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Abstract. Higher-order gravitational wave modes from quasi-circular, spinning, non-
precessing binary black hole mergers encode key information about these systems’
nonlinear dynamics. We model these waveforms using transformer architectures,
targeting the evolution from late inspiral through ringdown. Our data is derived from
the NRHybSur3dq8 surrogate model,which includes spherical harmonic modes up to
ℓ ≤ 4 (excluding (4, 0), (4, ±1) and including (5, 5) modes). These waveforms span
mass ratios q ≤ 8, spin components sz

1,2 ∈ [−0.8, 0.8], and inclination angles θ ∈ [0, π].
The model processes input data over the time interval t ∈ [−5000M, −100M) and
generates predictions for the plus and cross polarizations, (h + , h× ), over the interval
t ∈ [−100M, 130M]. Utilizing 16 NVIDIA A100 GPUs on the Delta supercomputer,
we trained the transformer model in 15 hours on over 14 million samples.The model’s
performance was evaluated on a test dataset of 840,000 samples, achieving mean
and median overlap scores of 0.996 and 0.997,respectively, relative to the surrogate-
based ground truth signals. We further benchmark the model on numerical relativity
waveforms from the SXS catalog, finding that it generalizes well to out-of-distribution
systems, capable of reproducing the dynamics of systems with mass ratios up to  q = 15
and spin magnitudes up to 0.998, with a median overlap of 0.969 across 521 NR
waveforms and up to 0.998 in face-on/off configurations. These results demonstrate
that transformer-based models can capture the nonlinear dynamics of binary black
hole mergers with high accuracy, even outside the surrogate training domain, enabling
fast sequence modeling of higher-order wave modes.
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1. Introduction

Artificial intelligence (AI) and machine learning (ML) are playing an increasingly
central role in gravitational-wave (GW) astrophysics, offering powerful tools for tasks
ranging from signal detection to population inference.Comprehensive reviews of these
developments can be found in [1,2]. These approaches have enabled the development
of low-latency search pipelines [3], robust glitch classification [4, 5, 6], and accurate
denoising methods [7].Deep learning techniques have matched or exceeded traditional
matched-filter performance in detecting binary black hole mergers [8, 9, 10, 11, 12, 13],
and enabled efficient parameter estimation [14,15] and population-level inference [16]
orders of magnitude faster than classical methods.

Sequence modeling of gravitational waveforms has emerged as a promising direction
for accelerating waveform generation in gravitational wave astrophysics.Several studies
have explored machine learning approaches that map physical parameters to waveforms,
particularly focusing on the merger and ringdown regimes. For example, Lee et
al. [17] trained a fully connected network on SEOBNRv4 waveforms [18]to model non-
spinning BBH mergers, achieving overlap scores above 99.9% for the ℓ = m = 2 mode.
This approach accelerated waveform generation and generalized wellacross parameter
space,but was limited to non-spinning systems. Similarly, Khan and Green[19] used
neural networks to build surrogate models of gravitational waveforms from parameters,
achieving mismatches as low as 2 × 10−5 in aligned-spin systems.This work confirmed
that simple feed-forward networks could rival interpolation-based surrogates in accuracy
with reduced computational cost. These works exemplify the success of ML-based
surrogate modeling but do not directly address the forecasting problem.

In contrast to parameter-to-waveform models, recent work has explored directly
forecasting future gravitational wave signals from earlier parts of the waveform.
This task is inherently sequential and lends itself to architectures such as recurrent
neural networks or transformer-based architectures.A notable example is [20], which
introduced a transformer-based modelcapable of forecasting the late inspiral,merger,
and ringdown of signals from spinning, quasi-circular, non-precessing binary black hole
mergers. The model was trained on over 1.5 million waveforms generated using the
NRHybSur3dq8 surrogate[21], and learned to predict late inspiral, merger, and ringdown
of the waveform with generally high overlap scores, though with overlaps as low as 0.6
across the test set. The approach was limited to the dominant ℓ = |m| = 2 mode. A
complementary approach was introduced in [22],where a lightweight LSTM network
predicted the merger and ringdown using a multi-step sequence strategy. Despite
using a much smaller training set based on the IMRPhenomD model [23], the LSTM [24]
achieved over 99.6% mean overlap,demonstrating that compact sequence models can
generalize well from limited data—though their scope remained constrained to aligned
spins and the dominant harmonic mode. More recently, BHP2NRMLSur [25]introduced
a continuous-time neural network that maps perturbation theory waveforms to full NR
waveforms across multiple modes and spins.While it achieves high accuracy,it differs
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from ours in that it transforms approximate templates rather than forecasting waveform
evolution from earlier signal segments.

In this work, we extend waveform forecasting to a significantly more complex
regime: predicting both polarizations (h + , h× ) across higher order harmonic modes,
using only early inspiral information from quasi-circular, spinning, non-precessing binary
black hole systems.This regime lies deep in the nonlinear sector of generalrelativity,
where spin effects, mode coupling, and gravitational recoil are prominent, and analytical
approximations break down.Higher-order modes are particularly important in systems
with unequal masses, high spins, or edge-on orientations, where they enhance detection
and parameter estimation accuracy [26, 27], but also introduce substantial modeling
challenges [28]. Whereas previous studies [17,19, 20, 22] focused on the quadrupole
mode, we model both GW polarizations (h + , h× ) and include all spherical harmonic
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Figure 1: Normalized amplitude |h| / |h| max of gravitational waves for different binary
black hole configurations.Notice the impact of higher-order wave modes for inclination
angles θ = 0 (left column) and θ = π/4 (right column) in terms of amplitude
modulations, and the time at which the waveform amplitude peaks.
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modes up to ℓ = 4 (including (ℓ, m) = (5, 5) and excluding (4, 0) and (4, ±1), which
are not reliably provided by the surrogate model used for training).Figure 1 illustrates
the increased complexity introduced by these higher-order modes.The left panel shows
representative waveforms from prior studies, where the amplitude evolves smoothly and
is dominated by the quadrupole mode.In contrast, our target waveforms (right panel)
show non-monotonic structure, strong modulation with inclination angle, and a shifted
peak amplitude, demonstrating the richer dynamics that higher-order modes encode.

The key application of this transformer-based model is to serve as a fast surrogate
for numerical relativity (NR) simulations, trained on physically realistic waveforms
and designed to reflect key domain constraints such as polarization structure and
sequence causality. Rather than functioning as a detection tool, it is designed for
systematic modeling of higher-order modes,spin effects, and mode mixing across the
BBH parameter space. This enables consistency tests of NR waveforms, waveform
interpolation where NR is sparse or unavailable, and rapid hypothesis testing in
gravitational theory. In doing so, it accelerates the development and validation of
analytical waveform models and supports precision studies of strong-field gravity.

To implement this model, we introduce a set of architecture and training design
choices that enable accurate and efficient sequence modeling of binary black hole
waveforms:

1. Data generation and parameter space sampling We use the NRHybSur3dq8
surrogate model to generate gravitational waveforms with higher-order modes up to
ℓ = 4 (including (5, 5) but excluding the (4, 0), (4, ±1) modes, which the surrogate
does not reliably support). The parameter space covers mass ratios q ∈ [1, 8],spins
sz

1,2 ∈ [−0.8, 0.8], and inclination angles θ ∈ [0, π]. To match this domain, we
developed HPC-enabled sampling tools to densely cover the space,yielding over 14
million waveforms for training.

2. Transformerarchitecture and distributed training.To handle the
vanishing h× in edge-on mergers (θ = π/2), we include conditionally activated processing
layers that improve accuracy when h× ≈ 0 due to the symmetry of the system. The
model forecasts both GW polarizations, (h + , h× ), from inspiral through ringdown as
distinct channels, using a causaltransformer that enforces smoothness and symmetry
for physical consistency.Training using data parallelism across 16 NVIDIA A100 GPUs
led to convergence within 15 hours on the Delta supercomputer.

3. Inference.Inference on 840,000 test waveforms was completed in under 5
hours using 1 NVIDIA V100 GPU on NCSA’s HAL system. The model achieved mean
and median overlap scores of 0.996 and 0.997, respectively, when benchmarked against
surrogate-modelground truth signals. When evaluated on a small set of numerical
relativity waveforms beyond the training domain, the model achieves a mean overlap of
0.969 and a median of 0.902,which increased to a median of 0.998 and a minimum of
0.95 when NR waveforms were constrained to face-on binaries.

4. Exploratory interpretability studies.To better understand how the
transformer achieves accurate predictions, we performed analyses examining the
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influence of key binary parameters—mass ratio, spin, and inclination angle—on model
behavior. These exploratory studies provide insight into which waveform features the
model finds predictive and how physical symmetries may be reflected in its learned
representations. All code and analysis scripts are available at GitHub [29] to ensure
transparency and reproducibility.

This paper is structured as follows: Section 2 describes the data used to train,
validate, and test the transformer model, and outlines the model design,training and
inference methods.In Section 3, we present our findings.Future directions are discussed
in Section 4. The numerical relativity waveforms employed in the NRHybSur3dq8
surrogate model use geometric units, where G = c = 1 and M represents the total
mass of the binary black-hole merger system. Consequently,all waveform datasets
follow this convention, with time measured in units of M, where M is the total mass and
1M⊙ = 4.93 × 10−6 seconds.

2. Methods

Here we describe the datasets used for this work, the approaches used to design and
train our transformer model, and methods to test its predictive capabilities for sequence
modeling.

2.1. Data

Three independent datasets of modeled waveforms were produced for training,
validation, and testing of the transformer using the numerical relativity surrogate
model NRHybSur3dq8 [21].These waveforms describe the gravitationalemission from
quasi-circular, spinning, non-precessing binary black hole mergers,encompassing the
inspiral, merger, and ringdown phases. The datasets are constrained within the valid
parameter space for this NR surrogate model, i.e., mass ratios q ≤ 8 and individual
spins |sz

{1,2} | ≤ 0.8. The gravitational wave strain time-series h(t, θ, ϕ) can be expressed
as a sum of spin-weighted spherical harmonic modes, hlm , on the 2-sphere [30]:

h(t, θ, ϕ) =
X

l=2

m=lX

m=−l

h lm (t) −2 Ylm (θ, ϕ), (1)

where−2 Ylm are the spin-weight-2 spherical harmonics, θ is the inclination angle between
the orbital angular momentum of the binary and the line of sight to the detector, and  ϕ
is the initial binary phase, which we set to zero.We include the higher-order wave modes
ℓ ≤ 4 and (ℓ, m) = (5, 5), except for (4, 0), (4, −1) and (4, 1), since NRHybSur3dq8 only
provides reliable extrapolation for these specific higher-order modes. The waveforms
cover the time span t = [−5000 M, 130 M].

Training dataset The training dataset consists of 14,440,761 waveforms, generated by
sampling the mass ratio q ∈ [1, 8] in steps of δq = 0.1; individual spins s z

i ∈ [−0.8, 0.8]
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Figure 2: Sampling of the signal manifold defined by the mass ratio q ∈ [1, 8], aligned
spin components sz{1,2} ∈ [−0.8, 0.8], and inclination angle θ ∈ [0, π] to generate three
independent datasets for training, validation, and testing of our transformer models.
The training set uses a uniform grid with step sizes δq = 0.1, δsz

i = 0.02, and δθ = π/29.
The validation and test sets are constructed by interleaving values between training grid
points to avoid overlap and evaluate model generalization.For visual clarity, the figure
shows a reduced interval of the full signal manifold.

in steps of δsz = 0.02; and inclination angle θ ∈ [0, π] in steps of δθ = π/29.

Test and validation datasets Each of these datasets consists of 840,000 waveforms
generated by sampling values spaced evenly between the training set values.Figure 2
illustrates the sampling strategy for generating the training, validation, and test sets,
demonstrating that these datasets are independent and do not overlap.

Sampling and encoder-decoder split We reduce the temporal resolution of the data by
subsampling the original input sequences, selecting every other timestep.This approach
reduces computationalcomplexity. The modeled waveform is then split such that the
transformer’s encoder module receives the early inspiralsequence,consisting of time
steps t = [−5000 M, −100 M]. The decoder module receives the inspiral,merger, and
ringdown segments,made up of time steps t = [−101 M, 129 M]. The target waveform
consists of the gravitational wave segment t = [−100 M, 130 M], i.e., the decoder target
is one timestep ahead of the decoder input, as shown in Figure 3.
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Figure 3: Gravitational wave sequence and separation into encoder input, decoder input,
and decoder target for training. Note that the decoder target complements the encoder
input exactly, reflecting the transformer’s intended function of completing the signal.
The decoder input sequence is shifted to the left by one timestep ∆t = 1 M with respect
to the decoder target sequence and thus overlaps the encoder input by one timestep.

2.2. Architecture

We extend the original architecture of the transformer model introduced in Ref. [31],
which leverages attention mechanisms to weigh different segments of the input sequence
and improve performance in sequence prediction tasks.Transformer-based architectures
have recently shown strong performance in physical sciences, including stellar light curve
analysis[32], gamma-ray burst afterglow modeling[33], and turbulent flow prediction [34].
Here, we have modified the model to incorporate properties of gravitational waves.
These modifications include an embedding scheme that encodes both polarizations,
(h+ , h× ), as well as an h× mask that automatically activates additional layers for signals
corresponding to edge-on mergers, which are difficult to resolve due to vanishing h× .

Figure 4 schematically illustrates these modifications. Below, we describe the
functionality of each component of the transformer as it processes the gravitational
wave sequences.We represent the amplitudes of the input sequences for the encoder
and decoder modules by xp, where p indicates the position within the sequence of length
n. Note that the sequence length n varies for encoder and decoder inputs,denoted as
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nenc and ndec, respectively.

h+ (real part)

h+

h+ (real part)h× (imaginary part)

h×

h× (imaginary part)

h× mask

Figure 4: Schematic representation of transformer modules.The input time-series data
for (h + , h× ) is processed concurrently to generate corresponding predictions (h+ , h× ).
This approach ensures the model maintains physical consistency in forecasting both
time-series data.
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2.2.1. Embedding The transformer architecture is not intrinsically sensitive to the
order of tokens within the input sequence.However, for sequence prediction, information
about token order is critical. This issue is addressed by introducing non-trainable
positional encoding, which embeds the input sequence into a higher-dimensional space.
Through positional encoding,the input sequence xp is transformed into a sequence of
dembed-dimensional vectors, each taking the form:

X p = (x p, P E(p, 1), P E(p, 2), . . . , P E(p, dembed−1 )),

where P E(p, i) denotes the positional encoding at position p and dimension i.This
transformation carries information about the original token’s position, and we represent
this transformed set of vectors as a matrix X ∈ Rn×d embed . The embedding function P E,
where p is the position of any token within the original sequence and i is the dimension
within the positional encoding vector, takes the form:

P E(p, 2i) = sin
p

100002i/d embed
, (2)

P E(p, 2i + 1) = cos
p

100002i/d embed
. (3)

As demonstrated in Ref. [31], this type of sinusoidalpositional encoding enables
the model to interpolate and extrapolate positional encodings for unseen positions,
providing better generalization than other embedding schemes.Building upon previous
transformer models [20] for gravitational wave forecasting, this work facilitates the
processing of complex-valued waveforms:Each input sequence is split into real and
imaginary components, corresponding to plus, h+ , and cross, h× , polarizations, and
independently embedded using the procedure outlined above.These embeddings are
then concatenated along the embedding dimension, effectively doubling the input’s
dimensionality for subsequent processing by the encoder and decoder modules.

2.2.2. Encoder The multi-head self-attention mechanism is designed to allow each
position in the input sequence to attend to all positions within the same sequence.For
each of the h (= 10) attention heads, the computation reads

Attention(Q j , K j , V j ) = softmax
Qj (K j )T

√
dk

V j . (4)

Here, Qj ∈ R n enc ×d q , K j ∈ R n enc ×d k , and V j ∈ R n enc ×d v denote the query,key, and
value matrices, respectively, defined as linear transformations of the input matrix  X:

Qj = XW
j
Q K j = XW

j
K V j = XW

j
V , (5)

with weight matrices W
j
Q ∈ R dembed ×d q , W j

K ∈ R dembed ×d k , and W
j
V ∈ R dembed ×d v . In

this work, d k = d q = d v = d embed/h.
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The matrix QK T functions as a measure ofsimilarity between keys and queries.
The softmax activation operates on the rows of QKT and returns weights corresponding
to values V .The output of each attention head is concatenated along the last dimension
and then linearly transformed:

Attention(Q, K, V ) = concat Attention(Q 1, K 1, V 1), · · · ,
Attention(Q h , K h , V h ) W 0,

(6)

with W 0 ∈ R dembed ×d embed , enabling the model to integrate information across
different representational subspaces. The resulting attention matrix has the same
shape as the input X. After the attention mechanism, each position’s output
undergoes processing by a position-wise feed-forward network, which applies two linear
transformations with ReLU activations. Each sublayer (self-attention and feed-forward
network) is enclosed by a residual connection, followed by layer normalization. This
configuration aids in stabilizing training.

2.2.3. Decoder The decoder receives both the encoder output and the decoder input,
which is embedded using the same method as the encoder input.First, a masked multi-
head self-attention mechanism is applied to the decoder input only. This mechanism
prevents each position in the decoder input from attending to subsequent positions in the
sequence, preserving causality and enabling autoregressive predictions during inference.
The operation is defined as:

MaskedAttention(Qj , K j , V j ) = softmax
Qj (K j )T + M√

dk

V j , (7)

where M is a mask matrix that applies negative infinity to positions not to
be attended to, ensuring that the softmax operation assigns them zero weight. As
before, Qj , K j , and V j are the query, key, and value matrices derived from linear
transformations on the decoder’s input.The dimensionalities of these matrices are the
same as those of the encoder self-attention matrices, with the exception of the sequence
length n, which varies for encoder inputs and decoder inputs. Outputs from each
attention head are again concatenated and linearly transformed.These transformations
leave the shape of the decoder input unchanged.

Following the self-attention layer, the cross-attention layer allows the decoder to
focus on relevant positions in the encoder output sequence.The queries Q stem from
the previous decoder layer (denoted as Y ∈ Rn dec ×d embed ), while the keys K and values
V are derived from the encoder output X:

CrossAttention(Qj , K j , V j ) = softmax
Qj (K j )T

√
dk

V j , (8)

with
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Qj = Y W
j
Q K j = XW

j
K V j = XW

j
V . (9)

This operation preserves the shape of the queries,in this case the decoder input,
ensuring the sequence length of the decoder output matches that of the decoder input.
QK T serves as a measure of similarity between keys and queries.The array returned by
the softmax activation function is of shape Rn dec ×n enc and serves as an array of weights
for the value array V . Figure 12 presents an instructive visualization of these weights
for a choice of input waveform and attention head.

The subsequentprocessing after the application of the attention mechanisms
mirrors that of the encoder module: each position’s output is fed to a feed-forward
network, residual connections, and layer norms are applied after each attention layer and
the feed-forward network to stabilize training. Finally, a 1D convolution is applied to
the decoder output to produce predictions for the two time-series (h+ , h× ) polarizations,
respectively.

2.2.4. h× Mask Empirically, we find that separating waveforms with null cross-
polarization leads to slightly higher reconstruction accuracy.To facilitate this, we apply
a mask to identify and filter waveforms with inclination angle θ = π/2, as these exhibit
null cross-polarization. This mask allows us to modify the final convolutional layer and
feed-forward layers,which are implemented separately for these waveforms to better
capture their distinct waveform structure. The remaining transformations in the model
are consistent across all waveforms, ensuring uniform processing while accommodating
the distinct features of the null cross-polarization cases.The quantitative impact of this
mask is outlined in section 3.5.

2.3. Training and Inference

For our transformer model, we used an embedding dimension of 160 (this includes both
the contributions from the real and the imaginary part), a feed-forward dimension of 80,
and 10 attention heads.The model is trained on a dataset of 14,440,761 waveforms, each
consisting of 5,130 total timesteps, with only 362,722 trainable parameters.This results
in a high data-to-parameter ratio, which may improve generalization capabilities and
help prevent overfitting, as the model is exposed to orders of magnitude more training
samples relative to its size.

This model was trained on the NCSA Delta system, using 4 quad NVIDIA A100
GPU nodes. We employed a batch size of16 and trained the model using the Adam
optimizer [35] with a mean squared error (MSE) loss metric. The initial learning rate
was set to 0.001, with decay applied during training. Additional dropout or weight
decay was not required. Training was distributed across all GPUs using PyTorch’s
DistributedDataParallel (DDP) framework [36]. The model was trained for 30 epochs
and reached convergence in around 15 hours.
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Figure 5: During training, a single decoder output sequence is generated.The attention
mechanism uses an attention mask to ensure that each predicted timestep within the
decoder output is based on the entire encoder input sequence and the preceding elements
in the decoder input. During inference, autoregressivepredictions are generated
sequentially: at each step, the model produces an output sequence,from which only
the last timestep is taken. This output is concatenated with the existing decoder input
to form a new input for subsequent predictions. This iterative process continues until
the desired sequence is fully generated.
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Inference on 840,000 test waveformswas completed in under 5 hours using 1
NVIDIA V100 GPU on NCSA’s HAL system. During training, the model processes
entire sequences at once.Inference, by contrast, proceeds via sequential autoregressive
generation, with each output timestep used to predict the next timestep, which is
in turn fed back into the transformer decoder module. The functional differences
between training and inference are illustrated in Figure 5.During inference, the encoder
outputs remain constant for each input signal and are therefore computed only once at
the beginning of the autoregressive prediction. This approach substantially reduces
processing time.

2.4. Forecasting Efficiency

To evaluate the inference performance of our transformer-based sequence modelfor
gravitational wave signals,we benchmarked it against the surrogate waveform model
NRHybSur3dq8, focusing on waveform generation latency.We selected 50 representative
test points within the binary black hole parameter space using a Halton sequence,
which ensures uniform coverage and reduces clustering compared to purely random
sampling[37]. At each point, we generated waveforms 10 times with both models and
recorded the per-point average.The surrogate model was run on a single AMD Milan
CPU core on the NSCA Delta cluster1, while the transformer model was benchmarked on
a single NVIDIA A100 GPU on the same cluster. On average, the surrogate generated
one waveform in 151 ms (6.6 waveforms/s), and the transformer completed inference for
one waveform in 18 ms (55.6 waveforms/s).2

The surrogate model reconstructs waveformsthrough interpolation of precomputed
numerical relativity data, making it computationally lightweight and efficient within
its training domain. In contrast, the transformer performs autoregressive sequence
forecasting based on learned dynamics of strong-field spacetime evolution, enabling it to
generalize beyond the training distribution.While this introduces greater computational
complexity per forecast, it also allows the transformer to adapt to previously unseen
input conditions. The transformer additionally benefits from GPU-optimized tensor
operations and efficient batch processing, whereas the surrogate is more memory-bound
and exhibits diminishing returns when parallelized beyond core saturation.

3. Results

We evaluated the predictive accuracy of our transformer-based sequence modelon a
test set comprising 840,000 waveforms spanning the fullextent of the targeted signal

1For the surrogate, performance remained consistent for waveform start times as early as -12000M,
consistent with prior benchmarks [38].

2Assuming ideal parallel scaling on one Delta node consisting of AMD EPYC 7763 “Milan”
processors with 64 cores and 4 NVIDIA A100 GPUs, these single-instance results suggest a maximum
throughput of approximately 422 waveforms per second for the surrogate using all 64 CPU cores, and
222 waveforms per second for the transformer using all 4 NVIDIA A100 GPUs.
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manifold. The accuracy of generated waveforms is quantified using the overlap metric,
O, which captures the normalized inner product between predicted and true waveforms,
maximized over a time shift:

O(h true , hpred) = max
t c

 
h⟨ true , hpred [tc]⟩p

h⟨ true , htrue h⟩⟨ pred [tc], hpred [tc]⟩

!
, (10)

where ·, ·⟨ ⟩ denotes the inner product over the complex-valued waveform time series,
and hpred [tc] represents a version of the predicted waveform shifted by tc. The overlap
O ∈ [−1, 1] serves as a surrogate for waveform similarity, with O = 1 indicating perfect
agreement.

3.1. Visual Inspection of Predictions

Figure 6 presents a small sample of model outputs across a range of parameter regimes,
compared to the surrogate-based ground truth.The figure includes: (i) two randomly
selected waveforms, (ii) one with relatively low overlap, and (iii) one at θ = π/2, where
h× = 0. These examples provide a visualreference for the range of prediction quality
observed across the dataset. For an interactive gallery of more predicted and true
waveforms, visit [29].

3.2. Overall Performance Across the Signal Manifold

Figure 7 (top panel) summarizes the distribution of overlap values across the surrogate-
based test set. The model demonstrates high predictive fidelity: no overlap value falls
below 0.85 across the full test set, fewer than 0.003% of waveforms yield overlaps below
0.90, and only 7.15% fall below 0.99, indicating that most predictions align closely with
the ground truth. The mean and median overlap values are 0.996 and 0.997, respectively,
reflecting high predictive accuracy across the test set.

3.3. Performance on Numerical Relativity Waveforms

We conducted an additional benchmark using numerical relativity waveforms from the
SXS catalog[39, 40, 41]. Specifically, we selected all available quasi-circular, non-
precessing black hole merger simulations, and reconstructed the full strain signal
(excluding memory modes) using all available sphericalharmonic modes. While our
model was trained only on a subset of modes (see section 2.1) and within a limited
parameter space (q ≤ 8 and |s z

{1,2}
| ≤ 0.8), the NR dataset spans a broader range

(including systems with q ≤ 15 and |s z
{1,2} | ≤ 1.0). We project each of the simulations

using a random inclination angle θ ∈ [0, π]. We retained only those waveforms that
extend to at least −5000M before merger to match the encoder input requirements,
leaving 521 waveforms.

Despite the mismatch in training domain and harmonic content, the model
generalizes reasonably well:we find a median overlap of O = 0.969 and a mean overlap
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Figure 6: True and predicted waveforms for selected (q, sz1, sz
2, θ) values. The first two

rows represent random samples, the third a predicted waveform with one of the lowest
overlap values in the test set, and the last a random sample with θ = π/2.

of O = 0.902 between the transformer predictions and the full NR waveforms. As
expected, these scores are lower than the surrogate-based test set, but remain high
given the broader parameter coverage.

We find that low-overlap outliers are broadly distributed across inclination angles,
but are absent near face-on or face-off configurations (θ ≈ 0 or π). Restricting to
systems within π/4 of those orientations raises the median overlap to 0.990; further
narrowing to π/8 yields a median of 0.998 and a minimum above 0.95—demonstrating
exceptional fidelity in detector-favorable regimes. Notably, at any inclination angle,
lower overlaps are not concentrated in out-of-distribution regions.
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Figure 7: Top panel: Histogram of overlaps. Bottom panels: Overlap O as a function
of merger parameters. Point opacity is inversely proportional to overlap value, with
overlaps close to 1 rendered fully transparent to highlight poor overlaps that might
otherwise be obscured.A slight random jitter has been added for the same reason.

For a baseline comparison to our transformer-based forecasting model, we consider
another machine learning model that reconstructs gravitational waveforms directly from
source parameters. While most machine learning models for gravitational waveforms
report performance on surrogate data or synthetic signals, few are evaluated directly
on full numerical relativity waveforms. One exception is NRSurNN3dq4 [42],a neural
network surrogate trained on the (2, 2) mode of aligned-spin, non-precessing BBH
waveforms with mass ratios up to q = 6 and dimensionless spin components ∈

[−0.99, 0.99], using the NRSur7dq4 surrogate [43].It was then fine-tuned and evaluated
on a filtered set of 381 SXS waveforms within the same parameter range, achieving
a mean overlap of 0.995 and a minimum overlap of 0.979 on a held-out NR test set.
Their model differs from ours in mode content, parameter space, and modeling objective
(parameter-to-waveform mapping versus time-series forecasting).

Our results suggest that the model retains considerable generalization capacity even
when applied to physical systems and mode structures beyond those it was explicitly
trained on.



Sequence modeling of higher-order wave modes of binary black hole mergers 17

3.4. Dependence on Physical Parameters

To examine how predictive accuracy on the surrogate-based test set varies across
the parameter space, we first visualize overlap scores as a function of key physical
parameters. The bottom panels of Figure 7 display two scatter plots: one mapping
overlap against mass ratio and inclination angle (q, θ), and the other against mass
ratio and effective spin (q, s z

eff). In both plots, point opacity is inversely scaled with
overlap value, making regions of lower reconstruction accuracy visually prominent.
These visualizations reveal several trends:

• Mass ratio (q): Degradations are observed at the edges of the parameter space
for q  {∼ 1, 8}.

• Inclination angle (θ): Reduced performance is localized near θ  {∼ 0, π/2},
corresponding to face-on and edge-on configurations, respectively.

• Effective Spin (szeff): Defined as

sz
eff =

qsz
1 + s z

2

1 + q
, (11)

a standard parameter used in gravitational-wave population modeling [44].Highly
anti-aligned spins (i.e., lower values of sz

1, the spin component of the primary black
hole) are associated with a reduction in reconstruction quality,with these regions
visible as distinctive green bands in the bottom right panel of Figure 7.

We provide additional results in Appendix A, where we study the behavior of the
transformer by partitioning the signal manifold into fixed spin slices across the (q, θ)
plane.

3.5. Importance of the h × Masking Mechanism

An important component of this model is the application of a conditional masking
mechanism that affects edge-on orientations where the cross polarization h × ≈ 0.
Ablation tests excluding this mechanism resulted in a decrease in average overlap
to 0.994, and a drop in minimum overlap to 0.585 on the surrogate-based test set.
These results underscore the importance of the h × mask for maintaining robustness
across observational scenarios.Excluding this conditional masking mechanism yields a
∼ 15% inference speedup,offering a trade-off that can be tuned based on application
requirements.

3.6. Exploratory Interpretability Studies

These analyses aim to identify which waveform features the model relies on most during
prediction. While interpretability results may reflect aspects of the input encoding or
architecture—such as symmetry,vanishing components,or decoder proximity—many
of the observed patterns align with known physical principles in gravitational wave
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modeling. The following studies should thus be viewed as indicative of learned model
behavior, with findings potentially offering insight into physically meaningful signal
properties.

3.6.1. Obfuscation Experiments To understand which regions of the waveform most
contribute to predictive performance, we conduct a systematic input obfuscation study.
In each test, we zero out a fixed segment of the encoder input—effectively masking that
region—and measure the resulting degradation in predictive performance.This allows
us to estimate the relative importance of each input interval.For a gallery of predicted
waveforms resulting from these obfuscation experiments, see [29].

Figure 8 illustrates the masking procedure:a segment of the encoder input (blue)
from t ∈ [−2000M, −1000M] is replaced with zeros (red), while the decoder target
(orange) remains unaltered.This setup ensures that any change in output quality can
be directly attributed to the missing input region.

0.2

0.0

0.2

h
+

Original Encoder Input

Masked Encoder Input

Decoder Target

5000 4000 3000 2000 1000 0
Time (M)

0.2

0.0

h
×

Figure 8: Example of obfuscation: a segment of the input waveform between t ∈

[−2000M, −1000M] is zeroed out before inference.

We tested the following obfuscated intervals:(−5000M, −4000M), (−4000M, −3000M),
(−3000M, −2000M), (−2000M, −1000M), (−1000M, −200M), and (−200M, −120M).
All segments are approximately 1000M long to allow fair comparison,except the final
one, (−200M, −120M), where we retain the last 20 timesteps to preserve continuity at
the encoder-decoder boundary.Though shorter, this segment lies near the prediction
start and, as later analysis shows,has an outsized effect on performance.This design
helps ensure that differences in outcome reflect learned importance rather than artifacts
of segment length.

To quantify performance degradation, we compute the overlap score O between
predicted and ground truth waveforms. Figure 9 summarizes the distribution of O



Sequence modeling of higher-order wave modes of binary black hole mergers 19

values across allobfuscation intervals. Unsurprisingly, early inspiral segments have an
overall limited impact on prediction quality, whereas regions approaching merger are
disproportionately influential. Masking the final 200M results in a decline in overlap
and an increase in variance,underscoring the role of late-time dynamics in informing
accurate reconstructions.

To probe how this sensitivity varies with physical parameters, we calculate the
Pearson correlation coefficient between the overlap drop (i.e., performance loss from
masking) and each system’s intrinsic properties:mass ratio q, spin components (sz1, sz

2),
and inclination angle θ. Since inclination effects are approximately symmetric around
θ = π/2, we use the transformed variable |θ − π/2| to better reflect this structure. The
resulting correlation matrix is shown in Figure 10. While correlation values provide
a coarse summary of parameter importance,they can obscure nonlinear relationships.
Appendix B shows binned overlap drops,revealing structure not captured by Pearson
correlation alone.

Figure 9: Distribution of overlap scores O for different obfuscated input intervals.Each
box shows the interquartile range, with the median marked by a central line.Whiskers
extend to 1.5× IQR, and outliers are shown as individual points.

The correlations reveal several noteworthy trends:

• Mass Ratio (q): A moderate negative correlation appears in the earliest segments,
suggesting that equal-massbinaries carry more predictive utility in the early
inspiral compared to asymmetric systems.While high mass-ratio systems exhibit
richer harmonic content due to enhanced subdominant modes, equal-mass systems
produce smoother, more symmetric signals dominated by the quadrupole mode
[45]. These smoother signals may be more readily captured and generalized by
the network in this regime. The features of asymmetric binaries become more
prominent, and more predictive, closer to merger, as reflected in the steadily
increasing match drop with q in later segments.
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• Spin of the More Massive Black Hole (sz
1): The correlation with overlap drop

is strongest in the final input segment (−200M, −120M), suggesting that the model
relies more heavily on late-time features when sz

1 is aligned with the orbital angular
momentum. This is in line with previous works which show that spin effects are
most prominent near merger, where relativistic velocities enhance spin–orbit and
spin–spin couplings. These contribute at higher post-Newtonian orders and thus
have limited influence during early inspiral. Near merger,high spins affect phase
evolution and waveform amplitude,as reflected in the amplitude’s dependence on
final spin and the emergence of spin-driven multipolar radiation [46, 47].

• Spin of the Less Massive Black Hole (sz
2): Correlations with s z

2 are weak
across all intervals, indicating a diffuse and relatively minor influence on waveform
morphology.This is consistent with post-Newtonian predictions that attribute only
a minor role in phase evolution to the spin of the smaller object [48].

Figure 10: Correlation matrix showing how waveform parameters correlate with the
drop in overlap when different parts of the input are obfuscated.Each row corresponds
to a physical parameter:mass ratio q, spin components sz1 and sz

2, and the transformed
inclination |θ − π

2 |, which captures the approximately symmetric structure observed
around edge-on orientations.Each column corresponds to a time window in units of M.

• Inclination Angle (θ):The inclination angle exhibits nontrivial correlation even
in early inspiral segments,suggesting that the model leveragesamplitude and
polarization modulations induced by viewing geometry across long timescales.Such
modulations arise because inclination affects how spherical harmonic modes project
onto the line of sight: face-on systems are dominated by the (2, 2) mode,while
edge-on systems excite a broader spectrum of harmonics.These geometric effects
alter signal morphology across the entire waveform, as noted in [49]. Notably,
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the match drop for edge-on binaries is near zero except in the final segments
(−1000M, −120M) (see Appendix B), likely due to the suppressed cross-polarization
component at θ ≈ π/2, which reduces the effect of masking rather than indicating
model disinterest. As such, low match drops near edge-on inclination should be
interpreted with caution, as they may reflect vanishing waveform content rather
than reduced importance.

Overall, these results offer quantitative insight into the localized importance of
waveform features across time.Across all binary configurations, aligned-spin systems
(i.e., systems where the primary black hole’s spin is aligned with the orbital angular
momentum) and those with large θ ≈ π are among the best resolved by the model
and exhibit the highest information content in the late inspiral, as revealed by our
obfuscation studies. In contrast, systems with anti-aligned primary spin or those with
θ ≈ 0 carry less predictive information in the final input segments and correspond to
regions of degraded performance.These patterns suggest a possible relationship between
the informational richness of the late inspiral and the model’s reconstruction accuracy:
systems where specifically the late-time waveform evolution is more informative tend to
be more successfully forecasted.

3.6.2. Mode Modified Datasets To evaluate the contribution of higher-order
gravitational wave modes to modelaccuracy,we constructed two additional test sets
with truncated mode content. The first includes only modes up to ℓmax = 3, while the
second is limited to ℓmax = 2. These reduced-mode datasets are generated using the same
procedure and cover the same temporal domain as the full dataset, t ∈ [−5000M, 130M],
but exclude subdominant modes. Unlike in the obfuscation experiments, the ground
truth here is adjusted to match the ablated input. This ensures that performance
differences reflect the absence of subdominant modes rather than inconsistencies between
input and target.

For each dataset, we compute the overlap score O between model predictions and
the corresponding reduced-mode ground truth. Summary statistics are presented in
Table 1. As anticipated, the full-mode dataset, ℓmax = 4, yields the highest mean and
median overlaps and the lowest standard deviation, whereas reducing mode content
progressively decreases accuracy and increases variance.

Table 1: Overlap statistics for different mode cutoffs.

Dataset Mean O Median O Std
ℓmax = 2 0.9687 0.9890 0.0575
ℓmax = 3 0.9864 0.9938 0.0226
ℓmax = 4 (Full) 0.9959 0.9974 0.0052

To understand where these discrepancies originate,we analyze the performance
drop relative to the full-mode dataset as a function of intrinsic binary parameters.
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Figure 11 displays the loss in overlap for each reduced-mode variant across mass ratio
q, the aligned spin of the heavier black hole sz1, and inclination angle θ.

Figure 11: Each point compares either O (ℓmax = 2) − O (ℓ max = 4) or O (ℓ max = 3) −
O (ℓmax = 4) as a function of binary parameters. The inclusion of higher order modes
improves forecasting accuracy for binaries with large mass ratios, low spin values of the
heavier black hole, sz1, and edge-on orientations.

Our analysis reveals that higher-order modes improve accuracy in three specific
regimes:

• High Mass Ratio (q ≳ 4): The exclusion of higher modes leads to significant
overlap loss, particularly when reducing to ℓmax = 2. This aligns with the increased
contribution of subdominant harmonics in asymmetric mergers. As mass ratio
deviates from 1, symmetry suppression of odd-m and higher-ℓ modes weakens, and
subdominant modes grow in significance. Mode truncation most affects high-q
systems, where the (2, 2) mode no longer dominates [45].

• Anti-Aligned Primary Spin (sz
1 < 0): Systems where the primary black hole’s

spin is strongly anti-aligned with the orbital angular momentum show somewhat
increased sensitivity to mode reduction, particularly in a small subset of cases
with s z

1 ≪ 0 when excluding ℓ > 3. This trend is modest, and further analysis
indicates it does not strongly correlate with spin–spin alignment or with effective
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spin. The increased mode sensitivity may instead reflect a compensatory role of
subdominant harmonics in systems with retrograde alignment, which are known to
exhibit distinct merger dynamics and reduced inspiral duration compared to aligned
configurations [50, 51].

• Edge-On Orientations (θ ≈ π/2): Orientation effects are especially pronounced
in the transition from ℓmax = 4 to ℓ max = 3, but not between ℓmax = 3 and ℓmax = 2.
This suggests that modes with 3 < ℓ ≤ 4 encode angular structure essential for
modeling polarization and amplitude variations in edge-on configurations. For
such orientations, the dominant (2, 2) mode contributes less power along the line
of sight, while subdominant modes project more strongly. As a result, neglecting
higher-order modes leads to the largest mismatches in edge-on cases, where accurate
waveform modeling requires their inclusion [49].

In contrast, the spin of the lighter black hole sz
2 continues to play a secondary role

across allmode configurations. The consistently weak dependence on sz
2 suggests that

the model captures its influence through more global, lower-order features.
Overall, these results confirm that including higher-order modes improves model

fidelity, particularly in regimes where subdominant harmonics contribute significantly
to the waveform structure. Systems where higher-order modes are essential—such
as high mass-ratio, edge-on mergers—exhibit both high sensitivity to mode removal
and reduced baseline performance,suggesting that dependence on subdominant mode
content correlates with reconstruction difficulty, likely due to the increased structural
complexity and reduced dominance of the quadrupole mode in these regimes. The
model’s sensitivity to angular effects and binary asymmetries further highlights the
value of full mode content for achieving robust and generalizable predictions.

3.7. Attention Plots

In Figure 12, we provide visualizations of the attention weights derived from the two
decoder attention modules.While primarily qualitative, these visualizations help form
an intuitive understanding of how the attention mechanism operates across different
input waveforms and attention heads.

As detailed in the model section, the attention weights are computed using the
dot product of queries and keys,QK T , which measures the similarity between them.
The softmax function then transforms these similarities into a probability distribution,
resulting in a matrix of attention weights with shape Rn dec ×n enc in the case of the cross-
attention module, or with shape Rn dec ×n dec in the case of the self-attention module.These
weights are used to weigh the contribution of the values V for the next representation.

In both cross- and self-attention plots, we include the corresponding input sequences
alongside the x- and y-axes to help visualize the model’s focus.For self-attention, the
plotted decoder input sequence represents both queries (x-axis) and keys (y-axis).For
cross-attention, the plotted decoder input sequence corresponds to the queries (x-axis),
while the encoder input sequence represents the keys (y-axis).Although the attention
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Figure 12: Visualization of self-attention (left) and cross-attention (right) weights for a
random choice of attention head and input waveform.The raw attention weights have
been transposed to obtain the visual representation achieved here.To aid visualization,
the corresponding input sequences have been plotted alongside the axes.

modules operate on embeddings or intermediate representations rather than the raw
sequences shown,the plotted sequences provide a usefulreference for interpreting the
attention patterns. Note that each decoder timestep tdec in the cross-attention plot (i.e.,
each column in the transposed weight matrix corresponding to some decoder timestep
tdec) contains contextual information about how each encoder timestep relates to the
current decoder timestep, which is needed for the transformer to make the t dec + 1
prediction in the decoder output. Due to the softmax operation, all values in each
column sum up to 1.

The self-attention heatmap illustrates how each position in the decoder sequence
attends to all other positions in the same sequence.For the self-attention mechanism in
the decoder, each timestep can attend to all timesteps up to and including itself, but not
to future timesteps, due to the causal attention mask.As a consequence of this property,
there are no nonzero elements below the diagonal of the transposed weight matrix.As
exemplified in Figure 12, the diagonal elements frequently tend to dominate in these
self-attention weight plots, indicating that local context is especially important to the
self-attention mechanism when making predictions.The cross-attention heatmap reveals
the model’s focus on different parts of the encoder output sequence while decoding each
position of the output sequence.The attention is more diffused than in the self-attention
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case, as the model is integrating information from a broader range of encoder timesteps
to inform each prediction in the decoder output.

Interactive visualizations of the attention patterns for selected waveformsare
available at [29] to support further qualitative inspection. However, we caution against
overinterpreting these attention plots as a reflection of the model’s reasoning. The
patterns tend to correlate closely with the amplitude structure of the input waveforms,
showing little abstraction or parameter-dependent structure across examples. These
findings are consistent with prior work indicating that attention weights do not
necessarily provide meaningful explanations for model behavior[52]. Accordingly,
we present these visualizations as diagnostic and instructive tools rather than
interpretability claims.

4. Discussion

This work demonstrates that transformer-based modelscan serve as fast, accurate
surrogates for gravitational waveforms with higher-order modes, enabling waveform
forecasting from quasi-circular, spinning, non-precessing binary black hole mergers
across the late inspiral,merger,and ringdown phases.The model was trained on over
14 million waveforms using distributed training across 16 NVIDIA A100 GPUs on the
Delta supercomputer, reaching convergence within 15 hours.Inference on 840,000 test
waveforms was conducted using a single NVIDIA V100 GPU on the HAL system, with
an average latency of 18 ms per waveform.

The model achieved high predictive accuracy across most ofthe signal manifold,
with mean and median overlap scores of0.996 and 0.997,respectively,and over 92%
of samples out of the surrogate-based test set exceeding an overlap of0.99. We also
found that the model’s conditional masking mechanism for the h× polarization preserved
accuracy in configurations where that signal component vanishes.

To assess generalization beyond the surrogate training domain,we benchmarked
the model against numerical relativity waveforms from the SXS catalog. Despite
including systems outside the training domain and additional harmonic content, the
model achieved a median overlap of 0.969, with low-overlap outliers scattered only
around θ = π/2, indicating strong performance even on high-fidelity, out-of-distribution
data. The high data-to-parameter ratio (40,000:1) and strong NR generalization suggest
the model avoids overfitting.

Further analysis revealed that the model relies heavily on late-inspiral information
in systems with high spin and mass asymmetry, while earlier inspiral features proved
more important for near-equal-massbinaries. The model also appears to extract
inclination angle-dependent structure well before merger.Mode truncation experiments
confirmed that higher-order modes significantly enhance accuracy, particularly in
systems with large mass ratios and edge-on orientations.

While the model performs well across most of the parameter space, further
improvement is needed for specific configurations, including low-mass-ratio, face-on



Sequence modeling of higher-order wave modes of binary black hole mergers 26

binaries and high-mass-ratio, edge-on mergers—cases in which waveform complexity
and amplitude suppression may challenge autoregressive modeling.These edge cases
represent a small fraction of the test set, with only 0.003% of waveforms yielding overlaps
below 0.90.

This work provides a starting point for future research into higher-order wave
modes, including those from spinning, precessing binary black hole mergers. This
broader signal manifold offers an opportunity to systematically explore the capabilities of
AI models and exascale computing in learning complex, nonlinear dynamics of compact
binary systems. These directions should be pursued in future work to further deepen
our understanding of gravitational wave signals.
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Appendix A. Fine-Grained Analysis via Spin Slices

Figure A1: Reconstruction accuracy across mass ratio,q, and inclination angle, θ, for
several fixed values of the effective spin parameter, sz

eff .

Figure A1 shows the test set partitioned into fixed-spin slices across the (q, θ)
plane for various values of effective spin, sz

eff . This stratified analysis reveals that
the transformer model consistently achieves high predictive accuracy for binaries with
strongly aligned or anti-aligned spins, i.e., szeff  ±∼ 0.8. Within these regimes, the model
performs robustly across a wide range of mass ratios and inclination angles.

However, at intermediate spin values—particularly around s z
eff ∼ 0—a localized

degradation in performance is observed. Specifically, reduced overlap values are
concentrated around systems with comparable mass ratios (q ∼ 1) and face-on
orientations (θ ∼ 0), suggesting a sensitivity of the model to configurations with low
intrinsic spin alignment and minimal inclination-induced modulation.

As s z
eff departs from zero in either direction, predictive accuracy systematically

improves across the (q, θ) slices, highlighting the model’s effectivenessin capturing
spin-modulated waveform features. Nonetheless,the model exhibits a consistent dip
in accuracy for edge-on binaries (θ  π/∼ 2), irrespective of spin, indicating a challenging
regime associated with vanishing cross polarization and potential waveform degeneracies.

Finally, while the model attains near-optimal performance for s z
eff  ±∼ 0.8, we

identify a narrow region of reduced accuracy at sz
eff  −∼ 0.8 for high-mass-ratio, edge-

on systems (q ∼ 8, θ  π/∼ 2). This subtle degradation suggests a complex interplay
between spin orientation, geometric projection effects, and mass asymmetry in these
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extreme regions of the parameter space.

Appendix B. Binned Overlap Drop by Parameter for Obfuscation Study

To complement the correlation analysis in section 3.6.1, we provide binned heatmaps of
the average overlap drop as a function of parameter value and obfuscated input range.
These plots offer a finer-grained view of parameter influence on predictions,allowing
us to assess possible nonlinear or symmetric effects that may be obscured by Pearson
correlation.

Figure B1 shows match drop by mass ratio q. Most input segments exhibit a
broadly monotonic increase in match drop with q, except in the (−1000M, −200M)
segment, where it decreases.Early segments show slight non-monotonicity, particularly
near q ≈ 1, explaining the low Pearson correlation in that region. Figure B2 displays
match drop by primary spin s z

1. The trend is mostly monotonic, with drop increasing
with spin. A deviation appears for sz1 < −0.5, where drop temporarily decreases.In the
(−1000M, −200M) segment, match drop instead decreases with spin.

Figure B1: Binned overlap drop by mass ratio q. Most input segments show a broadly
monotonic relationship, with match drop increasing for more asymmetric binaries
(with the exception of the (−1000M, −200M) range, where match drop decreases
monotonically with q). Some early segments display small deviations from this
monotonicity, particularly at low q. Notably, the low Pearson correlation observed
in the earliest segment is largely driven by this localized effect around q ≈ 1.



Sequence modeling of higher-order wave modes of binary black hole mergers 29

Figure B2: Binned overlap drop by primary spin sz1. The overall trend is approximately
monotonic across the spin range, with match drop generally increasing with spin (except
in the (−1000M, −200M) range, where match drop decreaseswith spin). A slight
deviation from monotonicity is observed for very negative spin values (s z

1 < −0.5),
where match drop temporarily decreases before continuing the broader trend.

Figure B3 shows match drop by secondary spin sz2, which is relatively flat across
all bins. Figure B4 plots match drop by inclination angle θ. Most segments show a
symmetric dependence around θ ≈ π/2, justifying the use of |θ − π/2| in the main
analysis. In the final segment, this symmetry breaks slightly, with drop increasing
toward higher inclination.

Figure B3: Binned overlap drop by secondary spin sz2. The overlap drop is relatively
flat across all bins (i.e., within each column).
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Figure B4: Binned overlap drop by inclination angle θ. Most time segments show a
roughly symmetric dependence around θ ≈ π/2, motivating the use of the transformed
variable |θ − π/2| in the main analysis. In the final segment (−200M, −120M), this
symmetry breaks down slightly, with match drop increasing toward higher inclination
angles.
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Data availability statement

We produced training, validation and test datasets using the numerical relativity
surrogate model NRHybSur3dq8 [21],which is available at the following URL/DOI:
https://github.com/sxs-collaboration/gwsurrogate/tree/master. Additionally,
we benchmarked the model’s predictions against waveforms from the SXS catalog of full
numerical relativity simulations, available at [41].

Code availability

The scientific software to reproduce our results,including trained transformer models,
and a tutorial for their use is available on GitHub [29].
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