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Abstract. We present a novel machine learning (ML) method to accelerate
conservative-to-primitive inversion, focusing on hybrid piecewise polytropic and
tabulated equations of state. Traditional root-finding techniques are computationally
expensive, particularly for large-scale relativistic hydrodynamics simulations. To
address this, we employ feedforward neural networks (NNC2PS and NNC2PLjained

in PyTorch and optimized for GPU inference using NVIDIA TensorRT, achieving
significant speedups with minimal accuracy loss. The NNC2PS modeichieves L; and
L errors of 4.54x107 and 3.44x10°°, respectively, while the NNC2PL model exhibits
even lower error values. TensorRT optimization with mixed-precision deployment
substantially accelerates performance compared to traditional root-finding methods.
Specifically, the mixed-precision TensorRT engine for NNC2PS achieves inference speeds
approximately 400 times faster than a traditional single-threaded CPU implementation
for a dataset size of 1,000,000 points. Ideal parallelization across an entire compute
node in the Delta supercomputer (Dual AMD 64 core 2.45 GHz Milan processors; and 8
NVIDIA A100 GPUs with 40 GB HBM2 RAM and NVLink) predicts a 25-fold speedup
for TensorRT over an optimally-parallelized numerical method when processing 8
million data points. Moreover, the ML method exhibits  sub-linear scaling with
increasing dataset sizes.We release the scientific software developed, enabling further
validation and extension of our findings. This work underscores the potential of ML,
combined with GPU optimization and model quantization, to accelerate conservative-
to-primitive inversion in relativistic hydrodynamics simulations.

1. Introduction

In numerical relativity, accurately modeling astrophysical systems such as neutron star
mergers [1-14] relies on solving the equations of relativistic hydrodynamics, which
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involve the inversion of conservative-to-primitive (C2P) variable relations [15-17This
process typically requires computationally expensive root-finding algorithms, such as
Newton-Raphson methods, and interpolation of complex, multi-dimensional equations of
state (EOS) tables [18,19]These methods, while robust, incur significant computational
costs and can lead to inefficiencies, particularly in large-scale simulations, where up to
billions of C2P calls may be required per time step.

In view of these considerations, and taking into account the advent of GPU-based
exascale supercomputerssuch as Aurora and Frontier, and ongoing efforts to port
relativistic hydrodynamics software into GPUs [20-22], this work explores the use of
machine learning (ML) algorithms that leverage GPU-accelerated computing for C2P
conversion. CPU based algorithms for C2P conversion typically involve an iterative
non-linear root finder, for which the number of iterations required to achieve a given
target accuracy depends on the input data, resulting in different runtimes for different
points of numerical grid. This limits the potential to use SIMD (for CPUs) or SIMT
(for GPUs) parallelism, reducing the effective rate of conversion achievable using these
schemesA ML approach with its more predictable runtime and regular memory access
pattern may help alleviate these issuedndeed, this work is motivated by recent studies
that have explored the potential of ML to replace traditional root-finding approaches
for C2P inversion [23].Specifically, neural networks have shown promise in accelerating
the C2P inversion process while maintaining high accuracy [23]Building on this, the
present work introduces a novel approach that leverages ML to accelerate the recovery of
primitive variables from conserved variables in relativistic hydrodynamics simulations,
with particular focus on hybrid piecewise polytropic and tabulated EOS. These EOS
models provide more realistic descriptions of the dense interior of neutron stars, yet
their complexity makes the traditional C2P procedure very computationally expensive.

To help address these computational challenges, we present a suite of feedforward
neural networks trained to directly map conserved variables to primitive variables,
bypassing the need for traditional iterative solvers. In particular, we employ a hybrid
approach, utilizing the flexibility of neural networks to handle the challenges posed by
complex EOS models.Our models are implemented using modern deep learning tools,
such as PyTorch,and optimized for GPU inference with NVIDIA TensorRT [24, 25].
Through comprehensive performance benchmarking, we demonstrate that our approach
significantly outperforms traditional numerical methods in terms of speed, particularly
when using mixed-precision deployment on modern hardware accelerators like NVIDIA
A100 GPUs in the Delta supercomputer.

We evaluate the scalability of our ML models by comparing their inference
performance against a single-threaded CPU implementation of a traditional numerical
method from the RePrimAnd library [26]. The benchmark was conducted on a Delta
supercomputer compute node, featuring dual AMD 64-core 2.45 GHz Milan processors, 8
NVIDIA A100 GPUs (40 GB HBM2 RAM), and NVLink. For dataset sizes ranging from
25,000 to 1,000,000 pointsthe numerical method exhibited linear scaling of inference
time. In contrast, TensorRT-optimized and TorchScript-based neural networks achieved
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substantially faster inference, typically demonstrating sub-linear scalingVe investigate

two feedforward neural network architectures: a smaller network (NNC2PS)and a
larger one (NNC2PL)Notably, mixed-precision TensorRT engines delivered impressive
performance, with the NNC2PS engine processing 1,000,000 points in 8.54 ms, compared
to 3,490 ms for the numerical method. Ideal parallelization across the entire node (64
CPU cores that support up to 128 threads, and 8 GPUs) suggests a 25-fold speedup

for TensorRT over the optimally parallelized numerical method when processing 8
million points. These results demonstrate the scalability and efficiency of our ML-based
methods, offering significant improvements for high-throughput numerical relativistic
hydrodynamics simulations.

This article is structured as followsSection 2 introduces the EOS considered in this
study, along with the methodologies employed for designingtraining, validating, and
testing the ML models. In Section 3, we present our key results, including an assessment
of the accuracy of the ML models across different model types and quantization schemes.
Additionally, we provide a comparison of the computational performance of the ML
models relative to traditional root-finding methods. Finally, Section 4 offers a summary
of the findings and outlines potential avenues for future research.

2. Methods

We present a ML-based model with the potential to accelerate recovery of primitive
variables from conserved variables in general relativistic hydrodynamics (GRHD)
simulations, specifically focusing on scenarios employing hybrid piecewise polytropic
EOS, and tabulated EOS. As in traditional approaches, this conversion requires inverting
the conservative-to-primitive map, a process often reliant on computationally expensive
root-finding algorithms. While previous work has demonstrated the success of machine
learning for this task with the '-law EOS [23],  here we investigate its application
to hybrid piecewise polytropic EOS, which offers a more realistic representation of
neutron star interiors, as well as the tabulated EOS, which incorporate current nuclear
physics modelof neutron matter. To evaluate the performance of our neuralnetwork,
we use a traditional CPU-based root-finding algorithm (provided by the RePrimAnd
library) as a baseline for comparison.Our aim is to demonstrate the speed advantages
of the neural network approach for conservative-to-primitive variable conversion Our
network is implemented using PyTorch, and the inference speed tests are performed
using libtorch and NVIDIA TensorRT’s C++ API.

In general relativity, the equations of relativistic hydrodynamics can be expressed
in a conservation form suitable for numerical implementation. Specifically, in a flat
spacetime, they constitute the following first-order, flux-conservative hyperbolic system:

J1 9 yu_ 9 =gFu)
=g  0x0 OX1

=0, (1)

where g = det(gw ) is the metric determinant, and y = det(y ) is the determinant of the
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three-metric induced on each spacelike hypersurfac&éhe state vector of the conserved
variables is u = (D, 8§, 1), and the flux vector is given by
F = Dv’—%,sj v’—% +pd;> Iv’—% +pv' . (2)

where «a is the lapse function and 8 the spacelike shift vector:two kinematic variables
describing the evolution of spacelike foliations in spacetime as in a typical 3 + 1 (ADM)
formulation.

The five quantities satisfying Eq. 1, all measured by an Eulerian observer sitting at
a spacelike hypersurface, are the relativistic rest-mass density, D, the three components
of the momentum density, §, and the energy density relative to the rest mass density,
1=E — D, respectively. These are related to the primitive variables; rest-mass density,
p, three-velocity, vi, specific internal energy, €, and pressure, p through

D =pW,
Sj = phW v, (3)
T =phw 2-p-D,

where W =1/ P 1 —yi V'V, is the Lorentz factor, and h =1 + ¢ + p/p is the specific
enthalpy.

Incorporating the EOS into the picture provides the thermodynamical information
linking the pressure to the fluid’s rest-mass density, and internal energy, which combined
with the definitions above, closes the system of equations given in Eq. 1 [27-29].

We will first focus on the hybrid piecewise polytropic EOS. The hybrid piecewise
polytropic EOS was introduced for simplified simulations of stellar collapse to model the
stiffening of the nuclear EOS at nuclear density, and include thermal pressure during
the postbounce phase [30]In gravitational-wave science, it is more commonly used as
described in Read et al. [31], where it enables gravitational-wave parameter estimation
and waveform modeling by effectively capturing macroscopic neutron star observables
with minimal parameters. The structure of this EOS consists of multiple cold
polytropes, defined by parameters Ko» K4 *» Kiggments—1 @nd o, Ty, - - -, Msegments—1,
where nsegments denotes the total number of segments. Additionally, it includes a
thermal I'-law component characterized by y,. Continuity of pressure and internal
energy across segments, in accordance with the first law of thermodynamics, is ensured
after appropriately setting initial values for the polytropic indices, density breakpoints
(denoted poreaks), and other relevant parameters.In this context, pressure and specific
internal energy components in each density interval are given by

pcold =K ipri’

Ki e
€old =ai + ﬁp ) (4)
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Prn =t — 1)p(e — €cold),
D =pwn +Ppcod

where ai is segment-specific constantand the rest mass density,p, is assumed to fall
into the segments specified by each of,paxs.

In addition to the hybrid piecewise polytropic EOS-based model, we will train
a separate network to infer the conservative-to-primitive transformation utilizing the
tabulated EOS data.  Specifically, we will use the Lattimer-Swesty EOS with a
compressibility parameter K = 220 (hereafter will be referred to as,LS220 EOS),due
to its prevalence and historical significanceOur training dataset is based on a modern,
updated version of LS220 EOS constructed and made available by Schneider, Roberts,
and Ott in a more recent study [32].

Below, we outline the dataset preparation, model architecture, training process,
and methods used in inference speed testing with libtorch and NVIDIA TensorRT to
evaluate computational efficiency.

2.1. Data

2.1.1. Piecewise Polytropic EOS Based Model Data \Ne generate a dataset of 500,000

samples using geometrized units where G = c = M = 1. Without loss of generality, we
furthermore use a Minkoswki metric g = diag(-1, +1, +1, +1). The rest-mass density,
p, is sampled uniformly from [2x10°, 2x1073], and the fluid’s three-velocity is assumed
one-dimensionalalong the x-axis, sampled uniformly fromvx (0, 0.721). Following
Ref. [31], we use an SLy four-segment piecewise polytropic EOS with segment-wise
polytropic indices ' = [1.3569, 3.0050, 2.9880, 2.8510]The first segment’s polytropic
constant, K, is set to 8.9493 x 10 2. Subsequentpolytropic constants, K;, are
determined by enforcing pressure continuity. Similarly, the first segment’s constant,
a,, is set to zero, while subsequent a values ensure continuity of internalenergy. The
density breaks for the segments are specified at p = 2.3674 x 10 4, 8.1147 x 104,
and 1.6191 x 103, The thermal component has an adiabatic index of 'y, = 5/3.
Additionally, the thermal component of the specific internal energy, €, is sampled
uniformly from [0, 2]. A structured dataset is then constructed by converting the
primitive variables to conserved variables using the standard relativistic hydrodynamic
relations given in Eq. 3. In this dataset, conserved variables serve as input features,
and the pressure is the target variableThe resulting dataset is then split into training,
validation, and test sets, with each set fully standardized to zero mean and unit variance
to ensure equal contribution of all features during neural network training (Fig. 1).

2.1.2. Tabulated EOS Based Model Data To generate the training data for the
tabulated EOS-based model, we sample from a provided EOS table and follow a
procedure similar to the one described in Section 2.1.We begin by reading in the EOS
table, which contains the variables electron fraction (Ye), temperature (T ), rest-mass
density (p), specific internal energy (€), and pressure (p). These quantities are stored
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Figure 1. Visualization of the thermodynamic relations based on the complete
training data generated for the four-segment piecewise polytropic EOS-based model.
From left to right: pressure (p) vs. rest-mass density (p), specific internal energy (¢)
vs. rest-mass density (p), and specific enthalpy (h) vs. rest-mass density (p). All
quantities are plotted on a logarithmic scale. The distinct segments of the piecewise
polytropic EOS are delineated by the red vertical lines.

in logarithmic form in the table and are extracted accordingly. For each data point, a
random one-dimensioalthree-velocity, Vx, is sampled from the interval (0, 0.721),and
values are randomly chosen for electron fraction, temperature, and density from among
the tabulated values. Using these, the corresponding values ofp, €, and p are then
fetched from the EOS table. The primitive variables are then converted into conserved
variables using standard relativistic hydrodynamics relations given in Eq. 3. A total

of 1,000,000 datapoints are generated using this process[33]. Similar to the hybrid
piecewise polytropic EOS-based modelthe data is split into training, validation, and
test sets, with each set fully standardized to zero mean and unit variance before being
used for neural network training.

2.2. Model architecture

2.2.1. Piecewise Polytropic EOS Based Model For the hybrid piecewise po|ytropic

EOS-based model, we tested two feedforward neural networks of varying complexity to
represent the conservative-to-primitive variable transformation Each network takes as
input the three conserved variables (D,x§ 1) (Eq. 3) and outputs the pressure p (Eq. 4),
assuming the remaining momentum density components are zero for simplicity After
experimenting with multiple multi-layer perceptron (MLP) architectures, we identified
two models that offered a good balance between accuracy, speed, and trainabilifihe
smaller model, NNC2PSgatures two hidden layers with 600 and 200 neurons, while
the larger model, NNC2PL, contains five hidden layers with 102812, 256, 128, and 64
neurons (Fig 2).

ReLU activation functions were applied to the hidden layers to introduce
nonlinearity, with the output layer kept linear. We found these models strike an effective
balance between complexity and performance, making them well-suited for our task.
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2.2.2. Tabulated EOS Based Model  For the tabulated EOS-based model, we use a
single feedforward neural network, NNC2P Tabulated, to achieve an inherently equivalent
task with minor  differences. This model takes as input the log-scaled variables
(log D, log &, log 7, log ¥) and outputs the log-scaled pressurelog p (Eq. 4), assuming
S, and S, are zero for simplicity as before. Using log-scaled inputs and outputs aligns
with the format of the tabulated EOS values, which are also stored in logarithmic form
to accommodate the typically large values of these physicafuantities. This approach
reduces the range of feature magnitudes, facilitating more stable learning dynamics and
better alignment with the source data.

We explored several MLP architectures, varying in parameters, layers, and training
strategies, to identify an optimal  design for our task. Among these, a structure
resembling NNC2PUdetailed in Section 2.2.1 above,emerged as a robust choice.This
architecture effectively balanced capacity and efficiencyenabling accurate learning of
log-scaled pressure from tabulated EOS data (Fig. 2).

Input Linear Linear Output
(3) (600) (200) Q]
l:lgnlinearity: Nonlinearity:
RelLU RelLU
Input Linear Linear Linear Linear Linear Output
4) (1024) (512) (256) (128) (64) (1)

Nonlinearity: Nonlinearity: Nonlinearity: Nonlinearity: Nonlinearity:
ReLU ReLU ReLU RelLU ReLU

Figure 2. Architectures of the neural networks used for conservative-to-primitive
variable mapping. Top: The NNC2PS network takes conserved variables DSx, and
T as input and outputs the pressure p. Bottom: The NNC2P Tabulated network uses
the logarithm of conserved variables log D, log Sx, and log t, along with the electron
fraction Ye, as input, outputting the logarithm of pressure log p. The NNC2PL network
(not shown) shares a similar architecture to NNC2P Tabulated but  with the same
input/output structure as NNC2PS.
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2.3. Training approach

We use a similar procedure to optimize all neural networks: NNC2PSNC2PLand
the tabulated baseline model, NNC2P Tabulated,with minor tweaks. Training was
performed on a single NVIDIA A100 GPU on the Delta clusteFor the hybrid piecewise
polytropic EOS-based models (NNC2PS and NNC2RAg, employed a custom, physics-
informed loss function that penalizes negative pressure predictionsThis loss function
is a modified mean-squared error:

1 X X
LO)= — (u6)-y)?+q- ReLU(-N ~'(3:(8))), (5)
i=1 i=1
where Ji(0) represents the network’s estimation for feature i, Vi is the corresponding
target value, ReLU is the familiar rectified linear unit defined by ReLU(x) = max(0, x),
and N ~'(-) represents an inverse normalization procedure based on the training data
statistics. The penalty factor, g, was optimized for each model, withg = 150 for
NNC2PS and q = 350 for NNC2PL. These values consistently suppressed negative pressure
predictions on the test set.  For the tabulated EOS model (NNC2P Tabulated),the
structure of the data precluded negative predictions, so a standard mean-squared error
loss function was used.

All models were trained using the Adam optimizer with an initial learning rate of
3 x 10*. A learning rate scheduler reduced the learning rate by a factor of 0.5 if the
validation loss failed to improve for five consecutive epochs NNC2PS and NNC2PL were
trained for 85 epochs, while NNC2P Tabulated required 250 epochker each epoch, the
model was set to training mode, and data was loaded in batches of 32 onto the GPU.
This batch size was chosen based on experimentation to balance the number of epochs
and overall time to convergenceWhile training with larger batches and multiple GPUs
(using PyTorch’s DataParallel module or other approaches) is possible, we found no
significant advantage regarding the total time to convergence and ultimately opted for
this simpler, more portable approach. For each batch, optimizer gradients were reset
before generating predictions, and the loss was computed using respective loss functions.
Backpropagation was then performed to update the model parameters.

After completing the training phase for each epoch, the model's performance is
evaluated on the validation dataset, accumulating the validation loss similarly to the
training loss. Both losses are normalized by the size of the respective datasets and stored
for further analysis, specifically for clues of potential overtraining.

2.4. Inference Speed Tests

In our inference speed tests, we evaluated two main approaches for efficient deployment:
a TorchScript model, and NVIDIA’s TensorRT optimized engines. These tests were
conducted to measure and compare inference speed under typical deployment conditions,
aiming to take advantage of the A100 GPU on Delta.
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2.4.1. TorchScript Deployment  To prepare models for inference with TorchScript, we
first saved a scripted version of the model, which is compatible with PyTorch’s JIT
compiler, optimizing runtime execution without modifying the model’s core structure.
TorchScript’s scripting provides some degree of optimization, enabling faster model
execution than standard PyTorch models but without the hardware-level optimizations
that TensorRT offers.

2.4.2. TensorRT Deployment  For TensorRT, we explored both FP32 (unquantized)
and FP16-quantized enginegyltimately deciding not to pursue INT8 quantization due

to accuracy degradation observed in initial tests. After extensive testing, we opted for
dynamic engine building with a batch size determined by the total size of the expected
dataset, as this approach provided the best balance between performance and flexibility
for our hardware and model structure. It must be noted that constructing an optimal
engine in TensorRT is a nuanced process, influenced by multiple factors including model
architecture, hardware specifications,intended batch sizes during inferenceand input
data. Therefore, achieving the best results often involves iterative tuning and profiling

to adapt the engine to the specific deployment environment and workload requirements.
Below, we summarize the overall engine-building process we followed in detail:

* Model Export to ONNX: First, we exported the PyTorch model to the ONNX
format. This conversion enables interoperability with TensorRT, which uses ONNX
as its primary model input format.

« TensorRT Engine Building: Using TensorRT’s Python API, we constructed
both FP32 and FP16 engineé logger was initialized for verbose logging to capture
potential issues during engine building. With the TensorRT Builder, we created
a network definition with explicit batch handling, which is essential for dynamic
batching configurations.

- Parsing and Validating the ONNX Model¥/e loaded the ONNX model into
TensorRT, where the OnnxParser validated and parsed the modeParsing errors,
if any, were logged for troubleshooting, ensuring a valid model structure before
optimization.

- Configuration and Optimization Profileshe BuilderConfig was set with
a 40 GB workspace memory limit, providing more than enough headroom for
dynamic batch sizes while maintaining stable performance We set up a dynamic
optimization profile specifying minimum, optimal, and maximum batch sizes within
10 per cent margin of our typical usage, granting flexibility to handle both smaller
and larger input volumes efficiently.

- Engine Serialization:Finally, we serialized and saved the engine, creating a
portable and optimized binary that can be loaded for deployment. This step
encapsulates the model’s architecture,weights, and optimizations, ensuring it is
ready for fast inference.
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Overall, the process of optimizing and saving models using both TorchScript and
TensorRT gave us insight into balancing flexibility, accuracy,and performance. For
larger batch sizes and greater computational demands, TensorRT’s dynamic engine
approach in FP16 is often more effective, even for models as simple as ours, while
TorchScript remains a reliable fallback and simpler alternative.

For the actual inference speed test procedure, we implemented two distinct
workflows on a single GPU for both approaches. The TorchScript-based approach
allowed for a straightforward configuration, primarily requiring the definition of batch
sizes and the pre-loading of data onto the GPU. It then used libtorch for efficient GPU
deployment and batch execution.

In contrast, the TensorRT-based approach demanded several additional configura-
tions. The model, after being converted into an optimized engine, was loaded using Ten-
sorRT’s C++ API. This included the manual pre-loading of input data into GPU memory
before execution, and was followed by manual setup of input and output buffers for Ten-
sorRT’s executeV2 function, and careful management of CUDA resourcesWhile this
setup was more involved, it leveraged hardware-specific optimizations to deliver sub-
stantial gains in inference speed.

3. Results
3.1. Accuracy

Table 1 summarizes the accuracy results basedonL 1 and L «~ error metrics for
each model variant—NNC2PSNNC2PLand NNC2P Tabulated—including both the
unquantized and quantized TensorRT engines built from them.

Table 1.Accuracy Results for All Models

Model L, Error Lo Error
NNC2PS (PyTorch) 454 x 107 3.44 x 10°
NNC2PS (TensorRT) 454 x 107 3.43 x 108
NNC2PS (TensorRT-FP16) 6.39 x 107 8.98 x 10°
NNC2PL (PyTorch) 275 x 107 2.61 x 10°
NNC2PL (TensorRT) 2.88 x 107 2.69 x 10°
NNC2PL (TensorRT-FP16) 532 x 107 9.84 x 10°
NNC2P Tabulated (PyTorch) 8.02 x 10% 3.54 x 10
NNC2P Tabulated (TensorRT) 8.16 x 10° 3.45 x 10"
NNC2P Tabulated (TensorRT-FP16)1.38 x 102 7.44 x 10"

The NNC2PS modelrained in PyTorch achieves very high accuracy withan L 4
error of 4.54 x 107 and an L error of 3.44 x 10%. When the model is converted to a
TensorRT engine, the accuracy remains nearly identical, with an lerror of 4.54 x 10’
and an L« error of 3.43 x 10°%, indicating minimal loss in precision due to TensorRT
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optimization. However,when FP16 quantization is applied,the error rates increase to
an Ly error of 6.39x107 and an L~ error of 8.98x10°%, revealing an obvious side-effect
of reduced precision.

The larger NNC2PL modelrather expectedly, achieveslower L, and L » errors
than NNC2PSwith an L 1 error of 2.75 x 107 and an L« error of 2.61 x 10°. The
corresponding TensorRT engine preserves this high levebf accuracy,showing only a
slight and negligible increase to an & error of 2.88 x 107 and L error of 2.69 x 10°
respectively. The FP16 quantized version, however, sees a notable rise in error metrics,
with an L 4 error of 5.32 x 107 and an L error of 9.84 x 10°¢.

The NNC2P Tabulated model exhibits an L error of 8.02 x 103 and an L« error
of 3.54 x 10. It should be noted that the apparent order-of-magnitude difference in its
accuracy does not indicate inferiority or failure of the model; in fact, it is the result of
the simple fact that this model is trained on a completely different dataset constructed
from the LS220 EOS table to estimate the logarithmic pressure valuesThe TensorRT
engine version also shows only a slight increase in4Lerror to 8.16 x 10°3. With FP16
quantization, the L error rises, again, more noticeably to 1.38 x 16.
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Figure 3. Relative error of the NNC2P Tabulated model for various Lorentz factors
(W) with Y . # 0.1. The plots highlight the accuracy trends across different regions of
the LS220 EOS table, showing larger relative errors in low-density and low-temperature
regions, reflecting the inherent complexities of the EOS in this region.This behavior is
consistent across the tested W values of 1.02, 1.1, 1.25, and 1.4 and is more pronounced
for the FP16 precision TensorRT engine.

Additionally, we examined the relative accuracy of the NNC2P Tabulated model
for parameters W= 1.02, 1.1, 1.25,and 1.4 with Y. ~ 0.1 (See Fig. 3). The relative
error, defined as the absolute error divided by the true value for each point in a specific
parameter set, was not uniform across the parameter space. Larger relative errors
were observed in the lowest density and temperature regions othe EOS table, while
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slightly smaller errors occurred in the high-temperature regions. This accuracy trend

was consistent across altested Lorentz factor (W) values and even more emphasized
for the FP16 precision TensorRT engine. The LS220 EQOS, as provided by [32],
transitions from detailed treatment at high densities to simplified approximations at

lower densities, which may contribute to these disparities. Low-density regions are
inherently challenging due to the dominance of thermal effects, non-uniform phase
transitions, and the treatment of nuclear matter surfaces, which can exacerbate modeling
errors [32,34].These characteristics likely explain the reduced accuracy in these regions,
where variations in the nuclear matter’s phase state are more pronounced.

The overall results show that TensorRT’s optimizations maintain accuracy across
models when using full precisiorfzP16 quantization, while accelerating inference (as will
be discussed further below), introduces higher error rates, particularly in certain models.
The potential trade-off between the inference speed and precision can be especially
important in relativistic hydrodynamics simulations, where the accuracy of small-scale
structures and wave propagation can critically impact the fidelity of predictions. For
such simulations, even slight deviations due to quantization can influence results, making
full-precision TensorRT inference particularly valuable when accuracy is paramount.
Conversely, FP16 quantization may be suitable for faster, lower-fidelity simulations where
minor accuracy trade-offs are acceptable.

3.2. Inference Speed Analysis

The inference performance ofvarious methods was evaluated using a single NVIDIA
A100 GPU for neural network models and a single-threaded CPU implementation of
the traditional numerical method from the RePrimAnd library. The CPUs used in this
study were dual AMD 64 core 2.45 GHz Milan processors on the Delta cluster,which
can support up to 128 threads. Each configuration was tested across five dataset sizes,
ranging from 25,000 to 1,000,000 data points, with ten inference runs conducted per
configuration to ensure result stability and consistency.

The numerical method exhibited linear scaling of inference time with respect to the
dataset size.In contrast, both TensorRT and TorchScript models generally maintained
relatively stable inference times across the dataset sizes. Notably, the full-precision
TensorRT engine for the smaller network, NNC2PSshowed a faster-than-expected
processing time at certain intermediate dataset sizes, as observed in Fig. 4(a). This
behavior may be attributed to favorable thread block utilization and the kernel selection
mechanism of TensorRT for this particular network sizé\ more detailed profiling study
is needed to fully elucidate the underlying causeThe accuracy characteristics of these
models remained consistent, as indicated in Table 1.

The numerical method required significantly more time than the neural network-
based approachesOn average, the numerical method took 103.8 ms to process 25,000
data points, with runtime scaling almost linearly to 3,490 ms for 1,000,000 data points.
In contrast, the neural network models demonstrated substantially faster inference
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Figure 4. Ideal scaling comparison of various C2P inversion methods under the
assumption of perfect parallelization. (a) Projected inference time as a function of
dataset size for a traditional numerical solver (RePrimAnd utilizing 128 CPU threads
on a single node of the Delta cluster) and two neural network models (NNC2PS and
NNC2PL) using TensorRT (FP32 and FP16 precision) and TorchScript across 8 NVIDIA
A100 GPUs. (b) Projected inference speed comparison for a dataset of 8 million points,
highlighting the significant  scalability and efficiency gains achieved by TensorRT
engines, particularly with FP16 optimization. = The mixed-precision TensorRT engine
for NNC2PS achieves approximately a 25-fold reduction in processing time compared
to the numerical method, showcasing the potential for TensorRT-based methods to
convincingly outperform traditional numerical solvers at scale.

times. Specifically, the mixed-precision TensorRT engine built from NNC2PS required
7.92 ms for 25,000 data points and 8.54 ms for 1,000,000 data pointsts full-precision
counterpart exhibited similar performance, with runtimes of 25.17 ms for 25,000 data
points and 21.06 ms for 1,000,000 data points.The TorchScript variant showed slower
performance, but still maintained sub-linear scaling, with runtimes averaging 72.79 ms
for 25,000 points and 101.74 ms for 1,000,000 points.

A similar trend was observed for the NNC2PL models,with TensorRT engines
consistently outperforming their TorchScript counterparts. The mixed-precision
TensorRT engine for NNC2PL processed 25,000 data points in 8.32 ms and 1,000,000
points in 14.35 ms. In comparison, the full-precision TensorRT engine required 25.85
ms for 25,000 points and 23.87 ms for 1,000,000 poirftee TorchScript model averaged
73.18 ms for 25,000 points and 102.04 ms for 1,000,000 points.

Figure 4 presents the ideal scaling achieved under the assumption of perfect
parallelization, providing a theoretical performance benchmark.This scenario assumes
optimal workload distribution, minimal communication overhead, and negligible
synchronization delays representing the upper bound of scalability. For the numerical
method, the figure reflects the full computational capacity of a single CPU node on
the Delta cluster, utilizing 128 threads. For the neural networks, it represents the
use of 8 A100 GPUs within a single GPU node.  Under these ideal conditions, the
processing time of the numerical method per data point is projected to decrease by
a factor of 128, allowing for the processing of 8 million points in approximately 218
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ms (Fig. 4(b)). Similarly, all neural network methods are expected to achieve linear
inference scaling with similar per-GPU efficiencyUnder this scenario, TensorRT-based
methods—particularly the mixed-precision engine for NNC2PS—show a 25-fold reduction
in processing time for 8 million points compared to the numerical method running at full
capacity on the CPU node. Furthermore, the scaling trend strongly favors TensorRT

for even larger datasets.

The results presented above underscore the substantial performance gains
achievable through the use of TensorRT-optimized neural networks, particularly in the
context of conservative-to-primitive inversion in relativistic hydrodynamics simulations.
By leveraging the parallel processing powerof modern GPUs, these methods offer
significant speedups compared to traditional CPU-based numericalapproaches,even
in large-scale simulations involving millions of data pointsAs demonstrated, TensorRT
optimizations enable more efficient and scalable solutions, with the potential to
dramatically reduce the computational cost of C2P operationg.his work highlights the
clear advantage of integrating ML-driven methods with GPU acceleration to address the
computational challenges of high-throughput simulationd4oving forward, the next step
is to incorporate these optimized approaches into full-scale hydrodynamics simulations,
where their impact on both performance and scalability can be fully realized.

4. Conclusions

This work introduces a novel ML-driven method for accelerating C2P inversions in
relativistic hydrodynamics simulations, with a focus on hybrid piecewise polytropic and
tabulated equations of state. By employing feedforward neural networks optimized
with TensorRT, we achieve substantial performance improvementsover traditional
CPU solvers, offering a compelling alternative to computationally expensive iterative
methods, while maintaining high accuracyOur results demonstrate that the TensorRT-
optimized neural networks can process large datasets significantly fastegchieving up
to 25 times the inference speed of traditional methods.

Future work will explore several key directions to refine and expand this approach.
First, adapting the models to handle a broader range of equations of state will
improve the versatility of this method across different simulation contexts. Second,
exploring alternative network architectures could further enhance both accuracy and
inference speedAdditionally, continued optimization of TensorRT, including advanced
parallelization strategies and scaling across multiple GPUs, promises even greater
reductions in computational time, enabling simulations of larger and more complex
astrophysical systemsThese improvements will be critical for advancing high-resolution
simulations in numerical relativistic hydrodynamics.

We believe that ML-driven methods, particularly those incorporating TensorRT
optimization, will play an essential role in advancing the field of generalrelativistic
hydrodynamics and numericalrelativity more broadly. To facilitate further validation
and extension of these findings, we have made the software developed for this study
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publicly available at the following GitHub repository [35].
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Code availability

The code needed to reproduce the results presented in this manuscript is available at
the following GitHub repository [35].
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