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SUMMARY

Patient-specific models can be used to plan treatments and manage diseases, including chronic throm-
boembolic pulmonary hypertension (CTEPH). This study examines uncertainty in fluid dynamics and
CTEPH vasular networks based on computed tomography (CT) images. We segment the pulmonary
arteries and calculate the radius and length for each vessel using centerlines and change points. Net-
works are created from the centerlines, and are used in a fluid dynamics model, predicting uncertainty
in hemodynamics from variations in geometry. We compare two centerline algorithms: VMTK,
which uses maximal inscribed spheres, and SGEXT, which uses skeletonization. Results show that
centerline placement and vessel radius significantly impact hemodynamics.
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1 INTRODUCTION

Patient-specific vascular models can be used in disease management, e.g., to improve diagnoses
or plan treatment strategies. For patients with chronic thromboembolic pulmonary hypertension
(CTEPH), patient-specific models can examine what vessels to dilate to reduce pressure and improve
perfusion [[1]. Typically, generating a patient-specific model involves two core steps: (i) setting up a
vascular domain and (ii) calibrating a fluid dynamics model to hemodynamic data. The first step can
be accomplished by segmenting arteries captured by computed tomography (CT) or magnetic reso-
nance (MRI) images; the second by solving an inverse problem, estimating model parameters, and
minimizing the least square error between computed results and available hemodynamic data. Numer-
ous studies have examined hemodynamics using 3D [8] and 1D [3, [7] computational fluid dynamics
(CFD) models. Due to computational challenges, 3D CFD models are most useful for studying flow
in localized regions within the network, whereas 1D models are better suited for examining hemo-
dynamics in large networks such as the pulmonary arterial vasculature, which branches rapidly for
over 20 generations. However, obtaining a reliable representation of vascular networks is challeng-
ing [3]]. Significant uncertainty is associated with capturing vascular networks since images typically
have multiple intersecting networks (e.g., in the lungs, there are arteries, veins, and airways). An-
other challenge is that vessels have no ground truth dimensions, and clinical images are often noisy.
Networks are typically extracted by segmenting CT or MRI images and constructing a 3D rendered
volume. Through this volume, centerlines can be identified using automated algorithms, along with
algorithms determining the vessel radius at each point along the centerlines. Based on the centerlines,
a labeled tree is generated including information about vessel length and radii, connectivity of vessels
along the network, and location in 3D space [3]. Such networks are essential, especially for 1D mod-
els, for which the computational domain is constructed from the centerlines [3]. Two methodologies
for extracting centerlines include the Vascular Modeling Toolkit (VMTK) [2] and Skeletonization
and Spatial Graph Extractor of Images (SGEXT) [5] (github.com/phcerdan/SGEXT). VMTK places
maximally inscribed spheres in the lumen of the vessels and determines centerlines by connecting the
center of consecutive spheres. SGEXT uses skeletonization, which iteratively removes voxels until
a single voxel path remains in each vessel. This study compares hemodynamic predictions in pul-
monary arteries segmented from a CT image of a CTEPH patient. The CT image is segmented using
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Figure 1: Centerlines obtained with (a) VMTK generated from maximally inscribed spheres and (b) SGEXT
via skeletonization.

3D Slicer [4], and vascular networks are generated from centerlines extracted using VMTK [2] and
SGEXT [3]]. We use statistical change points to quantify the uncertainty of vessel radii distribution for
each vessel, sampling radii values from a normal distribution to demonstrate the effects of geometric
uncertainty on hemodynamics using a 1D fluid dynamics model.

2 METHODOLOGY

Volume rendering. We analyze a chest CT image from a 57-year-old male CTEPH patient made
available from collaborators at Duke Health. The pulmonary arterial network is rendered using the
open-source image segmentation software 3D Slicer developed by Kitware, Inc. [4]. To extract the
pulmonary arteries, we include intensities from 50 to 3027 Hounsfield units. We identify the main
(MPA), right (RPA), and left (LPA) pulmonary arteries through thresholding followed by manual
painting, erasing, and cutting to identify the lobar, segmental, and subsegmental vessels.

Centerlines. VMTK [2] determines centerlines in the 3D rendering by placing maximally inscribed
spheres along each vessel with boundaries defined by user-specified inlet and outlet points. Center-
lines and vessel radii are obtained from the center and radius of each sphere, and when two centerlines
intersect, a junction node is placed. Due to challenges associated with placing a sphere at a junction,
we utilize an algorithm that moves junction nodes closer to the barycenter of the ostium region [3].
SGEXT [3] generates centerlines using skeletonization, iteratively removing voxels until a single
voxel remains in the center of the vessel. In SGEXT, the radius is obtained by constructing a distance
map and determining the shortest distance from the center voxel to the background. The latter is done
by superimposing the distance map and the single voxel path. After centerlines are generated, we fit
change points to each vessel’s radius data to determine locations where there is uncertainty within the
calculated radius, e.g., the ostium region. We use this to find the segment within each vessel where
the radius can be reliably estimated, calculate the mean and standard deviation, and fit a probability
density function (PDF). The PDF represents the radius measurement and uncertainty for each vessel,
which is used to inform the geometry for fluid dynamics simulations. Examples illustrating the 3D
renderings and methodology for centerline generation are shown in Figure [T}

1D fluid dynamics model. In each vessel, we solve the 1D Navier—Stokes equations, ensuring conser-
vation of mass and momentum. This system of equations is obtained assuming vessels are deformable
and cylindrical, blood is incompressible, viscous, and homogeneous, and the flow is Newtonian and ir-
rotational. Under these assumptions, volumetric flow g(x, t) (mL/s), blood pressure p(x,t) (mmHg),
and vessel area A(z,t) (cm?) can be computed as
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where p (g/mL) is density, x4 (g/cm s) is viscosity, v = p/p (cm?/s) is the kinematic viscosity, R(x, t)
(cm) is the vessel radius, 0 = /vT'/27 (cm) is the boundary layer thickness, and 7" (s) is the length
of the cardiac cycle [3]. The two fluid dynamics equations are coupled with a linearly elastic wall
model that relates pressure and vessel area such that

P L Y SN I B A 0 4 k.
p(@,1) 3R0< A ) R, e + ks

291



Here, Fh/Ry (mmHg) is the vessel stiffness increasing with decreased vessel size, Ry (cm) is the
unstressed radius, and Ag = ﬁR% (cm?) is the unstressed vessel area. The system of equations is
hyperbolic, requiring a boundary condition at the beginning and end of each vessel. The inflow to the
network is obtained from measurements, and at the outflow of each vessel, we use a structured tree
boundary condition [3,[7]. At junctions, we enforce conservation of flow and continuity of pressure.
The system of equations is solved numerically using the two-step Lax Wendroff method.

3 RESULTS AND CONCLUSIONS

Centerlines. Figure [2|shows an example of the centerlines generated in a pulmonary arterial network
from a CTEPH patient, where (a) depicts the raw network obtained with VMTK, (b) the network ob-
tained by SGEXT, and (c) an analysis of the vessel radii along its length using change points. Note the
significant difference in junction placement between VMTK and SGEXT. In the raw VMTK network,
the junctions placed by VMTK [2] are located far from the barycenter, likely due to challenges asso-
ciated with placing spheres in the junction region, which is not cylindrical. The result is a significant
variation in radius along each vessel. In our previous study [3], we designed a junction correction
algorithm moving the junction closer to the barycenter. This step is not needed in SGEXT [J5], which
generates centerlines with vessel junctions that visually appear to be in the barycenter. However,
SGEXT is sensitive to ridges in the volumetric model, causing them to arc more than expected.

Moreover, the vessel radius is poorly defined in the ostium region where vessels meet. Therefore, to
reliably determine vessel radius, we use statistical change points to identify the part of the vessel that
best represents the radius. From this segment, we choose the radius and account for its uncertainty.
Figure [2(c) shows an example of a vessel radius and its uncertainty, which is normally distributed.
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Figure 2: Segmentations and centerlines of a pulmonary vascular network from a CTEPH patient. Centerlines
were found using (a) VMTK and (b) SGEXT. In (c), radii values along the length of each vessel are identified
using statistical change points, and radius uncertainty is quantified by viewing the probability density function
(PDF) and cumulative density functions (CDF).

Fluid dynamics predictions. Figure|3|shows example fluid dynamics predictions in the main (MPA),
right (RPA), and left (LPA) pulmonary arteries. Results are obtained by sampling radii from the
normal distribution for each vessel. The radius variation (Figure[2(c)) is obtained by fitting a Gaussian
curve to the radius samples along each vessel. By sampling the radius from a normal distribtion
within physiological bounds, we see a significant impact on blood flow and pressure predictions. The
minor flow variations in the MPA result from the boundary condition prescribing a flow profile at
the inlet; in contrast, the variation in pressure is similar to the expected measurement error. Results
demonstrate the importance of accounting for uncertainty in medical images, variation in centerline
placement, and radius estimation. This is because CT images have finite resolution, limiting the
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Figure 3: The solid line shows fluid dynamics prediction using the mean radius along each vessel, and the gray
lines show predictions running 1000 fluid dynamics simulations sampling the radius from a normal distribution
for each vessel.

number of vessels that can be captured reliably by 3D rendering for use in mathematical models.
Uncertainty quantification is essential in patients with pulmonary vascular diseases, such as CTEPH,
results in remodeling of the vasculature, chronic lesions, and increased tortuosity of vessels. In this
study, we demonstrate that using multiple centerline methodologies, such as VMTK and SGEXT,
combined with statistical change points to identify representative radii for each vessel, will minimize
uncertainty in predictions of hemodynamic quantities. Thus, when using 1D models to generate
patient-specific predictions for medical applications, careful image and network extraction process
analysis is imperative for accurate results.
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