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Deepfake speech represents a real and growing threat to systems and society. Many detectors have been created to aid in defense
against speech deepfakes. While these detectors implement myriad methodologies, many rely on low-level fragments of the speech
generation process. We hypothesize that breath, a higher-level part of speech, is a key component of natural speech and thus improper
generation in deepfake speech is a performant discriminator. To evaluate this, we create a breath detector and leverage this against a
custom dataset of online news article audio to discriminate between real/deepfake speech. Additionally, we make this custom dataset
publicly available to facilitate comparison for future work. Applying our simple breath detector as a deepfake speech discriminator on
in-the-wild samples allows for accurate classi!cation (perfect 1.0 AUPRC and 0.0 EER on test data) across 33.6 hours of audio. We
compare our model with the state-of-the-art SSL-wav2vec and Codecfake models and show that these complex deep learning model
completely either fail to classify the same in-the-wild samples (0.72 AUPRC and 0.89 EER), or substantially lack in the computational
and temporal performance compared to our methodology (37 seconds to predict a one minute sample with Codecfake vs. 0.3 seconds
with our model).
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1 Introduction

Deepfake speech (e.g., text-to-speech, deepfakes, voice assistants) aims to make the di"erentiation between synthetic
and organic speech di#cult [25, 34]. While such audio has many benign uses, the potential for dangerous applications
has created the need for accurate and automated demarcation of human-spoken from synthetically-generated audio.

The research community has responded with competitions such as ASVspoof [21, 43, 45, 47], ADD [49], and SASV [20].
These competitions curate datasets of deepfake and real speech and invite participants to create detection algorithms to
test on these datasets. Subsequently, these datasets are the de facto standard for deepfake speech and give a baseline
of comparison for all current and future deepfake speech detectors. Most of the currently existing speech deepfake
detectors focus on low-level spectral (e.g., spectrogram, MFCC, LFCC, and CQCC) imperfections created during the
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2 Layton et al.

audio generation pipeline and show starkly di"erent classi!cation results vs. human interpreters [44]. This technique
of low-level spectral detection will be rendered obsolete due to the rapid advancement of the speech generation !eld.
Thus, a paradigm shift towards high-level speech features such as prosody detection [5], emotion detection [19], and
anatomical shape detection [8] is underway.

One promising avenue for high-level speech feature exploration is breath, as breathing is one of the subtle ways
that humans subconsciously perceive naturalness in speech [1, 9, 40]. Additionally, the demand for automatic breath
detection methods for medical research purposes is elevated due to COVID-19 [14]. This demand in$uenced the
INTERSPEECH 2020 Computational Paralinguistics Challenge to create the Breathing Sub-Challenge, a track dedicated
to breath detection [36]. Current state-of-the-art breath detection methods include spectral-based models [17, 30],
acoustic models [9], and raw speech waveform deep learning [30]. While these methods automatically detect breath in
audio, applying these techniques to the realm of deepfake speech to demarcate real from speech deepfakes is an open
challenge. Towards this, we explore the viability of breaths as a detection mechanism for deepfake speech.

Our work emphasizes the practical signi!cance of addressing in-the-wild deepfake speech, particularly in real-world
applications such as news outlets that use high-quality synthetic speech to maintain listener engagement. Although
academia often focuses on the development of cutting-edge deepfakes, these are seldom encountered extensively online.
Thus, understanding the industry standard, which impacts the largest audience, forms the core of our work. Towards
this, we collect speech samples from online news vendors that provide both text-to-speech (TTS) and human-read
audio options, allowing us to assess the e#cacy of breath detection as a novel discriminator for deepfake speech.

This work is essential because it leverages simple yet e"ective models that focus on breath patterns, a feature
largely overlooked in distinguishing between real and synthetic speech. This focus is crucial considering the growing
prevalence of deepfake technology and its potential misuse. Our approach addresses the challenge of detecting deepfake
speech with reliability and e#ciency, without succumbing to the common pitfalls associated with complex machine
learning techniques that often struggle with generalization.

By conducting a comparative analysis between our models and state-of-the-art systems, we underscore the practical
utility and relevance of using breath events. This highlights the necessity for adaptable and e#cient detection strategies
suited to real-world deepfake scenarios. Moreover, it reinforces the argument against the exclusive use of academic
datasets like ASVspoof for a comprehensive evaluation, as they may not fully capture the diverse and evolving nature
of deepfake speech used in everyday contexts.

Our main contributions are:

• We perform a study of currently deployed in-the-wild synthetic speech.
• We create a generation-agnostic deepfake speech detector, based solely on breaths.
• We publish a dataset of in-the-wild text-to-speech and human-read speech.
• We highlight shortcomings and over-reliance on complex deep learning detection models.

The remainder of this paper is organized as follows: Section 2 states our hypothesis; Section 3 details our methodology;
Section 4 presents our experimental results; Section 5 o"ers discussion and insights based on our !ndings; Section 6
discusses related work; and Section 7 presents our concluding remarks.

2 Hypothesis

We hypothesize that current speech deepfakes generation techniques do not su#ciently incorporate breaths.
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To investigate this claim, we must !rst determine if breath is a generalizable speech feature. Thus, we de!ne our !rst
research question:
RQ1 · Are breaths automatically detectable, intra and inter-speaker?

As breath is one of the ways that humans determine naturalness in speech; we de!ne our second research question:
RQ2 · Do current deepfake voices generate breaths?

Combining the previous research questions we de!ne our !nal research question:
RQ3 · Are breaths able to accurately discriminate between in-the-wild deepfake and real samples?

3 Methodology

To determine if breaths are a generalizable feature between speakers and subsequently useful as a discriminator against
real and fake speech we de!ne deepfake speech, gather real and fake data, implement and test detection models, and
evaluate the performance of breathing. This section describes our methodologies for collecting breathing samples,
deepfake samples, and our algorithms for detecting these samples along with our evaluation metrics.

3.1 Cheapfake vs. Deepfake

Synthetic media is a spectrum that spans from generative (e.g., machine learning and arti!cial intelligence) to manually
altered (e.g., Photoshop and speech waveform manipulation) samples. The use of deep neural networks creates a
deepfake and using cheap manual software manipulation creates a cheapfake [33]. Speci!cally, a cheapfake requires a
pre-existing sample of a speci!c individual for manual modi!cation; whereas, a deepfake may be fully generative and
not require a source sample. While both forms of synthetic media in$uence society, we focus on the dominant form of
synthetic media known as deepfakes for the remainder of this paper. More critically, we only consider media samples
that are entirely real or entirely fake (i.e., no partially fake samples with segments altered). Additionally, this extends to
manipulation techniques such as altering the rate of speech or changing the pitch.

3.2 Dataset

We employ a multi-tiered model pipeline that requires independent datasets during the training phase. We gather
single-speaker podcast audio for training the breath detector and online news articles read by humans and text-to-speech
algorithms for the !nal deepfake speech detection training and testing.

3.2.1 Why not ASVspoof.

ASVspoof is the de facto standard dataset when creating and testing a deepfake speech detector and it gives a community
baseline for comparison. However, for our task, this dataset is not representative, su#cient, or realistic. First, our model
relies on features of breathing and thus samples must be su#ciently long to contain a breath (93% of ASVspoof 2021
samples are shorter than 5 seconds). As breaths in read and spontaneous speech are expected at a rate of 8-14 per
minute [31], each ASVspoof sample is not expected to contain any of these important high-level features. Additionally,
many of the samples longer than 5 seconds are !lled with incoherent speech due to generation issues. Figure 1 shows
the CDF for the length of samples from some popular deepfake speech datasets. This shows that ASVspoof is not alone
in containing a majority of short samples and as such none of these datasets make sense for our application.
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Fig. 1. CDFs of the length of samples for four popular audio deepfake datasets. We show that the vast majority of samples in these
datasets are shorter than 5 seconds for ASVSpoof and 7.5 seconds for Fake or Real and Fake AV Celeb; thus showing that these
datasets are unlikely to contain breathing.

Moreover, the class distribution of the ASVspoof 2021 samples is unrealistic (97% deepfake and 3% real in the
evaluation set). This class distribution is vastly di"erent from the expected in the wild distribution and would require
multiple resampling techniques to correct, which could bias the results due to the vast imbalance of the dataset [23].

To handle these issues, we opt to gather samples that are currently in the wild today as a better representation of
deepfake speech and contain a balanced real/fake class distribution.

3.2.2 Deepfakes in the Wild.

Wild deepfakes di"er from traditional (i.e., research/academically created) deepfakes in several key aspects. While
normal deepfakes are often created in controlled environments with high-quality audio and complex methodologies,
deepfakes found in the wild are generated using more accessible, less sophisticated tools, resulting in variable quality.
Furthermore, their rapid distribution across social media platforms introduces challenges in detection owing to diverse
audio sources and environments. This nature of deepfakes in the wild creates di#culties in maintaining consistent
audio artifacts for detection, necessitating adaptive detection technologies. As such, developing technologies must
focus on robust, real-time analysis to handle the unpredictability and scale of wild deepfake proliferation.
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3.2.3 Podcasts.

We curate a training dataset of podcasts that meet speci!c criteria and manually annotate these podcasts for breath
locations. Each podcast is single-speaker, contains no background music, is free from obvious background noise, and
breathing is noticeable. In total, we selected 10 podcasts from 4 speakers totaling just over 5 hours. Each podcast is
manually annotated for precise breath locations by two independent annotators and a third annotator veri!es and
reconciles any discrepancies in the annotations from each initial annotator to ensure all breaths are captured.

3.2.4 News Articles.

We gather news article audio from online news vendors for training and testing our deepfake speech detector. We
search for news articles with strings like “Listen to this article” and “Hear the full article” keywords on the webpage to
indicate that there is an audio version of the transcript available. Manual checking of the news vendor is required to
determine if the news articles provided are text-to-speech generated, or spoken by a human. In total, we collected 282
TTS (29.49 hours) and 51 human-read (22.99 hours) news articles from four di"erent news outlets (two TTS sets and
two human-read sets).1

3.3 Breath Detection

First, we create a breath location detector to highlight breaths in a given audio sample. Towards this, we take inspiration
from rare-event detection [3, 39] to create our pipeline for breath detection. Unlike these works, however, we do not
perform image analysis on spectrograms, but instead use the raw values computed from the spectrogram. Thus, all
the layers of our model lose a dimension, reducing model complexity and providing speed increases to training and
inference which helps real-time predictions.

3.3.1 Feature Selection.

We !rst calculate raw values of the mel-spectrogram (dB converted), zero crossing rate (ZCR), and root mean squared
energy (RMSE) (dB converted). Each of these features slides a window over a waveform to calculate an overlapping
temporal-based value. As the size of the window and the duration between windows may be optimized we test a
variety of values ranging from 5ms – 200ms𝐿𝑀𝑁𝑂𝑃𝐿_𝑄𝑅𝑁𝑆𝑇𝑈 and 2.5ms – 25ms 𝑈𝑃𝑉_𝑄𝑅𝑁𝑆𝑇𝑈. The result of this feature
extraction is an array of frames that contain spectrogram, ZCR, and RMSE values for an entire audio sample. The
number of frames in an array is calculated as 𝑁𝑊𝑋𝐿 𝑀𝑁𝑂𝑃𝑄 =

𝑄𝑁𝑂𝑅𝑆𝑃_𝑇𝑈𝑀𝑁𝑉𝑊𝑋𝑌 (𝑂𝑊𝑆𝑆𝑊𝑄𝑃𝑍𝑋𝑌𝑇𝑄 )
𝑎𝑋𝑅_𝑆𝑃𝑌𝑏𝑉𝑎 , and the value of each frame

is the aggregated mel-spectrogram, ZCR, and RMSE for 𝐿𝑀𝑁𝑂𝑃𝐿_𝑄𝑅𝑁𝑆𝑇𝑈 duration. For example, a 5-second excerpt
of audio with a 𝐿𝑀𝑁𝑂𝑃𝐿_𝑄𝑅𝑁𝑆𝑇𝑈 of 50ms and a 𝑈𝑃𝑉_𝑄𝑅𝑁𝑆𝑇𝑈 of 5ms creates a 1000-frame array. We test a spectrum of
sizes, shapes, and durations for these features and select a 𝐿𝑀𝑁𝑂𝑃𝐿_𝑄𝑅𝑁𝑆𝑇𝑈 of 20ms, a 𝑈𝑃𝑉_𝑄𝑅𝑁𝑆𝑇𝑈 of 2.5ms, and 128
mel-spectrogram buckets for our !nal model as these produce the best results.

Next, using the manually annotated location of breath we denote each frame in the array as either a breath (i.e.,
positive class) or not a breath (i.e., negative class). A frame is considered to contain breath if more than half the
𝐿𝑀𝑁𝑂𝑃𝐿_𝑄𝑅𝑁𝑆𝑇𝑈 of that frame is annotated as a breath. Figure 2 shows our selected features and how they change during
a breath and speaking before/after breathing. For breaths, ZCR and RMSE tend towards medium values between silence
and spoken segments and the mel-spectrogram shows only energy at lower frequencies.

1Each sample is entirely deepfake, or entirely real. There is no scenario for deepfake speech injected into real audio. We do not redistribute the audio;
however, links to news article websites are freely available at: https://sites.google.com/view/ebydt/.
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6 Layton et al.

Fig. 2. A visual representation for a segment of speech containing a breath using a 𝑐𝑊𝑌𝑇𝑋𝑐_𝑆𝑃𝑌𝑏𝑉𝑎 of 20ms and a 𝑎𝑋𝑅_𝑆𝑃𝑌𝑏𝑉𝑎
of 2.5ms. During the spoken segments before and a!er the breath RMSE is at peak values while the ZCR is at minimum values.
Immediately surrounding a breath is a non-voiced segment where the RMSE values drop and ZCR values rise, but then both move to
a medium value during the breath. Additionally, the background mel spectrogram shows higher energy across all frequencies during
spoken segments, medium energy at lower frequencies during breaths, and relatively li"le energy at all frequencies for silence.

3.3.2 Model Architecture.

Based on Székely et al. [39] we build a multi-tiered convolutional and recurrent neural net detection model. The model
architecture starts with two 1D convolutional layers. The !rst Conv1D layer has 16 !lters with a kernel size of 3, strides
of 1, same padding, and ReLU activation. This is followed by batch normalization, max pooling with a pool size of
3, and a 0.2 dropout. The second Conv1D layer has 8 !lters with a kernel size of 1, similarly accompanied by batch
normalization, max pooling (pool size of 3), and dropout.

These initial convolutional layers are used as input to a bidirectional LSTM layer, which processes the sequences
learned from the convolutional layers. This layer is crucial for modeling temporal dependencies within the audio data.
The LSTM layer’s output is connected to a dense layer with a sigmoid activation for the !nal prediction. We use binary
cross-entropy as the loss function and Adam as the optimizer for e#cient training.

The pipeline for this model is shown in Figure 3. We employ a 𝐿𝑀𝑁𝑂𝑃𝐿_𝑄𝑅𝑁𝑆𝑇𝑈 of 20ms, a 𝑈𝑃𝑉_𝑄𝑅𝑁𝑆𝑇𝑈 of 2.5ms to
generate 128 mel-spectrogram buckets, leveraging a batch size of 32. We experimented with many di"erent shapes and
sizes for our breath detection model architecture such as changing the total number of convolutional layers, adjusting
the number of !lters and kernel sizes of each convolutional layer, altering the default max pool size, and changing the
size of the dropout layer. Ultimately we select the sizes and parameters de!ned in Figure 3.

Input to our breath detection model is crafted by sectioning an entire audio sample into 2-second segments, which
are fed sequentially to the model, yielding predictions every 50ms (40 predictions per segment). Choosing 2-second
slices optimizes training and inference times without sacri!cing performance. Each segment consists of 800 slices of
2.5ms features, with 128 mel-spectrogram values, alongside the ZCR and RMSE features, totaling 130 features. With a
batch size of 32, the input shape is (32, 800, 130).
Manuscript submitted to ACM
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Fig. 3. A visual representation of the breath detection model architecture.

Finally, the output for each 2-second audio chunk is a series of 40 binary classi!cations, determining the presence of
a breath within each 50ms slice. This detailed architecture ensures e#cient and accurate breath detection across varied
audio inputs.

3.3.3 Model Result Post-Processing.

Our pipeline implements a simple mechanism on the resultant predictions. We remove any predicted breaths that are
shorter than 150ms as we measured no breaths shorter than 150ms in any of our podcasts. This post-processing a"ects
few samples, yet helps smooth out the resultant breath locations. We then use these breath locations as input features
for the deepfake speech detection algorithm.

3.3.4 Metrics.

We use a multitude of metrics for our full pipeline and evaluation of intermediary and !nal results. For breath detection,
we use the binary cross entropy loss function for hyperparameter tuning and use Area Under the Precision-Recall Curve
(AUPRC) for evaluating model performance. We use AUPRC as our main metric as it is robust to imbalanced data [4, 16]
and e"ectively highlights performance on the important class. As breaths are an imbalanced class distribution problem
(i.e., non-breathing heavily outweighs breathing in normal speech) and are the important class, AUPRC is a suitable
metric for honestly evaluating performance.

3.3.5 Dependency on Breath Extraction.

In the context of our hypothesis, a hyper-accurate breath detector is not required. The primary objective is not the
exhaustive identi!cation of every breath in an audio !le, but rather the su#cient detection of breath events to serve
as reliable discriminators for building an accurate deepfake speech detector. If our hypothesis holds (explored in
Section 4.1), even a moderate level of precision in detecting breath events will e"ectively identify deepfake speech.
This approach leverages the presence of natural, physiological cues as a robust di"erentiator between genuine and
synthetically-generated speech, thereby providing e"ectiveness without requiring comprehensive breath detection.
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Fig. 4. A visual representation of the final stage of the detection pipeline. We use/compare three di#erent simple classifiers in the last
stage to showcase the relative interchangeability of models for final prediction.

3.4 Deepfake Speech Detection

The !nal component of our pipeline uses the predicted breath locations as input. For an audio sample, we use the
predicted breath locations to calculate three features: average breaths per minute, average breath duration, and average
spacing between breaths. With these features, we create multiple simple deepfake speech detectors to test the viability
of computationally inexpensive methods and compare models to a complex deep learning model (Section 4.2.3). The
!rst is a thresholding classi!er that uses previously measured breath statistics. The second is a C-Support Vector
Classi!cation (SVC) algorithm with a poly kernel, a regularization parameter of 1, and a degree of 2. Finally, we
implement a three-tiered decision tree with default parameters. Each of these mechanisms produces a single binary
prediction for the entire audio sample. The pipeline for this deepfake detection model is shown in Figure 4. Furthermore,
to ensure that we are not over!tting when training, we perform leave-one-out k-fold cross-validation for the SVC and
decision tree models [18].

Following our hypothesis, we expect that the thresholding method should be su#cient as a !nal discriminator if
deepfake speech does not produce any breaths. However, if breaths are produced, then a more robust mechanism would
be required to accurately discriminate between real and fake samples. Thus, we apply both techniques and compare the
results to determine viability and then compare them to complex and computationally expensive state-of-the-art.

3.4.1 Metrics.

For the !nal deepfake speech detector, we implement a range of metrics to help contextualize model performance, as
single metrics may fail to honestly describe model performance. These metrics are accuracy, F1-score, precision, recall,
AUPRC, equal error rate (EER), true positives, true negatives, false positives, and false negatives. For the thresholding
method, we are unable to use AUPRC and EER as these metrics require probabilities, and only a prediction is generated.
Finally, we note that the use of EER as a performance metric is deprecated by ISO/IEC standards [13] and has been shown
to obfuscate results [10, 38]; however, EER remains the current community standard for deepfake speech detection.
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4 Experiments

To su#ciently answer our research questions de!ned in Section 2 we perform two experiments starting with breath
generalizability and !nishing with deepfake speech (deepfake) detection. This section outlines our results and answers
each research question proposed in Section 2; additionally we compare to current state-of-the-art.

4.1 Breath Generalizability (RQ1)

To understand if breath sounds are generalizable between di"erent individuals (thereby justifying them as a deepfake
speech discriminator), we create three tests. RQ1 tests the generalizability of breathing with Test 1 obtaining a
comparative baseline for successive tests, Test 2 examining the performance of each podcast, and Test 3 examining the
performance of each speaker. Each test uses our breath detection model de!ned in Section 3.3 without any changes.

4.1.1 Test 1.

Test 1 creates a best-case baseline for comparison with Tests 2 and 3 employing k-fold cross-validation. Test 1 takes
( 1𝑑 ↑ 100)% consecutive frames, where 𝑌 is the total number of podcasts, randomly from each podcast to use as the
validation set and uses the remaining 100 ↓ ( 1𝑑 ↑ 100)% from each podcast as the training set. We do this process 100
times and calculate the validation AUPRC to obtain a baseline for comparison. This test gives the best-case scenario
due to having a subsample of every podcast/speaker in each training and validation batch. This is in contrast to the
following two tests which avoid overlapping training and validation speakers/podcasts.

4.1.2 Test 2.

Test 2 employs a leave-one-out strategy to determine the impact on breath detection for each podcast. A podcast is set
aside individually as the validation set and the remaining 𝑌 ↓ 1 podcasts become the training set. We retrain our breath
detection model using the training set and calculate the AUPRC for the validation set. We do this for all 𝑌 podcasts and
compare the results to Test 1 to highlight any podcasts that may be problematic, or not generalizable.

4.1.3 Test 3.

While similar to Test 2, Test 3 evaluates the impact on breath detection for a single speaker. Towards this, all podcasts
from a speci!c speaker are set aside as the validation set and the remaining speaker’s podcasts become the training
set. We retrain our breath detection model using the training set and calculate the AUPRC for the validation set. This
process is repeated for each speaker and compared against Test 1 to determine generalizability between speakers.

4.1.4 Results.

Figure 5 shows the results of these three tests. Our model outputs a prediction for every 50ms of an audio !le; all
consecutive positive predictions are considered breath events and if a breath event prediction temporally overlaps a
ground truth breath event by %33 percent, we classify that as a true positive. We use the average baseline AUPRC of
↔0.97 from Test 1 to compare with Tests 2 and 3. Test 2 shows podcast-speci!c leave-one-out performance between ↔0.91
and ↔0.99, marking a reduction from the baseline (Test 1). Test 3 shows speaker-speci!c leave-one-out performance
between ↔0.89 and ↔0.99, which is also a reduction in performance from the baseline. The performance reduction from
Tests 2 and 3 are expected as in Test 1 there is training data of similar distribution to the validation in every iteration
since validation is derived as a subset of each podcast as explained in Section 3.3.
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Fig. 5. The baseline validation testing on all podcasts vs. the leave-one-out testing for each podcast and each speaker. Each point is a
specific speaker/podcast as the validation set. We show that breath measured in this capacity is generalizable and thus useful as a
deepfake speech discriminator.

Leave-One-Out Speaker
Metric Mann-Whitney U Two One-Sided Tests

Statistic p-value Mean Di"erence 95% CI Equivalence
Accuracy 150.0 0.1037 0.0239 (0.0089, 0.0389) True
Positive Precision 53.0 0.1280 -0.0025 (-0.0071, 0.0020) True
Positive Recall 150.0 0.1037 0.0505 (0.0209, 0.0802) False
Positive F1 Score 150.0 0.1037 0.0311 (0.0133, 0.0488) True
Positive AUROC 146.0 0.1369 0.0367 (0.0229, 0.0505) False
Positive AUPRC 124.0 0.4525 0.0181 (0.0033, 0.0329) True
Negative Precision 150.0 0.1037 0.0326 (0.0104, 0.0548) False
Negative Recall 53.0 0.1280 -0.0028 (-0.0066, 0.0010) True
Negative F1 Score 150.0 0.1037 0.0187 (0.0058, 0.0316) True
Negative AUROC 146.0 0.1369 0.0367 (0.0229, 0.0505) False
Negative AUPRC 147.0 0.1280 0.0865 (0.0574, 0.1155) False

Leave-One-Out Podcast
Metric Mann-Whitney U Two One-Sided Tests

Statistic p-value Mean Di"erence 95% CI Equivalence
Accuracy 181.0 0.1769 -0.0122 (-0.0246, 0.0003) True
Positive Precision 189.0 0.2341 -0.0003 (-0.0041, 0.0035) True
Positive Recall 169.0 0.1112 -0.0244 (-0.0494, 0.0007) True
Positive F1 Score 178.0 0.1584 -0.0123 (-0.0270, 0.0024) True
Positive AUROC 294.0 0.3939 0.0045 (-0.0025, 0.0114) True
Positive AUPRC 262.0 0.8223 0.0049 (-0.0057, 0.0154) True
Negative Precision 169.0 0.1112 -0.0226 (-0.0415, -0.0036) True
Negative Recall 191.0 0.2501 0.0000 (-0.0034, 0.0034) True
Negative F1 Score 183.0 0.1902 -0.0117 (-0.0225, -0.0009) True
Negative AUROC 294.0 0.3939 0.0045 (-0.0025, 0.0114) True
Negative AUPRC 271.0 0.6887 0.0131 (-0.0022, 0.0285) True

Table 1. Statistical analysis for Tests 2 and 3 vs Test 1 using the Mann-Whitney-U statistic and the Two One-Sided Tests. We show
that, regardless of metric, no p-value is below 0.05 and most metrics are equivalent to to Test 1 with standard deviations within ±0.05.
Both of these suggests that when a podcast or speaker is excluded from training, the performance remains consistent, a#irming
breath as generalizable.
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Statistical tests allow for evaluating our model’s performance in varied scenarios. Towards this, we employ the
Mann-Whitney U test [26] for its robustness in comparing independent samples, o"ering insights into performance
consistency without requiring normal distribution assumptions. Table 1 shows this test’s results; notably every p-value
is greater than 0.05, which suggests we cannot reject the null hypothesis–indicating no signi!cant di"erence between
leave-one-out scenarios and the best case (Test 1), thus reinforcing the breath feature’s robustness.

From Table 1, we show that almost all metrics in both leave one out scenarios exhibit equivalence, as assessed by the
Two One-Sided Tests [35] with an equivalence margin of 0.05. Equivalence is determined by the con!dence intervals
(CI) of the mean di"erences falling within this prede!ned margin, suggesting that the performance di"erences are
practically insigni!cant. This a#rms that the breath feature consistently performs well, even amidst variations in the
test data, underscoring its reliability as a feature.

We observe an AUPRC mean and standard deviation of 0.969±0.010, 0.964±0.029, and 0.951±0.037 for Test 1, Test 2,
and Test 3, respectively. This consistency supports the conclusion that breaths are generalizable, serving as a reliable
discriminator for detecting deepfake speech (RQ1).

4.2 Deepfake Speech Detection (RQ2, RQ3)

4.2.1 Setup.

Now that we have shown the generalizability of breaths between individuals, we apply this methodology as a discrimi-
nator for deepfake and real speech using the three methods described in Section 3.4. First, we train our breath detection
model on all the podcast data to ensure the best possible !nal model. Next, we pass the news article data outlined in
Section 3.2.4 to this !nal model to get breath locations for each news article. We then use the breath locations and
calculate the three features detailed in Section 3.2. Figure 6 shows the clear delineation between the deepfake and real
news article breath features. We demonstrate that deepfake speech, as seen in the wild today, does not appropriately
produce breaths, which indicates a strong discriminator using these features (RQ2). Finally, we split the news articles
into a training and testing set where no samples from the same news outlet are in the training and test sets. This split
comes out to 101 training samples (18.9 hours) and 232 testing samples (33.6 hours) and ensures no bias when testing.

Fig. 6. We show that there is a clear distinction (i.e., no overlap) between human-read and synthetically-generated news articles with
respect to breath statistics; showcasing breath statistics are a strong discriminator.
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For the poly SVC and decision tree methodologies, we train our model (Section 3.4) with the training set and evaluate
performance on the test set. Whereas for the thresholding methodology, we do not need to split the news articles into a
training and test set as there is no training taking place since this is not a machine learning model; however, we show
results for both the training and test sets to compare against the poly SVC and decision tree methodologies. Observing
Figure 6 we show that in each calculated metric real samples have a non-zero value. We use this as our guideline and set
the threshold for each metric to be 𝑍𝑎𝑄𝑊𝑅 > 0.0 = 𝑏𝑅𝑎𝑄,𝑍𝑎𝑄𝑊𝑅 <= 0.0 = 𝑐𝑎𝑑𝑅 . For this simple thresholding, we require
that all features (i.e., avg. bpm, avg. breath spacing, and avg. breath duration) be > 0.0 to be considered real. Stated
concisely, for any sample feature that contains a zero value (i.e., no breaths present) that sample is considered fake.

4.2.2 Results.

Table 2 shows the training and test results for the news article dataset. We show that a simple SVC, decision tree, or
thresholding model can perfectly discriminate between real/deepfake speech samples.2 Furthermore, in Table 2, we
show that when performing leave-one-out cross-validation with the SVC and decision tree models we achieve perfect
results; thus showing that our models are not over!t.

2We note that AUPRC may not be 1.00 for a perfect model, due to it being calculated based on a sliding threshold of probabilities, and these models each
have a small portion where moving the threshold changes predictions.

Model Dataset EER AUPRC Accuracy F1 Precision Recall TP FP TN FN Inference Time
(CPU Seconds)

Si
m
pl
e
M
od

el
s

𝑒𝑃𝑄𝑓 𝑔𝑍𝑕 Train 0.00 1.00 1.00 1.00 1.00 1.00 77 0 24 0 –

(𝑖𝑊𝑗𝑘𝑃𝑂𝑅𝑄) Test 0.00 1.00 1.00 1.00 1.00 1.00 205 0 27 0 717

LOO-CV 0.00 1.00 1.00 1.00 1.00 1.00 282 0 51 0 –

𝑙𝑅𝑚𝑀𝑛𝑀𝑃𝑁 𝑜𝑗𝑅𝑅 Train 0.00 0.99 1.00 1.00 1.00 1.00 77 0 24 0 –

(𝑖𝑊𝑗𝑘𝑃𝑂𝑅𝑄) Test 0.00 1.00 1.00 1.00 1.00 1.00 205 0 27 0 717

LOO-CV 0.00 0.99 1.00 1.00 1.00 1.00 282 0 51 0 –

𝑜𝑈𝑗𝑅𝑛𝑈𝑃𝑄𝑂𝑀𝑁𝑆 Train – – 1.00 1.00 1.00 1.00 77 0 24 0 –

(𝑖𝑊𝑗𝑘𝑃𝑂𝑅𝑄) Test – – 1.00 1.00 1.00 1.00 205 0 27 0 717

C
om

pl
ex

M
od

el
s

𝐿𝑎𝑝2𝑝𝑅𝑚↓𝑒 Train – – – – – – – – – – –

(𝑒𝑗𝑅𝑇𝑗𝑎𝑀𝑁𝑅𝑂) Test 0.11 0.72 0.90 0.57 0.95 0.56 205 24 3 0 3,083

𝐿𝑎𝑝2𝑝𝑅𝑚↓𝑓 Train 0.06 0.96 0.95 0.95 0.97 0.91 72 0 24 5 –

(𝑏𝑅𝑇𝑗𝑎𝑀𝑁𝑅𝑂) Test 0.99 0.52 0.10 0.09 0.05 0.44 0 2 3 24 205 3,323

𝑕𝑃𝑂𝑅𝑚 𝑞 𝑎𝑑𝑅↓𝑒 Train – – – – – – – – – – –

(𝑒𝑗𝑅𝑇𝑗𝑎𝑀𝑁𝑅𝑂) Test 0.00 0.99 1.00 1.00 1.00 1.00 205 0 27 0 73,198
Table 2. Results for all simple detection models (poly SVC, decision tree, and thresholding). With all models, we obtain perfect results
on all metrics for the training and testing sets. We demonstrate that the pretrained wav2vec model falls short compared to our model in
every metric and augmenting the train set with “in-distribution” data and retraining does not solve these shortcomings. Furthermore,
we show that the new detector Codecfake also achieves perfect results on the testing set, at great computational/temporal costs
compared to our models (we infer 102 times quicker than Codecfake).
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The simple reason that all of these models produce perfect results is that current deepfake audio simply does not
produce breathing sounds and using breaths, we correctly predict all deepfake samples without falsely predicting any
real samples (RQ3). Additionally, we show performant results on a varying distribution of data, as the generation
techniques for each of the news articles are unknown. As such, we posit that simple thresholding is su#cient to capture
the nuance in breathing for real and synthetically generated audio samples (RQ3). Through this, we prove that with
our methodology, few, or even no, training samples are required.

4.2.3 Experimental Comparison to Other Detectors.

To fully contextualize the performance of our breath detector we compare our models against a highly complex and
heavily trained model: SSL-wav2vec2.0. Towards this, we implement the XLS-R-based deepfake detector [41], as this
model is the current best performer on the ASVspoof 2021 dataset by a substantial margin. While we do not use the
ASVspoof 2021 dataset in any capacity, the XLS-R model was pretrained on 436,000 hours of non-ASVspoof speech data
and is su#ciently performant on non-ASVspoof datasets.

We deploy the pretrained (𝐿𝑎𝑝2𝑝𝑅𝑚↓𝑒 ) model and additionally, to ensure a fair comparison, we !ne-tune SSL-
wav2vec2.0 with additional training (𝐿𝑎𝑝2𝑝𝑅𝑚↓𝑓). We implement this !ne-tuning by augmenting the SSL-wav2vec2.0
training data with the 18.9 hours of news articles from our training set, as such the SSL-wav2vec2.0 model is given the
best chance to obtain performant results. Furthermore, this is the same methodology used to retrain SSL-wav2vec2.0
for ASVSpoof 2021.

We pass the test set of news articles to both versions of SSL-wav2vec (in 4-second chunks, due to model requirements)
and use a probability soft voting scheme to get a single prediction for each audio !le. Table 2 shows the results of these
models and shows that our model outperforms in every metric. The pretrained SSL-wav2vec predicts nearly the entire
test set as deepfake speech whereas the retrained model predicts nearly all the test data as real speech (while predicting
the train set with 95% accuracy). The highlighted sections in Table 2 show the classi!cation decision for all news articles
in the test set for each of the model types (i.e., SVC, Decision Tree, SSL-wav2vec2.0). We note that𝐿𝑎𝑝2𝑝𝑅𝑚↓𝑓 predicts
all news articles as real and may seem as though the training phase was incorrectly handled; however, looking at the
results of𝐿𝑎𝑝2𝑝𝑅𝑚↓𝑓 on the training data shows that it indeed picks up the signal in the data. Through this, we show
that our models perform substantially better in every category than the complex models, speci!cally looking at the
false positives it is clear to see that alarm fatigue [12] would overwhelm𝐿𝑎𝑝2𝑝𝑅𝑚↓𝑒 . Comparing this to our models
which have essentially no false positives, it is clear to see the potential shortcomings of complex models.

As the thesis of our paper argues, we demonstrate that models focused on low-level speech features can completely
fail when tasked with predicting new data as seen by the contradicting results between𝐿𝑎𝑝2𝑝𝑅𝑚↓𝑒 and𝐿𝑎𝑝2𝑝𝑅𝑚↓𝑓 .
Simply put, using a complex and highly-trained model trained on low-level speech features provides unpredictable
results, even when augmenting additional “in-distribution” training data; whereas higher-level speech features can help
prevent failure.

Building on this analysis, the limitations of models such as SSL-wav2vec2.0 highlights the challenges of relying on
complex architectures primarily focused on low-level speech features and underscores the necessity for robustness
beyond training data intricacies. In response to advancements, we revisit our comparative analysis with a newer
model–Codecfake [46]. We select the Codecfake model for its recent emergence in the !eld, its publicly availability,
and its use of a novel paradigm of employing dual training across vocoder and codec-based deepfake generators. The
bottom portion of Table 2 shows the results of the pretrained Codecfake model in our test scenario. In contrast to
SSL-wav2vec, Codecfake’s pretrained model achieves perfect results on our test news articles.
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However, it is important to note that Codecfake’s computational demands and extended inference time present
signi!cant practical limitations. Unlike our model, which predicts in real time, the Codecfake model requires several
hours to process data. The right-most column in Table 2 shows the CPU time required to predict the entire test set
for each model. We show that while Codecfake achieves perfect predictions, it takes 102 times longer than our model
requires. Reframing this, it would take Codecfake ↔37 seconds (i.e., not real-time) to predict, whereas our model would
only require 0.3 seconds (i.e., real-time). This issue is further compounded by the fact that our tests of Codecfake
employed the use of multiple GPUs, which without these would drastically lengthen the prediction time. On the other
hand, our model achieves real-time predictions without a GPU. This computational and temporal ine#ciency restricts
the model’s $exibility and usability in the real world.

4.3 Summary of Research!estions

Through our experiments, we show that breaths are automatically and accurately detectable between the same speaker
and throughout di"erent speakers (RQ1), current in-the-wild deepfake speech does not produce breaths (RQ2), and
using breaths as a discriminator between real and fake samples obtains performant results (RQ3).

5 Discussion

In this section, we discuss additional material that is important to the fundamental science of machine learning and
deepfake discrimination.

5.1 On Our Model’s Performance

While achieving perfect classi!cation results (1.0 AUPRC and 0.0 EER) might raise concerns of over!tting, our !ndings
are not attributed to such issues. If we were consistently obtaining 100% accuracy on our breath detector alone, it would
warrant further scrutiny. However, our results indicate a clear distinction between real and fake speech samples based
on breath features.

Current deepfake speech models frequently fail to incorporate natural breath patterns, and this characteristic forms
the basis of our model’s e"ectiveness. To additionally ensure that our results are not due to over!tting, we employ
Leave-One-Out Cross-Validation (LOO-CV), which ensures the model is able to train and test on every sample.

Moreover, evidence supporting our hypothesis comes from the performance of a simple thresholding mechanism
that achieves perfect accuracy without any training. This further proves that the observed delineation between real and
fake speech is robust and not a result of complex model !tting. Such clear distinctions underscore the validity of our
results, a#rming that the absence of breath features in deepfake speech is a reliable discriminator.

5.2 Over-Reliance on and Shortcomings of Deep Learning Models

While complex deep learning models have achieved impressive results in various domains, their application in deepfake
detection has revealed notable shortcomings. Thesemodels often rely heavily on large datasets and intricate architectures,
making them susceptible to over!tting and unpredictable performance on unseen data. For instance, we show that
models like SSL-wav2vec2.0 have variability in detection accuracy, especially when confronted with novel or out-of-
distribution inputs. Such dependencies on complex feature extraction can lead to failures when adaptability is required.
Furthermore, these models often require extensive computational setups and large time investments for training and
inference.
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This paper highlights the over-reliance on these intricate models, suggesting that simpler, feature-based approaches
can achieve comparable, if not superior, performance. We suggest that by focusing on high-level speech features,
detection systems are more resilient to variability and distribution shifts.

Potential alternatives include hybrid models that integrate both deep learning and handcrafted feature techniques, as
well as lightweight algorithms capable of real-time processing. This shift towards a balanced approach aims to enhance
robustness and e#ciency, addressing the limitations inherent in purely complex deep learning frameworks.

5.3 Reproducibility

Reproducibility is a growing concern, especially for machine learning [32]. To alleviate these issues and to aid future
work and comparison, we make e"orts to increase the reproducibility of our work. First, we publish the code and
framework we use for our entire pipeline.3 Second, we publish the trained models and raw model scores !les. We
release the trained model and scores !le as an additional artifact as it has been shown that retraining the same model
on di"erent GPUs may produce di"erent results [2]. This gives future researchers the ability to calculate any and all
metrics that may be desired for comparison.

5.4 Limitations and Future Work

If these deepfake samples start producing frequent breathing, our relatively simple discriminators will likely produce
worse results. To accommodate this, a shift towards natural language processing (NLP) could be combined with our
work. This combination would allow contextualization between the breaths that are identi!ed and the intra-speech
location relative to other parts of speech. This contextualization would minimize false positive breath detection and
improve the results of a deepfake detector.

Additionally, we acknowledge the importance of dataset diversity in enhancing the generalization and robustness of
detection models. While our current dataset primarily consists of four podcast speakers (one female and three males, all
native English speakers) and news articles from four di"erent outlets, a more varied dataset would indeed be bene!cial,
particularly for analyzing additional high-level speech features.

Our focus, however, is speci!cally on breath detection in the context of deepfake speech. The primary feature—the
presence or absence of breath—is less in$uenced by accent or speaker variability compared to other speech characteristics.
That said, incorporating a wider range of speakers, accents, and environments in future work could further substantiate
our !ndings by ensuring robust performance across diverse conditions. Currently, our dataset e"ectively serves its
purpose by highlighting the stark contrast in breath patterns between real and deepfake audio, which is integral to our
detection approach.

6 Related Work

The emergence of deepfake technology, which leverages deep learning on extensive datasets of media, poses substantial
threats to media authenticity. This technology can lead to unethical misuse such as impersonation and the dissemination
of false information. To counteract this challenge, some research aims to introduce the concept of innate biological
processes to discern between authentic human voices and cloned voices [8, 15, 22, 27]. It has been proposed that the
presence or absence of certain perceptual features, such as pauses in speech, can e"ectively distinguish between cloned
and authentic audio [22]. Furthermore, researchers have developed new mechanisms for detecting audio deepfakes by

3https://github.com/SethLayton/every_breath_you_dont_take
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solely relying on limitations of human speech that are the result of biological constraints [8]. Speci!cally, vocal tract
reconstruction using $uid dynamic models has shown that deepfake audio samples often model impossible or highly
unlikely anatomical arrangements [8].

Mostaani et al. [27] investigated whether breathing patterns are present in text-to-speech (TTS) and voice conversion
(VC) algorithms using ASVspoof 2019. This work showed that TTS algorithms fail to properly generate breaths while
VC algorithms seem to retain breath pattern-related information. As TTS is rapidly dwar!ng VC as the main proponent
of deepfake speech, this work shows promise for breath usage as a speech deepfakes discriminator. Additionally, the
Breathing-Talking-Silence Encoder (BTS-E) [15] algorithm was proposed as an addition to existing countermeasures
(CM) for voice spoo!ng attacks that use breath and silence event detection to enhance existing CM performance by up
to 46%. BTS-E leverages three Gaussian Mixture Models (GMM) to segment/label input audio into talking, silence, and
breath segments. This segmentation is then translated into a latent feature space and combined with the last hidden layer
in an existing CM to focus that CM on talking/breathing/silence events. However, the feature importance of breathing
vs. silence is not explored in BTS-E; which is problematic as Müller et al. [29] identify an uneven distribution of leading
and trailing silence duration in the ASVspoof 2019 and 2021 datasets, which correlate with the target prediction label.
Thus, simply examining the silence patterns in the !les allows for accurate classi!cation of real/speech deepfakes. As
such, it is unclear whether the breath features in BTS-E are important and the value of breaths is unknown. More
critically, none of these papers make any claims on current deepfake speech deployed in the wild.

Building upon the broader context of speech Deepfake detection, researchers have explored a variety of acoustic
features for distinguishing between genuine and synthetic speech. These include traditional hand-crafted features
and those learned through deep learning models [24]. For example, the Constant-Q Cepstral Coe#cient (CQCC)
and its extensions (eCQCC) have been investigated for spoo!ng detection [42, 48]. Additionally, the use of deep
learning architectures such as Deep Neural Networks (DNNs), Residual Networks (ResNets), and Recurrent Neural
Networks (RNNs) have become prevalent in constructing deep embeddings from both raw waveforms and extracted
features [6–8, 11].

The generalizability of deepfake detection models, particularly when faced with unseen Deepfake generation
techniques or data from di"erent domains, remains a signi!cant challenge [24]. Simply combining data from di"erent
domains for training does not always guarantee improved generalization due to potential domain mismatches [37].
Furthermore, techniques like adversarial attack defense and cross-dataset evaluation are emerging as important research
topics to address these limitations [24, 28].

The reproducibility of research !ndings is also a growing concern in the machine learning community [32], including
the !eld of speech Deepfake detection [24]. The lack of publicly available source code and detailed experimental settings
in some publications hinders the ability of other researchers to verify and build upon existing work . E"orts to improve
reproducibility, such as the public release of code and trained models, are crucial for the advancement of the !eld.

Our work emphasizes the practical signi!cance of addressing in-the-wild deepfake speech, higher-level speech
features, real-time predictions, and reproducibility. Speci!cally, we confront these gaps by using real-world data to
validate breath features as deepfake discriminators and publishing our work. By prioritizing lightweight, adaptable
methodologies, we aim to ensure that detection models are not only theoretically robust but also practical for diverse
applications, thus enhancing the reliability and utility of breath-based detection strategies in a rapidly evolving !eld.
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7 Conclusion

Deepfake speech generation advancements are reducing the gap between human-spoken and human-sounding audio.
Deepfake speech will become imperceivable to human speech, as such a focus needs to be placed on how this speech
is performed. Toward this, we employ a multi-tiered pipeline that focuses on breathing to discriminate between
real/deepfake speech samples. We show that breaths are generalizable between speakers and that simple calculated
breath features provide accurate classi!cation results (perfect 1.0 AUPRC and 0.0 EER) on a dataset of in-the-wild
real and synthetically-generated speech. Furthermore, we show the shortcomings of complex deep learning models
with failures to classify the same in-the-wild samples (0.72 AUPRC and 0.89 EER) and substantial computational and
temporal performance reductions compared to our methodology (37 seconds to predict a one minute sample with
Codecfake vs. 0.3 seconds with our model).
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