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The gravitational wave detectors used by the LIGO Scientific Collaboration, and the Virgo Collaboration are
incredibly sensitive instruments which frequently detect non-stationary, non-Gaussian noise transients. iDQ is a
statistical inference framework which leverages the use of auxiliary degrees of freedom monitored in the detectors
to identify such transients. In this work, we describe the improvements to the iDQ pipeline made between the
third and fourth observing run of the LIGO-Virgo-KAGRA (LVK) collaboration, and show the performance of
these changes. We find that iDQ detects a total of 39,398 of the known 100,512 glitches identified by Omicron
over the course of the second half of the third observing run. We construct a measure of the probability a glitch is
present in the strain data of a given detector by combining information from iDQ and Omicron as well as extend
the output of iDQ in a novel method which finds correlations between known glitch classifications, and auxiliary
channels. We identify several channels over the course of O3b which frequently record instances of Scattered
Light, Whistle, and Blip glitches and discuss use cases for this method in active observing runs.

I. INTRODUCTION

The detection of 90 gravitational wave candidates [1] by the
LIGO Scientific Collaboration and the Virgo Collaboration has
been made possible via gravitational wave detectors, Advanced
LIGO [2] and Advanced Virgo [3]. The detectors are modified
large-scale Michaelson interferometers whose main output,
called strain data, is the difference in distance traveled by
laser light between its two arms. As gravitational waves pass
through the instrument, these paths change a minute amount,
resulting in a recorded signal in the strain data measured to
lengths as small as 107!° meters (when measuring within the
sensitive frequency band). While this remarkable sensitivity
allows for the detection of gravitational waves, it also allows
for the easy detection of transient noise sources arising from
the environment or the instrument itself. Such non-stationary
noise sources are commonly referred to as glitches.

Glitches can arise from a variety of both known and un-
known sources [4-7] and pose a challenge to the accurate
detection and analysis of gravitational wave signals [8—11].
Some glitches can manifest in the strain data in a similar man-
ner to genuine gravitational wave signals, and can possibly be
mistaken for them if present simultaneously across multiple
detectors. Glitches can additionally overlap with true signals
thereby obfuscating them, and making parameter estimation of
the true signal difficult. Such was the case with the detection
of the binary neutron star merger signal GW170817 where
there was a large glitch overlapping with the Livingston de-
tector data causing some initial concerns with the data quality
[12, 13]. Therefore identifying and characterizing glitches is
a key part of increasing the overall sensitivity of the entire
detection system.

While the detection of gravitational waves is possible using
the strain data alone, there are also thousands of supplementary
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data outputs produced by the detectors. These supplementary
outputs, called auxiliary channels, record additional degrees of
freedom in the detector apart from the strain data and act as
monitors on everything from mirror deformation, to environ-
mental recordings [6, 14—17]. The presence of a gravitational
wave signal in the main channel can be seen in a subset of
these auxiliary channels. Such channels are not ideal for use
in identification of glitches as signals there could be genuine
gravitational waves signals. Safe auxiliary channels then are
defined those which are insensitive to gravitational waves, and
therefore any signal present in these channels is by definition
a glitch. Glitches witnessed by these safe auxiliary channels
may also appear in the strain channel. If only monitoring the
strain channel in such a case, information is lost that could
easily identify the present signal as a glitch. iDQ is a statis-
tical inference framework which uses safe auxiliary channels
to identify these cases and make statistical statements about
the presence of glitches in the strain channel based solely on
activity in the auxiliary channels [18, 19].

iDQ is trained on activity in safe auxiliary channels labeled
by the presence of glitches in the strain data to identify corre-
lations between the two. If an auxiliary channel is identified
to be strongly correlated with the strain data, then any new
activity in that auxiliary channel can be used to predict if a
signal in the strain data is of terrestrial origin. Additionally, by
monitoring only the safe auxiliary channels, iDQ can safely
identify glitches without also flagging real gravitational waves
making it ideal for incorporation into gravitational wave detec-
tion pipelines. The output of the iDQ analysis then consists of
two probability statements that indicate the likelihood that the
gravitational wave data is contaminated by a glitch monitored
by one of these auxiliary channels.

There are thousands of these safe auxiliary channels sampled
at high rates available for analysis by iDQ. In order to reduce
the computing cost and latency of analyzing so many channels
at such high rates, iDQ relies on two sources for the extraction
and downsampling of relevant information. In low-latency
operation, the Stream-based Noise Acquisition and eXtraction
pipeline (SNAX) [19], is implemented for this purpose, but in
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high latency Omicron [20, 21] is used and it is the latter which
will be discussed in this work. Omicron reports on the presence
of excess power, measured by the signal-to-noise ratio (SNR),
in both strain and auxiliary channel data via the Q transform, a
wavelet decomposition which uses sinusoid signals modulated
by a Gaussian amplitude and is parameterized by frequency,
amplitude, and a quality factor (Q). Times which are noted to
have an estimated SNR greater than 5.5 are then passed on to
iDQ for analysis. High SNR times from the strain channel are
used to label glitches in iDQ training sets, while all times from
auxiliary channels are used to find correlations.

Correlations identified by iDQ can then be further classified
by the type of glitches present in the correlation. Glitches are
separated into classes based on how they appear in the strain
data and those which have the same morphology as gravita-
tional wave signals, for example, are of particular interest and
are targeted for further study. Automating the classification of
glitches is what motivated the development of GravitySpy [22—
26] which can automatically classify any time of interest using
a convolutional neural network (CNN) and a training set of
known morphologies. In this work, the correlations iDQ finds
between auxiliary channels and strain data are extended using
the classifications assigned by GravitySpy to find relationships
between auxiliary channels and glitch classes. These relation-
ships then reveal which glitch classes appear most frequently
in which auxiliary channels. If an auxiliary channel frequently
witnesses a particular glitch class, then the detector system the
auxiliary channel monitors can be investigated as a possible
source of that glitch class.

In this work, Section II provides a background of the iDQ
framework, the Omicron package it relies on, and the Grav-
itySpy package which provides classifications. Section III
reviews changes to the iDQ pipeline from the LSC’s third ob-
serving run to the beginning of the fourth run, as well as the
performance of these changes. Finally, in Section IV we quan-
tify iDQ’s current performance, including a new measure of
glitch probability, and report on a new method using iDQ to
track glitch types back to their possible origins in the detectors.

II. BACKGROUND

A. Omicron

Omicron is designed to detect and characterize transient
signals through the use of the Q transform, which decomposes
the detectors’ time-series data into a time-frequency basis. The
Omicron implementation of the Q transform relies on the tiling
of a signal’s time-frequency space where one tile is defined by
the projection of the signal onto a Bisquare windowed sinusoid
basis with a given central time, central frequency, and quality
factor, Q [20]. The distribution of tiles used by Omicron in a
single Q plane is defined by an acceptable energy loss due to
mismatch between the tiles, and this strategy leads to sets of
tiles defined logarithmically in central frequency and Q, and
linearly in central time.

The excess energy of any given tile is then used as an esti-

mation of the SNR, p and is given as [21]:
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where X(7, f;, Q) is a single tile, < X(Q)? > is the mean ex-
pected energy of all tiles in a given Q plane, and 2 is the
result expected from white noise. In order to form triggers,
any two tiles with positive excess energy which have less than
0.1 seconds between their central times are considered to be
identifications of the same event and are clustered. After a
cluster is formed, the SNR, central time, and central frequency
of the tile in the cluster with the highest SNR are assigned as
the event’s parameters. Similarly, the start and stop time of
the event are taken as the earliest and latest central time of
tiles in the cluster [21]. This clustering results in events with
non-uniform duration from as little as 0.1 seconds and up to
10 seconds, with the bulk of the distribution around at O(0.1)
seconds.

Any event with an SNR of at least 5.5 in the strain channel is
then recorded in the Omicron database along with its relevant
parameters. High SNR events from the strain channel could
indicate the presence of a glitch, but could just as easily identify
a real gravitational wave signal. For the purpose of this paper,
events with an SNR greater than 10 in the strain channel which
do not correspond to known gravitational wave signals are
treated as the identification of a glitch. Events identified in safe
auxiliary channels, meanwhile, are used as inputs to the iDQ
analysis.

B. GravitySpy

While other detector characterization pipelines like Omicron
identify glitches in the strain data, GravitySpy contributes
classifications to those times. There are variety of glitch classes
defined by detector characterization experts based on their
morphology in the time frequency space of the strain channel
[22]. GravitySpy uses a combination of human volunteers
and a CNN machine learning algorithm [23, 24, 26, 27] to
classify any time of interest based on spectograms of the strain
data with four different durations. Four durations are used in
order to expose morphologies which are present at varying
timescales. The output of GravitySpy tells us at a given time
what is the probability, or confidence, of each glitch class
considered. The confidence across classes is not required to
sum to one, and instead each class is assigned a value between 0
and 1 individually. For example, GravitySpy could be confident
that there was a scattering-like glitch present, but be unable to
distinguish whether it was Fast Scattering or Scattered Light.
In this case, you could expect high confidence values in those
two classes and lower confidence values across all others.

The training set for GravitySpy has evolved with time as
more glitches are discovered, and more morphological classes
are defined. As of LIGO’s third observing run, the training data
consisted of 9631 labeled glitch samples across 23 morpholo-
gies [22]. There has since been an update to the GravitySpy
model for LIGO’s fourth observing run [26], but this paper
focuses on data from the third and therefore uses classification
from the GravitySpy model available during that time.



During active LIGO observing runs, GravitySpy classifica-
tion is triggered on new Omicron event times uploaded to the
database with SNR of 7.5 or greater. This allows for medium-
latency identification and classification of glitches which can
then be used by detector engineers to inform detector mainte-
nance. However, Omicron experts frequently add new events
to the database which were not identified in low-latency. These
additional times are not always assigned classifications by
GravitySpy, and therefore in this work, we consider an addi-
tional category of “Unclassified” to represent these times.

C. iDQ

We will give a brief summary of the iDQ framework leading
into the LSC’s third observing run, further description can be
found in [18]. iDQ runs in two modes — streaming and batch.
We summarize the batch, or high-latency, implementation here
as it is what is used to measure the performance of the pipeline
in the later sections of this work.

iDQ begins by taking in events produced by Omicron on
0(10%) auxiliary channels. As discussed in section I A triggers
are equivalent to tabular data on transients in these channels
and contain information on the signal-to-noise-ratio (SNR),
frequency, central time, etc of these transients. The events
for each channel reported by Omicron are then downsampled
further by iDQ into feature vectors. A feature vector represents
the maximum SNR event reported by Omicron in any one
second window.

These vectors are then labeled as glitch or clean based on
the SNR value reported by Omicron on the strain data at the
same time. If the SNR of the strain channel is greater than 10,
then the transient is considered a glitch. If the strain channel
SNR is less than 5.5, then its considered clean. Any feature
that falls in between those two thresholds is neither clean nor a
glitch and is not used in training data.

To construct training datasets, the entire time of interest is
first divided into segments. The majority of these time seg-
ments are used for training, and one is reserved for evaluation,
as described in detail in Section IV of [18]. The times in train-
ing segments are then used to construct the training datasets
iDQ needs for its classifiers. For training, all the times labeled
as glitch, and a random selection of clean times at least one
second away from a labeled glitch are used. The additional one
second window for clean sampling enforces that the times in
the glitch and clean datasets are uncorrelated as most glitches
are shorter than one second in duration. This limits the training
dataset based on the Omicron SNR threshold in strain, but it is
ultimately the auxiliary channel features at the times of interest,
and not strain information that iDQ is trained on.

iDQ uses these datasets to then train the classifier(s) chosen.
The only limit to the choice of classifier is that it must map
the high-dimensional input feature vector space into a single
rank value between 0 and 1. This mapping, called a model, is
unique to the classifier and to the time it was trained on. For
batch production during O3, the classifier OVL was used.

The OVL classifier is described in [28], but can be summa-
rized by understanding that models produced by OVL consist
of an Ordered Veto List, a list of times during which the ac-
tivity in the auxiliary channels indicates the presence of noise

in the strain channel. To form this model, OVL creates a list
of possible veto configurations based on auxiliary channel,
threshold, and time window and then evaluates them based
on a chosen metric. OVL previously supported the choice
of one of three different metrics for this process: efficiency-
deadtime ratio, Poisson significance, or use percentage, al-
though as we describe in section III A, additional options have
been added. The use percentage is the fraction of auxiliary
channel glitches which can be associated with a strain channel
glitch where a glitch in the auxiliary channel is defined by
having an amplitude above the threshold set by the veto. The
Poisson significance is the probability of observing as many or
more coincidences between two series of random events than
actually observed between the auxiliary channel and strain as
described in detail in [29]. The efficiency-deadtime ratio is
given by the efficiency of the veto over the deadtime introduced
by the application of the veto. In other words, the fraction of
total glitches in strain removed over the fractional livetime
removed by applying the veto.

iDQ requires that these metrics produce ranks that fall in the
space of [0,1) rank space in order to be comparable between
one another. If only used individually, the choice of [0,1) is
an arbitrary one and what is more important is the ordering.
However, as will be discussed in section III, it can be desirable
to combine information across several metrics in order to give
preference to vetoes with a certain combination of properties.
Therefore, a simple scaling factor was applied to their values
with a map from the metric space of [0, inf) to rank space of
[0, 1) as show below:
S * X

Rank,, = )

1+ 5, % x,

where s, is the scaling factor for the metric and x,, was the
value of the metric itself.

After the initial rank evaluation, the vetoes are ordered from
highest to lowest, and then the rank is re-calculated applying
the highest veto first, and ending in the lowest. Any veto falling
under a threshold for that metric is removed, and the process is
repeated. In this way, OVL produces a final Ordered Vetoed
List for any given training time, thereby making a model. The
model for OVL is then applied to a time of interest by first
removing any veto configuration which doesn’t apply. Then,
the rank of the highest ranked veto from the resultant list is
applied as the rank of the time of interest.

The rank values alone, however, do not have any physical
meaning and it is only the ordering that truly matters. There-
fore, ranks must be transformed to log-likelihood and false
alarm probabilities through calibration. The calibration re-
quires the rate of clean and glitch samples to be determined,
and a PDF generated. Through O3, the glitch and clean distribu-
tions for this calibration were populated by the glitch and clean
samples from the training datasets, although this has changed
recently as described later in section III B. The rates of clean
samples and glitch samples can then be calculated directly
from these distributions as described in [18], and a Gaussian
kernal-density-estimate (KDE) can be applied to the distribu-
tions to obtain a posterior-density-function (PDF). These rates,
along with the PDF from the KDE, create the calibration maps
needed to convert any given rank to a log-likelihood and false
alarm probability as described in detail in [18].



In summary, for any time of interest, a model made by OVL
and trained using Omicron labels on the strain is applied to the
full feature vector set. The result is a single rank. The rank is
then transformed to log-likelihood and false alarm probability
statistics via a calibration map generated by sampling the clean
and glitch distributions of the training datasets and applying
a Gaussian KDE. This process can then be repeated for any
number of times, thereby creating a full timeseries.

III. PIPELINE IMPROVEMENTS

The methods described in I were applied uniformly through
03. However, between the end of O3 and the beginning of
04 in May 2023, several changes were implemented into the
iDQ analysis to improve calibration, and the dynamic range
of its outputs. These changes were applied to batch offline
re-analysis of O3 data in order to prepare detection pipelines
for the fourth observing run (O4) and then applied to both
the batch and streaming iDQ analyses during the first half of
0O4. In the following three sections, we describe in detail the
changes and the motivations behind them. In III D, we report
on the performance of these changes and show that they lead
to the desired effects.

A. Change of Rank

The first of these changes was to the calculation of the rank
assigned to times of interest by OVL.

The metrics of use percentage, Poisson significance, and
efficiency-deadtime ratio individually are useful, but previ-
ously it was difficult to compare results across them as they did
not behave similarly across the rank space. A similar behavior
of increasing metric leading to increasing rank with support
throughout the [0, 1) rank range was needed for each metric.
To get this behavior, the scaling factors described in Equation 2
for the efficiency-deadtime ratio and Poisson significance were
altered but otherwise the rank is calculated identically. Mean-
while, the use percentage to rank map was changed entirely to
have no scaling factor or map at all. That is, the rank is exactly
the use percentage.

With this change, we then offer the option to combine ranks
from multiple sources at once to obtain weighted ranks. This
is done via a weighted average of the three individual metrics
as shown below:

Z T * Wiy
2 W

where wy, is a configurable parameter and is weight for a given
metric, and r,, is the value of the rank from a given metric.
In a typical offline analysis, the veto efficiency and use per-
centage of the veto are used with a weight of one third and
two thirds respectively. This configuration down-ranks vetoes
with high efficiency but poor use percentage. Vetoes which
follow this trend flag auxiliary channels with rare departures
above the threshold but in the process veto large periods of
quiet time in the strain channel, increasing the likelihood that
iDQ misidentifies a genuine event as being of instrumental
origin. By prioritizing the use percentage metric, these veto

3)

configurations are suppressed in favor of those which are less
likely to misidentify genuine events in the strain channel as
noise.

B. Use of all data for background collection

In order to calibrate the rank from iDQ’s classifiers into
statistical information such as the false alarm probability and
log-likelihood, a model of the underlying distribution of clean
and glitch samples is generated as described in II using a
Gaussian KDE. However, the KDE can only be as accurate as
the underlying distribution it relies on.

As described previously, when using the binning and seg-
ment scheme developed for the offline batch mode of iDQ, the
clean distribution used in calibration is populated only with
times from the training datasets. This results in populating the
clean distribution only with times at most one half of a seg-
ment’s width away from the time of interest, or typically O(3)
days. When there are few segments for a wide time range, or
the segment width is large, the clean distribution used for cali-
bration can be very different from the true distribution which
the time of interest resides in. This is a natural result of the
time-evolving nature of the detectors as the noise background
one day can vary significantly from the noise background the
next.

This results in the output timeseries jumping between seg-
ment boundaries as the calibration between those segment
boundaries reflects the change in the underlying noise distri-
bution. By allowing sampling of the clean distribution within
the time segment of the time of interest in addition to sampling
outside of it, the resulting clean distribution more accurately re-
flects the local distribution, and the output timeseries becomes
more seamless between segment boundaries.

C. Bounding of KDE Bandwidth

As mentioned in section II, iDQ applies a Gaussian KDE to
the discretely sampled clean and glitch histograms to create
smooth posterior density functions. These distributions are
then converted to cumulative distributions in order to calculate
the false alarm probability (FAP) and log-likelihood. The
accuracy of this KDE then has a direct impact on the timeseries
output of iDQ.

Previously, the discrete nature of the clean and glitch distri-
butions caused the automatic bandwidth optimization of the
KDE to rail to extremely narrow Gaussians as shown in the
top half of Figure 1. This left large regions of the rank space
without proper support from the KDE, especially as rank goes
to one. This caused scaling of the log-likelihood and FAP to
be uneven, and the log-likelihood in particular to have a large
dynamic range. Bounding the lower end of the bandwidth
range forces support in those portions of rank-space without
many samples in its underlying histogram as seen in the bottom
half of Figure 1. This results in a more evenly scaled output
statistics, with a smaller dynamic range.

Improvements in the distribution and bounding of the time-
series can be seen in Figure 2. Here, we only show the results
for Hanford because the Livingston timeseries show similar
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FIG. 1. In the top row, the calibration distribution is shown before the
KDE is applied. In the bottom row, the KDE of the glitch distribution
(left) and clean distribution (right) of samples collected over about two
weeks of O3b time after the most recent changes were implemented.
Note how the KDE is significantly smoother than before and provides
a wide range of support across the rank space. This results in the
output statisitics based on this KDE being more evenly scaled across
the entire rank space.
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FIG. 2. Histograms showing the count of samples with log likelihood
ratio between the glitch and clean models (top) and false alarm proba-
bility (bottom) observed by iDQ at Hanford during O3b both before
code changes were implemented (yellow) and after (blue). Notably,
there is a vast improvement in the dynamic range of the log-likelihood
distribution after the code changes as desired.

behavior changes. The top half of this plot shows the histogram
of the log likelihood ratio between the glitch and clean models
with the original timeseries shown in orange and the improved
version in blue. The dynamic range of the log-likelihood ratio
has been severely reduced from thirteen orders of magnitude
to just six with the updates.

D. Performance of Pipeline Changes

In order to show the improvements made in the pipeline, we
compared results from iDQ’s analysis of O3b, which spans
from November 2019 to March 2020. We compare the results
from the original offline analysis done concurrently with O3b

observations and from a re-analysis using the newly updated
pipeline code. For simplicity we will refer to the different code
versions as being ’before’ and ’after’ respectively.
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FIG. 3. Receiver operating characteristic curve of iDQ at the Hanford
(red) and Livingston (blue) gravitational wave detectors over the time
period of O3b. The dashed lines represent the original results from
iDQ and the solid lines show the re-analysed results after code im-
provements. A dashed grey line was added to represent an uniformed
classifier. The analyses at both detectors show improvement in the
important mid-FAP range where the bulk of iDQ’s distinguishing
power.

Figure 3, shows the false alarm probability (FAP) plotted
against the efficiency of the iDQ pipeline at Hanford (red) and
Livingston (blue) with original code (dashed) and the updated
version (solid). In these receiver operating characteristic (ROC)
curves, we can already see a stark contrast between the two
code versions — particularly in the performance at the Hanford
detector. Both at Hanford and Livingston, there is a doubling
of the efficiency of the pipeline at a false alarm probability
(FAP) of 1073 after the updates and a general improvement
across the range of FAP 1073 to 107!, At larger FAP, the model
for Hanford previously did worse than an uninformed one, or
a model built on random chance, but after the updates this is
no longer the case. However, the Livingston performance is
slightly worse at high FAP than before. Generally, this slight
decrease in performance at high FAP is seen as a more than
fair trade-off for the wide improvement in the middle range. At
high FAP, iDQ loses its distinguishing power as there is a gap
in the rank output of OVL between 0, and the lowest ranked
veto configuration as can be seen in Figure 2. This means that
iDQ already does not have distinguishing power in the FAP
range, so a small loss of sensitivity there is not a large loss to
the power of the analysis. Instead, its the middle ranges of the
FAP where we see the most improvements which are the most
crucial to the distinguishing power of the analysis.

IV. USE OF IDQ

iDQ’s main purpose is to identify glitches apparent in the
strain data by monitoring the auxiliary channels of the detectors.
Omicron strives for the same end goal, but via excess power
in the strain channel itself. In this section, we use the glitch
times flagged by Omicron as a benchmark for comparison for
the output of iDQ and then analyze the results broken down by
glitch class and auxiliary witness channel.



In Section A, we discuss how Omicron and iDQ identify
glitches, how we construct coincident events between the anal-
yses, and how the results break down by glitch class. In Section
B, we show how iDQ can provide additional auxiliary chan-
nel information about identified glitches, and possibly identify
physcial sources of glitch classes.

A. Glitch Presence Identification
1. Methods

In this work, we compare iDQ’s performance against that of
Omicron at identifying glitches broken down by glitch type as
classified by GravitySpy. In order to define a glitch as identified
by iDQ, we first apply a threshold on the log-likelihood ratio.
In this work, we’ve chosen two thresholds to examine — two
and five. We have chosen to analyze both of these because
we found certain glitch classes ring up frequently in the 2 to 5
range, but the lower confidence threshold additionally results
in more false alarms. The nature of veto application causes the
output timeseries of iDQ to be step-wise with steps at most
the width of the largest veto window, but typically less than a
second. Therefore, after application of the threshold, we cluster
any points with identical adjacent neighbors by keeping only
the central point in time from series of identical points. This is
equivalent to identifying the center of any veto window as the
central time of the event. We then further cluster these points
by keeping the maximum log-likelihood point in a clustering
window, w;pg, of one second, or a half second on either side.
Using this large clustering window allows us to assume that
any two event times identified by iDQ are not caused by the
same glitch, and are uncorrelated.

We then compare these events identified by iDQ to all times
identified by Omicron in the strain channel as having an SNR of
ten or greater. The threshold of ten on Omicron SNR is chosen
to match the SNR threshold used in iDQ training datasets, and
we calculate the Omicron glitch rate, o as the number of
events crossing this threshold by the observing time. Any iDQ
event within a coincidence window, we.;,c, of a half second on
either side of a glitch identified by Omicron we assume is an
identification of the same glitch and call this event coincident
between the analyses. We can then count the number of these
events for the entire observing time, and call that number
N, coinc-

To classify these coincident glitch events, we find the classi-
fication reported by GravitySpy for the Omicron event in the
strain channel and enforce that the confidence of the classifica-
tion is greater than 0.9. We then assume that this classification
applies to the Omicron event, and the relevant coincident iDQ
event as well. In addition to known morphological glitch
classes, GravitySpy additionally includes one classification
called ”No Glitch”. This class is meant to truly classify times
without glitches present, but the GravitySpy model used in
this work has recently been found to confidently assign this
label to times which clearly have excess power in their spectro-
grams that does not necessarily match any of the other classes.
Three examples of this classification can be seen in Figure 4.
The leftmost panel shows a correct classification of No Glitch.
While there may be some excess power, it is not noticeable

above the noise background nor well-localized and is therefore
not a glitch. The middle panel shows a time which is a glitch,
but which does not match the morphology of any glitch class
known to GravitySpy, and is instead added into the No Glitch
category. In the far right panel, we show a clear Extremely
Loud glitch that mis-classified into the No Glitch class. It’s
possible that the overlap of the Extremely Loud glitch with
loud repeating whistle glitches confused the classifier, but it is
certainly not devoid of a glitch. In order to avoid confusion, we
therefore throughout this paper will reference this "No Glitch”
category as simply "Unknown” as these times may or may not
contain glitches.

Any iDQ event which crosses the log-likelihood chosen, but
which does not coincide with an Omicron event with SNR
greater than 10, we assume to be identification of a time which
does not contain a glitch and is therefore a false alarm. The iDQ
training sets meanwhile use times with an Omicron threshold
less than 5.5 or no Omicron event at all, for identification of
times which do not contain glitches. Times which fall in the
range of Omicron SNR 5.5 and 10 are not confidently true
glitches, but do contain excess power in their spectograms as
identified by Omicron. Thereby assigning false alarms in this
work to be any event not coincident with an Omicron event
with SNR greater than ten is a conservative estimate. We then
calculate a false alarm rate as the number of false alarms in a
given time period over the total detector observing time during
that period.

We then additionally calculate the rate at which these coin-
cidences would appear for two Poisson event generators. If the
rate at which coincidences actually appear is greater than the
Poisson rate, then we can conclude a true correlation between
the events which iDQ and Omicron report with a estimate of
the significance as the ratio of the coincident rate to Poisson
rate. We calculate this Poisson rate as follows:

0p(L) = Tomic * Tipg(L) x T “)

where o, 18 the rate of omicron events with SNR greater
than 10, o;pp(L) is the rate of iDQ events above the chosen
log-likelihood threshold, £, and T is the total observing time.

We further construct a probability on the data being a glitch
given what we have observed using Bayesian statistics:

P(glitch) P(datalglitch)
P(data)

P(glitch|data) = (®)]
Where P(glitch) is the prior and P(data) the normalization.
P(glitch) can be taken as the probability of observing a glitch
independent of iDQ and in this study is the probability of any
time being flagged by Omicron with an SNR greater than 10.
Assuming glitches are Poisson distributed, and that Omicron is
effective at identifying them, we can calculate the probability
of observing at least one glitch per coincidence window as:

P(glltch) - (1 — eﬂ'mmc*wmm) (6)

where 0. 1S the omicron glitch rate rate, and weyic i the
half second coincidence window as described before. P(data)
is then the probability of seeing iDQ data above the threshold
we chose, or the probability that the time of interest has been
flagged by iDQ. We can calculate this probability similarly:

P(data) = (1 — e%idaLrwiar) 7
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FIG. 4. Qscans of three times identified by both Omicron, and iDQ as being a possible glitch, but which was classified by GravitySpy as the
category “No Glitch”. The left-most plot shows a correct classification of a No Glitch time while the middle and right show incorrectly classified
times. The leftmost figure shows excess power, but fairly evenly distributed with no clear concentration — a true No Glitch classification. The
middle shows a clear time of excess power in a distinct shape, but not in a morphology that matches any other glitch class. The right most plot
shows a time which is clearly an Extremely Loud glitch, but was just mis-classified by the model.

where again oj4,(L) is the rate of iDQ events above the rank
threshold, and w4, is the clustering window as described previ-
ously. Finally, P(datalglitch) is then the probability of having
seen the iDQ data given that a glitch is present, or the prob-
ability of the iDQ data occurring given that there is also an
Omicron glitch flagged. In our study, this must be dependent
on the ratio of total time covered by coincident events, and the
total time covered by glitch events. In other words:

P(datalglitch) = (1 — ¢/win(L)y )
where 17coinc(L) = T coinc(L) * Weoine _ O coine(L) ©

T omic * Weoinc T omic

The final probability can then be constructed as:

(1 = @Tomic*Weoine) 3 (] — gleoine(L))

P(glitch|data) = (10)

(1-e" izlq(-[)*widq)

This estimate of the probability has the benefit of being based
solely on counting statistics, meaning the underlying distri-
butions can be collected cumulatively for real-time analysis
without loss of latency. This estimate has the downside, how-
ever, of being dependent on the coincidence, and clustering
windows chosen to estimate the duration of glitches identi-
fied by iDQ and Omicron. As constructed, the maximum
P(glitch|data) obtainable is dependent on the ratio of the coin-
cident and idq clustering windows. For example, implementing
a coincident window half the size of the idq clustering window
results in a maximum obtainable P(glitch|data) of one half. To
mitigate this, the constant windows could instead be replaced
by time-based segments flagged by iDQ constructed with the
un-clustered iDQ timeseries, and by Omicron constructed with
the individual glitch durations. Then, the time covered by co-
incident events could be given as the overlap between the two
sets. The implementation for low-latency, and this definition
using segment logic, has been left to future work.

2. Results

We take our results over all of O3b, or November 2019 to
March 2020 from the LIGO Livingston detector. During this
time, there were 100,512 number of departures identified by
Omicron with a SNR greater than 10 available in the Omicron

database. 78,436 of these additionally had available classifica-
tions by GravitySpy with a confidence greater than 0.9. Using
the clustering and coincidence methods described in section
IV A 1, iDQ identified 39,398 (39 percent) at a log-likelihood
threshold of 2, and 11,915 (12 percent) at a threshold of 5. It
is then evident that iDQ identifies only a fraction of the total
number glitches identified by Omicron, but this is expected.
iDQ can only identify glitches for which there are auxiliary
channels that reliably predict their presence. If there is no
auxiliary channel activity in any of iDQ’s witness channels
at the time of a glitch, then iDQ can never report on it. This
can be the case for glitch types whose source channels are
not currently monitored by an auxiliary channel in the witness
list, whose source may only register quietly in the currently
monitored channels, or whose source is not monitored at all by
any current auxiliary channel.

The classifications of these coincident events can be seen in
Figure 5 in blue and orange while all of the Omicron events
are shown in green. As mentioned previously, the Unclassified
category comes from coincident events which did not have
a classification from GravitySpy with a confidence of more
than 0.9. During O3b, it is clear from Figure 5 that Scattered
Light glitches were the main category of glitches plaguing
the detectors with over 30,000 present while Tomte and Fast
Scattering glitches are closely tied for second. Additionally,
this figure shows that iDQ identifies a large fraction of some
of the most common glitch types like Scattered Light, Whistle,
Extremely Loud, and Low Frequency Burst while it struggles
to identify others like Tomte, Fast Scattering and Koi Fish. As
previously mentioned, this likely means that there are auxiliary
channels which reliably record the presence of Scattered Light,
and Whistle glitches while there may have been a lack of such
channels for Tomtes and Blips.

Additionally, the fact that iDQ does not report on a single
Chirp glitch at either threshold is, in fact, a feature. Chirps,
as labeled here, are times in the strain channel which have a
high SNR and whose morphology mimics a chirp shape. In
other words, these are times which could very well be real
gravitational waves as real gravitational wave events also fol-
low the chirp morphology in strain data. As a data quality
product, it is desirable that iDQ does not identify these times.
For example, if the output of iDQ were used to generate vetoes
for search pipelines, we would not want times which could be
gravitational waves to be included in the vetoed set. This is an
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FIG. 5. Glitch classification of event times in O3b. In blue and orange, the coincident times between Omicron triggers with snr greater than 10,
and the times which pass two different thresholds on iDQ log-likelihood. In green, the times in strain data where Omicron reported SNR greater
than 10, but not passing the log-likelihod threshold in iDQ. As shown by the orange and blue bars closely matching the green, there are several
glitch classifications which iDQ seems particularly good at identifying including Scattered Light, Whistle, Extremely Loud, and Low Frequency
Burst. This means that during O3b, iDQ likely had extremely effective witnesses for these glitch types, while there may not have been good

auxiliary witness channels for others, like Tomte glitches.

advantage of using software like iDQ which depends only on
the auxiliary channels of the detector, and which therefore is
insensitive to gravitational waves versus software like Omicron
which directly analyzes the strain channel and identifies both
real gravitational waves and glitches without delineation.

In Figure 6, we show the false alarm (blue star), Poisson
(green circle), and coincident glitch (orange triangle) rates at
a log-likelihood threshold of two (top) and five (bottom) as a
function of time during the course of O3b. Although this data
covers all of O3b, it was broken into shorter chunks for evalu-
ation, defined by convention within the LIGO Collaboration.
Each chunk of data corresponds to about two weeks of coinci-
dent observing time, and three bins were in the offline analysis
resulting in evaluation segments, or each x tick, being between
2-4 days apart. Every three points then correspond to the same
chunk of data, and the start of a new chunk is delineated with
a GPS time label. At both thresholds, the coincident glitch
rate is always at least one order of magnitude larger than that
of the Poisson rate. This shows that the coincidences formed
between iDQ and Omicron are more significant than random
chance, and are truly correlated. As the log-likelihood thresh-
old for iDQ is increased, both the glitch and false alarm rates
decrease - a natural result of the increasing confidence a higher
log-likelihood corresponds to. Additionally, as the threshold
increases, the true glitch rate is more frequently higher than
the false alarm rate than at the lower threshold, again showing
the increase in confidence.

At the higher log-likelihood threshold, the variation over
time is especially notable. The difference in time between

points is only a couple days, and there are occasional jumps
in rate more than an order of magnitude between neighboring
points. This highlights the occasionally extreme variation in
the noise background of the detectors even over the course of
just a few days and the challenges that detector characterization
experts face in characterizing this behavior. Additionally, the
latter half of this plot reveals an interesting behavior change
in both the detectors and iDQ. The glitch rate peaks at both
thresholds just before 1264528208, or February 2020. Just
after, however, the variation in rate at the detectors settles sig-
nificantly and at both thresholds the false alarm rate is always
higher than the coincident rate. This could point to some no-
table change in the underlying behavior of the detectors, such
as the addition reaction chain (RC) tracking, around that time
which is propagating into the effectiveness of the auxiliary
channels which iDQ uses.

In Figure 7, we show the results of Equation 10 using data
from the entire course of O3b on the left and over about a two
week period on the right. The x-axis in both plots represents
the varying threshold applied to the iDQ event times used in
the calculation of coincidence and data rates with the combined
rank shown in equation 3 as the metric. The plot shows the
steadily increasing probability of a glitch time with increasing
rank up to a rank 0.8, or log-likelihood of about 200. This is
expected as the increasing log-likelihood corresponds to an
increasing confidence by iDQ of a glitch presence. The plateau
at the smallest ranks between O and about 0.1 are because
events with log-likelihood values less than two, or about a rank
of 0.1, were not included in this analysis and therefore we see
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FIG. 6. True glitch (orange triangle), false alarm (blue star), and Poisson (green circle) rates as reported by iDQ at a log-likelihood threshold of
two (top) and five (bottom) over the course of O3b broken up by approximately five day periods. A true glitch is considered to be an iDQ time
crossing the threshold which is coincident with an SNR greater than 10 Omicron time while a false positive is one not coincident with such an
event. More details on this delineation are discussion in IV A. Notably across time periods, the true glitch, or coincidence, rate is always at least
an order of magnitude more than the poission rate implying a true correlation between iDQ and Omicron triggers. Additionally, the false alarm
rate is about the same as, or higher than the glitch rate at the log-likelihood threshold of 2. However, at a threshold of 5, the this relationship

begins to switch for some time periods.

a plateau extending to O at the logl 2 value.

After rank 0.8, there is additionally a dip for higher thresh-
old times where we would expect a continuation of the upward
trend. This is because the current implementation of the com-
bined rank with a 2/3 weight on use percentage favors vetoes
which activate as few as a single time during the training period
which happens to coincide with a glitch time. This gives the
veto a use percentage of 100% as it correctly flagged a glitch
during the single time it was active, and is therefore highly
ranked. However, vetoes such as these do not generally predict
glitch presence, and therefore cause false alarms when applied
to real data, causing the turn we see at high rank.

To mitigate this, we enforce that vetoes must also have a
minimum Poisson significance to be considered. The image
on the right of Figure 7 shows the results for a single chunk,
or about two weeks, out of a total 17 chunks of data from O3b
with a variety of Poisson minima enforced. At the smallest
minmum Poisson significance value, we see the highest rank
P(glitch) values go to what we would expect, but with those
at slightly lower rank still being affected. As you increase
the minimum Poisson significance, however, we see the effect
extend to the lower rank values as well until eventually at a
minimum of 20, the slope extends fully across all ranks. While
the minimum Poisson significance has not been implemented
across the O3b data in this work, this change will not affect
the results shown here as the thresholds applied were at low
log-likelihood values which live at an equivalent rank much
smaller than 0.8.

Compared to the prior probability given by Omicron of 3%

for this same data, the P(glitch) values across the rank space
are an improvement over using Omicron information alone. At
the lowest threshold considered in this paper of a log-likelihood
of 2, or equivalently rank of around 0.1, P(glitch) already sits
at a value of 14%. This shows the power in combining results
from across both data quality products.

B. Auxiliary Channel Witness Identification

An additional benefit of an iDQ identification is that we
can glean further insight into these glitch types through the
auxiliary channels which monitor them. While GravitySpy
allows us to classify times identified by iDQ and Omicron, we
further this classification by combining the GravitySpy label
with feature information on auxiliary channels used by iDQ.
Each time analyzed by iDQ is assigned a rank via an Ordered
Veto List by OVL as described in section II. In this analysis,
we take the model applied at a time of interest and then look
at all of the vetoes which pass the log-likelihood threshold in
the relevant Ordered Veto List to discover which correlated
auxiliary channels were active.

The channels associated with the vetoes which pass the
log-likelihood threshold are then by definition those which
make the most effective vetoes, or those whose activity often
corresponds to excess power in the strain channel. It is not
unreasonable then to assume that the channels which made the
best vetoes for a certain glitch class at the very least frequently
record instances of it, and at best could monitor the subsystem
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FIG. 7. P(glitch|data) as defined in equation 10 using coincident events over the entire course of O3b (left) and one approximately two week
period (right) between Omicron with SNR > 10 and iDQ events at a variety of thresholds on rank. On the left, this plot demonstrates the steadily
increasing probability of a time being a glitch with increasing iDQ rank up to a certain point around a rank of 0.8. After this, the implementation
of use-percentage in the combined rank value causes a number of vetoes with very small Poisson significance to be ranked highly, thereby
causing a sharp increase in false alarms at high rank. On the right, a demonstration of how enforcing a minimum Poisson significance on vetoes
mitigates this behavior. Already at a threshold of 10 on the Poisson significance, the turning point is mitigated. Then at a threshold of 20, the

turning is completely removed.

which is a possible source of that glitch class. Under this
assumption, we look across all times of interest and count how
often individual channels are active during a particular class of
glitch.

In Figure 8, we show this correlation using a log-likelihood
threshold of two and weighting by the total number of glitches
recorded by Omicron. In Figure 9, we show this same cor-
relation at the same threshold, but instead report the Poisson
significance” between channels and a given glitch type. The
former gives an overview of channel performance relative to
all glitches of that class and identifies channels which are
particularly good witnesses of most glitches in that class. It
is possible, however, that there are multiple sources for the
same class of glitch, so the latter plot focuses only on the
sources which iDQ identifies instead of on the general perfor-
mance of these channels. Additionally, we choose the lower
log-likelihood threshold of two in this case to use as much in-
formation available to us as possible, and include information
on clean samples as a protection against the lower confidence.

On the y-axis of both plots are the channels which are active
at least 50% of the time for at least one glitch class. On
the x-axis are the glitch classes with at least ten coincident
events, and which have at least one channel that appears at
least 20% of the time for at least one glitch class. In Figure
8 we additionally include one column which reports on the

* Poisson significance is the negative log of the total probability of observing
as many or more coincidences between two series of random occurrences
than were actually observed. In the context of Figure 9, one can assume
the total number of times an aux channel triggers and the number of times
omicron triggers for a given glitch type are both represented by Poisson
processes. The larger the significance the lower the probability of the
triggers being coincident by pure chance. Readers are referred to [30] for
further discussion on Poisson significance.

auxiliary channel presence during the false alarms recorded by
iDQ and weighted by the total time not covered by coincident
glitches e.g. clean time, as there is by definition not coincident
Omicron triggers available for False Alarms. This is a stand-in
for the probability that the channel was active during a random
non-glitch time.

The Clean column is used to exclude the possibility that a
channel seems to be a good witness for glitches simply because
it is almost always active. As described in Section II, channels
which are active the majority of the time generally get down-
ranked by the OVL ranking scheme because the high activity
introduces a large deadtime and low use-percentage to the
veto. Therefore, we wouldn’t expect these kinds of channels to
appear highly ranked in the veto lists and in these plots, but we
consider all vetoes passing the log-likelihood threshold in the
OVL list without weighting them. Therefore channels could
be frequently ranked middling to low across glitch types, but
appear in these plots to have the same significance as one which
constantly appears with the highest rank thereby inflating its
apparent significance. The inclusion of auxiliary witnesses for
clean samples is a sanity check on this possibility. If a channel
is frequently present across glitch types, and during clean then
we know that its possible this channel is just generally active.
However, if it is present during glitch times and not during
clean ones then we can be confident that it a true witness for
glitches.

The auxiliary channel ASC-X_TR_A_NSUM_OUT_DQ, for
example, seems to be one of these extremely active channels.
In both Figure 8 and 9, this channel, which is described below,
appears incredibly frequently across glitch types. This a prime
example of a generally active channel which results in a veto
with a high efficiency, but middling use percentage. In other
words, it creates an efficient veto which flags many glitch
classes, but also can flag false alarms and we’re seeing that
trade-off here. This kind of veto may appear at middling to low



rank in the ordered veto lists, but still cross the log-likelihood
threshold of two and therefore appear in this analysis.

The three channels below that one in Figure 8§,
however, are good examples of the opposite.  ASC-
X_TR_A_PIT_OUT_DQ, ASC-X_TR_B.NSUM_OUT_DQ, and
ASC-X_TR_B_PIT_OUT_DQ each appear over 50% of the time
for all Scattered Light glitches, or with considerable Poisson
significances for all coincident Scattered Light glitches over
the course of O3b in Fig 9 while appearing significantly less
frequently for all other glitch types. This implies that while
these auxiliary channels may be excellent witnesses of one
source of Scattered Light glitches there are likely other sources
which do not have good auxiliary witnesses contributing to
the overall number flagged by Omicron. These three channels
specifically monitor different pieces of the same subsystem
in the Livingston detector. They are each part of the angu-
lar sensing and control subsystem (ASC) in the direction of
the X arm, particularly monitoring the transmitted light (TR)
on two different photodiodes (A/B). It follows that channels
detecting transmitted light on one of the major axes of the
detector would observe a large fraction of scattered light from
a variety of sources, including sources from the cavity before
the test mass, and systems after the test mass, both orientations
from which Scattered Light glitches are known to originate. Its
interesting though that while one channel in this susbsystem
set, ASC-X_TR_A_NSUM_OUT_DQ, is active across glitch
classes, three others catch more exclusively true Scattered
Light glitches and this demonstrates the power of this method.
From this information, its safe to say that X arm beam in par-
ticular at Livingston during O3b was a source of one of the
most common glitches plaguing the detector at the time, par-
ticularly the three origins of the specific channels mentioned
above. In fact, this is known to be the case as discussed in
detail [7]. Halfway through O3, ground motion was found to
cause variation in the difference between mirrors in the arms,
and therefore cause scattered-light to rejoin the main beam reg-
istering as Scattered Light glitches. During the commissioning
break between O3a and O3b, maintenance was performed to
mitigate this issue which drastically decreased the total number
of Scattered Light glitches recorded during O3b comparatively
to O3a, but as is clear from this data, some glitches persisted
from this source.

ASC-REFL_A_RF9_Q_PIT_OUT_DQ is another excellent
witness, particularly of Whistle glitches. This channel appears
in over 70% of all Whistle glitches recovered during O3b,
and has a Poisson significance of 1.5E+4 in regards to the
glitches recovered in coincidence. Its sister channel ASC-
REFL_A _RF9_Q_YAW_OUT_DQ is also highly active at over
55% of all Whistle glitches and has a Poisson significance of
1.2E+4 of the coincident ones. Both channels again monitor
the angular sensing and control grouping, but these wavefront
sensors particularly monitor one component of the beat of
the sidebands and carrier modes with respect to one another
in the reflected direction of the power recycling cavity. It is
interesting that these Whistle glitches are be observed so well
by a channel monitoring the reflected direction, as this direction
is more often attributed to various kinds of scattering glitches.
It’s possible that this channel just happens to be downstream of
the system which is actually generating the glitches, and so it
is being monitored here despite not being the origin. However,
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ASC-REFL_A RF9_Q_PIT_OUT_DQ
ASC-REFL_A RF9.Q YAW OUT DQ
ASC-X_TR_ANSUM_OUT DQ
ASC-X_TR_A_PIT_.OUT DQ
ASC-X_TR B NSUM_OUT DQ
ASC-X_TR_B_PIT_OUT_DQ
ASC-X_TR B_YAW OUT DQ
LSC-POP_A RF9_1 ERR DQ
LSC-REFL A LF.OUT DQ

OMC-PZT2 MON_AC_OUT_DQ

FIG. 8. Auxiliary channels that form vetoes in the associated OVL
model at least 20% of the time at a log-likelihood of 2 or more for
a variety of glitch classes. The included glitch classes are caught in
coincidence by iDQ and Omicron at least ten times over the course of
03b with an iDQ log likelihood of at least 2 and an Omicron SNR of
10 or greater. Additionally included are the auxiliary channel results
for the false alarms flagged by iDQ weighted by the total time not
covered by Omicron glitches for comparison. Note that the majority
of channels which are present in glitch veto lists, are not frequently
present in clean veto lists.

the very similar monitoring channels on wavefront sensor B
show extremely similar correlations to the Whistle glitch types
as these two channels, so it becomes even more convincing
that a Whistle glitch source lies either in or upstream of these
reflected wavefront monitors.

These four channels are additionally active for a handful of
other glitch classes as well such as the Blip and Repeating Blip
class, although with a weaker correlation. Blip glitches could
have the same sources as Repeating Blips as arguably one is
just a more frequent version of the other. It would be new infor-
mation though to also include Whistle glitches in that mix. It is
possible that this could be a false correlation if the GravitySpy
model, for example, frequently misclassified Whistle glitches
as Blips and vice versa, but there is no evidence that that is the
case. Instead, this could be the result of a couple different con-
figurations. This channel could monitor the physical sources
of multiple glitch classes, meaning it could be downstream
from other parts of the detector system which individually
generate these glitch types. It could also be that there is one
source which this channel monitors that creates many different
kinds of glitches. Generally, we assume that glitch classes are
generated by distinct sources, but if this latter situation is true
it could hint at correlations between glitch classes previously
unconsidered. With this information alone, it is hard to tell
which may be the true case, but either way it demonstrates
the usefulness of this method in further characterizing detector
behavior.
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ASC-AS_A RF36_Q_PIT_OUT DQ
ASC-CHARD_Y_OUT DQ
ASC-DHARD_Y A OUT DQ
ASC-DHARD_Y OUT DQ
ASC-REFL_A RF9_1.YAW OUT DQ
ASC-REFL_A RF9_Q PIT_OUT DQ
ASC-REFL A RF9_ Q YAW OUT DQ
ASC—REFL,BRF‘)J,YAW,OUTDQ
ASC-REFL_B_RF9_Q_YAW_OUT DQ Jiei%s
ASC-X_TR_A NSUM OUT DQ
ASC-X_TR_A PIT_ OUT DQ
ASC-X_TR_A_YAW _OUT DQ
ASC-X_TR_B_NSUM OUT.DQ
ASC-X_TR B_PIT_OUT DQ

ASC-X_TR_B_.YAW_OUT_DQ

LSC-POP_A RF9_I_LERR_DQ
LSC-PRCL_INI_DQ
LSC-PRCL_OUT_DQ
LSC-REFL_A_ LF_ OUT_DQ
OMC-PZT2_ MON_AC_OUT.DQ

PEM-EY_VMON_ETMY_ESDPOWER24_DQ

FIG. 9. Auxiliary channels which appear in the top 10 vetoes of the associated OVL model with a Poisson significance of at least SE+3 for
a variety of glitch classes which are caught in coincidence by iDQ and Omicron at least ten times over the course of O3b with an iDQ log
likelihood of at least 2 and an Omicron SNR of 10 or greater. Additionally included are the auxiliary channel results from a random set of clean
samples for comparison. Even at the higher log likelihood threshold cut-off, the majority of channels present witness some combination of glitch
types, but mostly exclude clean samples. A sign that these channels are truly good witnesses of glitches, and not just frequently active.

V. CONCLUSION

In this work, we’ve discussed improvements to the iDQ
batch pipeline and we’ve demonstrated iDQ’s ability to not
only identify glitches in strain based solely on auxiliary channel
behavior, but also shown its usefulness in identifying auxiliary
channels which frequently report on the presence of glitches.

During O3b, it has been shown that iDQ had particularly
powerful witness channels Scattered Light, Whistle, and Ex-
tremely Loud glitches. The correlation of these recovered
events with the events that Omicron finds has been shown to
be frequently two orders of magnitude greater than random

chance, confirming that Omicron and iDQ are truly recover-
ing the same events. Additionally, by analyzing the auxiliary
channels alone, iDQ does not identify chirps, or likely real
gravitational waves, to be glitches which Omicron reports in
the same manner as any other glitch class. This not only proves
the effectiveness of iDQ’s identification scheme, but also the
worth of its results alongside other glitch identification tools.

We have also introduced a method for calculating the proba-
bility that any time is a glitch based on iDQ data. We have seen
that using the current method, the probability peaks at about
70%, or three orders of magnitude above probability given by
Omicron identification alone. This demonstrates the power of



combining results across multiple glitch identification tools,
and could be a useful measure of data quality for inclusion in
gravitational wave detection pipelines. The authors hope to
implement this method in the near-future for use in real-time
analyses.

We have demonstrated the effectiveness in examining the
correlations identified by iDQ between auxiliary channel activ-
ity and certain glitch classes. These correlations hint at possible
sources of these glitch types, and when combined with follow-
up from commissioners, could be a powerful tool in tracking
down the origins of some glitch classes. Unfortunately, there
is no way to know for sure whether any unique channel points
to a true origin or whether a subsystem somewhere else in the
detector is causing a glitch which then may propagate until
witnessed by an unrelated auxiliary channel. Either way, chan-
nels like the ones we have mentioned could point to possible
starting points for commissioners and detector characterization
experts to begin looking for the sources of these extremely
common glitches. If this analysis had been performed during
an observing run, follow-up could have been done by commis-
sioners on these channels, and these glitches could have been
potentially mitigated during regular maintenance, or even dur-
ing a longer commissioning break. The authors hope to make
the auxiliary channel information available in low-latency in
order to potentially impact maintenance and commissioning
on the detectors moving forward.

As the detectors, glitch types, and auxiliary channels evolve
between observing runs, iDQ will evolve with them, and the
need for robust data quality information will only grow and
sensitivity of the detectors increase. While this work demon-
strates iDQ’s past performance, it is heavily reliant on the
quality of its auxiliary witnesses and as these change, so too
will the types of glitches iDQ can identify and the efficiency
at which it does so. Already, the LIGO Scientific and Virgo
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Collaborations have begun a fourth observing run in which
the group has made many changes to the detectors and have a
planned commissioning break before the second half in which
more changes will be made. While results from the current
observing run will of course vary the ones shown, iDQ has
proven to be a reliable pipeline providing both probabilistic
glitch identification, as well as glitch source identification, and
it will continue to do so throughout O4 and beyond.
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