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ABSTRACT 
 

Human Activity Recognition (HAR) is a pivotal component of robot perception for physical 
Human Robot Interaction (pHRI) tasks. In construction robotics, it is vital that robots have an 
accurate and robust perception of worker activities. This enhanced perception is the foundation 
of trustworthy and safe Human-Robot Collaboration (HRC) in an industrial setting. Many 
developed HAR algorithms lack the robustness and adaptability to ensure seamless HRC. Recent 
works have employed multi-modal approaches to increase feature considerations. This paper 
further expands previous research to include 4D building information modeling (BIM) schedule 
data. We created a pipeline that transforms high-level BIM schedule activities into a set of low-
level tasks in real-time. The framework then utilizes this subset as a tool to restrict the solution 
space that the HAR algorithm can predict activities from. By limiting this subspace through 4D 
BIM schedule data, the algorithm has a higher chance of predicting the true possible activities 
from a smaller pool of possibilities in a localized setting as compared to calculating all global 
possibilities at every point. Results indicate that the proposed approach achieves higher 
confidence predictions over the base model without leveraging the BIM data. 
 

INTRODUCTION 
 

Construction worker activity recognition is one of the main components in enabling Human-
Robot Collaboration (HRC). Many previous studies utilize different modalities to enable HAR. 
Some works approach activity recognition through wearable sensors such as IMU (Akhavian et 
al., 2016; Xefteris et al., 2022), visual inferences (Beddiar et al., 2020), and using multiple 
modalities (Qi et al., 2022). 

However, due to the dynamic nature of construction job sites, these models often fail to 
use robust, out-of-training data inferences. These models could be trained solely on construction 
activity tasks and data to improve robustness. Nevertheless, this approach is currently not 
feasible due to limited visual construction activity data. Another approach is to increase the 
depth and complexity of the models. Previous works have shown that deeper models can show 
better performance (Jha et al., 2021). However, this can result in higher inference times, creating 
a processing latency detrimental to real-time HRC. 
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One method of increasing accuracy can be reducing the hypothesis space and label space 
of the model. A hypothesis space in the context of machine learning (ML) is the entire set of 
possible models or functions that a neural network can represent, given its architecture. 
However, reducing the hypothesis space of neural networks and complex, deep models can be a 
very cumbersome task (Szymanski et al., 2018). Alternatively, one can attempt to reduce the 
label space of the models. Previous research has attempted to reduce the label space with the 
improvement of reducing computational complexity (Moyano et al., 2022). It is important to note 
that hypothesis space and label space are different but related terms. The hypothesis space 
presents the entire possible representations given by the model. The label space is simply the 
possible output that the model can give. By restricting the label space, we are, in effect, 
restricting the hypothesis space. In other words, the label space is a subset of the hypothesis 
space which covers the broader possibilities in each model. While the related work has focused 
on hypothesis space reduction to improve computational complexity. We aim to improve the 
robustness and accuracy of the algorithms. Therefore, this paper proposes to use deterministic 
4D building information modeling (BIM) data to limit the subspace. By using pre-defined 
activities depending on the work being done during that date, we can improve the model 
performance by removing them from the label space. We hypothesize that this label space 
reduction will both improve the overall accuracy of the model and increase the confidence of the 
model in its predictions. The main contribution of this approach is to force pretrained models to 
have more robust use cases without the need for extensive retraining and dataset collection. This 
is crucial since construction-specific datasets and architectures are scarce. Nevertheless, there are 
many rich, deterministic information sources such as BIM that can help researchers to improve 
robotic deployment. 

 
METHODOLOGY 
 
HAR models can be extremely inaccurate when they classify different activities that result in 
similar patterns in the collected data, especially if there has not been sufficient data on each 
activity in the training dataset. For example, the tasks of using a drill and using a nail gun have 
very similar high-level activity profiles which can be even difficult for humans to differentiate at 
times. The similarity of the tasks can cause ML models to have an increasingly hard time 
differentiating between the two. We introduce the construction schedule to assist the model in its 
predictions. For example, a task such as installing drywall anchors will not need the usage of nail 
guns. We can reduce the label space by removing all of the activity classes unrelated to the 
scheduled task. X-CLIP's architecture allows us to modify the label space, in this case, the text 
classes, with simplicity. This gives us and any engineers in an applied setting complete flexibility 
in controlling the label space. Figure 1 shows the overall structure of the framework. 

We utilize a pre-trained X-CLIP model (Ni et al., 2022) as our base model HAR model. 
The authors have previously investigated this model architecture for increasing the robustness of 
activity recognition in construction contexts by the authors before (Shahnavaz et al., 2023). The 
video classes encompass the entirety of possible construction-related activities that are done inside 
the work environment given by the 4D BIM. Since 4D BIM models have high-level task 
descriptions, we must break down these tasks into smaller activity bursts that together define the 
high-level task. We utilize a BIM pipeline that extracts the task from the BIM schedule and selects 
a predefined activity subset that aids the HAR model in reducing the label space. The pipeline 
utilizes the construction schedule to identify activities and cross reference with previously defined 
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subtasks. Once those subtasks are dictated the label space will be truncated. The authors recorded 
and labeled the data using the BIM data, project manager’s input, and the ongoing work at the job 
site. 

 

 

Figure 1. Schematic of BIM Schedule Integration with X-CLIP for HAR 
 
The X-ClIP model calculates a similarity score between the text video embeddings through 

each respective encoder. These embeddings are achieved by passing through our text and video 
into each respective encoder. A transformer architecture then aggregates the predictions of each 
video frame. A softmax function can be employed to ascertain the probabilities of each task. The 
maximum likelihood can then be used as the highest confidence prediction. The number of classes 
the model is comparing with the video input directly impacts the number of potential activities that 
can be chosen.  

Using the 4D BIM's schedule, we can extract what activities are possible given a specific 
predefined task. For example, if the task defined by the 4D BIM is "Painting a wall", we can 
reasonably infer that "Cleaning the wall with a brush" would not be one of the possible activity 
options. In this paper, we only analyze the effects of integrating the schedule component of 4D 
BIM with activity recognition. In future works, we plan to incorporate other components of 4D 
BIM such as localization and construction progress for robot development.  
 
EXPERIMENTAL RESULT 
 

Video data of construction activities was collected at a Housing construction project in San 
Diego. Two floors were designated by the project managers as having the most activity on that 
date and the authors collected the data. We filmed and partitioned the data depending on the 
schedule. Two Tasks were filmed: 

 
• Assembling Metal Frames 
• Installing Drywall 

 
The Tasks had 5 and 6 distinct activities respectively. For the most part, these activities are not 

mutually exclusive. For example, both assembling metal frames and installing drywall involve 
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measuring and drilling. The number of unique activities between both tasks was 7, giving the label 
space of our model 7 activities to choose from. To further simulate a realistic implementation of 
this framework, we added 11 more unrelated construction activities expected to happen on a job 
site. The label space for HAR without schedule integration consisted of 18 distinct activities being 
inferred by the ML model. However, with BIM integration we limit that label space to 5 and 6 
tasks for the two Tasks, respectively. The tasks are described in the following: 

 
Table 1. List of Activities in Each Task 
Label Spaces Labels 

Entire Label Space Clamping, Grinding, Drilling, Measuring, Marking, Cutting, Nail 
gunning, Sawing, Picking up Trash, Shoveling, Using a Screwdriver, 
Hammering, Mixing Cement, Driving, Blowtorching, Laying Bricks, 
Soldering, Painting  

Task 1 Clamping, Grinding, Drilling, Measuring, Marking, Cutting 

Task 2 Drilling, Measuring, Marking, Cutting, Nail gunning 

 
We investigated the effect of the integration of the BIM schedule on the model in two different 
metrics: (1) precision performance metrics including Accuracy, Precision/Recall, and F1 score, 
and (2) confidence through the percentage of the maximum likelihood being true. 
We evaluate the model for each task separately using the entire label space and one of the BIM-
restricted label spaces for each task. 

We chose to conduct these experiments with the baseline X-CLIP model available on 
Hugging Face (Hugging Face, 2023). CLIP and by extension, X-CLIP utilizes a training regimen 
using an infoNCE such as Equation 1 (Radford et al. 2021): 

 
ℒ = −

1

N
∑ log

exp(sim(𝑥𝑖,𝑦𝑖)/𝜏)

∑ exp(sim(𝑥𝑖,𝑦𝑗)/𝜏)
𝑁
𝑗=1

N
i=1   Equation (1) 

 
X-CLIP training regimen contributes to our decision to use this as our model since previous works 
have shown that contrastive training can show increased robustness and generalizability (Parulekar 
et al., 2023). The base X-CLIP model has not been trained on construction-specific contexts. This 
will result in worse performance in out-of-training data inferences. While previous works have 
shown that fine-tuning the model with construction activity data can improve performance 
(Shahnavaz et al., 2023), we chose to proceed with the baseline model for a more objective and 
reproducible comparison. The architecture of the X-CLIP model incorporated with the BIM 
schedule funnel is depicted in Figure 2. 

By applying the label space reduction by incorporating the schedule we were able to 
decrease the number of classes by 6-7 depending on the task. This truncation forces the model to 
process the probability space in its entirety without having additional classes. The result is a higher 
confidence scoring and fewer false predictions courtesy of removing factually wrong or fringe 
cases from the computations. Since the ML algorithm must calculate the probabilities from scratch, 
the distribution is still from 100%. The confidence percentages are higher than before since there 
are fewer classes to participate in the distribution, thus each current class will have a higher 
probability distribution. From there on, we evaluate the efficacy of the model using the combined 
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and reduced label spaces. As shown in Table 2 incorporating BIM metrics positively influences 
the majority of precision scores. In addition to accuracy, we analyze precision, recall, and F1 scores 
for further validation of our framework's effects. These scores further shed light on the model's 
performance regarding false positives and negatives. 

Confidence is referred to as the highest probability value among those assigned to the 
predicted classes by the model. This can be an important metric to enhance transparency and trust 
in the functional deployment of collaborative robots and intelligent models. 

 

 
Figure 2. X-CLIP Architecture with BIM Schedule Integration 

 
 
Table 2. Metrics for Tasks 1 and 2 with and without BIM Integration 

Task BIM 
Integration 

Accuracy Precision Recall F1 Score 

1 No 35.71% 0.35 0.36 0.35 
1 Yes 57.14% 0.41 0.57 0.48 
2 No 23.08% 0.71 0.23 0.35 
2 Yes 53.85%  0.59 0.54 0.57 

As shown in Figures 3 and 4, we see an increase in maximum probabilities between both 
correct and all predictions for both tasks when the construction schedule is integrated. This can be 
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because certain classes that share similar features are removed from the inference by the schedule's 
restriction. These results suggest that BIM integration can increase model confidence which can 
translate to more reliable and transparent field deployment. 

 

 
 

Figure 3. Confidence Statistics for Task 1 for inferences with and without BIM schedule 
integration. 

DISCUSSIONS AND LIMITATIONS 
 
The current schedule-to-activity transformation follows an ad libitum approach. This is a 
byproduct of the desired "activity level" that we decided on. Here, "activity level" pertains not to 
the intensity but rather to the complexity and the scale of abstraction in recognizing an activity. 
On the lower end of the spectrum, activities are understood in simple, fundamental terms, where 
even minor actions like a twitch or a joint movement are classified as activities, identifiable with 
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minimal data. At the higher, more abstract end of the spectrum, activities are defined in more 
complex terms, such as performing a task like installing drywall at a construction site.  
 

 
 
 

Figure 4. Confidence Statistics for Task 2 for inferences with and without BIM schedule 
integration. 

The more "high-level" the activity is, the more information is needed to be able to accurately 
predict the activity. This increase in necessary information directly translates to an increase in 
video/sensory intake which will cause significant latency in processing times, which can be 
detrimental to real-time applications. While this choice is problem-dependent, future investigation 
to create a rigid framework is warranted. 

One advantage that this framework provides is an increase in performance with no training 
and architectural changes. This is an important contribution since certain adaptations and training 
procedures can be too cumbersome or unfeasible. While more complex and deep model 
architectures can help with accuracy, the increased inference times and power requirements can 
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prove as a detriment to practical deployments. In HRC, speed and accuracy are of paramount 
importance. Increasing accuracy with no increase in complexity is a significant step in the 
development and deployment of collaborative robots. We are currently working on improving and 
deploying this framework in our ongoing projects to ensure safe and effective HRC. 

One limitation can be attributed to the fact that our activities might not be all-encompassing 
to the construction task. The selected tasks were videotaped and organized ad libitum on the job 
site. This can result in false predictions if an activity that has not been defined in the label space is 
a sub-activity of the task. Moreover, due to this framework's design, which excludes certain 
activities from the range of labels, inaccuracies in activity detection can arise if an activity takes 
place beyond the scope of possibilities predetermined by the user. This is an extreme approach that 
entirely removes the possibility of certain activities. A more moderate approach would be to apply 
penalties to specific classes given the task. However, the implications of this approach and the 
specifics of how penalties are applied remain unexamined, and we plan to address these topics in 
future works. Ideally, the model would be trained or fine-tuned with mainly construction activity 
data to ensure better accuracy for real-life deployments. 

It is worth noting that there is currently no standard framework that translates construction 
tasks into activities for activity recognition inferences. However, the user has the flexibility to 
choose how many and which activities to include in the label space. A smaller label space could 
result in higher accuracy as long as the activities that occur are in that subspace, or similar activities 
that are seen in other tasks and not the inferred ones are penalized or removed from the label space. 
Nevertheless, the dynamic environment of construction can be unpredictable and affect 
performance if activities outside the scope of the model are observed. For future work, we plan to 
explore the capability and efficacy of Large Language Models as a tool for label space restriction. 
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