse the iter
lemmas from Figure 16. Comparing with the StImp loop lemmas in Figure 19, the MeQ loop lemmas
are simpler; MeQ only supports in!nite loops so there is no case analysis on the loop conditional.
Finally, we proceed backwards (from bottom to top) through the always-eventually proof in

Figure 24. Start by using the invariance rule W4,$"QAG with loop invariant (R): world𝑛 must be
not done, the queue will never be empty (̸ 𝑚, 𝑒𝑝, 𝑆 = 𝑚 :: 𝑒𝑝), and either the head element is the
target thread (𝑚 = 𝑃), or not (𝑚 ε 𝑃), in which case 𝑃 must appear at some position 𝑔 in the queue’s
tail (find 𝑃 𝑒𝑝 = Some(𝑔)). Applying the invariance rule leaves three proof obligations:

(1) The loop invariant must be initially satis!ed (R (𝑆 ++ [𝑃]) 𝑛).

Structural temporal logic for mechanized program verification 21

↓ 𝑃,𝑛 ,𝑚, 𝑒𝑝, 𝑔, not_done𝑛 , 𝑚 ε 𝑃, find 𝑃 𝑒𝑝 = Some(𝑔),

R⇑ (𝑚 :: 𝑒𝑝) 𝑛⫆̸
R→ 𝜸→ 𝜹→ ω not_done𝑛 ⇑ ∋
̸ 𝑚⇑, 𝑒𝑝⇑, 𝑆⇑ = 𝑚⇑ :: 𝑒𝑝⇑ ∋
(𝑚⇑ = 𝑃 △ (𝑚⇑ ε 𝑃 ∋ ̸ 𝑔⇑, find 𝑃 𝑒𝑝⇑ = Some(𝑔⇑)))

𝜷 𝜸 ω find 𝑃 𝑆

↓ 𝑆,𝑛 , R⇑ 𝑆 𝑛 →⫆̸
[𝑋 ↑ pop(); push 𝑋, 𝑆, 𝑛 ⫅̸𝑖 AF obs (𝑇 𝑚𝛯 ↗ 𝑚𝛯 = x)]Q △
[𝑋 ↑ pop(); push 𝑋, 𝑆, 𝑛 ⫅̸𝑅 AF AX done (𝑇 𝑆⇑ 𝑛 ⇑ ↗

R⇑ 𝑆⇑ 𝑛 ⇑ ∋ 𝑓 𝑆⇑ < 𝑓 𝑆)]Q

↓ 𝑃,𝑛 ,𝑚, 𝑒𝑝, 𝑔, not_done𝑛 , 𝑚 ε 𝑃, find 𝑃 𝑒𝑝 = Some(𝑔),
[while (true) {𝑋 ↑ pop(); push 𝑋}, (𝑚 :: 𝑒𝑝), 𝑛 ⫅̸𝑖 AF obs (𝑇 𝑚𝛯 ↗ 𝑚𝛯 = x)]Q

W4,$"QAU𝑖

↓ 𝑃,𝑛 , 𝑒𝑝,

not_done𝑛 → ⫆̸
[while (true) {𝑋 ↑ pop(); push 𝑋},

𝑆,𝑛 ⫅̸𝑖 AF obs (𝑇 𝑚𝛯 ↗ 𝑚𝛯 = x)]Q
∋ [𝑋 ↑ pop(); push 𝑋, (𝑃 :: 𝑒𝑝), 𝑛 ⫅̸𝑅

AX(AF obs (𝑇 𝑚𝛯 ↗ 𝑚𝛯 = x)) AU AX done R)]Q

↓ 𝑃,𝑛 ,𝑚, 𝑒𝑝, 𝑔,

not_done𝑛 → 𝑚 ε 𝑃 → find 𝑃 𝑒𝑝 = Some(𝑔) →
[while (true) {𝑋 ↑ pop(); push 𝑋},

𝑆,𝑛 ⫅̸𝑖 AF obs (𝑇 𝑚𝛯 ↗ 𝑚𝛯 = x)]Q
∋ [𝑋 ↑ pop(); push 𝑋, (𝑚 :: 𝑒𝑝), 𝑛 ⫅̸𝑅

AX(AF obs (𝑇 𝑚𝛯 ↗ 𝑚𝛯 = x)) AU AX done R)]Q⫆̸

A)-

↓ 𝑆, 𝑃,𝑛 , R (𝑆 ++ [𝑃]) 𝑛⫆̸
R 𝜸 𝜹 ω not_done𝑛 ∋
̸ 𝑚, 𝑒𝑝, 𝑆 = 𝑚 :: 𝑒𝑝 ∋
(𝑚 = 𝑃 △ (𝑚 ε 𝑃 ∋
̸ 𝑔, find 𝑃 𝑒𝑝 = Some(𝑔)))

↓ 𝑃,𝑆,𝑛 , R 𝑆 𝑛 →
[while (true) {𝑋 ↑ pop(); push 𝑋},

𝑆,𝑛 ⫅̸𝑖 AF obs (𝑇 𝑚𝛯 ↗ 𝑚𝛯 = x)]Q
∋ [𝑋 ↑ pop(); push 𝑋, 𝑆, 𝑛 ⫅̸𝑅

AX(AF obs (𝑇 𝑚𝛯 ↗ 𝑚𝛯 = x)) AU AX done R)]Q

𝑚
?= 𝑃

↓ q, x,


while (true) {
𝐿 ↑ pop() ; push 𝐿

}
, (q ++ [x]), Pure⫅̸𝑖 AG AF obs (𝑇 𝑚𝛯 ↗ 𝑚𝛯 = x)


Q

W4,$"QAG

Fig. 24. Structural always-eventually proof for round-robin in MeQ using ticl.

(2) The loop body steps, then eventually terminates, respecting the invariant R.
(3) The loop must satisfy the inner eventually property (AF obs (𝑇 𝑚𝛯 ↗ 𝑚𝛯 = x)).
The !rst subproof is easy to prove. The second is also straightforward by case analysis on the

head of the queue (𝑚 = 𝑃). The third subproof (inner eventually) requires the liveness lemma
(W4,$"QAU𝑖) from Figure 23. Since this is the same loop as before, we can reuse the loop invariant
(R) from the invariance rule. The ranking function 𝑓 is given simply by the index of 𝑃 in the queue.
The queue always contains 𝑃 (by R), so we can treat 𝑓 as total. We conclude the proof by low-level
reasoning over lists and using the loop invariants. For further details the reader can refer to our
Rocq development; the syntax and semantics of MeQ, (Figure 21), ticl structural lemmas (Figure 23)
and the always-eventually proof in Figure 24 required a total of 137 lines of Rocq de!nitions and
362 lines of proofs.

7.2 Secure concurrent shared memory
For the next example let us switch gears and prove con!dentiality of concurrent reads and writes
over a shared memory with security labels—a safety property. The proposed system is inspired by
Mandatory Access Control (MAC). Language MeS in Figure 25 uses a mutable heap (MS), where
each cell is tagged with an information-$ow security label, either low security (𝑢) or high security
(𝑎). Labels form a preorder with accessibility relation (∞)—the smallest re$exive, transitive relation
such that 𝑢 ∞ 𝑎 holds.

Tagged memory is accessed by instructions read 𝑖𝑕 𝑃 and write 𝑖𝑕 𝑃 𝑊, where 𝑖𝑕 is the permission
level of the instruction, 𝑃 is the address, and 𝑊 is the value to write. The goal is to prove every read
instruction (read 𝑖𝑕 𝑃) accesses a memory cell with a security level that is ∞ to its permission level

22 Ele!herios Ioannidis, Yannick Zakowski, Steve Zdancewic, and Sebastian Angel

S ≃ Type = | 𝑢 | 𝑎
MS ≃ Type = MapN,(N∅S)
𝑈S ≃ Type → Type = | Read (𝑖 ≃ S) (𝑃 ≃ N) ≃ 𝑈S optionN

| Write (𝑖 ≃ S) (𝑃 ≃ N) (𝑟 ≃ N) ≃ 𝑈S unit

MeS ≃ Type → Type = | read (𝑖 ≃ S) (𝑏 ≃ N) ≃ MeSoptionN

| write (𝑖 ≃ S) (𝑏 ≃ N) (𝑟 ≃ N) ≃ MeS()
| if (𝑀 ≃ B) then (𝑒 ≃ MeS𝑝) else (𝑣 ≃ MeS𝑝) ≃ MeS𝑝

| (𝑄 ≃ MeS𝑝 >>= (𝑑 ≃ 𝑥 → MeS𝑞)) ≃ MeS𝑞 | ret (𝑄 ≃ 𝑥) ≃ MeS𝑝

MeR ≃ Type → Type = | loop (𝑑 ≃ 𝑍 → MeR𝑂) (𝑃 ≃ 𝑍) ≃ MeRunit

| (𝑖 ≃ MeR𝑝) ⇐ (𝑗 ≃ MeR𝑝) ≃ MeR𝑝 | call (𝑋 ≃ MeS𝑝) ≃ MeR𝑝

| (𝑄 ≃ MeR𝑝 >>= (𝑑 ≃ 𝑥 → MeR𝑞)) ≃ MeR𝑞 | ret (𝑄 ≃ 𝑥) ≃ MeR𝑝

Fig. 25. Process language MeS has read-write access to a security labelled heap. Scheduler language MeR has
infinite loops (loop), process calls (call) and nondeterministic choice (⇐).

(𝑖𝑠 ∞ 𝑖𝑕). We prove this always property for two interleaved processes at di"erent security levels,
alice and bob. The nondeterministic interleaving of alice and bob is a superset of all concurrent
traces—by proving safety in the interleaving we guarantee safety in all concurrent executions.

The instrumentation handler (𝑚𝑒), the denotational semantics of the process language (MeS) and
scheduler language (MeR), the structural lemmas for MeR, and the complete safety proof can be found
in Appendix B. The de!nition of the languages (Figure 25), ticl structural lemmas (Figure 30), and
the safety proof (Figure 31) required 174 lines of Rocq de!nitions and 242 lines of proofs.

7.3 Distributed Consensus
For the last example, we present a di"erent approach to modeling systems, and a new liveness
composition lemma. Instead of de!ning a programming language syntax, following the steps in
Sections 6, 7.1, and 7.2, we model a distributed, message-passing system in the metalanguage of the
Rocq proof assistant using ICTrees directly. This shallow-embedding provides a shortcut to the
interesting part of the protocol proof, reducing the syntax and denotation overhead.

proc (𝐿𝑕𝑣 ≃ PID𝑋) ≃ ictree𝑌net, unit ω
𝑠 ↑ recv 𝐿𝑕𝑣;
match 𝑠 with
| C 𝑟𝑤𝑀𝑣𝑕𝑣𝑤𝑆𝑐 ↗
match compare 𝑟𝑤𝑀𝑣𝑕𝑣𝑤𝑆𝑐 𝐿𝑕𝑣 with
| Gt ↗ send 𝐿𝑕𝑣 (C 𝑟𝑤𝑀𝑣𝑕𝑣𝑤𝑆𝑐)
| Lt ↗ Ret tt

| Eq ↗ send 𝐿𝑕𝑣 (E 𝐿𝑕𝑣)
end

| E 𝑌𝑐𝑤𝑣𝑐𝑛 ↗ send 𝐿𝑕𝑣 (E 𝑌𝑐𝑤𝑣𝑐𝑛)
end.

Fig. 26. Leader election process.

The goal of the protocol is leader election; processes must
reach consensus on which process will be the leader. Leader
election is a common component of many distributed proto-
cols like Paxos [28]. We are interested in the liveness property
“eventually a leader is elected”. For simplicity we assume there
are no network, process, or Byzantine failures. Modeling fail-
ures by using ICTree’s nondeterminism is entirely possible,
but doing so is beyond the scope of this paper.

Processes (Figure 26) performmessage-passing events (send
and recv) de!ned in Figure 32. The messages are delivered
in a unidirectional ring (uniring) con!guration in a clockwise
manner, as shown in Figure 27. Process scheduling is also in a
uniring, following the same pattern. Each process sends and receives one of two kinds of messages:
proposing a candidate PID (𝛱𝑕) and announcing a leader (𝑈𝑕). The formal de!nition of messages
and mailboxes are in Appendix C. There are two distinct phases in this leader election protocol:

(1) Aggregating candidate nominations: initially, every process (𝑋𝑔𝛯) self-nominates to be the
leader. Processes receive a candidate message (𝛱𝑟𝑤𝑀𝑣𝑕𝑣𝑤𝑆𝑐). If the candidate PID received

Structural temporal logic for mechanized program verification 23

1

2

3

𝛱1 𝛱2

𝛱3

1

2

3

𝛱3

1

2

3

𝛱3

1

2

3
𝑈3

1

2

3

𝑈3

1

2

3

𝑈3

Fig. 27. A unidirectional ring of three processes running the leader election protocol starting at PID= 1.

is greater than the process’ own PID (𝑋𝑔𝛯 < 𝑀𝑄𝑏𝛯𝑔𝛯𝑄𝑒𝑌), the message is propagated. If the
candidate PID is less, the message is dropped.

(2) Announcing the leader : if a process (𝑋𝑔𝛯) receives their own candidacy message back (𝛱𝐿𝑕𝑣),
they announce themselves the elected leader (𝑈𝐿𝑕𝑣). A process that receives an election
announcement (𝑈𝑌𝑐𝑤𝑣𝑐𝑛) propagates it. The protocol diverges in the end, sending the leader
announcement in cycles forever. The process with the highest PID will always be the leader.

So far in ticl we demonstrated uses of modular liveness rules following the structure of programs
(e.g., loops). In the protocol in Figure 27 the “modules”—the logical parts of the problemwe identi!ed
as basic building blocks—are the phases of the protocol, not the scheduler loop. Using the liveness
lemma (I0"’AU𝑖) would require establishing an invariant and variant that apply to both phases of
the protocol, which is quite challenging and not very modular.

The following theorem illustrates a new liveness composition rule we call liveness split:

T4".’"& 5 (L,3")"** *5$,0).

R 𝑕 𝑔 (↓ 𝑕 𝑔, R𝑍 𝑕 𝑔 → ↔ iter k i, 𝑔 ⊋𝑂 𝑘 AU 𝑘 ⇑ ↘)
↓ 𝑕,𝑔, R 𝑕 𝑔 →

↔ k i, 𝑔 ⊋𝑃 𝑘 AU AX done (𝑍 𝑌𝑛 𝑔⇑ ↗ ̸ 𝑕⇑, 𝑌𝑛 = inl 𝑕⇑ ∋ R𝑍 𝑕
⇑ 𝑔⇑ ↘ △

↔ k i, 𝑔 ⊋𝑃 𝑘 AU AX done (𝑍 𝑌𝑛 𝑔⇑ ↗ ̸ 𝑕⇑, 𝑌𝑛 = inl 𝑕⇑ ∋ R 𝑕⇑ 𝑔⇑ ∋ 𝑜 𝑕⇑ 𝑔⇑ < 𝑜 𝑕 𝑔) ↘

↔ iter k i, 𝑔 ⊋𝑂 𝑘 AU 𝑘 ⇑ ↘
S!"#$AU𝑖,N

Liveness split breaks up a liveness proof to two parts, before and after a user-de!ned intermediate
point. This reduces a proof of loop liveness to two “smaller” liveness proofs, connected together by
an intermediate relation (R𝑄). Those smaller liveness proofs have smaller, simpler ranking functions
(𝑓). What is left afterwards is the same liveness proof we started with, but starting from a better
position (R𝑄 𝑔 𝑛 → ↔ iter k i, 𝑛 ⊋𝑖 𝑠 AU 𝑠 ⇑ ↘). One can continue splitting liveness proofs in this
way, by specifying convenient intermediate relations R𝑄 and ranking functions 𝑓 . The notion of
modularity for liveness proofs extends beyond program structures (i.e: loops), to logical structures,
like the phases of the leader election protocol.

The complete liveness proof for the leader election protocol is given in Appendix C. Veri!cation
of the protocol required 123 lines of Rocq de!nitions and 115 lines of proofs.

8 Discussion and related work
Ticl is a temporal logic for mechanized, modular veri!cation of safety and liveness properties
over e"ectful, nondeterministic, and potentially nonterminating programs. Its salient aspect is that
it can prove general temporal properties, over any programming language denoting to coinduc-
tive trees [10, 25, 29, 39, 41, 50, 52, 56], with high-level lemmas and without the bureaucracy of
(co-)inductive proofs.

24 Ele!herios Ioannidis, Yannick Zakowski, Steve Zdancewic, and Sebastian Angel

8.1 Comparison with ITrees and CTrees
ICTrees are a computational model that is more expressive than Interaction Trees (ITrees) [50]
but less expressive than Choice Trees (CTrees) [10]. We introduce this intermediate model of
computation, instead of adopting CTrees, because CTrees support two types of nondeterminism
but we were only able to prove key lemmas of ticl formulas for one of them. In particular,
CTrees support stepping choices and delayed choices. In the context of labelled transition systems
(LTS)—which give CTrees their operational semantics—stepping choices correspond to 𝑐 transitions
(they model internal actions that do not change the observable behavior of the system), while
delayed choices do not correspond to a transition and defer to a transition in a child node. Delayed
choices are important for modeling the equational theory of certain models of concurrency, such
as CCS [35]. ICTrees support stepping choices but not delayed choices6.

8.2 Comparison with LTL, CTL, and TLA
The main di"erence between ticl and temporal logics like LTL [36], CTL [19], and TLA [27] is
that ticl is designed with composition as a guiding principle. As a result, ticl needs to handle
both !nite programs with postconditions, and in!nite programs. In more detail, Ticl’s treatment
of termination is fundamentally di"erent from LTL, CTL and TLA, which assume a total Kripke
transition relation (i.e: ↓𝛬, ̸𝛬⇑,𝑂 𝛬 𝛬⇑) [15, 20]. Ticl uses a non-total transition relation for
ICTree structures (Section 4.1), a variation on !nite trace LTL [5, 14]. However, !nite trace logics do
not support in!nite traces and the always operator, and their support for postcondition speci!cations
is limited—ticl uses the proof assistants metalanguage to describe complex postconditions.

Ticl supports both !nite and in!nite properties, all CTL operators (𝑠 in Section 4.2) and complex
postconditions (𝑡X). By building on recent advances in monadic, coinductive structures [8, 10, 50],
ticl proof composition follows the monadic composition lemmas. Speci!cally, it allows Ret 𝑟
to transition to a nullary state, ensuring proper sequencing with continuation 𝑑 in one step, as
required by the monad laws (Figure5). Although there are well-known embeddings of CTL and
TLA in the Rocq proof assistant [9, 16], our di"erent approach to modularity and the large number
of structural proof lemmas we discovered as a result (Figure 14) indicates this is a still unexplored
area of research.

8.3 Comparison with program logics
Comparing ticl to existing program logics is straightforward, as those are usually transparent on
which property classes they target. This is re$ected in their choice of inductive or coinductive big-
step semantics, which ties the logic to eventally or always properties, with no possibility to prove
the other class in the future. While current approaches excel within those boundaries, none o"er a
general, compositional solution for proving arbitrary temporal properties like always-eventually.
Iris and Trans!nite Iris: Iris [24] is a concurrent-separation logic framework for Rocq that

uses step-indexed logical relations to prove safety properties of concurrent programs. The recent
extension Trans!nite Iris [44] extends the step-indexing relation from the naturals to ordinals,
allowing total-correctness properties to be proved by trans!nite induction. A fundamental limitation
of step-indexing is that there is only one index; in the case of “always-eventually” properties, a
hierarchy of induction and trans!nite induction proofs are required—this hierarchy is implicit in
the de!nition of ⊋𝑖,𝑅 in ticl (Figure 12). At the same time, ticl, unlike Iris, has no facilities for

6It remains an open question whether ticl could support CTrees. The presence of delayed choice nodes (BrD) in CTrees
makes structural proofs of 𝑆 >>= 𝑋 (bind), where 𝑆 can make transitive, nondeterministic choices, much harder—speci!cally,
it is not clear what is the inductive invariant on 𝑆 that characterizes the result of the entire bind.

Structural temporal logic for mechanized program verification 25

separation logic. One can imagine having the “best of both worlds”, combining the separation logic
reasoning of Iris and temporal reasoning of ticl.

Fair operational semantics: Lee et al. [29] recognize the limited support for liveness properties
in mechanized formal veri!cation and propose an operational semantics for fairness (FOS). FOS
uses implicit counters for bad events and de!nes operational semantics that prove no in!nite chain
of bad events happens. FOS provides comprehensive support for the speci!c case of binary fairness
(good vs bad events), but limited support for general temporal speci!cations, like safety, liveness
and termination. As with Iris, it would be interesting to combine that approach with ticl.

Maude: The Maude language and Temporal Rewriting Logic (TLR) [33, 34] recognize the bene!ts
of structural approaches (namely term rewriting) to temporal logic veri!cation. In ticl we enable
term rewriting with up-to-tau equivalence under a temporal context (Section 3.1). However, Maude
operates on the level of models, not on the level of executable programs. This creates a veri!cation
gap between the executable code and target properties. Finally proof composition in Maude is not
modular in the sense of Hoare Logic and ticl.
Dijkstra monads: Several works on Dijkstra monads target partial-correctness properties in

the style of weakest preconditions [1, 32, 42, 47]. Recent work targets total-correctness properties
like “always” [42] but not general temporal properties like liveness.
Synthesising ranking functions: Yao et al. [51] propose an automated synthesis procedure

for ranking functions, specialized to proving liveness properties in a class of distributed systems.
Similar to model checking, the systems are described as speci!cations not as implementations
which is di"erent from ticl. At the same time, automated synthesis of ranking functions is a
particularly attractive feature for ticl, as they can be used with ticl lemmas like I0"’AU𝑖,N
(Figure 16) to get mostly automated, formal proofs of liveness.

8.4 General Liveness Properties and Completeness
Our focus with ticl is on providing a convenient and useful temporal logic. However, its com-
positionality does not come without a cost: just as with all the other (standard) temporal logics
described above, ticl’s temporal operators are not complete. Classic results from automata the-
ory [48] show that there exist liveness properties that cannot be expressed solely via temporal-logic
combinators of the kind supported by ticl. To achieve completeness, one would instead have to
use alternative means of specifying the desired liveness properties, such as with Büchi automata [2].
But reasoning about the liveness properties expressible by such Büchi automata can, in the limit,
require using arbitrarily complex well-foundedness arguments. We can therefore think of temporal
logics, generally, as hiding that complexity for the common case where the property of interest
is expressible in the logic. In the case of ticl, there are a few more subtleties, however: !rst, its
notion of de!nable observations, which de!ne the set of predicates for the logic, can be an in!nite
set (in contrast to much prior work that uses a !nite set of observations), and second, because it
is embedded in the Rocq framework, one could always fall back on raw coinductive proofs about
some liveness property. It seems possible to extend ticl with an “escape hatch” mechanism that
would let such proofs act as “axioms” from the point of view of ticl’s logic. This would, in theory,
recover completeness at the expense of more manual user e"ort.

8.5 Conclusion
In this work we ask: is it possible to write modular proofs about programs in a general temporal
logic akin to proofs in Hoare logic? We believe we have answered a#rmatively, and in the process
developed Temporal Interaction and Choice Logic (ticl), a speci!cation language capable of
expressing general liveness and safety properties (we summarize ticl in Figure 10). Along the
way, we also designed an extensive metatheory of structural lemmas (Figures 14, 15, 16, 19) that

26 Ele!herios Ioannidis, Yannick Zakowski, Steve Zdancewic, and Sebastian Angel

encapsulate complex (co-)inductive proofs to simple rule application. We applied ticl to several
examples from the T2 CTL benchmark suite [6] and in three examples inspired from computer
systems as a way to demonstrate the metatheory in action.

Acknowledgments
This work was funded in part by NSF Grants CCF-2326576, CCF-2124184, CNS-2107147, CNS-
2321726.

References
[1] Danel Ahman, C%t%lin Hri&cu, Kenji Maillard, Guido Martínez, Gordon Plotkin, Jonathan Protzenko, Aseem Rastogi,

and Nikhil Swamy. 2017. Dijkstra monads for free. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL).

[2] Bowen Alpern and Fred B Schneider. 1987. Recognizing safety and liveness. Distributed computing 2, 3 (1987), 117–126.
[3] Rajeev Alur, Thomas A Henzinger, and Orna Kupferman. 2002. Alternating-time temporal logic. Journal of the ACM

49, 5 (2002).
[4] Andrew W Appel and David McAllester. 2001. An indexed model of recursive types for foundational proof-carrying

code. ACM Transactions on Programming Languages and Systems (TOPLAS) 23, 5 (2001).
[5] Alessandro Artale, Andrea Mazzullo, and Ana Ozaki. 2019. Do You Need In!nite Time?. In Proceedings of the

International Joint Conference on Arti!cial Intelligence (IJCAI).
[6] Marc Brockschmidt, Byron Cook, Samin Ishtiaq, Heidy Khlaaf, and Nir Piterman. 2016. T2: temporal property

veri!cation. In Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS).

[7] Michael C. Browne, Edmund M. Clarke, and Orna Grümberg. 1988. Characterizing !nite Kripke structures in
propositional temporal logic. Theoretical computer science 59, 1-2 (1988).

[8] Venanzio Capretta. 2005. General recursion via coinductive types. Logical Methods in Computer Science 1 (2005).
[9] Tej Chajed. 2024. coq-tla: Embedding the TLA Logic in Coq. https://github.com/tchajed/coq-tla
[10] Nicolas Chappe, Paul He, Ludovic Henrio, Yannick Zakowski, and Steve Zdancewic. 2023. Choice Trees: Representing

Nondeterministic, Recursive, and Impure Programs in Coq. Proceedings of the ACM on Programming Languages 7,
POPL (2023).

[11] Nicolas Chappe, Ludovic Henrio, and Yannick Zakowski. 2025. Monadic Interpreters for Concurrent Memory Models:
Executable Semantics of a Concurrent Subset of LLVM IR. In Proceedings of the 14th ACM SIGPLAN International
Conference on Certi!ed Programs and Proofs. 283–298.

[12] Adam Chlipala. 2021. Skipping the binder bureaucracy with mixed embeddings in a semantics course (functional
pearl). Proceedings of the ACM on Programming Languages 5, ICFP (2021), 1–28.

[13] Alessandro Cimatti, Alberto Griggio, and Gianluca Redondi. 2022. Veri!cation of SMT systems with quanti!ers. In
International Symposium on Automated Technology for Veri!cation and Analysis. Springer, 154–170.

[14] Giuseppe De Giacomo, Moshe Y Vardi, et al. 2013. Linear Temporal Logic and Linear Dynamic Logic on Finite Traces.
In Proceedings of the International Joint Conference on Arti!cial Intelligence (IJCAI).

[15] Rocco De Nicola and Frits Vaandrager. 1990. Action versus state based logics for transition systems. In Semantics of
Systems of Concurrent Processes.

[16] Christian Doczkal and Gert Smolka. 2016. Completeness and decidability results for CTL in constructive type theory.
Journal of Automated Reasoning 56 (2016).

[17] Emanuele D’Osualdo, Julian Sutherland, Azadeh Farzan, and Philippa Gardner. 2021. TaDA Live: Compositional
Reasoning for Termination of Fine-grained Concurrent Programs. ACM Transactions on Programming Languages and
Systems (TOPLAS) (2021).

[18] E. Allen EMERSON. 1990. CHAPTER 16 - Temporal and Modal Logic. In Formal Models and Semantics, JAN VAN
LEEUWEN (Ed.). Elsevier, Amsterdam, 995–1072. https://doi.org/10.1016/B978-0-444-88074-1.50021-4

[19] E Allen Emerson and Edmund M Clarke. 1982. Using branching time temporal logic to synthesize synchronization
skeletons. Science of Computer programming 2, 3 (1982).

[20] E Allen Emerson and Joseph Y Halpern. 1986. "Sometimes" and "not never" revisited: on branching versus linear time
temporal logic. Journal of the ACM (JACM) 33, 1 (1986), 151–178.

[21] Azadeh Farzan, Zachary Kincaid, and Andreas Podelski. 2016. Proving liveness of parameterized programs. In
Proceedings of the Annual ACM/IEEE Symposium on Logic in Computer Science.

[22] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan Parno, Michael L Roberts, Srinath Setty, and
Brian Zill. 2015. IronFleet: proving practical distributed systems correct. In Proceedings of the Symposium on Operating

https://github.com/tchajed/coq-tla
https://doi.org/10.1016/B978-0-444-88074-1.50021-4

Structural temporal logic for mechanized program verification 27

Systems Principles (SOSP).
[23] Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. 2013. The power of parameterization in coinductive

proof. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
[24] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ale’ Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28
(2018).

[25] Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky, Benjamin C. Pierce,
and Steve Zdancewic. 2019. From C to Interaction Trees: Specifying, Verifying, and Testing a Networked Server. In
Proceedings of the ACM SIGPLAN International Conference on Certi!ed Programs and Proofs.

[26] Dexter Kozen and Rohit Parikh. 1984. A decision procedure for the propositional 𝑥-calculus. In Logics of Programs:
Workshop, Carnegie Mellon University Pittsburgh, PA, June 6–8, 1983. Springer.

[27] Leslie Lamport. 1994. The temporal logic of actions. ACM Transactions on Programming Languages and Systems
(TOPLAS) 16, 3 (1994).

[28] Leslie Lamport. 2001. Paxos made simple. ACM SIGACT News (Distributed Computing Column) 32, 4 (Whole Number
121, December 2001) (2001).

[29] Dongjae Lee, Minki Cho, Jinwoo Kim, Soonwon Moon, Youngju Song, and Chung-Kil Hur. 2023. Fair operational
semantics. Proceedings of the ACM on Programming Languages 7, PLDI (2023).

[30] Mohsen Lesani, Li-Yao Xia, Anders Kaseorg, Christian J. Bell, Adam Chlipala, Benjamin C. Pierce, and Steve Zdancewic.
2022. C4: Veri!ed Transactional Objects. Proceedings of the ACM on Programming Languages OOPSLA (2022).

[31] Hongjin Liang and Xinyu Feng. 2016. A program logic for concurrent objects under fair scheduling. In Proceedings of
the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).

[32] Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, C%t%lin Hri&cu, Exequiel Rivas, and Éric Tanter. 2019.
Dijkstra monads for all. Proceedings of the ACM on Programming Languages 3, ICFP (2019).

[33] José Meseguer. 1992. Conditional rewriting logic as a uni!ed model of concurrency. Theoretical computer science 96, 1
(1992), 73–155.

[34] José Meseguer. 2008. The temporal logic of rewriting: A gentle introduction. In Concurrency, Graphs and Models:
Essays Dedicated to Ugo Montanari on the Occasion of His 65th Birthday. Springer, 354–382.

[35] Robin Milner. 1980. A calculus of communicating systems. Springer.
[36] Amir Pnueli. 1977. The temporal logic of programs. In Proceedings of the Annual Symposium on Foundations of Computer

Science (FOCS).
[37] Amir Pnueli and Elad Shahar. 2000. Liveness and acceleration in parameterized veri!cation. In International Conference

on Computer Aided Veri!cation (CAV). Springer.
[38] Damien Pous. 2016. Coinduction all the way up. In Proceedings of the Annual ACM/IEEE Symposium on Logic in

Computer Science.
[39] Lucas Silver, Paul He, Ethan Cecchetti, Andrew K. Hirsch, and Steve Zdancewic. 2023. Semantics for Noninterference

with Interaction Trees. In Proceedings of the 37th Annual European Conference on Object-Oriented Programming (ECOOP
2023).

[40] Lucas Silver, Eddy Westbrook, Matthew Yacavone, and Ryan Scott. 2023. Interaction Tree Speci!cations: A Framework
for Specifying Recursive, E"ectful Computations That Supports Auto-Active Veri!cation. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP).

[41] Lucas Silver, Eddy Westbrook, Matthew Yacavone, and Ryan Scott. 2023. Interaction Tree Speci!cations: A Framework
for Specifying Recursive, E"ectful Computations That Supports Auto-Active Veri!cation. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), Vol. 263.

[42] Lucas Silver and Steve Zdancewic. 2021. Dijkstra monads forever: termination-sensitive speci!cations for interaction
trees. Proceedings of the ACM on Programming Languages 5, POPL (2021), 1–28.

[43] A Prasad Sistla, Moshe Y Vardi, and Pierre Wolper. 1987. The complementation problem for Büchi automata with
applications to temporal logic. Theoretical Computer Science 49, 2-3 (1987).

[44] Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer, and Lars Birkedal.
2021. Trans!nite Iris: resolving an existential dilemma of step-indexed separation logic. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI).

[45] Gadi Tellez and James Brotherston. 2017. Automatically verifying temporal properties of pointer programs with cyclic
proof. In In proceedings of the International Conference on Automated Deduction (CADE).

[46] The Rocq Development Team. 2025. The Rocq Reference Manual – Release 8.19.0. https://coq.inria.fr/doc/master/
refman/.

[47] Théo Winterhalter, Cezar-Constantin Andrici, C Hri&cu, Kenji Maillard, G Martínez, and Exequiel Rivas. 2022. Partial
dijkstra monads for all. In Proceedings of the International Conference on Types for Proofs and Programs (TYPES).

https://coq.inria.fr/doc/master/refman/
https://coq.inria.fr/doc/master/refman/

28 Ele!herios Ioannidis, Yannick Zakowski, Steve Zdancewic, and Sebastian Angel

[48] Pierre Wolper. 1983. Temporal logic can be more expressive. Information and Control 56, 1 (1983), 72–99. https:
//doi.org/10.1016/S0019-9958(83)80051-5

[49] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic.
2020. Interaction Trees. Proceedings of the ACM on Programming Languages 4, POPL (2020). https://doi.org/10.1145/
3371119

[50] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C Pierce, and Steve Zdancewic.
2019. Interaction trees: representing recursive and impure programs in Coq. Proceedings of the ACM on Programming
Languages 4, POPL (2019).

[51] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh. 2024. Mostly Automated Veri!cation of Liveness Properties
for Distributed Protocols with Ranking Functions. Proceedings of the ACM on Programming Languages 8, POPL (2024).

[52] Irene Yoon, Yannick Zakowski, and Steve Zdancewic. 2022. Formal Reasoning About Layered Monadic Interpreters.
Proceedings of the ACM on Programming Languages 6, ICFP (2022).

[53] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. 1999. Model checking TLA+ speci!cations. In Advanced research
working conference on correct hardware design and veri!cation methods.

[54] Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and S. Zdancewic. 2021. Modular, compositional,
and executable formal semantics for LLVM IR. Proceedings of the ACM on Programming Languages 5 (08 2021).

[55] Yannick Zakowski, Paul He, Chung-Kil Hur, and Steve Zdancewic. 2020. An equational theory for weak bisimulation
via generalized parameterized coinduction. In Proceedings of the 9th ACM SIGPLAN International Conference on Certi!ed
Programs and Proofs.

[56] Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-Yao Xia, Lennart Beringer, WilliamMansky, Benjamin
Pierce, and Steve Zdancewic. 2021. Verifying an HTTP Key-Value Server with Interaction Trees and VST. In Proceedings
of the International Conference on Interactive Theorem Proving (ITP).

A Coinductive Proofs and Up-to Principles in Rocq
In this appendix we focus on the low-level coinduction constructs in ticl used to de!ne the
forever operators AG, EG. The implementation details of coinductive structures and proofs in proof
assistants di"ers. We focus on the Rocq proof assistant, where the infrastructure for coinductive
proofs in provided by external libraries [23, 38, 55]. Ticl relies on the coinduction library by
Damien Pous [38] to de!ne greatest !xpoints over the complete lattice of Rocq propositions.

The primary construction o"ered by the library is a greatest !xpoint operator (gfp 𝑅 : 𝑍) for any
complete lattice 𝑍 and monotone endofunction 𝑅 : 𝑍 → 𝑍 . Speci!cally, the library proves Rocq
propositions form a complete lattice, as do any functions from an arbitrary type into a complete
lattice. Consequently, coinductive relations of arbitrary arity over arbitrary types can be constructed
using this combinator. In ticl, we target coinductive predicates over ICTrees and worlds so we
work in the complete lattice ictree𝑁, 𝑂 → W𝑁 → P.

The coinduction library [38] provides tactic support for coinductive proofs based on Knaster-
Tarski’s theorem: any post-!xpoint is below the greatest !xpoint. Given an endofunction 𝑅, a
(sound) enhanced coinduction principle, also known as an up-to principle, involves an additional
function 𝑓 : 𝑍 → 𝑍 allowing one to work with 𝑅 ℜ 𝑓 (the composition of 𝑅 with 𝑓) instead of 𝑅: any
post-!xpoint of 𝑅 ℜ 𝑓 is below the greatest !xpoint of 𝑓 . Practically, this gives the user access to a
new proof principle. Rather than needing to “fall back” precisely into their coinduction hypothesis
after “stepping” through 𝑅, they may !rst apply 𝑓 .

In Figure 28 we give the up-to-principles for coinduction proofs in ticl. The +50.𝑦𝑓 (𝑌𝑆𝑣𝑔𝑟) prin-
ciple is used to show +50.𝑦𝑓 (𝑌𝑆𝑣𝑔𝑟) ∞ 𝑇 𝑒 . gfp (anc𝑠) 𝑒 , meaning equivalent trees (abstracting over
the exact equivalence relation) satisfy the same AG 𝑠 formula (similarly EG 𝑠). Note, +50.𝑦𝑓 (𝑌𝑆𝑣𝑔𝑟)
is su#ciently general; any equivalence relation equiv satisfying the E1E2,3 lemma in Figure 9
can be used in place of up-to-tau equivalence (↖).

Up-to-principles !,)-AG𝑦𝑓 (𝑠, 𝐿X), !,)-EG𝑦𝑓 (𝑠, 𝐿X), parametrized by a pre!x formula 𝑠 and
a postcondition 𝐿X ≃ 𝑍 → W𝑁 → P are used to prove the bind lemmas in Figure 15. Speci!cally,
by showing the bind principle is under the greatest !xpoint !,)-AG𝑦𝑓 (𝑠, 𝐿X) ∞ gfp (anc 𝑠) we
reduce a coinductive proof ↔ 𝑃 ↑ 𝑒 ;; 𝑑 𝑃, 𝑛 ⊋𝑖 AG 𝑠 ↘ to an inductive proof on the !nite pre!x

https://doi.org/10.1016/S0019-9958(83)80051-5
https://doi.org/10.1016/S0019-9958(83)80051-5
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119

Structural temporal logic for mechanized program verification 29

↔ 𝑒, 𝑛 ⊋𝑅 𝑠 AU AX done 𝐿X ↘ and a coinductive proof about its continuation 𝑑 . The iteration lemmas
in Figure 16 reduce to using the same bind up-to-principles.

B Secure concurrent shared memory proof
This appendix provides the complete formalization of the security-typed memory system introduced
in Section 7.2. We present the instrumentation handler (𝑚S), denotational semantics (⇓_⇔S , ⇓_⇔R

),
and proof lemmas (Figure 30) for proving con!dentiality properties in concurrent memory access
scenarios.

The goal for this example is to show con!ndentiality; if every read (read 𝑖𝑕 𝑃) has an instruction
label 𝑖𝑕 , and accesses a memory label with 𝑖𝑠 , then it should always be true that 𝑖𝑠 ∞ 𝑖𝑕 .
The two processes are in the bottom of Figure 31, alice has high-security access and writes to

odd numbered memory indices, while bobwho has low-security access and reads from evenmemory
indices. The two processes are written in the MeS language—with reads, writes and conditionals—
while the interleaving scheduler is written in the scheduler language MeS (Figure 25)—with in!nite
loops, nondeterministic choice, sequential composition and calls to MeS. Having a di"erent scheduler
language from the process language simpli!es the example, however, both languages denote to a
common coinductive structure (ictree𝑁S) in Figure 29.
As bob can potentially read every even indexed location, we must ensure the starting state has

no high-security, even locations to begin with; this is the noleak invariant on states and indices
(Figure 31). The proof in Figure. 31 starts by using the invariance lemma L..5𝑅AG (Figure 30) with
loop invariant R, then two proof obligations remain:

(1) The loop satis!es the safety property initially (obs (𝑖𝑠 ∞ 𝑖𝑕)).
(2) The loop body steps (outer AX) then satis!es obs (𝑖𝑠 ∞ 𝑖𝑕) until termination, at which point

loop invariant R is satis!ed at the end state.
The invariance rule (L..5𝑅AG) abstracts the complex coinductive proof, proved once and for all

by lemma I0"’AG, adapted to language MeS in a few lines of Rocq syntactic manipulations. The rest
of the proof in Figure 31 is straightforward. Proceed by examining both cases of the nondeterministic
choice ((alice 𝑃 𝑔) ⇐ (bob 𝑔)) using the choice rule B’𝑅AX. We consider both cases due to the
universal quanti!er(AX). The two subproofs proceed by case analysis on the evenness of memory
index 𝑔 and using the low-level theory of !nite maps.

C Distributed Consensus proof
This appendix provides the complete formalization for the leader election distributed consensus
proof in Section 7.3. A distributed, message-passing system is encoded using ICTrees directly
and the liveness property “eventually a consensus is reached” is proved using the ticl structural
lemmas (Section 16).

+50.𝑦𝑓 (𝑌𝑆𝑣𝑔𝑟) R ⫋ {𝑒 | ̸ 𝑒 ⇑, equiv 𝑒 𝑒 ⇑ ∋ R 𝑒 ⇑}
!,)-AG𝑦𝑓 (𝑠, 𝐿X) R ⫋ {(𝑒 >>= 𝑑,𝑛) | ↔ 𝑒, 𝑛 ⊋𝑅 𝑠 AU AX done 𝐿X ↘

∋ (↓ 𝑃,𝑛 , 𝐿X 𝑃 𝑛 → R (𝑑 𝑃) 𝑛)}
!,)-EG𝑦𝑓 (𝑠, 𝐿X) R ⫋ {(𝑒 >>= 𝑑,𝑛) | ↔ 𝑒, 𝑛 ⊋𝑅 𝑠 EU EX done 𝐿X ↘

∋ (↓ 𝑃,𝑛 , 𝐿X 𝑃 𝑛 → R (𝑑 𝑃) 𝑛)}

Fig. 28. Up-to-principles for coinductive AG, EG proofs.

30 Ele!herios Ioannidis, Yannick Zakowski, Steve Zdancewic, and Sebastian Angel

hS ≃ 𝑈S ! InstrMMS ,(S∅S)

𝑚S (Read 𝑖𝑕 𝑃 ≃ 𝑈𝑒) (𝛬 ≃ MS) =

{
log (𝑖𝑠, 𝑖𝑕) ;; Ret (𝑟,𝛬), if𝛬[𝑃] = Some(𝑖𝑠, 𝑟)
Ret (0,𝛬), otherwise

𝑚S (Write 𝑖𝑕 𝑃 𝑟 ≃ 𝑈𝑒) (𝛬 ≃ MS) = Ret ((), (𝑃 𝐿→ 𝑟) ↙𝛬)
⇓_⇔S ≃ MeS𝑝 → ictree𝑁S , 𝑝

⇓read 𝑖𝑕 𝑏⇔S = trigger (Read 𝑖𝑕 𝑏), ⇓write 𝑖𝑕 𝑏 𝑟⇔S = trigger (Write 𝑖𝑕 𝑏 𝑟),

⇓if 𝑀 then 𝑒 else 𝑣⇔S =

{
⇓𝑒⇔S , if 𝑀
⇓𝑣⇔S , otherwise

⇓𝑃 >>= 𝑑⇔S = ⇓𝑃⇔S >>= (𝑇 𝑄 ↗ ⇓𝑑 𝑄⇔S), ⇓ret 𝑃⇔S = Ret 𝑃

⇓_⇔
R
≃ MeR𝑝 → ictree𝑁S , 𝑝

⇓loop 𝑑 𝑃⇔
R
= iter (𝑇 x

⇑ ↗ ⇓k x⇑⇔S >>= (𝑇 v ↗ Ret (inl v))) x, ⇓𝑖 ⇐ 𝑗⇔
R
= ⇓𝑖⇔

R
⇐ ⇓𝑗⇔

R
,

⇓call 𝑋⇔
R
= ⇓𝑋⇔S , ⇓ret 𝑃⇔

R
= Ret 𝑃, ⇓𝑃 >>= 𝑑⇔

R
= ⇓𝑃⇔

R
>>= (𝑇 𝑄 ↗ ⇓𝑑 𝑄⇔

R
)

[(𝑒 ≃ MeS𝑝), (𝛬 ≃ MS), (𝑖 ≃ S ∅ S) ⫅̸𝑖𝑅 𝑋]S ≃ P = ↔ instr 𝑚S ⇓𝑋⇔S 𝛬, Obs (Log 𝑖) () ⊋𝑖𝑅 𝑋 ↘
[(𝑗 ≃ MeR𝑝), (𝛬 ≃ MS), (𝑖 ≃ S ∅ S) ⫅̸𝑖𝑅 𝑋]𝑅 ≃ P = ↔ instr 𝑚S ⇓𝑗⇔

R
𝛬, Obs (Log 𝑖) () ⊋𝑖𝑅 𝑋 ↘

Fig. 29. Denotation of process and scheduler languages MeS and MeR, with a tagged heap. Observes memory
labels and instruction labels to prove safety.

[𝑤, 𝑠, 𝑌 ⫅̸𝑂𝑃 𝐿]𝑃
[𝑡, 𝑠, 𝑌 ⫅̸𝑂𝑃 𝐿]𝑃

[𝑤 ⇐ 𝑡, 𝑠, 𝑌 ⫅̸𝑂𝑃 AX 𝐿]𝑃
B’𝑅AX

R 𝑕 𝑠 𝑌 → ↓ 𝑕,𝑠, 𝑌, R𝑠 𝑌 →
[loop 𝑋 𝑕, 𝑠, 𝑌 ⫅̸𝑂 𝑘]𝑃 ∋ [𝑋 𝑕, 𝑠, 𝑌 ⫅̸𝑃 AX (𝑘 AU AX done R)]𝑃

[loop 𝑋 𝑕, 𝑠, 𝑌 ⫅̸𝑂 AG 𝑘]𝑃
L..5𝑅AG

Fig. 30. Representative ticl lemmas for process and scheduler languages MeS and MeR.

↓ 𝑔,𝛬, 𝑖𝑠, 𝑖𝑕 , R 𝑔 𝛬 (𝑖𝑠, 𝑖𝑕) →

[𝝐𝜻 𝜼𝜽𝜾 𝑃 𝑔, 𝛬, (𝑖𝑠, 𝑖𝑕) ⫅̸𝑅 obs (𝑖𝑠 ∞ 𝑖𝑕) AU AX done R]𝑅⫆̸
↓ 𝑔,𝛬, 𝑖𝑠, 𝑖𝑕 , R 𝑔 𝛬 (𝑖𝑠, 𝑖𝑕) →

[𝜿𝝀𝜿 𝑔, 𝛬, (𝑖𝑠, 𝑖𝑕) ⫅̸𝑅 obs (𝑖𝑠 ∞ 𝑖𝑕) AU AX done R]𝑅⫆̸
R _𝛬 (𝑖𝑠, 𝑖𝑕) ω

𝑖𝑠 ∞ 𝑖𝑕 ∋ ↓ 𝑔, 𝝁𝝀𝜻𝜾𝝐𝝂 𝑔 𝛬

R 0𝛬 (𝑖𝑠, 𝑖𝑕)⫆̸

↓ 𝑔,𝛬, 𝑖𝑠, 𝑖𝑕 , R 𝑔 𝛬 (𝑖𝑠, 𝑖𝑕) →

loop (𝑍 𝑕 ↗
(𝜷𝜸 𝜹𝝐𝜻 𝑉 𝑕) ⇐ (𝜼𝜽𝜼 𝑕) ;
ret (𝑕 + 1) ;

) 𝑕

, 𝛬, (𝑖𝑠, 𝑖𝑕) ⫅̸𝑖 obs (𝑖𝑠 ∞ 𝑖𝑕)
𝑅
⫆̸

∋ [(𝝐𝜻 𝜼𝜽𝜾 𝑃 𝑔) ⇐ (𝜿𝝀𝜿 𝑔); ret (𝑔 + 1), 𝛬, (𝑖𝑠, 𝑖𝑕) ⫅̸𝑅 AX (obs (𝑖𝑠 ∞ 𝑖𝑕) AU AX done R)]𝑅

B’𝑅AX

𝝐𝜻 𝜼𝜽𝜾 (𝑃 𝑔 ≃ N) ω
if (even 𝑔) then
write𝑎 (𝑔 + 1) 𝑃
else
write 𝑎 𝑔 𝑃

𝜿𝝀𝜿 (𝑔 ≃ N) ω
if (even 𝑔) then
read 𝑢 𝑔
else
read 𝑢 (𝑔 + 1)

𝝁𝝀𝜻𝜾𝝐𝝂 (𝑔 ≃ N) (𝛬 ≃ MS) ω
even 𝑔 → ̸ 𝑟,𝛬[𝑔] = Some((𝑢, 𝑟))

↓ 𝑃,𝛬, 𝑖𝑠, 𝑖𝑕 , 𝑖𝑠 ∞ 𝑖𝑕 → ↓ 𝑔, 𝝁𝝀𝜻𝜾𝝐𝝂 𝑔 𝛬 →


loop (𝑍 𝑕 ↗
(𝜷𝜸 𝜹𝝐𝜻 𝑉 𝑕) ⇐ (𝜼𝜽𝜼 𝑕) ;
ret (𝑕 + 1) ;

) 0

, 𝛬, (𝑖𝑠, 𝑖𝑕) ⫅̸𝑖 AG obs (𝑖𝑠 ∞ 𝑖𝑕)
𝑅

L..5𝑅AG

Fig. 31. Ticl safety proof for the concurrent secure heap. The goal is to show that read instructions only
access memory locations with a security level lower-or-equal than their own.

Each process in the leader election protocol (Figure 26) is assigned a process identi!er (𝑋𝑔𝛯 ≃ PID𝑀).
Message-passing events (send and recv) are de!ned in Figure 32. Their semantic meaning by an

Structural temporal logic for mechanized program verification 31

𝑈net ≃ Type → Type = | Send(𝑔𝛯 ≃ PID𝑀) (𝛬 ≃ Msg𝑀) | Recv(𝑔𝛯 ≃ PID𝑀)

hnet ≃ 𝑈net ! InstrM[Msg𝑋]𝑋,Msg𝑋
𝑚net (Send 𝑔𝛯 𝛬𝑝𝛩) (𝛬 ≃ [Msg𝑀]𝑀) = Ret ((),𝛬[𝑔𝛯 + 1 % 𝑏] ω𝛬𝑝𝛩)
𝑚net (Recv 𝑔𝛯) (𝛬 ≃ [Msg𝑀]𝑀) = log (𝛬[𝑔𝛯]) ;; Ret (𝛬[𝑔𝛯],𝛬)

Fig. 32. Message-passing events (𝑈net) parametrized by the caller 𝑔𝛯 and their instrumentation (𝑚net).

PID𝑀 ≃ Type = fin 𝑏

Msg𝑀 ≃ Type = | 𝛱 (𝑋 ≃ PID𝑀) | 𝑈 (𝑋 ≃ PID𝑀)
[Msg𝑀]𝑀 ≃ Type = Vector 𝑏 Msg𝑀
(𝛬 ≃ [Msg𝑀]𝑀) [𝑋 ≃ PID𝑀] ≃ Msg𝑀 ,
(𝛬 ≃ [Msg𝑀]𝑀) [𝑋 ≃ PID𝑀] ω (𝛬𝑝𝛩 ≃ Msg𝑀) ≃ [Msg𝑀]𝑀

Fig. 33. Process identifiers, messages and mailboxes with get (𝛬[𝑋]) and set (𝛬[𝑋] ω𝛬𝑝𝛩) access.

instrumentation handler (𝑚net)— messages are delivered in a unidirectional ring (uniring) con!gu-
ration in a clockwise manner, as shown in Figure 27.
Scheduling follows the same pattern. Each process sends and receives one of two kinds of

messages: proposing a candidate PID (𝛱𝑕) and announcing a leader (𝑈𝑕). The formal de!nition of
messages (Msg𝑀) and mailboxes ([Msg𝑀]𝑀) are in Figure 33. Each process has exactly one message in
its mailbox. Messages and process identi!ers (PID𝑀), are both indexed by the number of processes
in the system (𝑏 ≃ N).

The liveness proof (“eventually a consensus is reached”) in Figure 34 is proven using the liveness
split lemma (Theorem 5). Liveness split divides a liveness proof into two sections, separated by a user-
speci!ed intermediate point. This transforms a loop liveness proof into two “smaller” liveness proofs,
joined by an intermediate relation (R𝑄). These reduced liveness proofs utilize more straightforward,
compact ranking functions (𝑓). The result is the original liveness proof, but starting from a later
position (R𝑄 𝑔 𝑛 → ↔ iter k i, 𝑛 ⊋𝑖 𝑠 AU 𝑠 ⇑ ↘). This splitting process can be continued by
de!ning appropriate intermediate relations (R𝑄) and ranking functions (𝑓). This way, liveness
proof modularity extends to logical structures, such as the phases in the leader election protocol
(Section 7.3).

The proof in Figure 34 is for three processes (𝑏 = 3), but the techniques used generalize to any
number. Start from the bottom, the goal liveness property is:

L"&&(6 (E3")0+($ $"(-"’ /.)*")*+*).

↔ instr 𝑚net



𝑔 ↑ branch 𝑏;
iter (𝑇 𝑔 ↗

proc 𝑔;
Ret (inl ((𝑔 + 1) %𝑏))

) 𝑔




[𝛱3,𝛱1,𝛱2], Pure ⊋𝑖 AF obs 𝑈3 ↘

The shared state of this system captures the mailboxes starting with [𝛱3,𝛱1,𝛱2], meaning
candidacy messages are waiting to be received by their respective process. The ghost-state of
the system (see 𝑚netin Figure 32) is the last received message (log𝛬[𝑔𝛯]). Our goal speci!cation
(Lemma 6) is to eventually observe 𝑋𝑔𝛯 = 3 elected as the leader (𝑈3). When message 𝑈3 is received
at least by one process, it will be in!nitely propagated in a clockwise manner until all processes
know the leader.

32 Ele!herios Ioannidis, Yannick Zakowski, Steve Zdancewic, and Sebastian Angel

↓𝑛 , not_done𝑛 → ↔ instr 𝑚net



proc 1;
iter (𝑇 𝑔 ↗

proc 𝑔;
Ret (inl ((𝑔 + 1) %𝑏))

) 2




[𝑈3,𝛱3,𝛱3], 𝑛 ⊋𝑖 AF obs 𝑈3 ↘⫆̸

↓𝑛 , not_done𝑛 → ↔ instr 𝑚net



iter (𝑇 𝑔 ↗
proc 𝑔;
Ret (inl ((𝑔 + 1) %𝑏))

) 1




[𝑈3,𝛱3,𝛱3], 𝑛 ⊋𝑖 AF obs 𝑈3 ↘

,0"’6+)#.$-

↓𝑛 , not_done𝑛 → ↔ instr 𝑚net



proc 3;
iter (𝑇 𝑔 ↗

proc 𝑔;
Ret (inl ((𝑔 + 1) %𝑏))

) 1




[𝛱3,𝛱3,𝛱3], 𝑛 ⊋𝑖 AF obs 𝑈3 ↘

B,)-AU𝑖

𝑓 𝑔𝛯 𝛬𝑝 ω match 𝑔𝛯,𝛬𝑝 with
| 2,[𝛱3,𝛱3,𝛱2] ↗ 1

| 1,[𝛱3,𝛱1,𝛱2] ↗ 2

| 3,[𝛱3,𝛱1,𝛱2] ↗ 3

| 2,[𝛱3,𝛱1,𝛱2] ↗ 4

| _, _ ↗ 10

end.

R 𝑔𝛯 𝛬𝑝 𝑛 ω match𝑛 with
| Pure ↗ id = i ∋ ms =[𝛱3,𝛱1,𝛱2]
| Obs (Log 𝛱𝑋) tt ↗
match (id, p) with
| (2, 3) ↗ ms =[𝛱3,𝛱3,𝛱2]
| (3, 1) ↗ ms =[𝛱3,𝛱1,𝛱2]
| (1, 2) ↗ ms =[𝛱3,𝛱1,𝛱2]
| _ ↗ ∈
end

| _ ↗ ∈
end

R𝑄 𝑔𝛯 𝛬𝑝 𝑛 ω not_done𝑛
∋ 𝑔𝛯 = 3 ∋𝛬𝑝 = [𝛱3,𝛱3,𝛱3]

↓ 𝑔 𝑛 𝛬𝑝, R𝑄 𝑔 𝑛 𝛬𝑝 →

↔ instr 𝑚net



iter (𝑇 𝑔 ↗
proc 𝑔;
Ret (inl ((𝑔 + 1) %𝑏))

) 𝑔




𝛬𝑝, 𝑛 ⊋𝑖 AF obs 𝑈3 ↘

↓ 𝑔 𝑛 𝛬𝑝, R 𝑔 𝑛 𝛬𝑝 → ⫆̸
↔ instr 𝑚net

(
proc 𝑔;
Ret (inl ((𝑔 + 1) %𝑏))

)
𝛬𝑝, 𝑛 ⊋𝑅 AF AX done(𝑇 𝑖𝑗 𝑛 ⇑ 𝛬𝑝⇑ ↗

̸ 𝑔⇑, 𝑖𝑗 = inl 𝑔⇑ ∋ R𝑄 𝑔
⇑ 𝑛 ⇑ 𝛬𝑝⇑) △

↔ instr 𝑚net
(

proc 𝑔;
Ret (inl ((𝑔 + 1) %𝑏))

)
𝛬𝑝, 𝑛 ⊋𝑅 AF AX done(𝑇 𝑖𝑗 𝑛 ⇑ 𝛬𝑝⇑ ↗

̸ 𝑔⇑, 𝑖𝑗 = inl 𝑔⇑ ∋ R 𝑔⇑ 𝑛 ⇑ 𝛬𝑝⇑ ∋ 𝑓 𝑔⇑ 𝑛 ⇑ 𝛬𝑝⇑ < 𝑓 𝑔 𝑛 𝛬𝑝)

,0"’6+)#.$-

↓ (𝑔 ≃ PID𝑀), ↔ instr 𝑚net



iter (𝑇 𝑔 ↗
proc 𝑔;
Ret (inl ((𝑔 + 1) %𝑏))

) 𝑔




[𝛱3,𝛱1,𝛱2], Pure ⊋𝑖 AF obs 𝑈3 ↘

S5$,0AU𝑖,N

↔ instr 𝑚net



𝑔 ↑ branch 𝑏;
iter (𝑇 𝑔 ↗

proc 𝑔;
Ret (inl ((𝑔 + 1) %𝑏))

) 𝑔




[𝛱3,𝛱1,𝛱2], Pure ⊋𝑖 AF obs 𝑈3 ↘

B,)-AU𝑖

Fig. 34. Ticl liveness proof for the distributed consensus example, is split in two subproofs using intermediate
relation R𝑄 .

Start by nondeterministically choosing a process to schedule (𝑔 ↑ branch 𝑏) !rst. Applying
the sequence lemma (B,)-AU𝑖) introduces 𝑔 ≃ PID3 to the proof context. We must prove that
eventually a leader is elected, regardless of which process the scheduler chooses !rst. Figure 34 uses
liveness split (S5$,0AU_𝑢,N) with an intermediate relation (R𝑄) to mark the end of the candidate
aggregation phase. Loop invariant (R) shows that, if we know which process ran last (𝛱𝑓) and
which process is currently running (𝑔𝛯) we can guess the state of mailboxes (either [𝛱3,𝛱3,𝛱2] or
[𝛱3,𝛱1,𝛱2] or [𝛱3,𝛱1,𝛱2]) by checking Figure 27.
By case analysis (on𝑛 , 𝑔𝛯, 𝑋) we can show that regardless of the nondeterministic choice of !rst

PID (𝑔), candidate aggregation eventually ends in R𝑄 : The highest PID’s candidacy message (𝛱3) is
in every mailbox and it its process is ready to be scheduled (𝑔 = 3). Establishing this intermediate

Structural temporal logic for mechanized program verification 33

goal simpli!es the ranking function 𝑓 and invariant R, which now only need to refer to candidacy
messages (𝛱𝑕), not election announcement messages (𝑈𝑕).
Now what’s left is the remaining liveness proof, starting at a point (R𝑄) where the mailboxes

have fully propagated the candidacy of 𝑋𝑔𝛯 = 3 ([𝛱3,𝛱3,𝛱3]) and also 𝑔 = 3 is scheduled to run.
Using the equational theory of ICTrees (Section 4.5) we unfold one iteration of the loop (proc 3).
Consequently we use the sequencing lemma (B,)-AU𝑖) to evaluate the proccess with 𝑋𝑔𝛯 = 3,
updating the mailbox of its neighbor (𝑋𝑔𝛯 = 1). The state after running proc 3 is [𝑈3,𝛱3,𝛱3] and the
next process scheduled to run is 𝑔 = 1. When proc 1 runs, it will receive the election announcement
(𝑈3), satisfying the liveness property (obs 𝑈3) and concluding the proof.

Consequently, from state R𝑄 , proc 3 runs with 𝛱3 in their mailbox and announces themselves as
the new leader (𝑈3). The next process is then scheduled (𝑔 = 1), receiving the leader announcement
(𝑈3) and satisfying the goal (AF obs 𝑈3).

	Abstract
	1 Introduction
	2 Why are liveness properties so challenging to prove?
	3 Computational model: ICTrees
	3.1 The ictree computational model
	3.2 ICTree semantics and instrumentation

	4 Temporal specifications: Ticl
	4.1 Kripke transition relation
	4.2 Syntax of ticl
	4.3 Semantics of ticl formulas
	4.4 Ticl formula equivalence
	4.5 ICTree equivalence under Ticl entailment

	5 Structural lemmas for ICTree
	5.1 Sequential composition
	5.2 Iteration

	6 Using Ticl and ICTrees
	6.1 Instrumentation of StImp
	6.2 StImp structural lemmas
	6.3 Example: structural proof of liveness for StImp

	7 Motivating examples
	7.1 Round-robin scheduler
	7.2 Secure concurrent shared memory
	7.3 Distributed Consensus

	8 Discussion and related work
	8.1 Comparison with ITrees and CTrees
	8.2 Comparison with LTL, CTL, and TLA
	8.3 Comparison with program logics
	8.4 General Liveness Properties and Completeness
	8.5 Conclusion

	Acknowledgments
	References
	A Coinductive Proofs and Up-to Principles in Rocq
	B Secure concurrent shared memory proof
	C Distributed Consensus proof

