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The growth of reactive surfaces in turbulent flows is of intrinsic interest

to turbulent premixed combustion modeling. In the regimes of turbulent com-

bustion relevant to technological flows, the global fuel burning rate is directly

proportional to the area of the propagating reactive front. This dissertation

aims to investigate the growth rate of the area of reactive surfaces in unsteady

flow configurations and identify its functional dependence on various parame-

ters, particularly the Reynolds number.

First, a canonical flow configuration of spherical turbulent premixed

flame in decaying isotropic turbulence is considered. A mathematical frame-

work based on the flame surface density function is developed to analyze a

database of large-scale direct numerical simulations. The surface area en-

hancement through turbulent wrinkling is found to be proportional to the

product of the thickness of the turbulent flame brush; a region of space where

the flame is found over repeated experiments, and the peak flame surface den-
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sity within the brush. Both these quantities are studied in detail through their

evolution equation derived within the proposed framework.

Subsequently, the analysis is extended to the investigation of a more

realistic flow configuration of the swirling von-Kármán flow device. The device

consists of a set of counter-rotating impellers that generate intense turbulence

through mean shear. In particular, the Reynolds number dependence of the

evolution of large surfaces in shear-generated turbulence is addressed briefly.
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Chapter 1

Introduction

When two fluids of dissimilar thermo-physical properties interact, the

transfer of mass, momentum, and heat takes place across a thin interface sep-

arating the two. The area of the interface determines the rate of the exchanges

between the two fluids. The rate of growth of the area is thus critical for a

quantitative investigation of the phenomena.

In turbulent flows, the prediction of the growth rate of an interface is

complicated by the presence of turbulent motion consisting of a wide range

of scales that contribute to stretching, folding, and wrinkling of the interface.

Of particular interest to this dissertation is the evolution of diffusive-reactive

surfaces in turbulence, i.e. interfaces representing propagating combustion

fronts in premixed mixtures.

A propagating combustion front, commonly referred to as a ‘flame’, is

a region of space where chemical reactions convert reactants into products. In

most practically relevant flow conditions, the flame is assumed to be a thin

interface separating the reactants and products, propagating into the reac-

tants [87]. The interface is typically an iso-surface of the reaction progress

variable, which refers to a normalized reactive scalar field that varies mono-
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tonically from zero in the reactants to unity in the products.

The propagation of the iso-surface occurs in the direction of its normal

with a characteristic speed referred to as the displacement speed. The displace-

ment speed is set by the local balance between chemical reactions and diffusive

transport [123].

The concept of a propagating surface lies at the basis of several closures

for turbulent premixed combustion, such as the level set method [122, 87],

the flame surface density [74, 92, 17], and the extended flame surface density

formalism [119]. The quantitative characterization and understanding of the

statistics of the flame surface area in relevant flame configurations are neces-

sary to support the development of accurate modeling approaches and to the

interpretation of experimental data also.

Turbulent premixed flames can be broadly classified into several regimes

based on the ratios u′/SL and l/δL of characteristic velocity and length scales of

turbulence and the flame [12, 86]. Here u′ and l refer to the root mean squared

(RMS) velocity fluctuation and the integral length scale of turbulence, whereas

SL and δL refer to the unstretched laminar flame speed and the thickness of

the flame, respectively. Technological combustion devices often feature high

turbulence intensities compared to the laminar flame speed (u′/SL ≫ 1). High

operating pressures also lead to a thin flame front compared to the device

length scale (l/δL ≫ 1).

These conditions correspond to the ‘flamelet regimes’ wherein an en-
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hancement of the burning rate arises from a proportional increase in the re-

active front’s surface area through turbulent wrinkling. The functional de-

pendence of the turbulent flame speed ST on relevant dimensionless groups

such as u′/SL, l/δL, and the Reynolds, Karlovitz, and Damköhler numbers

is of great interest for efficient design of compact combustion devices. Here,

the turbulent flame speed ST is defined based on the total volumetric rate of

consumption of fuel, normalized by a suitable reference area.

This dissertation addresses the question of evolution of the surface area

of propagating reactive-diffusive fronts and its functional dependence on the

Reynolds number through the flame surface density formalism. The flame

surface density function is the expected flame surface area per unit volume

and allows for a statistical treatment of the burning rate enhancement.

The investigation focuses on how scale separation affects the growth

and development of the turbulent flame surface area. The terminology ‘scale

separation’ refers to the distinguishing feature of a turbulent flow, whereby

coherent motions in a turbulent flow are organized over a range length scales

that widens with increasing Reynolds number [41]. The following questions

motivate the work: Does scale separation, as parameterized by the Reynolds

number, affect the burning rates of turbulent premixed flames? If so, what are

the mechanisms?

The investigation considers two flow configurations. First, a canoni-

cal configuration of expanding turbulent spherical flames in decaying isotropic

turbulence is considered. A database of carefully designed direct numerical
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simulations is analyzed and a mathematical framework for analyzing the un-

steady growth of the turbulent flame surface area is developed. The framework

is then leveraged for the examination of a turbulent von Kármán flow device.

Consequently, the effects of mean shear, inhomogeneous, and anisotropic tur-

bulence on the evolution of surfaces are examined.

1.1 Literature review

1.1.1 Scaling of turbulent burning rates

Hydrodynamic theories of the turbulent wrinkling of the flame surface

in flamelet regimes originate from the seminal work of Damköhler [28]. By

approximating the wrinkled flame surface as a collection of conical structures,

he proposed a linear relation ST ∼ u′ for thin flames.

With a more careful calculation of the surface area, Shelkin [99] pro-

posed the modification ST/SL ∼ (1+b(u′/SL)
2)1/2, where b is a constant of or-

der unity. The modified expression correctly accounts for the limit ST/SL → 1

at low intensities (u′/SL → 0). Pocheau [90] demonstrated later on that

to satisfy the scale invariance of the influence of turbulence on flame sur-

face the normalized burning rate must follow the general expression ST/SL =

(1 + (u′/SL)
n)1/n. While ST/SL is commonly assumed to depend on u′/SL,

recent experimental evidence points to a far more complex dependence on

various dimensionless groups, in particular the Reynolds number.

Liu et. al. [67] investigated the dependence of turbulent flame speeds

in pressurized premixed methane/air mixtures propagating in homogeneous
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isotropic turbulence up to Reλ ≈ 100. The Taylor Reynolds number Reλ =

u′λ/ν is defined based on the Taylor length scale λ = u′(15ν/ǫ)1/2 and scales as

Reλ ∼ Re1/2, the large scale Reynolds number. By controlling independently

u′ and l (via fan speed) and the reactants’ kinematic viscosity ν (via pressure),

Liu et. al. [67] were able to measure burning rates for various values of u′/SL,

while holding Reλ constant and experiments were repeated for several values of

the Reynolds number. The turbulent flame speed ST/SL was found to increase

with Reynolds number, remaining nearly constant as u′/SL varied. Data across

multiple experiments suggest that the Reynolds number, not u′/SL, is the

primary controlling parameter in spherical turbulent premixed flames.

Numerous experimental studies of turbulent spherical premixed flames

at the University of Leeds postulated and explored the dependence of ST/SL

from Re ∼ u′l or Reλ ∼ u′λ [1, 2, 4], although this proposition was later

deferred in favor of relating turbulent flame speeds to u′/SL instead.

The Reynolds scaling of turbulent burning rates and the surface area is

broadly observed in other geometries also. Kobayashi et. al. [57, 56] measured

mean burning rates in pressurized Bunsen burners equipped with turbulence

generating grids, finding increasing values of ST/SL for increasing pressures

at constant values of u′/SL. Since u′/SL was held constant alongside the

geometry of the burner and grids, giving a nearly constant integral scale l

also, the increase in ST/SL may be due to the increase in Reynolds number

brought by the decreasing kinematic viscosity with increasing pressure.

Moreover, support for the Reynolds number dependence of normalized
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burning rates is found in Damköhler’s theory for small scale turbulence [28, 87],

whereby the normalized burning rate should scale as (u′l)1/2 ∼ Re1/2. It is

important to highlight that the argument put forth by Damköhler in support of

the Reynolds scaling does not rely on scale separation as advanced in this work,

rather on enhancements to flame propagation brought by turbulent transport

of heat and mass ahead of the flame’s reaction zone.

Further theoretical support for the dependence of turbulent burning

rates on the Reynolds number was recently presented by Chaudhuri et. al. [20].

Starting from the spectral closure of the level-set equation [85], the authors

proposed and later confirmed experimentally [21] a Re1/2 scaling for ST/SL in

turbulent spherical premixed flames, where Re is based on the turbulent flame

radius and the reactants’ thermal diffusivity. Their experimental evidence

in favor of a Re1/2 scaling includes measurements for a variety of reactive

mixtures, pressures, and turbulence parameters.

1.1.2 Theoretical arguments for a Reynolds scaling

In this dissertation, theoretical arguments in support of the dependence

of the turbulent flame speed ST/SL on the Reynolds number are made within

the formalism of the surface density function. The surface density function

(SDF) is a statistical measure of the area of the flame surface per unit volume.

For turbulent premixed flames, the SDF characterizes the statistics of

the area of a wrinkled flame and overall burning rate. The turbulent flame

brush is the region of space where the flame is most likely to be located and
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the SDF is found to peak in the middle of the brush, decreasing rapidly on its

periphery [33].

It can be shown that the mean area of a turbulent premixed flame is

proportional to the product of the peak value of the SDF across the brush

and the linear extent of the brush, or its thickness [17]. Thus, the surface area

and burning rates may be increased by increasing the peak SDF or the brush

thickness, or both. Both these quantities are studied in detail for developing

spherical turbulent flames in Chap. 3 and Chap. 4, respectively.

The flame brush thickness is defined as the inverse of the peak gradient

magnitude of the Reynolds-averaged progress variable. Since the thickness

of the flame brush depends on the Reynolds-averaged field, the flame brush

may be expected to depend primarily on the largest scales of turbulent fluid

motion, the geometry of the flow, and boundary and initial conditions [62].

The relationship between the brush thickness and the integral scale of

the flow becomes clear if Taylor’s theory of turbulent diffusion of material

points [109] is applied to the evolution of the turbulent flame brush thick-

ness [64]. Within the confines of the analysis, the thickness scales with the

integral length scale as verified experimentally and via direct numerical simu-

lations of turbulent premixed flames [65].

The flame surface density function is the second quantity of interest to

the argument that burning rates increase with increasing Reynolds number.

When the flame surface is taken to coincide with a specific iso-surface of the
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progress variable [92], the SDF obeys a transport equation [117, 113], which in-

cludes terms that describe turbulent transport by velocity fluctuations, trans-

port by flame propagation, and production and destruction of flame surface by

two processes, one kinematic and the other associated with flame propagation

in the presence of curvature. Data from experiments and simulations suggest

that the rates of flame surface production and destruction may be proportional

to the inverse of the Kolmogorov time scale τη = (ν/ǫ)1/2 [70].

The kinematic mechanism applies to propagating and material surfaces

alike as velocity gradients induce positive (stretch) and negative (compres-

sion) tangential strain on the surface. It is well known [8, 24] that tangential

strain on surfaces is, on average, positive, so that surface elements in turbulent

flows are preferentially stretched and flattened, leading to an increase in their

area [43, 35, 44, 34, 107]. This result is connected with the statistics of the

alignment of the principal eigenvectors of the velocity gradient tensor with the

normal to the surface.

The surface normal is aligned preferentially with the eigenvector asso-

ciated with the most compressive eigenvalue of the rate of strain tensor [114].

The alignment statistics and preferential stretching of surfaces are universal

across diverse turbulent flows and occur even in Gaussian random velocity

fields, i.e. surface stretching does not require the velocity field to be the solu-

tion to the Navier-Stokes equations [114]. Further, Attili & Bisetti [6] showed

that the mixture fraction field displays the same alignment statistics in turbu-

lent non-premixed jet flames as in many other isothermal turbulent flows with
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or without mean shear [5, 98, 115, 120].

In homogeneous isotropic turbulence, the mean tangential stretch rate

of infinitesimal material surface elements was shown to scale with the inverse

of τη, independently of the Reynolds number [43]. The same Kolmogorov

scaling was found to hold for the net rate of tangential strain of the surface of

turbulent premixed jet flames over a range of Reynolds numbers [70], implying

that the kinematic mechanism may also apply to surfaces in turbulent flows

with density gradients and variable transport properties. Experiments with

spherically expanding turbulent flames with varying density ratios, defined as

the ratio between the density of the unburnt to burnt gases, demonstrated that

turbulent flame speeds are not affected significantly by the density ratio [66],

further supporting the conclusion that mechanisms of surface generation by

stretch may be largely insensitive to density gradients.

The second mechanism contributing to the generation and destruction

of flame surface requires propagation in the presence of curvature and the rate

of change of the surface area is proportional to the product of the displacement

speed and the curvature of the surface [17]. If a surface propagates in the

normal direction with a speed relative to the local fluid velocity, then surface

generation and destruction occur when the surface’s curvature is not zero [17].

The propagative mechanism is responsible for the destruction of surface area

on average as confirmed by recent data from direct numerical simulations of

planar [82] and jet [70] turbulent premixed flames.

The scaling of the propagative term, which is proportional to the prod-
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uct of the local flame curvature and displacement speed, is far from established,

although data from simulations of turbulent premixed jet flames suggest that

the net rate of destruction of flame surface by the propagative mechanism may

be proportional to the inverse of the Kolmogorov time scale as well [70].

Numerical studies of the curvature of infinitesimal material surface el-

ements showed that the first five moments of the probability density function

of curvature scale with the Kolmogorov length scale to a very good approxi-

mation [42]. Support for a relation between curvature and the surface density

function in turbulent flames was advanced by Huh et. al. [49], who argued that

the peak value of the surface density function is proportional to the mean of

the absolute value of the flame curvature and investigated such postulate via

simulations of statistically stationary planar turbulent premixed flames. The

mean magnitude of the curvature was shown to scale proportionally to the

inverse of the Kolmogorov length scale in agreement with Girimaji [42]. Sim-

ilar results for the statistics of curvature of propagating surfaces in isotropic

turbulence were reported by Zheng et. al. [126] also. Despite the lack of a

comprehensive theory, it appears reasonable to expect that the smallest scales

of turbulence and their characteristic time are involved in the propagative

mechanism.

If surface generation and destruction occur at the smallest scales of

the flow, it is possible that the entire spectrum of turbulence contributes to

the wrinkling, stretching, and folding of surfaces. Further support for this hy-

pothesis comes from the fractal geometry of interfaces and scalar iso-surfaces in
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turbulence [73, 106, 105]. Recent experiments focusing on the turbulent/non-

turbulent (T/NT) interface in a turbulent boundary layer at high Reynolds

number have shown conclusively that the T/NT interface is fractal with power-

law behavior over nearly two decades in the inertial range [30]. Thus, the

geometrical features of an interface embedded in a turbulent field reflect all

motions of turbulence in the inertial range, down to a fractal cut-off length

scale similar in size to the Kolmogorov length.

In summary, there is convincing evidence that the mean rate of stretch

of a surface in turbulent flow scales with the inverse of the Kolmogorov time

scale, so that, the smaller the Kolmogorov time scale, the higher the net rate

of production of surface area. It is also likely that the greater the source term,

the greater the values taken by the surface density function itself, although the

contribution of the source term relative to those of the unsteady and convective

terms is specific to the flow configuration and dependent on the location in

the flame.

Based on the discussion above, the thickness of the brush of a turbulent

premixed flame is found to scale proportionally to the integral scale of the flow,

while there is evidence that rates of surface generation (and destruction) may

increase as the dissipative scales of turbulence become smaller. Thus, it is

certainly possible that the higher the Reynolds number and the broader the

separation between the large and small scales of turbulence, the greater the

value of the dimensionless product between the brush thickness and the peak

SDF, leading to greater values of ST/SL and enhancement to the burning
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rates. Then, an argument could be made on the dependence of the SDF,

and of burning rates, on the Reynolds number, which is a measure of scale

separation in a turbulent flow [41].

The remainder of this dissertation is organized as follows. The govern-

ing equations, mathematical models and parameters for the database of the

direct numerical simulations (DNS) of spherical turbulent flames are described

in Chap. 2. A framework for analyzing the DNS database based on the sur-

face density formalism is developed and discussed in Sec. 2.4. In particular,

the framework provides integral and differential equations for key quantities

that describe the temporal evolution of spherical flames, such as burning rates,

flame radius, flame surface area and turbulent flame brush thickness. In chap-

ters 3 and 4, the evolution of turbulent flame brush thickness and peak flame

surface density is considered and scaling laws for various mechanisms are dis-

cussed. Chapter 5 discusses the implications of these results on the evolution

of flame surface area and its scaling with Reynolds number. Finally, Chap. 6

seeks to apply the scaling relations to a practically relevant flow configuration

and analyzes the role of Reynolds number in development of reactive fronts.

Prominent findings of the dissertation are included in Chap. 7, along with the

author’s recommendations for future work.
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Chapter 2

Spherical turbulent flames in isotropic

turbulence

To analyze the dependence of growth rate of the surface area of reactive-

diffusive fronts on the flow Reynolds number, spherically expanding premixed

turbulent flames in decaying isotropic turbulence are considered first. Spheri-

cal turbulent premixed flame is a canonical configuration in the experimental

studies of turbulent premixed combustion [21, 36, 67, 96].

For the purpose of conducting numerical simulations and analyzing

the growth of reactive surfaces, this configuration offers the following two

advantages. Firstly, turbulence statistics are a function of time and radial

distance from the center of the spherical flame only, so that ensemble averages

are gathered over the polar and azimuthal angles at each instance in time.

Secondly, in the absence of externally imposed mean shear, the statistical

state of turbulence encountered by the propagating flame is characterized by

the RMS velocity fluctuation u′, integral length scale l, and kinematic viscosity

The content presented in this chapter has been originally published in the following
article:

Kulkarni, T., Buttay, R., Kasbaoui, M., Attili, A., & Bisetti, F. (2021). Reynolds number
scaling of burning rates in spherical turbulent premixed flames. Journal of Fluid Mechanics,
906, A2. https://doi.org/10.1017/jfm.2020.784
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ν alone. Further, the Reynolds number based on the Taylor microscale Reλ is

a unique measure of the ratio of the integral length scale to other length scales

in the turbulence kinetic energy spectrum.

2.1 Governing equations

The evolution of reactive flow in this configuration is described by re-

active, multi-component Navier-Stokes equations, which are considered here

in the limit of a low Mach number [112, 80]. The continuity and momentum

conservation equations read

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

and

ρ
∂u

∂t
+ ρu · ∇u = −∇π +∇ · T, (2.2)

where ρ denotes the fluid density, u the mass-averaged bulk velocity, and T the

viscous shear stress tensor. The hydrodynamic pressure π = π(x, t) is assumed

to be small compared to the background thermodynamic pressure p = p(t).

The mixture density ρ is related to the thermodynamic pressure ac-

cording to the equation of state for an ideal gas mixture,

p = ρRT/W, (2.3)

where R is the universal gas constant, T the temperature and W the molar

mass of the mixture.
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The viscous shear stress tensor T in Eq. (2.2) is modeled with a New-

tonian fluid model,

T = µ
(
∇u+ (∇u)T

)
− 2

3
µ(∇ · u)I, (2.4)

where ∇u is the velocity gradient tensor, I the identity tensor and µ the

mixture-averaged dynamic viscosity [121, 11].

The reactive mixture is comprised of M different species and their mass

fractions Yi (i = 1, · · · ,M) obey the following transport equation

ρ
∂Yi

∂t
+ ρu · ∇Yi = −∇ · (ρYiVi) + ω̇i, (2.5)

where ω̇i is the net rate of production of species i due to chemical reactions

and Vi the mass diffusion velocity.

Diffusive transport of species is modeled with the Hirschfelder-Curtiss

approximation [47, 91], which reads

ViXi = −Di∇Xi, (2.6)

where

Di ≡ (1− Yi)




M∑

j=1
j 6=i

Xj/Dij




−1

(2.7)

is the species diffusion coefficient and Xi the mole fraction of ith species. In

the equation above, Dij denote the binary diffusion coefficients for distinct

pairs of species.
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With this approximation, the closure for species diffusion velocity reads

ρVi = −ρDi
Yi

Xi

∇Xi = −ρDi
∇(WYi)

W
. (2.8)

This approximation of species diffusion velocity is complemented by a small

correction velocity uc in the convective term in order to ensure total mass

conservation. The final equations for species mass fractions read

∂ρYi

∂t
+∇ · (ρYi(u+ uc)) = −∇ · (ρYiVi) + ω̇i, (2.9)

where the correction velocity uc is given by

uc ≡ −
M∑

i=1

YiVi =
M∑

i=1

DiYi
∇W

W
+

M∑

i=1

Di∇Yi. (2.10)

The equation for the conservation of enthalpy is manipulated into a

differential equation for temperature, which reads

ρcp
∂T

∂t
+ ρcpu · ∇T =

dp

dt
+∇ · (Λ∇T )−

M∑

i=1

cp,iρiVi · ∇T −
M∑

i=1

hiω̇i. (2.11)

The equation above assumes that viscous heating is negligible on account of

the low speed of the fluid and the fact that the pressure field p is spatially

homogeneous.

The thermal conductivity Λ is evaluated with a mixture-averaged ap-

proach [76]. The specific enthalpy hi = hi(T ) and specific heat at constant

pressure cp,i = cp,i(T ) for species i are evaluated from NASA tables [78].

Closure for chemical reaction terms ω̇i is provided by a skeletal chem-

ical kinetics mechanism featuring 16 species and 73 elementary reactions of
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Arrhenius type [69]. The skeletal mechanism was obtained from GRI-mech

3.0 [104] and reduces the computational costs significantly while modeling key

mixture properties such as ignition delay time, laminar flame speed and thick-

ness accurately.

Since the flow configuration is a closed vessel of a constant volume V ,

the background pressure p(t) evolves so that the total mass m in the domain

is constant:

p =

(∫

V

W

T
dV

)−1

mR. (2.12)

2.1.1 Numerical methods

Equations (2.1), (2.2), (2.9) and (2.11) are integrated in time with finite

difference solver ‘NGA’ [32] on a homogeneous Cartesian grid.

The convective and viscous terms in the momentum equation are dis-

cretized with second-order centered finite difference formulas on a staggered

grid. Mass conservation is enforced by solving a Poisson equation for the hy-

drodynamic pressure π instead of solving the continuity equation. The discrete

form of the pressure equation is obtained using second order accurate finite

difference formulas and solved with library HYPRE [37]. In particular, the

preconditioned conjugate gradient (PCG) iterative solver is used along with

the parallel alternating semi-coarsening multi-grid preconditioner (PFMG).

The advancement in time of the governing equations follows an operator

splitting approach [89]. The momentum and pressure equations are coupled
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with a pressure correction method [22]. The momentum equation is inte-

grated in time with a semi-implicit method featuring the explicit second-order

Adam-Bashforth scheme for convective terms and the implicit Crank-Nicolson

method for linear viscous terms [55]. The linear system ensuing from the vis-

cous terms is solved in a factored form with the alternating-direction implicit

(ADI) method [83].

The third-order weighted essentially non-oscillatory (WENO) scheme

of Liu et. al. [68] is employed for the convective terms in the scalar equations.

The time advancement of temperature and species mass fractions is performed

with a first-order Lie splitting approach, in which the integration of the convec-

tive and diffusive terms is performed first for each scalar field independently.

Next, the reactive source terms are handled at each grid point with adaptive

backward difference formulas through the CVODE solver [45]. The temporal

integration of the scalar equations is semi-implicit, with the convective terms

treated explicitly and the linear diffusive terms with implicit Crank-Nicolson

method and ADI factorization.

All governing equations are coupled together with an outer iteration

loop and convergence is found to be adequate after two iterations. The Carte-

sian grid is homogeneous and isotropic with spacing ∆ = 20 µm and a constant

time step of ∆t = 0.2 µs is taken. The spatial and temporal resolutions are

adequate, since η/∆ ≥ 0.5 and τη/∆t ≥ 20, where η and τη denote the Kol-

mogorov length and time scale, respectively. Moreover, δL/∆ ≥ 5.5, where δL

is the thermal thickness of laminar flame. Extensive numerical tests to con-
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firm the adequacy of spatial resolution of the reactive front were carried out

elsewhere for turbulent premixed jet flames [69] for the same mixture.

2.2 Database of Direct Numerical Simulations

The spherical turbulent flame configuration consists of a cubic box

filled with a premixed mixture of reactants and initialized with homogeneous

isotropic turbulence at the target Taylor Reynolds number Reλ. A spherical

kernel of burnt gases is initialized at the center of the computational domain

and ensuing turbulent premixed flame propagates radially outwards into the

reactants, where turbulence decays freely. Periodic boundary conditions are

imposed in all three directions so that the configuration represents a closed

cubic domain. Figure 2.1 shows a schematic representation of the flame con-

figuration.

As the reactants are converted to the products, the thermodynamic

pressure p = p(t) increases in time. The compression of reactants and products

is isentropic since effects of radiation and viscous heating are ignored.

The reactants are a fully premixed lean mixture of methane and air with

an equivalence ratio equal to 0.7 and are initialized at an elevated temperature

Tu,0 = 800 K and pressure p0 = 4 atm. The thermo-chemical conditions were

chosen to control certain dimensionless groups that determine the regime of

turbulent premixed combustion, as discussed later.

At the chosen initial conditions for the reactants, the laminar flame
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Figure 2.1: Turbulent spherical premixed flame in a cubic box of side 2L
with periodic boundary conditions. The instantaneous flame surface (orange
color) is surrounded by homogeneous isotropic turbulence, represented by iso-
surfaces of vorticity (blue color). The flame surface is shown as a collection
of iso-surfaces of reaction progress variable defined based on mass fraction of
molecular oxygen (see Eq. (2.15)). The kernel of burnt gases at the onset of
the simulation is shown as a sphere of radius R0 in the cut-out (red color).
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Name N 2RL/l0 2R0/l0 u′
0/SL l0/δL δL/η Reλ Ka τ0/τL

R1K1 5123 33.8 6.9 7.4 3.4 11.3 44 25 0.69
R2K1 10243 43.8 6.7 8.5 5.2 11.3 59 25 0.91
R3K1 20483 59.4 6.3 9.8 7.8 11.5 77 25 1.18
R4K1 17283 68.9 6.9 12.1 12.1 11.2 102 25 1.62

R3K1s 10243 29.7 6.3 9.8 7.8 11.5 77 25 1.18
R3K2 10243 29.7 6.3 14.7 5.2 17.25 77 56 0.52
R2a 10243 36.7 6.7 7.4 6.3 9.65 59 18 1.29

Table 2.1: Turbulence parameters at the onset of the simulations. N is the
number of grid points. The effective domain radius RL = 2(3/4π)1/3L ≈ 1.24L
is defined based on L, half the length of the side of the cubic domain. The
flame properties are δL = 0.11 mm, SL = 1 m s−1, and τL = 0.11 ms. The
Karlovitz number is defined as Ka = τL/τη.

speed is 1 m/sec and the thermal thickness is δL = (Tb − Tu)/max{|∇T |} =

0.11 mm. Here, Tu and Tb denote the temperature of reactants and products

at the initial time and max{|∇T |} the maximum temperature gradient across

the initialized laminar flame.

Table 2.1 lists relevant parameters for the direct numerical simulations

in the database. A set of four primary simulations, denoted as ‘R1K1’, ‘R2K1’,

‘R3K1’ and ‘R4K1’ are designed at increasing Reynolds number Reλ = u′λ/ν,

where u′ is the root mean squared (RMS) velocity fluctuation, λ the Taylor

length scale and ν the kinematic viscosity of reactants.

While increasing the Reynolds number, the ratios of velocity scales

u′/SL and length scales l/δL are increased also so that the Karlovitz number

Ka = τL/τη remains constant. The Karlovitz number is the ratio of the char-

acteristic flame time scale τL = δL/sL and the Kolmogorov time scale τη and
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broadly determines the regime of turbulent premixed combustion. Based on

the Borghi-Peters regime classification [87], all flames in the primary set be-

long to the ‘thin reaction zone’ regime, where turbulence modifies the pre-heat

zone of the flame front but not the reactive layer.

All characteristic scales of turbulence are evaluated in the reactants and

change in time due to decay of turbulence. Velocity fluctuations are evaluated

by subtracting the mean velocity field, which is obtained by averaging along

spherical shells consistently with the symmetry of the configuration (see more

discussion in Sec. 2.3.2).

The computational domain is a cube with side of length 2L. The ra-

dius of a sphere with volume equal to that of the computational domain is

denoted as RL = 2L(3/4π)1/3. It is apparent from Tab. 2.1 that the size of the

computational domain is large compared to the integral scale l. For example,

2RL/l0 ≥ 30 for all flames. As a result, the extent of the domain is much

larger than typically considered for DNS of isothermal homogeneous isotropic

turbulence at the same Reynolds number.

Since the computational domain is large compared to the integral scale,

the linear size of the spherical flame, i.e. its mean radial distance R from the

center of the domain, may be initialized to be large compared to the integral

scale. A rigorous definition for the mean radius R will be given later in this

chapter. Since R ≥ l throughout the evolution of the flame, the flame is

wrinkled by many turbulent eddies, the statistical averages computed from

spherical shells converge due to the availability of a large number of statistically
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independent samples, and the flame remains centered in the middle of the

domain.

As articulated by Chaudhuri et. al. [20], if the integral scale is larger

than the mean radius of a turbulent spherical flame, the flame radius acts

as a cut-off scale, limiting the interaction between the flame and turbulence

to scales smaller than itself. Thus, the fact that the flame is always large

compared to the integral scale ensures that the entire turbulence spectrum in-

teracts with the surface. In keeping with the requirement that the initial flame

kernel radius R0 be large compared to the integral scale, the ratio 2R0/l ≈ 7

across different flame configurations. On the other hand, the domain size RL/l

varies slightly across configurations but is always large.

Apart from the set of four primary simulations, three additional sup-

porting simulations, denoted by ‘R2a’, ‘R3K1s’ and ’R3K2’ were conducted.

Simulation R2a features the same initial Reynolds number as R2K1 while

matching the turbulence intensity u′/SL with flame R1K1. The flame R2a

thus has a lower Karlovitz number than the others. Comparisons between

flames R1K1, R2K1 and R2a help explore the dependence of turbulent burn-

ing rates on u′/SL and Reλ.

Similarly, flame R3K2 is conducted at same Reynolds number as R3K1

but a higher Karlovitz number by increasing u′/SL and decreasing l/δL to

keep the Reynolds number constant. Comparison of turbulent burning rates

and other statistics of flame surface across the configuration pairs (R3K1,

R3K2) and (R2K1, R2a) allows us to explore their dependence on the Karlovitz
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Figure 2.2: Borghi-Peters regime diagram [87] for all spherical turbulent
flames. Temporal variation of quantities u′/SL and l/δL is shown. Arrow
points the direction of increasing time.

number.

Finally, in order to investigate the effect of domain size and pressure

rise on propagation of turbulent flames, simulation R3K1 was repeated with a

domain half its size and denoted by R3K1s. Comparison across flames R3K1

and R3K1s demonstrates that the domain size RL/l does not have a noticeable

effect on the statistics of flame surface, although the size does affect the mean

radial velocity field induced by combustion as discussed in Sec. 2.3.2.

The temporal evolution of various dimensionless groups is presented on

the Borghi-Peters regime diagram in Fig. 2.2. With time, the reactant side
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turbulence decays and u′/SL, Reλ and Ka decrease while l/δL increases.

2.2.1 Flow-field initialization

The initial state of homogeneous isotropic turbulence (HIT) is obtained

using a linear forcing scheme of Rosales & Meneveau [97]. The forcing scheme

operates on the instantaneous velocity field through a fictitious body force

field g = fu, which is added in the momentum equation. Here, u is the local

velocity vector and f a parameter that may be controlled to achieve a desired

Reynolds number.

Unlike spectral forcing schemes that add kinetic energy to a part of

the range of wave-numbers of turbulence kinetic energy spectrum, the linear

forcing scheme injects energy at all scales of turbulence. However, since the

body force is proportional to the velocity itself, the kinetic energy addition is

predominantly at large scales (small wave-numbers).

A statistically stationary turbulence is achieved when the mean rate of

dissipation of turbulence kinetic energy ǫ matches the rate of injection, or

ǫ = fu · u = fu · u = 3fu′2, (2.13)

where u′ is the root-mean-squared (RMS) velocity fluctuation and the over-

bar denotes a temporal average. Note that both ǫ and u′ are temporally

averaged statistics, as the balance of kinetic energy injection through forcing

and dissipation is achieved only in the mean.

An empirical observation for stationary isotropic turbulence forced with
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the linear forcing scheme is that the integral scale of turbulence l = u′3/ǫ is

always a fixed proportion of the domain size L, l/L ≈ 0.19. Using f =

ǫ/3u′2 and l/L = 0.19, a relation between target Reynolds number Reλ =

u′λ/ν, where λ = u′
√

15ν/ǫ is the Taylor scale, and the forcing parameter f

is obtained as follows

Reλ =

(
45l2f

ν

)1/2

≈ 1.27456

(
L2f

ν

)1/2

. (2.14)

For a given computational domain size and a target Reynolds number, the

forcing parameter f is picked according to Eq. (2.14).

The ratios R0/l of the initial kernel radius to the integral length scale

and L/R0 of the domain size to the kernel radius are desired to be as large

as possible. The former ensures that all scales of turbulent motion participate

in wrinkling of flame surface from the onset [20] and also that a single simu-

lation of a spherical turbulent flame contains a large number of independent

realizations of turbulence-flame interactions. On the other hand, a large ratio

L/R0 indicates that the initial flame kernel is small compared to the domain

which allows for a large temporal observation window before boundary effects

become significant.

Since the linear forcing strategy leads to L/l = (L/R0) · (R0/l) ≈ 5,

both the ratios cannot be made large independently. To overcome this in-

herent limitation, first a statistically stationary state at the target Reynolds

number was obtained on a smaller periodic domain and subsequently a num-

ber of statistically independent instances of the stationary turbulence were
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concatenated in each direction to initiate the larger computational domain.

In other words, the size of the computational domain 2L is much larger than

L, the size of a cube on which the target Reynolds number is forced through

linear forcing scheme. Discontinuities in the concatenated velocity field were

removed by advancing the flow field for 2τη (twice the Kolmogorov time scale).

2.3 Basic characterization of spherical turbulent flames

The propagating flame surface is tracked as an iso-surface of the reac-

tion progress variable C, which is defined as

C ≡ YO2
− Y b

O2

Y u
O2

− Y b
O2

, (2.15)

where YO2
is the mass fraction of molecular oxygen and superscripts ‘u′ and ‘b′

denote its value in the unburnt and burnt mixtures, respectively. The progress

variable increases monotonically from C = 0 in the reactants to C = 1 in the

products. The iso-level C = c∗ = 0.73 is taken to represent the flame surface.

This particular value of the progress variable corresponds to the maximum

value of heat release rate, thereby marking the middle of the reaction layer.

Figure 2.3 illustrates the evolution of the turbulent spherical premixed

flames for flames R1K1, R2K1 and R3K1. The surface of the flame is visualized

by the iso-surface C(x, t) = c∗. The flame is initialized as a spherical kernel of

products centered in the middle of the computational domain and propagates

radially outwards into the premixed reactants.

It can be clearly seen that the flame surface is wrinkled and folded
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Figure 2.3: Evolution of flame kernels for flame configurations R1K1, R2K1
and R3K1. Four snapshots for each flame are presented at same dimensionless
time t/τ 0η .

by turbulence as the flame surface grows in size. Most patches of the sur-

face are flat or posses only a slight curvature. Regions of high curvature are

much less prevalent and are concentrated mainly in the regions of the flame

surface ahead or behind the mean radial distance of the surface (the leading

and trailing edges, respectively). These qualitative observations are consis-

tent with established topological features of the surface of premixed turbulent

flames [23].

If the flames are compared at times when they are of similar size, the
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flame at the largest initial Reynolds number (R3K1) displays the highest den-

sity of folds and wrinkles, consistent with the qualitative interpretation that

the range of scales of turbulent motion that wrinkle the flame surface widens

with increasing Reynolds number.

2.3.1 Decay of turbulence

Upon the introduction of the kernel of burnt gases to initiate turbulent

spherical flame, the reactant side turbulence is allowed to decay freely in the

absence of numerical forcing. The turbulence kinetic energy k decays according

to the power law [10, 9, 103]

k/k0 =

(
1 +

t

t0

)−n

, (2.16)

where k0 is the turbulence kinetic energy at the onset (t = 0), n the decay

exponent and t0 the virtual origin of the power-law decay.

The mean rate of dissipation of turbulence kinetic energy in the reac-

tants follows the expression

ǫ = −dk

dt
=

nk0
t0

(
1 +

t

t0

)−n−1

=⇒ ǫ/ǫ0 =

(
1 +

t

t0

)−n−1

, (2.17)

where ǫ0 = nk0/t0 is the initial value of the dissipation rate. As a result, the

eddy turnover time τ = k/ǫ increases linearly in time as

τ = k/ǫ = t/n+ t0/n. (2.18)

The values of parameters n and t0 for all flames are obtained from the least-

squares linear fit to Eq. (2.18).
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Figure 2.4: Statistics of the decaying isotropic turbulence in the reactants.
(a) Power law decay of the turbulence kinetic energy k/k0 and its mean rate
of dissipation ǫ/ǫ0 versus 1 + t/t0. Lines represent power law expression with
n = 1.55. (b) Evolution of Taylor Reynolds number Reλ = u′λ/ν.

Past experiments report values of the exponent n in the range 1.0 to

1.5. For decaying turbulence behind passive grids, Batchelor & Townsend [10]

find n = 1, Comte-Bellot & Corrsin [25] report 1.16 ≤ n ≤ 1.37, while Baines

& Peterson [7] find a higher value of n = 1.43. Mohamed & Larue [79] report

that n = 1.25 fitted their data best.

Figure 2.4(a) shows the fits and power laws for k/k0 and ǫ/ǫ0. A higher

range of values for the decay exponent 1.55 ≤ n ≤ 1.78 were found here

for all turbulent spherical flames in the database. The discrepancy in the

value of n may be due to low Reynolds number of the configurations or on

the dependence of the exponent on the geometry, which differs between grid
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generated turbulence and simulations of homogeneous isotropic turbulence.

Figure 2.4(b) compares the decay of Reynolds number in reactive and

isothermal simulations from the same initial conditions. Statistics in the

isothermal simulations are consistent with the power law decay, while for the

the reactive simulations, the changes in background pressure and temperature

cause minor deviations later on.

While the increase in pressure and temperature with time lead to mod-

ifications to the density and the viscosity of the mixture, they are minor on

the account of the fact that the maximum pressure rise is less than 20% across

all simulations. A significant deviation is only seen for flame R4K1 towards

the end when changes to reactant viscosity are large due to a large increase in

the temperature. The differences in Taylor Reynolds number between isother-

mal and reactive simulations may also be due in part to a decreasing number

of samples available for statistics, since the reactants occupy a region that

decreases in volume with time.

Since the data for flames R3K1 and R3K1s are approximately equal, it

indicates that the size of the computational domain does not have a noticeable

effect on the statistics of decaying turbulence with or without a propagating

flame.

2.3.2 Spherical symmetry and statistical averaging

In the subsequent sections of this chapter, a statistical framework to

analyze the growth of flame surface area is presented. The framework assumes
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that all statistics are ergodic in the polar and azimuthal coordinates (denoted

by Φ and Θ, respectively) and are averaged accordingly. Indeed, such sym-

metry is expected when the flame surface is far from the periodic boundaries.

Verification of this assumption is critical to the analysis and is presented next

in the context of the Reynolds-averaged radial velocity field.

Under the assumption of spherical symmetry of statistics, the Reynolds-

averaged continuity equation reads

∂ρ

∂t
+

1

r2
∂r2ρur

∂r
= 0, (2.19)

where ur = u · êr is the radial component of velocity and the turbulent mass

flux ρur is unclosed in general. Over-bar denotes the Reynolds average.

In the region occupied solely by reactants and products far away from

the turbulent flame brush, density is spatially homogeneous and Eq. (2.19)

simplifies to

1

ρ

dρ

dt
+

1

r2
∂r2ur

∂r
= 0. (2.20)

The reactants’ and products’ densities are taken to be functions of time alone

due to compression and are not treated as random variables.

In absence of viscous heating and radiation terms in the Eq. (2.11), the

gas compression in reactants and products is isentropic and the logarithmic

rates of change of densities of reactants and products are related to the pressure

as γd ln ρ/dt = d ln p/dt, where γ is the ratio of specific heats. Substituting the

isentropic relation in Eq. (2.20), the general solution for mean radial velocity
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reads

ur = − 1

3γ

1

p

dp

dt
r + C1r

−2, (2.21)

where C1 is a constant that is determined by the boundary conditions.

In the region occupied by the products, the boundary condition ur = 0

at r = 0 leads to C1 = 0 and the mean radial velocity is given by

ur = − 1

3γb

1

p

dp

dt
r, (2.22)

where γb denotes the specific heat ratio in the burnt gases. Equation (2.22)

indicates that ur is negative since dp/dt > 0 and varies linearly with r in the

region occupied by the products.

In the region occupied by the reactants, C1 in Eq. (2.21) is determined

by the condition ur = 0 at the domain boundary. However, the radial distance

of the boundary depends on the polar and azimuthal coordinates since the

domain is a cube. Yet, since the mean radial velocity decreases as 1/r2, the

effect of cubic geometry on the mean radial velocity is negligible away from

the boundary. Consequently, the boundary condition ur = 0 may be imposed

at an effective radial distance RL = 2L(3/4π)1/3, which equals the radius

of a spherical chamber with equal volume. The mean radial velocity in the

reactants reads as

ur = −RL

3γu

1

p

dp

dt

[
r

RL

−
(

r

RL

)−2
]
, (2.23)

where γu is the ratio of specific heats of the reactants.
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Figure 2.5: Reynolds-averaged radial velocity ur normalized by the initial
turbulence intensity for flame R2K1. Thin lines represent the expressions in
Eq. (2.22) and Eq. (2.23) evaluated with the corresponding value of d ln p/dt
from the DNS data. Data is compared for r/RL ≤ 0.8, which is the shortest
distance from the center to the periodic boundary.

Figure 2.5 shows the Reynolds-averaged radial velocity ur at five in-

stants in time for flame R2K1. The mean is obtained by averaging over the

polar and azimuthal angles and matches closely the expressions Eq. (2.22) and

Eq. (2.23) in the products and reactants, respectively. In particular, the re-

actants’ side comparison is identical up to r/L = 1.0 or r/RL = 0.8, which

corresponds to the minimum distance between the center and the faces of the

cubic domain. In summary, the mean flow retains the spherical symmetry as

if the computational domain were a spherical vessel of radius RL.

It should be noted that the peak mean radial velocity within the brush
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increases at first with time, but decreases later on. As the flame grows is size,

the boundary condition causes the peak mean radial velocity to decrease due

to confinement effects. Evidence for this statement comes from the following

observations.

The evolution of peak mean radial velocity is qualitatively similar to

that of the mean radial velocity at the leading edge of the brush, where

Eq. (2.23) is applicable. While (1/p) dp/dt increases continuously in time,

the term inside the square brackets decreases as R/RL increases, where R de-

notes the mean radial distance of the flame surface. The product of the two

terms is non-monotonic in time and gives rise to the behavior seen in Fig. 2.5.

The conclusion is further supported by the observation that the non-

monotonic trend of the peak mean radial velocity is seen for flame R3K1s but

not for R3K1, where it increases continuously due to larger computational

domain.

2.4 Framework for flame surface statistics

The evolution equation for reaction progress variable can be obtained

from the species conservation equation and reads

∂C

∂t
+ u · ∇C =

1

ρ
∇ · (ρD∇C) +

ω̇C

ρ
, (2.24)

where D and ω̇C denote the molecular diffusivity and the normalized reaction

rate of molecular oxygen, respectively.
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The reactive-diffusive equation for the progress variable is often cast

into a kinematic equation of the form

∂C

∂t
+ (u+ Sn) · ∇C = 0, (2.25)

where S is the displacement speed and n the normal vector. Adhering to the

convention commonly found in the literature, the normal vector is defined as

n = −∇C/|∇C| so that it points towards the reactants.

Comparing Eq. (2.24) with Eq. (2.25), the displacement speed S con-

tains the contributions of reactions and molecular diffusion and is given by [92,

19]

S ≡ 1

|∇C|
DC

Dt
=

ω̇C

ρ|∇C| +
n · ∇(ρDn · ∇C)

ρ|∇C| − D(∇ · n). (2.26)

In the equation above D/Dt = ∂/∂t + u · ∇ denotes the material deriva-

tive operator. Molecular diffusivity D was calculated as the binary diffusion

coefficient of O2 in N2, the predominant species in the mixture.

The three contributions to the displacement speed S as written on the

right hand side of eq. (2.26) are due to chemical reactions, molecular diffusion

in the direction of the normal, and that in the tangential direction. In the

present database the displacement speed is calculated as the material deriva-

tive since the reaction and molecular diffusion contributions are not available

at the same time due to temporal operator splitting employed in the solver.
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2.4.1 Turbulent burning velocity

While the laminar flame speed is a characteristic property of the reac-

tant mixture and thermodynamic conditions, the turbulent burning velocity is

strongly affected by the turbulence-flame interaction and differs significantly

from the laminar flame speed [33].

The dimensionless turbulent burning velocity ST/SL is defined based

on the mean volumetric fuel burning rate Ωf and a suitable reference area A∗,

ST

SL
=

Ωf

ρuYfSLA∗
, (2.27)

where ρu is the reactants’ density, Yf the mass fraction of fuel species in the

reactants, and SL the un-stretched laminar flame speed of the mixture.

The mean burning rate is Ωf (t) =
〈
Ω̃f (t)

〉
, i.e. the statistical ex-

pectation of the instantaneous volumetric burning rate Ω̃f (t) over repeated

experiments. The angular brackets 〈.〉 denote the statistical expectation here-

after.

Similarly, the mean radial distance of the flame surface, R(t) =
〈
R̃(t)

〉

is termed as the flame radius henceforth. The reference area A∗ is taken as

A∗ = 4πR2, the area of a sphere with radius equal to the flame radius. Finally,

the expectation of the turbulent flame surface area is A(t) =
〈
Ã(t)

〉
, where

Ã(t) is the instantaneous flame surface area at time t.

Formal definitions of R(t) and A(t) are provided below in context of

the flame surface density function. A comprehensive discussion on distinction
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between statistical expectation and their instantaneous values in the context

of spherical flames in included in Appendix A.

The burning rate enhancement as quantified by ST/SL may be at-

tributed to two distinct effects in turbulent premixed flames. First, turbulent

fluid motion wrinkles the flame surface, leading to a larger area over which

chemical conversion from reactions to products takes place. Second, local

burning rate per unit area may be modified on the account of enhanced trans-

port of heat and radicals. The two effects are separated with the following

decomposition:

ST

SL
=

(
A

A∗

) (
Ωf

ρuYfSLA

)
= χI. (2.28)

Here, area ratio χ = A/A∗ and correction factor I = Ωf/ρuYfSLA quantify

the enhancement of the surface area and local burning rate, respectively.

Figure 2.6 shows the normalized burning velocity ST/SL, the area ratio

χ and the correction factor I for various flame configurations. The area ratio

controls the dimensionless burning velocity ST/SL for the most part, while

I ≈ 1 at all times for all flames. The area ratio is higher and grows faster in

time for flames with higher Reynolds number. Also note that flame configu-

rations with the same Reynolds number (pairs R2K1, R2a and R3K1, R3K1s)

have largely similar growth of the surface area.

The analysis of growth of the flame surface area follows a novel ap-

proach that builds upon the concepts of flame surface density formalism. The

proposed framework is discussed in the upcoming sections.
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Figure 2.6: Temporal evolution of the normalized turbulent burning velocity
ST/SL (thick lines with symbols), area ratio χ (thin lines) and the correction
factor I (symbols only) for all flames. The area ratio explains most of the
variation in ST/SL while I ≈ 1 at all times.
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2.4.2 Surface density function

As defined in the preceding section, Ωf (t), R(t) and A(t) are time-

dependent statistical expectations of random processes Ω̃f (t), R̃(t) and Ã(t),

respectively. Suitable estimators for these expectations are defined in a manner

consistent with the ergodicity of the flow within the mathematical framework

of the flame surface density function.

The flame surface density function Σ is defined as the statistical ex-

pectation of the flame surface area per unit volume and implicitly defined

as

A =

∫

V

Σ(x, t) dV. (2.29)

Since the flame surface area A is the expectation of that of the iso-level surface

C = c∗, the surface density function is related to the progress variable C and

its gradient. This can be seen as follows.

It can be shown that the gradient-weighted volume integral of any non-

negative function f(x, t) equals the sum over all iso-surfaces C = c of corre-

sponding surface integrals [77, 58],

∫

V

f(x, t)|∇C| dV =

∫ 1

0

∮

Ac

f(x, t) dAc dc (2.30)

Choosing the function f(x, t) = δ(C(x, t)− c∗) as the Dirac-delta function of

the progress variable, the equation above reduces to

∫

V

|∇C| δ(C(x, t)− c∗) =

∫ 1

0

∮

Ac

δ(C − c∗)dAc dc = Ã, (2.31)

where Ã is the surface area of iso-surface C = c∗ in a single realization.
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The expectation of the surface area is then given by

A =
〈
Ã
〉
=

∫

V

|∇C|δ(C − c∗) dV (2.32)

=

∫

V

〈
|∇C|

∣∣C = c∗
〉
PC(C = c∗;x, t) dV. (2.33)

Here PC denotes the probability density function (PDF) associated with the

progress variable C(x, t), which is a random field.

Comparing Eq. (2.33) with Eq. (2.29), it can be seen that the surface

density function is related to the gradient field with

Σ(C = c∗;x, t) =
〈
|∇C|

∣∣C = c∗
〉
PC(C = c∗,x, t). (2.34)

For spherical flames, all statistics depend only on radial and time co-

ordinates (r, t) only. The mean flame surface area A and flame radius R are

given by

A(t) =

∫

V

Σ(x, t) dV = 4π

∫ ∞

0

Σ(r, t)r2 dr (2.35)

R(t) =
1

A(t)

∫

V

||x||Σ(x, t) dV =
4π

A(t)

∫ ∞

0

r3Σ dr, (2.36)

since ||x|| = r. The area ratio χ can now be written in terms of Σ as

χ =
A

4πR2
=

∫ ∞

0

(r/R)2Σ(r, t) dr. (2.37)

Finally, the mean volumetric fuel burning rate is simply

Ωf (t) =

∫

V

〈ω̇f(x, t)〉 dV, (2.38)

where ω̇f(x, t) is the instantaneous local rate of consumption of fuel per unit

volume.
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2.4.3 Probability density function of the radial distance of the

flame surface

The analysis of the evolution of the area ratio χ and its scaling proceeds

through a statistical description of the radial distribution of the flame surface.

For spherical turbulent flames, the radial distance of the flame surface is a

random variable, denoted henceforth as φ. The corresponding sample space

variable is denoted as ϕ.

Cumulative density function (CDF) of φ is given by

P(φ < ϕ; t) = Aϕ/A = A−1

∫ ϕ

0

4πr2Σ(r, t) dr, (2.39)

where Aϕ denotes the expectation of flame surface area contained within the

sphere of radius ϕ.

Subsequently, the probability density function P of the radial distance

is obtained by differentiating with respect to the sample space variable ϕ,

P(φ = ϕ; t) = dP/dϕ =
4πΣ(ϕ, t)ϕ2

A(t)
(2.40)

and has support ϕ ∈ (0,∞).

The mean µ and standard deviation σ of the PDF are related to the

surface density function with

µ =

∫ ∞

0

ϕP(ϕ, t) dϕ = A−1

∫ ∞

0

4πr3Σ(r, t) dr = R(t) (2.41)

and

σ2 =

∫ ∞

0

(ϕ− R)2P(ϕ, t) dϕ = A−1

∫ ∞

0

4πr2(r −R)2Σ(r, t) dr. (2.42)
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If the PDF P is assumed to be a Gaussian, it can be shown that σ is

re-scaled turbulent flame brush thickness,

δT ≡
(
max{|dC/dr|}

)−1 ≈
√
2πσ, (2.43)

where C is the mean progress variable and dC/dr its gradient.

The advantage of relating pertinent statistical measures to the PDF and

the surface density function is that their temporal evolution is prescribed by

ordinary differential equations. The evolution equation for P and its moments

is derived starting from that for the flame surface density function next.

2.4.3.1 Transport equations

The flame surface density function Σ evolves according to [92, 113, 117]

∂Σ

∂t
+∇ · (〈u+ Sn〉w Σ) = 〈K〉w Σ, (2.44)

where u and n denote the velocity and local flame normal vectors, respectively

and K the flame stretch. The operator 〈·〉w denotes a gradient-weighted or

surface average [92], defined as

〈Q〉w ≡
〈
Q|∇C|

∣∣C = c∗
〉

〈
|∇C|

∣∣C = c∗
〉 . (2.45)

After making suitable simplifications due to spherical symmetry, the

surface density transport equation reads

∂Σ

∂t
+

1

r2
∂

∂r
(r2 〈ur + Snr〉w Σ) = 〈K〉w Σ. (2.46)
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Here, S is the displacement speed as defined in (2.26) and ur = u · êr and

nr = n · êr represent the radial components of the velocity and normal vectors,

respectively.

The flame stretch K = a − 2Sκ contains two contributions: the tan-

gential strain rate a = −nT∇un +∇ · u and the curvature-propagation term

−2Sκ = S∇ · n. The tangential strain rate depends only on the velocity field

u and the orientation of the velocity gradient tensor ∇u with respect to the

flame normal n.

On the other hand, the curvature-propagation term appears only for

surfaces that propagate (S 6= 0) in the presence of non-zero surface curvature

(κ = −(∇ · n)/2 6= 0). In the case of a material surface, K = a and surface

stretch is due to tangential strain alone.

In light of Eq. (2.40), the time rate of change of P is given by

∂P

∂t
=

4πϕ2

A

[
∂Σ

∂t
− Σ

A

dA

dt

]
. (2.47)

The rate of change of the expected area A is obtained by integrating Eq. (2.46)

throughout the entire volume,

dA

dt
= −

∫ ∞

0

4π
∂

∂r

(
r2 〈ur + Snr〉w Σ

)
dr +

∫ ∞

0

4πr2 〈K〉w Σ dr, (2.48)

or,

1

A

dA

dt
=

∫ ∞

0

〈K〉w P dϕ ≡ KG. (2.49)
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Since the volumetric integrals of the convective and propagation terms on the

left hand side of Eq. (2.46) are zero the logarithmic time rate of change of the

area is called the global stretch KG.

Substituting ∂Σ/∂t from (2.46) and 1/A dA/dt from Eq. (2.49) into

(2.47) and simplifying, the evolution equation for the PDF is obtained:

∂P

∂t
= −4π

A

∂

∂ϕ

(
ϕ2 〈ur + Snr〉w Σ

)
+ 〈K〉w

4πϕ

A
−KGP (2.50)

since P = 4πϕ2Σ/A, the equation simplifies to

∂P/∂t = −∂/∂ϕ {〈ur + Snr〉w P}+ (〈K〉w −KG)P. (2.51)

Note that the differential stretch 〈K ′〉w ≡ 〈K〉w −KG affects the time

rate of change dP/dt and not the flame stretch 〈K〉w directly. In other words, a

homogeneous flame stretch everywhere on the surface increases the flame sur-

face area at the same rate everywhere and does not change how it is distributed

in the radial direction.

In light of Eq. 2.41 and Eq. (2.51), the time rate of change of mean

flame radius R is given by

dR

dt
=

d

dt

∫ ∞

0

ϕP dϕ =

∫ ∞

0

ϕ
∂P

∂t
dϕ (2.52)

= −
∫ ∞

0

ϕ
∂

∂ϕ
(〈ur + Snr〉w P) dϕ+

∫ ∞

0

ϕ 〈K ′〉w P dϕ. (2.53)
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Simplifying the equation using integration by parts, the equation reduces to

dR

dt
= −

[
ϕ 〈ur + Snr〉w P

]∞
0
+

∫ ∞

0

〈ur + Snr〉w P dϕ+

∫ ∞

0

ϕ 〈K ′〉w P dϕ

(2.54)

=

∫ ∞

0

〈ur + Snr〉w P dϕ+

∫ ∞

0

ϕ 〈K ′〉w P dϕ. (2.55)

since P → 0 at both limits ϕ = 0 and ϕ → ∞ of the integration.

Similarly, the following differential equation for the growth of turbulent

flame brush thickness δT is obtained as

dδ2T
dt

= 2π
dσ2

dt
= 2π

d

dt

∫ ∞

0

(ϕ− R)2P dϕ (2.56)

= 2π

∫ ∞

0

(ϕ− R)2
∂P

∂t
dϕ− 4π

dR

dt

∫ ∞

0

(ϕ− R)P dϕ. (2.57)

The second integral on the right hand side is zero by definition of R. Substi-

tuting for dP/dt from Eq. (2.51),

dδ2T
dt

=− 2π

∫ ∞

0

(ϕ−R)2
∂

∂ϕ
(〈ur + Snr〉w P) dϕ

+ 2π

∫ ∞

0

(ϕ− R)2 〈K ′〉w P dϕ.

(2.58)

Applying integration by parts on the first integral, the following form of the

evolution equation for the thickness of the brush is obtained:

dδ2T
dt

=− 2π
[
(ϕ−R)2 〈ur + Snr〉w P

]∞
0
+ 4π

∫ ∞

0

(ϕ−R) 〈ur + Snr〉w P dϕ

+ 2π

∫ ∞

0

(ϕ−R)2 〈K ′〉w P dϕ

(2.59)

As with Eq. (2.55), the first term on the right hand side drops to zero as

P → 0 at both limits of the integration. The convective term is further broken
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into three parts that separate the effects of turbulent dispersion, effects of

mean radial velocity introduced in the domain by the propagating turbulent

flame and associated density changes, and the effect of flame propagation on

the thickness of the brush.

The ordinary differential equation for the flame brush thickness after

this decomposition of the transport term reads

dδ2T
dt

= 4π

∫ ∞

0

(ϕ−R) 〈u′
r〉w P dϕ+ 4π

∫ ∞

0

(ϕ−R)urP dϕ

+4π

∫ ∞

0

(ϕ−R) 〈Snr〉w P dϕ+ 2π

∫ ∞

0

(ϕ− R)2 〈K ′〉w P dϕ,

(2.60)

where ur is the Reynolds-averaged mean radial velocity (not conditioned on the

flame surface), and u′
r the corresponding fluctuation. Note that the surface

average of the fluctuation 〈u′
r〉w is not zero since it is a gradient-weighted

conditional mean of the Reynolds fluctuation.

2.4.3.2 Characterization of the PDF

The spatial distribution of the flame surface closely follows a Gaussian

distribution, so the PDF of the radial distance P may be approximated as a

normal distribution with mean R and standard deviation σ.

Figure 2.7 shows quadrants of representative planar slices of the in-

stantaneous flame surface for flame configuration R2K1 at t/τ0 = 4.2. The

instantaneous flame contours in the quadrants are shown in black color. The

region R − σ ≤ φ ≤ R + σ is marked in red hue and provides an estimate of

the turbulent flame brush.
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Figure 2.7: Characterization of the PDF of radial distance φ: (a) Quadrants
of representative planar slices x1 − x2 of the Cartesian planes x − y, y − z
and x − z. (b) Normalized PDF P̂ against the brush coordinate θ in linear
scale for flames R1K1 (©), R2K1 (✷) and R3K1 (△). The standard normal
distribution is shown (thick black lines) for comparison also.
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It is apparent the normalized PDF P̂ = σP is well described by the

standard normal distribution N(0, 1) in the normalized brush coordinate θ,

consistently with data reported for various flame configurations in the litera-

ture (Lipatnikov & Chomiak [65] and references therein). Here, the normalized

brush coordinate is defined as θ = (ϕ− R)/σ.

Subplots (c) of the figure shows that the tails of the PDF are well ap-

proximated by the normal distribution also, although the comparison becomes

worse for |θ| > 2, possibly due to statistical convergence.

It must be noted that since the radial distance of the flame surface

cannot be negative, the PDF can only be modeled as a truncated Gaussian with

support 0 ≤ ϕ < ∞. However, since the mean flame distance R is much larger

than the standard deviation σ, the difference between a truncated Gaussian

and true normal distribution are negligible. Thus, for all practical purposes,

P may be assumed to be a Gaussian in the region R− 3σ ≤ ϕ ≤ R + 3σ.

Since the PDF P and the surface density function Σ are related as

P(ϕ, t) = 4πϕ2Σ(ϕ, t)/A, a model for the surface density function may be

obtained by assuming normal distribution for σP,

Σ(r, t) = P(r, t)A/4πr2 = (A/4πr2σ)N((r −R)/σ)), (2.61)

where N denotes the standard normal distribution with zero mean and unit

variance.

Figure 2.8 shows Σ at select times for simulations R1K1, R2K1, R3K1

and R4K1. The surface density function (SDF) is normalized by initial thermal
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thickness δ0L and plotted versus r/RL, where RL is the effective domain radius.

With time, SDF is transported radially outward, its distribution broadens

while the peak value Σmax decreases. The broadening is due to the increase in

the flame brush thickness and consistent with past observations of premixed

spherical turbulent flames in decaying turbulence [96, 40].

The comparison between the surface density function evaluated from

Eq. (2.34) and the model from Eq. (2.61) is satisfactory, indicating the the

two methodologies are consistent. As discussed next in Sec. 2.5 and later in

Chapter 4, the model for SDF will be leveraged to identify the location of the

peak surface density Σmax.

2.5 Model for area ratio χ

Since the area ratio χ is related to the volumetric integral of Σ, broad-

ening of the distribution of surface density function leads to increasing χ,

while the decrease in the peak SDF Σmax leads to the opposite effect. A more

quantitative analysis of the area ratio is in order.

The location of the peak flame surface density, denoted henceforth by

r̂ = r̂(t), is implicitly defined as

∂Σ

∂r

∣∣∣
r=r̂

= −2P(r̂, t)/r̂3 + P
′(r̂, t)/r̂2 = 0, (2.62)

2P(r̂, t)− r̂P′(r̂) = 0, (2.63)

since the surface density function only admits one maxima and no minima. In

the equation above, P′ denotes the partial derivative with respect to ϕ.
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Based on Eq. (2.40), the maximum value of the surface density function

Σmax is

Σmax = Σ(r̂, t) = (4π)−1A
P′(r̂, t)

2r̂
= (4π)−1A

P(r̂)

r̂2
. (2.64)

Substituting Eq. (2.40) and Eq. (2.64) into the expression for area ratio

χ, Eq. (2.37), the following expression is obtained:

χ = ΣmaxδTβ, (2.65)

where β is a geometric shape factor defined as

β =
1

P(r̂, t) δT

(
r̂

R

)2

. (2.66)

The shape factor β is related solely to the functional form of P(ϕ, t).

For all practical purposes, the truncated normal distribution and the

underlying normal distribution are identical on the account of negligible proba-

bility of ϕ < 0 if even if a true normal distribution is assumed. For simplicity,

ignoring these small differences results in the following solution for r̂ from

Eq. (2.63),

r̂(t) = 2P(r̂, t)/P′(r̂) = R
(
1 +

√
1− 8α2

)
/2, (2.67)

where α = σ/R is the relative standard deviation of the radial distance.

Substituting Eq. (2.67) into Eq. (2.66) and simplifying, the shape factor

reads as

β = β(α) = 0.25
(
1 +

√
1− 8α2

)2

exp
{
(
√
1− 8α2 − 1)2/8α2

}
. (2.68)
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The shape factor is a monotonic function of α. For α → 0, β → 1 and

decreases as α increases. For all flame configurations, α = 0 at t = 0 since a

laminar kernel is initiated. Initially, the standard deviation σ increases more

rapidly as compared to R, α increases and β decreases. Eventually, the flame

radius R increases more rapidly than σ and α decreases again. For all flame

configurations, it was found that α ≤ 0.33 at all times and 0.875 ≤ β ≤ 1.

Since β ≈ 1, Eq. (2.65) illustrates that the area ratio is controlled by

the product of peak flame surface density and the thickness of turbulent flame

brush, both of which are independently controlled quantities associated with

the surface wrinkling by turbulence. The temporal evolution of both these

quantities is carefully examined with appropriate partial differential equations

later in Chap. 3 and Chap. 4.
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Chapter 3

Turbulent flame brush thickness

The turbulent flame brush thickness δT (t) is a statistical measure of the

distance of flame surface from its mean location. Since the turbulent spherical

flames in the database grow from an initially laminar kernel of fully burnt

gases, the brush thickness grows from zero as time progresses and turbulence

wrinkles the flame surface.

Equation (2.60) indicates that the growth of flame brush thickness is

influenced turbulent diffusion, mean velocity field, flame propagation, and the

differential flame stretch. Apart from turbulent diffusion, all other effects arise

due to flame propagation and associated density changes.

Karlovitz [52] argued that for a slowly moving front (u′/SL ≫ 1), the

evolution of turbulent flame brush must be equivalent to dispersion of material

points due to turbulent motion. In such situations, the evolution of the flame

brush is consistent with Taylor’s theory of turbulent diffusion [109]. Indeed, as

discussed below in section 3.2, the relative contributions of mean velocity, flame

The content presented in this chapter has been originally published in the following
article:

Kulkarni, T., Bisetti, F. (2021). Analysis of the development of the flame brush in turbulent
premixed spherical flames. Combustion and Flame, Available online at https://doi.org/
10.1016/j.combustflame.2021.111640.
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propagation and differential flame stretch to the flame brush become small

compared to that of turbulent diffusion for large u′/SL. Success for the theory

has been reported in the literature for a variety of flame configurations [65, 64].

The spatial growth of the brush thickness with distance from the flame-holder

or outlet may be regarded as temporal growth under Taylor’s hypothesis [110].

The temporal evolution of the standard deviation σ̃ of the position of

material points in homogeneous isotropic turbulence is given by [109]

dσ̃2

dt
= 2u′(t)

∫ t

0

u′(p)fL(p, t) dp, (3.1)

where fL denotes the Lagrangian velocity auto-correlation function and u′(t)

the turbulence intensity at time t.

For stationary turbulence, Eq. (3.1) can be simplified by assuming an

exponential form for the Lagrangian autocorrelation function (such as in [46])

to give

σ̃2

l2
=

2t

τ †

(
1− τ †

t

[
1− e−t/τ†

])
, (3.2)

where l = u′3/ǫ is the integral length scale and τ † = l/u′ is a reference time

scale (here a constant). The short and long term limits of Eq. (3.2) are σ̃2 ∼ t2

for t ≪ τ † and σ̃2 ∼ t for t ≫ τ †, respectively. The short time limit has been

shown to explain reasonably well the early and near-field evolution of the

brush in various experimental and numerical flame configurations, including

spherically expanding flames and turbulent Bunsen flames [65]. The model

suggests that the flame brush thickness scales with large, energy-containing
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scales of turbulence (i.e. the integral scale l), since the ratio σ̃/l is a function

of the normalized time t/τ † alone.

3.1 Correction to Taylor’s theory

The turbulent diffusion term of Eq. (2.60) is equivalent to the Taylor’s

theory and in the limit u′/sL → ∞ the two approaches recover the same

evolution of the brush thickness. Since the flame surface elements disperse in

the radial direction, a geometric correction to Eq. (3.1) is necessary to account

for the fact that the radial direction itself changes along the trajectories of

surface elements.

Following closely the approach by Taylor [109], consider an ensemble

of particles released on the surface of a sphere of radius R0 at t = 0 and follow

the evolution of variance of radial distance of the ensemble in time. The radial

distance of a particle in the ensemble is governed by

dr(a, t)

dt
= u(x(a, t), t) · ir(a, t), (3.3)

where u denotes the local fluid velocity at particle location x(a, t), a being the

particle index in the ensemble, and ir(a, t) = x(a, t)/|x(a, t)| is the unit vector

in the radial direction. Integrating the ordinary differential equation with the

initial condition r(a, 0) = R0, the particle distance at t > 0 is given by

r(a, t) = R0 +

∫ t

0

u(x(a, p), p) · ir(a, p) dp. (3.4)

Here p represents a dummy variable of integration.
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The variance σ2 of the radial distance in absence of mean velocity is

1

2

dσ2

dt
=

〈
(r(a, t)− R0)

dr(a, t)

dt

〉
=

〈
u(a, t) · ir(a, t)

∫ t

0

u(a, p) · ir(a, p) dp
〉
,

(3.5)

since the mean radial distance is constant and equal to R0. In the expression

above, angular brackets denote average of the ensemble of particles and the

dependence of u on x(a, p) is written as u(a, p) for simplicity.

Equation (3.5) can be expanded as following in the Cartesian coordi-

nates:

1

2

dσ2

dt
=

∫ t

0

〈
ux(a, t)ux(a, p)

x(a, t)x(a, p)

r(a, t)r(a, p)

〉
dp

∫ t

0

〈
uy(a, t)uy(a, p)

y(a, t)y(a, p)

r(a, t)r(a, p)

〉
dp

∫ t

0

〈
uz(a, t)uz(a, p)

z(a, t)z(a, p)

r(a, t)r(a, p)

〉
dp,

(3.6)

where ux, uy, uz and x, y, z denote the Cartesian components of the velocity

vector u and the position vector x, respectively.

In homogeneous isotropic turbulence the velocity vector u is uncorre-

lated with the position vector x. Moreover, due to isotropy, the three integrals

in Eq. (3.6) are equal to each other and can be written in terms of Lagrangian

velocity auto-correlation function. In light of these simplifications, Eq. (3.6)

can be simplified as

1

2

dσ2

dt
=

∫ t

0

〈ux(a, t)ux(a, p)〉
〈

x(a, t) · x(a, p)
|x(a, t)| |x(a, p)|

〉
dp, (3.7)

with an additional factor that accounts for the dependence on the mean cosine
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of the angle between the radial unit vectors on Lagrangian trajectories. Let

the angle between radial unit vectors at time p and t be denoted as αp,t.

The final expression for the modified dispersion relation in radial coor-

dinate is given by

1

2

dσ2

dt
= u′(t)

∫ t

0

u′(p)fL(p, t) 〈cosαα,t〉 dp, (3.8)

where fL is the Lagrangian velocity auto-correlation function in decaying

isotropic turbulence

fL(t1, t2) ≡
〈ux(a, t1)ux(a, t2)〉

u′(t1)u′(t2)
. (3.9)

In summary, since the radial direction itself varies along a Lagrangian

trajectory, an additional orientation factor 〈cosαp,t〉 must be included in the

dispersion relation (Eq. (3.1)). This implies that Taylor’s theory overestimates

the variance in the radial direction since cosαp,t ≤ 1. The orientation factor

〈cosαp,t〉 depends on the lateral movement of particles in the polar and az-

imuthal directions compared to that in the radial direction and is close to

unity for small values of the ratio between the two.

3.2 Dimensionless evolution equation

To compare the development of turbulent flame brush thickness and

its growth rate across different flames in the database, the evolution equa-

tion is considered in a transformed, dimensionless form. Consistent with the

turbulent diffusion theory, the integral length scale l and the eddy turnover
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time τ are chosen as reference scales. Note that in decaying turbulence these

scales themselves change in time. In particular, using the instantaneous eddy

turnover time τ(t) is akin to the transformation from t to s, since the two are

related as ds ≡ dt/nτ .

The evolution equation for the dimensionless brush thickness δ̂T = δT/l

reads

dδ̂T
ds

= nτ
d(δT/l)

dt
=

3n

2u′

dδT
dt

− δT
l

dl

ds
(3.10)

=
3n

2u′

dδT
dt

− (1− n/2)δ̂T . (3.11)

The factor 3/2 appears in front of dδT/dt since τ/l = (k/ǫ) (u′3/ǫ)−1 = 3/(2u′).

In addition, the second term on the right hand side of Eq. (3.11) appears due

to evolution of integral length scale itself, which evolves in decaying turbulence

as l/l0 = exp((1− n/2)s).

Substituting for dδT/dt from Eq. (2.60) in Eq. (3.11) leads to

dδ̂T
ds

=
nCδ

u′

∫ ∞

−R/σ

〈u′
r〉w θP̂− (1− n/2)δ̂T

︸ ︷︷ ︸
T1

+
nCδ

u′

∫ ∞

−R/σ

urθP̂ dθ

︸ ︷︷ ︸
T2

+
nCδ

u′

∫ ∞

−R/σ

〈Snr〉w θP̂ dθ

︸ ︷︷ ︸
T3

+
nδ̂T
2

∫ ∞

−R/σ

〈K ′〉w θ2P̂ dθ

︸ ︷︷ ︸
T4

.

(3.12)

In the equation above, Cδ = 3
√

π/2 is a constant. The transformation

from radial coordinate r to the normalized brush coordinate θ attaches the

frame of reference to the mean radial location of the flame surface. The four

terms on the right hand side of Eq. (3.12) identify the effects of turbulent
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Figure 3.1: Contribution of various mechanisms to the growth of turbulent
flame brush thickness. Data shown for flame R2K1.

dispersion (term T1), mean radial velocity (term T2), flame propagation (term

T3) and flame stretch (term T4) on the temporal evolution of the thickness of

the flame brush.

Figure 3.1 shows contributions of the four terms T1, T2, T3, and T4

on the evolution of normalized flame brush thickness for flame R2K1. Tur-

bulent dispersion dominates early in the evolution of the brush, leading to

a rapid increase in its thickness. Effects of mean radial velocity and flame

stretch increase in magnitude with time and become comparable to turbulent

dispersion only at later time. The flame stretch (term T4) is negative at all

time and slows down the growth of the brush thickness. The contribution of

flame propagation (term T3) is negligible at all times. As a result, the growth
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of turbulent flame brush slows down with time and its thickness appears to

reach an asymptotic or a maximum value. The following sections discuss each

of these mechanisms in detail.

3.2.1 Turbulent diffusion

As discussed at the start of this chapter, the brush thickness of slow,

thin flames with no gas expansion mimics the dispersion of an ensemble of

material elements. Then, the turbulent diffusion term T1, when considered

in isolation, should match the predictions of Taylor’s theory, appropriately

modified as discussed earlier. To facilitate the comparison, the evolution of

normalized dispersion thickness σ̂ = σ/l in the logarithmic time coordinate

according to the turbulent diffusion theory is obtained as following.

Starting from Eq. (3.7), assume that the cosine factor 〈cos(αp,t)〉 ≈ 1

at all times. Then, the dispersion thickness σ grows as

σ2 = 2

∫ t

0

u′(t′)

(∫ t′

0

u′(t′′)fL(t
′, t′′) dt′′

)
dt′. (3.13)

The Lagrangian auto-correlation function fL(t
′, t′′) evolves differently for dif-

ferent flames since the eddy turnover time scale τ is different. Furthermore,

eddy turnover time τ itself changes due to decaying turbulence which makes

the comparison of σ across different flames difficult.

Huang and Leonard [48] demonstrated that fL exhibits a self-similar

form in s coordinate, i.e. fL(s
′, s′′) is a function of the lag in the s coordinate,

∆s = s′− s′′ alone. Since transformation from t to s compensates for different
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initial conditions across the flames, such a transformation allows for compar-

ison of the effects of turbulent dispersion on the growth of the flame brush

across different flames and also with that of material elements in decaying

turbulence.

The transformation from t to s in Eq. (3.13) with ds = dt/nτ leads to

σ2(s) = 2n2

∫ s

0

u′(s′)τ(s′)

(∫ s′

0

u′(s′′)τ(s′′)fL(s
′, s′′) ds′′

)
ds′ (3.14)

= (9n2/2)

∫ s

0

l(s′)

(∫ s′

0

l(s′′)fL(s
′ − s′′) ds′′

)
ds′ (3.15)

since u′τ = u′k/ǫ = 3l/2. Multiplying both sides with 2π/l2, the equation

above can be written as

σ̂2 ≡ 2πσ2

l2
= 9πn2

∫ s

0

ds′
∫ s′

0

ds′′ fL(s
′ − s′′) exp {(1− n/2)(s′ + s′′ − 2s)} ,

(3.16)

since l(s′)/l(s) = exp((1− n/2)(s′ − s)) in decaying turbulence.

Figure 3.2 compares the turbulent dispersion term T1 with the pre-

dicted rate of change dσ̂/ds according to Eq. (3.16). An exponential model

for fL(s
′ − s′′) as proposed by Huang and Leonard [48] was used to numeri-

cally evaluation σ from Eq. (3.16) and subsequently its rate of change using

finite difference derivatives. Shaded gray region marks predictions of the tur-

bulent diffusion theory for various values of decay exponent 1.55 ≤ n ≤ 1.78,

the range observed for different flames. The turbulent dispersion term T1 is

similar to dσ̂/ds from Eq. (3.16), albeit lower in magnitude. This difference
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Figure 3.2: Comparison of the turbulent dispersion term T1 with the predic-
tions of Taylor’s theory.

likely originates from the orientation factor 〈cosαp,t〉 which was ignored in the

present analysis.

This hypothesis is supported by the following observations. Early on,

when the thickness of turbulent flame brush is small, any movement of flame

surface elements in a direction perpendicular to the radial direction is small

compared to their radial distance, thus the orientation factor is approximately

unity. Accordingly, an agreement between T1 and dσ̂/ds is seen.

Subsequently, the thickness of turbulent flame brush grows rapidly com-

pared to the rate of change of the mean radial distance and the orientation

factor is expected to decrease, resulting in a larger deviation. In the long

time limit, the mean radial distance of the flame surface grows large while
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the thickness of the brush reaches an asymptotic value and the orientation

factor increases towards unity again. The deviation between dσ̂/ds and term

T1 mimics this trend.

It is important to note here that the decrease in the magnitude of T1 in

time is not due to decaying turbulence, since it is already accounted for by the

reference velocity scale u′, which changes in time. Instead, the decrease results

from the decorrelation of radial velocity fluctuations in time, consistently with

the Lagrangian approach of Taylor’s theory.

In the current formulation the said de-correlation manifests itself as

a decrease in the magnitude of the normalized radial velocity fluctuation

(〈u′
r〉w /u′), while the distribution of the flame surface in the normalized brush

coordinate (i.e. P̂) remains virtually identical, as can be seen in Fig. 3.3.

Such a change in the radial velocity fluctuation experienced by the

surface elements is expected for an ensemble of material points too, as dis-

cussed next. Surface elements start at the radial distance r = R0 at t = 0

and face positive and negative radial velocity fluctuation alike. However, the

surface elements that experience negative (respectively positive) fluctuations

are transported to lower (respectively higher) radial distances as compared

to the mean radial distance. Since the velocity fluctuation is correlated with

itself over time, flame surface elements at the trailing edge experience negative

fluctuation and at the leading edge experience positive fluctuation, resulting

in a gradient of 〈u′
r〉w /u′ across the brush. Since the auto-correlation weakens

in time, the slope of 〈u′
r〉w /u′ across the brush decreases in time.
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Figure 3.3: Turbulent dispersion term T1 for flame configuration R3K1s: (a)

Integrand θP̂ 〈u′
r〉w /u′ at four instants, (b) PDF of the normalized brush co-

ordinate P̂, and (c) Normalized gradient-weighted radial velocity fluctuation
〈u′

r〉w /u′. Simulation time increases in the direction of the arrow, i.e. from
light to dark hues, corresponding to t/τ0 = 0.81, 1.63, 2.44 and 3.25.

In summary, the development of the turbulent flame brush due to tur-

bulent dispersion considered in isolation is similar to the prediction of Taylor’s

theory. The contribution of this mechanism to the growth of the flame brush

thickness decreases in time due to decorrelation of the radial velocity fluctua-
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tion in time.

3.2.2 Mean velocity term

The development of the flame brush is affected also by the mean velocity

field, which is induced by the propagating turbulent flame itself. The density

change across the front (i.e. between reactants and products) due to thermal

expansion leads to a spatially varying mean radial velocity field in the domain.

Since the mean radial velocity in the reactants is higher than that in the

products (see discussion in Sec. 2.3.2), the flame surface closer to the reactants

(the leading edge) propagates faster than that closer to the products (the

trailing edge), resulting in a broadening of the brush [3]. In the proposed

framework this effect is quantified by term T2, which is re-written below for

reference:

T2 = nCδ

∫ ∞

−R/σ

ur

u′
θP̂ dθ. (3.17)

While numerical modeling of term T2 requires a solution to the mean

radial velocity field and is configuration specific, universal scaling arguments

may be made based on the source terms that affect ur. For this purpose, con-

sider the Reynolds averaged continuity equation, written below in a simplified

form considering spherical symmetry:

1

r2
∂(r2ur)

∂r
= −1

ρ

∂ρ

∂t
− ur

ρ

∂ρ

∂r
− 1

ρ r2
∂r2ρ′u′

r

∂r
. (3.18)

In the equation above, over-bar (such as ρ) denotes Reynolds averages and

primes (such as ρ′) the corresponding fluctuation.
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Further simplifications are made by adopting the following assump-

tions. First, the Bray-Moss-Libby [15] model for mean density ρ is assumed

to hold, so that

ρ(r, t) ≈ ρu(1− C) + ρbC

= ρu,0(p/p0)
1/γ

[
1− (1− 1/ζ)C

]
. (3.19)

In the equation above ρu(t) and ρb(t) are temporally varying densities of re-

actants and products, respectively and ζ = ρu/ρb their ratio, assumed a con-

stant. Isentropic compression of gases in the closed vessel is assumed with

ρu/ρu,0 = ρb/ρb,0 = (p/p0)
1/γ . The ratio of specific heats γ ≈ 1.3 is taken

equal in reactants and products and a constant.

The temporal and spatial derivatives of density are related to those of

the mean progress variable C and pressure p,

1

ρ

dρ

dt
=

1

γ

d log(p/p0)

dt
− 1− 1/ξ

1− (1− 1/ξ)C

dC

dt
(3.20)

1

ρ

dρ

dr
= − 1− 1/ξ

1− (1− 1/ξ)C

∂C

∂r
. (3.21)

Substituting Eq. (3.21) and (3.20) in Eq. (3.18), the simplified conti-

nuity equation reads

1

r2
∂r2ur

∂r
=− 1

γ

d log(p/p0)

dt
− 1

ρr2
∂r2ρ′u′

r

∂r

+
1− 1/ζ

1− (1− 1/ξ)C

(
∂C

∂t
+ ur

∂C

∂r

)
.

(3.22)

The effects of rise in chamber pressure, turbulent mass flux and flame propa-

gation on the mean radial velocity are thus identified and separated.
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Since the variation of mean radial velocity through the brush is of par-

ticular interest, a dimensionless form of Eq. (3.22) is obtained by transforming

the radial coordinate r to the brush coordinate θ with (∂/∂θ)s = σ(∂/∂r)t,

and from time t to the logarithmic coordinate s with (∂/∂s)θ = nτ(∂/∂t)r , to

get

(
1 + θ

σ

R

)−2∂(1 + θσ/R)2(ur/u
′)

∂θ
= − σ

nu′τ

1

γ

d log(p/p0)

ds

− (1 + θσ/R)−2 1

ρu′

∂(1 + θσ/R)2ρ′u′
r

∂θ

+
σ

u′

1− 1/ξ

1− (1− 1/ξ)C

[
∂C

∂t
+ ur

∂C

∂r

]
.

(3.23)

Apart from pressure rise and the turbulent mass flux, the propagation of

turbulent flame influences mean velocity through spatial and temporal changes

to the average reaction progress variable. This can be easily seen by performing

Reynolds averaging operation on the reaction progress variable equation (2.24)

to get,

∂C

∂t
+ ur ·

∂C

∂r
= S|∇C| − u′ · ∇C ′. (3.24)

Substituting Eq. (3.24) into Eq. (3.23), the following form of the equation is
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obtained:

(
1 + θ

σ

R

)−2 ∂(1 + θσ/R)2(ur/u
′)

∂θ
= − δ̂T

nCδγ

d log(p/p0)

ds︸ ︷︷ ︸
pressure

−
(
1 + θ

σ

R

)−2 1

ρu′

∂(1 + θσ/R)2ρ′u′
r

∂θ
− 1− 1/ξ

1− (1− 1/ξ)C

σu′ · ∇C ′

u′

︸ ︷︷ ︸
turbulent flux

+
1− 1/ξ

1− (1− 1/ξ)C

(S/SL)(|∇C|σ)
u′/SL︸ ︷︷ ︸

flame propagation

.

(3.25)

In the above equation, F(ξ;C = (1−1/ξ)/(1−(1−1/ξ)C) is the coefficient that

scales the gradient weighted displacement speed. The mean radial velocity is

normalized by the instantaneous turbulence intensity u′. The three source

terms on are labeled ‘pressure’, ‘turbulent flux’ and ‘flame propagation’.

Figure 3.4 shows the source terms at t/τ0 = 2.44 for flames R3K1 and

R3K1s. Recall that apart from the domain radius RL the other flow parameters

are identical across the two flames. It can be seen that the contribution of flame

propagation to the mean velocity is largest and independent of the domain size.

Pressure rise contribution differs between R3K1 and R3K1s on the account of

different domain size, yet its overall contribution to mean velocity is negligible.

As a result the mean velocity field is similar between R3K1 and R3K1s. For

this reason the following scaling analysis may also be expected to hold for

spherical turbulent flames in an open domain.

Since the flame propagation source term dominates over the other two,

scaling of velocity field and term T2 may follow that of the propagation source
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Figure 3.4: Source terms for mean radial velocity for flame configurations
R3K1 and R3K1s at t/τ0 = 2.44.

term. The flame propagation term in Eq. (3.25) is directly proportional to

the mean, gradient-weighted displacement speed S|∇C| and is parameterized

by the density ratio ξ though the coefficient F(ξ;C). The following discussion

demonstrates that the flame propagation term scales with the ratio ST/u
′, the

ratio of turbulent flame speed to the instantaneous turbulence intensity.

The normalized gradient-weighted displacement speed may be written

as an integral of conditional mean over all iso-surfaces as follows:

(S/SL)|∇C|σ = (σ/SL)

∫ 1

0

〈S|∇C|
∣∣C = c〉PC(C = c) dc

= σ

∫ 1−

0+

〈S(C = c)〉w
SL

Σ(C = c) dc,

(3.26)

where 〈.〉w denotes surface weighted average according to Eq. (2.45) at the iso-
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level C = c, not c∗. The product of the surface-weighted displacement speed

and the surface density function is integrated over all iso-levels 0 < c < 1.

The iso-levels c = 0 and c = 1 are ill-defined (reactants and products) and are

excluded from the integration. This does not affect the overall integral since

|∇C| ≈ 0 in these regions. All quantities in Eq. (3.26) depend on r and t,

although not explicitly mentioned.

Multiplying and dividing by Σmax, the peak flame surface density of

the iso-surface C = c∗, results in the following expression

(S/SL)|∇C|σ = Σmaxσ

∫ 1+

0−

〈S(C = c; r, t)〉w
SL

Σ(C = c; r, t)

Σmax
dc (3.27)

∼ ΣmaxδT ∼ ST/SL (3.28)

The mean gradient-weighted displacement speed is directly proportional to the

product of peak flame surface density and the turbulent flame brush thickness,

since the integrands 〈S〉 /SL and Σ/Σmax are self-similar (not shown). As a

result, the mean gradient-weighted displacement speed scales as the turbulent

flame speed ST .

Since the density ratio ξ is the same for all flames in the present

database, the flame propagation source term in Eq. (3.25) and, by extension,

term T2 of Eq. (3.12) scale as ST/u
′. Indeed, large variations in T2 with time

disappear when multiplied by the ratio u′/ST as shown in Fig. 3.5. Term T2

increases in time with turbulent burning rates and also across flames R1 to R4

due to increasing initial Reynolds number.
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Figure 3.5: The mean velocity term T2 (a) as written in Eq. (3.12), (b) com-
pensated by ratio u′/ST against dimensionless standard deviation σ/R, and
(c) evolution of σ/R in logarithmic time coordinate s.

Eq. (3.25) highlights the role of density ratio ξ on the growth of turbu-

lent flame brush through the coefficient F(ξ;C). While the present database

is not suitable for examination of such dependence, support for the postulate

comes from experiments on turbulent Bunsen and V-shaped flames by Nie

et. al. [81], Tamadonfar and Gülder [108], and Kheirkhah and Gülder [54].

The researchers reported and investigated the spatial growth rate of turbulent

72



flame brush for various mixtures and observed deviations from Taylor’s theory.

The observed trends are consistent with the effects of mean velocity on the

development of the brush, as discussed below.

Tamadonfar and Gülder [108] and Nie et. al. [81] reported that the

spatial growth rate of flame brush thickness increased when the equivalence

ratio changed from 0.7 to 1 for premixed turbulent Bunsen flames of various

hydrocarbon fuels. Kheirkhah and Gülder [54] observed a similar increase

for turbulent premixed methane/air V-shaped flames. Since the equivalence

ratio was changed at fixed turbulence intensity and bulk flow velocity in all

these studies, it is reasonable to assume that the contribution of the turbulent

dispersion mechanism to the development of the brush remained the same.

On the other hand, increases in the equivalence ratio for lean hydro-

carbon fuels towards unity bring about an increase in both the laminar flame

speed and the density ratio ξ, which lead to a larger mean velocity gradient

across the flame brush.

Data from Tamadonfar and Gülder [108] for fuel-rich mixtures is con-

sistent with the effects of mean velocity also. The researchers observed that

the growth rate decreased when the equivalence ratio increased from unity

towards rich mixtures. This trend mimics the dependence of laminar flame

speed on the equivalence ratio, which peaks near stoichiometry. Moreover,

when experiments were repeated at higher turbulence intensity, a lower sensi-

tivity to the equivalence ratio was observed [108, 54]. Since a higher turbulence

intensity lowers the relative contribution of term T2 as compared to T1 (see
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Eq. (3.12)), the lower sensitivity of the turbulent flame brush to equivalence

ratio is consistent with the proposed framework.

In closing, it must be noted that the mean velocity field and term T2 of

Eq. (3.12) are geometry dependent. For example for the spherical flames they

are influenced by the geometric parameter σ/R also. In the limit of σ/R → 0,

the evolution of the flame brush thickness of a spherical turbulent flame is

similar to that of a planar flame. This corresponds to both the small time

(when σ ≈ 0) and the long time (when R ≫ σ) behavior. Similar geometry-

specific effects are expected in other flow configurations.

3.2.3 Differential flame stretch

Flame stretch is responsible for production and destruction of flame

surface. If the stretch rate is uniform, for example in the growth of material

surface in isotropic turbulence, then the surface area increases at the same

rate everywhere and P and its moments are not affected. Flame stretch varies

across the brush, changing from negative at the trailing edge (net destruc-

tion of flame surface) to positive at the leading edge (net production of flame

surface). This asymmetry acts to reduce the thickness of flame brush by mod-

ifying the spatial distribution of the flame surface. The following discussion

in this section demonstrates that the change in flame stretch across the brush

is primarily associated with that in the flame curvature κ and displacement

speed S.

To facilitate the analysis, a gradient-weighted displacement speed is
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defined as Sg ≡ S|∇C|/ 〈|∇C|〉, where 〈|∇C|〉 is the mean gradient magnitude

at the surface and depends on r and t. The curvature-propagation component

of flame stretch reads

〈S∇ · n〉w =
〈S(∇ · n)|∇C|〉

〈|∇C|〉 = −2 〈Sgκ〉 , (3.29)

where the surface-weighted average has been re-written as a conditional mean

of Sgκ at the surface.

The conditional mean of the product is further simplified as the product

of the conditional means and the conditional covariance as

−2 〈Sgκ〉 = −2 〈S〉w 〈κ〉 − 2covar{Sg, κ} = Kb +Kc. (3.30)

Note that 〈S〉w = 〈Sg〉 by definition. The two components of curvature-

propagation stretch term are denoted as Kb and Kc.

With this decomposition, the following three contributions to flame

stretch are recognized: tangential strain rate 〈a〉w, product of mean curvature

and displacement speed Kb, and the conditional covariance term Kc. Their

contribution to the differential stretch term T4 are split accordingly as

T4 = T a
4 + T b

4 + T c
4

=
nδ̂T
2

∫ ∞

−R/σ

(〈a〉w −Ka
G) θ

2
P̂ dθ

+
nδ̂T
2

∫ ∞

−R/σ

(
−2 〈S〉w 〈κ〉 −Kb

G

)
θ2P̂ dθ

+
nδ̂T
2

∫ ∞

−R/σ

(−2covar{Sg, κ} −Kc
G) θ

2
P̂ dθ.

(3.31)
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4 . Data presented for flame R3K1s at t/τ0 = 2.44.

The three contributions to T4 are denoted as T a
4 , T

b
4 and T c

4 , respectively and

Ka
G, K

b
G and Kc

G are their respective global means:

Ka
G =

∫ ∞

−R/σ

〈a〉w P̂ dθ, Kb
G = −2

∫ ∞

−R/σ

〈S〉w 〈κ〉 P̂ dθ

Kc
G = −2

∫ ∞

−R/σ

covar{Sg, κ}P̂ dθ.

(3.32)

Figure 3.6 shows the spatial variation of the three stretch components

and integrands of terms T a
4 , T

b
4 and T c

4 . The tangential strain rate and covari-

ance components of the flame stretch rate are uniform across the brush. Since

both these terms affect the flame surface uniformly, their contribution to the

growth of the brush is negligible, as shown in Fig. 3.6(b).

On the other hand, both the product of the mean displacement speed

〈S〉w and the mean flame curvature 〈κ〉 varies significantly across the brush.

In fact, both the speed and curvature decrease from the trailing edge to the
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leading edge. The total flame stretch 〈K〉w is negative at the trailing edge

and increases to a positive value at the leading edge. This behavior is well

documented for spherical [100, 101] and planar flames [113, 19] and understood

to be a universal feature of turbulent premixed flames.

The fact that the mean curvature 〈κ〉 decreases from positive to nega-

tive across the brush is a fundamental topological feature of a closed surface.

The part of any closed surface behind its mean location in the direction of its

average normal direction must necessarily have positive curvature on average.

Similarly, the trailing edge of the flame brush is expected to have negative

curvature on average.

Figure 3.7 presents the joint probability density function (PDF) of flame

curvature and the gradient-weighted displacement speed at various locations

in the brush. Flame surface is divided into five parts based on its location

in the brush. Recall that the terminology flame surface refers to the iso-level

surface C = c∗.

The gradient-weighted displacement speed Sg is multiplied by the ratio

of mean density at the iso-surface ρ∗ to the reactants’ density ρu to compen-

sate of a higher density at the flame surface. The presence of the weight

|∇C|/ 〈|∇C|〉 de-emphasizes large displacement speeds in highly curved areas

at the trailing and leading edge whose contribution to the surface averaged

statistics is low on the account of |∇C|/ 〈|∇C|〉 ≪ 1. As a result, the joint-

PDF of Sg and κ is S-shaped instead of a nearly linear shape reported in the

literature [50].
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Figure 3.7: Joint probability density function of flame curvature and the
gradient-weighted displacement speed across the brush. Trailing 25 percentile
of the flame surface possess high positive curvature and displacement speed
while the leading 25 percentile low speed and negative curvature.

The normalized, gradient-weighted mean displacement speed averaged

over the entire surface is close to unity as expected. The surface-averaged

mean flame curvature is negative, consistent with the topology of spherical

flames. However the most probable value of curvature is positive, indicating

that concave topology (i.e. ridges) is more commonly found than the convex
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ones.

At the trailing edge, regions of high positive curvature and displacement

speed have a higher probability density while at the leading edge regions of

high negative curvature and low displacement speed are more commonly found.

In general, the displacement speed and the curvature are negatively correlated

with a high correlation coefficient. The mean of two quantities across the

brush is plotted as a red curve on top of the joint-PDF. As the curvature

distribution shifts from largely-positive at the trailing edge to largely-negative

at the trailing edge, the conditional mean of the normalized, gradient-weighted

displacement speed decreases as well.

This response of the displacement speed to changes in curvature is

consistent with the Markstein effect [88, 84, 75], which is a linear theory that

relates flame speed of to its stretch rate. The surface-weighed displacement

speed can be modeled as

〈S〉w =
ρuSL

ρ∗
(1−Ma 〈K〉w τL) (3.33)

=
ρuSL

ρ∗

(
1−Ma 〈a〉w τL + 2Ma

〈S〉w
SL

〈κ〉 δL + 2MaτL covar{Sg, κ}
)

(3.34)

where Ma = L/δL is the Markstein number and L the Markstein length.

The density ratio ρ∗/ρu compensates for the differences between displace-

ment speed of iso-level C = c∗ and the laminar flame speed SL. For the

methane/air mixture under consideration, Ma ≈ 0.33 and was estimated from

three-dimensional laminar spherical flame simulations at the same thermo-

chemical conditions.

79



0

1

2

−4 −2 0 2 4

ρ
∗
〈S

〉 w
/ρ

u
S
L

θ = (ϕ− R)/σ

t/τ0 = 0.81

t/τ0 = 1.63

t/τ0 = 2.44

Figure 3.8: The normalized, gradient-weighted displacement speed across the
flame brush, along with the prediction of Markstein model (Eq. (3.35)). Data
shown for flame R3s at three different times.

Substituting the expression for stretch rate 〈K〉w in Eq. (3.34) the fol-

lowing expression for 〈S〉w is obtained:

ρ∗ 〈S〉w
ρuSL

=
1−MaKa (〈a〉w − 2covar{Sg, κ}) τη

1− 2Ma(ρu/ρ∗) 〈κ〉 δL
. (3.35)

The tangential strain rate 〈a〉w is normalized with the instantaneous Kol-

mogorov time scale τη in accordance with its scaling for the deformation of

material elements in isotropic turbulence [43]. A similar scaling is also shown

to hold in premixed turbulent flames [71] also. Consistently, the Kolmogorov

time scale τη is chosen to normalize the covariance term also and the Karlobvitz

number Ka = τL/τη appears as a result.

Figure 3.8 shows that the Markstein model from Eq. (3.35) accurately
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predicts the variation of the displacement speed across the brush. Data are

presented at three different times for flame R3s (symbols) and compared with

the predictions of the Markstein model with Ma = 0.33. At the leading and

trailing edge of the brush, large curvature leads to large values of flame stretch

rate and deviations from the linear Markstein model are observed. However,

such differences may not affect the integral in the term T b
4 appreciably since

P̂θ2 → 0 at the edges of the brush.

The two stretch components and mean curvature across the brush are

shown in Fig. 3.9. The tangential strain rate and the covariance stretch terms

normalized by instantaneous Kolmogorov time scale are spatially homogeneous

across the brush, while mean flame curvature changes significantly. According

to Eq. (3.35), the variation in displacement speed thus originates in response to
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as suggested by Eq. (3.36).

that in flame curvature. As discussed earlier, the variation of flame curvature

across the brush is a fundamental property of closed flame surface, the varia-

tion of displacement speed across the brush is expected in different turbulent

flame configurations also. As a result, the differential flame stretch mechanism

is expected to adversely affect the growth of flame brush in general.

Substituting 〈S〉w from Eq. (3.35) in Eq. (3.31), a model for term T b
4 is

obtained:

T b
4 = −nδ̂TDa

∫ ∞

−R/σ

dθP̂ θ2
(
ρu
ρ∗

1−MaKaτη (〈a〉w − 2covar{Sg, κ})
1− 2Ma(ρu/ρ∗) 〈κ〉 δL

)
,

(3.36)

where the Damköhler number Da = τ/τL originates from the choice of nor-

malizing scales.

Since reference scales and dimensionless groups inside the integrand of
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Eq. (3.36) are constant or evolve similarly across flames R1K1, R2K1, R3K1

and R4K1, term T b
4 should increase with the flame brush thickness δ̂T and

proportionally with the Damköhler number.

Figure 3.10 plots the three differential stretch terms T a
4 , T

b
4 and T c

4 .

Terms T a
4 and T c

4 contribute very little to the evolution of the brush, since

the corresponding stretch components are approximately constant through

the brush. Magnitude of T b
4 is higher for flames with higher Reynolds (and

Damköhler) number.

For most part, the absolute value of T b
4 increases in time proportional to

the normalized brush thickness δ̂T . As with the mean velocity term T2, flame

stretch effects are negligible early on when turbulent diffusion is the dominant

mechanism. With growing brush thickness the differential flame stretch effects

become prominent and hinder the growth of the brush. However, the magni-

tude of T4 continues to increase even after δ̂T reaches an asymptotic value. This

residual temporal variation may be due to deviations of the surface-averaged

displacement speed from the Markstein theory, variation in the normalized

curvature 〈κ〉 δL or other transient effects.

Overall, the models presented for 〈S〉w and T b
4 here highlight the role of

the Markstein number in the growth of the flame brush thickness. Since a lower

Markstein number leads to a smaller variation of 〈S〉w for similar changes in

〈κ〉, the model predicts a lower magnitude of T4 for smaller Markstein number.

While the present database does not explore such dependence, Fairweather et.

al. [36] do indeed report that methane-hydrogen mixtures with lower Markstein
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number burn faster than explained by changes in the laminar flame speed

alone. Based on the above discussion, it may be postulated that this might be

due to a smaller contribution of T4 towards hindering the growth of the brush.

A thicker turbulent flame brush would lead to higher turbulent flame speed

due to larger area increase.

Several researchers have investigated the effect of hydrodynamic insta-

bilities in the growth of turbulent flame surface area [39, 27, 124]. It has been

demonstrated that in the presence of Darrieus-Landau (DL) hydrodynamic

instabilites, the PDF of curvature departs from a Gaussian distribution and

exhibits a negative skewness [27]. When hydrodynamic instabilities play a

significant role in development of a turbulent flame, the changes to curvature

statistics across the brush will affect differential stretch rate terms and influ-

ence the evolution of the brush. Such effects are minimal at present due to

large values of u′/SL but may be important in general.

3.2.4 Evolution of turbulent flame brush thickness

As discussed in this chapter, the temporal growth of the brush of turbu-

lent spherical flames is controlled by several mechanisms. Figure 3.11 compares

the evolution of the normalized brush thickness δ̂T across different flames and

against the modified dispersion relation. The dimensional flame brush thick-

ness δT changes by a factor of four from flame R1K1 to R4K1, yet the nor-

malized thickness δ̂T evolves similarly. This demonstrates that the integral

length scale l is the most appropriate normalizing scale for the thickness of
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turbulent flame brush, even though reactants’ turbulence decays freely and in

the presence of mechanisms in addition to turbulent dispersion.

The shaded region in Fig. 3.11 shows the predictions of the modified

dispersion relation for the range of values of the decay exponent n as observed

in the database. A better agreement between the two is seen early on as

the initial growth of the turbulent brush is governed by turbulent dispersion.

More significant differences appear later as the mean velocity gradient and

differential flame stretch terms increase in magnitude. The normalized turbu-

lent flame brush thickness appears to reach an asymptotic value, contrary to

the thickness of region occupied by material points, which continues to grow

indefinitely even in decaying isotropic turbulence [48].
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A characterization of the various terms points to universal mechanisms

that are likely to apply in other flame configurations. It was observed that the

role of turbulent dispersion weakens in time compared to other effects. This

decline is due to the de-correlation of the velocity fluctuation experienced by

the flame surface elements, consistent with Taylor’s theory. Thus, a simi-

lar behavior is also expected in statistically stationary homogeneous isotropic

turbulence.

On the other hand, differential flame stretch and mean velocity terms

become more important as the thickness of turbulent flame brush increases

due to differences in the mean velocity and flame stretch across the brush are

amplified. This can be seen in Eq. (3.12) since T2 and T4 are directly pro-

portional to the thickness δ̂T itself. Based on the preliminary characterization

of expanding spherical turbulent flames from the present database, the latter

(term T4) seems to dominate the former (term T2). The analysis presented in

this chapter seems to indicate that the thickness of turbulent flame brush may

not increase indefinitely and may attain an asymptotic or a maximum value.
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Chapter 4

The peak flame surface density

4.1 Peak SDF in thin reaction zone regime

As discussed in Sec. 2.3 and shown in Fig. 2.8, the flame surface density

function peaks in the central region of the turbulent flame brush and decreases

rapidly towards the edges of the brush. The expression for the surface density

function for isosurface C = c∗ is re-written below for reference:

Σ(C = c∗; r, t) =
〈
|∇C|

∣∣C = c∗
〉
PC(c

∗; r, t). (4.1)

In general, the spatial variation of the surface density function may be due to

that in the conditional gradient magnitude or the PDF of the progress variable

PC(c
∗), or both.

Figure 4.1(a) shows the conditional mean of the magnitude of progress

variable gradient as a function of the conditioning value c at two times for

flame configuration R2K1. The two representative checkpoints t/τ0 = 0.75

The content presented in this chapter has been published in the following two articles:

Kulkarni, T., Buttay, R., Kasbaoui, M., Attili, A., & Bisetti, F. (2021). Reynolds number
scaling of burning rates in spherical turbulent premixed flames. J. Fluid Mech., 906, A2.
https://doi.org/10.1017/jfm.2020.784

Kulkarni, T., Bisetti, F. (2021). Evolution and scaling of the peak flame surface density
in spherical turbulent premixed flames subjected to decaying isotropic turbulence. Proc.

Combust. Inst., 38(2), 2817-2824. https://doi.org/10.1016/j.proci.2020.06.042
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Figure 4.1: (a) DNS data for the conditional mean of gradient magnitude at
two different times. The shaded regions mark one standard deviation around
the mean. (b) Conditional mean of the gradient magnitude across the flame
brush at t/τ0 = 5.25. Scatter of samples is represented with red dots. Data
presented for flame configuration R2K1.

(blue color) and 5.25 (red color) are chosen to represent data from early and

late stages of the evolution. Also shown for comparison are the curves from

a laminar flame front at the corresponding temperature and pressure (black

lines), which increase in time due to isentropic compression. The red and blue

color hues mark one standard deviation from the mean.

The conditional mean of the gradient at all values of c is same as its

value in a laminar flame, confirming that the flame configuration belongs to

thin flamelet regime [87] where the structure of propagating front is retained in

the mean. Furthermore, since the data are normalized with the initial thermal

thickness δ0L, the effect of increasing pressure on the front can be observed also.

Since the peak value of the gradient changes by 10% only, it is demonstrated

that the effect of increasing pressure on the flame structure is negligible.
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More importantly, figure 4.1(b) shows the radial variation of the gradi-

ent magnitude at isosurface C = c∗ is minimal, indicating that the conditional

gradient magnitude component of Eq. (4.1) may be considered constant for all

practical purposes. The spatial and temporal variation of the surface density

function is then primarily due to the PDF PC . The peak flame surface density

function is thus intricately tied to that of the PDF and further investigation

of the spatial and temporal dependence of PC is warranted.

The investigation follows an approach inspired by the Bray-Moss-Libby

model [16]. Consider an ensemble of two-dimensional planar cuts, whereby

each plan contains the origin and its normal is oriented randomly. On each

such planar cut, consider a circle of radius r, centered at the origin and let

et be the unit vector along the tangential direction. Let q be the arc length

distance from an arbitrary point along the circle (0 ≤ q ≤ 2πr).

Figure 4.2 shows a schematic representation of one such planar cut.
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The progress variable profile at one particular radial distance is shown as a

function of the coordinate q in subplot (b).

Given the spherical symmetry of the statistics, the progress variable C

and its gradient ∇C are ergodic along et. The probability PC that C takes a

value between c− dc/2 and c+ dc/2 on the circle equals

PC [c− dc/2 ≤ C ≤ c + dc/2] = PC(c; r, t) dc =
1

2πrp

p∑

j=1

mj∑

i=1

dqij , (4.2)

where dqij is an infinitesimal arc length centered at location qij such that

C(qij) = c and c− dc/2 ≤ C(q) ≤ c+ dc/2 for qij − dqij/2 ≤ q ≤ qij + dq/2.

Since many such segments may exists on a single plane, the segment

length is summed over mj segments along plane j (j = 1, . . . , p) and p denotes

an arbitrarily large number of planes considered for such average. Similar to

the nomenclature used in the Bray-Moss-Libby (BML) model [15, 63], each of

the qij locations is referred to as a ‘flame crossing’.

The infinitesimal arc length dqij is related to the projection of the

gradient ∇C onto the tangential unit vector et at the flame crossing i with

circle of radius r on plane j:

dqij = dc/|∇C · et|ij. (4.3)

Let m be the total number of flame crossings summed over all planes.

Rearranging Eq. (4.2) and dividing by dc, the following expression for the PDF
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PC is obtained:

PC(c; r, t) =
m

2πrp

1

m

p∑

j=1

mj∑

i=1

|∇C · et|−1
ij (4.4)

= ̟(r, t)
〈
|∇C · et|−1

∣∣∣C = c
〉
, (4.5)

where̟(r, t) = m(r, t)/2πrp is the flame crossing frequency, defined as number

of flame crossings per unit length. The statistical mean of |∇C · et|−1 over all

crossings at a fixed radial distance is simply its conditional mean at the iso-

surface C = c.

Since the expression for Σ involves the product of the PDF PC and the

conditional mean of the gradient magnitude |∇C|, it is beneficial to relate the

conditional mean of |∇C · et|−1 to the inverse of the conditional mean:

〈
|∇C · et|−1

∣∣∣C = c
〉
= Υ

〈
|∇C · et|

∣∣∣C = c
〉−1

, (4.6)

where the correction factor Υ is implicitly defined in the equation above.

A binomial series expansion relates Υ to the statistics of gradient pro-

jection as

Υ = 1 + Var
{
|∇C · et|

∣∣∣C = c
}〈

|∇C · et|
∣∣∣C = c

〉−2

+ . . . (4.7)

For turbulent flames in the thin reaction zone regime, the structure of the

reactive layer is unaffected by reactant side turbulence and the variance of the

gradient projection is small compared to the square of its mean (Υ → 1). As

will be shown below, the Bray-Moss-Libby model for the flame surface density

based on the flame crossing frequency is recovered for Υ = 1. The factor Υ is
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thus serves as a correction factor for the BML model for turbulent flames in the

thin reaction zone regime. For various flame configurations in the database,

Υ ≈ 1.35 for 0.5 ≤ c ≤ 0.9, as shown in Fig. 4.3 (a).

The surface of turbulent spherical flame is randomly oriented with re-

spect to the radial and tangential unit vectors er and et. Moreover, the statis-

tics of the magnitude of the gradient of C are isotropic and uncorrelated with

the flame orientation and the following simplification is possible:
〈
|∇C · et|

∣∣∣C = c
〉
=

〈
|∇C||n · et|

∣∣∣C = c
〉

≈
〈
|∇C|

∣∣∣C = c
〉〈

|n · et|
∣∣∣C = c

〉
.

(4.8)

With this simplification, the expression for PC reads

PC(c; r, t) =
̟(r, t)Υ〈

|∇C|
∣∣∣C = c

〉〈
| cosαnt|

∣∣∣C = c
〉 , (4.9)
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where αnt is the angle between the normal n and the ergodic unit vector et and

represents the orientation of flame surface with respect to the ergodic direction.

The orientation angle αnt stays nearly constant in time, independent of the

conditioning value c and same across different simulations (see Fig. 4.3 (b)).

Figure 4.3(c) shows the peak flame surface density Σmax(c) for a general

isosurface C = c, normalized by Σmax(c
∗) at a given time. Within the range

of values 0.1 ≤ c ≤ 0.9, the peak flame surface density function is fairly

insensitive to the choice of the iso-level, since PC ∼
〈
|∇C|

∣∣∣C = c
〉−1

, while Υ

and the alignment cosine are roughly constant.

Based on the above simplifications, an approximate expression for the

surface density function is given by

Σ(c; r, t) = ̟(r, t)Υ/
〈
| cosαnt|

∣∣∣C = c
〉
. (4.10)

Figure 4.4 compares the left and right-hand sides of Eq. (4.10) for

c = c∗ = 0.73, where the surface density evaluation on the left hand side is

evaluated with the definition from Eq. (2.34). The two are found to be in good

agreement. Since the factor Υ/ 〈| cosαnt|〉 is approximately constant in space,

time and across flame configurations, the spatial and temporal dependence of

Σ emerges primarily due to that of the flame crossing frequency ̟ = ̟(r, t).

This conclusion is consistent with the BML theory, whereby the surface

density function is modeled in terms of the spatial crossing frequency and a

mean cosine factor ΣBML = ̟/ 〈| cosαnt|〉 [14, 13]. Equation (4.10) has the
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same form but includes the correction factor Υ additionally, which provides a

correction for the fact that the premixed flames are not infinitesimally thin.

For a statistically stationary and planar turbulent premixed flame, the

BML model relates the crossing frequency ̟ to the two-point, one-time auto-

correlation function of the reaction progress variable,

F(q; x1) = 〈C ′(x, t) C ′(x+ qet, t〉 /σ2
C , (4.11)

̟ = ̟(x1) = −2
∂F

∂q

∣∣∣
q=0

. (4.12)

Here, x1 is an inhomogeneous coordinate, normal to the ergodic plane of the

planar turbulent flame. All statistical quantities depend on the flame-normal

direction x1 only and are averaged in the ergodic directions. In Eq. (4.11)

C ′ = C − C is the Reynolds fluctuation, σ2
C = C ′2 the variance and et the

unit vector in plane of the flame that identifies an ergodic direction. In other

words, the two-point auto-correlation function is evaluated with samples taken

in ergodic direction where statistics are spatially invariant.

Under specific assumptions on the functional form of the two-point

scalar auto-correlation function F, the crossing frequency and surface density

function are modeled as

̟ = A̟ C(1− C)/L∗, (4.13)

Σ = AΣ C(1− C)/L∗, (4.14)

where C = C(x1) only, A̟ and AΣ are modeling constants of order unity and

L∗ is the so-called wrinkling scale.
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Since the crossing frequency is closely related to the auto-correlation

function of the progress variable, L∗ likely reflects the entire spectrum of the

progress variable field C(x, t), although it is not clear how L∗ should scale

with the Reynolds number and how a suitable autocorrelation length could be

defined from F.

There exists significant controversy on the origin and scaling of the

wrinkling length-scale in the literature. Cant & Bray [18] proposed the follow-

ing closure for the wrinkling scale,

L∗ ∝ k3/2ǫ−1, (4.15)

thereby advancing the hypothesis that the wrinkling scale is proportional to the

integral length scale defined as l = u′3/ǫ and controlled by energy containing

fluid structures of the turbulent motion, rather than scales associated with

flame structure and its propagation.

Deschamps et. al. [31] observed L∗ ≈ l for conical turbulent premixed

flames, while others [118, 101] found the wrinkling scale to be about five times

smaller than the integral scale for V-shaped and planar turbulent premixed

flames. Contrary to these observations, Shy et. al. [101] also reported that

the wrinkling scale remained constant for two different turbulence intensities,

while the integral scale changed by about 50%. In must be noted that such

experimental investigations of flame surface wrinkling scale may be affected

by inadequate resolution of the turbulent flame surface, since the wrinkling

scale was found to be about the same size as the width of the averaging box
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used for the measurement of the flame surface density function. Dependence

of L∗ on turbulence intensity u′/SL has also been postulated, yet no conclusive

evidence exits.

Given that L∗ and 1/Σ are related to within constants of order unity,

let L∗ = (4Σmax)
−1, where Σmax denotes the peak flame surface density within

the brush. The factor of four is included here so as to be consistent with

Eq. (4.14), according to which the surface density function peaks at C = 0.5.

Since L∗ ∝ Σmax, both quantities obey the same scaling relations.

The analysis of this section points to a hydrodynamic scaling of wrin-

kling length scale, such that its separation with the integral scale l increases

with increasing Reynolds number as l/L∗ ∼ Re1.13λ . Such power law scaling is

typical of hydrodynamic length scales of turbulent motion, such as Taylor scale

λ and Kolmogorov scale η. Since the peak flame surface density is controlled

by the transport and flame stretch mechanisms, the said scaling is investigated

in detail in the following sections.

4.2 Evolution equation for Σmax

A more detailed investigation of the peak flame surface density, wrin-

kling scale and its scaling with Reynolds number is investigated by consider-

ing the evolution equation for Σmax. Recall that the surface density transport

equation, simplified for spherical flames reads

∂Σ

∂t
+

1

r2
∂

∂r

(
r2 〈ur + Snr〉w Σ

)
= 〈K〉w Σ, (4.16)
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where ur and nr denote the radial components of the velocity and surface

normal vectors, respectively.

The evolution equation for the peak surface density Σmax is obtained by

evaluating the equation above at the radial location of the peak, r̂(t), where

∂Σ/∂r = 0. However, the statistical noise inherent to the evaluation of the

surface density function from Eq. (2.34) affects both the determination of both

the location r̂(t) and the peak value.

To avoid the statistical noise from affecting the balance terms for peak

flame surface density, the peak location is evaluated based on the Gaussian

model as in Eq. (2.67) and is re-written below for reference:

r̂ = R
(
1 +

√
1− 8α2

)
/2. (4.17)

Since the ratio α = σ/R is small at all times, it follows that the surface density

peaks close to the mean radial location, r̂ ≈ R.

The evolution equation for the peak Σmax = Σ(r̂(t), t) is obtained by

evaluating Eq. (4.16) at r̂(t) and reads

1

Σmax

dΣmax

dt
=

{
− 1

r2
∂

∂r

(
r2 〈ur + Snr〉w

)
+ 〈K〉w

}

r̂(t)

(4.18)

Note that Σmax = Σmax(t) only and the source terms on the right hand side

are evaluated at r̂(t).

As with the evolution equation for the turbulent flame brush thick-

ness, a dimensionless form of Eq. (4.18) is obtained by transforming time t to

logarithmic time coordinate s = log(1 + t/t0) and radial distance r to brush
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coordinate θ = (r − R)/σ to facilitate comparison across different flame con-

figurations. The dimensionless form of Eq. (4.18) reads

d log Σmax

ds
=− nτ

σr̂2

{
∂

∂θ
(θσ +R)2 〈u′

r〉w
}

θ̂

− nτ

σr̂2

{
∂

∂θ
(θσ +R)2ur

}

θ̂

− nτ

σr̂2

{
∂

∂θ
(θσ +R)2 〈Snr〉w

}

θ̂

+ nτ 〈K〉w (θ̂, s)

(4.19)

where the derivative with respect to θ is taken while holding time s constant,

although θ is a function of both r and t. The source terms are evaluated at

θ̂ = (r̂ − R)/σ, the time-varying location of the peak flame surface density in

the normalized brush coordinate.

As with the evolution equation for the flame brush thickness, the contri-

butions of the mean velocity field and turbulent fluctuations are separated us-

ing the Reynolds decomposition ur = ur+u′
r. Recall that the surface weighted

average 〈u′
r〉w 6= 0 since ur is the unconditional mean radial velocity.

The four terms on the right hand side of Eq. (4.19) represent four mech-

anisms that affect the evolution of the peak flame surface density: turbulent

transport (term Π1), mean radial transport (term Π2), propagation (term Π3)

and flame stretch (term Π4).

The four terms are shown in Fig. 4.5 for flame R2K1. All transport

terms (Π1, Π2 and Π3) contribute to the reduction of the peak by transport-

ing the surface density away from the location of the peak. The turbulent

transport term (Π1) dominates early on, but the mean transport term (Π2)

surpasses it later on as turbulence decays with time. The propagation term

(Π3) has only a minor influence on the evolution of peak surface density and
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Figure 4.5: Terms in the evolution equation Eq. (4.19) of the peak flame
surface density for flame configuration R2K1.

its role is primarily to changes in the radial location of the peak, r̂(t). On the

other hand, flame stretch term is always positive, increasing the peak surface

density by small-scale wrinkling. The balance of the transport and stretch

terms leads to an approximately constant rate of logarithmic decay of peak

flame surface density (black line in Fig. 4.5).

Terms Π1, Π2 and Π4 are analyzed in detail in the following subsections

and their scaling with appropriate turbulence scales is discussed.

4.2.1 Turbulent transport

Figure 4.6(a) shows the evolution of the absolute value of term Π1 across

various flame configurations. The evolution of this term in logarithmic time
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coordinate s is similar across different flames, even though the rms turbulence

fluctuation u′ is different.

To explain this observation, consider the following decomposition of Π1:

Π1 = −nτ

σ

{
2 〈u′

r〉w σ

θσ +R
+

∂ 〈u′
r〉w

∂θ

}

θ̂

. (4.20)

Figure 4.6(b) shows the surface averaged radial fluctuation 〈u′
r〉w, normalized

by the rms turbulence fluctuation u′(t) at three instants for various flames.

Although, as discussed in earlier Sec. 3.2.1, the normalized fluctuation

〈u′
r〉w /u′ changes with time at the leading and trailing edges of the brush

due to de-correlation of velocity, the slope of ∂ 〈u′
r〉w /∂θ in the central region

(θ = 0) is the same. Since the flame surface density peaks close to the mean
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radial location θ̂ ≈ 0 where 〈u′
r〉w ≈ 0, term Π1 is approximately

Π1 ≈ −3

2

l

σ

{
∂ 〈u′

r〉w /u′

∂θ

}

θ̂

, (4.21)

since τu′ = 3u′3/2ǫ = 3l/2u′. As demonstrated in Fig. 4.6(b), the term inside

braces is unchanged across flames and in time and the temporal variation in Π1

is inversely proportional to the normalized standard deviation σ/l. Since the

evolution of normalized standard deviation σ/l in s is nearly identical across

different flame configurations, term Π1 is similar also.

4.2.2 Mean radial transport

The propagation of the reactive front induces a mean radial velocity

due to thermal expansion across the flame. The gradient of the mean radial

velocity thus induced in turn affects the peak surface density through term

Π2.

The expression for term Π2 reads

Π2 = − nτ

σr̂2

{
∂

∂θ
(θσ +R)2ur

}

θ̂

(4.22)

and involves the evaluation of the gradient of mean radial velocity at the peak

location.

The mean velocity profile and its gradient may be obtained by appro-

priately modeling the Reynolds average continuity equation as in Sec. 3.2.2.

The mean velocity gradient and term Π2 scale with the difference of radial

velocity between the leading and trailing edge of the brush.
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For the purposes of identifying relevant scaling relation for Π2, consider

the Reynolds-averaged continuity equation in reactants and products, where

density is spatially uniform and an exact solution is available. The solution

for mean radial velocity in reactants and products is given by (see Sec. 2.3.2)

ur(r, t) =





− RL

3γbp

dp

dt

(
r

RL

)
Products

− RL

3γup

dp

dt

[(
r

RL

)
−
(

r

RL

)−2
]

Reactants
(4.23)

Here, γu and γb are the specific heat ratios of reactants and products respec-

tively.

The factor RL/τp, where τp ≡ p(dp/dt)−1 appears in front of the ex-

pression for mean radial velocity in both reactants and products and scales

the magnitude of term Π2. The time scale τp is the reference time scale for

pressure rise due to chemical reactions in the closed domain.
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Figure 4.7 shows the term Π2 and Π̃2 ≡ Π2(τp/τ)(σ/RL) as suggested

by the analysis above. Similarity of Π̃2 across different flames indicates that

the mean transport term depends on the ratio of the flame brush thickness to

the domain radius σ/RL and the ratio of pressure rise time scale to the eddy

turnover time τp/τ .

4.2.3 Flame stretch

Flame stretch acts as a source of surface density and contributes to

increasing its peak. Recall that flame stretch consists of two terms so that

Π4 = nτ 〈K〉w = nτ 〈a〉w + nτ 〈S∇ · n〉w . It must be noted that term Π4 is

proportional to the flame stretch 〈K〉w and not the differential flame stretch

〈K ′〉w as with the turbulent flame brush thickness.

Figure 4.8(a) shows the time variation of the two stretch terms for

various flames, normalized by flame time scale τL. The tangential strain rate

term is positive while the curvature-propagation term is negative. Overall, the

flame stretch at the peak location is positive and contributes to increasing the

peak flame surface density. The absolute value of both components decreases

in time.

It has been demonstrated that the tangential strain rate for infinitesimal

material surface elements in homogeneous isotropic turbulence is governed

by Kolmogorov time scale. Girimaji & Pope [43] found that the normalized

tangential strain rate aτη ≈ 0.165, independent of Reynolds number in the

range Reλ = 38−90, roughly the same range of Reynolds number in the present
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Figure 4.8: Flame stretch rate and components: (a) normalized by flame
time τL and (b) by the instantaneous Kolmogorov time scale τη. Solid line in
(b) marks 〈a〉w τη = 0.165, the constant value found for infinitesimal surface
elements in isothermal turbulence [43].

database. The observation was attributed to the alignment of surface normal

along the direction of the eigenvector corresponding to the most compressive

(negative) eigenvalue if the velocity gradient tensor [43, 114], which leads to

persistent straining of the surface.

Figure 4.8(b) shows the two terms compensated by the time varying

Kolmogorov time scale τη, evaluated in the reactants. The turbulence statis-

tics at the flame surface C = c∗ evolve similarly in time to that in the reactants

to within a constant, thus the scaling arguments may be made based on tur-

bulence reference scales in the reactants. Similar to the infinitesimal material

surfaces, 〈a〉w τη ≈ 0.2, independent of Reynolds number.
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Once normalized by the instantaneous Kolmogorov time scale τη, the

tangential strain rate term is approximately constant in time also to within

20%, as compared to a twofold change in 〈a〉w τ 0L. The origin of the residual

temporal dependence of 〈a〉w τη is unclear at present and may be related to

some large scale effects specific to the spherical flame configuration. It appears

that this slow temporal evolution is slightly different across simulations and

smaller for larger Reynolds numbers.

The normalized curvature-propagation term shows a larger temporal

variation when normalized by τη and is analyzed using the same decompo-

sition as in the context of turbulent flame brush thickness presented earlier

(Eq. (3.29) in Sec. 3.2.3). The curvature-propagation stretch term is written

as following:

nτ 〈S∇ · n〉w = −2nτ 〈Sκ〉w

= −2nτ 〈Sg〉 〈κ〉 − 2nτ covar{Sg, κ
∣∣C = c∗},

(4.24)

where covar denotes the conditional covariance of Sg and κ at the flame surface.

Since the curvature-propagation term is evaluated at the peak location,

θ̂ ≈ 0. Since the mean flame curvature 〈κ〉 ≈ 0 at the center of the brush

(see Fig. 3.9(a)), the curvature-propagation term is mainly controlled by the

conditional covariance term.

Note that here the covariance term is evaluated only at the location of

the peak surface density. Next, the covariance is re-written as a product of

conditional covariances and a correlation coefficient,

−2nτ covar{Sg, κ} = −2nτΦs,κσsσκ, (4.25)
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Figure 4.9: (a) Correlation coefficient Φs,κ and (b) conditional standard devi-
ations σs and σκ of Sg and κ.

where Φs,κ is the conditional correlation coefficient and σs and σκ the condi-

tional standard deviations of Sg and κ, respectively. All statistics are evaluated

at the peak location and conditioned on the flame surface, C = c∗.

Figure 4.9 presents the time variation of the correlation coefficient and

the conditional standard deviations of Sg and κ, normalized by appropriate

Kolmogorov scales. It is evident that the normalized standard deviations are

roughly constant in time and across different flames. Specifically, the collapse

of these quantities across flames R3K1 and R3K2 is convincing where η and uη

differ by a factor of 1.5. On the other hand, Φs,κ changes by about 30% and

explains most of the temporal variation in the curvature-propagation term,

although it is nearly unity at all time.
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It is clear from the above analysis that the flame stretch at the peak

location is governed by τη for the most part and that the product 〈K〉w τη

changes in time due to changes in the correlation coefficient Φs,κ. The reasons

behind this behavior are not clear at present and warrant further investigation

over a broader range of dimensionless parameters.

As a consequence of the above analysis, the flame stretch may be mod-

eled as Π4 ∼ Π4(s)(τ/τη) ∼ Reλ. In other words Π4 is directly proportional

to the instantaneous Reynolds number, but also possesses a residual temporal

dependence not explained by changes in Reynolds number.
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4.3 The wrinkling scale

Figure 4.10 (a) shows the temporal evolution of Σmax normalized by

the thermal thickness of the laminar premixed flame. It is apparent that Σmax

decreases it time several-fold for each spherical turbulent flame configuration.

Since δ0L is same for all flames and the variation in the flame thickness is

minimal during the propagation of turbulent flames, the figure indicates con-

clusively that Σmax does not scale with the thermal thickness of the laminar

flame, a property of the premixed mixture. This behavior is consistent with

experiments on turbulent spherical flames in decaying turbulence behind grids

also [96, 40].

On the other hand, Fig. 4.10 (b) points to a hydrodynamic scaling of the

wrinkling scale L∗. The subplot shows the wrinkling scale normalized by the

integral length scale l and plotted against the Taylor Reynolds number. Data

from all flame configurations and at several times are shown. It is apparent that

over the range 30 ≤ Reλ ≤ 102, the wrinkling scale L∗ is about 3 to 12 times

smaller than the integral length scale, consistent with previous experiments

as discussed earlier. However, its variation across time and different flame

configurations indicates its dependence on the Reynolds number.

The wrinkling scale falls between Taylor scale λ and Kolmogorov scale

η, albeit closer to the former that to the latter. When scaled with l, the data

suggests the following power law fit for the wrinkling scale:

l/L∗ = 4Σmaxl = 0.0756Re1.13λ . (4.26)
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Note that only the data for t/τ0 > 0.5 have been used in this fit since it is

necessary for turbulent motions to wrinkles the flame past an initial transient,

during which a power law scaling for l/L∗ is not warranted.

The power-law scaling for l/L∗ from Eq. (4.26) shown in Fig. 4.10 (b)

is rather convincing, especially since it holds across simulations with varying

initial conditions and instantaneously as Reλ and l vary in time during the

decay of turbulence. Nevertheless, the postulated scaling relation must be

validated over a broader range of Reynolds number.

The observation that η < L∗ < λ suggests that the peak surface density

is governed by the small scale turbulent motion. The importance of small

scales in controlling Σmax has been postulated by Huh, Kwon & Lee [49], who

analyzed the surface density transport equation for statistically planar flames

and proposed that Σmax scales with the inverse of the mean flame surface

curvature. Since Zheng, You & Yang [126] recently demonstrated that the

PDF of the flame surface curvature is independent of Reynolds number when

normalized with the Kolmogov length, a case could be made that Σmax ∝ η−1

or L∗ ∼ η, independently of Reynolds number.

The present data do not support this hypothesis, although they do

highlight the fact that L∗ is smaller than λ and its evolution is most likely

related to processes at the dissipative end of the inertial range of turbulence

spectrum.

The Darrieus-Landau (DL) instability [29, 61] may provide an addi-

110



tional mechanism for flame surface wrinkling [39, 27], thereby influencing the

surface density distribution, wrinkling scale and its proposed hydrodynamic

scaling. The instability may be particularly important towards the end of sim-

ulations, as pressure and flame radius increase, while turbulence decays leading

to small u′/SL. The role of DL instability towards the observed scaling relation

in Eq. (4.26) in the present dataset must be assessed.

The said assessment is made within the framework proposed by Yang

et. al. [124], whereby the growth rates of DL instability (ωDL) are compared

against the rates of flame surface wrinkling due to turbulence (ωT ) in a range

of wavenumbers where both effects are active. It is assumed that the range

of scales over which the DL instability is important is ks ∈ [1/R, 1/δL], while

that of turbulent wrinkling is ks ∈ [1/l, 1/η]. Since R > l and η < δL at all

times, the overlap region is ks ∈ [1/l, 1/δL].

The ratio of growth rates ωDL/ωT is proportional to characteristic ve-

locities at the relevant scales, given by

ωT (ks)/ωDL(ks) ≈ u′
ks/SL, (4.27)

where u′
ks = (ǫ/ks)

1/3 is the eddy velocity associated with the wavenumber ks

in the turbulence kinetic energy spectrum. Since u′
ks
/SL > u′

η/SL > 1 for all ks

in the overlap region, it is concluded that all turbulent flames considered here

belong to the ‘turbulent dominated regime’, where the effects of DL instability

can be safely neglected.
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Chapter 5

Scaling of the area ratio

5.1 Evidence for Reynolds scaling

The mathematical framework presented in the earlier section demon-

strated that the area ratio χ depends on two quantities that scale indepen-

dently: the thickness of turbulent flame brush δT and the peak flame surface

density therein, Σmax. The implications of their individual scaling laws on that

of the area ratio χ are discussed next.

The expression for χ from Eq. (2.65) is rearranged as follows,

χ = ΣmaxδTβ = (l/4L∗)(δT/l)β. (5.1)

Recall that β is a shape factor nearly constant and approximately equal to

unity. Substituting the scaling laws δT ∼ l and l/L∗ ∼ Re1.13λ , the following

expression is obtained

χ(s, α) = CχRe
1.13
λ f(s, α), (5.2)

where Cχ is a constant and the dependence of δ̂T on s and β on α is absorbed

in the function f(s). The area ratio χ and ST/SL increase in time directly due

to increasing brush thickness δT /l and indirectly through Reλ(t) in decaying

turbulence.
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Figure 5.1: Temporal evolution of the area ratio: (a) χ vs t/τ0 and (b) area
ratio compensated with proposed Reynolds scaling, i.e. χRe−1.13

λ against log-
arithmic time coordinate s. Error bars on the data for R1K1 show the range
of values across four independent realizations.

The most important implication of Eq. (5.1) is that

χ(t) Re1.13λ ∼ f(s, α) ∼ f(s), (5.3)

so that if two turbulent spherical flames are compared at the same logarithmic

time s, the area ratio increases as χ ∼ Re1.13λ or Re0.56, since Re = u′l/ν ∼

Re2λ. This observation is broadly consistent with previously reported Reynolds

number dependence of burning rates in spherical turbulent flames [21, 51, 3].

Figure 5.1(a) shows the temporal variation of χ for various flame con-

figurations. For t/τ0 > 2, the area ratio χ reaches a limit value which differs

by a factor of 2-3 between R1K1 and R4K1. The same data are shown in

a compensated form as χRe1.13λ versus s in subplot (b). Note that only data
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for t/τ0 > 0.5, which corresponds to s > 1.3 are shown since the scaling of

peak flame surface density requires that all scales of turbulent motion have

had sufficient time to wrinkle the flame surface past an initial transient. This

time is of the order of τ0, the initial eddy turnover time scale, which is the

time scale of the largest turbulent structure. During t/τ0 < 0.5 the proposed

scaling of the wrinkling length scale is not valid.

The collapse in Fig. 5.1(b) is encouraging, albeit not perfect. Despite

minor inconsistencies related to collapse of δT/l at later time, the data indi-

cates that scale separation between the integral length scale l that governs the

thickness of turbulent flame brush, and the wrinkling scale L∗ which controls

the peak flame surface density; plays an important role in controlling the area

ratio and the dimensionless burning rate ST/SL.

In order to investigate this important implication, a set of three flames

is considered. These include flames R2K1 and R2a, which share the same

Reynolds number at all times Reλ(t), but not the same u′/SL. Along with

these two flames, consider flame R1K1 also which shares the same temporal

evolution of turbulence intensity u′/SL but different Reynolds number.

From the evolution of χ for flames R1K1, R2K1 and R2a in Fig. 5.1(a),

it is clear that when the Reynolds number is held constant and u′/SL changes

along with l/δL, the area ratio does not change (compare R2K1 and R2a). On

the other hand, when u′/SL is held constant and the Reynolds number changes

along with l/δL, the area ratio is greater for the flame with higher Reynolds

number (compare R1K1 and R2a).
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These observations support the conclusion that, for a given premixed

mixture, ST /SL is not a function of u′/SL at constant Reynolds number for

the flame configuration and regime of premixed turbulent combustion consid-

ered here. Rather, the data indicates that the area ratio and burning rates

are controlled by the Reynolds number characterizing the state of reactants’

turbulence.

A similar Reynolds number dependence was proposed by Chaudhuri et.

al. [20] based on spectral analysis of the level-set equations. Since increasing

Reλ at fixed u′/SL increases l/δL also, the observed trends and scaling of χ

may not be conclusively attributed solely to Reλ independently of l/δL and a

broader set of experiments are required.
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Chapter 6

Reactive surfaces in shear driven turbulence

The analysis presented in the previous chapters on the evolution of

flame surface area, thickness of the turbulent flame brush and the wrinkling

scale considered a canonical configuration of turbulent spherical flames in ho-

mogeneous isotropic turbulence. Turbulent flows in devices for practical engi-

neering applications are more complex and generate turbulence through mean

shear.

The discussion in this chapter seeks to advance the framework and

analysis presented previously to a practically relevant flow configuration. In

particular, the applicability of Reynolds scaling of growth rate of the surface

area of a reactive front is examined.

To this end, the development of reactive surfaces in a swirling von

Kármán flow device is considered. A schematic diagram of the device is shown

in Figure 6.1. More details on the geometry are provided in Appendix C. The

configuration consists of a set of two counter-rotating impellers (shown in red

and blue colors), enclosed in an outer cylindrical chamber. Fluid flow inside

the device is driven by the impellers, which rotate at a fixed angular speed Ω.

The central region features shear-generated turbulence of high intensity. The
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Figure 6.1: A schematic representation of the von Kármán device. The im-
pellers, shown in red and blue colors, rotate in opposite directions as indicated
by the arrows. Fluid flow is confined within the cylindrical enclosure shown
in grey color.

configuration is reproduced from the experimental apparatus ‘TM 60’ analyzed

by Ravelet et. al. [95].

The interaction of moving impellers with surrounding fluid flow is mod-

eled with the immersed boundary method of Uhlmann [116]. In this approach

the no-slip velocity boundary condition at the solid-fluid interface is enforced

indirectly through a body force field FIB(x, t), which is evaluated at each time

t so that the relative fluid velocity at the interface equals zero. With this ap-

proach, a homogeneous Cartesian mesh with uniform grid spacing may be used

instead of a body-fitted mesh to the moving interface which requires frequent
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re-meshing. More details on the implementation of the immersed boundary

method can be found in the work by Kasbaoui, Kulkarni & Bisetti [53].

6.1 Mathematical models for reactive front

Development of a reactive-diffusive interface in a fully developed von

Kármán swirling flow is analyzed by solving the reactive scalar equation

ρ
∂C

∂t
+ ρu · ∇C = ρDC∇2C + ω̇c, (6.1)

where C is the reaction progress variable, DC the diffusion coefficient and

ω̇C = ω̇C(C) the reaction rate, which is modeled as a function of progress

variable C only. The use of detailed chemistry with multiple species and

elementary reactions as with spherical turbulent flames is computationally

expensive as discussed later in this section.

The density ρ and the molecular diffusion coefficient DC are assumed

to be constant across the reactive front in order to simplify the analysis. As a

result, thermodynamic pressure p remains constant in time also. Since the den-

sity ratio across the reactive front is taken to be unity, the fronts are referred

to as reactive-diffusive fronts and not flames, as premixed flames have a non-

unity density ratio due to heat release from chemical reactions. Nevertheless,

the role of the density ratio in turbulent burning rates and surface wrinkling is

minor [66] and the examination of the evolution of reactive-diffusive surfaces

is still useful.

All governing equations are considered in a dimensionless form with
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reference scales Rcyl, the radius of the cylindrical enclosure; Ω, the rotation

rate of impellers and the density ρ. The set of governing equations for con-

servation of mass, momentum and the progress variable read as follows in the

dimensionless form:

∇ · u = 0, (6.2)

∂u

∂t
+ u · ∇u = −∇π + Re−1

Ω ∇2u+ FIB, (6.3)

∂C

∂t
+ u · ∇C = Re−1

Ω Sc−1∇2C +Da−1 ˜̇ωC , (6.4)

where all quantities and differentiation operators in the equations above are

in the dimensionless form.

In the equations above, ReΩ ≡ ρR2
cylΩ/µ denotes the Reynolds number

based on the reference device scales, Sc ≡ µ/DC the Schmidt number and

Da = 6IC/Ω the Damköhler number. Here, IC denotes the integral of the

reaction rate ω̇C in the progress variable space,

IC ≡
∫ 1

0

ω̇C(c) dc, (6.5)

so that the integral of ˜̇ωC ≡ ω̇C/6 IC = 1/6 and matches that of the classic

Fisher-KPP expression ˜̇ωC = C(1− C). Thus, in Eq. (6.4), the magnitude of

the reaction term is controlled by the Damköhler number.

The normalized reaction rate function ˜̇ωC is modeled with the Zeldovich

reaction rate closure [125]

˜̇ωC =




0 C ≤ c∗

1

8(1− cm)

[
1− (C − cm)

2

(1− cm)2

]
C > c∗.

(6.6)
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In the equation above, cm = 2c∗ − 1 is the location of the peak reaction rate

and c∗ is the cutoff in the progress variable space. The reaction rate is zero

for all values below the threshold c∗ which mimics the effects of activation

energy on chemical reaction rates. With this model for the reaction rate, the

progress variable equation follows the form of Fisher-KPP equation [38, 59]

for a reactive-diffusive propagating front.

The single-equation, progress variable model is preferred to finite rate

chemistry calculations since the von Kármán flow device does not offer the

same statistical symmetries as the spherical turbulent flames. As a result,

averaging over multiple realizations is required and the use of single equation

progress variable model makes large scale simulations computationally afford-

able.

The suitability of the single-equation progress variable model for the

thin reaction zone regime was assessed by conducting tests of spherical tur-

bulent flame R1K1 and compared with the corresponding DNS data obtained

previously using the detailed finite rate chemistry. Negligible differences in all

statistics pertaining to the evolution of the flame surface were observed while

resulting in a 30x speed up in computational speed. In other words, the use of

the single variable progress variable model allows for 30 realizations of the flow

with the same computational cost as that with a single finite rate chemistry

calculation.
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Code ReΩ Nr ΠV ΠL Runs

S1 4 000 640 11.50 42.58 30
S2 8 000 896 16.25 60.41 30
S3 16 000 1280 23.00 84.00 10

Table 6.1: Design parameters for increasing Reynolds number at fixed values
of Sc = 0.25 and Da = 10.

6.2 Description of database

The investigation of the role of the Reynolds number on the develop-

ment of reactive surfaces consists of a set of three direct numerical simulations

at increasing Reynolds number ReΩ from 4, 000 to 16, 000, doubling between

consecutive simulations. Relevant parameters are listed in Tab. 6.1. The

Damköhler number Da = 10 and the Schmidt number Sc = 0.25 are kept fixed

and their values are chosen so as to match the resolution requirements for the

reactive front and turbulence.

Numerical simulations are initialized from a quiescent initial condition

and the flow in the device is allowed to develop as a result of the action of the

moving impellers alone. A statistically stationary turbulent flow is observed

to develop after about two full revolutions, after which a laminar kernel of

radius 0.15R is initialized at the center of the domain. Statistics related to

the development of the reactive-diffusive surface are gathered by conducting

multiple realizations initialized at times separated by at least 1/16th revolution,

the time period after which the flow is statistically periodic. For configurations

S1 and S2, the ensemble contains 30 independent runs, while for S3 only 10
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is used for calculation.

runs were afforded at present due to relatively higher computational cost.

A one-dimensional laminar solution to the reactive-diffusive front gov-

erned by Eq. (6.4) is shown in Fig. 6.2. The front propagates from left to

right and introduces intrinsic velocity and length scales, denoted by S and δ,

respectively. Here, the laminar thickness δ = max{|dC/dx|} is defined using

the maximum gradient method.

The ratio of velocity scales ΠV = RΩ/S and length scales ΠL = R/δ

serve as additional dimensionless parameters. In order to keep Da and Sc fixed

while varying ReΩ, ΠV and ΠL must vary as well, since

Π2
L = ReΩScDa/(c1c2) (6.7)

Π2
V = ReΩScDa−1 (c2/c1), (6.8)
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where c1 = Sδ/DC and c2 = δIC/S depend on the cm, density ratio across the

front and the model for changes in viscosity across the front. Note that since

ΠL and ΠV change across simulations S1 through S3 they may influence the

evolution of the surface area of the reactive fronts also.

A homogeneous Cartesian grid is considered with a uniform grid spac-

ing. The number of grid points in the directions perpendicular to the axis of

rotation are denoted by Nr in Tab. 6.1. The spatial resolution is determined

by estimating the Kolmogorov scale η at the center of the device using isother-

mal runs as discussed below in Sec. 6.3.3. The reactive front is resolved with

δL/∆ > 7, a higher resolution than that of reactive fronts considered earlier

in spherical turbulent flames.

6.3 Characterization of the velocity field

The fluid flow between two impellers is driven by the rotation of the

blades and turbulence in the central region is generated through mean shear.

Ravelet et. al. [95] investigated the flow in the device over a wide range of

Reynolds numbers ranging from ReΩ = 90 to 1, 200, 000. They observed that

at low Reynolds number, the flow consists of two toroidal regions resulting in

a symmetrical flow about the mid-height plane. The symmetry is broken due

A part of the content presented in Sec. 6.3 was originally published in the following
article:

Kasbaoui, M. H., Kulkarni, T., Bisetti, F. (2021). Direct Numerical Simulations of swirling
von Kármán flow using a semi-implicit moving immersed boundary condition. Comput.

Fluids. Available online at https://doi.org/10.1016/j.compfluid.2021.105132.
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to an onset of Kelvin-Helmhotz instability at ReΩ = 360. As the Reynolds

number is increased, several successive instabilities appear, resulting in a tran-

sitional flow at ReΩ = 2000, eventually leading to a fully developed turbulent

flow at ReΩ = 4000. These flow features were replicated as a validation of the

immersed boundary method implementation in a previous work [53].

Of particular interest to this work is the evolution of large surfaces in

the shear-driven flow in the turbulent regime. For this reason, the range of

Reynolds numbers from ReΩ = 4, 000 to 16, 000 is considered, which feature

fully developed turbulent flow.

Figure 6.3 compares the velocity component in the direction normal to

the planar cut for three cases S1 through S3 at the end of three revolutions,

i.e. Ωt/2π = 3.0. Consistent with the decrease in viscosity as the Reynolds

number increases, finer structures appear in the velocity field.

Since the density is constant, the velocity field evolves independently

of the progress variable C, although the evolution of the reactive front is

affected by the velocity field through the convection term in Eq. (6.4). Thus,

a preliminary characterization of the velocity field is in order. In particular,

the spatial variation of velocity components and isotropy of the Reynolds shear

stress tensor are investigated next before analyzing the evolution of surfaces

in the device at increasing Reynolds number.
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Figure 6.3: Snapshots of configurations S1 through S3 at normalized time ft = Ωt/2π = 3.00 during the
isothermal precursor run. As Reynolds number ReΩ increases from 4,000 (S1) to 16,000 (S3), finer struc-
tures appear whereas the mean velocity field remains largely similar.
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6.3.1 Mean flow field and homogeneity

In the database of the three von Kármán flow configurations, Reynolds

number is changed by changing the kinematic viscosity ν, while the device ra-

dius Rcyl and rotation rate Ω is kept fixed. As shown in Fig. 6.3, flow-fields for

a higher Reynolds number features smaller scales of coherent turbulent motion

as compared to that for a lower Reynolds number. However, the Reynolds-

averaged mean flow field, which retains only the large scale flow features of

the size comparable to the device length scale, is expected to be independent

of the Reynolds number. This postulate is validated by averaging the velocity

components according to the averaging procedure described below.

Since the configuration involves 16 blades on each impeller, the flow

internal to the cylindrical domain confined by the immersed boundaries is

statistically periodic with a period τb = 2π/16. As a result, each grid point in

the internal flow has 15 corresponding points where statistics of velocity field

are identical, which are at equal angle ahead of the 16 blades. Upon reaching

statistical stationarity (about 2 revolutions), temporal averaging is conducted

from the perspective of an observer moving with the rotating blades, i.e. in

‘blade-view’. Samples at different time are rotated by the angle of rotation of

the blade before grouping together.

Statistics gathered using the averaging procedure outlined above de-

pend on radial coordinate r, axial coordinate z and angular position ahead of

the blades Θ ∈ (0, 2π/16). It is observed, although not shown here, that the

the statistics depend strongly on the sample angle with respect to the blades
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in the region near the impellers only. Moving towards the central region, the

dependence on the angular direction weakens and the flow in the central region

possesses cylindrical symmetry.

The three components of the mean velocity field extracted along radial

lines for the azimuthal angle Θ = 0 and at different height z/H are shown

in Fig. 6.4. Here H = 1.8Rcyl refers to the distance between two impellers.

The magnitude of all components of the mean velocity field are small at the

mid-height plane z = 0. In the planes closer to the impellers, the radial

and axial components ur and uz remain small but the angular component uφ

reaches a value close to the tip velocity of the blades. Comparison between

data for configurations S1 and S2 suggests that the mean velocity field is fairly
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insensitive to the Reynolds number.

Figure 6.5 presents the RMS fluctuations of the three components at

the three planes. The RMS fluctuations of all velocity components is larger

than the mean near the central region and decrease with decreasing distance

to the impellers. Unlike the mean velocity field, the RMS velocity fluctuations

depend on the Reynolds number, although the dependence is minor. Fluctua-

tions in the radial and azimuthal components are approximately equal to each

other and larger than the axial component for r/Rcyl ≤ 0.5. The implications

of this observation on local isotropy of Reynolds stress tensor are discussed

later in Sec. 6.3.2.
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Based on the preliminary characterization of the statistics of the mean

velocity field, it may be concluded that the flow in the central region, i.e.

r/Rcyl ≤ 0.5 and |z|/H ≤ 0.2 experiences a low enough mean velocity that

the evolution of surfaces initiated in this region is primarily due to turbulent

fluctuations.

6.3.2 Isotropy of the Reynolds stress tensor

The isotropy of the Reynolds stress tensor is investigated using the

anisotropic stress tensor bij = u′
iu

′
j/u

′
ku

′
k − δij/3 and its invariants. Here, δij

denotes the Kronecker delta function. The fluctuation of the jth component

of the velocity vector over its Reynolds mean is denoted with u′
j.

In constant density turbulent flows, the first invariant Ib = bii = 0. The

second and third invariants are given by

IIb = bijbji/2 (6.9)

IIIb = bijbjkbki/3. (6.10)

Lumley [72] proposed six limits that the anisotropy tensor could take based

on the values of the invariants, which also serve as the boundaries to a region

realizable in turbulent flows.

Following the approach by Pope [93], the anisotropy invariant map

is considered for the transformed invariants ĨIb = (−IIb/3)
1/2 and ĨIIb =

(IIIb/2)
1/3. Figure 6.6 presents the pairs (ĨIb, ĨIIb) on the anisotropy invariant

map, alternatively known as ‘Lumley triangle’ [102].
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Briefly, an isotropic state corresponds to the point ĨIb = ĨIIb = 0, where

the anisotropy tensor is identically zero. The shape of Reynolds stress tensor

for isotropic turbulence corresponds to a sphere. The two limits of interest here

are the two axisymmetric regions marked as ‘axi, ĨIIb < 0’ and ‘axi, ĨIIb > 0’.

The former limit corresponds to two equal, positive eigenvalues and a third,

negative eigenvalue greater than both. The shape of Reynolds stress tensor in

this case is an ellipsoid or an ‘prolate spheroid’ [93]. Similarly, the latter limit

of two negative eigenvalues and a third positive eigenvalue corresponds to an

‘oblate spheroid’ shape. Other limits of the anisotropy invariant map are not

of relevance here and not discussed further. Interested reader may refer to the

Refs. [72, 93, 102] for more information.
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The data for ReΩ = 8000 at three planes, z = 0, H/6 and H/3 is

presented in Fig. 6.6 with the help of various symbols. Arrow marks the

direction of increasing distance from the axis, r/Rcyl = 0.

In the central region of the device, the Reynolds stress tensor is ax-

isymmetric with a large positive eigenvalue. Moving outwards in the radial

direction, the flow transitions between two axisymmetric shapes where the

larger eigenvalue changes from positive to negative. The near-wall region dis-

plays characteristics of a single component turbulence (labeled ‘1C’ at the top

right corner), consistent with the presence of boundary layers near the walls

of the enclosure. It is clear that turbulence at the center of the device is not

isotropic and exhibits anisotropy similar to that found in turbulent boundary

layers.

6.3.3 Reference turbulence scales

The characterization of turbulence-flame interaction in the swirling von

Kármán flow device requires an estimation of reference scales of turbulent

motion at the center of the device. An estimate of the smallest length scale

of turbulence, i.e. the Kolmogorov scale will also help determine resolution

requirement for the direct numerical simulations.

The Kolmogorov scale η = (ν3/ǫ)1/4, integral scale l = u′3/ǫ and corre-

sponding time scales provide a meaningful description of turbulent flow only

for a homogeneous isotropic turbulence. However, as discussed in the earlier

section, turbulence in the central region is neither homogeneous nor isotropic.
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Code ReΩ Nr u′/S l/δL τ/τL η/∆ δL/∆

S1 4 000 640 2.88 11.36 5.92 1.50 7.42
S2 8 000 896 4.06 16.11 5.95 1.25 7.35
S3 16 000 1280 5.75 22.40 5.84 1.06 7.57

Table 6.2: Dimensionless groups describing reactive von Kármán flow simula-
tions based on estimates of turbulence scales at the center of the domain.

Yet, using these relations provides an order of magnitude estimate of large and

small scales of turbulent coherent motion and may be used to determine the

resolution requirements.

Keeping in mind this important distinction, estimates for Kolmogorov

length scale, integral length scale and eddy turnover time are obtained as

follows. The normalized RMS velocity fluctuation equals u′/RΩ ≈ 0.2, over

a wide central region spanning |z|/H < 0.3 and r/Rcyl < 0.8 (see Fig. 6.5).

Similarly, it was observed that the mean rate of dissipation of the turbulent

kinetic energy, ǫ/(R2Ω3) ≈ 0.03.

Based on the observed values of u′/RΩ and ǫ/R2Ω3, all other scales are

estimated using relations for homogeneous isotropic turbulence. Tab. 6.2 lists

the pertinent dimensionless groups based on the estimates. Turbulence scales

u′, l, τ and η are estimated using isotropic turbulence relationships and may

be regarded as order of magnitude estimates only.

Spatial resolution was determined so as to ensure η/∆ > 0.5 and

δL/∆ > 7. Adequacy of the chosen resolution of the velocity and scalar fields

was confirmed by conducting a grid dependence study on configuration S1.
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6.4 Evolution of reactive-diffusive surfaces

The reactive runs for von Kármán flow are initiated by introducing a

laminar spherical kernel of radius 0.15Rcyl, so that the ratio of integral scale to

the kernel radius is of order unity and all scales of turbulent motion participate

in wrinkling the surface. Similar to the analysis of the turbulent spherical

flames, the reactive-diffusive front in a simulation is tracked with isosurface

C = cm, which corresponds to the location of peak reaction rate ω̇C .

Figure 6.7 shows the isosurfaces when the embedded volume is four

times that of the initial kernel. Similar to the behavior seen in Fig. 2.3 for

spherical turbulent flames at different Reynolds number, the isosurface for

configuration S3 features wrinkles of smaller size and has a higher surface

area.

The temporal evolution of the surface area of the reactive-diffusive front

and its dependence on Reynolds number is of particular interest. Figure 6.8(a)

shows the surface area against the dimensionless time ft = Ωt/2π. The sur-

face area is normalized by that at the onset Aref, which is equal for all three

configurations, S1 through S3.

In general, configurations with a higher Reynolds number exhibits a

faster growth of the surface area of the reactive-diffusive front as compared

to that with a lower Reynolds number. The higher surface area is achieved

through wrinkling at progressively finer scales, since the large structures of

turbulent motion are a fixed proportion of the device radius.
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Figure 6.7: Snapshots of the evolving reactive-diffusive fronts for configurations S1 through S3. Snapshots
are shown at the instance when volume enclosed by C = cm isosurface is four times that of the volume at
the onset.
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with C ≥ cm. Quantities on both axes are normalized by their respective
values at the onset for a kernel of radius 0.15Rcyl.

However, to demonstrate the dependence of surface area and its growth

rate, the configurations should not be compared against each other at the same

time for the following reasons. First, the propagation speed S of the front

decreases across configuration S1 to S3 by design, so that the flame surface

wrinkling and propagation occurs on different time scales. Moreover, turbulent

flow inside the device is neither homogeneous nor isotropic, thus the fronts

experience different mean and rms velocity components in time. Instead, the

comparison is made when different configurations have the same volume of the

region C > cm. This ensures that the linear extent of the three-dimensional

front is approximately the same.
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Figure 6.8(b) shows the the surface area of the iso-surface C = cm

against the volume bounded by the surface. Upon normalizing with the pos-

tulated Reynolds scaling relation A ∼ Re
1.13/2
Ω ∼ Re1.13λ , the a reasonable

collapse across the three configurations is observed. Recall that the large scale

Reynolds number and Taylor Reynolds numbers are related as Reλ ∼ Re
1/2
Ω .

6.4.1 Deliberation on the observed Reynolds scaling

The Reynolds dependence of the front’s surface area was originally

postulated and examined for spherical turbulent flames in decaying isotropic

turbulence with no externally imposed mean velocity field. Moreover, the

analysis was conducted a non-unity density ratio. Yet, the evolution of the

surface area in the turbulent von Kármán configurations is broadly consistent

with the proposed Reynolds scaling, despite the differences.

The proposed Reynolds scaling of the surface area arises from scaling of

turbulent flame brush thickness and the peak flame surface density function.

As such, the scaling of turbulent flame brush thickness with integral scale l and

that of the wrinkling length scale L∗ as L∗ ∼ lRe−1.13
λ need to be validated for

turbulent von Kármán flow configurations. Since the turbulent flow in the von

Kármán flow configurations feature two non-ergodic spatial directions, the

investigation of both these quantities requires two-dimensional counterparts

to their evolution equations, Eq. (3.12) and Eq. (4.19). The analysis of these

equations are out of scope of this dissertation and the author’s thoughts on

their derivation are included in Sec. 7.4 on recommendations for future work.

136



0

0.4

0.8

1.2

0 0.2 0.4 0.6 0.8 1

〈 |∇
C
|∣ ∣ C

=
c〉 δ L

Sample space variable c

S1

S2

S3

Figure 6.9: Conditional mean of the progress variable gradient magnitude.
Shaded regions mark one standard deviation around the mean.

A qualitative discussion on scaling of the two quantities is included next.

Figure 6.9 shows the conditional mean and standard deviation of the

magnitude of the progress variable gradient, conditioned on various sample

space values. As with turbulent spherical flames, the conditional mean of the

gradient remains close to its laminar value with a small variance. As a result,

the surface density function is controlled by the PDF of progress variable and

the wrinkling scale is governed by hydrodynamic processes. Since the mean

and RMS fluctuations of velocity components show no Reynolds dependence

while the Kolmogorov time scale τη ∼ Re−1
λ ∼ Re

−1/2
Ω , a scaling of the wrinkling

scale with Reynolds number is not surprising. The exact dependence of the

wrinkling scale on the Reynolds number needs to be carefully investigated.
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The evolution of flame brush thickness depends on the Lagrangian ve-

locity auto-correlation function, which is expected to deviate significantly from

the expression used for the analysis of spherical turbulent flames due to inho-

mogeneity and anisotropy. Nevertheless, the mean velocity field and normal-

ized RMS fluctuations are independent of Reynolds number, so the growth of

turbulent flame brush thickness may be expected to be similar across the three

von Kármán configurations S1, S2 and S3.

In summary, the temporal development of the two quantities, the thick-

ness of turbulent flame brush δT and the wrinkling length scale L∗ ∼ Σ−1
max is

complicated by mean shear and anisotropic turbulence. However, it may be

argued that the turbulent flame brush evolves similarly across the three config-

urations, while the wrinkling scale would decrease as Re
−1.13/2
Ω . As a result, the

same Reynolds scaling of surface area is observed when different configurations

are compared against each other.
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Chapter 7

Summary and Conclusions

The work presented in this dissertation is concerned with the evolution

of reactive-diffusive surfaces in turbulent flows. First, a framework based on

the popular surface density function formalism was developed to analyze the

growth rate of surface area of reactive fronts. A canonical configuration of

turbulent flames in decaying isotropic turbulence was investigated using a

database of direct numerical simulations (DNS) with finite rate chemistry for

lean premixed methane/air mixtures at elevated pressure and temperature.

Subsequently, a more practical flow configuration of the swirling von Kármán

flow was considered.

The primary contribution of this dissertation is the conceptualization

of the probability density function of the radial distance P, its association with

the surface density function and the derivation and analysis of the evolution

equations of the peak flame surface density and thickness of the turbulent

flame brush.

A summary of prominent results is presented below. The discussion

is grouped into sections according to different lines of inquiries on scaling of

various quantities that control the growth of reactive surfaces. Limitations
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of the present work and the author’s recommendations for future work are

included also.

7.1 Turbulent flame brush thickness

Taylor’s theory of turbulent diffusion [109] is often employed to ana-

lyze the growth of turbulent flame brush in unsteady and spatially developing

flows. Although the theory was originally developed for dispersion of material

elements in isothermal turbulence, it is often argued that the turbulent flame

brush evolves similar to the dispersion thickness of material elements in the

limit of high turbulence intensity u′/SL. In many practical flow configurations

u′/SL is not much larger than unity and decreases due to temporal or spatial

decay downstream of the flame-holder. Under these conditions, several ad-

ditional mechanisms play a role in the development of turbulent flame brush

also. Incorporating these mechanisms in a modified theory based on turbulent

diffusion theory of Taylor is complicated since the theory is Lagrangian while

most turbulent modeling approaches are Eulerian.

The analysis in Chap. 3 presented an alternate approach based on the

surface density function and is inherently Eulerian. It was shown that the

turbulent transport term of the governing equation for the brush thickness

is consistent with the turbulent diffusion theory and the limiting behavior of

u′/SL ≫ 1 is recovered. The importance of two additional mechanisms was

highlighted and their scaling with relevant quantities was discussed.

The first effect is due to the mean velocity field induced due to the

140



density difference across the propagating front. The flame surface in the trail-

ing part (closer to the products) of the brush moves slower compared to the

leading part (closer to the reactants), and further aids in the growth of the

turbulent flame brush thickness.

Another important effect is due to response of flame propagation to

local surface curvature. Since flame is predominantly curved towards reactants

in the trailing part and towards products in the leading part, flame stretch

shows a strong variation across the flame brush. As a result, flame stretch

acts as a sink of the flame surface area in the trailing part and as a source

in the leading part of the brush and acts to reduce the thickness of the flame

brush.

A balance between these three mechanisms leads to an asymptotic value

of the flame brush thickness, contrary to the theoretical predictions of a con-

tinuous growth of the flame brush thickness based on Taylor’s theory alone.

Since the evolution of flame brush thickness directly affects that of the flame

surface area and turbulent burning rates, inclusion of these terms in modeling

is essential.

The success of the proposed theory was demonstrated by considering

experimental observations of the evolution of turbulent flame brush thickness

in various flame configurations. Specifically, the role of thermo-chemical pa-

rameters such as laminar flame speed, pressure and equivalence ratio of the

growth of the flame brush was explained qualitatively.
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7.2 The wrinkling scale

The surface of a turbulent premixed flame is wrinkled by a wide range

of scales of turbulent motion. Coherent structures in turbulence create folds of

the order of their linear extent on the order of their characteristic time scale.

The interaction of the surface with large, energy containing coherent motions

is slow, while the fast, dissipative scales of the order of Kolmogorov scale do

not contain sufficient energy to significantly wrinkle the flame surface. The

wrinkling scale, which is proportional to the inverse of the peak flame surface

density function is thus smaller than the integral scale but larger than the

Kolmogorov length scale.

Inspired by the Bray-Moss-Libby approach [14, 13], an expression for

the surface density function based on flamelet crossing frequency was derived

for the thin reaction zone regime. The analysis presented in Chap. 4 shows

that the BML theory can be extended to the thin reaction zone regime by

inclusion of a correction factor Υ, which is a function of conditional moments

of the gradient of progress variable. Leveraging the BML theory and associated

experimental data, it was argued that the wrinkling scale is a characteristic

scale of turbulence in the reactants.

An evolution equation for the peak flame surface density was derived

by estimating the location of the peak based on a Gaussian model for the

probability density function P and subsequently evaluating the terms of the

surface density transport equation at the peak. As with the evolution of the

flame brush thickness, the peak flame surface density is controlled by a balance
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of transport terms due to turbulent diffusion and mean velocity field and flame

stretch.

Scaling of the three mechanisms with relevant scales was discussed and

compared against the DNS data. The turbulent transport term is proportional

to the RMS velocity fluctuation u′ and inversely proportional to the turbulent

flame brush thickness. The mean transport term is governed by the fuel burn-

ing rate and scales as a reference scale for thermodynamic pressure rise and

the domain size. A good agreement between flame stretch with stretch rate

of infinitesimal material elements in isotropic turbulence for the same range

of Reynolds number was observed. The flame stretch components scale with

instantaneous Kolmogorov time scale τη, but a residual temporal variation is

observed for propagation-curvature component also.

The combined effect of the three mechanisms on the peak flame sur-

face density is such that the ratio of integral scale l to the wrinkling scale L∗

increases with Reynolds number as l/L∗ ∼ Re1.13λ , characteristic of a hydrody-

namic length scale.

7.3 Scaling of flame surface area and burning rates

Scaling of turbulent burning rates of premixed flames was investigated

using direct numerical simulations of spherical flames in decaying isotropic tur-

bulence. It was shown that the burning rates are enhanced primarily through

the increase in the flame’s surface area, which is in turn shown to be propor-

tional to the product of the thickness of turbulent flame brush and the peak
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of the surface density function within. Analysis of the two quantities suggest

that large, energy containing motions of turbulent motion control the evolution

of the flame brush thickness, while small, dissipative motions of the order of

Taylor length scale control the peak surface density function. As a result, the

area ratio and turbulent burning rates increase with Taylor Reynolds number

as Re1.13λ .

A similar scaling of the surface area of the reactive-diffusive fronts was

observed in swirling von Kármán flow also. Despite the turbulent flow being

inhomogeneous, anisotopic and in the absence of density change across the

moving front, the broad scaling relation A ∼ Re1.13λ ∼ Re
1.13/2
Ω was observed,

when surface area was compared across the three configurations at instances

when volume enclosed by the surface was equal. A detailed analysis of scaling

of flame brush thickness and wrinkling scale requires extending the framework

to incorporate effects of mean shear, anisotropic turbulence, and multiple non-

ergodic spatial directions and was left for a future work.

7.4 Recommendations for future work

The work presented in this dissertation may be extended along the

following lines of inquiry to further the understanding of evolution of reactive

surfaces in turbulence.

1. A generalized theory for the growth of turbulent flame brush:

The formalism based on the probability density function of the radial
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distance may be generalized to other turbulent flame configurations as

follows. For a given turbulent flame configuration, the mean location of

the flame surface may be obtained by averaging over an ensemble of re-

peated runs. For thin flames, the mean location often coincides with the

location where Reynolds-averaged progress variable C = 0.5. A distance

function may be defined on the instantaneous isosurface representing the

flame from the mean location, which is a random variable whose stan-

dard deviation is proportional to the brush thickness. If the distance

function is related to the flame surface density function, an evolution

equation for the brush thickness can be derived as demonstrated in the

context of spherical turbulent flames.

A general analysis of various mechanisms that affect the evolution of

flame brush thickness will reveal its dependence on various dimensionless

groups and on evolution of surface area of turbulent flames.

2. Role of other dimensionless groups in flame stretch term T4:

Modeling of the two additional mechanisms apart from turbulent diffu-

sion, namely the gradient of mean velocity field across the brush and

the differential flame stretch, requires targeted work to identify how var-

ious relevant dimensionless groups affect burning rates and evolution of

flame curvature. The differential flame stretch term is sensitive to hy-

drodynamic and diffusional-thermal instabilities through its dependence

on the curvature and may be control by a number of dimensionless group

such as Karlovitz number, Damköhler number and the Peclet number.
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3. Reynolds scaling of wrinkling scale:

The analysis of mechanisms that affect the wrinkling scale demonstrated

that the balance of these terms leads to the Reynolds scaling, l/L∗ ∼

Re1.13λ . The scaling of mean transport term is geometry dependent, lead-

ing to a different exponent across different flow configurations. On the

other hand the scaling of turbulent transport term with turbulence in-

tensity u′ and that of the flame stretch term with Kolmogorov time scale

τη may more be general. As a result, the wrinkling scale may depend on

configuration and other dimensionless group, but may approximately be

equal to the Taylor scale λ ∼ u′τη. This hypothesis can only be validated

by analyzing the peak flame surface density for a variety of conditions.

4. A wider Reynolds number range:

The Reynolds number range investigated in the numerical simulations

of spherical turbulent flames and of the evolution of reactive surfaces in

the von Kármán flow device was rather limited. For turbulent spherical

flames, the use of finite rate chemistry increased the cost by about a

factor of five, while for the von Kármán flow device a large number of

repetitions drive the cost higher, although a single simulation run is fairly

inexpensive.

As a result, the Taylor Reynolds number range investigated in the two

geometries is in the range Reλ ∼ 30 − 100, which is fairly low to see

an asymptotic limit if one exists. Repeating the experiments at much
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higher Reynolds numbers is desired and recommended.

5. Influence of density ratio and pressure rise in reaction von

Kármán device:

The reactive-diffusive fronts examined in the numerical experiments of

reactive von Kármán flow considered an ideal front that introduces no

density change. For premixed turbulent flames the density ratio across

the front is typically between 2-7 and its effect on the Reynolds scaling

needs to be investigated.

The author recommends the following approach to incorporate effects of

variable density and pressure within the framework of a single equation

for the progress variable and immersed boundary method.

The variation of density across the front may be modeled as

ρ(x, t) = ρ(C(x, t)) = ρu {1 + (ζ − 1)C}−1 , (7.1)

where ρu = ρu(t) is the reactants’ density and ζ the ratio of densities of

reactants and products. This expression mimics the effect of temperature

on density in isobaric flow, ρ ∼ T−1.

The dependence of reactant density on thermodynamic pressure may be

modeled with an isentropic compression

ρu/ρu,0 = (p(t)/p0)
1/γ , (7.2)

where γ is the ratio of specific heats and the thermodynamic pressure

p = p(t) increases in time.
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Consistently with the conservation of mass inside the domain enclosed

by the immersed boundaries, the following condition must be enforced

m =

∫

V

Iρ(x, t = 0) dV =

∫

V

Iρ(x, t) dV, (7.3)

where I denotes an indicator function that equals unity inside the en-

closed domain and zero outside. Substituting the expression for density

in the equation above, a model for thermodynamic pressure rise may be

obtained as

p(t)/p0 = mγ

(∫

V

ρu,0 I(x) {1 + (ζ − 1)C(x, t)}−1 dV

)−γ

. (7.4)

Similarly, the change in the dynamic viscosity and diffusivity may be

modeled with a Sutherland expression

µ/µu,0 = DC/DC,0 =
1 + a

M + a
M3/2, (7.5)

where

M = (p/p0)
γ−1/γ (1 + (ζ − 1)C) (7.6)

and a is a modeling constant.

This approach was investigated briefly, but led to convergence issues

with the iterative solver for the Poisson equation for the hydrodynamic

pressure π(x, t). The simplified model with no density or viscosity change

across the front was adopted in the interest of time.
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Appendix A

Statistical convergence from a single

simulation run

All statistics presented for turbulent spherical flames were gathered

from a single simulation run. For convergence of reported statistics, ensemble

averaging over multiple independent runs with same nominal initial turbulence

is desired, but computationally prohibitive due to high cost of finite rate chem-

istry calculations. This appendix discusses the statistical convergence using a

simulation run, which was ensured by designing the spherical flame configura-

tions so that multiple independent realization of underlying turbulence-flame

interaction process exist in any simulation run.

Consider that an ensemble of N simulations is available. Define the

flame surface area as a random process Ã(t) with Ãn(t) denoting repetition n

of N. Then, the mean of the flame surface area is

A(t) =
〈
Ã(t)

〉
=

〈〈
Ã(t)

〉
N

〉
=

〈
1

N

N∑

n=1

Ãn(t)

〉
(A.1)

where 〈.〉 here denotes statistical expectation and 〈.〉
N
indicates ensemble av-

eraging over N repetitions [94]. The two are identical in the limit of N → ∞.

The random process Ã(t) is functionally related to the progress variable
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random field C(x, t) [77],

Ã(t) =

∫

V

|∇C(x, t)|δ[C(x, t)− c∗] dV, (A.2)

where δ is the Dirac-delta function and C(x, t) = c∗ is the isosurface taken to

represent the flame, so that

A(t) ≡
〈〈

Ã(t)
〉
N

〉
=

〈〈∫

V

|∇C|δ(C − c∗)

〉

N

〉
. (A.3)

Rearranging the order by which the statistical expectation, ensemble

average and volumetric integral are taken, it follows that

A(t) =

∫

V

〈〈|∇C|δ(C − c∗)〉
N
〉 dV =

∫

V

〈〈Σ̃〉N〉 dV, (A.4)

where the Σ̃ is defined as the expectation of the spherically random field

Σ̃(x, t) ≡ |∇C|δ(C − c∗). The random field Σ̃ is commonly referred to as

the ‘fine grained surface density function’ in the literature [117].

For each repetition n of N, spherical averaging of Σ̃,

〈
Σ̃
〉
ΘΦ

=
1

4πr2

∫ 2π

0

∫ π

0

Σ̃(r,Θ,Φ, t)r2 sin θ dΘ dΦ, (A.5)

where Θ and Φ denote the polar and azimuthal angle of the spherical coordi-

nate system, is an estimate for
〈
Σ̃
〉
consistent with the statistical symmetry

of the random field.

Based on Eq. (A.5), Eq. (A.3) can be written as

A(t) ≡
〈
Ã(t)

〉
≈

∫

V

〈〈
Σ̃ΘΦ

〉
N

〉
dV = 4π

∫ ∞

0

r2
〈〈

Σ̃ΘΦ

〉〉
dr. (A.6)
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In the last step
〈
Σ̃
〉
ΘΦ

depends on (r, t) only, since the dependence of Σ̃ on Θ

and Φ has been averaged out.

The mean of the flame surface area is the volumetric integral of the

flame surface density function Σ,

A(t) =

∫

V

Σ dV = 4π

∫ ∞

0

r2Σ(r, t) dr, (A.7)

since Σ = Σ(r, t) only for the unsteady spherically symmetric flame configu-

ration. Equating Eq. (A.7) and Eq. (A.6) brings

A(t) = 4π

∫ ∞

0

r2Σ(r, t) dr ≈ 4π

∫ ∞

0

r2
〈〈

Σ̃
〉
ΘΦ

〉
N

dr, (A.8)

which implies, as expected, that
〈〈

Σ̃
〉
ΘΦ

〉
N

is an approximation to Σ and that

the statistical error inherent in the estimation of A(t) depends on the number

of repetitions N and the variance of the spherical average
〈
Σ̃
〉
ΘΦ

.

The central limit theorem may be applied to spherical averages of spa-

tially discrete solutions noting that surface averages are approximated by sum-

mations so that var
[〈

Σ̃
〉
ΘΦ

]
= var[Σ̃]/Mr, where var[U ] indicates the vari-

ance of a random variable U andMr the number of independent and identically

distributed (i.i.d.) samples gathered on the surface of radius r.

The present flame configurations were designed to have large R/l ratios,

i.e. the flame radius is large compared to the integral scale of velocity, leading

to very many i.i.d. samples of Σ̃. Consequently, var[
〈
Σ̃
〉
ΘΦ

] is small and one

repetition (N = 1) is sufficient to obtain a close estimate of the flame surface

density function and associated statistical measures.
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For example, similar considerations apply to R(t) =
〈
R̃(t)

〉
by defining

the random process

R̃(t) ≡ 1

A(t)

∫

V

||x|||∇C(x, t)|δ[C(x, t)− c∗] dV, (A.9)

which is the instantaneous surface averaged Euclidean (radial) distance r(x) =

||x|| of the flame surface from the origin located at the center of the compu-

tational domain. Then it follows that

R(t) ≡
〈
R̃(t)

〉
=

〈〈
R̃(t)

〉
N

〉
≈ 4π

A(t)

∫ ∞

0

r3
〈〈

Σ̃
〉
ΘΦ

〉
N

dr. (A.10)
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Appendix B

Data regularization

The flame surface statistics for turbulent spherical flames are gathered

from a single simulation run. Although the statistics of the radial distance

are well converged due to a large number of independent samples in a single

run, those involving spatial and temporal derivatives require a larger number

of samples and may possess residual noise.

In particular, the statistics of the flame curvature and the flame stretch

rate suffer from poor statistical convergence, since they involve conditional

means of second order derivatives of the progress variable field. This in turn

affects term the differential flame stretch term T4 in the evolution equation

for the turbulent flame brush thickness (Eq. (3.12)). On the other hand, the

turbulent diffusion and the mean velocity terms are smooth and do not require

any regularization.

The convergence may be improved by running multiple realizations

starting from statistically the same initial conditions and averaging over all

such simulation runs. However, this approach is computationally prohibitive

for the three dimensional simulations featuring 1-5 Billion grid points and de-

tailed finite rate chemistry calculations. Yet, within the limits of the present
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database, useful qualitative and quantitative trends may be drawn for the

scaling of the terms affecting the evolution of the flame brush thickness, once

appropriate smoothing operations are performed. This appendix briefly de-

scribes the regularization operations conducted on the database of spherical

turbulent flames.

Statistics that suffer with residual noise due to inadequate convergence

are regularized in space and in time with the Tikhonov regularization proce-

dure [60, 111]. The procedure evaluates a numerical derivative u of noisy data

y by minimizing the functional

E(α;u) = ||Au− y||2 + α∆k||Dku||2, (B.1)

where ∆ is the distance between the coordinate at which statistics are avail-

able, and α is the regularization parameter. The finite difference operator for

kth order is denoted as Dk, whereas A denotes the anti-derivative (integral)

operator and has the same order of accuracy as that of Dk.

The user-controlled regularization parameter α controls the relative

importance of the data fidelity between the anti-derivative of u and the noisy

data y (the first term) and smoothness in the solution u, quantified as the

magnitude of its k-th order derivative (second term). For each α , there exists

a unique solution u which minimizes the functional E, given by

u =
(
ATA+ α∆kDT

k D
)−1

ATy. (B.2)

This procedure provides an estimate of the derivative u of noisy data y. Sub-

sequently, the regularized field ỹ = Au is obtained from u.
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Figure B.1: Regularization of term T4 from Eq. (3.12) with different values of
the regularization parameter α for simulation R4K1.

Figure B.1 presents the raw data and smoothed approximation of term

T4 for flame R4K1 at various values of α. It can be seen that the data gets

smoother with increasing values of α without losing the underlying tempo-

ral variation. The qualitative and quantitative conclusions of Sec. 3.2.3 are

unaffected by the choice of α.
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Appendix C

von Kármán device geometry

The design of the von Kármán device is reproduced from the configu-

ration ‘TM60’ used by Ravelet et. al. [95]. More details on the geometry can

be found in the work by Cortet et. al. [26].

Figure C.1 shows a schematic diagram of the geometry. A description

of symbols, their values and references for the value are listed in Tab. C.1

below.

Symbol Description TM60 Normalized Source
[mm] by R

R Radius of cylinder 100 1 Ref. [95]
Rb Radius of blades 92.5 0.925 Ref. [95]
H Distance between impellers 180 1.8 Ref. [95]
HR Height of re-circulation zone 40 0.4 Ref. [53]
T Thickness of impeller disks 20 0.2 Ref. [26]
Rh Radius of the hub 10 0.1 Ref. [53]

hb Height of the blades 20 0.2 Ref. [95]
tb Thickness of the blades 2 0.02 Ref. [53]
Rc Radius of curvature of blades 46.25 0.4625 Ref. [26]

50 0.5 Ref. [95]
α Exit angle of blades 72◦ - Ref. [53]

Table C.1: Geometrical dimensions of TM60. Ref. [53] refers to dimensions
received from personal communication.
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Figure C.1: Details of the von Kármán device geometry. Blades rotate in the
same direction as the curvature of the blades.
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