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Abstract

Precision matrix estimation is essential in various fields, yet it is challenging when
samples for the target study are limited. Transfer learning can enhance estimation accu-
racy by leveraging data from related source studies. We propose Trans-Glasso, a two-step
transfer learning method for precision matrix estimation. First, we obtain initial esti-
mators using a multi-task learning objective that captures shared and unique features
across studies. Then, we refine these estimators through differential network estimation
to adjust for structural differences between the target and source precision matrices.
Under the assumption that most entries of the target precision matrix are shared with
source matrices, we derive non-asymptotic error bounds and show that Trans-Glasso
achieves minimax optimality under certain conditions. Extensive simulations demon-
strate Trans-Glasso ’s superior performance compared to baseline methods, particularly
in small-sample settings. We further validate Trans-Glasso in applications to gene net-
works across brain tissues and protein networks for various cancer subtypes, showcasing
its effectiveness in biological contexts. Additionally, we derive the minimax optimal rate
for differential network estimation, representing the first such guarantee in this area.

1 Introduction

Estimating the precision matrix, i.e., the inverse covariance matrix, is a fundamental task in sta-
tistical analysis and has broad applications, including in portfolio optimization, speech recognition,
and genomics [Best and Grauer, 1992, Lauritzen, 1996, Yuan and Lin, 2007, Saon and Chien, 2011].
The precision matrix is closely tied to Gaussian graphical models: estimating the support of the pre-
cision matrix corresponds to uncovering the network structure of conditional dependencies between
multivariate normal variables [Lauritzen, 1996]. However, estimating a precision matrix accurately
is often challenging when the sample size is small compared to the dimension—a typical scenario in
high-dimensional settings.

In many applications, sample sizes are constrained for the target study of interest, yet data
from related studies may be available. Transfer learning [Pan and Yang, 2009] provides a promis-
ing approach in these scenarios by leveraging information from related source studies to improve
estimation accuracy in the target study. For example, in gene expression studies across different
tissue types, sample sizes may be small for specific tissues, but data from related tissues can help
improve estimates [Li et al., 2023a]. Similarly, protein network studies for different cancer subtypes
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can benefit from transfer learning, as leveraging data from related subtypes can enhance estimation
for a particular subtype with limited data [Peterson et al., 2015].

A critical aspect of transfer learning is establishing similarity between the target and source
tasks. Here, we assume that most entries of the target precision matrix are shared with those of the
source matrices, with only a few differences. Based on this assumption, we propose Trans-Glasso,
a novel two-step transfer learning method for precision matrix estimation. First, we obtain initial
estimators through a multi-task learning objective that captures shared and unique dependencies
across datasets. Second, we refine these estimators using differential network estimation to adjust
for differences between the target and source matrices [Zhao et al., 2014, Yuan et al., 2017].

We provide a theoretical analysis of Trans-Glasso, deriving non-asymptotic error bounds and es-
tablishing that the method achieves minimax optimality in a wide range of parameter regimes.
Through extensive simulations, we demonstrate that Trans-Glasso outperforms several baseline
methods, particularly in scenarios where the target sample size is small. We also apply Trans-
Glasso to gene networks across brain tissues and protein networks for various cancer subtypes,
showing its practical effectiveness in biological applications. Additionally, as a byproduct of our
analysis, we derive the minimax optimal rate for differential network estimation, to our knowledge,
the first of its kind.

1.1 Related Work

Precision matrix estimation. Estimation of sparse precision matrices in a single study is well
studied. Common methods include penalized M-estimator [Yuan and Lin, 2007, Friedman et al.,
2008, Rothman et al., 2008, Lam and Fan, 2009, Ravikumar et al., 2011] and constrained L1 mini-
mization [Cai et al., 2011, Ren et al., 2015, Cai et al., 2016b]. There is also extensive literature on
multi-task precision matrix estimation, which estimates multiple related but nonidentical precision
matrices from multiple studies [Guo et al., 2011, Danaher et al., 2014, Zhu et al., 2014, Mohan et al.,
2014, Lee and Liu, 2015, Cai et al., 2016a, Ma and Michailidis, 2016, Saegusa and Shojaie, 2016].
See Tsai et al. [2022] for a survey. While related to transfer learning, multi-task learning aims to
estimate parameters of all studies, whereas transfer learning only focuses on the target study.

Transfer learning. Transfer learning has a long history [Pan and Yang, 2009] and has been applied
in various contexts [Turki et al., 2017, Hajiramezanali et al., 2018, Bastani, 2021]. Recently, interest
in transfer learning for statistical problems has grown. Li et al. [2022], He et al. [2024] studied high-
dimensional linear regression. The fused regularizer in He et al. [2024] is similar to our multi-task
objective; however, He et al. [2024] focuses on linear regression, while we focus on precision matrix
estimation, making the techniques different. Li et al. [2023b], Tian and Feng [2023] studied high-
dimensional generalized linear regression. Pathak et al. [2022], Ma et al. [2023], Wang [2023], Ge
et al. [2024] addressed covariate shift. Cai and Wei [2021] studied nonparametric classification and
Cai et al. [2024a] investigated multi-armed bandit problems. Liu [2023] proposed a unified transfer
learning model for high-dimensional linear regression problems. Hanneke and Kpotufe [2019, 2022]
studied the transfer learning problem from a learning theory perspective. Lin and Reimherr [2022],
Cai et al. [2024b] studied transfer learning for functional data analysis.

The most relevant work to this paper is Li et al. [2023a], which also studied transfer learning
for precision matrix estimation. The key difference is the similarity assumption. Li et al. [2023a]
assumes that the divergence matrices between the target and source precision matrices are sparse. We
assume that most entries of the target precision matrix are shared across source precision matrices,
with few different entries. Although the assumption in Li et al. [2023a] is motivated by the KL
divergence between Gaussian distributions, ours is a structural assumption, making it applicable
beyond Gaussian data and easier to interpret. Consequently, our method differs significantly from
that of Li et al. [2023a].
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Differential Network Estimation. Our approach leverages differential network estimation tech-
niques, which aim to directly estimate the difference between two precision matrices without the
need to estimate the individual ones [Zhao et al., 2014, Yuan et al., 2017, Liu et al., 2014, Ma et al.,
2021]. Fazayeli and Banerjee [2016] explored this concept in the context of Ising models. Addition-
ally, Zhao et al. [2019, 2022] extended differential network estimation methods to functional data,
while Tugnait [2023] broadened its application to multi-attribute data.

1.2 Organization and Notation

The rest of the paper is organized as following. In Section 2, we introduce the problem setup. In
Section 3, we introduce the methodology of the paper. We then describe how to implement our
method in practice in Section 4. The theoretical results are developed in Section 5. Besides, we
implement extensive simulation experiments in Section 6. Furthermore, in Section 7, we apply our
method on two real-world datasets. Finally, we conclude our paper with Section 8. The technical
proofs and details about optimization algorithms are provided in the appendix.

Notation. For a vector v P R
d, we use }v}p to denote its Lp-norm. More specifically, we

have }v}p < přd
i<1 |vi|pq 1

p for 1 ď p ď 8, where }v}8 < maxi |vi|. For a matrix A P R
dˆd,

we use | ¨ | to denote its elementwise norm and } ¨ } to denote its operator norm. For exam-

ple, |A|1 < řd
i<1

řd
j<1 |Aij |, |A|0 < řd

i<1

řd
j<1 1 tAij ‰ 0u, |A|8 < max1ďi,jďd |Aij |; }A}1 <

max1ďjďd

řd
i<1 |Aij |, }A}8 < max1ďiďd

řd
j<1 |Aij |, and }A}2 denote the largest singular value of

A. We use }A}F < přd
i<1

řd
j<1 |Aij |2q1{2 to denote the Frobenius norm of A. In addition, we use

xA,By < trpAJBq < ř
i,j AijBij for A,B P R

dˆd to define the inner product between two matrices.

We use vecpAq to denote the d2-vector obtained by stacking the columns of A. When A is sym-
metric, we let γminpAq and γmaxpAq denote its smallest and largest eigenvalue. For A P R

n1ˆn2 and
B P R

m1ˆm2 , we let A b B < rAijBlmsi,j,l,m P R
n1m1ˆn2m2 denote the Kronecker product of two

matrices. We define Sdˆd as the set of symmetric matrices with dimension d. The universal constants
may vary from one line to another without further clarification. Finally, following Ravikumar et al.
[2011], we say a random vector X P R

d with ErXs < 0 is sub-Gaussian if there exists a constant
σ ą 0 such that

E

”
exp

´
λXj{

a
Σjj

¯ı
ď exp

`
σ2λ2{2

˘
for all λ P R and 1 ď j ď d,

where Σ < CovpXq.
In addition, we use the following standard notation in the paper. For two positive sequences

tfpnquně1 and tgpnquně1, fpnq < Opgpnqq or fpnq À gpnq means that there exists a universal
constant c ą 0 such that fpnq ď cgpnq holds for sufficiently large n; fpnq < Ωpgpnqq or fpnq Á gpnq
means that there exists a universal constant c ą 0 such that fpnq ě cgpnq holds for sufficiently large
n; fpnq < Θpgpnqq or fpnq 4 gpnq means that there exist universal constants c1, c2 ą 0 such that
c1gpnq ď fpnq ď c2gpnq holds for sufficiently large n; fpnq < opgpnqq indicates that fpnq{gpnq Ñ 0

as n Ñ 8.

2 Problem Setup

Imagine that we observe n0 i.i.d. samples txp0q
i un0

i<1 :< D0 from a sub-Gaussian target distribution

P0. Each sample x
p0q
i P R

d is assumed to have zero mean and covariance matrix Σp0q. Our goal is

to estimate the target precision matrix Ωp0q <
 
Σp0q(´1

. Additionally, we have access to K sub-

Gaussian source distributions tPkuKk<1, each with nk i.i.d. samples txpkq
i unk

i<1 :< Dk. For 1 ď k ď K,

each x
pkq
i P R

d also has zero mean, covariance matrix Σpkq, and corresponding precision matrix

3



Figure 1: Illustration of Assumption 1. The target precision matrix, Ωp0q, is shown alongside two
source precision matrices, Ωp1q and Ωp2q. Black crosses represent the shared entries across the
matrices, while colored shapes indicate individual, unique entries.

Ωpkq <
 
Σpkq(´1

. The goal is to leverage samples from both the target and source distributions to

accurately estimate Ωp0q.
To facilitate transfer learning, we assume structural similarity between the target and source

precision matrices, whereby most entries in Ωp0q are shared with those in Ωpkq, with relatively few
differences. This assumption enables us to efficiently utilize source samples to enhance estimation
of the target precision matrix.

Formally, we characterize the relationship between the target and source precision matrices using
the following assumption.

Assumption 1. For each 0 ď k ď K, there exists a shared component Ω9 and a unique component

Γpkq9 with disjoint supports such that

Ωpkq < Ω9 ` Γpkq9, (1)

where |Ω9|0 ď s, |Γpkq9|0 ď h, and |Γpkq9|1 ď MΓ. The sparsity parameters s and h satisfy s " h,

indicating that the majority of the structure is shared, while unique components are minimal.

See Figure 1 for a visual illustration of Assumption 1.

Assumption 1 is inspired from the assumptions widely used in the differential network estimation
literature [Zhao et al., 2014, Yuan et al., 2017, Zhao et al., 2022]. To see this connection, for each
1 ď k ď K, define Ψpkq < Ωpkq ´Ωp0q to be the differential network between the target Ωp0q and the
source Ωpkq. Two immediate implications of Assumption 1 are

ˇ̌
ˇΨpkq

ˇ̌
ˇ
0

ď 2h, and
ˇ̌
ˇΨpkq

ˇ̌
ˇ
1

ď 2MΓ, for all 1 ď k ď K.

This matches exactly Condition 1 in the paper Zhao et al. [2014].
In addition, Assumption 1 is naturally interpretable within Gaussian graphical models. Suppose

we have an undirected graphical model G < pV,Eq where nodes represent variables and edges
represent conditional dependencies. In this model, an edge exists between nodes i and j if and only

if Ω
pkq
ij ‰ 0 [Lauritzen, 1996]. Under Assumption 1, the target precision matrix Ωp0q and the source

matrices
 
Ωpkq( share a large subset of edges, with only a small number of unique edges in each

source, corresponding to sparse deviations Ψpkq.
Last but not least, we contrast Assumption 1 with the similarity assumptions based on divergence

measures, used in Li et al. [2023a]. Li et al. [2023a] assumes that the divergence matrix

Υpkq < Ωp0qΣpkq ´ Id (2)
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is sparse. However, our structural approach offers broader applicability beyond Gaussian data, as it
does not rely on assumptions specific to Gaussian graphical models and provides a straightforward
interpretation of shared structure. See a more detailed comparison in Appendix A.

Next, we discuss estimating Ωp0q using samples from both target and source distributions under
Assumption 1.

3 Trans-Glasso Algorithm

In this section, we introduce Trans-Glasso, our transfer learning method for precision matrix esti-
mation, which consists of two main steps. First, we initialize estimators of the precision matrices by
solving a multi-task learning problem. Second, we refine these estimators using differential network
estimation to adjust for structural differences between the target and source matrices.

3.1 Initialization via Multi-Task Learning

To leverage shared structure across the target and source matrices, we begin by jointly estimating
precision matrices for both the target and source distributions. Based on Assumption 1, we employ
a multi-task variant of the graphical lasso estimator [Friedman et al., 2008], which we refer to as
Trans-MT-Glasso (Transfer Multi-Task Graphical lasso).

Let pΣpkq < 1
nk

řnk

i<1 x
pkq
i x

pkqJ
i denote the sample covariance matrix for 0 ď k ď K. We define

Θ :<
´
Ω,

 
Γpkq(K

k<0

¯
for the shared component and the sparse unique components. The Trans-MT-

Glasso objective is then given by

pΘ <
´
pΩ, tpΓpkquKk<0

¯
P arg min

ΘPCpMopq
tL pΘq ` λMΦ pΘqu , (3)

where

L pΘq :<
Kÿ

k<0

αk

!A
Ω ` Γpkq, pΣpkq

E
´ log det

´
Ω ` Γpkq

¯)
, (4)

Φ pΘq :< |Ω|1 `
Kÿ

k<0

?
αk

ˇ̌
ˇΓpkq

ˇ̌
ˇ
1
, (5)

C pMopq :<
"
Θ <

ˆ
Ω,

!
Γpkq

)K

k<0

˙
: Ω ` Γpkq ą 0 and

›››Ω ` Γpkq
›››
2

ď Mop for all 0 ď k ď K

*
.

(6)

Here, αk < nk{N with N < řK
k<0 nk controls the contribution of each source, λM ą 0 is a regu-

larization parameter, and Mop ą 0 is a predefined constant. The constraint
››Ω ` Γpkq››

2
ď Mop is

primarily included to facilitate theoretical analysis. While we theoretically need to set Mop to be
a sufficiently large constant, as detailed in a later section, in practice, we simply set Mop < 8 to
effectively remove this constraint.

The first term of (3) measures parameter fitness with observed data, while the second term
ΦpΘqpromotes sparsity in both the shared and individual components. The sparsity penalization
level for Γpkq is proportional to

a
nk{N , a factor that is crucial to balance contributions from the

target and sources. See Section 5.1 for details.
In the end, we construct the initial estimators of Ωpkq as qΩpkq < pΩ ` pΓpkq for 0 ď k ď K.
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3.2 Refinement via Differential Network Estimation

To further enhance accuracy, we refine these initial estimators by estimating the differential networks
Ψpkq < Ωpkq ´ Ωp0q, which capture the structural differences between each source and the target.
This refinement step corrects for potential biases in the initial estimates.

Estimating Ψpkq has been extensively studied in the differential network estimation literature [Zhao
et al., 2014, Yuan et al., 2017], with a variety of good estimators. For instance, Yuan et al. [2017]
proposed estimation by solving

pΨpkq P argmin
Ψ

LD

´
Ψ; pΣp0q, pΣpkq

¯
` λ

pkq
Ψ |Ψ|1 , (7)

where

LD

´
Ψ; pΣp0q, pΣpkq

¯
< 1

4

´A
pΣp0qΨ,ΨpΣpkq

E
`
A
pΣpkqΨ,ΨpΣp0q

E¯
´
A
Ψ, pΣp0q ´ pΣpkq

E
,

and λ
pkq
Ψ is a tuning parameter.

For our purpose, any reasonable differential network estimator can correct for the bias. Thus,
we treat differential network estimation as a black-box algorithm, and we obtain the estimates pΨpkq.

With the initial estimator qΩpkq and refined differential network estimators pΨpkq, we construct the
final transfer learning estimator for Ωp0q as

pΩp0q <
Kÿ

k<0

αk

´
qΩpkq ´ pΨpkq

¯
, (8)

where pΨp0q < 0 by definition. The final estimator Trans-Glasso (Transfer learning Graphical lasso)
integrates both shared information and source-specific refinements, yielding a transfer learning ap-
proach that leverages structural similarities across datasets for improved precision matrix estimation.

Compared to Li et al. [2023a], our method is more sample efficient as it does not require sample
splitting between the steps.

4 Implementation in Practice

In this section, we provide practical guidelines for implementing Trans-Glasso, including optimization
techniques, hyperparameter selection, and a method for identifying the informative set when not all
sources are useful.

4.1 Optimization Algorithms

To implement Trans-Glasso, we first solve the Trans-MT-Glasso objective from Equation (3) to
obtain initial estimates for Ω9 and Γpkq9. This is a constrained optimization problem that can be
efficiently solved using the Alternating Direction Method of Multipliers (ADMM) [Boyd et al., 2011].
In this section, we slightly abuse notation by using superscripts to denote the iteration round and
subscripts to represent the population.

Define

X <

»
———–

Ω0

Ω1

...
ΩK

fi
ffiffiffifl P R

pK`1qdˆd, Y <

»
—————–

Ω

Γ0

Γ1

...
ΓK

fi
ffiffiffiffiffifl

P R
pK`2qdˆd,

6



and

B <

»
———–

Id Id 0 ¨ ¨ ¨ 0

Id 0 Id ¨ ¨ ¨ 0
...

...
...

...
Id 0 0 ¨ ¨ ¨ Id

fi
ffiffiffifl P R

pK`1qdˆpK`2qd.

With this notation, the objective in Equation (3) can be reformulated as

minimize fpXq ` gpY q, subject to X < BY,

where

fpXq <
Kÿ

k<0

fkpΩkq, fkpΩkq < αk

!
´ log det pΩkq `

A
pΣpkq,Ωk

E)
` I pΩk ą 0q , 0 ď k ď K,

gpY q < λM |Ω|1 ` λM

Kÿ

k<0

?
αk |Γk|1 ,

where I pΩ ą 0q < 0 if Ω ą 0 and I pΩ ą 0q < 8 otherwise.
The augmented Lagrangian for this problem is:

LρpX,Y, Zq < fpXq ` gpY q ` ρ xZ,X ´ BY y ` ρ

2
}X ´ BY }2F ,

where

Z <

»
———–

Z0

Z1

...
ZK

fi
ffiffiffifl P R

pK`1qdˆd,

is a dual variable and ρ isa penalty parameter.

After initializing Y p0q and Zp0q such that Ωp0q, Γp0q
k , and Z

p0q
k are symmetric, ADMM iteratively

updates:

Xptq < argmin
X

Lρ

´
X,Y pt´1q, Zpt´1q

¯
, (9)

Y ptq P argmin
Y

Lρ

´
Xptq, Y, Zpt´1q

¯
, (10)

Zptq < Zpt´1q ` ρ
´
Xptq ´ BY ptq

¯
. (11)

Note that (11) is equivalent to Z
ptq
k < Z

pt´1q
k `ρ

´
Ω

ptq
k ´ Ωptq ´ Γ

ptq
k

¯
for 0 ď k ď K. See Appendix H

for detailed steps and stopping criteria.
To refine the initial estimators, we solve the D-Trace loss objective (7) for differential network

estimation. Here, we use a different proximal gradient descent algorithm [Parikh and Boyd, 2014]

following Zhao et al. [2022, 2019]. For simplicity, let LDpΨq :< LD

´
Ψ ; pΣp0q, pΣpkq

¯
for the chosen k.

In iteration t, we update Ψpt´1q by solving

Ψptq < argmin
Ψ

"
1

2

›››Ψ ´
´
Ψpt´1q ´ η∇LD

´
Ψpt´1q

¯¯›››
2

F
` η ¨ λpkq

Ψ |Ψ|1
*
, (12)

where η is a user-specified step size. Note that ∇LDp¨q is Lipschitz continuous with constant }pΣp0q b
pΣpkq}2 < }pΣp0q}2}pΣpkq}2. Thus, for 0 ă η ď }pΣp0q}´1

2 }pΣpkq}´1
2 , the proximal gradient method

converges [Beck and Teboulle, 2009]. The update in (12) has a closed-form solution:

Ψ
ptq
jl <

”ˇ̌
ˇApt´1q

jl

ˇ̌
ˇ ´ λ

pkq
Ψ η

ı
`

¨ Apt´1q
jl {

ˇ̌
ˇApt´1q

jl

ˇ̌
ˇ , 1 ď j, l ď d, (13)

7



where Apt´1q < Ψpt´1q ´ η∇LDpΨpt´1qq and x` < maxt0, xu, x P R.
Details on the optimization algorithms, including stopping criteria and descriptions, are in Sec-

tion H.

4.2 Hyperparameter Selection

This section covers the selection of hyperparameters, specifically λM in Trans-MT-Glasso (3) and

λ
pkq
Ψ in D-Trace loss (7).

We choose λ
pkq
Ψ for k P rKs to minimize the Bayesian information criterion (BIC) of D-Trace loss:

BIC
pkq
Ψ < pn0 ` nkq

››››
1

2

´
pΣp0qpΨpkqpΣpkq ` pΣpkqpΨpkqpΣp0q

¯
´ pΣp0q ` pΣpkq

››››
F

`log pn0 ` nkq¨
ˇ̌
ˇpΨpkq

ˇ̌
ˇ
0
, (14)

following Yuan et al. [2017]. After selecting λ
pkq
Ψ and obtaining pΨpkq for all k P rKs, pΩp0q depends on

λM. Recall that N < řK
k<0 nk. We choose λM to minimize the BIC of Trans-Glasso, defined as

BICTrans < N ¨
”A

pΣp0q , pΩp0q
E

´ log det
´
pΩp0q

¯ı
` logN ¨

ˇ̌
ˇpΩp0q

ˇ̌
ˇ
0
. (15)

4.3 Identifying the Informative Set

In practice, it is not necessarily true that all source distributions are structurally similar to the
target. We propose a data-driven method to estimate the informative set A Ď rKs.

We obtain differential network estimations pΨpkq for all k P rKs, with the hyperparameter λ
pkq
Ψ

chosen by minimizing the BIC criterion in (14). We then rank sources according to the sparsity level

of pΨpkq. Let Rk be the rank of the source k. For any 1 ď k1, k2 ď K, |pΨpk1q|0 ď |pΨpk2q|0 implies
Rk1

ď Rk2
. After ranking sources, we input samples into Trans-Glasso and determine the number

of sources based on the cross-validation (CV) error. For Kchosen < 0, 1, . . . ,K, we select sources k

with Rk ď Kchosen. When Kchosen < 0, we obtain pΩp0q from graphical lasso [Friedman et al., 2008]
using the target data alone. We then compute the CV error of Kchosen by the following procedure:

(i) We randomly split the target samples into M -fold.

(ii) For m < 1, . . . ,M , we select the m-th fold as the validation set, Dval, and the rest as the
training set. We input the training set and chosen source samples into Trans-Glasso to obtain
pΩp0q. We compute the CV error for the m-th fold as

CVm < 1

2d

#
1

|Dval|
ÿ

iPDval

tr
´
x

p0q
i x

p0qJ
i

pΩp0q
¯

´ log det
´
pΩp0q

¯+
` 1

2
log π, (16)

and define CVpKchosenq < 1
M

řM
m<1 CVm.

We set the estimated informative set as pA < tk P rKs : Rk ď K9
chosenu, where K9

chosen <
argmink<0,1,...,K CVpkq. Source samples from pA are used to estimate Ωp0q. If pA < H, we obtain
pΩp0q via graphical lasso on target samples. We note that sample splitting is not necessary between
estimating A and Ωp0q. This procedure is called Trans-Glasso-CV. We demonstrate its empirical
performance in Section 6.

5 Theoretical Analysis

In this section, we establish theoretical guarantees for the Trans-Glasso algorithm. We begin by
analyzing the initial estimation step using Trans-MT-Glasso, followed by an error bound for the
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complete Trans-Glasso estimator. Finally, we derive a minimax lower bound, demonstrating that
Trans-Glasso is minimax optimal in a wide range parameter regimes.

To simplify the theoretical statements, we assume the following condition throughout this section.

Assumption 2. Assume that

MΣ :< max
0ďkďK

ˇ̌
ˇΣpkq

ˇ̌
ˇ
8

< Op1q and MΩ :< max
0ďkďK

›››Ωpkq
›››
2

< Op1q. (17)

5.1 Analysis of Trans-MT-Glasso

We first provide error bounds for the initial multi-task estimation step, Trans-MT-Glasso. This
method estimates both the shared precision matrix component Ω9 and the deviation matrices Γpkq9

based on the structural similarity outlined in Assumption 1.
The following theorem provides a high probability upper bound on the Frobenius norm error for

the Trans-MT-Glasso estimator. Recall that N < řK
k<0 nk.

Theorem 1. Suppose Assumptions 1 and 2 hold. Fix a failure probability δ P p0, 1s. Suppose that

the local sample size is large enough so that

min
0ďkďK

nk ě 2 logp2 pK ` 2q d2{δq. (18)

Set Mop ě MΩ and the penalty parameter λM such that

λM ě 160MΣ

c
logp2 pK ` 2q d2{δq

2N
. (19)

Then with probability at least 1 ´ δ, the estimator satisfies

Kÿ

k<0

αk}qΩpkq ´ Ωpkq}2F ď 18 ps ` pK ` 1qhqλ2
M

κ2
, (20)

where κ < p2MΩ ` Mopq´2
.

Note that the loss function defined in (4) is not strong convex with respect to the Euclidean norm.
This prevents us from obtaining error guarantee for individual prevision matrix. Nevertheless, we
make a key observation that the loss function exhibits strong convexity with respect to the weighted
norm used in (20). See Appendix C for a detailed proof.

When we choose λM 4
a

plog dq{N , the rate shown in Theorem 1 consists of two parts. The first
part, which is of the order ps log dq{N , refers to the estimation error of the shared component. In
words, Trans-Glasso uses all the samples to estimate the shared component. The second part, of the
order pKh log dq{N , relates to the estimation error of the individual components, i.e., on average,
there are N{K samples to estimate each individual ocmponent.

5.2 Analysis of Trans-Glasso

After the initial estimates are obtained via Trans-MT-Glasso, the differential network estimation step
refines these estimates by isolating the deviations Ψpkq. This yields the final Trans-Glasso estimator
pΩp0q.

As discussed in Section 3, any differential network estimator can be used in Step 2 for refinement.
The differential network estimates pΨpkq are treated as the result of a black-box algorithm, obeying

›››pΨpkq ´ Ψpkq
›››
F

À g
pkq
F pn0, nk, d, h,MΓ, δq :< g

pkq
F (21)

9



holds simultaneously for all k < 1, . . . ,K with probability at least 1 ´ δ. We now establish a non-
asymptotic error bound for this estimator, which combines the initial estimation error with the error
from differential network estimation.

Theorem 2. Let pΩp0q be the Trans-Glasso estimator obtained in Equation (8). Under the same con-

ditions as in Theorem 1, and assuming Equation (21) holds for the differential network estimators.

Then with probability at least 1 ´ 2δ, one has

›››pΩp0q ´ Ωp0q
›››
2

F
À
ˆ

s

N
` h

sn

˙
logp2 pK ` 2q d2{δq `

Kÿ

k<0

αkg
pkq
F .

The error rates depend on differential network estimators’ performance. Next, we provide specific
error rates using the D-Trace loss estimator.

5.2.1 A differential network estimator: D-Trace loss minimization

We characterize g
pkq
F in the case when the D-Trace loss estimator in (7) is used. We use the tighter

D-Trace loss estimator analysis from Zhao et al. [2019, 2022], Tugnait [2023].
We then have the following theorem providing a high-probability error upper bound for D-Trace

loss estimator. The theorem is derived directly from Theorem 7 in Appendix D.

Theorem 3. Suppose that Assumptions 1-2 hold. Assume that min0ďkďK nk " h2 log
`
2pK ` 1qd2{δ

˘
.

Set

λ
pkq
Ψ < C

d
log p2pK ` 1qd2{δq

mintnk, n0u for all k P rks

for some large constant C ą 0. Then

›››pΨpkq ´ Ψpkq
›››
F

À
?
hMΓ

d
log p2pK ` 1qd2{δq

mintnk, n0u
holds simultaneously for all k P rKs with probability at least 1 ´ δ.

By Theorem 3, we have

g
pkq
F <

?
hMΓ

d
log p2pK ` 1qd2{δq

mintnk, n0u
for D-Trace loss estimator. Plug the above results into Theorem 2, we have the following corollary.

Corollary 1. Let pΩp0q be obtained by Trans-Glasso (8) with the D-Trace loss estimator used in

Step 1. Instate the assumptions in Theorems 1 and 3. For a given δ P p0, 1s, letting

λM 4
c

logp2 pK ` 2q d2{δq
N

, λ
pkq
Ψ 4 MΓ

d
log p2pK ` 1qd2{δq

mintnk, n0u for all k P rKs,

we have that

›››pΩp0q ´ Ωp0q
›››
F

À
˜c

s

N
` p1 ` MΓq

c
h

sn ` MΓ

c
h

n0

¸
a
logp2 pK ` 2q d2{δq

holds with probability at least 1 ´ 2δ.

The estimation error consists of three parts: shared component estimation, individual component
estimation, and differential network estimation. If sn ě n0 and MΓ is bounded by a universal

constant, the error scales as
b

s log d
N

`
b

h log d
n0

. When N " n0, the error rate can be significantly

reduced compared to the rate obtained by only using target samples, which is in the order ofb
s log d
n0

`
b

h log d
n0

.
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5.3 Minimax Lower Bounds and Optimality

To evaluate the theoretical performance of Trans-Glasso, we derive the minimax lower bound for
estimating the target precision matrix Ωp0q over the parameter space defined by Assumptions 1-2.
More precisely, we define the relevant parameter space:

G ps, hq :<
"!

Ωpkq
)K

k<0
: Ωpkq ą 0, Ωpkq < Ω9 ` Γpkq9, supp pΩ9q X supp

´
Γpkq9

¯
< H @0 ď k ď K,

|Ω9|0 ď s, max
0ďkďK

ˇ̌
ˇΓpkq9

ˇ̌
ˇ
0

ď h, max
0ďkďK

ˇ̌
ˇΓpkq9

ˇ̌
ˇ
1

ď MΓ, max
0ďkďK

›››Ωpkq
›››
2

ď MΩ, max
0ďkďK

ˇ̌
ˇΣpkq

ˇ̌
ˇ
8

ď MΣ

*
,

(22)

where MΓ ą 0, MΩ,MΣ ą 1 are universal constants.
Intuitively, the performance limit of any transfer learning estimator is dictated by the information-

theoretic lower bounds of estimating two parts, namely the shared component and the individual
component. Hence, to derive the minimax lower bound for the transfer learning estimator, we need
to provide lower bounds for estimating these two parts.

Lower bound for estimating shared component. The following theorem provides the minimax
lower bound for estimating the shared component when all the distributions are the same.

Theorem 4. Assume that we have n i.i.d. samples X1, . . . , Xn from Np0,Ω´1q, where

Ω P G1 <
 
Ω P S

dˆd : Ω ą 0, |Ω|0 ď s, 0 ă c1 ď γminpΩq ď γmaxpΩq ď c2 ă 8
(
,

and c1, c2 are universal constants. In addition, assume that s ě d ě c1nβ for some universal

constants β ą 1 and c1 ą 0, and

rs{ds < o

˜
n

plog dq
3
2

¸
.

We then have

inf
pΩ

sup
ΩPG1

E

„›››pΩ ´ Ω
›››
2

F


Á s log d

n
.

The proof is based on [Cai et al., 2016b, Theorem 6.1]. See Appendix E for more details. By
Theorem 4, it is easy to see that the squared Frobenius error of estimating the shared component is
lower bounded by s log d{N where N is the total number of samples.

Lower bound for estimating the individual components. We also provide a lower bound
for estimating the individual component. When Ωpkq < Id for all 1 ď k ď K and Ωp0q < Id `∆ with
diagp∆q < 0, the source samples are not helpful to estimate Ωp0q at all. Thus, the minimax lower
bound for estimating ∆ provides a valid minimax lower bound for the transfer learning problem.

Theorem 5. Assume that we have n i.i.d. samples X1, . . . , Xn from Np0,Ω´1q, where

Ω P G2 <
 
Ω P S

dˆd : Ω ą 0, Ω < Id ` ∆, ∆jj < 0 for all 1 ď j ď d,

|∆|0 ď h, |∆|1 ď CΓ, 0 ă c1 ď γminpΩq ď γmaxpΩq ď c2 ă 8u ,
(23)

where CΓ ą 0, c1 ă 1 and c2 ą 1 are constants. In addition, assume that

d ě 4h, h log d ě 8 log 3,
h log d

n
ď min

 
2, 8p1 ´ c1q2, 8p1 ´ c2q2

(
, h

c
log d

n
ď 4CΓ. (24)

We then have

inf
pΩ

sup
ΩPG2

E

„›››pΩ ´ Ω
›››
2

F


Á h log d

n
.
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See Appendix F for the proof, which relies on a novel construction of the packing set of the parameter
space and on the celebrated Fano’s method [Wainwright, 2019, Section 15.3].

It is worth noting that Theorem 5 also provides a minimax lower bound for estimating the
differential network ΩX ´ ΩY for two precision matrices ΩX and ΩY when the L1-norm of the
differential network is bounded. To our knowledge, this is also the first lower bound for differential
network estimation [Zhao et al., 2014, Yuan et al., 2017]. As a result, we can derive the first minimax
optimal rate for differential network estimation. See Appendix I for a more detailed discussion.

Combining pieces together. Combining Theorem 4 and Theorem 5, we have the following
lower bound for any transfer learning estimator.

Theorem 6. Suppose that we have nk i.i.d. samples from a sub-Gaussian distribution Pk with zero

mean and precision matrix Ωpkq for all 0 ď k ď K. Besides, assume that s ě d ě c1Nβ for some

universal constants β ą 1, c1 ą 0 and

rs{ds < o

˜
N

plog dq
3
2

¸
.

In addition, assume that

d ě 4h, h log d ě 8 log 3, h

c
log d

n0

ď 4MΓ,
h log d

n0

ď min

#
2, 8 p1 ´ MΩq2 , 8

ˆ
1 ´ 1

MΣ

˙2
+
,

where MΓ ą 0,MΩ,MΣ ą 1 are universal constants defined in (22). We then have

inf
pΩ

sup
tΩpkquK

k“0
PGps,hq

E

„›››pΩ ´ Ωp0q
›››
2

F


Á s log d

N
` h log d

n0

.

Theorem 6 demonstrates that Trans-Glasso achieves minimax optimality for the parameter space
specified in (22) when sn ě n0. The obtained minimax optimal rate is reasonable, considering we have
N samples for estimating the shared component with s non-zero entries and n0 samples for estimating
the individual component with h non-zero entries. Furthermore, from a practical viewpoint, the rate
suggests that the target sample size only needs to be sufficiently large in relation to the sparsity
level h of the individual component. In contrast, if we only have target samples, the target sample
size needs to be large enough to match the sparsity level s ` h of the entire precision matrix, which
can be significantly larger.

6 Simulations

In this section, we demonstrate the empirical performance of Trans-Glasso through a series of sim-
ulations. We evaluate its accuracy in comparison with several baseline methods under different
settings, including varying sample sizes and sparsity levels.

We set the dimensionality d < 100 and the number of source distributions K < 5 for all experi-
ments. In each experiment, we vary parameters such as the target sample size n0, the source sample
size nk < nsource, and the sparsity level h to assess the robustness of Trans-Glasso across diverse
conditions. The data are simulated under three different models, each reflecting a specific structure
for the shared and individual components of the precision matrices.

12



150 300 500 750 1000 1200

n0

0.10

0.15

0.20

0.25

0.30

‖Ω̂
−
Ω

(0
) ‖

F
/‖
Ω

(0
) ‖

F

Experiment 1

750 1000 1500 2000 2500

nsource

0.12

0.14

0.16

0.18

0.20

0.22

0.24

‖Ω̂
−
Ω

(0
) ‖

F
/‖
Ω

(0
) ‖

F

Experiment 2

10 20 30 40 50

h

0.10

0.15

0.20

0.25

0.30

0.35

‖Ω̂
−
Ω

(0
) ‖

F
/‖
Ω

(0
) ‖

F

Experiment 3

10 20 30 40 50

h

8

10

12

14

16

18

20

‖
Ω̂
−
Ω

(0
) ‖

F

Experiment 4

Model I

Glasso-Target Glasso-Pooled Trans-CLIME Trans-Glasso

Figure 2: Simulation results for Model I. The default setting is n0 < 300, nsource < 1000 and h < 40.
In the first experiment, we increase n0 while fixing nsource and h. In the second experiment, we
increase nsource while fixing n0 and h. In the third experiment, we increase both n0 and nsource

while increasing h. More specifically, we let nsource < 3n0, and n0 < 70 when h < 10, n0 < 150

when h < 20, n0 < 300 when h < 30, n0 < 600 when h < 40 and n0 < 1200 when h < 50. In the
fourth experiment, we fix both n0 and nsource while increasing h. Each dot represents the empirical
mean across 30 repetitions and the vertical bar represents Mean ˘ 2?

30
ˆ Standard Error.
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Figure 3: Simulation results for Model II. The default setting is n0 < 750, nsource < 2000 and
h < 40. In the first experiment, we increase n0 while fixing nsource and h. In the second experiment,
we increase nsource while fixing n0 and h. In the third experiment, we increase both n0 and nsource

while increasing h. More specifically, we let nsource < 3n0, and n0 < 100 when h < 20, n0 < 200

when h < 30, n0 < 300 when h < 40, n0 < 500 when h < 50, n0 < 800 when h < 60, n0 < 1000

when h < 70 and n0 < 1200 when h < 80. In the fourth experiment, we fix both n0 and nsource

while increasing h. Each dot represents the empirical mean across 30 repetitions and the vertical
bar represents Mean ˘ 2?

30
ˆ Standard Error.
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Figure 4: Simulation results for Model III. The default setting is n0 < 150, nsource < 1000 and
h < 40. In the first experiment, we increase n0 while fixing nsource and h. In the second experiment,
we increase nsource while fixing n0 and h. In the third experiment, we increase both n0 and nsource

while increasing h. More specifically, we let nsource < 4n0, and n0 < 15 when h < 20, n0 < 30 when
h < 30, n0 < 80 when h < 40, n0 < 300 when h < 50, and n0 < 1000 when h < 60. In the fourth
experiment, we fix both n0 and nsource while increasing h. Each dot represents the empirical mean
across 30 repetitions and the vertical bar represents Mean ˘ 2?

30
ˆ Standard Error.
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Figure 5: Simulation results when the informative set A is unknown. We set n0 < 300 and nsource <
1000 for Model I; n0 < 750 and nsource < 2000 for Model II; and n0 < 300 and nsource < 1000

for Model III. Each dot represents the empirical mean across 30 repetitions and the vertical bar
represents Mean ˘ 2?

30
ˆ Standard Error.

6.1 Data Generation Models

We generate data from three distinct models to assess the flexibility of Trans-Glasso. Each model
starts with a shared component, followed by individual components. The final precision matrices
are made positive definite by adding a diagonal matrix. Specifically, each model is set as follows.

• Model I: The shared component is a banded matrix with bandwidth 1, where each entry Ω̃ij <
5ˆ 0.6|i´j|

1p|i´ j| ď 1q for 1 ď i, j ď d. For a given h and each k < 0, 1, . . . ,K, we uniformly
choose rh{2s entries pi, jq such that 1 ď i ď td

2
u and td

2
u ` 1 ď j ď d, denoted as SΓpkq,up.

We let Γ̃
pkq
ij < uij1tpi, jq P SΓpkq,upu, 1 ď i, j ď d, where uij ’s are from Unifr´3, 3s. Then

Γpkq9 < Γ̃pkq `pΓ̃pkqqJ. Finally, we let Ωpkq < Ω̃`Γpkq9 `σId, where σ ensures γminpΩpkqq ě 0.1

for 0 ď k ď K.

• Model II: Model II is similar to Model I but with a wider bandwidth of 5, introducing a more
connected structure in the shared component.

• Model III: We generate the shared component from an Erdos–Renyi graph. Specifically, let
Ω̃ii < 5, 1 ď i ď d, and Uij > Bernoullip0.02q, 1 ď i ă j ď d. If Uij < 1, let Ω̃ij < Ω̃ji >
Unifr´3, 3s; otherwise, set Ω̃ij < Ω̃ji < 0. Let SΩ̃ < tpi, jq P rds ˆ rds : Ω̃ij ‰ 0u be the

support of Ω̃. For given h and 0 ď k ď K, uniformly choose h entries (h ` 1 if h is odd) from

rds ˆ rdszΩ̃, denoted as SΓpkq , such that pi, jq P SΓpkq if and only if pj, iq P SΓpkq . Let Γ
pkq9
ij <

uij1tpi, jq P SΓpkq u, 1 ď i, j ď d, where uij > Unifr´3, 3s. Finally, let Ωpkq < Ω̃ ` Γpkq9 ` σId,
where σ ensures γminpΩpkqq ě 0.1 for 0 ď k ď K.

6.2 Experimental Design

We conduct four main experiments per model to investigate Trans-Glasso’s performance under var-
ious conditions:
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1. Experiment 1: Vary the target sample size n0 while keeping the source sample size nsource

and sparsity h fixed.

2. Experiment 2: Vary the source sample size nsource while keeping n0 and h fixed.

3. Experiment 3: Increase both n0, nsource, and h proportionally to examine scalability.

4. Experiment 4: Fix n0 and nsource while increasing h, assessing performance as sparsity in
deviations increases.

Each experiment is repeated 30 times to obtain reliable averages and standard errors.

6.3 Comparison Methods

We compare Trans-Glasso with the following baseline methods:

• Glasso-Target: Applies graphical lasso [Friedman et al., 2008] only to the target data.

• Glasso-Pooled: Combines all target and source data, applying graphical lasso on the pooled
dataset.

• Trans-CLIME: A transfer learning approach for precision matrix estimation by Li et al.
[2023a], which assumes a sparse divergence matrix across sources.

6.4 Results

The results for Models I – III are shown in Figure 2–4. Trans-Glasso generally outperforms baseline
methods. In Experiment 3, Trans-Glasso shows consistency across all models, whereas Glasso-
Pooled and Trans-CLIME do not. Trans-CLIME performs better with small h, but its performance
deteriorates as h increases. This is because a small increase in h can significantly increase the sparsity
of the divergence matrix defined in (2) when the covariance matrix is not sparse, as discussed in
Appendix A. Therefore, when the precision matrix is sparse but the covariance matrix is not, Trans-
Glasso is more reliable and robust.

6.5 Experiments with Unknown Informative Set

We perform simulation experiments with unknown A, using the same three models. We divide rKs
into rKs < A Y Ac. For k P A, we set the sparsity level h to be small, and for k P Ac, h to be large.
Specifically, for Model I, h < 20 for k P A and h < 600 for k P Ac; for Model II, h < 30 for k P A

and h < 600 for k P Ac; for Model III, h < 10 for k P A and h < 300 for k P Ac. We implement the
Trans-Glasso-CV algorithm (Section 4.3) and compare it with other methods. We vary |A| from 0

to K to observe performance changes. Each experiment is repeated 30 times with different random
seeds.

Figure 5 shows that Trans-Glasso-CV generally outperforms baseline methods. Notably, it never
performs worse than Glasso-Target, indicating no “negative transfer” of knowledge. In contrast,
both Glasso-Pooled and Trans-CLIME can underperform compared to Glasso-Target. Additionally,
as |A| increases, Trans-Glasso-CV achieves the best performance.

7 Real-World Data Analysis

We apply the Trans-Glasso algorithm to two real-world datasets. In Section 7.1, we use it on gene
networks with different brain tissues. In Section 7.2, we use it on protein networks for various cancer
subtypes.
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Figure 6: Cross-validation prediction error of different methods on GTEx brain tissue datasets,
relative to Glasso-Target.

7.1 Gene Networks Data for Brain Tissues

We apply Trans-Glasso to detect gene networks in different tissues using the Genotype-Tissue Ex-
pression (GTEx) data1. Following Li et al. [2023a], we focus on genes related to central nervous
system neuron differentiation (GO:0021953). We use the same 13 brain tissues as Li et al. [2023a],
treating one as the target and the other 12 as sources. We only use 10 out of 13 tissues as targets,
avoiding 3 due to small sample sizes. See Table 3 of the supplementary materials of Li et al. [2023a]
for the complete list of tissues and Table 1 for the target tissues. We remove genes with missing val-
ues in these tissues and compare Trans-Glasso with baseline methods by computing cross-validation
prediction error as defined in (16).

Figure 6 presents the final result, using Glasso-Target, Glasso-Pooled, and Trans-CLIME as
baselines as in Section 6. To compare results across tissues, we report prediction errors relative to
Glasso-Target. Figure 6 shows that Trans-Glasso performs best on most tissues. The relative pre-
diction error of Trans-Glasso is always much smaller than 1, indicating that it performs significantly
better than using target data alone and is robust to negative transfer. In comparison, Glasso-Pooled
and Trans-CLIME can perform worse or similar to Glasso-Target on some tissues.

1https://gtexportal.org/home/
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Figure 7: Protein networks for four AML subtypes. Red edges are shared by all, blue edges are not.
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7.2 Protein Networks Data for AML

We apply our method to a protein networks dataset for Acute Myeloid Leukemia (AML) subtypes.
Understanding protein relationships in cells is crucial in cancer studies, and graphical models help
build these networks. Following Peterson et al. [2015], we analyze protein levels for 213 newly
diagnosed AML patients,2 classified by the FAB system. Although protein interactions may differ
across subtypes, common AML-related processes suggest shared connections. Thus, transfer learning
can enhance subtype estimation using data from other subtypes. We focus on 18 proteins involved
in apoptosis and cell cycle regulation, studying four subtypes: M0 (17 subjects), M1 (34 subjects),
M2 (68 subjects), and M4 (59 subjects) Peterson et al. [2015], Kanehisa et al. [2012].

For each subtype, after applying Trans-Glasso, we obtain the final estimated graph by choosing
20 edges with the largest absolute values in the estimated precision matrix, resulting in graphs with
similar edge numbers as in Peterson et al. [2015]. The final result is shown in Figure 7. Comparing
with Peterson et al. [2015], many edges are discovered in both studies. However, our estimated graphs
are more similar across subtypes. M0, M1, and M2 have the same structures, while M4 differs in two
edges and has stronger connections between proteins in BAD families. This is supported by Tzifi
et al. [2012], which observed higher expression levels of BAD family proteins in AML subtypes M4,
M5, and M6 [Tzifi et al., 2012, Table 1], indicating more active interactions.

8 Conclusion

We introduce Trans-Glasso, a novel transfer learning approach to precision matrix estimation, which
addresses the limitations of small target sample sizes by leveraging related source data. Trans-Glasso
operates through a two-step process: an initial estimation using multi-task learning, followed by
refinement via differential network estimation. This methodology achieves minimax optimality in a
wide range of parameter regimes. Through extensive simulations, we demonstrate that Trans-Glasso
consistently outperforms baseline methods, showcasing its robustness and adaptability, particularly
in high-dimensional settings with limited target samples.

Future research directions include extending Trans-Glasso to estimate other graphical models,
such as Gaussian copula [Liu et al., 2009, 2012a], transelliptical [Liu et al., 2012b], functional [Qiao
et al., 2019, Tsai et al., 2024, Zhao et al., 2024], and Ising models [Kuang et al., 2017], and studying
inferential methods within the transfer learning framework.

2The dataset is provided as the supplement to Kornblau et al. [2009].
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A Comparison with Li et al. [2023a]

In this section, we make a more detailed comparison of the similarity assumption made in Li et al.
[2023a] and our Assumption 1. Let Υpkq <

`
Ωp0q ´ Ωpkq˘Σpkq < ´ΨpkqΣpkq, or equivalently Ψpkq <

´ΥpkqΩpkq. Li et al. [2023a] assumes Υpkq is column-wise sparse in Lp-norm. Our Assumption 1 and
the similarity assumption in Li et al. [2023a] do not imply each other and are generally incomparable.
However, our Assumption 1 can be preferable in some applications. First, while the divergence matrix
Υpkq is motivated by the KL divergence between Gaussian distributions, Assumption 1 is structural
and applies to any distribution. Second, Assumption 1 is naturally interpreted in Gaussian graphical
models, unlike the similarity assumption in Li et al. [2023a]. Finally, a technical advantage of our
assumption is that, while sparsity in Ψpkq does not generally imply sparsity in Υpkq, or vice versa,
further assumptions on Σpkq or Ωpkq can establish one or both directions. For example, note that

ˇ̌
ˇΨpkq

ˇ̌
ˇ
0

ď
ÿ

i,j

1

#
dÿ

l<1

1

!
Υ

pkq
il ‰ 0

)
1

!
Ω

pkq
lj ‰ 0

)
ě 1

+
.

If both Υpkq and Ωpkq are sparse, then Ψpkq is also sparse. Similarly, if Ψpkq and Σpkq are sparse,
then Υpkq is sparse. The key difference is that Υpkq ùñ Ψpkq relies on Ωpkq being sparse, while
Ψpkq ùñ Υpkq relies on Σpkq being sparse. In graphical models, sparsity assumptions on the
precision matrix are more common than on the covariance matrix, making the sparsity assumptions
on Ψpkq weaker than those on Υpkq.

B Preliminary Lemmas

We first collect several inequalities related to matrix norms.

Lemma 1. For any two matrices A,B P R
dˆd, we have

|AB|8 ď min t}A}8|B|8, }B}1|A|8u . (25)

Proof. For 1 ď j ď d, denote by B:j the j-th column of B. We then have

|AB|8 < max
1ďjďd

}AB:j}8

ď max
1ďjďd

}A}8}B:j}8

< }A}8 max
1ďjďd

}B:j}8

< }A}8|B|8.

The other claim follows from the facts that |AB|8 < |BJAJ|8, and }BJ}8 < }B}1. ■

Lemma 2. For any matrix A P R
mˆn and any vector v P R

n, we have }Av}8 ď |A|8}v}1.
Proof. Let Ai¨ denote the i-th row of A, we then have

}Av}8 < max
1ďiďm

|xAi¨, vy| ď max
1ďiďm

}Ai¨}8}v}1 < |A|8}v}1,

which completes the proof. ■

The next lemma requires the following definition of the sub-Gaussian random variable.

Definition B.1 (Sub-Gaussian Random Variable, Definition 2 of Ravikumar et al. [2011]). We say
that a random variable X P R is sub-Gaussian with parameter Ã if

E rexp p¼Xqs ď exp
`
Ã2¼{2

˘
for all ¼ P R.
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Lemma 3. Assume that we obtain samples from K distributions, each with a mean of zero and a

covariance matrix of Σpkq. Let tXpkq
i < pXpkq

i1 , . . . , X
pkq
id qJunk

i<1 represent nk independently distributed

samples from the k-th distribution. In addition, we assume that X
pkq
ij {

b
Σ

pkq
jj is sub-Gaussian with

parameter Ã as defined in Definition B.1. Let

pΣpkq < 1

nk

nkÿ

i<1

X
pkq
i X

pkqJ
i , pΣ <

Kÿ

k<1

³k
pΣpkq, and Σ9 <

Kÿ

k<1

³kΣ
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where ³k < nk{N and N < řK
k<1 nk. For a fixed ¶ P p0, 1s, we have
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Let Ä8 < max1ďkďK |Σpkq|8. It then follows that
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when |¼| ă 2{pÄ8ϕq. Using Proposition 2.9 in Wainwright [2019], for t ě 0, we have that
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A union bound then gives us
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Rewriting the above equation, we complete the proof. ■

Lemma 4. Consider a zero mean random vector X < pX1, . . . , XdqJ with covariance Σ9 such that
each Xj{aΣ9

jj is sub-Gaussian with parameter Ã as defined in Definition B.1. Let tXpiquni<1 be n

i.i.d. copies of X and let pΣn < 1
n

řn
i<1XpiqXpiqJ. For ¶ P p0, 1s, we have

P

#ˇ̌
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n

++
ď ¶.

Proof. The proof follows directly from Lemma 3. ■

In the next lemma, we use S
d
` to denote the set of positive definite matrices with dimension d.

Lemma 5. Let A P S
d
`. Define f pΩq :< xΩ, Ay ´ log detΩ for Ω P S

d
`. Given Ω0 P S

d
` and

∆Ω P R
dˆd such that Ω0 ` ∆Ω P S

d
`, there exists t P p0, 1q such that

f pΩ0 ` ∆Ωq ´ f pΩ0q ´ x∇fpΩ0q,∆Ωy < 1

2
vec p∆ΩqJ

!
pΩ0 ` t∆Ωq´1 b pΩ0 ` t∆Ωq´1

)
vec p∆Ωq

Proof. One can view f as a function of vecpΩq. Note that ∇2fpvecpΩqq < Ω´1 b Ω´1. The rest of
the proof then follows Taylor’s Theorem [Nocedal and Wright, 2006, Theorem 2.1]. ■
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Lemma 6. Let S
ppsq :< t¹ P R

p : }¹}0 ď s, }¹}2 ď 1u. There exists t¹0, ¹1, . . . , ¹Mu Ď S
ppsq such

that

(i) ¹0 < 0;

(ii)
››¹j ´ ¹k

››
2

ě 1
4

for all 0 ď j ‰ k ď M ;

(iii) logpM ` 1q ě s
2
log

`
d´s
s

˘
.

Proof. It follows from Example 15.16 in Wainwright [2019] that there exists a 1{2-packing of Sppsq,
which we denote as t¹̃0, ¹̃1, . . . , ¹̃Mu, such that

›››¹̃j ´ ¹̃k
›››
2

ě 1

2
for all 0 ď j ‰ k ď M and logpM ` 1q ě s

2
log

ˆ
d´ s

s

˙
. (26)

Without loss of generality, assume that }¹̃0}2 ď }¹̃j}2 for 1 ď j ď M . Let ¹0 < 0 and let ¹j < ¹̃j for
1 ď j ď M . Then the set t¹0, ¹1, . . . , ¹Mu satisfies (i)–(iii). To prove the claim, by our construction
of the set and (26), we only need to verify that }¹j ´ ¹0}2 < }¹j}2 ě 1

4
for all 1 ď j ď M . We prove

the result in two cases.
Case 1: }¹̃0}2 ě 1

4
. Since }¹̃0}2 ď }¹̃j}2, we have that }¹j}2 < }¹̃j}2 ě }¹̃0}2 ě 1

4
for 1 ď j ď M .

Case 2: }¹̃0}2 ă 1
4
. We have

››¹j
››
2

<
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›››
2

ě
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›››
2

´
›››¹̃0
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2

ą 1

2
´ 1

4
< 1

4
for 1 ď j ď M,

where the last inequality follows from (26).
Combining Case 1 and Case 2, we have proved that }¹j}2 ě 1

4
for 1 ď j ď M , which completes

the proof. ■

Lemma 7. Let m ě 2 be an even integer and set d < 2m. Let B P R
mˆm be such that }B}F ď 1{4

and define

Ω <
„
Im B

BJ Im


.

Then Ω ą 0 and DKL

`
N

`
0,Ω´1

˘
}N p0, Idq

˘
ď 16

15
}B}2F .

Proof. We begin with proving Ω ą 0. By Weyl’s inequality, we know that

µmin pΩq ě 1 ´
››››
„

0 B

BJ 0

›››› ě 1 ´
››››
„

0 B

BJ 0

››››
F

< 1 ´
?
2 }B}F ě 1

2
.

As a result, we have Ω ą 0.
Now we move on to the second claim regarding the KL divergence. Recall that

DKL

`
N

`
0,Ω´1

˘
}N p0, Idq

˘
< 1

2

“
log det pΩq ´ d` tr

`
Ω´1

˘‰
, (27)

which motivates us to compute log det pΩq and tr
`
Ω´1

˘
. Let B < UDV J be the singular value

decomposition of B with U,D, V P R
mˆm, UJU < UUJ < Im, V JV < V V J < Im, and D <

diagp¼1, . . . , ¼mq. We have the following identities.

log det pΩq <
mÿ

i<1

log
`
1 ´ ¼2i

˘
. (28a)

28



tr
`
Ω´1

˘
<

mÿ

i<1

2

1 ´ ¼2i
. (28b)

Combining (27), (28a), and (28b), we obtain

DKL

`
N

`
0,Ω´1

˘
}N p0, Idq

˘
< 1

2

«
mÿ

i<1

log
`
1 ´ ¼2i

˘
`

mÿ

i<1

2

1 ´ ¼2i
´ d

ff

<
mÿ

i<1

«
log

`
1 ´ ¼2i

˘

2
` 1

1 ´ ¼2i
´ 1

ff
.

Since ¼2j ď řd
i<1 ¼

2
i < }B}2F ď 1{16, we have ´¼2j ě ´1{16. Also note that logp1 ` xq ď x for all

x ě ´1. We thus have

DKL

`
N

`
0,Ω´1

˘
}N p0, Idq

˘
ď

mÿ

i<1

„´¼2i
2

` 1

1 ´ ¼2i
´ 1



<
mÿ

i<1

¼2i ` ¼4i
2 p1 ´ ¼2i q ď

mÿ

i<1

¼2i
1 ´ ¼2i

ď 16

15

mÿ

i<1

¼2i < 16

15
}B}2F .

This completes the proof.

Proof of Equation (28a). Using Section 9.1.2 of Petersen et al. [2008], we have det pΩq <
det

`
Im ´BJB

˘
. Since

Im ´BJB < Im ´ V D2V J < V
`
Im ´D2

˘
V J, (29)

we have det pΩq < det
`
Im ´D2

˘
< śm

i<1

`
1 ´ ¼2i

˘
and hence log det pΩq < řm

i<1 log
`
1 ´ ¼2i

˘
.

Proof of Equation (28b). Using Section 9.1.3 of Petersen et al. [2008], we have

Ω´1 <
„
Im B

BJ Im

´1

<
« `

Im ´BBJ˘´1 ´B
`
Im ´BJB

˘´1

´
`
Im ´BJB

˘´1
BJ `

Im ´BJB
˘´1

ff
,

which implies

tr
`
Ω´1

˘
< tr

!`
Im ´BBJ˘´1

)
` tr

!`
Im ´BJB

˘´1
)
. (30)

It follows from (29) that
`
Im ´BJB

˘´1 < V
`
Im ´D2

˘´1
V J, and therefore,

tr
!`
Im ´BBJ˘´1

)
< tr

!
V
`
Im ´D2

˘´1
V J

)
< tr

!`
Im ´D2

˘´1
)

<
mÿ

i<1

1

1 ´ ¼2i
. (31)

Similarly, we have trt
`
Im ´BJB

˘´1u < řm
i<1

1
1´λ2

i

. Take the previous results collectively to yield

the claim (28b). ■

C Proof of Theorem 1

We adopt the proof strategy laid out in Wainwright [2019, Chapter 9].
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C.1 Additional Notation

We first introduce some additional notation that will be helpful in the proof. We define the Hilbert
space for the parameters

H :<
"
Θ <

ˆ
Ω,

!
Γpkq

)K

k<0

˙
: Ω,Γpkq P R

dˆd for all 0 ď k ď K

*
,

with the associated inner product

@
Θ,Θ1D

H
<
@
Θ,Θ1D :<

@
Ω,Ω1D `

Kÿ

k<0

A
Γpkq,Γpkq1

E
.

The space H endowed with the inner product x¨, ¨y is indeed a Hilbert space. Correspondingly, we
have

}Θ}2
H

< }Ω}2F `
Kÿ

k<0

›››Γpkq
›››
2

F
.

We also need the dual norm of Φp¨q, which is defined as

Φ9 pΘq :< sup
Θ1:ΦpΘ1qď1

@
Θ,Θ1D . (32)

Recall that Θ9 < pΩ9, tΓpkq9uKk<0q is the true parameter. Let SΩ and SΓpkq be the supports of Ω9

and Γpkq9 for all 0 ď k ď K, respectively. Under Assumption 1, the true parameter Θ9 lies in the
following subspace of H:

M :<
"
Θ <

ˆ
Ω,

!
Γpkq

)K

k<0

˙
: supppΩq Ď SΩ, supp

”
Γpkq

ı
Ď SΓpkq for all 0 ď k ď K

*
. (33)

The orthogonal complement of M is given by

M
K :<

"
Θ <

ˆ
Ω,

!
Γpkq

)K

k<0

˙
: supppΩq Ď S

c
Ω, supp

”
Γpkq

ı
Ď S

c
Γpkq for all 0 ď k ď K

*
. (34)

Clearly, for any Θ P M and Θ1 P M
K, we have that xΘ,Θ1y < 0 .

We also need to define the projection of a parameter onto a subspace. For any matrix B P R
dˆd

and any subspace F Ď R
dˆd, we define

rBs
F

< arg min
B̃PF

›››B̃ ´B
›››
F
.

Similarly, for any Θ P H and any subspace F Ď H, we define

rΘs
F

< argmin
B̃PF

›››B̃ ´B
›››
H

.

In addition, for S Ď rds ˆ rds, we define

MpSq :<
 
B P R

dˆd : supppBq Ď S
(
.

For any B P R
dˆd, we define rBsS :< rBs

MpSq. This way, for any Θ < pΩ, tΓpkquKk<0q P H, we have

rΘs
M

<
˜

rΩs
SΩ
,

"”
Γpkq

ı
S
Γpkq

*K

k<0

¸
and rΘs

MK <

¨
˝rΩs

Sc

Ω

,

#”
Γpkq

ı
Sc

Γpkq

+K

k<0

˛
‚.
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Finally, we define our metric on the estimation error. For Θ < pΩ, tΓpkquKk<0q P H, let

HpΘq :<
Kÿ

k<0

³k

›››Ω ` Γpkq
›››
2

F
. (35)

We define

p∆ :< pΘ ´ Θ9 <
ˆ
pΩ ´ Ω9,

!
pΓpkq ´ Γpkq9

)K

k<0

˙
,

where pΘ is the Trans-Glasso estimator (3). Then our goal is to control

Hpp∆q <
Kÿ

k<0

³k

›››pΩ ´ Ω9 ` pΓpkq ´ Γpkq9
›››
2

F
<

Kÿ

k<0

³k

›››qΩpkq ´ Ωpkq
›››
2

F
.

C.2 Useful lemmas

Now we collect several useful lemmas, whose proofs are deferred to the end of the section.
We begin by demonstrating that Φp¨q, defined in (5), is decomposable with respect to pM,MKq.

Lemma 8. We have

ΦpΘ ` Θ1q < ΦpΘq ` ΦpΘ1q for any Θ P M, Θ1 P M
K.

The following lemma relates ΦpΘq with HpΘq defined in (35) for any Θ P M.

Lemma 9. For any Θ P M, we have

ΦpΘq ď
?
2
a
s` pK ` 1qh

a
HpΘq.

For ∆Θ < p∆Ω, t∆Γpkq uKk<0q P H such that ∆Ω ` ∆Γpkq ` Ωpkq ą 0 for all 0 ď k ď K, we define

R p∆Θq :< L pΘ9 ` ∆Θq ´ L pΘ9q ´ x∇L pΘ9q ,∆Θy

to be the residual of Lp¨q around Θ9, where Lp¨q is defined in (4). The following lemma claims that
R p¨q is locally strongly convex with respect to the geometry defined by Hp¨q.

Lemma 10. Let ∆Θ < p∆Ω, t∆Γpkq uKk<0q P H be such that ∆Ω ` ∆Γpkq ` Ωpkq ą 0 and assume that
}∆Ω ` ∆Γpkq }2 ď Mop `MΩ for all 0 ď k ď K. Then, we have

R p∆Θq ě »

2
H p∆Θq ,

where » < p2MΩ `Mopq´2
.

Last but not least, define the event

Gp¼Mq :<
"
¼M

2
ě Φ9 p∇L pΘ9qq

*
. (36)

The following lemma asserts that this event happens with high probability.

Lemma 11. When (18) holds and ¼M satisfies (19), we have that PtGp¼Mqu ě 1 ´ ¶.
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C.3 Remaining proof

Now we are ready to prove Theorem 1. As Lemma 11 asserts that Gp¼Mq holds with high probability,
thus we only need to prove the conclusion under the assumption that Gp¼Mq holds. Throughout the
proof, we assume the event Gp¼Mq holds.

For any ∆Θ < p∆Ω, t∆Γpkq uKk<0q P H, we define the objective difference

F p∆Θq :< L pΘ9 ` ∆Θq ´ L pΘ9q ` ¼M tΦ pΘ9 ` ∆Θq ´ Φ pΘ9qu .

Note that by definition, we have F
´
p∆Θ

¯
ď 0. It suffices to show that for all ∆Θ such that

∆Θ ` Θ9 P CpMopq and Hp∆Θq ą 18ps`pK`1qhqλ2

M

κ2 , we have F p∆Θq ą 0.
It is easy to see that any such ∆Θ obeys

∆Ω ` ∆Γk ` Ωpkq < Ω ´ Ω9 ` Γk ´ Γpkq9 ` Ωpkq < Ω ` Γk ą 0,

and for all 0 ď k ď K

}∆Ω ` ∆Γk}2 <
›››Ω ´ Ω9 ` Γk ´ Γpkq9

›››
2

<
›››Ω ` Γk ´ Ωpkq

›››
2

ď }Ω ` Γk}2 `
›››Ωpkq

›››
2

ď Mop `MΩ,

where the last inequality follows the definition of Mop and MΩ. These two taken together allows us
to invoke Lemma 10 to obtain

F p∆Θq ě x∇L pΘ9q ,∆Θy ` »

2
H p∆Θq ` ¼M tΦ pΘ9 ` ∆Θq ´ Φ pΘ9qu ,

where » < p2MΩ `Mopq´2
.

In addition, combining Lemma 8 and the fact that rΘ9s
MK < 0 with Wainwright [2019, Lemma

9.14], we have
Φ pΘ9 ` ∆Θq ´ Φ pΘ9q ě Φ pr∆Θs

MK q ´ Φ pr∆Θs
M

q (37)

for any ∆Θ P H. This way, we have obtained a lower bound for ΦpΘ9 ` ∆Θq ´ ΦpΘ9q.
Take the previous two displays together to reach

F p∆Θq ě x∇L pΘ9q ,∆Θy ` »

2
H p∆Θq ` ¼M tΦ pr∆Θs

MK q ´ Φ pr∆Θs
M

qu .

Recall the definition of Φ9 in (32), under the assumption that Gp¼Mq is true, we have

F p∆Θq ě »

2
H p∆Θq ´ |x∇L pΘ9q ,∆Θy| ` ¼M tΦ pr∆Θs

MK q ´ Φ pr∆Θs
M

qu

ě »

2
H p∆Θq ´ Φ p∆ΘqΦ9 p∇L pΘ9qq ` ¼M tΦ pr∆Θs

MK q ´ Φ pr∆Θs
M

qu

ě »

2
H p∆Θq ´ ¼M

2
Φ p∆Θq ` ¼M tΦ pr∆Θs

MK q ´ Φ pr∆Θs
M

qu

< »

2
H p∆Θq ´ ¼M

2
tΦ pr∆Θs

M
q ` Φ pr∆Θs

MK qu ` ¼M tΦ pr∆Θs
MK q ´ Φ pr∆Θs

M
qu

< »

2
H p∆Θq ´ ¼M

2
t3Φ pr∆Θs

M
q ´ Φ pr∆Θs

MK qu

ě »

2
H p∆Θq ´ 3¼M

2
Φ pr∆Θs

M
q . (38)

By Lemma 9, we have

Φ pr∆Θs
M

q ď
a
s` pK ` 1qh

b
H pr∆Θs

M
q ď

?
2
a
s` pK ` 1qh

a
H p∆Θq,
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where the last inequality follows from Hp∆Θq < H pr∆Θs
M

q ` H pr∆Θs
MK q ě H pr∆Θs

M
q. Plugging

the above inequality into (38), we arrive at the conclusion that

F p∆Θq ě »

2
H p∆Θq ´ 3¼M?

2

a
s` pK ` 1qh

a
H p∆Θq

< 1

2

a
H p∆Θq

!
»
a
H p∆Θq ´ 3

?
2¼M

a
s` pK ` 1qh

)
ą 0,

where the last relation arises from the assumption

H p∆Θq ą 18 ps` pK ` 1qhq¼2M
»2

. (39)

This finishes the proof.

C.4 Proof of Useful Lemmas

In this section, we collect the proof of useful lemmas.

C.4.1 Proof of Lemma 8

By the definition of Φp¨q and the fact that Θ P M and Θ1 P M
K, we have

ΦpΘ ` Θ1q < Φ
`
rΘs

M
`
“
Θ1‰

MK

˘

<
ˇ̌
ˇrΩs

SΩ
`
“
Ω1‰

Sc

Ω

ˇ̌
ˇ
1

`
Kÿ

k<0

?
³k

ˇ̌
ˇ̌
ˇ
”
Γpkq

ı
S
Γpkq

`
”
Γpkq1

ı
Sc

Γpkq

ˇ̌
ˇ̌
ˇ
1

<
ˇ̌
rΩs

SΩ

ˇ̌
1

`
ˇ̌
ˇ
“
Ω1‰

Sc

Ω

ˇ̌
ˇ
1

`
Kÿ

k<0

?
³k

ˇ̌
ˇ̌
”
Γpkq

ı
S
Γpkq

ˇ̌
ˇ̌
1

`
Kÿ

k<0

?
³k

ˇ̌
ˇ̌
ˇ
”
Γpkq1

ı
Sc

Γpkq

ˇ̌
ˇ̌
ˇ
1

< Φ prΘs
M

q ` Φ
`“
Θ1‰

MK

˘

< ΦpΘq ` ΦpΘ1q.

C.4.2 Proof of Lemma 9

For any Θ P M, we have Ω < rΩs
SΩ

and Γpkq <
“
Γpkq‰

S
Γpkq

. Thus

ΦpΘq <
ˇ̌
rΩs

SΩ

ˇ̌
1

`
Kÿ

k<0

?
³k

ˇ̌
ˇ̌
”
Γpkq

ı
S
Γpkq

ˇ̌
ˇ̌
1

ď |SΩ| 1

2

››rΩs
SΩ

››
F

`
Kÿ

k<0

?
³k |SΓpkq |

1

2

››››
”
Γpkq

ı
S
Γpkq

››››
F

pJensen’s inequalityq

piiq
ď

?
s
››rΩs

SΩ

››
F

`
?
h

Kÿ

k<0

?
³k

››››
”
Γpkq

ı
S
Γpkq

››››
F

. pby Assumption 1q

Furthermore, by Jensen’s inequality, we have

1

2
Φ2pΘq ď s

››rΩs
SΩ

››2
F

` h

˜
Kÿ

k<0

?
³k

››››
”
Γpkq

ı
S
Γpkq

››››
F

¸2

ď s
››rΩs

SΩ

››2
F

` hpK ` 1q
Kÿ

k<0

³k

››››
”
Γpkq

ı
S
Γpkq

››››
2

F
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ď ps` pK ` 1qhq
#
››rΩs

SΩ

››2
F

`
Kÿ

k<0

³k

››››
”
Γpkq

ı
S
Γpkq

››››
2

F

+

< ps` pK ` 1qhq
Kÿ

k<0

³k

˜
››rΩs

SΩ

››2
F

`
››››
”
Γpkq

ı
S
Γpkq

››››
2

F

¸
.

By the assumption that the supports of Ω9 and Γpkq9 are disjoint and the fact that Ω < rΩs
SΩ

and

Γpkq <
“
Γpkq‰

S
Γpkq

, we then have

Φ2pΘq ď 2 ps` pK ` 1qhq
Kÿ

k<0

³k

››››rΩs
SΩ

`
”
Γpkq

ı
S
Γpkq

››››
2

F

ď 2 ps` pK ` 1qhq
Kÿ

k<0

³k

›››Ω ` Γpkq
›››
2

F

< 2 ps` pK ` 1qhqH pΘq .

C.4.3 Proof of Lemma 10

By Lemma 5, we have

R p∆Θq <
Kÿ

k<0

³k

2
vec p∆Ω ` ∆Γpkq q

ˆ
"´

Ωpkq ` tk p∆Ω ` ∆Γpkq q
¯´1

b
´
Ωpkq ` tk p∆Ω ` ∆Γpkq q

¯´1
*

ˆ vec p∆Ω ` ∆Γpkq q , (40)

where tk P p0, 1q, 0 ď k ď K. Since µminpA´1 bA´1q < }A}´2
2 for any A ą 0, we have

µmin

ˆ´
Ωpkq ` tk p∆Ω ` ∆Γpkq q

¯´1

b
´
Ωpkq ` tk p∆Ω ` ∆Γpkq q

¯´1
˙

<
!›››Ωpkq ` tk p∆Ω ` ∆Γpkq q

›››
2

)´2

ě
!›››Ωpkq

›››
2

` tk }∆Ω ` ∆Γpkq }2
)´2

ě
!›››Ωpkq

›››
2

` }∆Ω ` ∆Γpkq }2
)´2

ě p2MΩ `Mopq´2
,

where the last line follows the definition of MΩ in (17) and the assumption that }∆Ω ` ∆Γpkq }2 ď
MΩ `Mop for all 0 ď k ď K. Let » < p2MΩ `Mopq´2

. Then

R p∆Θq ě »

2

Kÿ

k<0

³k }vec p∆Ω ` ∆Γpkq q}22 .

The final result follows by noting that }vecp∆Ω ` ∆Γpkq q}2 < }∆Ω ` ∆Γpkq }F.

C.4.4 Proof of Lemma 11

We first state and prove the following lemma that gives the closed-form expression of Φ9p¨q.
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Lemma 12. For the dual norm defined in (32), we have

Φ9 pΘq < max

#
|Ω|8 , max

0ďkďK

ˇ̌
Γpkq ˇ̌

8?
³k

+
.

Proof. For any Θ,Θ1 P H, we have

@
Θ,Θ1D <

@
Ω,Ω1D `

Kÿ

k<0

A
Γpkq,Γpkq1

E

ď |Ω|8
ˇ̌
Ω1 ˇ̌

1
`

Kÿ

k<0

ˇ̌
ˇΓpkq

ˇ̌
ˇ
8

ˇ̌
Γ1 ˇ̌

1

< |Ω|8
ˇ̌
Ω1 ˇ̌

1
`

Kÿ

k<0

?
³k

ˇ̌
Γ1 ˇ̌

1

|Γpkq|8?
³k

ď |Ω|8
ˇ̌
Ω1 ˇ̌

1
`
#

max
0ďkďK

ˇ̌
Γpkq ˇ̌

8?
³k

+
Kÿ

k<0

?
³k

ˇ̌
Γ1 ˇ̌

1

ď max

#
|Ω|8 , max

0ďkďK

ˇ̌
Γpkq ˇ̌

8?
³k

+˜
ˇ̌
Ω1 ˇ̌

1
`

Kÿ

k<0

?
³k

ˇ̌
Γ1 ˇ̌

1

¸

< max

#
|Ω|8 , max

0ďkďK

ˇ̌
Γpkq ˇ̌

8?
³k

+
Φ
`
Θ1˘ .

Thus, we have

Φ9 pΘq :< sup
Θ1:ΦpΘ1qď1

@
Θ,Θ1D ď max

#
|Ω|8 , max

0ďkďK

ˇ̌
Γpkq ˇ̌

8?
³k

+
.

Finally, it is easy to see that the equality is achievable. ■

Now we are ready to prove Lemma 11. Note that

∇ΩL pΘq <
Kÿ

k<0

³k

ˆ
pΣpkq ´

´
Ω ` Γpkq

¯´1
˙
,

∇ΓpkqL pΘq < ³k

ˆ
pΣpkq ´

´
Ω ` Γpkq

¯´1
˙

for all 0 ď k ď K.

Then by Lemma 12, we have

Gp¼Mq <
#
¼M

2
ě max

#ˇ̌
ˇ̌
ˇ
Kÿ

k<0

³k

´
pΣpkq ´ Σpkq

¯ˇ̌ˇ̌
ˇ
8
, max
0ďkďK

?
³k

ˇ̌
ˇpΣpkq ´ Σpkq

ˇ̌
ˇ
8

++
. (41)

By Lemma 3 and the union bound, we have

ˇ̌
ˇ̌
ˇ
Kÿ

k<0

³k

´
pΣpkq ´ Σpkq

¯ˇ̌ˇ̌
ˇ
8

ď 80MΣ max

#c
logp2 pK ` 2q d2{¶q

2N
,
logp2 pK ` 2q d2{¶q

N

+

and
ˇ̌
ˇpΣpkq ´ Σpkq

ˇ̌
ˇ
8

ď 80MΣ max

#d
logp2 pK ` 2q d2{¶q

2nk

,
logp2 pK ` 2q d2{¶q

nk

+
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for all 0 ď k ď K hold simultaneously with probability at least 1 ´ ¶. When min0ďkďK nk is large
enough such that

logp2 pK ` 2q d2{¶q
min0ďkďK nk

ď 1

2
,

we then have that
ˇ̌
ˇ̌
ˇ
Kÿ

k<0

³k

´
pΣpkq ´ Σpkq

¯ˇ̌ˇ̌
ˇ
8

ď 80MΣ

c
logp2 pK ` 2q d2{¶q

2N
,

ˇ̌
ˇpΣpkq ´ Σpkq

ˇ̌
ˇ
8

ď 80MΣ

d
logp2 pK ` 2q d2{¶q

2nk

for all 0 ď k ď K. (42)

hold simultaneously with probability at least 1 ´ ¶. Note that (42) implies that

?
³k

ˇ̌
ˇpΣpkq ´ Σpkq

ˇ̌
ˇ
8

ď 80MΣ

c
logp2 pK ` 2q d2{¶q

2N
for all 0 ď k ď K.

Thus, when

¼M ě 160MΣ

c
logp2 pK ` 2q d2{¶q

2N
, (43)

by (41), we have Gp¼Mq hold with probability 1 ´ ¶.

D Theorem 7 and Its Proof

The following theorem provides a high probability error bound for the D-Trace Loss estimator.

Theorem 7. Suppose that Assumption 1 and Assumption 2 hold. Let Cγ < M´1
Ω . Furthermore,

suppose that for a given ¶ P p0, 1s and all k P rKs we have

log
`
2pK ` 1qd2{¶

˘

mintnk, n0u ď min

"
1,
µ2minpΣpkqqµ2minpΣp0qq

C 1h2M4
Σ

*
. (44)

If

¼
pkq
Γ ě 2Cγ rpCγ ` 2qMΣMΓ ` 2sMΣ

d
log p2pK ` 1qd2{¶q

2mintnk, n0u

for all k P rKs, then

›››pΨpkq ´ Ψpkq
›››
F

ď C2?
h¼

pkq
Γ

µminpΣpkqqµminpΣp0qq for all 0 ď k ď K

hold simultaneously with probability at least 1 ´ ¶, where C 1, C2 are universal constants that depend
on Cγ .

Proof. The D-Trace Loss estimator is a special case of the FuDGE estimator proposed in Zhao et al.
[2019, 2022]. We adapt the proof of Theorem 10 in Zhao et al. [2022] here.

Given ¶ P p0, 1s, we define the event

E
1p¶q :<

# ˇ̌
ˇpΣpkq ´ Σpkq

ˇ̌
ˇ
8

ď CγMΣ ¨ max

#d
log p2pK ` 1qd2{¶q

2nk

,
log

`
2pK ` 1qd2{¶

˘

nk

)
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for all 0 ď k ď K

+
,

where Cγ is a universal constant. By Lemma 4 and the union bound, we have PpE1p¶qq ě 1 ´ ¶. In
the following, we work on the event E1p¶q.

Let

Èk < CγMΣ

d
log p2pK ` 1qd2{¶q

2mintnk, n0u .

On the event E1 and when the condition (44) holds with C 1 < 4096C2
γpCγ ` 2q2, we have

max
!ˇ̌
ˇpΣpkq ´ Σpkq

ˇ̌
ˇ
8
,
ˇ̌
ˇpΣp0q ´ Σp0q

ˇ̌
ˇ
8

)
ď Èk.

When (44) holds, we have

Èk ď Cγ ¨ max
0ďkďK

ˇ̌
ˇΣpkq

ˇ̌
ˇ
8

and Èk ď µminpΣpkqqµminpΣp0qq
64pCγ ` 2qhMΣ

.

Thus, we have

»
pkq
L

:< 1

2
µminpΣpkqqµminpΣp0qq ´ 16h

`
È2
k ` 2ÈkMΣ

˘
ě 1

4
µminpΣpkqqµminpΣp0qq,

where »
pkq
L

is the restricted convexity parameter defined in the proof of Theorem 10 of Zhao et al.
[2022]. Set

¼
pkq
Γ ě 4 rpCγ ` 2qMΣMΓ ` 1sÈk .

Following the proof of Theorem 10 of Zhao et al. [2022], we have

›››pΨpkq ´ Ψpkq
›››
2

F
ď 18h

1
16
µ2minpΣpkqqµ2minpΣp0qq

´
¼

pkq
Γ

¯2

,

which completes the proof. ■

E Proof of Theorem 4

Let R < ts{du and let r < s´Rd. We follow the construction of the hard-case collection of precision
matrices in Step 2 of Proof of Theorem 4.1 in Cai et al. [2016b] to get F9. We set Mn,p and cn,p
therein as Mn,p < some constant and cn,p < R. By (4.13) and (4.15) in Cai et al. [2016b], for any
Ω P F9, we have

0 ă c1 ď µminpΩq ď µmaxpΩq ď c2 ă 8 .

Furthermore, we have |Ω|0 ď cn,pd ď s. Thus, F9 Ď G1. Following Theorem 6.1 of Cai et al. [2016b],
we have

inf
pΩ

sup
ΩPG1

E

„›››pΩ ´ Ω
›››
2

F


ě inf

pΩ
sup
ΩPF‹

E

„›››pΩ ´ Ω
›››
2

F


Á dcn,p

log d

n
< dR

s
¨ s log d

n
ě 1

2

s log d

n
,

which completes the proof.
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F Proof of Theorem 5

Without loss of generality, we assume that d and h are even positive numbers. Let m < d{2. By

Lemma 6, there exist tb0, b1, . . . , bMu Ď R
m2

such that

(i) }bj}0 ď h
2

and }bj}2 ď 1 for all 0 ď j ď M ;

(ii) b0 < 0;

(iii) }bj ´ bk}2 ě 1
4

for all 0 ď j ‰ k ď M ;

(iv) logpM ` 1q ě h
4
log

´
d2{4´h{2

h{2

¯
.

For j < 0, . . . ,M , let Bj P R
mˆm be such that vecpBjq < ¶ ¨ bj , where ¶ is a positive number

that depends on n, d, h and will be specified later. By (24), d ě 4h and

logpM ` 1q ě h

4
log

ˆ
d2{4 ´ h{2

h{2

˙
< h

4
log

ˆ
d2

2h
´ 1

˙
ě h

4
log

ˆ
d2

4h

˙
ě h

4
log d.

Furthermore, we have

ˇ̌
Bj

ˇ̌
0

ď h

2
,

››Bj
››
F

ď ¶, for 0 ď j ď M,

B0 < 0,
››Bj ´Bk

››
F

ě ¶

4
, for 0 ď j ‰ k ď M.

For j < 0, . . . ,M , let

Ωj <
„
Im Bj

pBjqJ Im


.

We next verify that Ωj P G2 when

¶ ď min

"
CΓ?
2h
,
1 ´ c1

2
,
c2 ´ 1

2

*
, (45)

where G2 is defined in (23). First note that diagpΩjq < Id,
ˇ̌
Ωj ´ Id

ˇ̌
0

< 2
ˇ̌
Bj

ˇ̌
0

ď h, and

ˇ̌
Ωj ´ Id

ˇ̌
1

< 2
ˇ̌
Bj

ˇ̌
1

ď 2

c
h

2

››Bj
››
F

ď
?
2h¶ ď CΓ,

using the choice of ¶ in (45). Furthermore, we have

µmin

`
Ωj

˘
< µmin

ˆ„
Im 0

0 Im


`
„

0 Bj

pBjqJ 0

˙

ě 1 ´
››››
„

0 Bj

pBjqJ 0

››››
2

ě 1 ´
››››
„

0 Bj

pBjqJ 0

››››
F

< 1 ´ 2
››Bj

››
F

ě c1,

again using the choice of ¶ in (45). Similarly, we have µmax

`
Ωj

˘
ď c2. Therefore, when (45) holds,

we have that Ωj P G2.
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Let Pj denote the probability measure of N
`
0, tΩju´1

˘
and let Pn

j denote the product probability

measure of pX1, . . . , Xnq where X1, . . . , Xn
i.i.d.> Pj . Note that P0 < Np0, Idq. When ¶ ď 1{4,

Lemma 7 gives us

DKL

`
P
n
j }Pn

0

˘
< nDKL pPj }P0q ď 16

15
n
››Bj

››2
F

ď 16

15
n¶2,

which implies that

1

M

Mÿ

j<1

DKL

`
P
n
j }Pn

0

˘
ď 16

15
n¶2. (46)

From condition (24), we have h log d ě 8 log 3 and thus logpM ` 1q ě log 9, which implies that
M ě 8. Furthermore, we have

logM < logM

logpM ` 1q logpM ` 1q ě log 8

log 9
logpM ` 1q ě 4

5
logpM ` 1q ě h

5
log d.

We set

¶ < 1

4
?
2

c
h log d

n
.

By (24), we have that (45) holds and that ¶ ď 1{4. Thus (46) holds, implying

1

M

Mÿ

j<1

DKL

`
P
n
j }Pn

0

˘
ď 1

30
h log d ď 1

6
logM. (47)

In addition, we have

››Bj ´Bk
››
F

ě 2 ¨ 1

32
?
2

c
h log d

n
for all 0 ď j ‰ k ď M. (48)

Note that
logpM ` 1q ´ log 2

logM
´ 1

6
ě logM ´ log 2

logM
´ 1

6
ě log 8 ´ log 2

log 8
´ 1

6
< 1

2
. (49)

Following Section 2.2 and Corollary 2.6 in Tsybakov [2008], combined with (47)–(49), we have

min
pΩ

sup
ΩPG2

E

„›››pΩ ´ Ω
›››
2

F


ě 1

2

˜
1

32
?
2

c
h log d

n

¸2

< 1

4096
¨ h log d

n
,

which completes the proof.

G Proof of Theorem 6

The upper bound follows directly from Corollary 1. To prove the lower bound, we assume that

Pk < N
´
0,
`
Ωpkq˘´1

¯
.

First, when h < 0, we have N i.i.d. samples from Ωp0q where

Ωp0q P
 
Ω P R

dˆd : Ω ą 0, |Ω|0 ď s, }Ω}2 ď MΩ,
ˇ̌
Ω´1

ˇ̌
8 ď MΣ

(
:< G̃

1

for some positive universal constants MΩ and MΣ. Let

G
1 <

"
Ω P R

dˆd : Ω ą 0, |Ω|0 ď s, 0 ă 1

MΣ

ď µmin pΩq ď µmax pΩq ď MΩ ă 8
*
.

39



Since
ˇ̌
Ω´1

ˇ̌
8 ď }Ω´1}2 < tµminpΩqu´1 ď MΣ for any Ω P G1, we have G1 Ď G̃1. Thus, when

s ě d ě c1Nβ , for some universal constants c1 ą 0 and ´ ą 1 and

rs{ds < o

˜
N

plog dq
3

2

¸

it follows by Theorem 4 that

inf
pΩ

sup
Ωp0qPG̃1

E

„›››pΩ ´ Ωp0q
›››
2

F


ě inf

pΩ
sup

Ωp0qPG1

E

„›››pΩ ´ Ωp0q
›››
2

F


Á s log d

N
. (50)

If Ωpkq < Ω9 < Id and Γpkq9 < 0 for every k P rKs, then samples from source distributions cannot
be used to estimate Ωp0q. Therefore, we must depend solely on samples from the target distribution
to estimate Ωp0q. Note that now we have

Ωp0q P
 
Ω P S

dˆd : Ω ą 0, Ω < Id ` ∆, ∆jj < 0 for all 1 ď j ď d,

|∆|0 ď h, |∆|1 ď MΓ, }Ω}2 ď MΩ,
ˇ̌
Ω´1

ˇ̌
8 ď MΣ

(
:< G̃

2 .

Let
G

2 <
 
Ω P S

dˆd : Ω ą 0, Ω < Id ` ∆, ∆jj < 0 for all 1 ď j ď d,

|∆|0 ď h, |∆|1 ď MΓ, 0 ă 1

MΣ

ď µminpΩq ď µmaxpΩq ď MΩ ă 8
*
.

Given that for any Ω P G2, it holds that
ˇ̌
Ω´1

ˇ̌
8 ď }Ω´1}2 < tµminpΩqu´1 ď MΣ, we can deduce

that G2 Ď G̃2. By Theorem 5, when MΩ,MΣ ą 1 and

d ě 4h, h log d ě 8 log 3,
h log d

n0
ď min

#
2, 8

ˆ
1 ´ 1

MΣ

˙2

, 8 p1 ´MΩq2
+
, h

c
log d

n0

ď 4MΓ,

we have

inf
pΩ

sup
Ωp0qPG̃2

E

„›››pΩ ´ Ωp0q
›››
2

F


ě inf

pΩ
sup

Ωp0qPG2

E

„›››pΩ ´ Ωp0q
›››
2

F


Á h log d

n0

. (51)

The final result follows from (50) and (51).

H Additional Optimization Details

In this section, we provide more details about the numerical algorithms introduced in Section 4.1.
We first discuss how to compute the updating steps (9) and (10). Note that (9) is equivalent to

Ω
ptq
k < arg min

Ωką0

"
fk pΩkq ` Ä

A
Z

pt´1q
k , Ωk ´ Ωpt´1q ´ Γ

pt´1q
k

E
` Ä

2

›››Ωk ´ Ωpt´1q ´ Γ
pt´1q
k

›››
2

F

*

< arg min
Ωką0

"
´³k log det pΩkq ` Ä

2

›››Ωk ´ C̃
pt´1q
k

›››
2

F

*
, (52)

where C̃
pt´1q
k < ´Zpt´1q

k `
´
Ωpt´1q ` Γ

pt´1q
k

¯
´ p³k{ÄqpΣpkq for 0 ď k ď K. Taking the gradient with

respect to Ωk in (52) and setting it to zero gives

´³kΩ
´1
k ` ÄΩk ´ ÄC̃

pt´1q
k < 0. (53)
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The matrix Ω
ptq
k is obtained by finding Ωk ą 0 that satisfies (53). Let ÄC̃

pt´1q
k < UΛUJ, Λ <

diag
´

t¼iudi<1

¯
, be the eigenvalue decomposition of ÄC̃

pt´1q
k . Following [Boyd et al., 2011, Section

6.5], we have

Ω
ptq
k < Udiag

¨
˝
#
¼i `

a
¼2i ` 4Ä³k

2Ä

+d

i<1

˛
‚UJ.

On ther other hand, computing (10) is equivalent to solving

Ωptq,
!
Γ

ptq
k

)
P arg min

Ω,tΓpkqu

#
Ä

Kÿ

k<0

A
Z

pt´1q
k ,Ω

ptq
k ´ Ω ´ Γpkq

E
` Ä

2

Kÿ

k<0

›››Ωptq
k ´ Ω ´ Γpkq

›››
2

F

< arg min
Ω,tΓpkqu

#
Ä

2

Kÿ

k<0

›››Ω ` Γpkq ´ Č
ptq
k

›››
2

F
` ¼M |Ω|1 ` ¼M

Kÿ

k<0

?
³k

ˇ̌
ˇΓpkq

ˇ̌
ˇ
1

+

where Č
ptq
k < Ω

ptq
k ` Z

pt´1q
k . Given c < pc1, . . . , cKq, let Spcq be defined as Spcq < px9, y9q where

px9, y9q P arg min
px,yq

#
Ä

2

Kÿ

k<0

px` yk ´ ckq2 ` ¼M|x| ` ¼M

Kÿ

k<0

?
³k|yk|

+
(54)

with y < py1, . . . , yKq. With Ωptq < pΩptq
jl q1ďj,lďd, Γ

ptq
k < pΓptq

k,jlq1ďj,lďd, and Č
ptq
k < pČptq

k,jlq1ďj,lďd, we
have

Ω
ptq
jl ,

!
Γ

ptq
k,jl

)K

k<1
< S

ˆ!
Č

ptq
k,jl

)K

k<1

˙
, for 1 ď j, l ď d.

To solve (54), we iteratively update x or y while fixing the other until convergence. For c P R and
¼ ě 0, let

STλpcq <

$
’&
’%

c´ ¼ if c ą ¼,

0 if |c| ď ¼,

c` ¼ if c ă ´¼
(55)

be the soft-thresholding function. After initializing xp0q, yp0q, we repeat the following process until
convergence:

xprq < argmin
x

#
Ä

2

Kÿ

k<0

´
x` y

pr´1q
k ´ ck

¯2

` ¼M|x| ` ¼M

Kÿ

k<0

?
³k

ˇ̌
ˇypr´1q

k

ˇ̌
ˇ
+

< STλM{pρpK`1qq

˜
1

K ` 1

Kÿ

k<0

´
ck ´ y

pr´1q
k

¯¸
,

and

yprq < argmin
y

#
Ä

2

Kÿ

k<0

´
xprq ` yk ´ ck

¯2

` ¼M

ˇ̌
ˇxprq

ˇ̌
ˇ ` ¼M

Kÿ

k<0

?
³k |yk|

+

ô y
prq
k < STλM

?
αk{ρ

´
ck ´ xprq

¯
for 0 ď k ď K.

We then discuss the stopping criterion for the ADMM algorithm to solve Trans-MT-Glasso
objective (3).
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Stopping criterion for ADMM. Following [Boyd et al., 2011, Section 3.3.1], let ϵabs ą 0 be
an absolute tolerance and ϵrel ą 0 be a relative tolerance, we then define the feasibility tolerance
for primal feasibility condition ϵpri ą 0 and the feasibility tolerance for dual feasibility condition
ϵdual ą 0 at iteration t as

ϵpri < ϵabsd
?
K ` 1 ` ϵrel max

$
&
%

˜
Kÿ

k<0

›››Ωptq
k

›››
2

F

¸ 1

2

,

˜
Kÿ

k<0

›››Ωptq ` Γ
ptq
k

›››
2

F

¸ 1

2

,
.
- ,

ϵdual < ϵabsd
?
K ` 1 ` ϵrel

˜
Kÿ

k<0

›››Zptq
k

›››
2

F

¸ 1

2

.

Besides, let

rpri <
˜

Kÿ

k<0

›››Ωptq
k ´

´
Ωptq ` Γ

ptq
k

¯›››
2

F

¸ 1

2

and

rdual < Ä

˜
Kÿ

k<0

›››
´
Ωptq ` Γ

ptq
k

¯
´
´
Ωpt´1q ` Γ

pt´1q
k

¯›››
2

F

¸ 1

2

be the primal and dual residuals at iteration t. We then stop the iteration if

rpri ď ϵpri and rdual ď ϵdual.

Stopping criterion for sub problem (54). The optimality conditions of problem (54) are

0 P Ä
Kÿ

k<0

px9 ` y9
k ´ ckq ` ¼MB|x9|, (56)

0 P Ä px9 ` y9 ´ ckq ` ¼M

?
³kB|y9

k| for all k < 0, 1, . . . ,K. (57)

By the definition of yprq, we always have xprq, yprq satisfy (57). Besides, by definition of xprq, we have

0 P Ä
Kÿ

k<0

´
xprq ` y

pr´1q
k ´ ck

¯
` ¼MB|xprq|. (58)

Thus, when

Ä

Kÿ

k<0

´
y

prq
k ´ y

pr´1q
k

¯
< 0,

we will have xprq, yprq satisfy (58). Let ϵabs ą 0 be an absolute tolerance and ϵrel ą 0 be a relative
tolerance, we then stop at iteration r if

rsub < Ä

ˇ̌
ˇ̌
ˇ
Kÿ

k<0

´
y

prq
k ´ y

pr´1q
k

¯ˇ̌ˇ̌
ˇ ď pK ` 1qϵabs ` ϵrel max

#
Kÿ

k<0

ˇ̌
ˇyprq

k

ˇ̌
ˇ ,

Kÿ

k<0

ˇ̌
ˇypr´1q

k

ˇ̌
ˇ
+

:< ϵsub.

The final ADMM algorithm and the algorithm to solve the sub problem are summarized in
Algorithm 1 and Algorithm 2.

For the proximal gradient descent algorithm to solve D-Trace loss objective (7), the stopping
criterion is introduced as below and the detailed algorithm is described in Algorithm 3.
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Algorithm 1 ADMM for Trans-MT-GLasso

1: Input: tpΣpkquKk<0, ¼M, Ä, ϵabs, ϵrel and t³kuKk<0.

2: Initialize: Let Ωp0q < Id, Γ
p0q
k < 0 and Z

p0q
k < Id for all 0 ď k ď K. Let rpri < rdual < 8 and

ϵpri < ϵdual < 0. Let t < 0.
3: while rpri ą ϵpri or rdual ą ϵdual do

4: t Ð t` 1.
5: for k < 0, 1, . . . ,K do

6: Let
C̃

pt´1q
k < ´Zpt´1q

k `
´
Ωpt´1q ` Γ

pt´1q
k

¯
´ p³k{ÄqpΣpkq,

and compute the eigenvalue decomposition of ÄC̃
pt´1q
k as

ÄC̃
pt´1q
k < UΛUJ, Λ < diag

´
t¼iudi<1

¯
.

7: Let

Ω
ptq
k < Udiag

¨
˝
#
¼i `

a
¼2i ` 4Ä³k

2Ä

+d

i<1

˛
‚UJ.

8: Let
Č

ptq
k < Ω

ptq
k ` Z

pt´1q
k .

9: end for

10: Solve

Ω
ptq
jl ,

!
Γ

ptq
k,jl

)K

k<1
< S

ˆ!
Č

ptq
k,jl

)K

k<1

˙
for all 1 ď j, l ď d.

by Algorithm 1.
11: Let

Z
ptq
k < Z

pt´1q
k ` Ä

´
Ω

ptq
k ´ Ωptq ´ Γ

ptq
k

¯
for all 0 ď k ď K.

12: Let

rpri <
˜

Kÿ

k<0

›››Ωptq
k ´

´
Ωptq ` Γ

ptq
k

¯›››
2

F

¸ 1

2

,

rdual < Ä

˜
Kÿ

k<0

›››
´
Ωptq ` Γ

ptq
k

¯
´
´
Ωpt´1q ` Γ

pt´1q
k

¯›››
2

F

¸ 1

2

,

and

ϵpri < ϵabsd
?
K ` 1 ` ϵrel max

$
&
%

˜
Kÿ

k<0

›››Ωptq
k

›››
2

F

¸ 1

2

,

˜
Kÿ

k<0

›››Ωptq ` Γ
ptq
k

›››
2

F

¸ 1

2

,
.
- ,

ϵdual < ϵabsd
?
K ` 1 ` ϵrel

˜
Kÿ

k<0

›››Zptq
k

›››
2

F

¸ 1

2

.

13: end while

14: Output: qΩpkq < Ωptq ` Γ
ptq
k for all k < 0, 1, . . . ,K.
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Algorithm 2 Solver of sub problem (54)

1: Input: c < pc0, c1, . . . , cKq; Initial xp0q and typ0q
k uKk<0; ¼M, Ä and t³kuKk<0.

2: Initialize: rsub < 8 and ϵsub < 0. Define STλp¨q as in (55). Let r < 0.
3: while rsub ą ϵsub do

4: r Ð r ` 1.
5: Let

xprq < STλM{pρpK`1qq

˜
1

K ` 1

Kÿ

k<0

´
ck ´ y

pr´1q
k

¯¸
.

6: Let
y

prq
k < STλM

?
αk{ρ

´
ck ´ xprq

¯
for all 0 ď k ď K.

7: Let

rsub < Ä

ˇ̌
ˇ̌
ˇ
Kÿ

k<0

´
y

prq
k ´ y

pr´1q
k

¯ˇ̌ˇ̌
ˇ ,

ϵsub < pK ` 1qϵabs ` ϵrelÄmax

#
Kÿ

k<0

ˇ̌
ˇyprq

k

ˇ̌
ˇ ,

Kÿ

k<0

ˇ̌
ˇypr´1q

k

ˇ̌
ˇ
+
.

8: end while

9: Output: xprq and typrq
k uKk<0.

Stopping criterion for proximal gradient. If Γptq is the solution for (7), the optimization
criterion requires that

0 P ∇LDpΓptqq ` ¼
pkq
Γ ¨ B

ˇ̌
ˇΓptq

ˇ̌
ˇ
1
.

Note that by the definition of Γptq in (12), we have

0 P Γptq ´
´
Γpt´1q ´ ¸∇LD

´
Γpt´1q

¯¯
` ¸¼

pkq
Γ ¨ B

ˇ̌
ˇΓptq

ˇ̌
ˇ
1
, (59)

which implies that

0 P ∇LDpΓptqq ` ¼
pkq
Γ ¨ B

ˇ̌
ˇΓptq

ˇ̌
ˇ
1

` 1

¸

´
Γptq ´ Γpt´1q

¯
´
”
∇LD

´
Γptq

¯
´ ∇LD

´
Γpt´1q

¯ı
.

Thus, when

rD <
››››
1

¸

´
Γptq ´ Γpt´1q

¯
´
”
∇LD

´
Γptq

¯
´ ∇LD

´
Γpt´1q

¯ı››››
F

<
››››
1

¸

´
Γptq ´ Γpt´1q

¯
´ 1

2
pΣp0q

´
Γptq ´ Γpt´1q

¯
pΣpkq ´ 1

2
pΣpkq

´
Γptq ´ Γpt´1q

¯
pΣp0q

››››
F

is close to zero, we then have (59) hold approximately. Therefore, given an absolute tolerance
ϵabs ą 0 and a relative tolerance ϵrel ą 0, we then stop at iteration t if

rD ď ϵabsd` ϵrel ˆ max

"
1

¸

›››Γptq ´ Γpt´1q
›››
F
,

››››
1

2
pΣp0q

´
Γptq ´ Γpt´1q

¯
pΣpkq

››››
F

*
.
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Algorithm 3 Proximal Gradient Method for D-Trace Loss

1: Input: pΣp0q, pΣpkq, ¼pkq
Γ , ¸, ϵabs and ϵrel.

2: Initialize: Γp0q < 0, rD < 8, ϵD < 0 and t < 0.
3: while rD ą ϵD do

4: t Ð t` 1

5: Let

Apt´1q < Γpt´1q ´ ¸∇LD

´
Γpt´1q

¯

< Γpt´1q ´ ¸

"
1

2

´
pΣpkqΓpt´1qpΣp0q ` pΣp0qΓpt´1qpΣpkq

¯
´
´
pΣp0q ´ pΣpkq

¯*
.

6: Let
Γ

ptq
jl <

”
|Apt´1q

jl | ´ ¼
pkq
Γ ¸

ı
`

¨Apt´1q
jl {|Apt´1q

jl |, 1 ď j, l ď d.

7: Let

rD <
››››
1

¸

´
Γptq ´ Γpt´1q

¯
´ 1

2
pΣp0q

´
Γptq ´ Γpt´1q

¯
pΣpkq ´ 1

2
pΣpkq

´
Γptq ´ Γpt´1q

¯
pΣp0q

››››
F

,

and

ϵD < ϵabsd` ϵrel ˆ max

"
1

¸

›››Γptq ´ Γpt´1q
›››
F
,

››››
1

2
pΣp0q

´
Γptq ´ Γpt´1q

¯
pΣpkq

››››
F

*
.

8: end while

9: Output: pΨpkq < Γptq.

I Minimax Optimal Rate for Differential Network Estimation

Differential network estimation aims to estimate the difference between two precision matrices with-
out first estimating the individual precision matrices. Although existing studies focus on providing
upper bounds for this problem [Zhao et al., 2014, Yuan et al., 2017, Zhao et al., 2022], there is no
known matching lower bound, making the minimax optimal rate an open question. As a byproduct
of our analysis, in this section, we provide a minimax optimal rate for differential network estimation
problem under certain conditions. To the best of our knowledge, this is the first minimax optimal
guarantee towards this direction.

We start by formulating the problem setup. Note that we reintroduce some notation used in this
section to make it self-contained, and one should not confuse it with the notation used in the other
parts of the paper. Suppose that we have nX i.i.d. samples X1, . . . , XnX

> Np0,Ω´1
X q and nY i.i.d.

samples Y1, . . . , YnY
> Np0,Ω´1

Y q. Let ∆ :< ΩY ´ ΩX be the differential network between ΩX and
ΩY . Our goal is to use samples from two populations to estimate ∆. In addition, we assume that
ΩX and ΩY belong to the following parameter space.

pΩX ,ΩY q P M :<
 
ΩX ,ΩY P S

dˆd : c1 ď µminpΩXq ď µmaxpΩXq ď c2,

c1 ď µminpΩY q ď µmaxpΩY q ď c2, |∆|0 ď h, |∆|1 ď CΓu , (60)

where c1, c2, CΓ ą 0 are positive universal constants. The parameter space defined in (60) requires
that the smallest eigenvalues and the largest eigenvalues of ΩX and ΩY are lower bounded and upper
bounded, respectively. Besides, we also require that the sparsity level of the differential network is
bounded by h, and the L1 norm of the differential network is bounded by universal constant.
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We first present the minimax lower bound for the above estimation problem. We state the result
in the following theorem.

Theorem 8. Assume that

d ě 4h, h log d ě 8 log 3,
h log d

n
ď min

 
2, 8p1 ´ c1q2, 8p1 ´ c2q2

(
, h

c
log d

n
ď 4CΓ. (61)

We then have

min
p∆

sup
pΩX ,ΩY qPM

E

„›››p∆ ´ ∆
›››
2

F


Á h log d

min tnX , nY u

Proof. Let ΩX < Id, note that
pId,ΩY q P M ð ΩY P G2,

where G2 is defined in (23). Now that samples from population X are useless for estimating ΩY ,
and we can only rely on samples from population Y to estimate ΩY . By Theorem 5, we then have

min
p∆

sup
pΩX ,ΩY qPM

E

„›››p∆ ´ ∆
›››
2

F


ě min

pΩY

sup
ΩY PG2

E

„›››pΩY ´ ΩY

›››
2

F


Á h log d

nY

.

Similarly, we can show that

min
p∆

sup
pΩX ,ΩY qPM

E

„›››p∆ ´ ∆
›››
2

F


Á h log d

nX

.

Combine the above two inequalities, we have the final result. ■

Next, we derive the matching upper bound. Let p∆ be the D-Trace loss estimator defined in (7),

and ∆̌pÄq be the truncated version of p∆ as defined in (62). Following directly from Theorem 13, we
then have the following theorem.

Theorem 9. Assume that CΓ ď dτ3 , where CΓ is the same universal constant used in (60). Let

¼Γ 4
d

log d

min tnX , nY u ,

where ¼Γ is the penalization parameter of D-Trace loss. Then for any Ä ě Ä3, we have

sup
pΩX ,ΩY qPM

E

”››∆̌pÄq ´ ∆
››2
F

ı
À h log d

min tnX , nY u .

Combine Theorem 8 and Theorem 9, we then have the final main result of this section.

Theorem 10. Assume that the conditions of Theorem 8 and Theorem 9 hold. We have

min
p∆

sup
pΩX ,ΩY qPM

E

„›››p∆ ´ ∆
›››
2

F


4 h log d

min tnX , nY u .

J Upper Bound for Expected Error

In this section, we develop theoretical guarantees for the expected error. We start with the analysis
of the Trans-MT-Glasso. The subsequent theorem provides the expected error measured in the
Frobenius norm.

46



Theorem 11. Suppose that Assumption 1 and Assumption 2 hold. Assume that 2 pK ` 2q ď dτ1

and N ď dτ2 , for some universal constants Ä1, Ä2 ą 0. In addition, assume that

log d

min0ďkďK nk

À 1.

Let sn < N{pK ` 1q, Mop ě MΩ and Mop < Op1q. If ¼M 4
a
log d{N , we have

E

«
Kÿ

k<0

³k

›››pΩk ´ Ωpkq
›››
2

F

ff
À
ˆ
s

N
` h

sn

˙
log d.

Refer to the proof in Appendix K. The rate described in Theorem 11 consists of two parts. The
first part, which is of the order ps log dq{N , refers to the estimation of the shared component. The
second part, of the order ph log dq{sn, relates to the estimation of the individual components.

As discussed in Section 5.2, the differential network estimate pΨpkq is considered the result of a
black-box algorithm, with the presumption that its estimation errors are appropriately controlled.
Let BFpRq :<

 
A P R

dˆd : }A}F ď R
(

be the ball with radius R. For Ä ą 0 and 0 ď k ď K, we
define

pΨpkq
projpÄq P arg min

ΓPBFpdτ q

›››Γ ´ pΨpkq
›››
F
. (62)

pΨpkq
projpÄq is utilized solely for theoretical reasons. Suppose that by choosing Ä appropriately, we have

E

„›››pΨpkq
projpÄq ´ Ψpkq

›››
2

F


À sgpkq

F pn0, nk, d, h,MΓq :< sgpkq
F for all 0 ď k ď K. (63)

We define

pΩp0q
projpÄq <

Kÿ

k<0

³k

´
qΩpkq ´ pΨpkq

projpÄq
¯
, (64)

pΨpkq
projpÄq is defined in (62). Combining (63) with Theorem 11 yields the following theorem with

expected error upper bound for Trans-Glasso.

Theorem 12. If the conditions of Theorem 11 are satisfied and Ä is chosen so that (63) holds, we
have

E

„›››pΩp0q
projpÄq ´ Ωp0q

›››
2

F


À
ˆ
s

N
` h

sn

˙
log d`

Kÿ

k<0

³ksgpkq
F .

We then characterize sgpkq
F in the case where the D-Trace loss estimator in (7) is used. Recall that

pΨpkq
projpÄq is defined by (63).

Theorem 13. Suppose that Assumption 1 and Assumption 2 hold. Assume that 2pK ` 1q ď dτ1 ,
N ď dτ2 and MΓ ď dτ3 for some universal constants Ä1, Ä2, Ä3 ą 0. Let

¼
pkq
Γ 4 MΓ

d
log d

min tnk, n0u .

Then, for any Ä ě Ä3, we have

E

„›››pΨpkq
projpÄq ´ Ψpkq

›››
2

F


À M2

Γ h log d

min tnk, n0u .

Proof. Note that }A}F ď |A|1 for any matrix A. Thus we have }Ψpkq}F ď }Ψpkq}1 ď 2MΓ. The rest
of the proof is similar to the proof of Theorem 11. ■
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By Theorem 13, we have

sgpkq
F < M2

Γ h log d

min tnk, n0u
for D-Trace loss estimator. Plugging the above results into Theorem 12, we then have the following
corollary.

Corollary 2. Let pΩp0q be obtained by Trans-Glasso (8) with the D-Trace loss estimator used in
Step 1. Suppose that Assumption 1 and Assumption 2 hold, and that the conditions in Theorem 11
and Theorem 13 are satisfied. If 2 pK ` 2q ď dτ1 , N ď dτ2 , MΓ ď dτ3 for some universal constants
Ä1, Ä2, Ä3 ą 0, and

¼M 4
c

log d

N
, ¼

pkq
Γ 4 MΓ

d
log d

min tnk, n0u for all k P rKs,

then for any Ä ě Ä3, we have

E

„›››pΩp0q
projpÄq ´ Ωp0q

›››
2

F


À
ˆ
s

N
` p1 `M2

Γq ¨ hsn `M2
Γ ¨ h

n0

˙
log d . (65)

The estimation error in (65) is comprised of three parts: shared component estimation, individual
component estimation, and differential network estimation. If sn ě n0 and MΓ is bounded by a
universal constant, the error scales as s log d

N
` h log d

n0
. When using only target samples, the lowest

error rate achievable is ps`hq log d

n0
as stated in Theorem 4. Therefore, if N " n0, the error rate can be

significantly reduced compared to the optimal rate obtained with only the target samples. Moreover,
as demonstrated in Section 5.3, the rate s log d

N
` h log d

n0
is minimax optimal under certain conditions.

K Proof of Theorem 11

Note that for any matrix A P R
dˆd, we have }A}F ď

?
d }A}2. Since by our assumptions that››Ωpkq››

2
< Op1q and

›››qΩpkq
›››
2

< Op1q, we thus have

›››Ωpkq
›››
F

< O
´
d

1

2

¯
and

›››qΩpkq
›››
F

< O
´
d

1

2

¯
.

For ¶ P p0, 1s, let

¼M ě C1C3

c
logp2 pK ` 2q d2{¶q

2N
,

where C1 < 160 and C3 < MΣ. Besides, by the proof of Theorem 1, when

logp2 pK ` 2q d2{¶q
min0ďkďK nk

ď 1

2
,

then by (43), we have P tGp¼Mqu ě 1 ´ ¶; or equivalently, we have P
 sGp¼Mq

(
ď ¶, where sGp¼Mq

denotes the event that Gp¼Mq does not hold.
Recall that by assumption we have 2 pK ` 2q ď dτ1 . Let ¶ < d´τ 1

, where Ä 1 will be specified
later, then by letting

¼M < C1C3

c
pÄ 1 ` Ä1 ` 2q log d

2N
, (66)

pÄ 1 ` Ä1 ` 2q log d
min0ďkďK nk

ď 1

2
, (67)
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we have P
 sGp¼Mq

(
ď d´τ 1

. Besides, by Section C.3, when (66)–(67) are true, Gp¼Mq then implies
that

Kÿ

k<0

³k

›››qΩpkq ´ Ωpkq
›››
2

F
ď 9 ps` pK ` 1qhq¼2M

4»2

ď 9C2
1C

2
3 pÄ 1 ` Ä1 ` 2q

8

ˆ
s

N
` h

sn

˙
log d.

Note that

E

«
Kÿ

k<0

³k

›››qΩpkq ´ Ωpkq
›››
2

F

ff

< P tGp¼MquE
«

Kÿ

k<0

³k

›››qΩpkq ´ Ωpkq
›››
2

F

ˇ̌
ˇ̌
ˇGp¼Mq

ff
` P

 sGp¼Mq
(
E

«
Kÿ

k<0

³k

›››qΩpkq ´ Ωpkq
›››
2

F

ˇ̌
ˇ̌
ˇ
sGp¼Mq

ff
.

(68)
Given (66)–(67) are true, we have

E

«
Kÿ

k<0

³k

›››qΩpkq ´ Ωpkq
›››
2

F

ˇ̌
ˇ̌
ˇGp¼Mq

ff
ď 9C2

1C
2
3 pÄ 1 ` Ä1 ` 2q

8

ˆ
s

N
` h

sn

˙
log d. (69)

Besides, since }qΩpkq}F, }Ωpkq}F < Opd 1

2 q for all 0 ď k ď K, we have

Kÿ

k<0

³k

›››qΩpkq ´ Ωpkq
›››
2

F
ď C 1d,

for some constant C 1 ą 0, and thus we have

P
 sGp¼Mq

(
E

«
Kÿ

k<0

³k

›››qΩpkq ´ Ωpkq
›››
2

F

ˇ̌
ˇ̌
ˇ
sGp¼Mq

ff
ď C 1d ¨ d´τ 1 < C 1d´pτ 1´1q.

By Assumption that we have N ď dτ2 where Ä2 ą 0, then when we choose Ä 1 such that

Ä 1 ě Ä2 ` 1 ` log
`
8C 1{9C2

1C
2
3 pÄ 1 ` Ä1 ` 2q

˘

log d
,

we then have

C 1d´pτ 1´1q ď 9C2
1C

2
3 pÄ 1 ` Ä1 ` 2q

8
¨ 1

N

ď 9C2
1C

2
3 pÄ 1 ` Ä1 ` 2q

8

ˆ
s

N
` h

sn

˙
log d,

which then implies that

P
 sGp¼Mq

(
E

«
Kÿ

k<0

³k

›››qΩpkq ´ Ωpkq
›››
2

F

ˇ̌
ˇ̌
ˇ
sGp¼Mq

ff
ď E

«
Kÿ

k<0

³k

›››qΩpkq ´ Ωpkq
›››
2

F

ˇ̌
ˇ̌
ˇGp¼Mq

ff
.

Combine the above inequality with (68) and (69), we finally have

E

«
Kÿ

k<0

³k

›››qΩpkq ´ Ωpkq
›››
2

F

ff
ď 2E

«
Kÿ

k<0

³k

›››qΩpkq ´ Ωpkq
›››
2

F

ˇ̌
ˇ̌
ˇGp¼Mq

ff

ď 18C2
1C

2
3 pÄ 1 ` Ä1 ` 2q

8

ˆ
s

N
` h

sn

˙
log d

À
ˆ
s

N
` h

sn

˙
log d.
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