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Abstract

Statistical learning under distribution shift is challenging when neither prior knowledge nor

data from the target distribution is available. Distributionally robust learning (DRL) aims to

control the worst-case statistical performance within a set of candidate distributions, but how

to properly specify the set remains challenging. To enable distributional robustness without be-

ing overly conservative, in this paper we propose a shape-constrained approach to DRL, which

incorporates prior information about the way in which the unknown target distribution differs

from its estimate—specifically, we assume the unknown density ratio between the target dis-

tribution and its estimate is isotonic with respect to some partial order. At the population

level, we provide a solution to the shape-constrained optimization problem that can be solved

without the challenge of an explicit isotonic constraint. At the sample level, we provide consis-

tency results for an empirical estimator of the target in a range of different settings. Empirical

studies on both synthetic and real data demonstrate the improved efficiency of the proposed

shape-constrained approach.

1 Introduction

Evaluating the performance of an estimator is of significant importance in statistics. To give several

motivating examples, we first consider supervised learning settings, where our observations consist

of features X ∈ X ¦ Rd and a response Y ∈ Y ¦ R:

• Given a fitted model µ̂ : X → R, we may want to estimate the expected value of the squared

error (Y − µ̂(X))2 with respect to a target distribution on (X,Y ).

• Or, in predictive inference, suppose we have constructed a prediction band Ĉ1−α, where

Ĉ1−α(X) ¦ R is a confidence region for the response Y given features X, and 1 − ³ denotes

the target coverage level. Then to determine whether Ĉ1−α does in fact achieve coverage at

level 1 − ³ for data points drawn from some target distribution, we would like to estimate

the expected value of 1{Y ̸∈ Ĉ1−α(X)} with respect to this target distribution. This is the

probability that our interval fails to cover the response.

We can also consider unsupervised learning settings, where observations consist only of features

X ∈ X ¦ Rd:
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• In principal component analysis (PCA), suppose we have obtained a set of pre-fitted princi-

pal components V̂K = {v̂1, . . . , v̂K} which forms an orthonormal basis for a K-dimensional

subspace of Rd. To evaluate how well the variance in X is explained by the top K principal

components, it would be of interest to analyze the expected value of the reconstruction error

∥X −∑K
k=1(X

¦v̂k)v̂k∥2 with respect to the distribution of X.

• Another example is density estimation. In this case, given a density estimate Pθ learned from

data, we may want to evaluate its performance using the expected log-likelihood − log dPθ(X)

over a target distribution Ptarget. In fact, EPtarget [− log dPθ(X)] is the cross-entropy of Pθ

relative to Ptarget.

A key challenge for any of these problems is that the target distribution (say, the distribution of

the general population) may be unknown, and our available data (say, individuals who participate

in our study) may be drawn from a different distribution.

1.1 Problem formulation

To make the problem more concrete, and unify the examples mentioned above, here we introduce

some notation to formulate the question at hand.

The unsupervised setting. Let R : X → R+ denote a risk function, where our goal is to

evaluate the expected value EPtarget [R(X)] with respect to some target distribution Ptarget over X .

However, the available data only provides information about P , a potentially different distribution.

Using a calibration data set comprised of samples X1, . . . , Xn drawn from P , we can estimate

EP [R(X)] with the empirical mean, n−1
∑n

i=1R(Xi)). Our aim, though, is to provide a bound on

the risk EPtarget [R(X)]—or, at least, to bound the difference in risks (often called the excess risk),

EPtarget [R(X)]− EP [R(X)].

If we assume that the unknown distribution Ptarget lies in some class Q (to be specified later

on), then defining the worst-case excess risk

∆(R;Q) = sup
Q∈Q

EQ [R(X)]− EP [R(X)] , (1)

we can bound the risk under distribution Ptarget by EPtarget [R(X)] f EP [R(X)] + ∆(R;Q).

The supervised setting: covariate shift assumption. In the supervised learning setting, the

data contains both features X and a response Y . Here we will consider a loss function r : X ×Y →
R+, for instance, r(x, y) = (y − µ̂(x))2 for the squared error in a regression, or r(x, y) = 1{y ̸∈
Ĉ1−α(x)} for characterizing the (mis)coverage of a prediction interval in predictive inference.

Throughout this paper, for the supervised learning setting, we will assume the covariate shift

setting, where the distribution of the available data and the target distribution may differ in the

marginal distribution of the covariates X, but share the same conditional distribution Y | X. To

make this concrete, if our calibration data consists of n data points (X1, Y1), . . . , (Xn, Yn) drawn

from P̃ , while our goal is to control the expected loss with respect to the target distribution P̃target

on (X,Y ), we will assume that we can write
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data distribution: P̃ = P × PY |X , target distribution: P̃target = Ptarget × PY |X ,

so that P̃ and P̃target share the same conditional distribution PY |X for Y | X.

In fact, under covariate shift, this supervised setting can be unified with the unsupervised one

by defining the risk R(X) = E[r(X,Y ) | X], which is the conditional expectation of r(X,Y ) under

either P̃ or P̃target. The quantity of interest is then given by EPtarget [R(X)] = E
P̃target

[r(X,Y )],

but our calibration data, which is sampled from P , instead enables us to estimate EP [R(X)] =

E
P̃
[r(X,Y )]. If we again assume that Ptarget ∈ Q, then ∆(R;Q) again allows us to bound the risk

of our estimator under the target distribution:

E
P̃target

[r(X,Y )] f E
P̃
[r(X,Y )] + ∆(R;Q).

Estimating the risk or tuning the model? In this paper, we consider the setting where our

estimator—say, a prediction band Ĉ1−α—is pretrained, meaning that we have available calibration

data sampled from P (in the unsupervised setting) or P̃ (in the supervised setting) that is in-

dependent of the fitted estimator. Consequently, our available calibration data provides us with

an unbiased estimate of EP [R(X)] (or, equivalently in the supervised setting, E
P̃
[r(X,Y )]); given

a constraint set Q, we can then use this estimate to bound EPtarget [R(X)] (or, in the supervised

setting, E
P̃target

[r(X,Y )]).

In some settings, the goal may be to estimate the risk of each estimator within a family of

(pretrained) options, in order to select a good estimator. Returning again to the example of a

prediction band, suppose, we actually are given a nested family of prediction bands, {Ĉ1−a : a ∈
[0, 1]}, where 1 − a denotes the confidence level. Choosing Ra(X) = PPY |X

(Y ̸∈ Ĉ1−a(X)) or

accordingly, ra(X,Y ) = 1{Y ̸∈ Ĉ1−a(X)}, then, if we can compute a bound on the miscoverage

rate EPtarget [Ra(X)] for each a, then we can choose a value of a that achieves some desired level

of coverage. More generally, we may do the same in other settings as well—that is, given a family

of candidate estimators, bounding the risk of each one under the distribution Ptarget provides an

intermediate step towards choosing the tuning parameter.

Throughout this paper, then, we will primarily discuss the question of estimating the expected

risk. Later on, in our experiments, we will turn to the aim of using these estimates to tune a

procedure for achieving a desired bound on the error.

1.2 Prior work: distributionally robust learning

Our work builds upon the distributionally robust learning (DRL) literature (Ben-Tal and Ne-

mirovski, 1998; El Ghaoui et al., 1998; Lam, 2016; Duchi and Namkoong, 2018), which is a well-

established framework for risk evaluation under distribution shift. In this framework, the target

distribution Ptarget is assumed to lie in some neighborhood around the distribution P of the available

data—for instance, we might assume that DKL(Ptarget∥P ) f Ä, where DKL denotes the Kullbeck–

Leibler (KL) divergence. DRL takes a conservative approach and evaluate the performance on

Ptarget via its upper bound, i.e., the worst-case performance over all distributions within the speci-

fied neighborhood of P ,

EPtarget [R(X)] f sup {EQ[R(X)] : DKL(Q∥P ) f Ä} , (2)
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or, equivalently, EPtarget [R(X)] f EP [R(X)] + ∆(R;QKL(Ä)), where ∆(R;QKL(Ä)) is defined as

in (1) with Q = QKL(Ä) = {Q : DKL(Q∥P ) f Ä}. More generally, we can consider divergence

measures beyond the KL distance, as we will describe in more detail below.

1.3 Our proposal: iso-DRL

If the assumption DKL(Ptarget∥P ) f Ä is correct, then the upper bound (2) is valid. However,

since this bound uses only the KL divergence to define the constraint Ptarget ∈ Q on the target

distribution, it could be quite conservative. In many practical settings, additional side information

or prior knowledge on the structure of the distribution shift may allow for a tighter bound, which

would be less conservative than the worst-case excess risk of DRL (2). This raises the following key

question:

Can we use side information on the distribution shift between the distribution P and the target

distribution Ptarget, to improve the worst-case excess risk of DRL in risk evaluation?

In this paper, we study one specific example of this type of setting: we assume that the density

ratio (dPtarget/dP )(·) between the target distribution and the data distribution is (approximately)

isotonic (i.e., monotone) with respect to some order or partial order on X .

Motivation: recalibration of an estimated density ratio. To motivate the use of such side

information, consider a practical supervised setting where we have an initial estimate w0 for the

density ratio:

w0(x) ≈
dPtarget

dP
(x).

This ratio is possible to estimate in settings where, in addition to labeled data (i.e., (X,Y ) pairs)

sampled from the data distribution P × PY |X , we also have access to unlabeled (i.e., X only) data

from the target population Ptarget. We may use these two data sets to train w0. Although there is

no guarantee that the estimate w0 is accurate, the shape or relative magnitude of w0 may provide

us with useful side information: large values of w0 can identify portions of the target population

that are underrepresented under the data distribution P . This motivates us to recalibrate w0 within

the set of density ratios that are isotonic in w0.

To express this scenario in the notation of the problem formulation above, we assume that the

target distribution Ptarget satisfies an isotonicity constraint, Ptarget ∈ Qiso(w0), where

Qiso(w0) =

{
Q :

dQ

dP
(x) is a monotonically nondecreasing function of w0(x)

}
.

If we assume as before that the target distribution Ptarget satisfies DKL(Ptarget∥P ) f Ä, then we can

bound

EPtarget [R(X)] f EP [R(X)] + ∆(R;QKL(Ä) ∩ Qiso(w0)). (3)

The benefits of iso-DRL. What are the benefits of iso-DRL, as compared to the existing DRL

framework? Of course, thus far the idea is quite straightforward—if we have stronger constraints

on Ptarget, then we can place a tighter bound on the excess risk EPtarget [R(X)] − EP [R(X)]. But

as we will see below, adding the isotonic constraint plays a crucial role in enabling DRL to provide
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bounds that are useful in practical scenarios. Specifically, consider a practical setting where the

bound Ä on the distribution shift is a positive constant. As we will see below, the existing worst-case

excess risk ∆(R;QKL(Ä)) of DRL is often quite large, leading to extremely conservative statistical

conclusions; in contrast, the worst-case excess risk ∆(R;QKL(Ä) ∩ Qiso(w0)) given by iso-DRL is

often vanishingly small, leading to much more informative conclusions. Moreover, surprisingly, this

improvement in the bound does not incur any additional computational challenges—even though the

constraint set QKL(Ä)∩Qiso(w0) appears more complex than the original set QKL(Ä), we will see that

∆(R;QKL(Ä) ∩Qiso(w0)) can be computed nearly as easily as the original quantity ∆(R;QKL(Ä)).

In addition, we further show in Appendix Section C.6 that the worst-case excess risk of iso-DRL can

be consistently estimated with noisy observations of R(X), while the estimation of the worst-case

excess risk of DRL can be challenging even with bounded risks.

Empirical example: predictive inference for the wine quality dataset. To illustrate the

advantage of the proposed approach, Figure 1 presents a numerical example for a predictive inference

problem on the wine quality dataset (Cortez et al., 2009).1 (See Section 5.2 for full details of this

experiment.)

We are given a pretrained family of prediction bands Ĉ1−a, indexed by the target coverage level

1 − a. At each value a ∈ [0, 1], we define Ra(X) = P(Y ̸∈ Ĉ1−a(X) | X), the probability of

the prediction band failing to cover the true response value Y given features X. Our goal is to

return a prediction band with 90% coverage—that is, we would like to choose a value of a such

that the expected risk EPtarget [Ra(X)] = P
P̃target

(Y ̸∈ Ĉ1−a(X)) is bounded by 0.1 = 1 − 90%. In

our experiment, the available data is given by all samples that are white wines (with distribution

P̃ ), while the target population is comprised of the samples that are red wines (with a different

distribution P̃target). In Figure 1, we compare four methods (see Section 5.2 for details):

0.8 0.9 1.0
coverage rate

CP

WCP

DRL ( )

iso-DRL ( )

0.0 2.5 5.0 7.5
average width

Figure 1: Coverage rate and average width of intervals for the wine quality dataset. The red

dashed line (in the left-hand plot) marks the nominal coverage level, 1− ³ = 90%.

• An uncorrected interval—using conformal prediction (CP) (Vovk et al., 2005): the value a is

chosen by tuning on the calibration data set (i.e., we choose a to satisfy EP [Ra(X)] f 0.1),

without correcting for the distribution shift.

1Available at https://archive.ics.uci.edu/dataset/186/wine+quality
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• A corrected interval—using weighted conformal prediction (WCP) (Tibshirani et al., 2019):

the value a is chosen by tuning on the calibration data set using an estimated density ratio w0

to correct for the covariate shift between distributions P̃ and P̃target. Since w0 is estimated

from data, this correction is imperfect.

• The DRL interval: we choose a to satisfy EP [Ra(X)]+∆(Ra;QKL(Ä)) f 0.1, where EP [Ra(X)]

and ∆(Ra;QKL(Ä)) are estimated using the calibration data.

• The iso-DRL interval: we choose a to satisfy EP [Ra(X)] + ∆(Ra;QKL(Ä) ∩ Qiso(w0)) f 0.1,

where EP [Ra(X)] and ∆(Ra;QKL(Ä) ∩ Qiso(w0)) are estimated using the calibration data.2

As we can see in Figure 1, the CP and WCP intervals both undercover—for CP, this is because

the method does not correct for distribution shift, while for WCP, this is because the ratio w0 that

corrects for distribution shift is imperfectly estimated. At the other extreme, DRL shows substantial

overcoverage with extremely wide prediction intervals due to the worst-case nature of the bound

∆(Ra;QKL(Ä)). In contrast, our proposed method, iso-DRL, achieves the target coverage rate 90%

without excessive increase in the size of the prediction interval, showing the benefit of adding the

isotonic constraint to the DRL framework.

The motivating example demonstrates that, when we have access to meaningful—but imperfect—

side information (e.g., in the form of the density ratio w0), adding the isotonic constraint to iso-DRL

can provide an estimate of the risk that is more reliable than a non-distributionally-robust approach,

but less conservative than the original DRL approach.

1.4 Organization of paper

Section 2 introduces a general class of uncertainty sets for candidate distributions and further studies

the property of the worst-case excess risk defined in (1) for generic DRL. For the worst-case excess

risk with the isotonic constraint, we prove that it is equivalent to the worst-case excess risk for a

projected risk function without the isotonic constraint in Section 3. In Section 4, we propose an

estimator of the worst-case excess risk with the isotonic constraint and establish the estimation error

bounds. Numerical results for both synthetic and real data are shown in Section 5 and additional

related work is summarized in Section 6. We defer technical proofs and additional simulations to

the Appendix.

Notation. Before proceeding, we introduce useful notation for theoretical developments later on.

To begin with, we write (a)+ as the positive part of a ∈ R. We denote by Lp(P ) (1 f p f ∞)

the Lp function space under the probability measure P , i.e., when p ̸= ∞, Lp(P ) = {f : ∥f∥p =

(
∫
X |f(x)|pdP (x))1/p < ∞}. When p = ∞, the set L∞(P ) consists of measurable functions that

are bounded almost surely under P . In addition, for a measurable function w defined on X and a

measure P on X , the pushforward measure w#P denotes the measure satisfiying that (w#P )(B) =

P (w−1(B)) for any measurable set B, where w−1(B) = {x ∈ X : w(x) ∈ B} denotes the preimage of

B under w. In other words, if X ∼ P , then w(X) follows the distribution w#P . We say a function

h is Ah-bounded if supx |h(x)| f Ah. Fix a partial (pre)order ¯ on X ¦ Rd. A function g is isotonic

2For both the DRL and iso-DRL methods, the parameter ρ is an estimate of the actual KL distance

DKL(Ptarget∥P )—see Section 5.2 and Appendix D.2 for details
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if g(x1) f g(x2) for any x1 ¯ x2. Correspondingly, we define the cone of isotonic functions by

Ciso
¯ = {w : w is isotonic w.r.t. partial order ¯}. Lastly, to compare two probability distributions

Q and P , the convex ordering
cvx
¯ is defined as Q′

cvx
¯ Q if and only if EQ′ [È(X)] f EQ[È(X)] for all

convex functions È.

2 The distributional robustness framework

As we have explained in Section 1.1, both the unsupervised and supervised setting under covariate

shift can be unified. Therefore, throughout this section, to develop our theoretical results we will

use the notation of the unsupervised setting with the risk function R(X), with the understanding

that this also covers the supervised setting under covariate shift.

Recall that X is the feature domain. We consider a bounded risk function R : X → [0, BR] with

0 < BR <∞. The goal is to evaluate (or bound) the target risk EPtarget [R(X)] using samples from P ,

by assuming that the target distribution Ptarget is in some sense similar to the available distribution

P—more concretely, by assuming that the target distribution Ptarget lies in some neighborhood Q
around the distribution P of the available data.

Reformulating the neighborhood. To unify the different examples of constraints described

in Section 1, we will start by considering settings where we can express the constraint Q ∈ Q
using conditions on the density ratio w = dQ/dP . This type of framework includes the sensitivity

analysis setting via bounds on w (Cornfield et al., 1959; Rosenbaum, 1987; Tan, 2006; Ding and

VanderWeele, 2016; Zhao et al., 2019; Yadlowsky et al., 2018; Jin et al., 2022), and f -divergence

constraints such as a bound on the KL divergence (Duchi et al., 2021; Namkoong and Duchi, 2017;

Duchi and Namkoong, 2018; Cauchois et al., 2020).

Concretely, we can reparameterize the distributionQ using the density ratio w(x) = (dQ/dP )(x).

Then we can reformulate the constraint Q ∈ Q into a constraint on this density ratio, i.e., Q ∈
Q ⇐⇒ w#P ∈ B, where B is a set of distributions, and where w#P denotes the pushforward

measure (as defined in Section 1.4). Let us now consider the two examples mentioned above.

Example 1: bound-constrained distribution shift. In sensitivity analysis, it is common to

assume that the likelihood ratio dPtarget/dP is bounded from above and below. This corresponds

to a constraint set of the form Q = {Q : a f (dQ/dP )(X) f b P -almost surely}, for some constants

0 f a < 1 < b < +∞. In particular, when a = Γ−1 and b = Γ for some Γ > 1, this constraint set

represents the marginal Γ-selection model for the density ratio in sensitivity analysis (Rosenbaum,

1987; Tan, 2006). By defining

B = Ba,b =
{
Q̃ : E

Z∼Q̃
[Z] = 1, P

Z∼Q̃
(a f Z f b) = 1

}
,

we can verify that Q ∈ Q ⇐⇒ w#P ∈ Ba,b with w(x) = (dQ/dP )(x).

Example 2: f-divergence constrained distribution shift. The f -divergence is a generalized

way of measuring the distance between distributions, which includes common metrics such as KL

divergence or chi-squared divergence as special cases. For a convex function f : [0,∞) → R satisfying
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f(1) = 0, the f -divergence (Ali and Silvey, 1966; Rényi, 1961) of Q from P is defined as Df (Q||P ) =
EP [f((dQ/dP )(X))]. In this example, we consider a constraint set Q defined via a bound on the

f -divergence: Q = {Q : Df (Q||P ) f Ä}. For instance, if we take Q = QKL(Ä) = {Q : DKL(Q∥P ) f
Ä}, this corresponds to choosing f(x) = x log(x). Choosing

B = Bf,ρ = {Q̃ : E
Z∼Q̃

[Z] = 1, E
Z∼Q̃

[f(Z)] f Ä, P
Z∼Q̃

(Z g 0) = 1},

we can verify that Q ∈ Q ⇐⇒ w#P ∈ Bf,ρ with w(x) = (dQ/dP )(x).

2.1 Worst-case excess risk with DRL

In this section, we explore some properties of the generic DRL, without the isotonic constraint.

Building this framework will help us to introduce the isotonic constraint as follows.

Based on the equivalence of Q and B in representing the uncertainty set, we focus on the following

equivalent representation of ∆(R;Q):

∆(R;B) = sup
wg0

EP [w(X)R(X)]− EP [R(X)]

subject to w#P ∈ B, (4)

where abusing notation we now write ∆(·;B) to express that B is a constraint on the distribution of

the density ratio w(X) = (dQ/dP )(X), where previously we instead wrote ∆(·;Q). We will say that

∆(R;B) is attainable if this supremum is attained by some w∗ in the constraint set. Throughout

the paper, we assume that the set of distributions B satisfies the following condition.

Condition 2.1. The set B contains the point mass on the value 1. Moreover, B is closed under

convex ordering, that is, if Q ∈ B, then for any Q′
cvx
¯ Q, it holds that Q′ ∈ B.

This condition enables the following reformulation of the quantity of interest, ∆(R;B):

Proposition 2.2. Assume Condition 2.1 holds. Then ∆(R;B) can be written as

∆(R;B) = sup
φ:R→R+

EP [(ϕ ◦R)(X)R(X)]− EP [R(X)]

subject to (ϕ ◦R)#P ∈ B, ϕ is nondecreasing.

Moreover, if ∆(R;B) is attainable (i.e., the supremum is attained by some w∗ satisfying the con-

straints), then this equivalent formulation is attainable as well (i.e., the supremum is attained by

some ϕ∗ satisfying the constraints), and it then holds that w∗(X) = ϕ∗(R(X)) P -almost surely.

In words, this proposition shows that the excess risk is maximized by considering functions w(x)

that are monotonically nondecreasing with respect to R(x). This is intuitive, since maximizing

the expected value of w(X)R(X) implies that we should choose a function w that is large when

R is large. Most importantly, Proposition 2.2 implies that for a class of constraint sets B, the

optimal value in the constrained optimization problem (4) only depends on the distribution of X

through the distribution of R(X). We note that, in the special case when B is specified in terms

of an f -divergence (as in Example 2 above), the conclusion of Proposition 2.2 is established by

Donsker and Varadhan, 1976; Lam, 2016; Namkoong et al., 2022. We verify that this result holds

in aforementioned settings as follows.
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Returning to Example 1: bound-constrained distribution shift. Recall that in this exam-

ple, we take the constraint set B = Ba,b = {Q̃ : E
Z∼Q̃

[Z] = 1, P
Z∼Q̃

(a f Z f b) = 1}, for some

0 f a < 1 < b < +∞. It is straightforward to verify that Ba,b satisfies Condition 2.1, implying that

Proposition 2.2 can be applied.

Moreover, we can actually calculate the maximizing density ratio w∗(x) explicitly. The worst-

case density ratio that attains the worst-case excess risk takes the form

w∗(x) = a · 1
{
R(x) < qR

(
b−1
b−a

)}
+ b · 1

{
R(x) > qR

(
b−1
b−a

)}
+ c · 1

{
R(x) = qR

(
b−1
b−a

)}
,

where qR(t) is the t-quantile of the distribution of R(X) under X ∼ P and c ∈ [a, b] is defined as

the unique value ensuring that E[w∗(X)] = 1, namely,

c = a+
(b− a)t∗ − (b− 1)

P
{
R(X) = qR

(
b−1
b−a

)} with t∗ = P
{
R(X) f qR

(
b−1
b−a

)}
g b− 1

b− a
.

We can see that w∗(x) is nondecreasing in R(x), validating the conclusion of Proposition 2.2.

Returning to Example 2: f-divergence constrained distribution shift. Recall that for an

f -divergence constraint, we define B = Bf,ρ = {Q̃ : E
Z∼Q̃

[Z] = 1, E
Z∼Q̃

[f(Z)] f Ä, Z g 0}. Since

f is convex, this immediately implies that Bf,ρ satisfies Condition 2.1. If we further assume that f

is differentiable, by the results of Shapiro (2017); Donsker and Varadhan (1976); Lam (2016), the

worst-case excess risk ∆ρ(R;Bf,ρ) is attained at

w∗(x) = w(x;¼∗, ¿∗) =

{
(f ′)−1

(
R(x)− ¿∗

¼∗

)}

+

,

where ¼∗, ¿∗ are the solutions to the dual problem

inf
λg0, ν

{
¼Ä+ ¿ + EP

[
w(X;¼, ¿)(R(X)− ¿)− ¼f(w(X;¼, ¿))

]}
. (5)

Since f is convex, its inverse derivative (f ′)−1 is nondecreasing, meaning that w∗(x) is nondecreasing

in R(x), which again validates the result in Proposition 2.2.

3 Worst-case excess risk with an isotonic constraint

In this section, we will now formally introduce our iso-DRL method, adding an isotonic constraint

to the DRL framework developed in Section 2 above. As in Section 2, throughout this section we

use the notation of the unsupervised learning setting with risk R(X), since the supervised case can

also be reduced to this setting.

Recall the cone of isotonic functions Ciso
¯ = {w : X → R : w is isotonic w.r.t. ¯}. In this

paper, we actually allow ¯ to be a partial preorder rather than a partial order, meaning that it

may be the case that both x ¯ x′ and x′ ¯ x, even when x ̸= x′. As an example, we denote Ciso
w0

=

{w : w(x) is a monotonically nondecreasing function of w0(x)}—this is obtained by the (pre)order

given by x ¯ x′ whenever w0(x) f w0(x
′).
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Our focus is the worst-case excess risk with the isotonic constraint:

∆iso(R;B) = sup
wg0

EP [w(X)R(X)]− EP [R(X)]

subject to w#P ∈ B, w ∈ Ciso
¯ . (6)

To make this more concrete with a specific example, in the bound (3), this example corresponds to

choosing B = Bf,ρ for the f -divergence f(x) = x log x, as for the KL distance constraint. In partic-

ular, the bound (3) assumed two constraints on the distribution Ptarget—first, DKL(Ptarget∥P ) f Ä

(which corresponds to assuming (dPtarget/dP )#P ∈ Bf,ρ, in our new notation), and second, Ptarget ∈
Qiso(w0) (which is expressed by assuming w ∈ Ciso

¯ when we take the partial (pre)order defined as

x ¯ x′ whenever w0(x) f w0(x
′)—or equivalently, we can write this as w ∈ Ciso

w0
).

3.1 Equivalent formulation

Optimization problems with isotonic constraints may be difficult to tackle both theoretically and

computationally, since the isotonic cone, despite being convex, may be challenging to optimize over

when working with an infinite-dimensional object such as the density ratio. In this section, we

will show that the maximization problem (6) can equivalently be reformulated as an optimization

problem without an isotonic constraint, by drawing a connection to the original (not isotonic) DRL

maximization problem (4).

Given the probability measure P , we will define Ã as the projection to the isotonic cone Ciso
¯

with respect to L2(P ), i.e., Ã(a) = argmin
b∈Ciso

¯

∫
(a(x)− b(x))2dP (x). As L2(P ) is reflexive and strictly

convex, the projection Ã(a) exists and is unique (up to sets of measure zero) for all a ∈ L2(P )

(Megginson, 2012). Then, with the projection Ã in place, we are ready to state our main equivalence

result.

Theorem 3.1. For any B and any partial (pre)order ¯ on X , it holds that ∆iso(R;B) f ∆(Ã(R);B).
If in addition Condition 2.1 holds, then we have

∆iso(R;B) = ∆(Ã(R);B),

and moreover, ∆iso(R;B) is attainable if and only if ∆(Ã(R);B) is attainable.

To interpret this theorem, recall from the definition (4) that we have

∆(Ã(R);B) = sup
wg0

EP

[
w(X)[Ã(R)](X)

]
− EP

[
[Ã(R)](X)

]

subject to w#P ∈ B. (7)

Compared with the formulation (6) that defines the isotonic worst-case risk ∆iso(R;B), we see

that this equivalent formulation removes the constraint w ∈ Ciso
¯ by replacing R with its isotonic

projection Ã(R). This brings computational benefits. The equivalent formulation (7) separates two

constraints w#P ∈ B and w ∈ Ciso
¯ , allowing us to first project the risk function R onto Ciso

¯ , and

then solve a problem that is as simple as the problem stated earlier in (4). More concretely, as seen

in Examples 1 and 2, for many common choices of B, we have closed-form solutions to (7) in terms

of the projected risk Ã(R).
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3.2 Setting: iso-DRL with estimated density ratio

We now return to the scenario described in (3) in Section 1.3, where we would like to recalibrate a

pretrained density ratio w0 that estimates dPtarget/dP . As the shape or relative magnitude of w0

could contain useful information about the true density ratio, we consider candidate distributions

with the density ratio as an isotonic function of w0, which is equivalent to considering the partial

(pre)order x ¯ x′ ⇐⇒ w0(x) f w0(x
′). We will denote the specific isotonic cone under this partial

(pre)order as Ciso
w0

and its isotonic projection as Ãw0
, and abusing notation, we write ∆iso(R;B, w0) to

denote the excess risk for this particular setting, to emphasize the role of w0. Under the condition of

Theorem 3.1, we have the equivalence ∆iso(R;B, w0) = ∆(Ãw0
(R);B). To understand the projection

onto the cone Ciso
w0

in a more straightforward way, we can derive a further simplification. Write Ã1 to

denote the isotonic projection of functions R → R under the measure (w0)#P , and define a function

R̃ : R → R to satisfy R̃(w0(X)) = EP [R(X) | w0(X)] P -almost surely. We then have the following

simplified equivalence:

Proposition 3.2. Assume Condition 2.1 holds. We have the equivalence ∆iso(R;B, w0) = ∆(Ã1(R̃)◦
w0;B, w0), where we define

∆(R;B, w0) = sup
h: h◦w0g0

EP [(h ◦ w0)(X)R(X)]− EP [R(X)]

subject to (h ◦ w0)# P ∈ B. (8)

In comparison to the equivalence ∆iso(R;B, w0) = ∆(Ãw0
(R);B), the equivalence in the proposition

relies on an isotonic projection with respect to the canonical order on the real line (i.e., the projection

Ã1).

Moreover, when the true distribution shift does not obey the isotonic constraint exactly, in

Appendix Section B.4, we can nonetheless provide a bound on the worst-case excess risk, which

is tighter than the (non-iso) DRL bound whenever the isotonic constraint provides a reasonable

approximation.

4 Estimation of worst-case excess risk with isotonic constraint

So far, our focus has been on the population level problem, namely, we have assumed full access

to the data distribution P and the risk function R. In practice, however, we may only be able

to access the data distribution P via samples, and we may only be able to learn about the risk

function R via noisy evaluations of R(X) on each sampled point X in the unsupervised setting. Or,

in the supervised setting, we can only access P̃ via samples of labeled data points drawn from this

distribution, and can learn about r only through evaluating r(X,Y ) on these sampled data points.

In this section, we propose a fully data dependent estimator for the worst-case excess risk

∆iso(R;B). Moreover, we characterize the estimation error for different choices of B, including the

bounds constraint and the f -divergence constraint for the distribution shift.
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4.1 Plug-in estimators

We start with presenting the plug-in estimators of the worst-case excess risk under the isotonic

constraint in both the unsupervised and supervised settings.

The unsupervised setting. We have n i.i.d. observations {Xi}ifn from a distribution P . Given

a risk function R : X → R+, and the uncertainty set B, we estimate the worst-case excess risk

∆iso(R;B) (cf. Equation (6)) via

∆̂iso(R;B) := max
wg0

1

n

∑

ifn

w(Xi)R(Xi)−
1

n

∑

ifn

R(Xi)

subject to w#P̂n ∈ B, w ∈ Ciso
¯ . (9)

Here, P̂n denotes the empirical distribution of the sample {Xi}ifn drawn from P .

The supervised setting. In this case, we have {(Xi, Yi)}ifn drawn i.i.d. from P̃ = P × PY |X .

Given a risk function r, and the uncertainty set B, we propose to estimate the worst-case excess

risk ∆̂iso(r;B) by replacing R(Xi) with r(Xi, Yi) in (9).

4.1.1 Adding a boundedness constraint

When calculating the excess risk at the population level, the constraint set B may not require w

to be bounded—specifically, while Ba,b imposes an upper bound on w, the f -divergence constraint

set Bf,ρ does not. In the empirical setting, however, a boundedness constraint is more crucial: we

want to avoid degenerate scenarios, such as w(Xi) taking an arbitrarily large value for a single i,

and being zero for the remaining n− 1 data points. To this end, we will assume from this point on

that B includes a boundedness constraint:

Condition 4.1. There exists Ω such that any distribution Q ∈ B is supported on [0,Ω].

This is trivially true for B = Ba,b with Ω = b. But this constraint actually allows us to work

with the f -divergence example, as well, as established by the following result.

Proposition 4.2. Assume the convex function f is differentiable on R+. The worst-case excess

risk ∆iso(R;Bf,ρ) is attained at some w∗iso
f,ρ ∈ Ciso

¯ with ∥w∗iso
f,ρ ∥∞ <∞.

In particular, defining Bf,ρ,Ω = {Q̃ : E
Z∼Q̃

[Z] = 1, E
Z∼Q̃

[f(Z)] f Ä, P
Z∼Q̃

(0 f Z f Ω) = 1},
which adds a boundedness requirement in addition to the f -divergence constraint, we can see that

for sufficiently large Ω (namely, Ω g ∥w∗iso
f,ρ ∥∞), even though Bf,ρ,Ω ª Bf,ρ, it nonetheless holds

that ∆iso(R;Bf,ρ,Ω) = ∆iso(R;Bf,ρ). Therefore, by working with the constraint set Bf,ρ,Ω, we are

estimating the same excess risk, but Condition 4.1 nonetheless holds. (Of course, in practice, the

value of ∥w∗iso
f,ρ ∥∞ is unknown and so we can simply set Ω to be a large constant.)
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4.2 Computation: estimation after projection

Before moving onto the statistical performance of the two estimators ∆̂iso(R;B) and ∆̂iso(r;B), we

pause to discuss fast computational methods for these. The key is Theorem 3.1—we may accelerate

the computation of both estimators via an equivalent optimization problem without the isotonic

constraint.

To be more specific, we begin by considering the supervised setting. Denote riso = (risoi )ifn ∈ Rn

as the isotonic projection of (r(Xi, Yi))ifn with respect to the empirical distribution P̂n under the

partial order ¯. Then, consider the optimization problem

∆̂(riso;B) := max
wg0

1

n

∑

ifn

w(Xi)r
iso
i − 1

n

∑

ifn

risoi

subject to w#P̂n ∈ B. (10)

By Theorem 3.1 (applied with P̂n in place of P ), we have ∆̂(riso;B) = ∆̂iso(r;B). Analogously, in

the unsupervised setting, we instead have ∆̂iso(R;B) = ∆̂(Riso;B), where Riso = (Riso
i )ifn ∈ Rn as

the isotonic projection of (R(Xi))ifn with respect to the empirical distribution P̂n under the partial

order ¯.

Note that in iso-DRL with estimated density ratio in Section 3.2, we can simply apply the

isotonic regression for (r(Xi, Yi))ifn on (w0(Xi))ifn to obtain the projected risk. We can now see

concretely that this equivalence allows for a much more efficient calculation. For example, in the

case X = R, this isotonic projection can be computed in O(n) time (e.g., via the PAVA algorithm,

which provides an exact calculation of isotonic projection in Rn (Grotzinger and Witzgall, 1984)),

this leads to a very simple implementation for computing ∆̂(riso;B)—in particular, once the vector

riso has been computed, the remaining optimization problem is simple since there is no remaining

isotonic constraint.

4.3 Performance guarantees for plug-in estimators

In this section, we present the performance guarantees for plug-in estimators for a general constraint

set B. To jump ahead to the conclusion, we will see that our results imply the following consistency

properties for the settings B = Ba,b and B = Bf,ρ,Ω. Here we define the Rademacher complexity of

a function class G by Rn(G) = E[supg∈G |n−1
∑

ifn Ãig(Zi)|], where {Zi}ifn is a sample of size n

from P and {Ãi}ifn are independent random variables drawn uniformly from {+1,−1}.

Proposition 4.3 (Informal result for examples). For both B = Ba,b and B = Bf,ρ,Ω, and for both

supervised (∆̂iso(B) = ∆̂iso(r;B)) and unsupervised (∆̂iso(B) = ∆̂iso(R;B)) learning, and under

some mild additional conditions specified below, it holds with probability g 1− 3n−1 that

∣∣∣∆̂iso(B)−∆iso(R;B)
∣∣∣ f C

(
Rn(Ciso

¯,Ω) +

√
log n

n

)
,

where Ciso
¯,Ω = {w ∈ Ciso

¯ : 0 f w f Ω} is the bounded isotonic cone, where the constant C will be

defined in the theorems below, and where we set Ω = b for the case B = Ba,b.
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Our bounds rely on the Rademacher complexity term Rn(Ciso
¯,Ω), which will naturally depend on the

properties of the (pre)ordering ¯ that defines this isotonic cone. To provide further intuition, we

now give two concrete examples to make apparent the dependence of the Rademacher complexity

on the sample size.

(1) When d = 1, e.g., in the setting of density ratio recalibration in Section 3.2, similar to the

results of Chatterjee and Lafferty (2019), one can show by Dudley’s theorem (Dudley, 1967)

that Rn

(
Ciso
¯,Ω

)
≲ n−1/2 up to logarithmic factors.

(2) For Rd with a fixed dimension d g 2 and a bounded domain X equipped with the componen-

twise order (Han et al., 2019; Deng and Zhang, 2020; Gao and Wellner, 2007), i.e., x ¯ z if

and only if xj f zj for all j ∈ [d], by Han et al. (2019), if the density dP (x) is bounded below

(away from zero) and above, then we have Rn

(
Ciso
¯,Ω

)
≲ n−1/d up to logarithmic factors.

4.3.1 Formal results

Now we turn to developing these results formally, in a general framework. We will begin with a

deterministic result, which shows that, if certain concentration inequalities hold, then ∆̂iso(Ba,b) is

an accurate estimate of ∆iso(R;Ba,b). Then we will show that the concentration results hold with

high probability, in both of our two settings, B = Ba,b and B = Bf,ρ,Ω.

We first need a few definitions. For any distributions P0, P1, if w#P0 ∈ B, we define

εB (w;P0, P1) = inf
{
s g 0 : ∃ t g 0,

(
(1− s) · w + t · 1

)
#
P1 ∈ B

}
.

In other words, if weight function w satisfies the constraints relative to distribution P0, we need to

find constants s, t such that the modified weight function (1− s) · w + t · 1 satisfies the constraints

relative to distribution P1. (Note that we must have εB (w;P0, P1) f 1, since choosing s = t = 1

will always be feasible, because 1#P1 is the point mass on the value 1, and therefore satisfies the

constraints of B, by assumption.) Of importance is the quantity

εB = sup
w∈Ciso

¯,Ω

max
{
εB

(
w;P, P̂n

)
, εB

(
w; P̂n, P

)}
,

which characterizes the feasibility gap between the population and sample problems. In addition,

we define

εR = sup
w∈Ciso

¯,Ω

∣∣∣EP̂n
[(w(X)− 1)r(X,Y )]− EP [(w(X)− 1)R(X)]

∣∣∣

in the case of unsupervised learning, or

εR = sup
w∈Ciso

¯,Ω

∣∣∣EP̂n
[(w(X)− 1)R(X)]− EP [(w(X)− 1)R(X)]

∣∣∣

in the case of supervised learning. The value of εR measures the concentration between the empirical

risk and the population one. With these definitions in place, we are ready to state the generic

performance guarantee of the plug-in estimators.
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Theorem 4.4. Suppose that the risk is BR-bounded (i.e., R or r, in the unsupervised or supervised

case, respectively), and that the constraint set B satisfies Condition 4.1. Then, it holds for both

supervised (∆̂iso(B) = ∆̂iso(r;B)) and unsupervised (∆̂iso(B) = ∆̂iso(R;B)) learning that

∣∣∣∆̂iso(B)−∆iso(R;B)
∣∣∣ f εR + 2BRΩ · εB.

Of course, in order for this result to be meaningful, we need to ensure that εR and εB are likely

to be small, with high probability, We now turn to the question of establishing such concentration

results. First we bound εR.

Lemma 4.5. Suppose that the risk is BR-bounded (i.e., R or r, in the unsupervised or supervised

case, respectively). Then, with probability at least 1 − n−1, it holds that εR f 4BRRn(Ciso
¯,Ω) +

BRΩ
√
log n/(2n).

Next we turn to bounding εB, which we will do separately for our two examples.

Lemma 4.6. Let B = Ba,b, where a < 1 < b. Then, with probability at least 1− n−1, it holds that

εB f C(Rn(Ciso
¯,Ω) + Ω

√
log n/(2n)), where we take Ω = b and C depends only on a, b.

Finally, to complete this section, we turn to the f -divergence constraint, Bf,ρ.

Lemma 4.7. Let B = Bf,ρ,Ω, where we take any Ω g ∥w∗iso
f,ρ ∥∞ for w∗iso

f,ρ defined as in Proposi-

tion 4.2. Assume also that f is LΩ-Lipschitz on [0,Ω]. Then, with probability at least 1− 2n−1, it

holds that εB f C(Rn(Ciso
¯,Ω) +

√
log n/(2n)), where C depends only on Ω, LΩ, and Ä.

4.4 The role of the isotonic constraint

The consistency bounds developed above show that, under appropriate conditions, the error in

estimating ∆iso(R;B) can be controlled whenever the appropriate Rademacher complexity terms

are small. In the Appendix Section C.6, we will construct an example with B = Ba,b such that,

without an isotonic constraint, ∆(R;Ba,b) = 0 but ∆̂(r;Ba,b) > c with high probability, where c > 0

doesn’t vanish with n, i.e., this empirical estimate is not a consistent estimator of the true excess

risk. This suggests that the isotonic constraint plays an important role: essentially, the isotonic

constraint induces a form of regularization, ensuring that we work with a low-complexity class of

functions.

5 Numerical experiments

In this section, we demonstrate the benefits of iso-DRL in calibrating prediction sets under covariate

shift with empirical examples, as previewed in Section 1.3. Throughout all experiments, we have a

training data set Dtrain containing data points (Xi, Yi) drawn from the data distribution P̃ , and a

test set Dtest containing data points (X̃i, Ỹi) drawn from P̃target. We consider both synthetic and

real datasets. Code to reproduce all experiments is available at https://github.com/yugjerry/

iso-DRL.
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Background. When covariate shift is present, Tibshirani et al. (2019) proposes the weighted

conformal prediction (WCP) method, which produces a prediction set Cw0

1−α(X) with an estimated

density ratio w0, which is only valid for the shifted covariate distribution P̂ defined by dP̂ ∝ w0 ·dP .

The validity for the target distribution P̃target is only guaranteed up to a coverage gap due to the

estimation error or potential misspecification in w0 (Lei and Candès, 2020; Candès et al., 2023; Gui

et al., 2024, 2023).

Dataset partition. The datasets Dtrain and Dtest are partitioned as follows: (1) first, we use a

subset D1 ¦ Dtrain of the training data of size |D1| = npre, and a subset Dtest,1 ¦ Dtest of the test

data of size |Dtest,1| = npre, to train the function w0; (2) next, we use a subset D2 ¦ Dtrain\D1

of the training data of size |D2| = ntrain to train CP or WCP prediction intervals; (3) then, D3 =

Dtrain\(D1∪D2) is used to for estimating upper bounds on the excess risk for the DRL and iso-DRL

methods. We further define n = |D3| to ease notations; (4) finally, Dtest,0 = Dtest\Dtest,1 is used

for estimating the actual performance of each method relative to the target distribution: defining

ntest = |Dtest,0|, we compute Coverage rate(C,³) = n−1
test

∑
i∈Dtest,0

1{Ỹi ∈ C(X̃i)}. We next turn

to the details of how these steps are carried out.

Initial density ratio estimation. Using data from D1 and Dtest,1, we construct a data set

comprised of the covariate X and a binary label L ∈ {0, 1} (0 for the training points, 1 for the

test points). We then fit a logistic regression model and obtain the estimated probability p̂(x) for

P(L = 1 | X = x), with which we define w0(x) = p̂(x)/(1− p̂(x)).

Split conformal prediction and weighted split conformal prediction. With data from

D2, we use Ordinary Least Squares (OLS) as the base algorithm, where we denote µ̂ as the fitted

regression model, and apply split conformal prediction with the nonconformity score V (x, y) =

|y− µ̂(x)| to obtain the following prediction intervals for comparison: (1) CP: conformal prediction

interval C1−α without adjusting for covariate shift; (2) WCP-oracle: weighted conformal prediction

interval Cw∗

1−α with true density ratio w∗ = dPtarget/dP ; (3) WCP: weighted conformal prediction

interval Cw0

1−α with estimated density ratio w0.

DRL methods: estimation of worst-case excess risks. We then consider two distributionally

robust methods. Using the subset D3 of the training data, the observed risks can be calculated by

ri = 1 {Yi /∈ C1−α(Xi)}, i ∈ D3. We adopt the KL divergence constraint DKL(Q∥P ) f Ä to measure

the magnitude of distribution shift. Then, we obtain

∆̂(³) = max
∥w∥∞fΩ

1

n

∑

i∈D3

(wi − 1)ri s.t.
1

n

∑

i∈D3

wi = 1,
1

n

∑

i∈D3

wi logwi f Ä, (11)

with the upper bound set as Ω = 100 throughout the experiments. Next, given the estimated

density ratio w0, we run isotonic regression for (ri)ifn on (w0(X
(3)
i ))ifn to obtain the projected risk

(risoi )i∈D3
, with which we can calculate the worst-case excess risk

∆̂iso(³) = max
∥w∥∞fΩ

1

n

∑

i∈D3

(wi − 1)risoi s.t.
1

n

∑

i∈D3

wi = 1,
1

n

∑

i∈D3

wi logwi f Ä. (12)
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Given these estimates of the worst-case excess risks, we compare the following methods: (1) DRL:

CP interval C1−α̃, where ³̃ = max{0, ³ − ∆̂(³)}.3; (2) iso-DRL-w0: CP interval C1−αiso
, where

³iso = max{0, ³− ∆̂iso(³)}.

5.1 Synthetic dataset

We start with a synthetic example, in which we fix ntrain = n = ntest = 500 and will vary npre to

see how will the initial density ratio estimation w0 affect the result. We will consider two settings—

the “well-specified” and “misspecified” settings. Specifically, for the marginal distributions of X,

we set the well-specified setting with P : X ∼ N (0d, Id) and Ptarget : X ∼ N (µ, Id), and the

misspecified setting with P : X ∼ N (0d, Id) and Ptarget : X ∼ N (µ, Id +
ζ
d1d1

¦
d ), where d = 20,

µ = (2/
√
d) · (1, · · · , 1)¦, and · = 6. Since the estimate w0 for the density ratio will be fitted

via logistic regression as described above, the first setting is indeed well-specified since, due to the

fact that P and Ptarget have the same covariance, the logistic model is correct for the distribution

shift from P to Ptarget. In contrast, the second setting is misspecified since, due to the change

in covariance matrix, the underlying log-density ratio is no longer a linear function of µ¦X, and

therefore cannot be characterized exactly by a logistic regression model. Finally, for the conditional

distribution of Y | X, we set Y | X ∼ 0.2 · N (X¦´ + sin(X1) + 0.4X3
3 + 0.2X2

4 , 1) for both training

and target distributions, where ´ ∼ N (0d, Id).

5.1.1 Results with varying sample size npre for estimating w0

We first consider the scenario with an estimated density ratio w0. Recall that we use the subsets

D1 ¢ Dtrain and Dtest,1 ¢ Dtest with |D1| = |Dtest,1| = npre for estimating w0; consequently, for larger

values of npre, we will expect a more accurate w0. By varying npre in {40, 60, 80, 100, 120, 140, 160},
we aim to investigate the robustness of WCP and iso-DRL with respect to the accuracy in w0, where

we fix Ä = Ä∗ := DKL(Ptarget∥P ).

Well-specified setting. In Figure 2b, where the solid horizontal line (in the middle plot) marks

the nominal coverage level, 1−³ = 90%, we can see that the uncorrected CP exhibits undercoverage

due to the mismatch between Ptarget and P , while the coverage of WCP using w0 increases to 90%

as npre increases, since w0 becomes more accurate with larger npre (cf. Figure 2a). The generic DRL,

even with Ä = Ä∗, tends to be conservative and has the widest interval. In comparison, iso-DRL-w0

has coverage very close to the target level.

Misspecified w0. In Figure 3b, we show results for the misspecified setting. Since w0 is estimated

from a model class that does not contain the true density ratio, consequently DKL(Ptarget∥P̂ ) does

3To explain this construction, recall from Section 1 that we can use the excess risk estimate to choose a tuning

parameter that achieves a desired bound on risk. Specifically, for any value of α̃, we can bound the risk (i.e., the

miscoverage) for the CP interval C1−α̃ as EP̃target
[Y ̸∈ C1−α̃(X)] f EP̃ [Y ̸∈ C1−α̃(X)]+∆(Rα̃;Bf,ρ) f α̃+∆(Rα̃;Bf,ρ)

(where Rα̃ is the risk defined by the CP interval C1−α̃, for any value of α̃). Since a 7→ Ra is nondecreasing, this also

implies that a 7→ ∆(Ra;Bf,ρ) is nondecreasing (recall from Section 2.1 that ∆(R;B) is monotone in R, as a corollary

of Proposition 2.2). Thus, for α̃ f α we have EP̃target
[Y ̸∈ C1−α̃(X)] f α̃+∆(Rα;Bf,ρ) ≈ α̃+ ∆̂(α). Consequently,

the above choice of α̃ ensures that miscoverage will be (approximately) bounded by α. A similar argument also holds

for iso-DRL-w0.
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Figure 2: Results in the well-specified setting.
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Figure 3: Results in the misspecified setting.

not converge to zero as npre increases (cf. Figure 3a). As a result, both uncorrected CP and WCP

(which is weighted with the misspecified w0) exhibit undercoverage. The proposed iso-DRL-w0

method has coverage slightly above 90% but has interval width close to that of WCP-oracle, while

DRL is overly conservative.
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(a) Results in the well-specified setting.
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Figure 4: Results with varying Ä.

5.1.2 Results with varying Ä

In this section, we investigate the sensitivity of each approach (DRL and iso-DRL-w0) to the choice

of Ä. Fixing npre = 50, we vary Ä in [0.002, 6]. The solid vertical line in each plot denotes the true

KL divergence, Ä∗ = DKL(Ptarget∥P ). Other methods that do not depend on Ä behave in the same
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way as shown in the previous section.

We can see from both plots that the prediction intervals produced by DRL are quite conservative

and much wider than the oracle interval across nearly the entire range of Ä, even values Ä much

smaller than the true distribution shift magnitude Ä∗ = DKL(Ptarget∥P ). In comparison, for iso-

DRL-w0, when Ä = Ä∗, the width of intervals is comparable to the oracle interval in both cases,

and the coverage and width vary slowly as we change the value of Ä. From this we can see that the

isotonic constraint offers a significant gain in accuracy if we have a reasonable estimate of Ä∗.

5.2 Real data: wine quality dataset

We next consider a real dataset: the wine quality dataset (Cortez et al., 2009)4. The dataset

includes 12 variables that measure the physicochemical properties of wine and we treat the variable

quality as the response of interest. The entire dataset consists of two groups: the white and red

variants of the Portuguese “Vinho Verde” wine (1599 data points for the red wine and 4898 data

points for the white wine). The subset of red wine is treated as the test dataset and that of white

wine is viewed as the training set. All variables are nonnegative and we scale each variable by its

largest value such that the entries are bounded by 1. Similar to the dataset partition in synthetic

simulation, we fix npre = 50, ntrain = n = 1900, and ntest = 1000. We first fit a kernel density

estimator (Gaussian kernel with a bandwidth suggested by cross-validation) using the entire dataset

as a proxy of the oracle density ratio. Figure 5a plots this against the log-density ratio obtained from

logistic regression fitted on npre samples from each group. It can be seen that the two density ratios

exhibit an approximately isotonic trend, which motivates us to consider the isotonic constraint with

respect to w0.
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Figure 5: Results for wine quality dataset.

To assess the performance of the proposed approach, we estimate w0 using the same procedure

as for the simulated data, with sample size npre = 50 for each group. We consider the uncertainty

set defined by KL-divergence and choose Ä from 50 uniformly located grid points in [0.02, 2] in

Figure 5b. The solid vertical line (in the middle and right plots) denotes an estimate Ä̂ of the KL

divergence DKL(Ptarget∥P ) to ensure that we are considering a reasonable range of values of Ä (see

4
Available at https://archive.ics.uci.edu/dataset/186/wine+quality
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Appendix D.2 for details on this estimate). In Figure 5b, similar to the performance in Section 5.1

for simulated data, DRL tends to be conservative: the coverage rate quickly approaches 1 while

Ä is still below 0.1 and the intervals tend to be wide. In the meantime, iso-DRL-w0 captures the

approximate isotonic trend in Figure 5a and achieves valid coverage by recalibrating the weighted

approach. The key message is that in the real data case, even when there is no oracle information for

selecting Ä and the isotonic trend is not exact, the proposed iso-DRL-w0 with the isotonic constraint

with respect to the pre-fitted density ratio is less sensitive to the selection of Ä.

6 Additional related work

In this section, we discuss some additional literature in several related areas, including transfer

learning, DRL, sensitivity analysis, shape-constrained learning, and conformal prediction.

Transfer learning. Transfer learning, in which data from one distribution is used to improve

performance on a related but different distribution, is usually categorized into domain adaptation

and inductive transfer learning (Redko et al., 2020).

Domain adaptation focuses on the scenario with covariate shift. From the theoretical side, the

performance of machine learning models is analyzed in Ben-David et al. (2010); Ben-David and

Urner (2012); Pathak et al. (2022); Pathak and Ma (2024); Hanneke and Kpotufe (2019). To

implement efficient predictions, weighted methods are adopted as the first trial to draw P closer

to Q (Cortes et al., 2008; Gretton et al., 2009; Ma et al., 2023; Ge et al., 2023). Another scenario

requires a small number of labeled target samples, which can be feasible in reality and related works

include Chen et al. (2011); Chattopadhyay et al. (2013); Yang et al. (2012), etc. Inductive transfer

learning, on the other hand, assumes that the marginal distributions of X are invariant for training

and target distributions and is studied in difference statistical settings (Bastani, 2021; Cai and Wei,

2019; Li et al., 2021; Tian and Feng, 2021).

Distributionally robust learning (DRL). Our work is directly related to DRL (Ben-Tal

and Nemirovski, 1998; El Ghaoui and Lebret, 1997), which aims to control certain statistical

risks uniformly over a set of candidate distributions for the target distribution. Different classes

of the uncertainty set are studied in the literature, such as the optimal transport discrepancy

(Shafieezadeh Abadeh et al., 2015; Blanchet and Murthy, 2019; Blanchet et al., 2019; Esfahani and

Kuhn, 2015) and f -divergence (Duchi et al., 2021; Duchi and Namkoong, 2018; Weiss et al., 2023).

Further constraints on the uncertainty set as the improvement of DRL are explored by Duchi et al.

(2019); Setlur et al. (2023); Esteban-Pérez and Morales (2022); Liu et al. (2023); Popescu (2007);

Shapiro and Pichler (2023). The recent work of Wang et al. (2023) considers the constraint that

the unseen target distribution is a mixture of data distributions from multiple sources.

Sensitivity analysis. Sensitivity analysis is closely related to DRL and is widely studied in the

field of causal inference (Cornfield et al., 1959; Rosenbaum, 1987; Tan, 2006; Ding and VanderWeele,

2016; Zhao et al., 2019; De Bartolomeis et al., 2023) with the goal of evaluating the effect of

unmeasured confounders and relaxing untestable assumptions. Sensitivity models can be viewed as

a specific example of constraints on distribution shift. For example, the marginal Γ-selection model
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(Tan, 2006) with a binary treatment T imposes a bound constraint on the distribution shift from

the data distribution PY (1)|X,T=1 to the counterfactual PY (1)|X,T=0. Recent works also investigate

the sensitivity model from the perspective of DRL, such as Yadlowsky et al. (2018); Jin et al. (2022,

2023); Sahoo et al. (2022). Sensitivity analysis that incorporates more informative constraints is

explored in Huang and Pimentel (2024); Nie et al. (2021).

Statistical learning with shape constraints. Our work also borrows ideas from shape-constrained

learning, which have been studied across various applications (Grenander, 1956; Matzkin, 1991).

The isotonic constraint is the most common one among these. Since Rao (1969), the properties of

isotonic regression are well studied in the literature (Brunk et al., 1957, 1972; Zhang, 2002; Han

et al., 2019; Yang and Barber, 2019; Durot and Lopuhaä, 2018). Moreover, the isotonic constraint is

also widely applied to calibration for distributions in regression and classification settings (Zadrozny

and Elkan, 2002; Niculescu-Mizil and Caruana, 2012; van der Laan et al., 2023; Henzi et al., 2021;

Berta et al., 2024).

Conformal prediction. One important application of iso-DRL is to recalibrate conformal predic-

tion intervals. Conformal prediction (Vovk et al., 2005; Shafer and Vovk, 2008) provides a framework

for distribution-free uncertainty quantification, which constructs prediction intervals that are valid

with exchangeable data from any underlying distribution and with any “black-box” algorithm. As

the validity of WCP (Tibshirani et al., 2019) with the estimated density ratio only holds up to a

coverage gap due to the error the estimate w0 (Lei and Candès, 2020; Candès et al., 2023; Gui

et al., 2024), the work Jin et al. (2023) further establish a robust guarantee via sensitivity analysis.

Besides the weighted approaches, there are other solutions in the literature: Cauchois et al. (2020);

Ai and Ren (2024) address the issue of joint distribution shift via the DRL; Qiu et al. (2023);

Yang et al. (2024); Chen and Lei (2024) formulate the covariate shift problem within the semipara-

metric/nonparametric framework and utilize the doubly-robust theory to correct the distributional

bias.

7 Discussion

In this paper, we focus on distributionally robust risk evaluation with the isotonic constraint on

the density ratio as the regularization, which aims to avoid over-pessimistic candidate distributions.

This is similar in flavor to many tools in high-dimensional statistical learning, where regulariza-

tion/inductive bias is introduced to improve generalization. We provide an efficient approach to

solve the shape-constrained optimization problem via an equivalent reformulation, for which estima-

tion error bounds for the worst-case excess risk are also provided. To conclude, we provide further

discussions on the proposed iso-DRL framework and highlight several open questions.

Stability against distribution shift. Excess risk can also be interpreted from the perspective of

stability against distribution shift (Lam, 2016; Namkoong et al., 2022; Rothenhäusler and Bühlmann,

2023). With a fixed budget ε j 1 for the excess risk, the largest tolerance of distribution shift

such that the excess risk is under control is of interest. Taking the f -divergence constraint as an

example, to ensure ∆ρ(R;Bf,ρ) f ε j 1, then Ä needs to obey Ä f (2Var(R(X)))−1f ′′(1) · ε2 +
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o(ε2) (Lam, 2016; Duchi and Namkoong, 2018; Blanchet and Shapiro, 2023). However, with the

additional isotonic constraint on the density ratio, we can tolerate larger distribution shift: Ä f
(2Var([Ã(R)](X)))−1f ′′(1) · ε2+ o(ε2). This improvement implies that when side information of the

underlying distribution shift is provided, risk evaluation will be less sensitive to the hyperparameters

describing the uncertainty set (e.g., Ä), thus is more robust with the presence of distribution shift.

From risk evaluation to distributionally robust optimization. Different from risk evalua-

tion, distributionally robust optimization (DRO) focuses on the optimization problem with a loss

function ℓθ(x), i.e., ¹̂ ∈ argmin
θ∈Θ

supQ∈Q EQ ℓθ(X). Under smoothness conditions on ℓθ, asymptotic

normality for ¹̂ is established in the literature (Duchi and Namkoong, 2018). The DRO framework

is shown to regularize ¹̂ in terms of variance penalization (Lam, 2016; Duchi and Namkoong, 2018)

or explicit norm regularization (Blanchet and Murthy, 2019). It is interesting to incorporate the iso-

tonic constraint into DRO and to understand the effect of the isotonic constraint in the asymptotics

of ¹̂iso.
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Appendix

A Proofs of results in Section 2

A.1 Proof of Proposition 2.2

It is straightforward to check that ∆(R;B) is always an upper bound of the new formulation stated

in Proposition 2.2, simply by taking w = ϕ ◦R. Therefore, it remains to show the converse: under

Condition 2.1, ∆(R;B) is also a lower bound of the new formulation stated in Proposition 2.2.

To this end, it suffices to prove that for any w#P ∈ B, there exists a nondecreasing function ϕ

such that (ϕ ◦R)#P ∈ B, and

EP [w(X)R(X)] f EP [ϕ(R(X))R(X)] .

We construct such a function ϕ in two steps.

Step 1: Conditioning. For any w such that w#P ∈ B, we define g as a measurable function

satisfying

g(R(X)) = E [w(X) | R(X)] , P -almost surely.

(Note that g is not necessarily a monotone function.) As a result, by the tower law, we have

EP [w(X)R(X)] = EP [g(R(X))R(X)]. (13)
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Since w#P ∈ B, by Jensen’s inequality, for any convex function È, we have

EP [È (g(R(X)))] = EP [È (E [w(X) | R(X)])] f EP [È(w(X))] ,

which implies (g ◦R)#P ∈ B by Condition 2.1.

Step 2: Rearrangement. Denote F1 and F2 as the cumulative distribution functions of g(R(X))

and R(X), respectively. Let U ∼ Unif([0, 1]). Then, we have F−1
1 (U)

d
= g(R(X)) and F−1

2 (U)
d
=

R(X), where F−1
k is the generalized inverse of Fk for k = 1, 2, and where

d
= denotes equality in

distribution. Moreover, F−1
1 is nondecreasing and

g(F−1
2 (U))

d
= g(R(X))

d
= F−1

1 (U),

which implies that F−1
1 is the monotone rearrangement of g◦F−1

2 . By (Hardy et al., 1952, eqn. (378)),

we have

EP [g(R(X))R(X)] = E
[
g(F−1

2 (U))F−1
2 (U)

]
f E

[
F−1
1 (U)F−1

2 (U)
]
. (14)

Next, let ϕ be a measurable function satisfying

ϕ(F−1
2 (U)) = E

[
F−1
1 (U) | F−1

2 (U)
]
,

almost surely with respect to the distribution U ∼ Unif([0, 1]). Since F−1
k is the generalized inverse

of a CDF Fk, for each k = 1, 2, it is therefore monotone nondecreasing. Therefore, we can choose

ϕ to be a monotone nondecreasing function. Moreover, to verify that (ϕ ◦R)#P ∈ B, we will check

that ϕ(R(X))
cvx
¯ g(R(X)) (and use Condition 2.1, along with the fact that (g ◦ R)#P ∈ B as

established above): for any convex function È, we have

EP [È(ϕ(R(X)))]
d
= E[È(ϕ(F−1

2 (U)))]

= E[È(E
[
F−1
1 (U) | F−1

2 (U)
]
)] f E[È(F−1

1 (U))] = EP [È(g(R(X)))],

where the inequality holds by Jensen’s inequality.

We then have

E
[
F−1
1 (U)F−1

2 (U)
]
= E

[
E
[
F−1
1 (U) | F−1

2 (U)
]
F−1
2 (U)

]

= E
[
ϕ(F−1

2 (U))F−1
2 (U)

]
= EP [ϕ(R(X))R(X)] .

This equality, combined with (13) and (14), yields the desired outcome: EP [w(X)R(X)] f EP [ϕ(R(X))R(X)].

We hence complete the proof.

B Proofs of results in Section 3

B.1 Preliminaries

Before we present the proof, we begin with some preliminaries: we introduce some notation, defini-

tions, and facts that will aid in the proof below.
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B.1.1 Adding an L2 constraint

First, we will define a version of our optimization problem that defines ∆(R;B), by adding an L2

constraint:

∆2(R;B) = sup
wg0, w∈L2(P )

EP [w(X)R(X)]− EP [R(X)]

subject to w#P ∈ B. (15)

We can observe that, by construction,

∆2(R;B) = ∆(R;B ∩ BL2
),

where BL2
is the set of all distributions with finite second moment. The following result verifies

that adding the L2 constraint does not change the outcome of the optimization problem:

Proposition B.1. Under the notation and definitions above, it holds that ∆(R;B) = ∆2(R;B).

We defer the proof of this proposition to Section B.5.

B.1.2 The isotonic projection

We next review some facts regarding the isotonic projection operator Ã. To ease notation, we denote

ïa, bðP =
∫
X a(x)b(x)dP (x) for any functions a, b ∈ L2(P ).

The first property relates to the isotonic projection as a projection to a convex cone (Bauschke

and Combettes (2019), Theorem 3.14; Edwards (2012), Proposition 1.12.4):

For any w ∈ L2(P ) and any v ∈ Ciso
¯ ∩ L2(P ), ïv, w − Ã(w)ðP f 0. (16)

Moreover, it holds that (Brunk (1963), Theorem 1; Brunk (1965), Corollary 3.1):

For any w ∈ L2(P ) and any h : R → R, ïh ◦ Ã(w), w − Ã(w)ðP = 0. (17)

In particular, by chosing h(t) ≡ 1, we can see that isotonic projection preserves the mean,

For any w ∈ L2(P ), EP [w(X)] = EP [[Ã(w)](X)]. (18)

Finally, we relate the isotonic projection to the convex ordering:

For any w ∈ L2(P ), Ã(w)
cvx
¯ w. (19)

To see (19), for any convex function È, by the nonnegativity of Bregman divergence (Bregman,

1967), it holds that

ïÈ(w)− È(Ã(w)), 1ðP g ïÈ′ ◦ Ã(w), w − Ã(w)ðP .

According to the property (17), we further obtain ïÈ′ ◦ Ã(w), w − Ã(w)ðP , which implies that

Ã(w)
cvx
¯ w by definition.
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B.2 Proof of Theorem 3.1

We split the proof into three steps:

1. prove that ∆iso(R;B) f ∆(Ã(R);B);

2. prove that ∆iso(R;B) = ∆(Ã(R);B) provided that Condition 2.1 holds;

3. prove the claim on attainability of minimizers provided that Condition 2.1 holds.

Step 1: Prove ∆iso(R;B) f ∆(Ã(R);B). By the definition of ∆iso(R;B) as the supremum in the

optimization problem (6), for any ε > 0, there exists a feasible wε such that

EP [wε(X) ·R(X)]− EP [R(X)] g ∆iso(R;B)− ε. (20)

Next, define a sequence of truncated functions, wε,n(x) = min{wε(x), n}. Since wε ∈ Ciso
¯ , it

holds that wε,n ∈ Ciso
¯ as well, and moreover since the truncated function is bounded we also have

wε,n ∈ L2(P ). By fact (16), it therefore holds that

EP [wε,n(X) · (R− [Ã(R)])(X)] = ïwε,n, R− Ã(R)ðP f 0,

for each n g 1. Then, by the dominated convergence theorem, taking a limit as n→ ∞ we obtain

EP [wε(X) · (R− [Ã(R)])(X)] f 0. (21)

Moreover, EP [[Ã(R)](X)] = EP [R(X)] by (18). Combining everything, then,

∆iso(R;B)− ε f EP [wε(X) ·R(X)]− EP [R(X)]

f EP [wε(X) · [Ã(R)](X)]− EP [[Ã(R)](X)] f ∆(Ã(R);B),

where the last step holds since, because wε is feasible for the optimization problem (6) that defines

∆iso(R;B), it is also feasible for ∆(Ã(R);B) (i.e., w g 0 and w#P ∈ B). Since ε > 0 is arbitrary,

we obtain the desired result ∆iso(R;B) f ∆(Ã(R);B).

Step 2: Prove ∆iso(R;B) = ∆(Ã(R);B) under Condition 2.1. By Proposition B.1, we have

∆(Ã(R);B) = ∆2(Ã(R);B) = ∆(Ã(R);B ∩ BL2
). Next, note that if Condition 2.1 holds for B, then

this condition holds for B ∩ BL2
as well (because for any Q′

cvx
¯ Q, we have EQ′ [X2] f EQ[X

2] by

definition of the convex ordering—and so if Q ∈ BL2
then Q′ ∈ BL2

as well.) Therefore, we can apply

Proposition 2.2 to the term ∆(Ã(R);B ∩ BL2
), which yields the following equivalent formulation:

∆(Ã(R);B ∩ BL2
) = sup

φ:R→R+

EP [(ϕ ◦ Ã(R))(X) · [Ã(R)](X)]− EP [[Ã(R)](X)]

subject to (ϕ ◦ Ã(R))#P ∈ B, ϕ ◦ Ã(R) ∈ L2(P ), ϕ is nondecreasing.

(22)

Then, for any ε > 0, there exists some ϕε satisfying the above constraints so that

EP [(ϕε ◦ Ã(R))(X) · [Ã(R)](X)]− EP [[Ã(R)](X)] g ∆(Ã(R);B ∩ BL2
)− ε = ∆(Ã(R);B)− ε.
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Now define w̃ε = ϕε ◦ Ã(R), i.e., we have

EP [w̃ε(X) · [Ã(R)](X)]− EP [[Ã(R)](X)] g ∆(Ã(R);B)− ε,

where (w̃ε)#P ∈ B and w̃ε ∈ L2(P ), and also w̃ε ∈ Ciso
¯ , by construction and by feasibility of ϕε.

Moreover, by the facts (18) and (17),

EP [[Ã(R)](X)] = EP [R(X)], ïw̃ε, R− Ã(R)ðP = ïϕε ◦ Ã(R), R− Ã(R)ðP = 0,

and therefore,

EP [w̃ε(X) ·R(X)]− EP [R(X)] g ∆(Ã(R);B)− ε.

But we have verified above that w̃ε is feasible for the optimization problem (6) defining ∆iso(R;B),
i.e.,

EP [w̃ε(X) ·R(X)]− EP [R(X)] f ∆iso(R;B).
Since ε > 0 is arbitrary, this verifies that ∆(Ã(R);B) f ∆iso(R;B), and thus completes this step.

Step 3: attainability of minimizers under Condition 2.1. Suppose ∆(Ã(R);B) is attained

at w̃, i.e.,

EP [w̃(X) · [Ã(R)](X)]− EP [[Ã(R)](X)] = ∆(Ã(R);B).
By Proposition 2.2, we can construct some nondecreasing function ϕ̃, with (ϕ̃ ◦ Ã(R))#P ∈ B, such

that

∆(Ã(R);B) = EP [ϕ̃([Ã(R)](X)) · [Ã(R)](X)]− EP [[Ã(R)](X)].

Recalling that EP [[Ã(R)](X)] = EP [R(X)] by (18), and ∆(Ã(R);B) = ∆iso(R;B) by Steps 1 and 2,

we now have

∆iso(R;B) = EP [ϕ̃([Ã(R)](X)) · [Ã(R)](X)]− EP [R(X)].

Next, by fact (17),

EP [ϕ̃([Ã(R)](X)) · (R(X)− [Ã(R)](X))] = ïϕ̃ ◦ Ã(R), R− Ã(R)ðP = 0,

and so

∆iso(R;B) = EP [ϕ̃([Ã(R)](X)) ·R(X)]− EP [R(X)].

Therefore, ∆iso(R;B) is attained at ϕ̃ ◦ Ã(R) (which, by construction, satisfies ϕ̃ ◦ Ã(R) ∈ Ciso
¯ , as

well as (ϕ ◦ Ã(R))#P ∈ B as above, and is therefore feasible).

Conversely, suppose that ∆iso(R;B) is attained at w̃, i.e.,

EP [w̃(X) ·R(X)]− EP [R(X)] = ∆iso(R;B).
Again applying (18), and the fact that ∆(Ã(R);B) = ∆iso(R;B) by Steps 1 and 2,

∆(Ã(R);B) = EP [w̃(X) ·R(X)]− EP [[Ã(R)](X)] f EP [w̃(X) · [Ã(R)](X)]− EP [[Ã(R)](X)],

where for the last step, since w̃ ∈ Ciso
¯ (because it is feasible for ∆iso(R;B)), we have

EP [w̃(X) · (R(X)− [Ã(R)](X))] = ïw̃, R− Ã(R)ðP f 0,

by (16). But w̃ is feasible for ∆(Ã(R);B) (since it is feasible for ∆iso(R;B)), and therefore, we also

have

∆(Ã(R);B) = ∆iso(R;B) f EP [w̃(X) · [Ã(R)](X)]− EP [[Ã(R)](X)].

In other words, ∆(Ã(R);B) is attained at w̃, which completes the proof.
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B.3 Proof of Proposition 3.2

We formally define ∆iso(R;B, w0) as follows:

∆iso(R;B, w0) = sup
wg0

EP [w(X)R(X)]− EP [R(X)]

subject to w#P ∈ B, w ∈ Ciso
w0
. (23)

For comparison, we also consider the following optimization problem

∆̃iso(R;B, w0) = sup
h: h◦w0g0

EP [(h ◦ w0)(X)R(X)]− EP [R(X)]

subject to (h ◦ w0)# P ∈ B, h ∈ Ciso
1 , (24)

where Ciso
1 denotes the cone of isotonic functions defined on R equipped with the natural ordering. In

fact, since Ciso
w0

= {h◦w0 : h ∈ Ciso
1 } by definition, we therefore have ∆iso(R;B, w0) = ∆̃iso(R;B, w0).

In addition, recalling that R̃(w0(X)) = EP [R(X) | w0(X)], by the change of measure, the

optimization problem in (24) can be further rewritten as

∆iso(R;B, w0) = sup
h: hg0

E(w0)#P

[
h(U)R̃(U)

]
− E(w0)#P

[
R̃(U)

]

subject to (h ◦ w0)#P ∈ B, h ∈ Ciso
1 . (25)

We observe that (25) has the same form with the definition of ∆iso(R;B) in (6), where we consider

the probability measure (w0)#P instead of P and R̃ in place of R, and with the specific isotonic

cone Ciso
1 on R.

Applying Theorem 3.1 to (25) yields

∆iso(R;B, w0) = sup
h: hg0

E(w0)#P

[
h(U)[Ã1(R̃)](U)

]
− E(w0)#P

[
R̃(U)

]

subject to (h ◦ w0)#P ∈ B, (26)

where Ã1 is the projection onto Ciso
1 under the measure (w0)#P . By definition of R̃, we can rewrite

this as

∆iso(R;B, w0) = sup
h: hg0

EP

[
h(w0(X))[Ã1(R̃)](w0(X))

]
− EP

[
R̃(w0(X))

]

subject to (h ◦ w0)#P ∈ B,

which is equal to ∆(Ã1(R̃) ◦ w0;B, w0) as defined in (8) since we also have EP

[
R̃(w0(X))

]
=

EP

[
[Ã1(R̃)](w0(X))

]
by (18). We herein complete the proof.

B.4 A misspecified isotonic constraint

When the true distribution shift does not obey the isotonic constraint exactly, we can nonetheless

provide a bound on the worst-case excess risk, which is tighter than the (non-iso) DRL bound

whenever the isotonic constraint provides a reasonable approximation.

Denote w̃∗ as the underlying density ratio dPtarget/dP and ∆∗(R) = EP [w̃
∗(X)R(X)]−EP [R(X)]

as the true excess risk. Then, we have the following connections between ∆∗(R) and ∆iso(R;B).
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Proposition B.2. Assume Condition 2.1 holds. If w̃∗
#P ∈ B and w̃∗ ∈ L2(P ), then we have

∆∗(R) f ∆iso(R;B) + EP

[
[w̃∗ − Ã(w̃∗)](X) · [R− Ã(R)](X)

]
.

In particular, if either w̃∗ ∈ Ciso
¯ or R ∈ Ciso

¯ , then ∆∗(R) f ∆iso(R;B).

The result states that when the isotonic constraint is violated, the worst-case excess risk of iso-

DRL will be no worse than the true excess risk plus a gap which can be controlled by the correlation

between [w̃∗ − Ã(w̃∗)](X) and [R − Ã(R)](X). In particular, if either the risk or the true density

ratio is itself isotonic (or approximately isotonic), then the gap term must be zero (or approximately

zero)—and so the excess risk calculation ∆iso(R;B), which is tighter than the non-iso DRL bound

∆(R;B), will never underestimate the true risk ∆∗(R) (or will only be a mild underestimate).

B.4.1 Proof of Proposition B.2

Recall that w̃∗ is the underlying density ratio dPtarget/dP . Since Ã(w̃∗)
cvx
¯ w∗ by (19), and B is

closed under the convex ordering by Condition 2.1, we have Ã(w̃∗)#P ∈ B; of course, we also have

Ã(w̃∗) ∈ Ciso
¯ by definition. Therefore, Ã(w̃∗) is feasible for the optimization problem (6), and so we

have

∆iso(R;B) g EP

[
[Ã(w̃∗)](X)R(X)

]
− EP [R(X)].

We therefore have

∆∗(R) = EP [w̃
∗(X)R(X)]− EP [R(X)] f ∆iso(R;B) + EP

[(
w̃∗(X)− [Ã(w̃∗)](X)

)
R(X)

]
.

Moreover,

EP

[(
w̃∗(X)− [Ã(w̃∗)](X)

)
· [Ã(R)](X)

]
= ïÃ(R), w̃∗ − Ã(w̃∗)ðP f 0

by (16), and so we have

EP

[(
w̃∗(X)− [Ã(w̃∗)](X)

)
R(X)

]
f EP

[(
w̃∗(X)− [Ã(w̃∗)](X)

)
·
(
R(X)− [Ã(R)](X)

)]
.

This completes the proof.

B.5 Proof of Proposition B.1

For any w g 0, we define the sequence of truncated functions {wn}n∈N via

wn(x) = w(x) · 1{w(x) f n}+ Ln · 1{w(x) > n},
where Ln = E[w(X) | w(X) > n]. By construction for each n, EP [wn(X)] = 1 and, since

max{n, Ln} = Ln <∞, wn ∈ L2(P ) for each n g 1.

Step 1: Feasibility of wn. We first prove the feasibility of wn. To see this, as EP [wn(X)] = 1

by construction, we need to show that (wn)#P ∈ B. By Condition 2.1, since B is closed under the

convex ordering, it suffices to show that

EP [È(wn(X))] f EP [È(w(X))] for any convex function È.

This is true by Jensen’s inequality, since, by construction, EP [w(X) | wn(X)] = wn(X).
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Step 2: Convergence of EP [wn(X)R(X)]. To verify the convergence of EP [wn(X)R(X)], con-

sider
∣∣∣∣EP [wn(X)R(X)]− EP [w(X)R(X)]

∣∣∣∣

=

∣∣∣∣
∫

w(x)>n
(Ln − w(x))R(x)dP (x)

∣∣∣∣

f BR

∫

w(x)>n

∣∣Ln − w(x)
∣∣dP (x)

f BR

(∫

w(x)>n
w(x)dP (x) + LnP(w(X) > n)

)

= 2EP [w(X) · 1{w(X) > n}] .

Finally, since EP [w(X)] = 1 (i.e., we know that w ∈ L1(P )), this means that

lim
n→∞

EP [w(X) · 1{w(X) > n}] = 0.

Conclusion. For any ε > 0, there exists w g 0 such that EP [w(X)] = 1, w#P ∈ B, and

EP [w(X)R(X)]− EP [R(X)] g ∆(R;B)− ε/2

Then, based on Step 2, for sufficiently large n it holds that EP [wn(X)R(X)] g EP [w(X)R(X)]−ε/2.
From Step 1, we know that wn is feasible for ∆2(R;B), i.e.,

∆2(R;B) g EP [wn(X)R(X)]− EP [R(X)] g (EP [w(X)R(X)]− ε/2)− EP [R(X)] g ∆(R;B)− ε.

Since ε is arbitrary this verifies that ∆2(R;B) g ∆(R;B), and clearly we must have ∆2(R;B) f
∆(R;B) by construction, which completes the proof.

C Proofs of results in Section 4

C.1 Proof of Proposition 4.2

To prove the proposition, it suffices to show that ∥w∗iso
f,ρ ∥∞ <∞. Recall the dual formulation. There

exists a pair (¼∗, ¿∗) such that

w∗iso
f,ρ (x) = P[0,+∞)

{
(f ′)−1

(
[Ã(R)](x)− ¿∗

¼∗

)}
.

Note that ¿∗ is the parameter for standardization, thus to guarantee EP [w
∗iso
f,ρ (X)] = 1, we have

(f ′)−1

(
BR − ¿∗

¼∗

)
g sup

x∈X
w∗iso
f,ρ (x) g 1.

Moreover, it holds that (f ′)−1(−¿∗/¼∗) f minx∈X w∗iso
f,ρ (x) f 1. Then, combining the inequalities

yields

−¼∗f ′(1) f ¿∗ f BR − ¼∗f ′(1). (27)
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If we further have ¼∗ g ¼ > 0, it holds that

∥w∗iso
f,ρ ∥∞ f (f ′)−1

(
BR + ¼∗f ′(1)

¼∗

)
f (f ′)−1

(
f ′(1) +

BR

¼

)
<∞.

Then, it remains to prove that ¼∗ ̸= 0. To see this, consider the KKT condition:

−[Ã(R)](x) + ¼∗f ′(w∗iso
f,ρ (x)) + ¿∗ = 0,

¼∗
(
EP [f(w

∗iso
f,ρ (X))]− Ä

)
= 0,

¿∗
(
EP [w

∗iso
f,ρ (X)]− 1

)
= 0.

If ¼∗ = 0, we have [Ã(R)](X) = ¿∗ P -almost surely, which implies that w∗iso
f,ρ (X) = 1 P -almost surely,

in which case w∗iso
f,ρ is also bounded. Combining pieces above, we have shown that ∥w∗iso

f,ρ ∥∞ <∞.

C.2 Proof of Theorem 4.4

We first fix any w ∈ Ciso
¯ with w#P ∈ B. By Condition 4.1, it holds that w(X) f Ω P -almost surely,

and therefore without loss of generality we can assume w ∈ Ciso
¯,Ω. Then, by definition of εB, for any

¶ > 0, we can find some s, t g 0 with s + t f εB + ¶, such that we have w′
#P̂n ∈ B by defining

w′ = (1− s) · w + t · 1.

Moreover, by construction, we must have w′ ∈ Ciso
¯ . Therefore, by optimality, we have

∆̂iso(B) g
1

n

n∑

i=1

w′(Xi)r(Xi, Yi)−
1

n

n∑

i=1

r(Xi, Yi)

= E
P̂n

[(w′(X)− 1)r(X,Y )]

g EP [(w
′(X)− 1)R(X)]− εR,

where the last inequality is by the definition of εR. Plugging in the definition of w′, we obtain that

∆̂iso(B) g EP [((1− s)w(X) + t)− 1)R(X)]− εR

= (1− s)EP [(w(X)− 1)R(X)] + (t− s)EP [R(X)]− εR

= EP [(w(X)− 1)R(X)]− (s+ t)EP [w(X)R(X)] + tEP [(w(X) + 1)R(X)]− εR

g EP [(w(X)− 1)R(X)]− 2BRΩ · εB − εR,

where the last inequality is by the fact that ∥w∥∞ f Ω and R is BR-bounded, and Ω g 1. Since

this holds for every w ∈ Ciso
¯ with w#P ∈ B, by definition of ∆iso(R;B), we therefore have

∆̂iso(B) g ∆iso(R;B)− εR − 2BRΩ · εB.

By identical arguments, with the roles of P and P̂n reversed, we can also show that

∆iso(R;B) g ∆̂iso(B)− εR − 2BRΩ · εB,

which completes the proof.
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C.3 Proof of Lemma 4.5

Throughout this proof we will use the notation of supervised learning, since unsupervised learning

can be viewed as a special case.

In the first step, we will bound E[εR]. By symmetrization (Wellner et al. (2013) Theorem 2.3.1),

we have

E[εR] = E


 sup
w∈Ciso

¯,Ω

∣∣∣EP̂n

[(w(X)− 1)r(X,Y )]− EP [(w(X)− 1)R(X)]
∣∣∣




f 2E


 sup
w∈Ciso

¯,Ω

∣∣∣∣∣
1

n

n∑

i=1

Ãi(w(Xi)− 1)r(Xi, Yi)

∣∣∣∣∣


 ,

where Ãi’s are independent Unif{±1} random variables. Since risk is BR-bounded, by the Ledoux-

Talagrand contraction lemma (Ledoux and Talagrand (2013) Theorem 4.12) applied with functions

ϕi(t) = (t− 1) · r(Xi, Yi), we further have

E


 sup
w∈Ciso

¯,Ω

∣∣∣∣∣
1

n

n∑

i=1

Ãi(w(Xi)− 1)r(Xi, Yi)

∣∣∣∣∣


 f 2BRE


 sup
w∈Ciso

¯,Ω

∣∣∣∣∣
1

n

n∑

i=1

Ãiw(Xi)

∣∣∣∣∣


 = 2BRRn(C

iso
¯,Ω).

Now we bound εR with high probability. Since risk is BR-bounded, and any function w ∈ Ciso
¯,Ω

is Ω-bounded, we have (w(X) − 1)r(X,Y ) ∈ [−BR, (Ω − 1)BR], and so resampling one data point

can perturb εR by at most ΩBR/n. Therefore, by McDiarmid’s inequality (McDiarmid et al., 1989),

with probability at least 1− n−1, it holds that

εR f E[εR] +BRΩ

√
log n

2n
.

Combining all these calculations yields the desired bound.

C.4 Proof of Lemma 4.6

Recall that

εB = sup
w∈Ciso

¯,Ω

max
{
εB

(
w;P, P̂n

)
, εB

(
w; P̂n, P

)}
,

where

εB (w;P0, P1) = inf
{
s g 0 : ∃ t g 0,

(
(1− s) · w + t · 1

)
#
P1 ∈ B

}
.

First, following the exact same steps as in the proof of Lemma 4.5, with the notation ¶w =

EP [w(X)]− E
P̂n

[w(X)], we have

sup
w∈Ciso

¯,Ω

|¶w| f 4Rn(C
iso
¯,Ω) + Ω

√
log n

2n
=: ε′ (28)

with probability at least 1− n−1.

Assume the event (28) holds. Fix any w ∈ Ciso
¯,Ω with w#P ∈ Ba,b, and define

w′ = (1− s) · w + t · 1,
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where s, t g 0 are chosen such that E
P̂n

[w′(X)] = 1, indicating that t = s+ (1− s)¶w.

If ε′ = 4Rn(C
iso
¯,Ω) + Ω

√
logn
2n > 1

2 min {1− a, b− 1}, then since εB f 1 holds by definition, the

result of the lemma must hold trivially. Therefore we can restrict our attention to the case that

ε′ f
1

2
min {1− a, b− 1} .

We can further choose

s = 2max

{
ε′

b− 1
,

ε′

1− a

}
g max

{
ε′

b− 1− ε′
,

ε′

1− a− ε′

}
,

with which, we can verify that

w′(X) f (1− s)b+ t = (1− s)(b+ ¶w) + s f (b+ ε′) + s(1− b+ ε′) f b,

and similarly, w′(X) g a. Therefore, we have w′
#P̂n ∈ Ba,b.

The same construction holds with the roles of P and P̂n reversed. Therefore, we can take εB = s,

which completes the proof.

C.5 Proof of Lemma 4.7

First, following the same steps (i.e., symmetrization and contraction) as in the proof of Lemma 4.5,

we have

sup
w∈Ciso

¯,Ω

∣∣∣EP̂n

[w(X)]− EP [w(X)]
∣∣∣ f 4Rn(C

iso
¯,Ω) + Ω

√
log n

2n
=: ε′ (29)

with probability at least 1− n−1.

Moreover, denote t∗f = argmin
t∈[0,Ω]

f(t). We have the decomposition

f(t) = f(t) · 1{f(t) g t∗f}+ f(t) · 1{f(t) < t∗f} =: f1 + f2,

where both f1 and −f2 are nondecreasing. Then, for any g = f ◦ w with w ∈ Ciso
¯,Ω, we have the

decomposition g = f1 ◦w+ f2 ◦w, where f1 ◦w ∈ Ciso
¯ , −f2 ◦w ∈ Ciso

¯ , and both functions f1, f2 are

LΩ-Lipschitz. Then, by the Ledoux-Talagrand contraction lemma (Ledoux and Talagrand (2013)

Theorem 4.12) applied with functions ϕi(t) = f(t), we have

Rn

({
g = f ◦ w : w ∈ Ciso

¯,Ω

})
f 2Rn

({
g = f ◦ w : w ∈ Ciso

¯,Ω, f is nondecreasing and LΩ-Lipschitz
})

f 8LΩRn(C
iso
¯,Ω).

Hence, similar to the proof of Lemma 4.5, we have

sup
w∈Ciso

¯,Ω

∣∣∣EP̂n

[f(w(X))]− EP [f(w(X))]
∣∣∣ f 8LΩRn(C

iso
¯,Ω) + LΩΩ

√
log n

2n
=: ε′′ (30)

with probability at least 1− n−1.
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Assume events (29) and (30) both hold. Fix any w ∈ Ciso
¯,Ω with w#P ∈ Bf,ρ, and define

w′ = (1− s) · w + t · 1,

where s, t ∈ (0, 1) are chosen such that E
P̂n

[w′(X)] = 1, which implies that t = s+ (1− s)¶w.

Since f is LΩ-Lipschitz on [0,Ω],

f(w′(x)) f f ((1− s) · w(x) + s) + LΩ · |t− s| f f ((1− s) · w(x) + s) + LΩ(1− s)|¶w|.

And, since f is convex with f(1) = 0,

f ((1− s) · w(x) + s) f (1− s)f(w(x)) + sf(1) = (1− s)f(w(x)).

Combining everything, for all x, it holds that

f(w′(x)) f (1− s)f(w(x)) + LΩ(1− s)|¶w| f (1− s)
(
f(w(x)) + LΩε

′
)
.

Hence, we have

E
P̂n

[f(w′(X))] f (1− s)E
P̂n

[f(w(X))] + (1− s)LΩε
′.

And by assumption, E
P̂n

[f(w(X))] f EP [f(w(X))] + ε′′ f Ä+ ε′′, so,

E
P̂n

[f(w′(X))] f (1− s) · (Ä+ ε′′ + LΩε
′) f Ä,

where the last step holds by choosing

s =
1

Ä
(ε′′ + LΩε

′) g
ε′′ + LΩε

′

Ä+ ε′′ + LΩε′
.

This verifies that w′
#P̂n ∈ Bf,ρ.

The same construction holds with the roles of P and P̂n reversed. Therefore, we can take εB = s,

which completes the proof.

C.6 The role of the isotonic constraint

The consistency bounds developed above show that, under appropriate conditions, the error in

estimating ∆iso(R;B) can be controlled whenever the appropriate Rademacher complexity terms

are small. This suggests that the isotonic constraint plays an important role: essentially, the

isotonic constraint induces a form of regularization, ensuring that we work with a low-complexity

class of functions.

To verify this, we now present an example with the constraint set B = Ba,b, without an isotonic

constraint, where the estimation error of the (non-iso) DRL risk does not converge to zero.

To make the question more concrete, we will work with the bound constraint Ba,b with 0 f a f

1 f b, and consider the optimization problem

∆̂(r;Ba,b) = max
wg0

1

n

∑

ifn

w(Xi)ri −
1

n

∑

ifn

ri subject to w#P̂n ∈ Ba,b,

which estimates the excess risk without the isotonic constraint. In other words, using ∆̂(r;Ba,b) as

an empirical estimate of ∆(R;Ba,b), is analogous to using ∆̂iso(r;Ba,b) as an empirical estimate of

∆iso(R;Ba,b) in the presence of an additional isotonic constraint.

The following result shows that, without an isotonic constraint, this empirical estimate is not a

consistent estimator of the true excess risk.
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Proposition C.1. Assume R(X) = 1/2 holds P -almost surely. Then, ∆(R;Ba,b) = 0, but with

probability at least 1− 2e−n/24, it holds that ∆̂(r;Ba,b) g min{1− a, b− 1}/16.

In other words, ∆̂(r;Ba,b) is not a consistent estimator of the true excess risk ∆(R;Ba,b), since the

error in the estimate is bounded away from zero (as long as a < 1 < b). This means that the

constraint set Ba,b, on its own, is not sufficiently constrained to enable consistent estimation—while

in contrast, as we have seen in our theoretical guarantees for estimation for iso-DRL, adding an

isotonic constraint enables the excess risk to be estimated consistently with an empirical sample.

C.6.1 Proof of Proposition C.1

By construction, we have ri ∼ Bern(R(Xi)) = Bern(1/2) independently for i = 1, . . . , n. According

to Section 2, the worst-case weights take the form wi = w(Xi) = c1 · 1{ri = 0} + c2 · 1{ri = 1},

where a f c1 f 1 f c2 f b. Moreover, by the KKT condition, at least one of c1 = a and c2 = b

holds, which implies that c2 − c1 g min{1− a, b− 1} =: ¶. Then, the estimated excess risk can be

expressed as

∆̂(r;Ba,b) =
c2
n

∑

ifn

ri −
1

n

∑

ifn

ri =
c2 − 1

n

∑

ifn

ri.

Since n−1
∑

ifnwi = 1, we have
1

n

∑

ifn

(1− ri) =
c2 − 1

c2 − c1
,

which implies

c2 − 1 =
c2 − c1
n

∑

ifn

(1− ri) g
¶

n

∑

ifn

(1− ri) .

In the meantime, by Chernoff bounds, with probability at least 1− 2e−n/24, it holds that
∣∣∣∣
1

n

∑

ifn

ri −
1

2

∣∣∣∣ f
1

4
.

Then, for the excess risk, with probability at least 1− 2e−n/24, it holds that

∆̂(r;Ba,b) =
c2 − 1

n

∑

ifn

ri g ¶


 1

n

∑

ifn

(1− ri)


 ·


 1

n

∑

ifn

ri


 g

¶

16
.

D Additional simulation results

D.1 Simulations for iso-DRL under componentwise order

In Section 5, we mainly focused on the partial order with respect to w0(x). In this section, to

demonstrate the effect of various choices of the partial (pre)order, we further consider an alternative

choice of the partial (pre)order: the componentwise order where

x ¯ x′ if and only if xj f x′j , for all j ∈ [m],
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where we set m = 5 < d = 20. Let iso-DRL-comp denote the CP interval with calibrated target

level ³′
iso = max{0, ³− ∆̃iso}, where

∆̃iso =max
1

n

∑

i∈D3

wir̃
iso
i −

1

n

∑

i∈D3

ri

subject to
1

n

∑

i∈D3

wi = 1,
1

n

∑

i∈D3

wi logwi f Ä, 0 f wi f Ω, (31)

and (r̃i)i∈D3
is the isotonic projection of (ri)i∈D3

with respect to the componentwise order.
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Figure 6: Results with varying Ä in the well-specified setting. The solid vertical line denotes an

estimate Ä̂ of the KL divergence, DKL(Ptarget∥P ) (See Appendix D.2 for details). The solid horizontal

line (in the left-hand plot) marks the nominal coverage level, 1− ³ = 90%.
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Figure 7: Results with varying Ä in the misspecified setting. The solid vertical line denotes an

estimate Ä̂ of the KL divergence, DKL(Ptarget∥P ) (See Appendix D.2 for details). The solid horizontal

line (in the left-hand plot) marks the nominal coverage level, 1− ³ = 90%.

We follow exactly the same settings with Section 5.1 with npre = 50 and vary Ä in [0.002, 6].

From Figure 6 and 7, each of the coverage rate and average interval width of iso-DRL-comp lies

between that of DRL and iso-DRL-w0, which indicates that additional constraints will relieve the

conservativeness of DRL, but only a proper choice of the partial (pre)order will lead to desired

performance close to the oracle weighted CP.
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D.2 Details for the wine quality data set: a proxy of the oracle KL-divergence

In this section, we examine the choice of Ä in the wine quality data experiment from Section 5.2.

In a real data setting, the true KL divergence, DKL (Ptarget∥P ), is of course unknown, so we need to

use a data-driven choice of Ä in order to implement a DRL procedure (with or without an isotonic

constraint).

As is shown in Section 5.2, we denote ŵkde as the density ratio obtained by kernel density

estimation (Gaussian kernel with bandwidth 0.125). Accordingly, let dQ̂kde = ŵkde · dP be an

estimate of Ptarget. With a subsample {Xi}ifK drawn the group of white wine (data distribution

P ), a reasonable value for Ä̂ (i.e., an estimate of the true divergence Ä between the distributions P

and Ptarget) can be calculated by

Ä̂ =
1

K

∑

ifK

ŵkde(Xi) log (ŵkde(Xi))

≈ EP

{
dQ̂kde

dP
log

(
dQ̂kde

dP

)}
= DKL

(
Q̂kde∥P

)
.
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Figure 8: Histogram of Ä̂. (See Appendix D.2 for details.)

To show the range for values of Ä̂, we repeatedly fit KDE on the 80% samples from each group

(white and red wine groups respectively). Figure 8 shows the histogram of Ä̂ with 1000 repetitions,

of which the median is approximately 0.8950—this is the value of Ä used in our preview of the wine

quality data experiment, shown in Figure 1.
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