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Abstract. The facility location with strategic agents is a canonical
problem in the literature on mechanism design without money. Recently,
Agrawal et. al. [1] considered this problem in the context of machine
learning augmented algorithms, where the mechanism designer is also
given a prediction of the optimal facility location. An ideal mechanism in
this framework produces an outcome that is close to the social optimum
when the prediction is accurate (consistency) and gracefully degrades
as the prediction deviates from the truth, while retaining some of the
worst-case approximation guarantees (robustness). The previous work
only addressed this problem in the two-dimensional Euclidean space pro-
viding optimal trade-o!s between robustness and consistency guarantees
for deterministic mechanisms.
We consider the problem for general metric spaces. Our only assump-
tion is that the metric is continuous, meaning that any pair of points
must be connected by a continuous shortest path. We introduce a novel
mechanism that in addition to agents’ reported locations takes a pre-
dicted optimal facility location ô. We call this mechanism Harmonic, as
it selects one of the reported locations ω̃i with probability inversely pro-
portional to d(ô, ω̃i) + ε for a constant parameter ε. While Harmonic

mechanism is not truthful, we can characterize the set of undominated
strategies for each agent i as solely consisting of the points on a shortest
path from their true location ωi to the predicted location ô. We further
derive consistency and robustness guarantees on the Price of Anarchy
(PoA) for the game induced by the mechanism. Specifically, assuming
that ε = ω

2n ·
∑

i→[n] d(ô, ωi) is closely related to the average distance to
the predicted location ô, our consistency guarantee is arbitrarily close to
optimum (PoA is 1 + ϑ), while having a constant robustness guarantee
(PoA is O(1+1/ϑ3) in general and is O(1+1/ϑ2) for strictly convex metric
spaces). We also show that for a constant number of agents n = O(1),
Harmonic(ε) mechanism with ε = 0 attains 1-consistency and O(1)-
robustness.

1 Introduction

The facility location is a canonical problem attracting a lot of interest in many
di!erent fields such as operation research, artificial intelligence, social choice, and



economics [9]. Facility location with strategic customers serves as an exemplary
setting of the approximate mechanism design without payments that has been
extensively studied in the past fifteen years [25,3,20,12,13,14,15,16,28,24,30,4].

In the case of a single facility, the problem involves n agents residing in a
metric space M, each agent i with their own most preferred location ωi → M
of the single facility f → M. The agents are strategic and may misreport their
location hoping to influence the final choice of the facility f → M and minimize
their personal cost given by the distance d(ωi, f). The central planner collects
reported locations from the agents and then decides where to open the facility.
For the most common objective, a.k.a., social cost minimization, the goal is
two-fold: first, the outcome should be a good approximation for minimizing the
average distance from the facility to all agents if not the optimum; and second,
no agents should have an incentive to misreport their true location.

The traditional approach to this problem aims to find mechanisms with
worst-case performance guarantees on all possible inputs. This approach has been
criticized in a broader context of algorithm design for its often pessimistic bounds
and its focus on adversarial instances, which are not frequently encountered in
practice [26]. To overcome the practical shortcomings of traditional algorithms,
Lykouris and Vassilvitskii [21] have recently introduced a powerful framework
of machine learning augmented algorithms. ML augmented algorithms strive to
surpass the limitations of traditional algorithms by incorporating predictions
as supplementary input. These algorithms are supposed to do very well when
furnished with accurate predictions (consistency guarantee), while gracefully de-
grading in performance as prediction quality declines. Ideally, they also uphold
robust guarantees for all predictions, ensuring reliability even in the face of im-
perfect forecasts (robustness guarantee). ML augmented algorithms have found
applications in strengthening online and streaming algorithms with predictions
about future unknown input, as well as in accelerating algorithms by utilizing
knowledge gleaned from past inputs. See [23] for a survey of ML augmented
algorithms.

Very recently, there has been a surge of interest in applying ML augmented
framework to mechanism design [31,17,6,10,5] pioneered by Agrawal et al. [1].
Their work specifically addresses the strategic facility location problem in two-
dimensional Euclidean space M = R2. To illustrate the setting, consider the
following examples:

Example 1. A group of n = 100 people (say alumni from the same school) want
to decide on a meeting place (e.g., for the school reunion). Before asking people
about their preferred meeting location, the meeting planner may already have a
good idea about how many people still live near the school and how many will
be coming from a greater city area; thus the planner could predict which spot
might work well for everyone (either somewhere close to the school, or a well
accessible place in the city center).

Example 2. A city wants to open a new government o”ce to serve the pub-
lic. The city likely possesses extensive data on residents, thus can find a good



candidate location. Alternatively, it might opt for a central location as a likely
near-optimal solution, even without in-depth analysis.

These kinds of scenarios are neatly captured by the model of [1], which
assumes access to a prediction of the optimal location obtained via machine-
learning algorithm, or other means. This assumption about the output (and not
the input)3 is particularly well suited for the mechanism design scenario in which
it is usually di”cult to accurately predict the input from all n agents.

Agrawal et al. [1] demonstrate that it is possible to design a strategy-proof
mechanism that is arbitrarily close to the optimal solution in the two-dimensional
setting, provided access to a quality prediction of the facility location. This is
a significant advancement, as previously only a

↑
2-approximate strategy-proof

mechanism was known for this setting without predictions. Their mechanism
builds upon a well known coordinate-wise median-point mechanism for low di-
mensional Euclidean spaces Rd: the predicted location ô → R2 gets a certain
weight c → [0, 1] and is added to the agents’ reports, the output is given by the
coordinate-wise median. The parameter c is based on the expected quality of
predictions: if the mechanism designer anticipates high-quality predictions, they
can set the parameter c close to 1, resulting in a nearly 1-consistent (nearly
optimal) algorithm. Specifically, the algorithm is (1 + r)- consistent and g(r)-
robust4, where r(c) → (0,↓) is a control-parameter that governs a trade-o!
between consistency and robustness and g(r) ↔ 1→

2r
is a function tending to

infinity as r ↗ 0. I.e., when prediction is extremely inaccurate, the algorithm
maintains a constant approximation guarantee for any fixed value of r, ensuring
a robust solution quality. These consistency and robustness guarantees are best
possible among all anonymous deterministic mechanisms [1].

In this paper, we seek to investigate if the facility location problem continues
to benefit from predictions even in the general metric setting. We ask

How to use ML augmented advice in general metric spaces M?

1.1 Challenges

We discuss two primary approaches considered in the literature and the di”cul-
ties in extending them to the general metric space with predictions.

Median-point like mechanisms. The median-point mechanism is perhaps
the most common approach for the facility location game. It assumes that the
locations are in the (low-dimensional) Euclidean space and computes the me-
dian of the reported locations along each coordinate. The algorithm is strate-
gyproof, and it is optimum for the single dimensional Euclidean space [25] and↑
2-approximate for the two dimensional Euclidean space [18]. However, the only

3 It is common in the ML augmented algorithms literature to have predictions about
algorithm’s input rather than output.

4 In general, an algorithm is ϖ-consistent and ϱ-robust if it is an ϖ-approximation
when the prediction is perfect and a ϱ-approximation for arbitrary predictions.



known approximation guarantee of the coordinate-wise median is O(
↑
d) for the

Euclidean norm in Rd spaces, and the mechanism is inapplicable in general met-
ric spaces. In fact, it is known that any deterministic mechanism is ε(n) factor
o! the optimum even in a circle metric [27]. Hence, the approach of Agrawal et
al. [1] is only limited to low dimensional Euclidean spaces and does not extend
to general metrics.

Random Dictatorship. Understanding mechanism design in general metric
spaces presents significant challenges, as evidenced by the limited research con-
ducted in this area (see a survey [9]). Indeed, any mechanism with a sublinear
in n approximation guarantee must be randomized [27]. The only known O(1)-
approximation strategyproof mechanism that works for general M is Random

Dictatorship (RD), which chooses one of the reported locations uniformly at ran-
dom. RD is a 2(1 ↘ 1/n)-approximation [2]. There are a few characterization
results of strategyproof mechanisms for special metrics M (such as trees, or
cycles) [11,22]. Also there is a characterization of group-strategyproof mecha-
nisms [29] in strictly convex spaces, which can only give ε(n) approximation to
the optimal social cost. Unfortunately, these results do not o!er any new mech-
anisms that can work in general metric spaces. On the positive side, the ML
augmented framework o!ers a richer space of possible mechanisms by adding
extra information about the predicted location to the input. On the negative
side, there are still fundamental roadblocks to having good strategyproof ML
augmented mechanisms, which are discussed below.

Possible Mechanisms. First, it is reasonable to restrict attention to random-
ized mechanisms that select facility f from a distribution over reported locations
ω and the predicted location ô, as we may not even know which other points gen-
eral M may or may not have. This is still a rich family of mechanisms as each
selection probability {gi(·)}i↑[n+1] may depend on O(n2) pairwise distances. Un-
fortunately, we do not know any strategyproof mechanisms of such form beyond
RD and for a good reason: each agent controls n variables with many degrees
of freedom in general M; manipulations by a single agent may a!ect all gj for
j → [n+ 1] in a rather complex way even for simple and well-behaved functions
{gi(·)}i↑[n+1]. One can still have a strategyproof mechanism by choosing f from
a fixed distribution over reported locations ω and predicted optimal location ô.
However, if Pr[f ≃ ô] is not a constant independent of n, then we do not get
any interesting consistency guarantees. On the other hand, if ô is very far from
each reported location ωi, then we do not get any robustness guarantee.

A more reasonable attempt to balance consistency and robustness is to com-
bine RD mechanism with a selection of ô by letting agents vote on two alternative
outcomes: RD(ω) or ô. This approach, however, has its own problems that can
be illustrated with our previous example of finding a meeting place for n = 100
alumni (Example 1). Imagine that a single person i

↓ → [n] is on vacation at a
remote tropical island in another country at the time of the meeting, while the
remaining 99 people are all in town. Although the RD mechanism selects i↓ only
with a small 1% probability, it is still incredibly inconvenient for anyone else. We
can think of i↓ as an adversarial agent, who does not care about the outcome,



but still has a unilateral power to sabotage the outcome of RD(ω) for everyone else
and make it arbitrarily worse than the predicted location ô. Thus any approach
involving voting on two alternatives RD(ω) or ô must give each agent a unilateral
power to impose ô outcome. This leads to Consensus Mechanism: the outcome is
a predicted location ô, unless all agents agree on RD(ω) outcome. The consensus
mechanism has perfect 1-consistency, since at least one agent must prefer ô over
RD(ω) when ô is the optimal location. It also has a constant robustness guarantee
for a small number of agents n = O(1) (e.g., n = 3), since (i) in the case when at
least one agent prefers ô over RD(ω), the prediction is a constant approximation
to the optimum, and otherwise (ii) RD(ω) is a 2(1 ↘ 1/n)-approximation to the
optimum [2].

Untruthful Mechanisms. It turns out that the consensus mechanism is not
strategyproof. E.g., if one agent i slightly prefers ô over RD(ω) and everyone
else strongly prefers RD(ω), then one of the agents j ⇐= i may greatly benefit by

reporting a closer location ω̃j to ωi and thus convince i to choose RD(ω-j , ω̃j) rather

than ô. On the other hand, any selfish deviation ω̃i ⇐= ωi by agent i may only
improve the outcome for all other agents5. I.e., non truthful mechanisms do not
necessarily lead to bad outcomes in facility location games and thus should not
be excluded from consideration. Furthermore, while the literature on strategic
facility location is primarily concerned with truthful mechanisms, other areas of
mechanism design have encountered a fair number of non truthful mechanisms,
e.g., first-price or position auctions in revenue maximization settings. For such
mechanisms, a standard approach is to analyse the equilibria of the ensuing game
and establish good Price of Anarchy (PoA) bounds (e.g., [8]).

1.2 Our Contributions

While the consensus mechanism suggests that positive results are possible in ML
augmented framework, it does not provide a satisfactory solution for the most
interesting case, when the number of agents n is large. Indeed, its robustness
guarantee of ε(n) scales linearly with n (e.g., when one agent i is located exactly
at the prediction ωi = ô and all other agents stay at the same far away location
ωj = P → M for all j ⇐= i) and it does not allow for any trade-o!s between
consistency and robustness guarantees.

In this paper, we propose a novel mechanism, which we term Harmonic and
which to the best of our knowledge has not been considered before. The mech-
anism chooses a reported location ω̃i → {ω̃1, . . . , ω̃n} with a probability inversely

proportional to its distance d(ω̃i, ô) to the predicted location ô plus a constant

ϑ, i.e., Pr[f ≃ ω̃i] is proportional to 1/(d(ô, ω̃i) + ϑ). The intuition for the
inversely proportional selection rule is to penalize agents for reporting remote
locations to be more robust against manipulations by adversarial agents6. The

5 Any such deviation would make everyone prefer RD(ω-i, ω̃i) over ô.
6 Recall a major issue of RD(ω): a single adversarial agent can make everyone’s expected
cost arbitrarily large. With an inversely proportional rule, reporting a remote loca-
tion has a bounded impact on the expected cost of any agent.



parameter ϑ allows us to balance consistency and robustness guarantees: smaller
ϑ means better consistency and makes Harmonic resemble the consensus mech-
anism, while larger ϑ brings Harmonic closer to the RD mechanism. The hope is
that if the predicted optimal location ô is close to accurate, then many agents
should benefit by shifting their reports closer to ô (agent i gets a higher chance

of being selected at the reported location ω̃i at the cost of higher distance to
their true location d(ωi, ω̃i)). On the other hand, when prediction ô is highly in-
accurate, the hope is that only a few agents decide to move closer to ô and we
get a good robustness guarantee. This is also the situation where the constant
parameter ϑ helps to reduce the impact of a single agent on the mechanism’s
outcome.

Results. First, while Harmonic is not strategy-proof, we show that it signif-
icantly limits the agents’ undominated action space — in a good direction.
Specifically, the best response of each agent i is to report her preferred loca-
tion, ωi or the predicted location, ô, or any point on the shortest path between
ωi and ô, when she is indi!erent between ωi and ô. In other words, each agent
can only choose from the shortest paths between her preferred location and the
predicted location. We then prove that Pure Nash Equilibrium (PNE) always
exists via Kakutani’s fixed-point theorem (Section 3.2). The only assumption we
use is that every pair of points in the metric space is connected by a continuous
shortest path. This is a rather mild assumption, as one can easily embed a given
discrete metric into a continuous one by taking a convex combination over the
points in the space. In particular, for any discrete metric M, one can simply
extend the metric to M by adding a continuous shortest path between each pair
of discrete points.

Second, we analyse the Price of Anarchy (PoA) of the ensuing game in-
duced by the Harmonic(ϑ) mechanism. We assume that the trade-o! parameter

ϑ = c · a is related to the average distance a
def
== 1

n

∑
i↑[n] d(ô, ωi) to the pre-

diction ô for a constant c. When predicted location ô is ϖ-approximation to the
optimum, Harmonic is ϖ(1+2c)-consistent (Theorem 2). On the robustness side,
we show that Harmonic is O(1+1/c3)-robust (Theorem 4) in general, and give a
better robustness guarantee of O(1+1/c2), if the metric is strictly convex (The-
orem 3). I.e., for a small constant c = ϱ/2 we achieve (1 + ϱ)-consistency that
smoothly degrades with the prediction’s accuracy, and respectively O(1 + 1/ϱ3)
and O(1+ 1/ϱ2) robustness7. Furthermore, if ϑ = 0, we obtain O(n)-robustness
(Theorem 5) and 1-consistency, which translates into a constant robustness and
1-consistency for a constant n = O(1) number of agents (see the discussion in
the full version).

7 Note that our consistency/robustness guarantees rely on the trade-o! parameter ε.
I.e., we rely on the approximately correct estimation of the average distance a, which
is arguably not a very strong assumption on the setting (a is a single number with
simple dependencies on each agent’s individual location ωi). Also note that, if ε is
underestimated (εa = o(ϑ)), then we get better consistency and worse robustness;
and if ε is overestimated ( ε

a = ς(ϑ)), then we get better robustness.



1.3 Other Related Work

Mechanism design without payments often falls short of producing the optimal
solution, leading to potentially suboptimal results. Agrawal et al. [1] initiated the
application of machine learning-augmented algorithms in this field to overcome
these limitations. For the utilitarian objective of minimizing the average distance
of agents to the facility, their algorithm achieves

↑
2c2 + 2/(1+c)-consistency and↑

2c2 + 2/(1↘c)-robustness in the two-dimensional space, where c → [0, 1) is a pa-
rameter to be chosen by the mechanism. As mentioned before, a

↑
2-approximate

strategy-proof mechanism is known and it is the best possible without predic-
tions [18]. For the egalitarian social cost of minimizing the maximum distance
to the facility, Agrawal et al. [1] presented an algorithm with 1-consistency and
1 +

↑
2-robustness. For this setting, a 2-approximate strategy-proof mechanism

is known without predictions [3,18]. A very recent work [5] studies randomized
algorithms in one-dimensional and two-dimensional settings. For the obnoxious
version of maximizing the total distance to the obnoxious facility with predic-
tions, Istrate and Bonchis recently considered various metrics such as circles,
trees, and one-dimensional and two-dimensional hypercubes [19].

Very recently, an ML augmented mechanism was developed for the k-facility
location game in general metric spaces [7]. However, it assumes predictions for
each point, requires assigning points to facilities in a balanced manner, and does
not provide an absolute robustness guarantee. We defer more related work to
the full version of this paper.

1.4 Roadmap

In Section 2, we define the problem and our Harmonic mechanism. In Section 3,
we discuss the undominated strategies and equilibria concepts. In Section 4 we
give analysis of our mechanism, providing consistency and robustness bounds.
In Section 5 we conclude our paper. Due to the space constraints, most proofs
are deferred to the full version of this paper.

2 Preliminaries

In a (single) facility location problem the goal is to place a facility f in a given
metric space M with a distance function d : M ⇒ M ↗ R to serve a set of n
agents. Each agent i → [n] has a most preferred location ωi → M and incurs a cost
of d(f, ωi), when the facility is placed at f → M. The objective is to minimize the

social cost SC(f, ω)
def
==

∑
i↑[n] d(f, ωi). The optimal cost is achieved by facility

o, i.e., opt(ω) = mino→↑M
∑

i↑[n] d(o
↔
, ωi) =

∑
i↑[n] d(o, ωi). The facility location

f is an ς-approximation if SC(f, ω) ⇑ ς · opt(ω).
In the strategic setting, the location ωi is private information of each agent i →

[n], i.e., imay report a di!erent location ω̃i to the mechanism. The mechanism f :

Mn ↗ M takes the reported location vector ω̃ = (ω̃1, ω̃2, . . . , ω̃n) and outputs the

facility f(ω̃). For notational convenience, we may let f denote the mechanism’s



outcome. If the mechanism is randomized, then the outcome is a distribution
φ(M) of the facilities in M. We assume that agents are selfish and rational, i.e.,

each agent i tries to minimize their own expected cost, costi
def
== E[d(f, ωi)] for the

chosen facility f(ω̃-i, ω̃i), when i reports ω̃i and the remaining n↘1 agents report

ω̃-i. The mechanism is called dominant strategy incentive compatible (DSIC) if

E[d(f(ω̃i, ω-i), ωi)] ⇓ E[d(f(ω), ωi)] for all i → [n] and all ω → Mn. E.g., a random
dictatorship mechanism that selects an agent i uniformly at random and lets i to
place the facility at their preferred location ωi, i.e., f : Mn ↗ φ(M) is given by
f ⇔ uni{ω1, . . . , ωn}, is a DSIC mechanism [2]. On the other hand, a non-truthful
mechanism induces a game among n agents. Similar to DSIC mechanisms, we
assume that agents only employ undominated strategies8 (see Claim 1). We

further assume that agents reach Nash Equilibrium ω̃ → NE(ω), i.e., at a given

reported profile ω̃ = (ω̃1, . . . , ω̃n) no agent i attains smaller expected cost by

a unilateral deviation (ω̃↔i, ω̃-i). The Price of Anarchy (PoA) of the mechanism
f : Mn ↗ φ(M) is the worst-case ratio of the expected social cost attained at
equilibrium and the optimal social cost.

PoA(f)
def
== max

ω↑Mn
max

ω̃↑NE(ω)

E[SC(f(ω̃), ω)]
opt(ω)

(1)

ML Augmented Mechanism Design for Facility Location Problem. The mecha-
nism designer in addition to the reports ω̃ is given a prediction ô of the optimum
location o. Formally, the mechanism is f(ω̃, ô) : Mn+1 ↗ φ(M) (to emphasize
the value of ϑ used, we may put it as a subscript; we have fω(·, ·) in our case,
where ϑ = c

n · SC(ô, ω)). Consistency and robustness are two standard measures
that describe the performance of an algorithm with predictions [21].

The consistency captures how well the algorithm performs, when prediction
is correct (ô = o(ω)): an algorithm (or a truthful mechanism) is ς-consistent if
it achieves an ς-approximation to the optimum. In case of non truthful mecha-
nisms, we say that a mechanism f(ω̃, ô) is ς-consistent if its price of anarchy (1)
is at most ς on any instance ω → Mn when ô = o(ω). It is often unreasonable to
expect that the predicted solution ô is 100% accurate. Thus it is important to
understand how approximation guarantee degrades with the quality of the pre-
diction. To this end, we measure the quality of the prediction ô as the ratio of
SC(ô, ω) and opt(ω).9 Namely, we say that prediction is ϖ-accurate if SC(ô,ω)

opt(ω) ⇑ ϖ.

In contrast, robustness captures how much of the worst-case guarantees the
mechanism retains, when the prediction is arbitrarily wrong. Namely, mechanism
f(ω̃, ô) is ↼-robust, if the price of anarchy of the game induced by f is at most

8 No agent i plays a strategy ω̃i with a higher expected cost than another strategy ω̃
↑
i

on every profile ω-i → Mn↓1

9 One can also use d(ô, o) as a measure of the accuracy of the prediction. A drawback
of this approach is that o might not be unique, or that a pair of far away points may
yield similar social cost.



↼, i.e.,

↼ ⇓ max
ω,ô

max
ω̃↑NE(ω,fω)

E[SC(fω(ω̃, ô), ω)]

opt(ω)
.

The ML augmented framework studies which ς-consistency and ↼-robustness
guarantees are attainable. Typically, there is a trade o! between feasible ς and
↼. We provide guarantees on the robustness and consistency as functions of the
prediction accuracy ϖ and the ratio c = ω

a between given parameter ϑ and

average cost a
def
== 1

n SC(ô, ω) for the predicted location ô.

Harmonic Mechanism. We analyze the following Harmonic mechanism, which
installs facility f at ω̃i with probability inversely proportional to d(ω̃i, ô) +ϑ for
a constant ϑ. This mechanism is not dominant strategy incentive compatible

ALGORITHM 1: Harmonic mechanism Harmonic(ε)

Data: Reported locations ω̃ = (ω̃1, . . . , ω̃n), prediction ô → M
Result: Facility f ↑ φ{ω̃1, . . . , ω̃n}
for i → [n] do let di = d(ω̃i, ô) ;

Choose Pr[f ↓ ω̃i]
def
== 1/(di+ε)∑n

j=1 1/(dj+ε) for i → [n] ; // Pr[f ↓ ω̃i] ↔ 1
di+ε

(proportional to)

(DSIC) in general. However, as we will show shortly, the set of undominated
strategies for each agent is rather limited. In other words, Harmonic mechanism
is not too far from strategy-proof mechanisms. We further analyse how far the
social cost at a Nash equilibrium is from the optimum social cost, namely the
price of anarchy under Harmonic selection rule f .

3 Strategies and Equilibria in Harmonic Mechanism

We first describe the set of strictly dominant strategies of each agent i → [n]
under Harmonic mechanism. For notational brevity, we use ωj for j ⇐= i in place

of ω̃j , as we consider a fixed agent i’s strategy for all possible reports of the other
agents and one can simply pretend that ω-i is a variable vector to agent i.

3.1 Undominated strategies

We consider the expected costi(ω̃i) of a fixed agent i as a function of her report

ω̃i, while assuming that the reports ω-i of other agents follow a distribution10 F-i.

10 The main focus of our paper is on pure Nash equilibria, but here we allow random-
ization in other agents’ strategies.



Then

costi(ω̃i) = E
ω-i↗F-i




∑

j ↘=i
d(εi,εj)

d(εj ,ô)+ω + d(εi,ε̃i)

d(ε̃i,ô)+ω∑
j ↘=i

1
d(εj ,ô)+ω + 1

d(ε̃i,ô)+ω



 = E
ω-i

[
C1(ω-i) +

x
y+ω

C2(ω-i) +
1

y+ω

]
, (2)

where agent i can control only two parameters x
def
== d(ωi, ω̃i) ⇓ 0 and y

def
==

d(ω̃i, ô) ⇓ 0 by possibly misreporting her true location, while the remaining
terms C1 ⇓ 0 and C2 > 0 in the numerator and denominator respectively only
depend on the reports of other agents ω-i. Thus, we can study agent i’s cost
as a function of only x, y → R+, and each fixed realization of ω-i ⇔ F-i. For
convenience we continue to use the same notations C1, C2, and costi for each
fixed realization of ω-i: costi(x, y, ω-i) =

C1+x/(y+ω)
C2+1/(y+ω) . A few simple observations

are in order.

Observation 1. The cost costi(x, y, ω-i) is a strictly increasing in x for any

C1, C2, y,ϑ ⇓ 0.

By triangle inequality x+ y = d(ωi, ω̃i) + d(ω̃i, ô) ⇓ d(ωi, ô) and x+ d(ωi, ô) ⇓ y.
Hence,

Observation 2. x ⇓ |d(ωi, ô)↘ y|.

We further note that player i would never choose y larger than d(ωi, ô).

Claim 1. The strategy of agent i with y > d(ωi, ô) is strictly dominated by the

strategy x = 0, y = d(ωi, ô) for any C1, C2 ⇓ 0.

Therefore, d(ω̃i, ô) = y → [0, d(ωi, ô)]. By observation 1, agent i chooses min-
imal possible x for any given y and any ω-i. Now, x ⇓ d(ωi, ô) ↘ y by observa-

tion 2. If M is a continuous space
11, then there always exists a ω̃i → M with

x
def
== d(ω̃i, ωi) = d(ωi, ô) ↘ y. I.e., player i’s undominated strategies in the con-

tinuous metric space are ω̃i on a shortest path S-Path(ô, ωi) between ô and ωi.

Claim 2. If M is a continuous metric space, then reports on the shortest paths

ω̃i → S-Path(ô, ωi) strictly dominate other strategies of agent i.

3.2 Equilibria Concepts

Many solution concepts may be used to describe the outcome of a game, such as
Pure Nash (PNE), Mixed Nash (MNE), Correlated (CE), and Coarse Correlated
(CCE) equilibria. In case of the game induced by the Harmonic mechanism f ,
the solution concepts that involve randomization are not ideal. Indeed, an agent
i might find it di”cult to compute their expected cost (2) for a fixed reported

11 Formally, for any two points P1, P2 → M and x → [0, d(P1, P2)] there exists a point
P → M such that d(P, P1) = x and d(P, P2) = d(P1, P2)↗ x



location ω̃i let alone finding the best response over all possible ω̃i → S-Path(ô, ωi).
E.g., if n↘1 = 10 agents randomize in ω-i between two pure strategies in a mixed
Nash Equilibrium, then (2) would already have more than 1000 fraction terms.

Thus we adopt the Pure Nash Equilibrium (PNE) solution concept to de-
scribe the outcome of Harmonic mechanism f . It is important to keep in mind
that, unlike MNE, PNE may not exist. We show below that PNE always exists
in a continuous metric space M, i.e., in a metric where every pair of points has
a continuous shortest path between them. The proof refers to the full version.

Theorem 1. Let M be continuous (any pair of points has a shortest path),

then for any initial positions ω = (ωi)i↑[n] of [n] agents there is a Pure Nash

Equilibrium under Harmonic mechanism.

For discrete (non continuous) metric spaces M to allow randomness, we
can let agents to explicitly report their locations as a distribution over a finite
number of points in M. I.e., we consider an extension of the metric space M
to a larger metric space M over all finite convex combinations M = {ε =∑

i↑[k] ςi · ωi |
∑

i↑[k] ςi = 1, ςi ⇓ 0, ωi → M}, where a naturally induced

metric in M is given by the earth mover’s distance between two probability dis-
tributions ε,ϑ over points in M. Then M is a continuous metric space and thus
PNE does exist in M. Furthermore, when many agents participate in Harmonic

mechanism, a reasonable approximation and/or simplification of their expected
costs (due to good concentration) can be done by calculating expectations of
the numerator and denominator in (2) separately and then using the ratio of
expectations instead of the expected ratio. This approach corresponds exactly
to agents playing pure strategies in M.

Best Response in Pure Nash Equilibria We next show in Claim 3 which locations
on the shortest paths could be the best response of agent i for a fixed profile of
other agents’ reports ω-i: i only needs to decide between two choices ω̃i → {ωi, ô}
and only when she is indi!erent, then i may also play any ω̃i → S-Path(ô, ωi).

Claim 3. Given a profile ω-i of agents [n]\{i} locations, agent i’s best response

is to only report

– her true location ω̃i = ωi when costi(ωi, ω-i) < d(ωi, ô) +ϑ;

– predicted location ω̃i = ô when costi(ωi, ω-i) > d(ωi, ô)+ϑ; then costi(ω̃i, ω-i) ⇓
d(ωi, ô) +ϑ;

– any point ω̃i → S-Path(ô, ωi) when costi(ωi, ω-i) = d(ωi, ô) + ϑ; then

costi(ωi, ω-i) = costi(ω̃i, ω-i).

4 Price of Anarchy

Here we study the Price of Anarchy (PoA) of the PNE of Harmonic mechanism
f in metric M or M. We will make extensive use of Claims 2, 3 to prove
PoA guarantees for the consistency and robustness of Harmonic mechanism. We



derive two di!erent PoA bounds for robustness: (a) when M is a strictly convex
space (b) when M is a general metric space.

We first introduce some simplified notations that would help us to use

Claim 3. Let ω̃ = (ω̃i)i↑[n] be a PNE. Let ti
def
== d(ô, ωi) denote the distance

between predicted location ô and the true location ωi of agent i → [n]. In equi-

librium, some of the agents may report di!erent locations ω̃i, we denote by

di
def
== d(ô, ω̃i) the distance from ô to the reported location of i → [n]. Note

that player i will always have ti ⇓ di in an equilibrium. To write down the

costi(ω̃i) of agent i we will use cij
def
== d(ωi, ω̃j) (note that cij ⇐= cji) that denotes

the distance between true location of i → [n] and the reported location of j → [n].

In particular, cii = d(ωi, ω̃i) = ti ↘ di. Then

costi(ω̃i) =

∑
j↑[n] cij/(dj +ϑ)

∑
j↑[n] 1/(dj +ϑ)

(3)

By Claim 3 each agent either reports ω̃i = ô, or ω̃i = ωi, or ω̃i → S-Path(ô, ωi)
in a PNE. Let

S
def
== {i → [n] | ω̃i = ô}, T

def
== {i → [n] | ω̃i = ωi}, U

def
== [n] \ (S ↖ T )

and also use S = [n]\S = U ↖T . We also use D
def
==

∑
j↑[n] 1/(dj +ϑ) to denote

the denominator of each costi(ω̃) for i → [n].

4.1 Consistency

In this section, we show that the Harmonic(ϑ) mechanism can achieve a solution
arbitrarily close to the optimum depending on the quality of the prediction.
Specifically, when the predicted location ô gives an almost optimum estimation
of the true optimum (

∑
i↑[n] d(ωi, ô) ↔

∑
i↑[n] d(ωi, o)) and

ω
opt/n = O(ϱ), we are

able to show that PoA of Harmonic(ϑ) mechanism is close to 1. The following
theorem refers to the full version.

Theorem 2. If ô is ϖ-accurate, i.e.,
SC(ô,ω)
opt(ω) ⇑ ϖ, and c

def
== ϑ/a for an average

cost a = 1
n SC(ô, ω) of the prediction ô, then Harmonic(ϑ) mechanism is ϖ · (1 +

2c)-consistent.

4.2 Robustness

Here, we show robustness guarantees for arbitrary bad predicted location ô for
the Harmonic mechanism. Our guarantees depend on c = ϑ/a (the larger c,
the better) that equals to the ratio between the parameter ϑ of the Harmonic

mechanism and a = 1
n SC(ô, ω). We will first derive a few useful lemmas and then

prove two PoA guarantees: first, for the case when M is strictly convex space,
and, second, for the general metric.



Recall that Harmonic mechanism chooses each location ω̃i for i → [n] with

probability 1/(di+ω)
D where D

def
==

∑
i↑[n] 1/(di + ϑ). The expected social cost

SC =
∑

j↑[n]
1/(dj+ω)

D

∑
i↑[n] cij , which we partition into three terms by dividing

j → [n] into three sets S, U , and T according to the equilibrium conditions from
Claim 3 as follows

SC =
|S|/ϑ
D

∑

i↑[n]

ti +
∑

j↑T

1/(tj +ϑ)

D

∑

i↑[n]

dij +
∑

j↑U

1/(dj +ϑ)

D

∑

i↑[n]

cij . (4)

We first consider the term corresponding to the set of agents T , who reported
their true location ω̃j = ωj . It is useful to keep in mind that the random dicta-
torship mechanism is a 2-approximation to the optimal social cost [2].

Lemma 1 (Theorem 3.1 in [2]). The random dictatorship mechanism (i.e.,

choosing location ωj of agent j → [n] with probability 1/n) is 2-approximation.

This Lemma 1 is a useful comparison point for estimating the contribution to
the social cost by agents in T . Indeed, if we can show that the probabilities of
selecting ω̃i = ωi are at most a constant factor away from the uniform sampling,
then agents in T contribute no more than a constant factor compared to the
optimum social cost. The next Lemma 2 proves that and gives useful probability
estimates for selecting agents i → U under Harmonic mechanism.

Lemma 2. For all i → T ↖ U , the probability that location ω̃i is selected is at

most
1/(di +ϑ)∑

j↑[n] 1/(dj +ϑ)
⇑ 2

n
· ti +ϑ

di +ϑ
. (5)

The Lemma 2 implies that the Harmonic mechanism chooses each location
ω̃j = ωj for agents j → T with probability at most 2/n. I.e., the contribution of
agents in T to the expected social cost is at most O(1) of the uniform sampling
and, hence, is O(opt).

Corollary 1.
∑

j↑T
1/(tj+ω)

D

∑
i↑[n] dij ⇑ 4 · opt.

The other two terms corresponding to agents j → S and j → U are the main
source of Harmonic mechanism’s ine”ciency. Namely, it is impossible to achieve
O(1) robustness guarantee, when ϑ is significantly smaller than a = 1

n

∑
i↑[n] ti.

Indeed, consider for example an instance, in which ϑ = 0, a single agent j stays
exactly at the predicted location ωj = ô, and all other agents i → [n] \ {j} are
all situated at the same spot in M far away from ô. In the unique equilibrium
agent j reports ω̃j = ô, while all other agents i ⇐= j report ωi; the mechanism

picks ω̃j = ô with large probability resulting in an ε(n) ine”cient placement
of the facility. Still, when the parameter ϑ is not too small compared to a, we
are able to show a constant approximation guarantee regardless of the predicted
location ô.

We begin our analysis with the term in (4) corresponding to agents j →
S. There we have a factor 1

D·ω and our next lemma relates this term to the
parameter c = ϑ/a.



Lemma 3. Let ϑ = c
n ·

∑
i↑[n] d(ωi, ô) in Harmonic(ϑ). Then

1
ω·D ⇑

max
{

1/c+1
n ,

1/c+1
n/c

}
.

The Lemmas 1, 2, 3 and Corollary 1 are mostly enough to get a robustness
guarantee of O(1 + 1/c2), if the set of agents U in PNE ω̃ was empty. Unfor-
tunately, the presence of set U significantly complicates the analysis. Next, we
derive two di!erent robustness guarantees: first for an easier case, when metric
M is a strictly convex space, and later for the general metric.

Robustness in Strictly Convex Spaces Here, we show robustness guarantee
for arbitrary bad predicted location ô for the Harmonic mechanism, assuming
that M is a strictly convex space, i.e., the distance between two vectors v1,v2 →
M is given by d(v1,v2) = ↙v1↘v2↙, and ↙v1+v2↙ = ↙v1↙+↙v2↙ for v1,v2 ⇐= 0
implies that v1 = c · v2 for a c > 0.

Theorem 3. Harmonic(ϑ) is a O(1 + 1/c2)-robust in strictly convex space M,

if ϑ = c
n · SC(ô, ω).

To prove the theorem, we first bound bound cij in Harmonic, which follows from
strict convexity:

Claim 4. For strictly convex space M, we have cij ⇑ tj≃dj

tj
ti+

dj

tj
dij for j → U .

Applying this upper bound on cij for all j → U and i → [n] in the expected
social cost (4) gives

SC
Claim 4

⇑ |S|
ϑ ·D

∑

i↑[n]

ti +
∑

j↑U

1/(dj +ϑ)

D

∑

i↑[n]

(
ti +

dj

tj
dij

)
+

∑

j↑T

1/(tj +ϑ)

D

∑

i↑[n]

dij

(6)

=



 |S|
ϑ ·D +

∑

j↑U

1

D(dj +ϑ)



 ·
∑

i↑[n]

ti

  
(↓)

+
∑

j↑U

dj/tj

(dj +ϑ)D

∑

i↑[n]

dij +
∑

j↑T

1/(tj +ϑ)

D

∑

i↑[n]

dij

  
(↓↓)

.

We first shall get an upper bound on the second term (∝∝) in (6) in a very similar
way to Lemma 2 and Corollary 1.

(∝∝) ⇑
∑

j↑U

2

n
· tj +ϑ

dj +ϑ
·dj
tj

∑

i↑[n]

dij+
2

n

∑

j↑T

∑

i↑[n]

dij ⇑
2

n

∑

j↑U⇐T,
i↑[n]

dij ⇑
2

n

∑

i,j↑[n]

dij ⇑ 4·opt,

(7)
where the first inequality holds by Lemma 2; the second inequality holds as
tj+ω
dj+ω

dj

tj
= 1+ω/tj

1+ω/dj
⇑ 1 for all j → U ; the last inequality holds by Lemma 1



similar to Corollary 1. Next, we get an upper bound on the (∝) term. We first
note that

(∝) ⇑



 |S|
ϑ ·D +

∑

j↑U

1

D ·ϑ



 ·
∑

i↑[n]

ti = (|S|+ |U |)ϑ · 1

ϑD
·
∑

i↑[n] ti

ϑ
⇑

(|S|+ |U |)ϑ ·max


1/c+ 1

n
,
1/c+ 1

n/c


· n
c
, (8)

where we got the first inequality by substituting 1
dj+ω with 1

ω ; used definition

of c = ω
a = ω·n∑

i↑[n] ti
to simplify

∑
i↑[n] ti
ω and Lemma 3 to get an upper bound on

1
ωD in the second inequality. Finally, we give an upper bound on (|S|+ |U |)ϑ in
the following Claim 5. The proof relies on equilibrium conditions from Claim 3
and Claim 4.

Claim 5. For strictly convex space M, (|S|+ |U |)ϑ ⇑ 2
n

∑
i,j↑[n] dij.

We get the following bound on (∝) by applying Claim 5 to (8).

(∝) ⇑ 2

n

∑

i,j↑[n]

dij ·max


1/c+ 1

n
,
1/c+ 1

n/c


·n
c
= max

{2 + 2c

c2
,
2 + 2c

c

}
· 1
n

∑

i,j↑[n]

dij .

I.e., (∝) = O(1 + 1
c2 ) · opt. We conclude the proof of Theorem 3 by combining

this bound on (∝) with the constant upper bound (7) on (∝∝) in (6).

Robustness in General Metric Spaces The goal of this section is to ex-
tend our robustness result for strictly convex spaces to general metric (Theo-
rem 4). However, since general metric M may have rather di!erent geometry
than strictly convex spaces12, we lose an additional factor 1/c in our robustness
guarantee.

Theorem 4. Harmonic(ϑ) is a O(1 + 1/c3)-robust in metric space, if ϑ =
c
n · SC(ô, ω).

4.3 Constant Number of Agents

We conclude the PoA analysis of Harmonic mechanism with a special case of a
small number of agents n = O(1). In this regime, we are able to simplify the
mechanism by setting the parameter ϑ = 0, i.e., we ignore the estimate â for
the average distance a = 1

n

∑
i↑[n] d(ωi, ô), and get the following Harmonic(0)

mechanism.

12 Consider a two-dimensional space L1(R2), and consider a point (0, 1) →
S-Path((0, 0), (1, 1)). The distances from another point (1, 0) to the endpoints are
d((1, 0), (0, 0)) = d((1, 0), (1, 1)) = 1, while d((1, 0), (0, 1)) = 2.



ALGORITHM 2: Harmonic mechanism Harmonic(0)

Data: Reported locations ω̃ = (ω̃1, . . . , ω̃n), prediction ô → M
Result: Facility f ↑ φ{ω̃1, . . . , ω̃n}
for i → [n] do let di = d(ω̃i, ô) ;

Choose Pr[f ↓ ω̃i]
def
== 1/di∑n

j=1 1/dj
for i → [n] ; // Pr[f ↓ ω̃i] ↔ 1

di
(proportional

to)

Theorem 5. Harmonic(0) is 1-consistent (ϖ-consistent for a ϖ-accurate predic-

tion ô) in general metric M. It is O(n)-robust, when M is a strictly convex

space.

Remark 1. The assumption thatM is strictly convex space is crucial for deriving
O(1)-robustness bound. This is because each agent i → U may increase the
distance to everyone else compared to ô and ωi. The analysis for sets S and T

can be carried in the same way as for strictly convex spaces.

To see this, consider the following example of Nash equilibrium in a circle metric
space M with just n = 2 agents with arbitrary large PoA. Specifically, let
d(ω1, ω2) = 1, d(ô, ω1) = d(ô, ω2) = M while the length of the whole circle is

2M+1 for a large constantM → R. Then the following ω̃ is a Nash equilibrium: ω̃1
and ω̃2 are on their respective shortest paths from ω1 and ω2 to ô with d(ω̃1, ô) =

d(ω̃2, ô) = 0.5. It is easy to verify that each of the agents i = 1 and i = 2 is

indi!erent between reporting ω̃i = ô or ω̃i = ωi. I.e., by Claim 3 ω̃ is a Nash
equilibrium with the social cost SC(ω̃) = 2M . The optimal location is, e.g., at
f = ω1 with the social cost of 1.

5 Conclusions

In this paper we study a canonical problem of strategic single-facility location
in general metric spaces under new lenses of ML augmented mechanism design
framework. This framework not only allows to circumvent worst-case analysis
limitations, but also enriches the design space of mechanisms in interesting new
ways. It naturally led us to consider new type of non-truthful mechanisms (such
as Harmonic mechanism) that have not appeared in the prior literature. We got
useful insights about undominated strategies and equilibria structure for this
mechanism. We proved that Harmonic mechanism has a 1 + ϱ price of anarchy
bound when predictions are (nearly) accurate, while retaining a constant PoA
of O(1 + 1/poly(ϱ)) in the worst-case, when ô is arbitrary bad (given that our
mechanism’s parameter ϑ = ϱ · SC(ô, ω)).

Our PoA analysis of consistency and especially robustness significantly devi-
ates from a typical PoA analysis, as (i) the general smoothness argument does
not help in breaking 2-approximation barrier and (ii) we have to use metric con-
ditions in a non-trivial way (e.g., our PoA bounds are di!erent for strictly convex



and general metric spaces, when n = O(1)). The tightness of our PoA bounds
for Harmonic remains an open problem. Another interesting open question is to
find a mechanism that does not depend on a parameter ϑ, but admits similar
(1 + ϱ)-consistency and O(1 + 1/poly(ϱ))-robustness PoA guarantees.
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