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Abstract

Precision matrix estimation is essential in various fields, yet it is challenging when
samples for the target study are limited. Transfer learning can enhance estimation accu-
racy by leveraging data from related source studies. We propose Trans-Glasso, a two-step
transfer learning method for precision matrix estimation. First, we obtain initial esti-
mators using a multi-task learning objective that captures shared and unique features
across studies. Then, we refine these estimators through differential network estimation
to adjust for structural differences between the target and source precision matrices.
Under the assumption that most entries of the target precision matrix are shared with
source matrices, we derive non-asymptotic error bounds and show that Trans-Glasso
achieves minimax optimality under certain conditions. Extensive simulations demon-
strate Trans-Glasso ’s superior performance compared to baseline methods, particularly
in small-sample settings. We further validate Trans-Glasso in applications to gene net-
works across brain tissues and protein networks for various cancer subtypes, showcasing
its effectiveness in biological contexts. Additionally, we derive the minimax optimal rate
for differential network estimation, representing the first such guarantee in this area.

1 Introduction

Estimating the precision matrix, i.e., the inverse covariance matrix, is a fundamental task in sta-
tistical analysis and has broad applications, including in portfolio optimization, speech recognition,
and genomics | , , , , , , ]
The precision matrix is closely tied to Gaussian graphical models: estimating the support of the pre-
cision matrix corresponds to uncovering the network structure of conditional dependencies between
multivariate normal variables | , |. However, estimating a precision matrix accurately
is often challenging when the sample size is small compared to the dimension—a typical scenario in
high-dimensional settings.

In many applications, sample sizes are constrained for the target study of interest, yet data
from related studies may be available. Transfer learning | , | provides a promis-
ing approach in these scenarios by leveraging information from related source studies to improve
estimation accuracy in the target study. For example, in gene expression studies across different
tissue types, sample sizes may be small for specific tissues, but data from related tissues can help
improve estimates | , |. Similarly, protein network studies for different cancer subtypes
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can benefit from transfer learning, as leveraging data from related subtypes can enhance estimation
for a particular subtype with limited data | ].

A critical aspect of transfer learning is establishing smularlty between the target and source
tasks. Here, we assume that most entries of the target precision matrix are shared with those of the
source matrices, with only a few differences. Based on this assumption, we propose Trans-Glasso,
a novel two-step transfer learning method for precision matrix estimation. First, we obtain initial
estimators through a multi-task learning objective that captures shared and unique dependencies
across datasets. Second, we refine these estimators using differential network estimation to adjust
for differences between the target and source matrices | , , , ]

We provide a theoretical analysis of Trans-Glasso, deriving non-asymptotic error bounds and es-
tablishing that the method achieves minimax optimality in a wide range of parameter regimes.
Through extensive simulations, we demonstrate that Trans-Glasso outperforms several baseline
methods, particularly in scenarios where the target sample size is small. We also apply Trans-
Glasso to gene networks across brain tissues and protein networks for various cancer subtypes,
showing its practical effectiveness in biological applications. Additionally, as a byproduct of our
analysis, we derive the minimax optimal rate for differential network estimation, to our knowledge,
the first of its kind.

1.1 Related Work

Precision matrix estimation. Estimation of sparse precision matrices in a single study is well
studied. Common methods include penalized M-estimator | , , ,
, , , , , , | and constrained L; mini-
mization | , , , ]. There is also extensive literature on
multi-task precision matrix estlmatlon Wthh estimates multiple related but nonidentical precision
matrices from multiple studies | , , , , , , ,
Y ) ) ) ) ) ) ) ]'
See [ | for a survey. While related to transfer learning, multi-task learning aims to
estimate parameters of all studies, whereas transfer learning only focuses on the target study.

Transfer learning. Transfer learning has a long history | , ] and has been applied

in various contexts [ , , , ]. Recently, interest

in transfer learning for stat1st1cal problems has grown. [ I, [ | studied high-

dimensional linear regression. The fused regularizer in [ | is similar to our multi-task

objective; however, [ | focuses on linear regression, while we focus on precision matrix

estimation, making the techniques different. [ ], [2023] studied high-
dimensional generalized linear regression. [ I, [ I, [ I,

[ ] addressed covariate shift. [ | studied nonparametric classification and

[ | investigated multi-armed bandit problems. [ | proposed a unified transfer

learning model for high-dimensional linear regression problems. [ , |

studied the transfer learning problem from a learning theory perspective. [ ],

[ ] studied transfer learning for functional data analysis.
The most relevant work to this paper is [ ], which also studied transfer learning
for precision matrix estimation. The key difference is the similarity assumption. [ |

assumes that the divergence matrices between the target and source precision matrices are sparse. We
assume that most entries of the target precision matrix are shared across source precision matrices,
with few different entries. Although the assumption in [ | is motivated by the KL
divergence between Gaussian distributions, ours is a structural assumption, making it applicable
beyond Gaussian data and easier to interpret. Consequently, our method differs significantly from
that of [ |



Differential Network Estimation. Our approach leverages differential network estimation tech-
niques, which aim to directly estimate the difference between two precision matrices without the
need to estimate the individual ones | , , , , , ,

] [ | explored this concept in the context of Ising models. Addition-
ally, [ , | extended differential network estimation methods to functional data,
while [ | broadened its application to multi-attribute data.

Y

1.2 Organization and Notation

The rest of the paper is organized as following. In Section 2, we introduce the problem setup. In
Section 3, we introduce the methodology of the paper. We then describe how to implement our
method in practice in Section 4. The theoretical results are developed in Section 5. Besides, we
implement extensive simulation experiments in Section 6. Furthermore, in Section 7, we apply our
method on two real-world datasets. Finally, we conclude our paper with Section 8. The technical
proofs and details about optimization algorithms are provided in the appendix.

Notation. For a vector v € R? we use [v], to denote its L,-norm. More specifically, we
have |v|, = (Z?:l |vi|p)% for 1 < p < o, where |v|, = max;|v;|. For a matrix A e R4,
we use | - | to denote its elementwise norm and || - | to denote its operator norm. For exam-
ple, [Ali = 25, 30 Ayl [Alo = 2L, 00 1{Ai; # 0}, Al = maxi<ij<alAijl; AL =
maxi<j<d Z‘;:l |4;i], Al = maxi<i<a Z;Ll |A;;|, and |Al2 denote the largest singular value of
A. We use |Allr = (Zle Z?zl |A;j>)*/2 to denote the Frobenius norm of A. In addition, we use
(A, B) = tr(ATB) = 3, . AijBij for A, B € R%*? to define the inner product between two matrices.
We use vec(A) to denote the d2-vector obtained by stacking the columns of A. When A is sym-
metric, we let ymin(A) and ymax(A) denote its smallest and largest eigenvalue. For A € R"1*"2 and
B e R™*™2 we let A® B = [AijBimliji,m € R"™1*"2™2 denote the Kronecker product of two
matrices. We define S?™¢ as the set of symmetric matrices with dimension d. The universal constants
may vary from one line to another without further clarification. Finally, following

[2011], we say a random vector X € R? with E[X] = 0 is sub-Gaussian if there exists a constant
o > 0 such that

E [exp ()\Xj/\/Ejj)] < exp (02/\2/2) forall \e Rand 1 < j < d,

where ¥ = Cov(X).

In addition, we use the following standard notation in the paper. For two positive sequences
{f(n)}n=1 and {g(n)}n>1, f(n) = O(g(n)) or f(n) < g(n) means that there exists a universal
constant ¢ > 0 such that f(n) < cg(n) holds for sufficiently large n; f(n) = Q(g(n)) or f(n) 2 g(n)
means that there exists a universal constant ¢ > 0 such that f(n) = cg(n) holds for sufficiently large
n; f(n) = ©(g(n)) or f(n) = g(n) means that there exist universal constants ¢1,co > 0 such that
c19(n) < f(n) < cag(n) holds for sufficiently large n; f(n) = o(g(n)) indicates that f(n)/g(n) — 0
as n — oo.

2 Problem Setup

Imagine that we observe ng i.i.d. samples {xl(-o) 0, == Dy from a sub-Gaussian target distribution

Po. Each sample XEO) e R? is assumed to have zero mean and covariance matrix X(°). Our goal is
to estimate the target precision matrix Q0 = {E(O)}il. Additionally, we have access to K sub-
Gaussian source distributions {Px}X |, each with ny, i.i.d. samples {xgk) =Dy For 1 <k <K,

each XE ) e R? also has zero mean, covariance matrix X(*), and corresponding precision matrix
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Figure 1: Illustration of Assumption 1. The target precision matrix, Q)| is shown alongside two
source precision matrices, Q) and Q). Black crosses represent the shared entries across the
matrices, while colored shapes indicate individual, unique entries.

Q) — {E(k)}_l. The goal is to leverage samples from both the target and source distributions to
accurately estimate Q(0).

To facilitate transfer learning, we assume structural similarity between the target and source
precision matrices, whereby most entries in Q) are shared with those in Q(®), with relatively few
differences. This assumption enables us to efficiently utilize source samples to enhance estimation
of the target precision matrix.

Formally, we characterize the relationship between the target and source precision matrices using
the following assumption.

Assumption 1. For each 0 < k < K, there exists a shared component Q* and a unique component
T* with disjoint supports such that

Q) = 4 TR)* (1)

where |Q*|g < s, T®)*|g < h, and [T™)*|; < Mp. The sparsity parameters s and h satisfy s > h,
indicating that the majority of the structure is shared, while unique components are minimal.

See Figure 1 for a visual illustration of Assumption 1.

Assumption 1 is inspired from the assumptions widely used in the differential network estimation
literature | |. To see this connection, for each
1 <k < K, define \If(k) = Q(k 0O to be the differential network between the target Q(O) and the
source Q(k). Two immediate implications of Assumption 1 are

‘\Iﬂ’“)) <2h,  and \w\ <2Mp, foralll<k<K.
0 1

This matches exactly Condition 1 in the paper [ .

In addition, Assumption 1 is naturally interpretable within Gaussian graphical models. Suppose
we have an undirected graphical model G = (V, E) where nodes represent variables and edges
represent conditional dependencies. In this model, an edge exists between nodes i and j if and only
it O %0
matrices {Q(k)} share a large subset of edges, with only a small number of unique edges in each
source, corresponding to sparse deviations (),

Last but not least, we contrast Assumption 1 with the similarity assumptions based on divergence
measures, used in [ ] [ | assumes that the divergence matrix

, ]. Under Assumption 1, the target precision matrix QO and the source

TH® = QOxnFE) _ 1, (2)



is sparse. However, our structural approach offers broader applicability beyond Gaussian data, as it
does not rely on assumptions specific to Gaussian graphical models and provides a straightforward
interpretation of shared structure. See a more detailed comparison in Appendix A.

Next, we discuss estimating Q(°) using samples from both target and source distributions under
Assumption 1.

3 Trans-Glasso Algorithm

In this section, we introduce Trans-Glasso, our transfer learning method for precision matrix esti-
mation, which consists of two main steps. First, we initialize estimators of the precision matrices by
solving a multi-task learning problem. Second, we refine these estimators using differential network
estimation to adjust for structural differences between the target and source matrices.

3.1 Initialization via Multi-Task Learning

To leverage shared structure across the target and source matrices, we begin by jointly estimating
precision matrices for both the target and source distributions. Based on Assumption 1, we employ
a multi-task variant of the graphical lasso estimator | , |, which we refer to as
Trans-MT-Glasso (Transfer Multi—Task Graphical lasso).

Let S = L Z"’“ (k) ) denote the sample covariance matrix for 0 < k < K. We define
O = (Q, {I‘(’c } k:O) for the shared component and the sparse unique components. The Trans-MT-

Glasso objective is then given by

6 = (2 (FM}y) € ars_ min {£(6) + A (0)), (3)
where
L(0) = i g {<Q +1®), f](k)> — log det (Q + F(k))} ) (4)

K
®(0) =0, + 3 var ‘r<’“>‘17 (5)
k=0

K
C(Myp) =10 =(Q,iT® cQ4+T® > 0and [Q+T®| < M, forall0 <k <K ¢.
P k=0 2 P
(6)

Here, aj = ng/N with N = ZkK oMk controls the contribution of each source, Ay > 0 is a regu-
larization parameter, and My, > 0 is a predefined constant. The constraint HQ + Tk H2 < Mgy is
primarily included to facilitate theoretical analysis. While we theoretically need to set My, to be
a sufficiently large constant, as detailed in a later section, in practice, we simply set My, = oo to
effectively remove this constraint.

The first term of (3) measures parameter fitness with observed data, while the second term
@(@)promotes sparsity in both the shared and individual components. The sparsity penalization
level for T'(*) is proportional to +/ny /N, a factor that is crucial to balance contributions from the
target and sources. See Section 5.1 for details. L

In the end, we construct the initial estimators of Q%) as QF) = Q+T® for 0 <k < K



3.2 Refinement via Differential Network Estimation

To further enhance accuracy, we refine these initial estimators by estimating the differential networks
Tk — Q) — QO which capture the structural differences between each source and the target.
This refinement step corrects for potential biases in the initial estimates.
Estimating ¥(®) has been extensively studied in the differential network estimation literature |
, , , |, with a variety of good estimators. For instance, [ ]
proposed estimation by solving

Tk e argm\gnLD (\I/; i(o), i(k)) + Ag“) vl , (7)
where

Lp (980, 20) — 2 (SO0, 980 4 (SWw, 92O ) - (9,80 - 2@,

1
4
and )\gC )is a tuning parameter.
For our purpose, any reasonable differential network estimator can correct for the bias. Thus,
we treat differential network estimation as a black-box algorithm, and we obtain the estimates Wk,
With the initial estimator Q) and refined differential network estimators ¥(*)| we construct the
final transfer learning estimator for Q(®) as

K
RO 3 a (Q(k) _ @(k)) ’ (8)
k=0

where () = 0 by definition. The final estimator Trans-Glasso (Transfer learning Graphical lasso)
integrates both shared information and source-specific refinements, yielding a transfer learning ap-
proach that leverages structural similarities across datasets for improved precision matrix estimation.

Compared to [ |, our method is more sample efficient as it does not require sample
splitting between the steps.

4 Implementation in Practice

In this section, we provide practical guidelines for implementing Trans-Glasso, including optimization
techniques, hyperparameter selection, and a method for identifying the informative set when not all
sources are useful.

4.1 Optimization Algorithms

To implement Trans-Glasso, we first solve the Trans-MT-Glasso objective from Equation (3) to
obtain initial estimates for Q* and I'®)*. This is a constrained optimization problem that can be
efficiently solved using the Alternating Direction Method of Multipliers (ADMM) | , |
In this section, we slightly abuse notation by using superscripts to denote the iteration round and
subscripts to represent the population.

Define
Qo &
0 To
X = ! e RE+Ddxd  y _ | T'1 | ¢ pE+2)dxd
Qx Ty



and

Iy Iz 0 --- 0
B I 0 Ig -+ 0 c RUE+1dx (K+2)d.
Iy 0 0 --- 14

With this notation, the objective in Equation (3) can be reformulated as

minimize f(X) + g(Y), subject to X = BY,

N
N
N
=

K
FX) = Y e, fuls) = ar {~logdet () + (SP, )} +1(2 > 0), 0

K
g(Y) = A |Ql; + Au . v [Tkl
k=0

where I(©2 > 0) =0if Q> 0 and I(©2 > 0) = o0 otherwise.
The augmented Lagrangian for this problem is:

Ly(X.Y,Z) = f(X) +g(Y) + p(Z, X = BY) + £|X = BY]f.,
where

7 - Z c RE+1)dxd
2K
is a dual variable and p isa penalty parameter.

After initializing Y(®) and Z(©) such that Q(©), F,(CO), and Zlio) are symmetric, ADMM iteratively
updates:

X0 — argmin L, (X, Y0, 70-0), 9)
y® e arg m};an (X(t), Y, Z(t_l)) , (10)
720 = Z(t=D 4 (Xm _ By(t)> , (11)

Note that (11) is equivalent to Z,it) = Z,it_l) +p (Q](f) - — FE?) for 0 < k < K. See Appendix H
for detailed steps and stopping criteria.

To refine the initial estimators, we solve the D-Trace loss objective (7) for differential network
estimation. Here, we use a different proximal gradient descent algorithm | , ]

following [ , |. For simplicity, let Lp(¥) := Lp (\I'; S0, fl(k)) for the chosen k.

In iteration ¢, we update ¥~V by solving
(t) )1 (t—1) AN (k)
v — arg min inpf (\If —yVLp (\If ))HFH;.Aq, ), b (12)

where 7 is a user-specified step size. Note that VLp(-) is Lipschitz continuous with constant Hfl(o) ®
SE |y = 2Oy E®)|y.  Thus, for 0 < n < [|BO)FHE®]|5!, the proximal gradient method
converges | , |. The update in (12) has a closed-form solution:

o) =[]l |- A%L GV AGT]L <<, (13)




where A1) = w1 _ pULL(UED) and =, = max{0,z}, z € R.
Details on the optimization algorithms, including stopping criteria and descriptions, are in Sec-
tion H.

4.2 Hyperparameter Selection

This section covers the selection of hyperparameters, specifically Ay in Trans-MT-Glasso (3) and
)\gc) in D-Trace loss (7).

We choose )\E; ) for k e [K] to minimize the Bayesian information criterion (BIC) of D-Trace loss:

1 fmim o~ A A ~ ~ ~
BICH = (ng + ny) ‘2 (2<°>\If<k>z<k> + 2““)\1/(’“)2(0)) — SO L S®| 4 log (ng + nk)~‘\IJ(k) (1)
F
following [ |. After selecting )\Ef ) and obtaining U for all k e [K], Q© depends on
AM. Recall that N = EkK:o ng. We choose Ay to minimize the BIC of Trans-Glasso, defined as
BICans = N - [@(0) , §<0>> ~ log det (ﬁ“”)] +log N - ‘ﬁ“))‘ . (15)
0

4.3 Identifying the Informative Set

In practice, it is not necessarily true that all source distributions are structurally similar to the
target. We propose a data-driven method to estimate the informative set A C [K].

We obtain differential network estimations U*) for all k e [K], with the hyperparameter )\gc )
chosen by minimizing the BIC criterion in (14). We then rank sources according to the sparsity level
of U®) . Let Ry, be the rank of the source k. For any 1 < ki, ky < K, [0®)|g < [U*2)|; implies
Ry, < Ry,. After ranking sources, we input samples into Trans-Glasso and determine the number
of sources based on the cross-validation (CV) error. For Kchesen = 0,1, ..., K, we select sources k

with Rr < Kchosen. When Kohosen = 0, we obtain QO from graphical lasso [ |
using the target data alone. We then compute the CV error of Kcposen by the following procedure
(i) We randomly split the target samples into M-fold.

(ii) For m = 1,..., M, we select the m-th fold as the validation set, Dy,1, and the rest as the
training set. We input the training set and chosen source samples into Trans-Glasso to obtain
Q) We compute the CV error for the m-th fold as

1 1 (0), (OTH(0) H(0) 1
Vin = — E tr(x; 'x; Q%) —logdet (Q —log, 1
C 54 {| ol P r (xl X; ) ogde ( ) + 5 log (16)

and define CV(Kehosen) = 77 2%21 CVv

We set the estimated informative set as A = {k € [K] : R, <
& CV(k). Source samples from A are used to estimate Q). If A = &J, we obtain

choscn chosen

}, where K}
arg ming—o,1

QO via graphical lasso on target samples. We note that sample splitting is not necessary between
estimating A and Q¥ This procedure is called Trans-Glasso-CV. We demonstrate its empirical

performance in Section 6.

5 Theoretical Analysis

In this section, we establish theoretical guarantees for the Trans-Glasso algorithm. We begin by
analyzing the initial estimation step using Trans-MT-Glasso, followed by an error bound for the



complete Trans-Glasso estimator. Finally, we derive a minimax lower bound, demonstrating that
Trans-Glasso is minimax optimal in a wide range parameter regimes.
To simplify the theoretical statements, we assume the following condition throughout this section.

Assumption 2. Assume that

My == max ‘E(k)‘ =0(1) and Mg == max HQ(}“)H = 0O(1). (17)
0<k<K © 0<k<K 2

5.1 Analysis of Trans-MT-Glasso

We first provide error bounds for the initial multi-task estimation step, Trans-MT-Glasso. This
method estimates both the shared precision matrix component Q* and the deviation matrices I'()*
based on the structural similarity outlined in Assumption 1.

The following theorem provides a high probability upper bound on the Frobenius norm error for
the Trans-MT-Glasso estimator. Recall that IV = Zf:o N,

Theorem 1. Suppose Assumptions 1 and 2 hold. Fiz a failure probability 6 € (0,1]. Suppose that
the local sample size is large enough so that

. 2
[in, 7 > 2log(2 (K + 2)d*/9). (18)

Set Mo, = Mq and the penalty parameter Ay such that

Ay = 1()‘01\42\/1()g(2 (K2;2) @/0). (19)

Then with probability at least 1 — 6, the estimator satisfies

K o 2

9
KJQ

k=0
where k = (2Mgq + Mop)_Q.

Note that the loss function defined in (4) is not strong convex with respect to the Euclidean norm.
This prevents us from obtaining error guarantee for individual prevision matrix. Nevertheless, we
make a key observation that the loss function exhibits strong convexity with respect to the weighted
norm used in (20). See Appendix C for a detailed proof.

When we choose Ay = 4/(logd)/N, the rate shown in Theorem 1 consists of two parts. The first
part, which is of the order (slogd)/N, refers to the estimation error of the shared component. In
words, Trans-Glasso uses all the samples to estimate the shared component. The second part, of the
order (Khlogd)/N, relates to the estimation error of the individual components, i.e., on average,
there are N/K samples to estimate each individual ocmponent.

5.2 Analysis of Trans-Glasso

After the initial estimates are obtained via Trans-MT-Glasso, the differential network estimation step
refines these estimates by isolating the deviations U (%) This yields the final Trans-Glasso estimator
0O,

As discussed in Section 3, any differential network estimator can be used in Step 2 for refinement.
The differential network estimates W(*) are treated as the result of a black-box algorithm, obeying

H@(k) _ gk HF < % (no, i, d, h, My, ) := g (21)



holds simultaneously for all £k = 1,..., K with probability at least 1 — J. We now establish a non-
asymptotic error bound for this estimator, which combines the initial estimation error with the error
from differential network estimation.

Theorem 2. Let Q) be the Trans-Glasso estimator obtained in Equation (8). Under the same con-
ditions as in Theorem 1, and assuming Equation (21) holds for the differential network estimators.
Then with probability at least 1 — 26, one has

R 2
000, < (3 + )20+ S

The error rates depend on differential network estimators’ performance. Next, we provide specific
error rates using the D-Trace loss estimator.

5.2.1 A differential network estimator: D-Trace loss minimization

We characterize g( ) in the case when the D-Trace loss estimator in (7) is used. We use the tighter
D-Trace loss estimator analysis from [ I, [ |.

We then have the following theorem providing a hlgh probability error upper bound for D-Trace
loss estimator. The theorem is derived directly from Theorem 7 in Appendix D.

Theorem 3. Suppose that Assumptions 1-2 hold. Assume that ming<r<x ny » h*log (2(K + 1)d?/s).

Set
2
AP = c\/log @UE DS ik e (1)

min{ng,ngp}

for some large constant C' > 0. Then

T N wog + 1)d?/3)

min{ng, ng}

holds simultaneously for all k € [K] with probability at least 1 — 0.
By Theorem 3, we have

_ VhMr \/log (K + 1)d?/6)

min{ng, ng}
for D-Trace loss estimator. Plug the above results into Theorem 2, we have the following corollary.

Corollary 1. Let QO e obtained by Trans-Glasso (8) with the D-Trace loss estimator used in
Step 1. Instate the assumptions in Theorems 1 and 3. For a given § € (0, 1], letting

Ay = \/log( (K +2) d2/6), )\(k - M \/log 2(K + 1)d2/5) for all k € [K],

N min{ng, ng}

we have that

6@ —© HF < (ﬁ +(1+ Mr)\/g + Mr\/Z) V1og(2 (K +2) d2/5)

holds with probability at least 1 — 2§.

The estimation error consists of three parts: shared component estimation, individual component
estimation, and differential network estimation. If n > ng and Mr is bounded by a universal

slogd hlogd
N J,» no

reduced compared to the rate obtained by only using target samples, which is in the order of

/slogd / hlogd
no + no :

constant, the error scales as . When N » ng, the error rate can be significantly

10



5.3 Minimax Lower Bounds and Optimality

To evaluate the theoretical performance of Trans-Glasso, we derive the minimax lower bound for
estimating the target precision matrix (%) over the parameter space defined by Assumptions 1-2.
More precisely, we define the relevant parameter space:

K
G(s,h) = {{mm}k_o QW 5 0, Q0 = 0" 1 O™ supp (*) A supp <r<k>*) — V0 <k<K,

|2%], < s, max ’F(k)*
0<k<K

< h, max ’F(k)*‘ < Mp, max ‘Q(k)” < Mg, max ‘E(k)‘ < Mg} ,
0 o<k<K 1 0<k<K 2 0<k<K ©
(22)

where Mr > 0, Mq, My, > 1 are universal constants.

Intuitively, the performance limit of any transfer learning estimator is dictated by the information-
theoretic lower bounds of estimating two parts, namely the shared component and the individual
component. Hence, to derive the minimax lower bound for the transfer learning estimator, we need
to provide lower bounds for estimating these two parts.

Lower bound for estimating shared component. The following theorem provides the minimax
lower bound for estimating the shared component when all the distributions are the same.

Theorem 4. Assume that we have n i.i.d. samples X1, ..., X, from N(0,Q71), where
QeG ={QeS™ :Q>0,9],<s,0<c1 < Ymin(Q) < Ymax(Q) < 2 < 0},

and c1,co are universal constants. In addition, assume that s = d = ¢nP for some universal

constants 8> 1 and ¢ > 0, and
[s/d] =0 —"— .
(logd)

o

We then have

A 2 1
inf sup E “Q — QH ] by w.
Q QeG, F n
The proof is based on | , , Theorem 6.1]. See Appendix E for more details. By

Theorem 4, it is easy to see that the squared Frobenius error of estimating the shared component is
lower bounded by slogd/N where N is the total number of samples.

Lower bound for estimating the individual components. We also provide a lower bound
for estimating the individual component. When Q®) = I, for all 1 < k < K and Q© = I; + A with
diag(A) = 0, the source samples are not helpful to estimate QO at all. Thus, the minimax lower
bound for estimating A provides a valid minimax lower bound for the transfer learning problem.

Theorem 5. Assume that we have n i.i.d. samples X1,...,X, from N(0,Q71), where
Qe ={QeS™:Q0>0,Q=1,+A,A;; =0 forall1 <j<d,

23
‘A|O < h> ‘A|1 < CF, 0< 1 < ’Ymin(Q) < "Ymax(Q) < e < OO}7 ( )
where Cr > 0, ¢y <1 and co > 1 are constants. In addition, assume that
hlogd log d
d = 4h, hlogd > 8log3, ‘;Lg <min {2,8(1 — e1)%,8(1 — e2)2}, [~ <4CR. (24)

We then have

A 2 1
inf sup E [Q — QH ] b h ogd.
Q QG F n

11



See Appendix F for the proof, which relies on a novel construction of the packing set of the parameter
space and on the celebrated Fano’s method | , , Section 15.3].

It is worth noting that Theorem 5 also provides a minimax lower bound for estimating the
differential network Qx — Qy for two precision matrices Qx and €y when the Li-norm of the
differential network is bounded. To our knowledge, this is also the first lower bound for differential
network estimation | , , , |. As aresult, we can derive the first minimax
optimal rate for differential network estimation. See Appendix I for a more detailed discussion.

Combining pieces together. Combining Theorem 4 and Theorem 5, we have the following
lower bound for any transfer learning estimator.

Theorem 6. Suppose that we have ny i.i.d. samples from a sub-Gaussian distribution Py, with zero
mean and precision matriz Q¥ for all 0 < k < K. Besides, assume that s = d = ¢ N? for some

universal constants 8> 1, ¢ > 0 and
N
[s/d] =0 ——= ] .
(logd)

log d hlogd . ) 1\?
d > 4h, hlogd = 8log3, hy| —— < 4AMp, —=— <min{ 2, 8(1 — Mg)*, 81— —) },
no no ME

Nl

In addition, assume that

where Mp > 0, Mo, Ms, > 1 are universal constants defined in (22). We then have

inf sup E “ﬁ B Q(O)‘2] - slogd N hlogd.
Q {Q}E eG(s,h) F N no

Theorem 6 demonstrates that Trans-Glasso achieves minimax optimality for the parameter space
specified in (22) when 2 = ng. The obtained minimax optimal rate is reasonable, considering we have
N samples for estimating the shared component with s non-zero entries and n samples for estimating
the individual component with A non-zero entries. Furthermore, from a practical viewpoint, the rate
suggests that the target sample size only needs to be sufficiently large in relation to the sparsity
level h of the individual component. In contrast, if we only have target samples, the target sample
size needs to be large enough to match the sparsity level s + h of the entire precision matrix, which
can be significantly larger.

6 Simulations

In this section, we demonstrate the empirical performance of Trans-Glasso through a series of sim-
ulations. We evaluate its accuracy in comparison with several baseline methods under different
settings, including varying sample sizes and sparsity levels.

We set the dimensionality d = 100 and the number of source distributions K = 5 for all experi-
ments. In each experiment, we vary parameters such as the target sample size ng, the source sample
size N = Ngource, and the sparsity level h to assess the robustness of Trans-Glasso across diverse
conditions. The data are simulated under three different models, each reflecting a specific structure
for the shared and individual components of the precision matrices.
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Figure 2: Simulation results for Model I. The default setting is ng = 300, nsource = 1000 and h = 40.
In the first experiment, we increase ng while fixing ngource and h. In the second experiment, we
increase ngource While fixing ng and h. In the third experiment, we increase both ng and ngource
while increasing h. More specifically, we let ngsource = 3ng, and ng = 70 when h = 10, ng = 150
when h = 20, ng = 300 when h = 30, ng = 600 when h = 40 and ng = 1200 when h = 50. In the
fourth experiment, we fix both ng and ngyurce While increasing h. Each dot represents the empirical

mean across 30 repetitions and the vertical bar represents
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Figure 3: Simulation results for Model II. The default setting is ng = 750, ngource = 2000 and
h = 40. In the first experiment, we increase ny while fixing nsource and h. In the second experiment,
we increase Nsource While fixing ng and h. In the third experiment, we increase both ng and nsource
while increasing h. More specifically, we let nsource = 319, and ng = 100 when h = 20, ng = 200
when h = 30, ng = 300 when h = 40, ng = 500 when h = 50, ng = 800 when h = 60, ng
when h = 70 and ng

1000

1200 when A = 80. In the fourth experiment, we fix both ng and nsource
while increasing h. Fach dot represents the empirical mean across 30 repetitions and the vertical
bar represents Mean +
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Figure 4: Simulation results for Model III. The default setting is ng = 150, ngource = 1000 and
h = 40. In the first experiment, we increase ny while fixing nsource and h. In the second experiment,
we increase Ngource While fixing ng and A. In the third experiment, we increase both ng and ngource
while increasing h. More specifically, we let ngource = 49, and ng = 15 when h = 20, ng = 30 when
h = 30, ng = 80 when h = 40, ng = 300 when h = 50, and ng = 1000 when h = 60. In the fourth
experiment, we fix both ng and ngource While increasing h. Each dot represents the empirical mean

across 30 repetitions and the vertical bar represents Mean + \/% x Standard Error.
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Figure 5: Simulation results when the informative set A is unknown. We set ng = 300 and ngource =
1000 for Model I; ng = 750 and ngource = 2000 for Model II; and ng = 300 and nsource = 1000
for Model III. Each dot represents the empirical mean across 30 repetitions and the vertical bar
represents Mean + \/% x Standard Error.

6.1 Data Generation Models

We generate data from three distinct models to assess the flexibility of Trans-Glasso. Each model
starts with a shared component, followed by individual components. The final precision matrices
are made positive definite by adding a diagonal matrix. Specifically, each model is set as follows.

e Model I: The shared component is a banded matrix with bandwidth 1, where each entry Qij =
5x 0.6/~ (|i — j| < 1) for 1 <i,j < d. For a given h and each k = 0,1,..., K, we uniformly
choose [h/2] entries (,7) such that 1 < i < |4] and 4] + 1 < j < d, denoted as Spwx) -
We let f’gc) = uij1{(4,7) € Spw) wp}, 1 < i,j < d, where u;;’s are from Unif[—3,3]. Then
r®* = 1F) 1 (TE) T, Finally, we let Q%) = Q4+ T®)* 4 o1, where o ensures Yuin (%) > 0.1

for0<k<K.

e Model II: Model II is similar to Model I but with a wider bandwidth of 5, introducing a more
connected structure in the shared component.

e Model III: We generate the shared component from an Erdos-Renyi graph. Specifically, let
Qii =5,1<1< d, and Uij ~ Bernoulli(0.02)7 1<t < ] <d If Uij =1, let Qij = jS ~
Unif[—3, 3]; otherwise, set Q;; = Qj; = 0. Let Sg = {(i,4) € [d] x [d] : Qi; # 0} be the
support of . For given h and 0 < k < K, uniformly choose h entries (h+1if his odd) from
[d] x [d]\S, denoted as Sy, such that (i,j) € Spa if and only if (j,i) € Spw. Let T13* =
ui;1{(i,§) € Srm}, 1 <i,j < d, where u;; ~ Unif[—3,3]. Finally, let Q%) = Q + T®)* 4 51,
where o ensures Vmin(Q(k)) >01for0<k<K.

6.2 Experimental Design

We conduct four main experiments per model to investigate Trans-Glasso’s performance under var-
ious conditions:
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1. Experiment 1: Vary the target sample size ng while keeping the source sample size ngource
and sparsity h fixed.

2. Experiment 2: Vary the source sample size ngource While keeping ng and h fixed.
3. Experiment 3: Increase both ng, nsource, and h proportionally to examine scalability.

4. Experiment 4: Fix ng and ngource While increasing h, assessing performance as sparsity in
deviations increases.

Each experiment is repeated 30 times to obtain reliable averages and standard errors.

6.3 Comparison Methods

We compare Trans-Glasso with the following baseline methods:

e Glasso-Target: Applies graphical lasso | , | only to the target data.

e Glasso-Pooled: Combines all target and source data, applying graphical lasso on the pooled
dataset.

e Trans-CLIME: A transfer learning approach for precision matrix estimation by
[ |, which assumes a sparse divergence matrix across sources.

6.4 Results

The results for Models I — III are shown in Figure 2—4. Trans-Glasso generally outperforms baseline
methods. In Experiment 3, Trans-Glasso shows consistency across all models, whereas Glasso-
Pooled and Trans-CLIME do not. Trans-CLIME performs better with small A, but its performance
deteriorates as h increases. This is because a small increase in h can significantly increase the sparsity
of the divergence matrix defined in (2) when the covariance matrix is not sparse, as discussed in
Appendix A. Therefore, when the precision matrix is sparse but the covariance matrix is not, Trans-
Glasso is more reliable and robust.

6.5 Experiments with Unknown Informative Set

We perform simulation experiments with unknown 4, using the same three models. We divide [K]
into [K] = Au A°. For k € A, we set the sparsity level h to be small, and for k € A°, h to be large.
Specifically, for Model I, h = 20 for k € A and h = 600 for k € A¢; for Model II, h = 30 for k € A
and h = 600 for k£ € A¢; for Model 111, h = 10 for k € A and h = 300 for k € A°. We implement the
Trans-Glasso-CV algorithm (Section 4.3) and compare it with other methods. We vary |A| from 0
to K to observe performance changes. Each experiment is repeated 30 times with different random
seeds.

Figure 5 shows that Trans-Glasso-CV generally outperforms baseline methods. Notably, it never
performs worse than Glasso-Target, indicating no “negative transfer” of knowledge. In contrast,
both Glasso-Pooled and Trans-CLIME can underperform compared to Glasso-Target. Additionally,
as |A| increases, Trans-Glasso-CV achieves the best performance.

7 Real-World Data Analysis

We apply the Trans-Glasso algorithm to two real-world datasets. In Section 7.1, we use it on gene
networks with different brain tissues. In Section 7.2, we use it on protein networks for various cancer
subtypes.
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Figure 6: Cross-validation prediction error of different methods on GTEx brain tissue datasets,
relative to Glasso-Target.

7.1 Gene Networks Data for Brain Tissues

We apply Trans-Glasso to detect gene networks in different tissues using the Genotype-Tissue Ex-
pression (GTEx) data'. Following [ |, we focus on genes related to central nervous
system neuron differentiation (G0O:0021953). We use the same 13 brain tissues as [ ],
treating one as the target and the other 12 as sources. We only use 10 out of 13 tissues as targets,
avoiding 3 due to small sample sizes. See Table 3 of the supplementary materials of [ ]
for the complete list of tissues and Table 1 for the target tissues. We remove genes with missing val-
ues in these tissues and compare Trans-Glasso with baseline methods by computing cross-validation
prediction error as defined in (16).

Figure 6 presents the final result, using Glasso-Target, Glasso-Pooled, and Trans-CLIME as
baselines as in Section 6. To compare results across tissues, we report prediction errors relative to
Glasso-Target. Figure 6 shows that Trans-Glasso performs best on most tissues. The relative pre-
diction error of Trans-Glasso is always much smaller than 1, indicating that it performs significantly
better than using target data alone and is robust to negative transfer. In comparison, Glasso-Pooled
and Trans-CLIME can perform worse or similar to Glasso-Target on some tissues.

Thttps://gtexportal.org/home/
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Subtype MO Subtype M1

Figure 7: Protein networks for four AML subtypes. Red edges are shared by all, blue edges are not.
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7.2 Protein Networks Data for AML

We apply our method to a protein networks dataset for Acute Myeloid Leukemia (AML) subtypes.
Understanding protein relationships in cells is crucial in cancer studies, and graphical models help
build these networks. Following [ |, we analyze protein levels for 213 newly
diagnosed AML patients,? classified by the FAB system. Although protein interactions may differ
across subtypes, common AML-related processes suggest shared connections. Thus, transfer learning
can enhance subtype estimation using data from other subtypes. We focus on 18 proteins involved
in apoptosis and cell cycle regulation, studying four subtypes: MO (17 subjects), M1 (34 subjects),
M2 (68 subjects), and M4 (59 subjects) [ 1, .

For each subtype, after applying Trans-Glasso, we obtain the final estimated graph by choosing
20 edges with the largest absolute values in the estimated precision matrix, resulting in graphs with
similar edge numbers as in [ |. The final result is shown in Figure 7. Comparing
with [ |, many edges are discovered in both studies. However, our estimated graphs
are more similar across subtypes. M0, M1, and M2 have the same structures, while M4 differs in two
edges and has stronger connections between proteins in BAD families. This is supported by

[ |, which observed higher expression levels of BAD family proteins in AML subtypes M4,

M5, and M6 | , , Table 1], indicating more active interactions.

8 Conclusion

We introduce Trans-Glasso, a novel transfer learning approach to precision matrix estimation, which
addresses the limitations of small target sample sizes by leveraging related source data. Trans-Glasso
operates through a two-step process: an initial estimation using multi-task learning, followed by
refinement via differential network estimation. This methodology achieves minimax optimality in a
wide range of parameter regimes. Through extensive simulations, we demonstrate that Trans-Glasso
consistently outperforms baseline methods, showcasing its robustness and adaptability, particularly
in high-dimensional settings with limited target samples.

Future research directions include extending Trans-Glasso to estimate other graphical models,
such as Gaussian copula | , , |, transelliptical | , |, functional |

, , , , , |, and Ising models [ , ], and studying

inferential methods within the transfer learning framework.

2The dataset is provided as the supplement to [ |
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A Comparison with [ ]

In this section, we make a more detailed comparison of the similarity assumption made in

[ ] and our Assumption 1. Let Y(*) = (Q(O) - Q(k)) vk — —g®xE) or equivalently W) =
—TRO®), [ ] assumes YT*) is column-wise sparse in L,-norm. Our Assumption 1 and
the similarity assumption in [ | do not imply each other and are generally incomparable.
However, our Assumption 1 can be preferable in some applications. First, while the divergence matrix
T®) is motivated by the KL divergence between Gaussian distributions, Assumption 1 is structural
and applies to any distribution. Second, Assumption 1 is naturally interpreted in Gaussian graphical
models, unlike the similarity assumption in [ |. Finally, a technical advantage of our
assumption is that, while sparsity in U(¥) does not generally imply sparsity in Y*), or vice versa,
further assumptions on %) or Q*) can establish one or both directions. For example, note that

d

| <3 {2 {1l 2o} {off 20} > 1} .
i, 1

1=

If both T®*) and Q*) are sparse, then U(*) is also sparse. Similarly, if ¥(*) and ©(*) are sparse,
then T*) is sparse. The key difference is that T*) — W) relies on Q*) being sparse, while
Tk —  T® relies on X*) being sparse. In graphical models, sparsity assumptions on the
precision matrix are more common than on the covariance matrix, making the sparsity assumptions
on U weaker than those on T*),

B Preliminary Lemmas
We first collect several inequalities related to matrix norms.
Lemma 1. For any two matrices A, B € R4, we have
|AB|oo < min {[|Aflo|Ble, | Bll1[Ale} - (25)
Proof. For 1 < j < d, denote by B.; the j-th column of B. We then have
|AB|o, = max |AB; ]«

1<j<d

N

Jnax, [ A]lo0 | B ]l o0

[Alleo max |52l
= [|Afloo| Bl -
The other claim follows from the facts that |AB|, = |[BTAT|, and |BT ||, = | B]s. |
Lemma 2. For any matriz A € R™*™ and any vector v € R™, we have |Av|yx < |Alxo|v]1-
Proof. Let A;. denote the i-th row of A, we then have

[Avlleo = max [(Ai, v)] < max [Aifoo]v]1 = [Als]v]s,

max

<is<m

which completes the proof. |
The next lemma requires the following definition of the sub-Gaussian random variable.

Definition B.1 (Sub-Gaussian Random Variable, Definition 2 of [ ). We say
that a random variable X € R is sub-Gaussian with parameter o if

E[exp (AX)] < exp (6°A/2) for all AeR.
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Lemma 3. Assume that we obtain samples from K distributions, each with a mean of zero and a
(f) X(j))T}le
i X,

covariance matriz of ©%) . Let {XZ-(k) = (X k. represent ny, independently distributed

)

samples from the k-th distribution. In addition, we assume that Xi(f)/ Zg’; is sub-Gaussian with

parameter o as defined in Definition B.1. Let

™

1 Nk R K R K
(k) _ — M XBPXBT 8= 0 S®, and ¥ =) an®
kiq k=1

where a, = ni/N and N = Zle ng. For a fized § € (0,1], we have

o log(2d2/8) log(2d?/d)
g 2 (k:)‘ g <
P{‘E 2 OO>16(1-|—40 ){11;}2(1(’2 OC}max{ oN i < 0.
Proof. Let X' = X\ /28 i =1, k=1,... K, j=1,....d. Define U) = X + X
VA = X0 — X, and p§y) = 29 /4 /S8 2P, Then it follows from Proposition 2.9 and (2.18)
in [ ] that

E [exp {/\ [(UZU;DZ 2 (1 n p(k))] }] < exp <A:2”:) . and
E [exp {A [(V(fz)> —2(1- pﬁ«'ﬁ)] H < exp <A2” > ,

for all |\| < 1/¢ where v = ¢ = 16(1 + 40?). Since

> (550 -0) - 1 5 () -2 (1+4P)) -

12 () -2(-40)).

(
l: ((U},’;})Q —2(1+ p(’“))ﬂ } -expl{—i [2 ((Viffl))Q —2(1- pyf))ﬂ H
[ (em-sem)]ily <
i

Let 7o = maxj<p<i |X*)|s. It then follows that

E lexp {)\ li (xPxi - 25.’;))] H

i=1

e R (R )]
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Nk
<E lexp {Alx(mw [Z (X"(J]'C)X”(lk) - pﬁ'f))] H

i=1

<E [exp {M@ [ (RO py;>)] H

2 \2 2
< exp <nku Ta0 > for all |\ < —

M:

OO
and
K ng X .
el o (a0} -2 o [y (S 5 (o ) )}
k=11i=1
— HE [exp{)\ ( (XZ_(j’?)XZ(lk) _ZU;)>>}]
k=1 i=1
K 2.2 32
NEVTHA
<
[ exp ( ’ )
k=1
Nv272 N2
e
when |\ < 2/(75¢). Using Proposition 2.9 in [2019], for ¢ > 0, we have that

R . . . 1 . [4Nt?> 2Nt
B[S0 33> 1) =B (S 5) [ N} < 20 L min (00 20 |

A union bound then gives us

& 1 4Nt? 2Nt
IP’{‘Z—E* >t}<2d26xp ——min | ——, — | ¢.
e 2 V2127 ¢1
Rewriting the above equation, we complete the proof. |
Lemma 4. Consider a zero mean random vector X = (X1,...,X4)" with covariance ¥* such that

each X;/,/%7; is sub-Gaussian with parameter o as defined in Definition B.1. Let {X(i)};; be n
ii.d. copies of X and let 5, = LY X)X (i) Forde(0,1], we have

P { > 16(1 + 402) [2*], max { log(2d/9) ' log(2d"/9) }} <.

2n n
Proof. The proof follows directly from Lemma 3. |

5, — ¥
o]

In the next lemma, we use Si to denote the set of positive definite matrices with dimension d.

Lemma 5. Let A € S. Define f () == (Q,A4) — logdetQ for Q € S4. Given Qy € S and
Ag € R such that Qo + Ag € S¢, there exists t € (0,1) such that

Q0+ Ag) — f () —(Vf(Q),Ag) = %Vec (Ag)" {(QO +tAQ) T ® (o + tAQ)_l}Vec (Aq)

Proof. One can view f as a function of vec(£2). Note that V2 f(vec(Q)) = Q71 ® Q1. The rest of
the proof then follows Taylor’s Theorem | , , Theorem 2.1]. [ |
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Lemma 6. Let SP(s) := {# e RP: ||0]o < s, |0]l2 < 1}. There exists {6°,6%,...,6M} < SP(s) such
that

(i) 0° = 0;
(ii) Hﬂjfﬁk}bz%forallO<j¢k<M;

(iii) log(M + 1) > £ log (%2).

S

Proof. Tt follows from Example 15.16 in
which we denote as {6°,6',... 6™} such that

Without loss of generality, assume that [|6°]y < [67]|o for 1 < j < M. Let #° = 0 and let 67 = 67 for
1 < j < M. Then the set {§°,6',...,0M} satisfies (i)—(iii). To prove the claim, by our construction
of the set and (26), we only need to verify that |67 — 6]y = 67> > 1 for all 1 < j < M. We prove
the result in two cases.
Case 1: [°]2 = L. Since |0°]5 < [67]|2, we have that [67] = [67]2 = [6°]2 = L for 1 < j < M.
Case 2: ||0°], < 1. We have

| that there exists a 1/2-packing of SP(s),

1 d—
3 forall 0 <j#k<M and log(M +1) > glog (S) . (26)
s

-7

o _ 11 1
93—90H2—H90H2>§—7=7 for 1 <j <M,

1], = o

97
2

=

where the last inequality follows from (26).
Combining Case 1 and Case 2, we have proved that [|§7], > I for 1 < j < M, which completes
the proof. |

Lemma 7. Let m = 2 be an even integer and set d = 2m. Let B € R™*™ be such that |B|r < 1/4

and define
I, B

Then Q > 0 and D, (N (0,Q71) [N (0,1,)) < 3 |B|z.

Proof. We begin with proving Q > 0. By Weyl’s inequality, we know that

0 B 0 B
iy i | P

F

1
=1-V2|B|p = 3
As a result, we have Q > 0.

Now we move on to the second claim regarding the KL divergence. Recall that

D, (N (0,Q7Y) [N (0,14)) = = [logdet (Q) —d + tr (27Y)], (27)

1
2
which motivates us to compute logdet (2) and tr (Q_l). Let B = UDVT be the singular value

decomposition of B with U, D,V € R™*™ U'U = UU" = I, VIV = VVT = I, and D =
diag(A1, ..., Am). We have the following identities.

log det (Q) = i log (1—X7). (28a)

28



tr (Q71) = Z 1_2A§. (28b)

Combining (27), (28a), and (28b), we obtain

DN =

m m 2
D, (N (0,071) [N (0, 1a)) = [Z log (1=23) + > 157 — d}
i=1 i=1 4
| log (1= %) 1
= ;1 [ 5 e —1].

Since A7 < 22'1:1 A7 = | Bl < 1/16, we have —A? > —1/16. Also note that log(1 + ) < z for all
x = —1. We thus have

Dict, (N (0,271 |V (0, 1) < i [_f + o5 1]

O A2 4+ A A2 16 <~ 2 16 50
— 7 7 < < B .
,22(1—)\2) Z1—/\2 15Z 5“ I

This completes the proof.

Proof of Equation (28a). Using Section 9.1.2 of [ ], we have det (©2) =
det (Im — BTB). Since

I,-B'B=1,-VD*V' =V (I,, -D*) V', (29)

we have det (Q) = det (I,, — D?) =[;~, (1 — A?) and hence logdet (€2) = > log (1 — A?).

Proof of Equation (28b). Using Section 9.1.3 of [ |, we have
01 _ [Im B]_l | (w-BB)Y"  -B(I,-B"B)"
BT I, —(I,—B™B)"'BT  (I,,-B™B)"" |’

which implies
tr () =t { (I = BBT) '} + e { (5, - BTB) '} (30)

-1

It follows from (29) that (I, — B"B) =V (I, — DQ)_1 VT, and therefore,

tr{ (T = BBT) "} =t {V (1 = D) VT =t {(1, - D?) 7'} - il_lv (31)

Similarly, we have tr{ (Im — BTB) } =3 - )\2 Take the previous results collectively to yield
the claim (28Db). ]

C Proof of Theorem 1

We adopt the proof strategy laid out in [ , Chapter 9.
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C.1 Additional Notation

We first introduce some additional notation that will be helpful in the proof. We define the Hilbert
space for the parameters

K
H := {@ = (Q {r“f)} ) c QTR e R for all 0 < k <K},

with the associated inner product

K
(0,0'),;, =(0,0") = (2, + ] <I‘(k)’ F(k)’>_
k=0

The space H endowed with the inner product {:,-) is indeed a Hilbert space. Correspondingly, we
have

2 2w 2
CIE RN
k=0
We also need the dual norm of ®(-), which is defined as

®*(©):= sup (0,0). (32)
0:3(0")<1

Recall that ©* = (Q*, {T®)*} X)) is the true parameter. Let So and Sy be the supports of Q*
and T(®)* for all 0 < k < K, respectively. Under Assumption 1, the true parameter ©* lies in the
following subspace of H:

K
M = {@ _ <Q {r<k>}k > . supp() € S, supp [F(’“)] < Spew for all 0 < k < K} (33)
=0
The orthogonal complement of M is given by

K
Mt = {@ = <Q, {F(k)}k 0) : supp(Q) € 8§, supp [F(k)] C Sf forall 0 <k < K} . (34)

Clearly, for any © € M and ©' € M*, we have that (0,0 =0 .
We also need to define the projection of a parameter onto a subspace. For any matrix B € R?*¢
and any subspace F € R%*?, we define

Bl = ar minHB—BH .
[ ]]—' géef -

Similarly, for any © € H and any subspace F € H, we define

[©]p = argmin
BeF

‘B B BHH '
In addition, for S < [d] x [d], we define
M(S) == {B e R : supp(B) < S}.

For any B € R™? we define [B]g := [B](s)- This way, for any © = (€, {TRYK ) € H, we have

K
S o A A B

k=0

K

k=0
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Finally, we define our metric on the estimation error. For © = (Q, {T*}X_ ) e H, let

1) = Y ar -+ 3)
k=0

We define «
Ab-0 - (Q — o, {00 _pwr) ) ,
k=0

where © is the Trans-Glasso estimator (3). Then our goal is to control

2 K

K
H(A) = Z Qg Hﬁ —QF + TR _ )+
k=0

F

C.2 Useful lemmas

Now we collect several useful lemmas, whose proofs are deferred to the end of the section.
We begin by demonstrating that ®(-), defined in (5), is decomposable with respect to (M, M*).

Lemma 8. We have
DO+ 0) =d(O)+D(O) for any © e M, 0 € M*.
The following lemma relates ®(0) with H(O) defined in (35) for any © € M.

Lemma 9. For any © € M, we have

D(0) < V24/5 + (K + 1)hn/H(O).
For Ag = (Aq, {Apw }i ) € H such that Ag + Apw + QF) >0 for all 0 < k < K, we define
R(Ag) = L(O" +Ag) — L(O") —(VL(O"),Ao)

to be the residual of £(-) around ©*, where £(-) is defined in (4). The following lemma claims that
R (+) is locally strongly convex with respect to the geometry defined by H ().

Lemma 10. Let Ag = (Aq, {Ap(k)}szo) € H be such that Aq + Apay + QF) > 0 and assume that
[Aq + Arw |y < Mop + Mg for all 0 < k < K. Then, we have

R (Ag) = gH(A@%

where kK = (2Mgq + Mop)_Q.
Last but not least, define the event

Am

G(w) :_{ o> e (vz(@*))}. (36)

The following lemma asserts that this event happens with high probability.
Lemma 11. When (18) holds and Ay satisfies (19), we have that P{G(Ap)} =1 — 0.

31



C.3 Remaining proof

Now we are ready to prove Theorem 1. As Lemma 11 asserts that G(Ay) holds with high probability,
thus we only need to prove the conclusion under the assumption that G(Ay) holds. Throughout the
proof, we assume the event G(Ayr) holds.

For any Ag = (Aq, {Apm }E_,) € H, we define the objective difference

F (Do) = L (0" + Ap) — L (0%) + A {® (6" + Ao) — & (07}

Note that by definition, we have F (ﬁ@) < 0. It suffices to show that for all Ag such that

Ap + 0* € C(M,p) and H(Ag) > %W, we have F(Ag) > 0.
It is easy to see that any such Ag obeys

AQ+ AT+ QW =Q—Q*+ T, —THE* 1 ) = Q4+ T, > 0,
and forall 0 <k < K

|AQ + ATy, = HQ Q4 Ty — DR

L= HQ + T — Q(’“)HQ < Q-+ Ty + HQ("“) H2 < M,y + Mg,

where the last inequality follows the definition of M,, and Mq. These two taken together allows us
to invoke Lemma 10 to obtain

F(Ae) = (VL(O%),Ag) + gH (Ag) + M {B (0% + Ag) — @ (1)},

where k = (2Mq + Mop)_2.
In addition, combining Lemma 8 and the fact that [©*],,. = 0 with [ , Lemma
9.14], we have
(0" +Ae) —2(07) = @ ([Aoly:) — P ([Aely) (37)

for any Ag € H. This way, we have obtained a lower bound for ®(©* + Ag) — ®(0*).
Take the previous two displays together to reach

F(Ae) > (VL ("), Ae) + 5 H (Ae) + M {2 ([Ae]yyr) — @ ([Aelyy)}

Recall the definition of ®* in (32), under the assumption that G(Ay) is true, we have

F(86) = S H (86) = KVL(07),80) + Mt {® ([Aol) —  ([Ae]yy)
> ZH (86) = ® (B6) @* (VL(0") + Mt {® ([Aelyy) — @ ([Aelyy))
> "1 (8e) ~ 22 (86) + M (@ ([Aelyes) — @ ([Aely)
= S (26) - (@ (Dol + (Aol )} + M (2 ([Aoly) — @ (Aol
= 2 (86) - 22 (30 ([A6]) — @ (Aol )}
> ZH (D) - ?’ATM@D ([Ae]y) (38)

By Lemma 9, we have

® ([Asly) < /s + (K + 1)hy/H ([Aoly) < V24/s + (K + 1)hn/H (Ae),
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where the last inequality follows from H(Ag) = H ([Aely) + H ([Aelyr) = H ([Ae]y)- Plugging
the above inequality into (38), we arrive at the conclusion that

F(Ae) = 5H(A@) - —\/s+ K + 1)hW/H (Ao)

= %\/H (Ae) {H\/H (Ae) — 3V2Auv/s + (K + 1)h} > 0,

where the last relation arises from the assumption

18 (s + (K + 1)h) A}
K2 '

H (A@) >
This finishes the proof.

C.4 Proof of Useful Lemmas

In this section, we collect the proof of useful lemmas.

C.4.1 Proof of Lemma 8
By the definition of ®(-) and the fact that © € M and ©’ € M+, we have

(O +0) = ([0]y, + [0],.)

K
— [0 o r® e
‘[ lso [ * ];OM [ ]Spm " [ ]Sﬁm 1
K
= [Qs,], + ‘[Q/]SC + ag [r(k)] + Z Vak [r(k)/]
Qll Sp(k) 1 k=0 Slf(k) 1

= ([@]M) +@ ([GI]ML)
= B(0) + (0.

C.4.2 Proof of Lemma 9
For any © € M, we have Q =[], and ) = [1®)] . Thus

Sp(k)
- [p(k)]
‘Sr(k)

r

(I)(Q) = ’[Q]Ssz 1

1

K
< |SQ|% [ (s, ”F + Z \/ch|SF(k)|% [F(k)] (Jensen’s inequality)
k=0 Sro) Iy
(i2) K
< Vs|lQ] Sa ”F +Vh k [F(k)]s (by Assumption 1)
k=0 ) g

Furthermore, by Jensen’s inequality, we have
2
F>

rk) I

1 2 X
5<1>2(®) <s|[Qs, | +h (

(052 [F(k)]
Sp(k)

",

2

< sl

K
SQHF+hK+ Z
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|
)

By the assumption that the supports of Q* and T®)* are disjoint and the fact that Q = [Q] s, and
Tk — [I‘(k)]s o Ve then have
Lk

(s (K 4 D) {! snnwzak

[ ] r(k)
K
=(s+ (K +1)h Z ( s, le? + H [F(k)]s 0

[2s, + [F(k)]s

k) Ip

C.4.3 Proof of Lemma 10

By Lemma 5, we have

K
Qe
A@ = Z 7 AQ JFAl"(’c))

—1 —1
x {(Q(k) +tr (Aq + Ap(k))) ® (Q(k) +tr (Aq + Ap(k))) }
X vec (AQ + AF(k)) s (40)

where ¢ € (0,1), 0 < K. Since Ymin(A7' ® A7) = |A[5? for any A > 0, we have

k<
Vanin Q(’“) +tr (Mg + Am))) ® (Q(’“) +tr (Mg + Am)))l)
- {UQ““ #he (B0 Arw)] )
> {J0®], + 180 + Aot}
{l2®], + 120+ Arw )

> (2Mg + Mop) ™2,

where the last line follows the definition of Mg in (17) and the assumption that [Aq + Apw |, <
Mg + M,y for all 0 < k < K. Let k = (2Mg + M,p) >, Then

K

K
R(8e) = 5 3, ax[vee (Ag + Apw)|;
k=0

The final result follows by noting that |vec(Aq + Arm )2 = [Aq + Arm | F-

C.4.4 Proof of Lemma 11

We first state and prove the following lemma that gives the closed-form expression of ®*(-).
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Lemma 12. For the dual norm defined in (32), we have

)
®* (0) = max {|Q|go omax ‘ | }

Proof. For any ©,0' € H, we have
K
<@7®/> _ <Q7QI> + Z <I‘(k‘)’r(k)/>

<10, |, + Z\F LI,

T
=191, 2], + E) Vo IF’|1
k=0

}F““)\ S
<9, [, 44 max ——2 4 N oy [TV

k
< max < ||, , max }F( ‘ |, + Z Vag [I]
= ©og<k<K L/ 1 1
= max < Q| s Jmax o ( ) .
Thus, we have
v (0) (6,6 <max{ 0] L
= su , < max ,
o @(5)@ ©° oShek /a a
Finally, it is easy to see that the equality is achievable. |

Now we are ready to prove Lemma 11. Note that

K N -1
Vol (@) = Z g (E(k) — (Q + F(k)) ) ,
k=0
A~ —1
View L (0) = ap (z:(k) - (Q + r<k)) ) for all 0 < k < K.

Then by Lemma 12, we have

G(A\m) = { max{

By Lemma 3 and the union bound, we have

< 80Ms; max {\/ log(2 (K +2)d?/d) log(2 (K +2)d*/d) }

an (g(m _ Z(k))

e |5 (k) (k)
’ Og}CZXK A ‘2 > oo}} ' (41)
0

K

3 a (gw) _ E(k))

k=0

2N ’ N

0

and

~ 2 2
‘m) _ z(k)‘ < 80Ms, max {\/log(2 (KQ;F 2)&/0)  log(2 (Kn+ LD }
Y k k

35



for all 0 < k < K hold simultaneously with probability at least 1 — . When minggr<x ny is large
enough such that
log(2 (K + 2)d?/6)

minogkgK N

1
<77
2

we then have that

2
< 500y \/log(2 (K2;:] 2)d /5),

S (S0 i)
;Oak(z . )

o log(2 (K + 2) d?
‘ZW - z<k>‘ < SOMZ\/ 0s(2( 2+ V)0 for a0 <k<K. (42)
0 ng

o0

hold simultaneously with probability at least 1 — 6. Note that (42) implies that

- log(2 (K + 2) d2/s
,@]2(’9)—2“@)] <80Mg\/ 08(2( 2;) /) torall0 <k < K.
o0

Thus, when

log(2 (K + 2) d2/9)
ON ’

AM = 160Mg\/

by (41), we have G(Ay) hold with probability 1 — 4.

(43)

D Theorem 7 and Its Proof

The following theorem provides a high probability error bound for the D-Trace Loss estimator.

Theorem 7. Suppose that Assumption 1 and Assumption 2 hold. Let C, = Mgl. Furthermore,
suppose that for a given 6 € (0,1] and all k € [K] we have

log (2(K + 1)d?/0) _ . [ Yain(E")10 (E?)
min{ng,no} ’ C'h2 M3 '

(44)

If

log (2(K + 1)d?/9)
2min{ng,no}

AB > o0 [(Cy + 2) My My + 2] Mg\/
for all k € [K], then

"L
“Ymin (Z(k) )’Vmin (E(O) )

H@(z«) _ w)HF < forall0 <k < K

hold simultaneously with probability at least 1 — &, where C',C" are universal constants that depend
on C,.

Proof. The D-Trace Loss estimator is a special case of the FuDGE estimator proposed in
[ , |. We adapt the proof of Theorem 10 in [ | here.
Given § € (0, 1], we define the event

) = { ‘i(’ﬂ — z(k)‘ < O, Ms - max {\/IOg (2(K + 1)d2/5)7 log (2(K + 1)d?/6) }

an ng
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forallng;SK},

where C,, is a universal constant. By Lemma 4 and the union bound, we have P(€'(5)) > 1—4. In
the following, we work on the event £1().

Let
e CWME\/log (2AK + )d/5)

2min{ny, no}

On the event £' and when the condition (44) holds with C’" = 4096C2(C., + 2)?, we have
max{)i(k) — Z(k)) ‘i(o) — Z(O)) } < Y.
[ee] ’ [ee]
When (44) holds, we have

7min<z(k))7min(z(0))
64(C, + 2)hMs,

Y < Cy - max Z(k)’ and ¢ <
0<k<K o0

Thus, we have

1 1
ﬁ(ck) = ivmin(z(k))’Ymin(E(o)) — 16h (1/)]% + kaME) = Z’Ymin(z(k))'}/min(z(o)),

where ch) is the restricted convexity parameter defined in the proof of Theorem 10 of
[ ]. Set

AB > 4[(C, + 2)MsMp + 1] .
Following the proof of Theorem 10 of [ ], we have

- Hi < 116751in(2<§)}17§[]in(2<0>) (A(Fk))g’

which completes the proof. |

E Proof of Theorem 4

Let R = |s/d] and let r = s — Rd. We follow the construction of the hard-case collection of precision
matrices in Step 2 of Proof of Theorem 4.1 in [ | to get Fi.. We set M, , and ¢,
therein as M, , = some constant and ¢, , = R. By (4.13) and (4.15) in [ |, for any
Q e F,, we have

O0<a < ’Vmin(Q) < ’Ymax(Q) < e < 00.

Furthermore, we have || < ¢, pd < s. Thus, Fi € G;. Following Theorem 6.1 of [ ],
we have

logd @ slogd - lslogd

~ 2 ~ 2
inf sup E [IQ _ QH ] > inf sup E UQ _ QH ] > den,p > ,
R F O F S n 2 n

Q Qeg; Q QeF.

which completes the proof.
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F  Proof of Theorem 5

Without loss of generality, we assume that d and h are even positive numbers. Let m = d/2. By
Lemma 6, there exist {¢°,b',...,6M} < R™” such that

(i) [b7]o < % and b2 < 1forall 0 < j < M;
(i) 80 = 0;

(iii) &7 —b¥|2 > 1 for all 0 < j # k < M;

2 /40—
(iv) log(M + 1) > " log (d /3/;/2).

For j = 0,..., M, let B € R™*™ be such that vec(B?) = § - b/, where § is a positive number
that depends on n,d, h and will be specified later. By (24), d > 4h and

h d?/4 —h/2 h d? h d? h
log(M +1) = —1 — | = -1 ——1]=-1 — | = —logd.
og(M+1)=> 7 Og( 12 > 108 (2h ) 1 °g< ) g o8d

Furthermore, we have

h

}Bj‘og 2’

| B, <46, for0<j<M,

B =0, HBj—B"”'HF>g, for 0 <j#k<M.
For j =0,..., M, let

We next verify that Q7 € G, when

Vont 2 2

where G, is defined in (23). First note that diag(Q?) = I, |Qj - Id’o =2 |Bj|O < h, and

§<min{ Cr 1-a 62_1}, (45)

| — 1|, = 2|B’|, < 2\/Z||Bf|F < V2h < Cr,

using the choice of ¢ in (45). Furthermore, we have

<[5 2] i %)
oty 2],
|

0 B
21‘”[(ij 0 ][
=1-2|B,

2017

again using the choice of § in (45). Similarly, we have ymax (€7) < c. Therefore, when (45) holds,
we have that Q9 € G,.
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Let PP; denote the probability measure of N (0, {Q7} ") and let P’} denote the product probability

measure of (Xy,...,X,) where X;,..., X, 5 P;. Note that Py = N(0,15). When § < 1/4,
Lemma 7 gives us

16 a2 16
Dxr, (P} | Pg) = nDxw (Py | Po) < ——n | B[, < 77nd?,
15 15
which implies that
16
i Z ke (P} | Pg) < 15 (46)

j=1

From condition (24), we have hlogd > 8log3 and thus log(M + 1) > log9, which implies that
M > 8. Furthermore, we have

log M log 8 4 h
logM = ————log(M + 1) > ——log(M + 1) > —log(M + 1) > —logd.
og Tog(M + 1) og(M +1) Tog 0g(M +1) > ~log(M +1) >  log
We set
5= 1 hlogd
42
By (24), we have that (45) holds and that § < 1/4. Thus (46) holds, implying
| M
i ZlDKL (P? | Pg) < hlogd logM (47)
J
In addition, we have
. 1 hlogd
B —-Bf|.>2 —— forall 0 < j # k<M. 48
- B, 2L ol 0.5 5 )
Note that
log(M + 1) —log2 1 . logM —log2 1 S log8 —log2 1 _ 1 (49)
log M 6 log M 6 log 8 6 2
Following Section 2.2 and Corollary 2.6 in [ |, combined with (47)—(49), we have
2
1 1 1 1
min supE[”Q QH ] hogd =7.h0gd’
Q QeG, 32¢/2 4096 n

which completes the proof.

G Proof of Theorem 6

The upper bound follows directly from Corollary 1. To prove the lower bound, we assume that
Pe=N (0, (Q<k>)‘1).
First, when h = 0, we have N ii.d. samples from Q(°) where
QO e{QeR™:Q>0, 0, <s, [, < Mo, |27, <Mz} =7
for some positive universal constants Mo and M. Let

1

g—{QeRdXd Q>0,9|, < sO<M 'ymin(Q)éfymax(Q)gMQ<oc}.
s
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Since |7 < Q72 = {ymin(Q)} ! < Mg for any Q € G', we have ' < G’. Thus, when
s >d > ¢ NP, for some universal constants ¢/ > 0 and 8 > 1 and

N
s/d| =o <
o ((logd)2>

A 2 ~ 2 logd
inf sup E [HQ — Q(O)H ] >inf sup E “Q -0 H ] z 208¢ (50)
Q QOed F O aOegr F N

it follows by Theorem 4 that

If Q%) = O* = I; and T)* = 0 for every k € [K], then samples from source distributions cannot
be used to estimate Q). Therefore, we must depend solely on samples from the target distribution
to estimate Q9. Note that now we have

QW e{Qes™: 0>0,Q=1I,+A,A;;=0forall 1 <j<d,
[Aly < hy |Al, < M, [Q, < Mo, [971] < Mz} =G".

Let
G ={0eS™: 0>0,Q=1I+A, Ay =0forall<j<d,

1
18l < 18], € Mr 0% 3 < in() < (8D < My <
%

Given that for any € G”, it holds that ’Q“‘OO < 1272 = {Ymin(2)} 71 < My, we can deduce
that G” < G”. By Theorem 5, when Mg, Ms, > 1 and

hlogd . 1)\? ) log d
d = 4h, hlogd = 8log 3, <min<{2,8(1—-—| ,8(1—Mq)" }, ha/—— <4Mr,
no My, no
we have ) ) 1 log d
inf sup E [‘Q -0 H ] > inf sup E [HQ - Q(O)H ] > 8 (51)
Q Q(O)eg// F Q QOegr F no

The final result follows from (50) and (51).

H Additional Optimization Details

In this section, we provide more details about the numerical algorithms introduced in Section 4.1.
We first discuss how to compute the updating steps (9) and (10). Note that (9) is equivalent to

2
QY = arg min {fk Q) + p<z,§t—1>, 0 — Q=D — r,gt‘”> +2 HQk _ Q-1 r,(j—”H }
Q>0 2 F
— arg min { —ay log det () + 2 HQ _ O“*UHQ (52)
gszk>0 k108 kT Pk k Fj’

where C’,gt_l) = fZ,(:_l) + (Q(tfl) + F,(f_l)) - (ak/p)i(k) for 0 < k < K. Taking the gradient with

respect to Qi in (52) and setting it to zero gives

—p Q.+ pQy, — pCY = 0. (53)
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The matrix Q,(f) is obtained by finding ; > 0 that satisfies (53). Let pé’,gtfl) = UANUT, A =
diag ({)\i}?:1>7 be the eigenvalue decomposition of pé,gt_l). Following | , , Section

6.5], we have

d
Xi F /A2 +4
Q](ct)sziag { - 2’+ pak} U'.
p )
i=1

On ther other hand, computing (10) is equivalent to solving

K K 9
9108 {r(”} c <Z(t_1), o - F(’“)> +2 HQ(t) —q-1® H
k argg?}lf%} ka::O k k 2};0 k F

K

= in {72 HQ k) _ &

= = + IV -
M8 o riny { 2 kZ::O F

9 K
LA+ A ;OM)F(k)‘I}

where C’,it) = Q,(f) + Z,(f_l). Given ¢ = (c1,...,ck), let S(c) be defined as S(c) = (z*, y*) where

K K
(z*,y*) € arg min {g Z (2 + g — 1) + Anilz] + A Z «/ak|yk|} (54)
k=0

(z,y) =0

with y = (y1,...,yx). With Q0 = () 1<1ca, T = () )1<ji<a, and CfY = (C1))1<j0<a, we

have n .
t (t) = (t) .
9‘51), {Fk,jl}kzl =S <{Ol(c,jl}k_1> , forl1<jl<d.

To solve (54), we iteratively update x or y while fixing the other until convergence. For ¢ € R and
A =0, let
c— M\ ife> A,
STx(c) =10 if |e] < A, (55)
c+ A ife< =X

be the soft-thresholding function. After initializing (9, y(?), we repeat the following process until
convergence:

K
T 4 r—1)
:13()—argmm{2Z:(ac—ky,(C —ck) +>\M‘$|+)\MZ\/ ‘y ’}

k=0
~ ST < ! i —yy
At/ (p(K+1)) K+1k=0 Ck — Yy, )>,
and
K
yt") —argmm{g;( (T)+yk—0k> + Am ’x(r) +)\M2\ﬁ|yk}

S o) = STy, ymmp (x —2) for0<k<K.

We then discuss the stopping criterion for the ADMM algorithm to solve Trans-MT-Glasso
objective (3).
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Stopping criterion for ADMM. Following | , , Section 3.3.1], let €*”® > 0 be
an absolute tolerance and €' > 0 be a relative tolerance, we then define the feasibility tolerance
for primal feasibility condition €P™ > 0 and the feasibility tolerance for dual feasibility condition
edval > 0 at iteration ¢ as

) 3

P = P50V K + 1 + € max (Z Hﬂ(t
) 3
K 5\ 2
- <Z HQI(:) _ (Q(t) + Fl(:))HF> and
k=0
K ) 3
pdual _ ) (;0 H (Q(t) i F,(:)) - (Q(t—l) i F}(€t71)> ‘F>

be the primal and dual residuals at iteration t. We then stop the iteration if

) (2 o 4 10

K
dual _ cabs g /Te 7 4 rel (Z HZS)
k=0

Besides, let

ppri < P and Tdual < eduaI.

Stopping criterion for sub problem (54). The optimality conditions of problem (54) are

K

OEpZ (" + yp — k) + Aumd|x”|, (56)
k=0

0Oep(z” +y" —ck) + Amv/ardlyy| forall k=0,1,..., K. (57)

By the definition of ("), we always have ("), y(") satisfy (57). Besides, by definition of ("), we have

OEpZ ( ) 4 y{rY —ck> + Az ™). (58)

Thus, when
o 1
Py (y,?) —y )> =0,
k=0

we will have ("), (") satisfy (58). Let €P® > 0 be an absolute tolerance and e
tolerance, we then stop at iteration r if

K
3 ()

k=0

rel > 0 be a relative

sub

o =p

K K
< (K+ 1)6abs 4 el maX{Z ‘yl(cr) 7 Z ’yl(crl)‘} .— Sub
k=0 k=0

The final ADMM algorithm and the algorithm to solve the sub problem are summarized in
Algorithm 1 and Algorithm 2.

For the proximal gradient descent algorithm to solve D-Trace loss objective (7), the stopping
criterion is introduced as below and the detailed algorithm is described in Algorithm 3.
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Algorithm 1 ADMM for Trans-MT-GLasso

1: Input: {SWH A, p, €5, € and {ag} .

2. Initialize: Let Q©) = I, T\ = 0 and Z\”) = I, for all 0 < k < K. Let rP" = 4l — o0 and
Pl = ¢dual — 0 Let t = 0.

3: while rPti > ¢Pri gp pdual 5 cdual g4

4:
5:
6:

10:

11:

12:

t—t+1.
for k=0,1,...,K do
Let

O = 207D 4 (2D 4 1Y) — (ag/p)S0),

and compute the eigenvalue decomposition of pé',gtfl) as

pCUD _UAUT, A = diag ({Ai}jzl) .

Let
d
i /A2 +4
Q¥ = Udiag { TVALE po"“} U
2p .
=1
Let §
o =) vz,
end for
Solve

by Algorithm 1.

Let

2" =70V p () -2 — 1) for all 0 < k < K
Let

100 (o« r[E)

pri _ t

e (3o - (o0 )L

dual < M . (t-1) , -1\ ][> :

(@0 ) - (a0 s r)
and

. K 5 3 K 9
P = @P5dVEK + 1 4 € max Z HQ,(:) H , Z HQ(t) + F,(:) H
k=0 ¥ k=0 F

K 2\ 2
edual _ cabs g /7 4 erel (Z ‘Z]it)F> .
k=0

13: end while
14: Output: QF) = Q®) 4 F,(Ct) forall k =0,1,..., K.
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Algorithm 2 Solver of sub problem (54)

1: Input: ¢ = (co,c1,...,cx); Initial z(®) and {y,(co)}fzo; A, p and {ag e
2: Initialize: " = c0 and ¢*"P = 0. Define STy (-) as in (55). Let r = 0.
3: while P > ¢sUb do
4: r<—r+ 1.
5: Let
RS (r=1)
2 = STy ey | 77 2 (e —u ") ).
k=0

6: Let

y,(cr) = ST\ var/p (c;C — :1:(7')) forall 0 < k < K.
7 Let

X 1
rsub =p Z (y](:) _ ](:* )) ,

K
esub _ (K + l)eabs + ErelprnaX { Z ‘y](;)
k=0

< (r=1)
S \}.

8: end while
9: Output: z(") and {yz(:) £(=0'

Stopping criterion for proximal gradient. If T'® is the solution for (7), the optimization
criterion requires that

0e VLp(T®)+ A" .4 ‘r“)

1
Note that by the definition of I'® in (12), we have

; (59)

0er® — (F(t‘l) —yVLp (F(t‘l))) +a® g (r(” 1

which implies that

0e VLp(T®) + A% . 4 ‘F(t)‘l + % (p(t) - p(H)) _ [VLD (Fm) VL, (Fafl))] .
Thus, when

D _ '71] (1 1) —[vLp (1) = VLp (101

_ '717 (F(t) _ F(t71)> _ %f)(o) (F(t) _ F(tq)) (k) _ %i(k) (F(t) _ F(t*1)> $3(0)

F

F

is close to zero, we then have (59) hold approximately. Therefore, given an absolute tolerance
€ > 0 and a relative tolerance ¢'°' > 0, we then stop at iteration ¢ if
.

© < ma Lo pev] s (o vy so
n F
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Algorithm 3 Proximal Gradient Method for D-Trace Loss
1: Input: i(o)’ fl(k), )\{ﬂk), n, €S and €.

2: Initialize: T© =0, rP? = w0, P =0 and ¢t = 0.

3: while r” > P do
4
5

t—t+1
Let

A(t—l) — F(t—l) _ ,',IVLD (F(t—l))

_ -y {1 (SWPE-DEO 4 SOTE-DEM) _ (50 gw)} .
2

6 Let t) t—1 k t—1 t—1
Sz _[|A§‘l )\—A(F)WL'A;; )/|A§‘l ), I<jl<d

7 Let

0L (F(t) _ I‘(t—l)) _lso (I‘(t) _ F(t—l)) Sk _ Law (p(t) _ I‘(t—l)) $(0)

n 2 2 P

and

P = 3 4 el x max{ Hl“(t) pt- 1>H ‘ £O (1® —p-n) $® } .

F

8: end whileA
9: Output: W*) = ®),

I Minimax Optimal Rate for Differential Network Estimation

Differential network estimation aims to estimate the difference between two precision matrices with-
out first estimating the individual precision matrices. Although existing studies focus on providing
upper bounds for this problem | , , , , ], there is no
known matching lower bound, making the minimax optimal rate an open question. As a byproduct
of our analysis, in this section, we provide a minimax optimal rate for differential network estimation
problem under certain conditions. To the best of our knowledge, this is the first minimax optimal
guarantee towards this direction.

We start by formulating the problem setup. Note that we reintroduce some notation used in this
section to make it self-contained, and one should not confuse it with the notation used in the other
parts of the paper. Suppose that we have ny i.i.d. samples X1,..., X, ~ N(0, Q)_(l) and ny ii.d.
samples Y7,...,Y,, ~ N(0, Q;l). Let A := Qy — Qx be the differential network between Qx and
Qy. Our goal is to use samples from two populations to estimate A. In addition, we assume that
Qx and Qy belong to the following parameter space.

(Qx, Q) € M= {Qx,Qy € S 1 €7 < Yimin(Vx) < Ymax(Ux) < 2,
C1 < 'Ymin(QY) 7max(QY) Co, |A|0 h‘a |A|1 < CF}? (60)
where ¢1, ca, Cr > 0 are positive universal constants. The parameter space defined in (60) requires
that the smallest eigenvalues and the largest eigenvalues of {2 x and 0y are lower bounded and upper

bounded, respectively. Besides, we also require that the sparsity level of the differential network is
bounded by h, and the L; norm of the differential network is bounded by universal constant.
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We first present the minimax lower bound for the above estimation problem. We state the result
in the following theorem.

Theorem 8. Assume that

h log

d > 4h, hlogd > 8log3,

min {2,8(1 — 1), 8(1 — 2)2}, h 105(1

We then have
hlogd

min {nx,ny}

~ 2
min  sup UA - AH ] 2
A (Qx,Qy)eM F

Proof. Let Qx = Iz, note that
(I4,Qy) e M <= Qy € Go,

where Gy is defined in (23). Now that samples from population X are useless for estimating Qy-,
and we can only rely on samples from population Y to estimate Qy. By Theorem 5, we then have

min  sup [HA AH ] min sup E“Qy—Qy‘z] b hlogd'
eM F

A (Qx,ﬂy) QY QYEQZ nY

Similarly, we can show that

~ 2 hlogd
min  sup E “A — AH ] by Lg.
A (Qx,Qy)eM F nx
Combine the above two inequalities, we have the final result. |

Next, we derive the matching upper bound. Let A be the D-Trace loss estimator defined in (7),
and A(7) be the truncated version of A as defined in (62). Following directly from Theorem 13, we
then have the following theorem.

Theorem 9. Assume that Cr < d™, where Cr is the same universal constant used in (60). Let

logd
Ar =\ | =,
min {nx,ny}

where A\r is the penalization parameter of D-Trace loss. Then for any T = 73, we have

hlogd
min {’I’Lx,ny}'

E||A(r) - AR <
0 [H () HF]

Combine Theorem 8 and Theorem 9, we then have the final main result of this section.
Theorem 10. Assume that the conditions of Theorem 8 and Theorem 9 hold. We have

hlogd

min {nx,ny}

~ 2
min sup E [”A - AH ] =
A (Qx,Qy)eM F

J Upper Bound for Expected Error
In this section, we develop theoretical guarantees for the expected error. We start with the analysis

of the Trans-MT-Glasso. The subsequent theorem provides the expected error measured in the
Frobenius norm.
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Theorem 11. Suppose that Assumption 1 and Assumption 2 hold. Assume that 2(K +2) < d™
and N < d™, for some universal constants 11,7 > 0. In addition, assume that
log d <1

~

minogkgK ng

Letn=N/(K + 1), My, = Mq and My, = O(1). If Ay = +/logd/N, we have

| S| < (5 ) oea

Refer to the proof in Appendix K. The rate described in Theorem 11 consists of two parts. The
first part, which is of the order (slogd)/N, refers to the estimation of the shared component. The
second part, of the order (hlogd)/n, relates to the estimation of the individual components.

As discussed in Section 5.2, the differential network estimate T is considered the result of a
black-box algorithm with the presumption that its estimation errors are appropriately controlled.

Let Brp(R) = {A e R |A|, < R} be the ball with radius R. For 7 > 0 and 0 < k < K, we
define “

o _g®

Upy(r) € arg min |7~ ¥ HF (62)

\I/I(J’:())j(r) is utilized solely for theoretical reasons. Suppose that by choosing 7 appropriately, we have

U@g:; w>H ] < 3% (no, n, d, h, M) = g for all 0 < k < K. (63)
We define «
A S = (k
Q) = Y an (30 =00, () (64)
k=0

\i/g;))j(r) is defined in (62). Combining (63) with Theorem 11 yields the following theorem with

expected error upper bound for Trans-Glasso.

Theorem 12. If the conditions of Theorem 11 are satisfied and T is chosen so that (63) holds, we

have
[‘Qprm H ] < ) logd + Z ang

We then characterize gfv’“) in the case where the D-Trace loss estimator in (7) is used. Recall that

™) () is defined by (63).

proj

Theorem 13. Suppose that Assumption 1 and Assumption 2 hold. Assume that 2(K + 1) < d™,
N < d™ and Mr < d™ for some universal constants 11,7o,73 > 0. Let

)\(k) = Mp &.
r min {ng, no}

[H\p(k) w)” ] < Mghlogd

min {ng,ng}

Then, for any T = 73, we have

Proof. Note that |A|lp < |A|; for any matrix A. Thus we have |¥®)||p < |[T®)||; < 2Mr. The rest
of the proof is similar to the proof of Theorem 11. |
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By Theorem 13, we have
_(k) _ Mlg hlogd

T hin {ng,no}

for D-Trace loss estimator. Plugging the above results into Theorem 12, we then have the following
corollary.

Corollary 2. Let QO be obtained by Trans-Glasso (8) with the D-Trace loss estimator used in
Step 1. Suppose that Assumption 1 and Assumption 2 hold, and that the conditions in Theorem 11
and Theorem 13 are satisfied. If 2(K +2) < d™, N <d™, Mr < d™ for some universal constants

T1,Te, T3 > 0, and
log d (k) logd
A=Al ——. A\ = Mpy| ——— llkel|K
M N’ r T\ min {ng,no} forall k€ [K],

then for any T = T3, we have

50 (v _oo*| < (5 oy b
E[)Q (r) - Q H” N MR = MR- Jlogd. (65)

proj
The estimation error in (65) is comprised of three parts: shared component estimation, individual
component estimation, and differential network estimation. If 7 > ng and Mr is bounded by a

universal constant, the error scales as % + hloed - yyhen using only target samples, the lowest

error rate achievable is G184 oo stated in Theorem 4. Therefore, if N » ng, the error rate can be

significantly reduced compa;ed to the optimal rate obtained with only the target samples. Moreover,

as demonstrated in Section 5.3, the rate 21289 4 21ogd i« inimax optimal under certain conditions.
’ N no p

K Proof of Theorem 11

Note that for any matrix A € R?? we have |A[, < v/d|A,. Since by our assumptions that
|Q®) |, =0(1) and ”Svl(k) H = O(1), we thus have
2

6], ~0(a) wa 0], -0 (s)

For ¢ € (0,1], let

log(2 (K + 2)d2/6
> iy [P DTS

where C7 = 160 and C3 = My. Besides, by the proof of Theorem 1, when

log(2 (K +2)d?/6) _ 1
ming<k<x k2

)

then by (43), we have P{G(Am)} > 1 — §; or equivalently, we have P{G(Ay)} < &, where G(\y)
denotes the event that G(\y) does not hold.

Recall that by assumption we have 2 (K +2) < d™. Let 6 = d=™, where 7 will be specified
later, then by letting

B (r"+ 7 +2)logd
AMm = 0103\/ 5N , (66)
/
(r —i.-7'1+2)logd <17 (67)
ming<p<K Nk 2

48



we have P {G(\y)} < d~7'. Besides, by Section C.3, when (66)—(67) are true, G(Ay) then implies
that

K 2
S -] < 20
= F K
9C2C2(r'+1+2) (s h
< — + — | logd.
8 NTR)®

Note that

S lGm g
£ | 3o -]

K K
_P{GOW)IE [ a2 Q(’“)Hi GOwr) | + P{GOW)} E l > e 20— ¥ Hi Gw)
k=0 k=0
(68)
Given (66)—(67) are true, we have
X ~ 2 9C2C3(r"+11+2) (s h
(k) _ k) 1-3 1 2.z
E lz ak HQ Q HF GOw) | < < (N + n) log d. (69)

Besides, since |Q®) g, [Q®) ||z = O(d2) for all 0 < k < K, we have
K 2
5w 0] <
k=0 F

for some constant C’ > 0, and thus we have

P (G0w))E [ 3 e 0 — a0
k=0

GOw) | <Cd-d ™ =ca V.

By Assumption that we have N < d™ where 75 > 0, then when we choose 7’ such that
log (8C"/9C3C3(r' + 1 +2))

>+ 1+

logd ’
we then have
/ 9C2C3 (" + 1 +2) 1
rg-(r-1 ¢ PU1s L
¢ 8 N
9C2C3(r'+7m1+2) (s h
< 242 ) 1ogd,
8 I
which then implies that
S 6w o o ® o2
= k) ok - k) ok
(e} | S o0 - ow | <2 [ S -0 |

Combine the above inequality with (68) and (69), we finally have

| Sl a0 | <2 | Sl -0
k=0 ’ F h = * F

G(Am)

202 ( 1
< 18C7C5(1" + 11 + 2) i+2 log d
8 N n

s h
<[—=+-=]1 .
N(N—i_n) ogd
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