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Abstract
Large Language Models (LLMs) are reshaping many aspects of materials science and chemistry

research, enabling advances in molecular property prediction, materials design, scientific automation,
knowledge extraction, and more. Recent developments demonstrate that the latest class of models are
able to integrate structured and unstructured data, assist in hypothesis generation, and streamline re-
search workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review
applications of LLMs through 34 total projects developed during the second annual Large Language
Model Hackathon for Applications in Materials Science and Chemistry, a global hybrid event. These
projects spanned seven key research areas:(1) molecular and material property prediction, (2) molecular
and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5)
research data management and automation, (6) hypothesis generation and evaluation, and (7) knowl-
edge extraction and reasoning from the scientific literature. Collectively, these applications illustrate
how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools,
and much more. In particular, improvements in both open source and proprietary LLM performance
through the addition of reasoning, additional training data, and new techniques have expanded effective-
ness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve,
their integration into scientific workflows presents both new opportunities and new challenges, requiring
ongoing exploration, continued refinement, and further research to address reliability, interpretability,
and reproducibility.

Introduction
The integration of large language models (LLMs) into scientific workflows is reshaping how researchers ap-
proach data-driven discovery, automation, and even scientific reasoning and hypothesis generation [ 1, 2, 3, 4].
In chemistry and materials science, fields characterized by complex data modalities, heterogeneous data
formats, sparse experimental datasets, and fragmented knowledge ecosystems, LLMs are emerging as versa-
tile tools capable of bridging gaps between computational methods, experimental data, literature and text
sources, and domain expertise [5, 6, 7, 8, 9, 10, 11, 12].Early applications have already demonstrated poten-
tial applicability in tasks ranging from molecular property prediction [13, 14, 15] to automated laboratory
workflows [16, 17] and development of novel user interfaces [18, 19]. As illustrated in Figure 1, we note
that there is a significant opportunity for these broad new capabilities to be incorporated throughout the
scientific research lifecycle; from initial ideation through experimental execution to communication, learning,
and further iteration.

However, the rapidity of change and the nearly constant release of models with higher performance,
lower cost, and wider application spaces, and release of other platform capabilities (e.g., agentic tools, deep
research modalities) make it challenging to keep pace, necessitating a collaborative and interdisciplinary effort
to identify high-impact use cases, address specific limitations, and prototype applications to catalyze deeper
study [20, 21, 22, 23, 24, 25, 26]. Towards this goal, we believe that accessing the wisdom of the crowd
via science hackathons provides a powerful, and dynamic framework for fostering collaboration building,
knowledge exchange,innovation, and incentivizing the rapid problem-solving and exploration needed to
realize the benefit of these new models for scientific discovery in materials science and chemistry [ 27, 28, 29,
30].

In this work, we describe and analyze select applications developed as part of the second Large Language
Model Hackathon for Applications in Materials Science and Chemistry [30], detailing the broad classes
of problems addressed by teams and highlighting trends in the approaches taken. We categorize the 34
submissions into seven key research areas and provide an overview of team contributions with highlights
drawn from exemplar projects in each research area.We also present a summary table containing team details
and code repository links for all submissions to offer a comprehensive view of the innovations demonstrated
during the event.

Finally, we discuss the broader conclusions of the hackathon, emphasizing its role in fostering interdisci-
plinary collaboration, accelerating the adoption of artificial intelligence (AI) in scientific research [ 27, 28, 29],
and identifying key challenges that require further investigation. By examining these contributions, we pro-
vide insight into how structured collaborative frameworks can drive the systematic integration of LLMs into
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chemistry and materials science to accelerate research, improve researcher efficiency, and shape the future of
AI-driven discovery.

Overview of Submissions
The hackathon resulted in 34 team submissions (with 32 submissions providing detailed descriptions), cov-
ering a broad spectrum of materials science and chemistry applications. The submissions and links to the
respective source code repositories are listed in Table 1.We categorized projects based on their primary ob-
jectives, clustering them into seven key areas, forming a constellation of new capabilities across the research
lifecycle:

1. Molecular and MaterialProperty Prediction: Forecasting chemicaland physical properties of
molecules and materials using LLMs, particularly excelling in low-data environments and combining
structured and unstructured data.

2. Molecular and Material Design:Generating and optimizing novel molecules and materials using
LLMs, including peptides, metal-organic frameworks, and sustainable construction materials.

3. Automation and Novel Interfaces:Developing natural language interfaces and LLM-powered
automated workflows to simplify complex scientific tasks, making advanced tools and techniques more
accessible to researchers.

4. Scientific Communication and Education:Enhancing academic communication, automating ed-
ucational content creation, and supporting learning in materials science and chemistry.

5. Research Data Management and Automation:Streamlining the handling, organization, and
processing of scientific data through LLM-powered tools and multimodal agents.

6. Hypothesis Generation and Evaluation:Using LLMs to generate, assess,and refine scientific
hypotheses, leveraging multiple AI agents and statistical approaches.

7. Knowledge Extraction and Reasoning:Extracting structured information from scientific litera-
ture and performing sophisticated reasoning about chemical and materials science concepts through
knowledge graphs and multimodal approaches.

Collectively, this constellation of capabilities, shown in Figure 1, is applicable to long-standing challenges
across the research lifecycle, creating a flywheel of improvements that promises to empower researchers with
new capabilities and to speed the research process.

Table 1: Overview of the tools developed by the various tools, and links to source code repositories. Full
descriptions of the projects can be found in Ref. [31].

Project Authors Links

Molecular and Material Property Prediction

Leveraging Orbital-Based Bonding Analysis
Information in LLMs

Katharina Ueltzen, Aakash Naik,
Janine George

GitHub

Context-Enhanced Material Property Prediction
(CEMPP)

Federico Ottomano, Elena
Patyukova, Judith Clymo, Dmytro
Antypov, Chi Zhang, Aritra Roy,
Piyush Ranjan Maharana, Weijie
Zhang, Xuefeng Liu, Erik Bitzek

GitHub
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Project Authors Links

MolFoundation: Benchmarking Chemistry LLMs on
Predictive Tasks

Hassan Harb, Xuefeng Liu,
Anastasiia Tsymbal, Oleksandr
Narykov, Dana O’Connor, Shagun
Maheshwari, Stanley Lo, Archit
Vasan, Zartashia Afzal, Kevin Shen

GitHub

3D Molecular Feature Vectors for Large Language
Models

Jan Weinreich, Ankur K. Gupta,
Amirhossein D. Naghdi, Alishba
Imran

GitHub

LLMSpectrometry Tyler Josephson, Fariha Agbere,
Kevin Ishimwe, Colin Jones,
Charishma Puli, Samiha Sharlin, Hao
Liu

GitHub

Molecular and Material Design

MC-Peptide: An Agentic Workflow for Data-Driven
Design of Macrocyclic Peptides

Andres M. Bran, Anna Borisova,
Marcel M. Calderon, Mark Tropin,
Rob Mills, Philippe Schwaller

GitHub

Leveraging AI Agents for Designing Low Band Gap
Metal-Organic Frameworks

Mehrad Ansari, Sartaaj Takrim
Khan, Mahyar Rajabi, Seyed
Mohamad Moosavi, Amro Aswad

GitHub

How Low Can You Go? Leveraging Small LLMs for
Material Design

Alessandro Canalicchio, Alexander
Moßhammer, Tehseen Rug,
Christoph V ölker

GitHub

Automation and Novel Interfaces

LangSim Yuan Chiang, Giuseppe Fisicaro,
Greg Juhasz, Sarom Leang,
Bernadette Mohr, Utkarsh Pratiush,
Francesco Ricci, Leopold Talirz,
Pablo A. Unzueta, Trung Vo, Gabriel
Vogel, Sebastian Pagel, Jan Janssen

GitHub

LLMicroscopilot: assisting microscope operations
through LLMs

Marcel Schloz, Jose C. Gonzalez GitHub

T2Dllama: Harnessing Language Model for Density
Functional Theory (DFT) Parameter Suggestion

Chiku Parida, Martin H. Petersen GitHub

Materials Agent: An LLM-Based Agent with
Tool-Calling Capabilities for Cheminformatics

Archit Datar, Kedar Dabhadkar GitHub

LLM with Molecular Augmented Token Luis Pinto, Xuan Vu Nguyen, Tirtha
Vinchurkar, Pradip Si, Suneel
Kuman

GitHub

Scientific Communication and Education

MaSTeA: Materials Science Teaching Assistant Defne Circi, Abhijeet S. Gangan,
Mohd Zaki

GitHub
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Project Authors Links

LLMy-Way Ruijie Zhu, Faradawn Yang, Andrew
Qin, Suraj Sudhakar, Jaehee Park,
Victor Chen

GitHub

WaterLLM: Creating a Custom ChatGPT for Water
Purification Using PromptEngineering Techniques

Viktoriia Baibakova, Maryam G.
Fard, Teslim Olayiwola, Olga Taran

GitHub

Research Data Management and Automation

yeLLowhaMMer: A Multi-modal Tool-calling Agent
for Accelerated Research Data Management

Matthew L. Evans, Benjamin
Charmes, Vraj Patel, Joshua D.
Bocarsly

GitHub

LLMads Sarthak Kapoor, Jos´e M. Pizarro,
Ahmed Ilyas, Alvin N. Ladines,
Vikrant Chaudhary

GitHub

NOMAD Query Reporter: Automating Research
Data Narratives

Nathan Daelman, Fabian Schöppach,
Carla Terboven, Sascha Klawohn,
Bernadette Mohr

GitHub

Speech-schema-filling:Creating Structured Data
Directly from Speech

Hampus N¨asstr¨om, Julia Schumann,
Michael G¨otte, Jos´e A. M´arquez

GitHub

Hypothesis Generation and Evaluation

Leveraging LLMs for Bayesian Temporal Evaluation
of Scientific Hypotheses

Marcus Schwarting GitHub

Multi-Agent Hypothesis Generation and Verification
through Tree of Thoughts and Retrieval Augmented
Generation

Aleyna Beste Ozhan, Soroush
Mahjoubi

GitHub

ActiveScience Min-Hsueh Chiu GitHub

G-Peer-T: LLM Probabilities For Assessing Scientific
Novelty and Nonsense

Alexander Al-Feghali, Sylvester
Zhang

GitHub

Knowledge Extraction and Reasoning

ChemQA Ghazal Khalighinejad, Shang Zhu,
Xuefeng Liu

GitHub

LithiumMind - Leveraging Language Models for
Understanding Battery Performance

Xinyi Ni, Zizhang Chen, Rongda
Kang, Sheng-Lun Liao, Pengyu
Hong, Sandeep Madireddy

GitHub

KnowMat: Transforming Unstructured Material
Science Literature into Structured Knowledge

Hasan M. Sayeed, Ramsey Issa,
Trupti Mohanty, Taylor Sparks

GitHub

Ontosynthesis Qianxiang Ai, Jiaru Bai, Kevin Shen,
Jennifer D’Souza, Elliot Risch

GitHub

Knowledge Graph RAG for Polymer Simulation Jiale Shi, Weijie Zhang, Dandan
Tang, Chi Zhang

GitHub

Synthetic Data Generation and Insightful Machine
Learning for High Entropy Alloy Hydrides

Tapashree Pradhan, Devi Dutta
Biswajeet

GitHub
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Project Authors Links

Chemsense:Are large language models aligned with
human chemical preference?

Marti˜no R´ıos-Garc´ıa, Nawaf
Alampara, Mara Schilling-Wilhelmi,
Abdelrahman Ibrahim, Kevin Maik
Jablonka

GitHub

GlossaGen Magdalena Lederbauer, Dieter
Plessers, Philippe Schwaller

GitHub

We next discuss the constellation of capabilities in more detail and highlight exemplar projects across
each key application area.

1 Molecular and Material Property Prediction
LLMs have rapidly advanced in molecular and material property prediction, employing both textual and
numerical data to forecast a wide range of properties. Recent studies [1, 15, 13, 3] show LLMs performing
comparably to, or even surpassing, conventional machine learning methods, particularly in low-data envi-
ronments. The flexibility in processing both structured and unstructured data [32], as well as their general
applicability to regression tasks [33], make LLMs a powerful tool for diverse predictive tasks in molecular
and materials science.

1.1 Leveraging orbital-based bonding analysis information in LLMs for material
property predictions

Previous studies have used different strategies to learn material properties using LLMs, such as enriching
graph neural network (GNN) features with LLM embeddings [4], training domain-specific LLMs and cus-
tomizing model architectures [5, 6, 7], or fine-tuning general-purpose LLMs [8, 14]. While exact strategies
have differed, existing models predominantly operate on string representations of crystal structures primarily
consisting of compositional and structural information commonly found in crystallographic information files
(CIFs). Multiple studies have successfully utilized the text descriptions of structures [7, 14, 8] that can be
generated using the Robocrystallographer package [9].These descriptions consist of structural features like
bond lengths, coordination polyhedra, lattice parameters, coordinates, structure type, and other descriptors.
Other studies explored different string representations of compositional and structural information [ 4, 6, 14].

The team behind this submission emphasizes that, to their knowledge, no previous studies investigated
including orbital-based bonding analysis information in LLMs for materials property prediction tasks. Thus,
in this pilot study, the team tested including such descriptions in LLMs to predict the highest-frequency peak
in their phonon density of states (DOS) [11, 10].This target is relevant to the thermal properties of materials
and it is a tracked component of the MatBench benchmark project. A key hypothesis is that the inclusion
of the bonding analysis information for this vibrational property will improve the LLM’s performance, as
previous studies demonstrated the importance of such bonding information for the same target via a Random
Forest model [34].

To test this hypothesis, the team fine-tuned multiple Llama 3 models on the textual description of 1264
crystal structures in the benchmark dataset. The text descriptions were generated using two packages:the
Robocrystallographer and LobsterPy package [35].The text descriptions from Lobsterpy consist of orbital-
based bonding analyses containing information on covalent bond strengths and antibonding states.The data
used here is available on Zenodo [36] and was generated as part of an earlier dataset publication [34].

During the hackathon, one Llama model was fine-tuned with the Alpaca prompt format using both
Robocrystallographer and LobsterPy text descriptions, and another one using solely Robocrystallographer
input. Figure 2 depicts the prompt used to fine-tune an LLM to predict the last phonon DOS peak. The
train/test/validation split was 0.64/0.2/0.16. The models were trained for 10 epochs with a validation step
after each epoch.The textual output was converted back into numerical frequency values for the computation
of MAEs and RMSEs. The results show that including bonding-based information improved the model’s
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Figure 1: The LLM-Powered Research Constellation. At each stage of the research process,from initial
ideation through experimental execution and communication of results, LLMs provide a constellation of
capabilities spanning hypothesis generation, property prediction, novel interfaces, education, material design,
automation, data management, scientific communication, and more. This constellation demonstrates the
possibility of LLMs and multimodal models to drive a more efficient, rapid, and creative scientific discovery
process through integrations across the research lifecycle.
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Figure 2: Schematic depicting the prompt for fine-tuning the LLM with Alpaca prompt format.

prediction. The results also corroborate the team’s previous finding that quantum-chemical bond strengths
are relevant for this particular target property. Both model performances (Robocrystallographer: 44 cm−1,
Robocrystallographer+LobsterPy: 38 cm−1) are comparable to other models of the MatBench test suite,
with MAEs ranging from 29 cm −1 to 68 cm−1 as per the time of writing [37].

Although the preliminary results seem promising, the models have not yet been exhaustively analyzed,
validated, or optimized yet. As the prediction of a numerical value and not its text embedding is of interest
to the task, further model adaptation might be beneficial. For example, Rubungo et al. [7] modified T5, an
encoder-decoder model, for regression tasks by removing its decoder and adding a linear layer on top of its
encoder. Halving the number of model parameters allowed them to fine-tune on longer input sequences, im-
proving model performance. A recently published benchmark for LLMs in materials property prediction also
suggests that fine-tuning models with fewer parameters improves the prediction of materials properties [ 14].

With the available easy-to-use packages like Unsloth, [38] the team was able to integrate their materials
data into fine-tuning an LLM for property prediction with very limited resources and time. Since these
initial results, the work has been extended to a dataset of bonding-based text descriptions including 1̃3,000
crystalline materials. In the future, the team aims to (1) test these text descriptions further to learn other
thermal and elastic material properties like elastic constants and lattice thermal conductivity and (2) to
extend further the text descriptions generated with the LobsterPy package to include, e.g., information on
computed charges.

2 Molecular and Material Design
LLMs have also been applied to molecular and material design, proving capable in both settings [2, 39,
40, 41, 42], especially if pre-trained or fine-tuned with domain-specific data [43]. However, despite these
advancements, LLMs still face limitations in practical applications [44].
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Figure 3: Workflow overview. The ReAct agent looks up guidelines for designing low band gap MOFs from
research papers and suggests a new MOF (likely with a lower band gap). It then checks the validity of the
new SMILES candidate and predicts the band gap with epistemic uncertainty estimation using an ensemble
of surrogate fine-tuned MOFormers.b. Band gap predictions for new MOF candidates as a function of agent
iterations

2.1 Leveraging AI Agents for Designing Low Band Gap Metal-Organic Frame-
works

Metal-organic frameworks (MOFs) are known to be excellent candidates for electrocatalysis due to their
large surface area, high adsorption capacity at low CO 2 concentrations, and the ability to fine-tune the
spatial arrangement of active sites within their crystalline structure [45]. Low band gap MOFs are cru-
cial as they efficiently absorb visible light and exhibit higher electrical conductivity, making them suitable
for photocatalysis, solar energy conversion, sensors,and optoelectronics. This submission aims at using
chemistry-informed ReAct [46] AI Agents to optimize the band gap property of MOFs. The overview of the
workflow is presented 3a. The agent takes as inputs a textual representation of the initial MOF structure
as a SMILES (Simplified Molecular Input Line-Entry System) string representation, and a short description
of the property optimization task (i.e., reducing band gap), all in natural language. This is followed by an
iterative closed-loop suggestion of new MOF candidates with a lower band gap with uncertainty quantifica-
tion, by adjusting the initial MOF given a set of design guidelines automatically obtained from the scientific
literature. A detailed analysis of this methodology, including its application to various classes of materials
such as surfactants, ligands, and peptides can be found in reference [47], which supports both closed-loop and
human-in-the-loop feedback cycles and thus enables real-time property inference for human-AI collaboration
in molecular design.
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The agent, powered by an LLM, is augmented with a set of tools allowing for chemistry-informed decision-
making. These tools are as follows:

1. Retrieval-Augmented Generation (RAG): This tool allows the agent to obtain design guidelines
on how to adapt the MOF structure from unstructured text. Specifically, in this prototype, the agent
has access to a fixed set of 7 MOF research papers (see Refs. [48, 49, 50, 51, 52, 53, 54]) as PDFs.This
tool is designed to extract the most relevant sentences from papers in response to a given query. It
works by embedding both the paper and the query into numerical vectors using OpenAI’s text-ada-
002 [55], then identifying the top k passages within the document that either explicitly mention or
implicitly suggest the adaptations required for the specified band gap property for a MOF. Inspired by
the team’s earlier work [56], k is set to 9, but is dynamically adjusted based on the relevant context’s
length to avoid OpenAI’s token limitation.

2. Surrogate Band Gap Predictor The surrogate model used is a transformer (MOFormer [57]) that
takes as input the MOF as a SMILES string. This model is pre-trained using a self-supervised learning
technique known as Barlow-Twin [58], where representation learning is done against structure-based
embeddings from a crystal graph convolutional neural network (CGCNN) [59]. This was done against
16,000 BW20K entries [60].The pre-trained weights are then transferred and fine-tuned to predict the
band gap labels taken from 7,450 entries from the QMOF database [61]. From a 5-fold training, an
ensemble of five transformers are trained to return the mean band gap and the standard deviation,
which is used to assess uncertainty for predictions. For comparison, the team’s transformer’s mean
absolute error (MAE) is approximately 0.467, whereas MOFormer,which was pre-trained on 400,000
entries, achieves an MAE of approximately 0.387.

3. ChemicalFeasibility Evaluator This toolprimarily uses RDKit [62] to convert a SMILES string
into an RDKit Mol object, and performs several validation steps to ensure chemical feasibility.First, it
parses the SMILES string to confirm correct syntax. Next, it validates the atoms and bonds, ensuring
they are chemically valid and recognized. It then checks atomic valences to ensure each atom forms
a reasonable number of bonds. For ring structures, RDKit verifies the correct ring closure notation.
Additionally, it adds implicit hydrogens to satisfy valence requirements and detects aromatic systems,
marking relevant atoms and bonds as aromatic. These steps collectively ensure the molecule’s basic
chemical validity.

The team has used OpenAI’s GPT-4 [63] with a temperature of 0.1 as the preferred LLM and LangChain [64]
for the application framework development (nonetheless, the team confirms that the choice of LLM is only
a hyperparameter and other LLMs can drive the agent).

The new MOF candidates and their corresponding inferred band gap are represented in  Figure 3b. The
agent starts by retrieving the following design guidelines for low band gap MOFs from research papers: 1.
Increasing the conjugation in the linker. 2. Selecting electron-rich metal nodes.3. Functionalizing the linker
with nitro and amino groups. 4. Altering linker length. 5. Substitute functional groups (i.e., substituting
hydrogen with electron-donating groups on the organic linker). Note that the metal node adaptations
are restrained by simply changing the system input prompt. The agent iteratively implements the above
strategies, makes changes to the initial MOF, and suggests a new SMILES. The new SMILES is validated
using the Chemical Feasibility Evaluator tool, and if found invalid, the agent uses a self-correction feedback
loop to suggest new candidates, accounting for the extracted design guidelines.After each valid modification,
the band gap of the new MOF is then assessed using the fine-tuned ensemble of surrogate MOFormers to
ensure a lower band gap. The self-correction feedback loop also handles new MOFs with undesired higher
band gaps with respect to the initial MOF, by reverting to the most recent valid MOF candidate with the
lowest band gap identified throughout the iterations.

3 Automation and Novel Interfaces
LLMs are increasingly important to the modern scientific workflow, enabling the development of more intu-
itive interfaces for users dealing with complex digital tools. For example, platforms such as ChemCrow [19],
RestGPT [65], and HoneyComb [18] allow researchers to input commands in natural language to interact
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with and analyze complex software and databases.With LLMs, democratized access and dramatically sim-
pler interfaces are possible for programs like specialized computational techniques or command-line interfaces
that may previously have required deep expertise. LLMs excel at autonomous planning and task execution
in multistep scenarios [16] by breaking complex processes into smaller actions, making experimental or
computational workflows controllable by models with less need for direct oversight. Such behavior may
include but is not limited to: simple interaction with laboratory robotic systems [66, 17], where difficult
scientific objectives can be converted into precise, callable commands:the basis of precision and consistency.
The integration of LLMs and robotics promises to improve operational efficiency and enable new designs of
experimental workflows with increased flexibility.

3.1 LangSim – Large Language Model Interface for Atomistic Simulation
LLMs can augment scientists with their common workflows, dramatically simplifying the interactions across
systems using natural language input to understand and implement the intent of the user. The LangSim
project [67] prototyped an interface to showcase the ability of LLMs to autonomously start atomistic
simulations to study material properties on an atomistic scale. This provides the LLM with a way to request
and then use novel scientific data and insights that were previously not available in published databases.One
might imagine, e.g., the on-the-fly calculation of defect properties, e.g., grain boundary segregation energies
In addition, by integrating the LLM in the active learning cycle of an autonomous materials discovery loop,
with the option to calculate different material properties and access existing databases,the LLM becomes
an AI scientist on a quest to discover novel materials. In this project, straightforward atomistic simulation
and agentic scientific reasoning were explored as a natural language interface to users without programming
skills.

The LangSim project implements atomistic simulation agents based on both pyiron [68] and LangChain [69].
LangChain enables the LLM to call any kind of Python function and include the output in the thought pro-
cess of the next iteration. In the case of LangSim, these Python functions represent simulation workflows
implemented in the pyiron [68] workflow framework to calculate material properties with atomistic sim-
ulations. By restricting the LLM to pre-defined simulation workflows, the risk of hallucination is reduced
compared to generative approaches, which request the LLM to define and generate the simulation workflow.
Based on the MACE [70] foundation model for atomistic simulation, LangSim was used to predict the binary
concentration of solid solution alloy required to match a user-defined bulk modulus, demonstrating an inverse
materials design approach to enable application-specific alloy design.

3.2 LLMicroscopilot:assisting microscope operations through LLMs
While the state-of-the-art microscopes in materials science are crucial for high-resolution imaging and anal-
ysis, they are still rather addressed by expert operators due to their complex and steep-cost ownership.
Their manipulation involves delicate tasks, mostly involving precision alignment, guaranteed optimal perfor-
mances, and shifting between different operational modes to address various research questions that require
extensive training and experience.This unobtainable quality has not only slowed down routine experimental
procedures but has also formed a serious roadblock to opportunities for broadening access and allowing an
acceleration of scientific discovery.With progress in natural language processing, LLMs opened the way for a
Copernican revolution in this landscape. Integration of LLMs to the microscope interface will allow complex
operations to be done through natural language commands. Similar to modern chatbots, which allow even
those with no programming knowledge to generate complex computer programs[71], LLMs can become in-
tuitive intermediaries assisting users in traversing the manifold control procedures of advanced microscopes.
Early studies of scanning probe microscopy have shown that LLMs can facilitate remote access[72] and even
direct control [73] of these instruments, lessening the workload for expert operators.A promising approach
is to use an LLM agent that accesses and operates some concrete external tools.These agents also interpret
user commands and use observations in realtime to make decisions, reducing the hallucinations, or wrong
outputs, that sometimes appear with a standalone LLM. This would streamline the user experience, further
relieving researchers from having to navigate through complex, tool-specific APIs, thus broadening the reach
of advanced microscopes, especially to non-experts.

11



LLM Providers

Crystal structure fetcher

Equation of state runner

Use case: Inverse alloy design

V

E

Custom tool decorator @tool

Structure optimizer

Calculators

Using linear interpolation find the concentration of an Copper Gold Alloy with a bulk modulus 
around 145 GPa with an error of plus or minus 2 GPa using the EMT simulation code. Validate 
your prediction by computing the bulk modulus and do not stop until you calculate the bulk 
modulus with the defined uncertainty.

LangSim Atomistic Simulation Agents

Text, AtomDict

steps

E

The computed bulk modulus for the Cu-Au alloy with 73.8% Copper and 26.2% Gold is 
approximately 145.58 GPa, which is within the desired range of 145 GPa ± 2 GPa.

100% Au

K

100% Cu

Figure 4: LangSim framework for atomistic simulation and inverse design. Custom atomistic modeling
tools (such as pyiron, ASEpython package functions with underlying EMT and MACE-MP-0 forcefields)
are integrated using LangChain @tooldecorator. Pydantic model is used to exchange atomic information
in a structured format between LLM and tools. The emerging agentic capability for inverse alloy design
is demonstrated. LLM agent is able to find the target composition of Cu-Au alloy with the desired bulk
modulus.

An illustration of such is the work performed by the LLMicroscopilot team, an LLM-based agent partially
automating the operation of a scanning transmission electron microscope. LLMicroscopilot, its prototype,
combines a generally trained foundation model, which is then tailored to specific people and domains through
dedicated control tools. This agent operates quite well at first, utilizing the API for a microscope experiment
simulation tool [74], by performing such important tasks as estimating experimental parameters and execut-
ing the actual experiments. Therefore, this automation reduced dependence on personnel highly trained in
operating such systems, thus increasing the opportunities for wider engagement in materials science due to
the impact on usability. In the future, though, developments in the field are expected with LLMicroscopilot.
In the future, they would involve integrating open-source microscope hardware control tools [75] and in-
clude capabilities for database access.Consequently, the system will be able to utilize Retrieval-Augmented
Generation techniques to further inform parameter estimation and aid in the data analysis. Effectively, this
will allow researchers to integrate LLMs in user interfaces at high-end microscopes and, instead of working
on tedious, routine operational tasks, invest their energy in high-level scientific research and innovation,
democratizing access to advanced experimental techniques.

4 Scientific Communication and Education
LLMs are transforming how scientific and educational content is created and shared, enhancing accessibility
and personalized learning [76, 77, 78, 79]. By automating tasks like question generation, feedback, and
grading, LLMs streamline educational processes,freeing educators to focus on individual learning needs.
Additionally, LLMs assist in translating complex scientific findings into accessible formats, broadening public
engagement [79].However, technological readiness, transparency, and ethical concerns around data privacy
and bias remain critical challenges to address [78, 76].
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Figure 5: Schematic overview of the LLMicroscopilot assistant. The microscope user interface allows the
user to input queries, which are then processed by the LLM. The LLM executes appropriate tools to provide
domain-specific knowledge, support data analysis, or operate the microscope.

4.1 MaSTeA: Materials Science Teaching Assistant
This team selected 650 questions from the materials science question answering dataset (MaScQA) [ 80],
requiring undergraduate-level understanding to solve.These questions are classified into four types based on
their structure: Multiple Choice Questions (MCQs), Match the Following (MATCH), Numerical Questions
with Given Options (MCQN), and Numerical Questions (NUM). MCQs are generally conceptual, with four
options, where mostly one is correct, though occasionally multiple answers are valid. MATCH questions
involve two lists of entities that need to be correctly paired, with four answer choices provided, one of which
contains the correct set of matches.MCQN questions present a numerical problem with four answer choices,
requiring a solution to identify the correct option, while NUM questions have numerical answers rounded
to the nearest integer or floating-point number as specified. The team aimed to automate the evaluation
of open-source and proprietary LLMs on MaScQA and develop an interactive interface for students to
engage with these questions. Various models, including LLAMA3-8B, HAIKU, SONNET, GPT-4, and
OPUS, were evaluated across 14 subject categories,such as characterization, applications, properties, and
behavior. The evaluation results, summarized in Table 2, show that the OPUS variant of Claude consistently
outperformed other models, achieving the highest accuracy in most categories. GPT-4 also demonstrated
strong performance, particularly in material processing and fluid mechanics.As expected from prior studies,
larger models such as OPUS and GPT-4 outperformed the smaller LLAMA3-8B, reinforcing the significance
of model size in performance [81]. The results suggest that there is significant room for improvement to
enhance the accuracy of language models in answering scientific questions.

The evaluation involved:

• Extracting corresponding values:For MCQs, correct choices were identified using regular expres-
sions and compared to model predictions.

• Prediction verification: Numerical predictions were validated against exact or acceptable ranges,
while MCQ responses were matched to correct answer choices.
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• Calculating accuracy:Accuracy was computed per question type and topic, followed by an overall
assessment across all questions.

The evaluation results, summarized in Table 2, show that the OPUS variant of Claude consistently
outperformed other models, achieving the highest accuracy in most categories. GPT-4 also demonstrated
strong performance, particularly in material processing and fluid mechanics.As expected from prior studies,
larger models such as OPUS and GPT-4 outperformed the smaller LLAMA3-8B, reinforcing the significance
of model size in performance [81]. The results suggest that there is significant room for improvement
to enhance the accuracy of language models in answering scientific questions. The interactive web app,
MaSTeA (Materials Science Teaching Assistant), developed using Streamlit, allows easy model testing to
identify LLMs’ strengths and weaknesses in different materials science subfields. The interface can be seen
in Figure 6.

Table 2: Accuracy of LLMs for each topic

Topic # Questions LLaMA-3-8b Haiku Sonnet OPUS GPT4

Thermodynamics 114 37.72 47.37 55.26 73.68 57.02

Atomic structure 100 32 40 49 64 59

Mechanical behavior 96 22.92 41.67 52.08 71.88 43.75

Material manufacturing 91 43.96 57.14 56.04 80.22 68.13

Material applications 53 52.83 64.15 77.36 92.45 86.79

Phase transition 41 31.71 46.34 65.85 70.73 63.41

Electrical properties 36 33.33 25 55.56 72.22 44.44

Material processing 35 48.57 54.29 74.29 88.57 88.57

Transport phenomena 24 37.5 70.83 58.33 87.5 62.5

Magnetic properties 15 26.67 46.67 46.67 66.67 60

Material characterization 14 78.57 57.14 85.71 92.86 71.43

Fluid mechanics 14 21.43 50 57.14 78.57 85.71

Material testing 9 77.78 66.67 100 100 100

Miscellaneous 8 62.5 62.5 62.5 75 62.5

With MaSTeA, the team demonstrated the potential of interactive tools to help students practice answer-
ing questions and learn the steps to reach the correct solution. By evaluating LLM performance, the goal
was to guide future model development and identify areas for improvement. The results suggest that LLMs
can benefit from strategies such as self-consistency [82] and retrieval-augmented generation (RAG) [83],
which have been shown to reduce hallucinations and increase accuracy.Additionally, integrating advanced
reasoning models could further improve performance. Recent advancements in domain-specific LLMs, such
as LLaMat [84], highlight the potential of specialized training to enhance scientific reasoning.

5 Research Data Management and Automation
Various submissions were received that attempt to enhance the management, accessibility, and automation
of scientific data workflows using LLMs. These efforts, often leveraging multimodal agents, aim to simplify
complex data handling, improve reproducibility, and accelerate insights across diverse scientific disciplines.
We highlight two exemplar projects: “yeLLowhaMmer” a multimodal LLM-based data management agent
that automates data handling within electronic lab notebooks (ELNs) and laboratory information manage-
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Figure 6: MaSTeA interface demonstrating a numerical question task. The model arrives at the correct
answer by reasoning through the problem, providing students with a step-by-step solution if they struggle
to solve it independently.
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ment systems (LIMS), and “NOMAD Query Reporter”, an LLM-based agent that uses RAG to generate
context-aware summaries from large materials science repositories like NOMAD [85]

5.1 yeLLowhaMMer: A Multi-modal Tool-calling Agent for Accelerated Re-
search Data Management

As scientific data continues to grow in volume and complexity, there is a need for tools that can simplify
the job of managing this data to draw insights, increase reproducibility, and accelerate discovery. Digital
systems of record, such as electronic lab notebooks (ELNs) or laboratory information management systems
(LIMS), have been a great advancement in this area. However, capturing data using, e.g., electronic lab
notebooks (ELNs) or laboratory information management systems (LIMS) is laborious, or simply impossible,
to accomplish using graphical user interfaces alone.Recent advances in AI present an opportunity to augment
how researchers interact with their data, improving scientific data management and allowing scientists to
ask scientific questions of these data sources in new ways.

YeLLowhaMmer explored how large language models can be used to simplify and accelerate data han-
dling tasks in order to generate new insights, improve reproducibility, and save time for researchers using
the open-source datalab [86] ELN/LIMS. Previously, the team had made progress toward this goal by de-
veloping a conversational assistant, Whinchat [30], that allows users to ask questions about their data.
However, this assistant was unable to take action with a user’s data or seek additional information as is
often needed for scientific tasks.Thus, the team developed yeLLowhaMmer as a multimodal large language
model (MLLM)-based data management agent capable of taking free-form text and image instructions from
users and executing a variety of complex scientific data management tasks.

The agent is powered by commercial MLLMs used within an agentic framework capable of iteratively
writing and executing Python code that interacts with  datalab instances via the datalab-apipackage. In
typical usage, a yeLLowhaMmer user might instruct the agent: “Pull up my 10 most recent sample entries
and summarize the synthetic approaches used.” In this case, the agent will attempt to write  datalab python
API code to query for the user’s samples in the datalab instance and write a human-readable summary based
on the result. If the code it generates gives an error (or does not give sufficient information), the agent can
iteratively rewrite the program until the task is accomplished successfully. Importantly, this paradigm is
enabled by the presence of a structured API for diverse forms of scientific data; which is provided by  datalab
in its open-source schemas and API documentation.

In developing yeLLowhaMmer, the team found that simply copying documentation for the new datalab-
api package into the system prompt produced poor code.Creating a simplified version with concrete examples
and abridged JSON Schema formats proved more effective.The 12,000-character prompt (ca. 3,200 tokens)
works well with modern large context models like Claude 3 Haiku. Future scientific libraries might benefit
from maintaining both standard documentation and condensed ”agents.txt” files optimized for ML agents.

This work shows the opportunity to integrate more tightly into scientific data management workflows
to allow researchers to quickly handle complex tasks and efficiently ask questions of all collected data. An
important challenge is to find ways to ensure that data curated or modified by such agents will be appropri-
ately ‘credited’ by, for example, visually demarcating AI-generated content, and providing UI pathways for
human users to verify or relabel such data in an efficient manner.Finally, recent progress in MLLM’s ability
to handle audio and video content in addition to text and images will allow agents to use audiovisual data
in real time to provide even more comprehensive user interfaces.

5.2 NOMAD Query Reporter: Automating Research Data Narratives
Research data management (RDM) in materials science includes a wide variety of schemas and data struc-
tures. Databases such as NOMAD [85, 87] support extensible context-aware schemas.Hence, the results of
a single query may in fact contain various schemas, complicating the data analysis process.NOMAD Query
Reporter is a proof-of-concept application built to produce a written summary of the common methodolog-
ical parameters and standout results in a scientific style. These may serve as the first step in an analysis
workflow, or as progenitors of a journal article’s “methods” section.

Given the large size –over 19 million entries– and dynamic nature –open public uploads– of the NOMAD
database, retraining or fine-tuning strategies are challenging.Instead, this prototype implements a retrieval-
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Figure 7: The yeLLowhaMmer multimodal agent can be used for a variety of data management tasks.Here,
it is shown automatically adding an entry into the datalab lab data management system based on an image
of a handwritten lab notebook page.

augmented generation (RAG) approach, as defined by Gao et al. [88], to enrich Llama3 (70B version)
model’s [89] knowledge base.The team progressively fed data by field into the LLM’s chat-completion API as
context. Subsequently, the construction of the summary was completed by topic (i.e., properties, techniques,
material composition) in a multi-turn conversation style with the “roles” feature clearly distinguishing the
LLM’s tasks from the data provided. Alignment with earlier versions of the chat history is enforced both
via low-temperature settings as well as prompt engineering. For a step-by-step overview, see Figure 8.

Figure 8: Flowchart of the Query Reporter usage, including the back-end interaction with external re-
sources,i.e., NOMAD and Llama. Intermediate steps managing hallucinations or token limits are marked in
red and orange, respectively.

This work highlights the ability of LLMs to augment research data management systems via returning in-
formation in formats that are easily understandable by users.While the prototype NOMAD Query Reporter
as able to manage homogenized hits well, attempts at extending to manually annotated, heterogeneous data
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from ELNs proved challenging. Thus, follow-up work should consider more performant models and advanced
RAG and other strategies to improve model context.

6 Hypothesis Generation and Evaluation
LLMs can be leveraged to streamline scientific inquiry, hypothesis generation, and verification. Recent
work across psychology, astronomy, and biomedical research demonstrates their capacity to generate novel,
validated hypotheses by integrating domain-specific data structures like causal graphs [90, 91, 92, 93, 94].
Although still largely untapped in chemistry and materials science, this approach holds substantial promise
for accelerating discovery and innovation in these fields [95, 96, 97].

6.1 Multi-Agent Hypothesis Generation and Verification through Tree of Thoughts
and Retrieval Augmented Generation

Scientific discovery thrives on the ability to generate and evaluate new hypotheses efficiently. However,
the process of forming meaningful and testable hypotheses often requires extensive background research,
domain knowledge, and iterative refinement. Advances in large language models offer an opportunity to
assist researchers in streamlining this process, particularly through structured, multi-agent frameworks that
systematically generate, evaluate, and refine ideas.

The Thoughtful Beavers team (Soroush Mahjoubi, Aleyna B. Ozhan) designed a multi-agent system to
enhance scientific inquiry in materials science. Similar systems have proven useful in social sciences [98],
and the system was adapted specifically for hypothesis generation in the domain of cement and concrete.
The system consists of specialized agents that work in tandem:retrieving background knowledge, generating
inspirations, formulating hypotheses, and evaluating their feasibility, utility, and novelty. By leveraging a
combination of retrieval-augmented generation, tree-of-thoughts reasoning [99], and LLM-as-a-judge frame-
works, this pipeline, which is illustrated in Figure 9, ensures that only the most promising hypotheses emerge
from the process.

To test this pipeline, the authors focused on sustainability challenges in concrete design. By process-
ing 66,000 abstracts related to the field, an embedding-based retrieval system was built to extract relevant
insights and generate research questions. From this dataset, the approach produced 1,000 structured hy-
potheses,which were then subjected to rigorous evaluation. The results showed that 243 hypotheses were
deemed feasible based on current scientific knowledge, 175 demonstrated practical utility, and 12 stood out
as highly novel.

Looking ahead, this framework can be adapted to other material systems or even cross-disciplinary ap-
plications. By adjusting the background retrieval process, researchers could apply this method to areas such
as ceramics,composites,or biomedical materials. Additionally, cross-pollination of ideas between domains
could inspire new lines of research.As LLM capabilities continue to evolve, integrating AI-assisted hypoth-
esis generation with expert validation could significantly accelerate scientific progress while maintaining the
critical role of human creativity in innovation.

7 Knowledge Extraction and Reasoning
Extraction of structured scientific knowledge from unstructured text using LLMs to assisting researchers
in navigating complex academic content is of wide interest [100, 101, 102, 103]. These systems streamline
tasks like named entity recognition and relation extraction, offering flexible solutions tailored to materials
science and chemistry [101].Tool-augmented frameworks help LLMs address complex reasoning by leveraging
scientific tools and resources, expanding their utility as assistants in scientific research [104].

7.1 ActiveScience
Extracting and refining knowledge in hard sciences is crucial. While large language models excel in summa-
rization and dialogue generation, they are also prone to generating false information, a phenomenon known
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Figure 9: Multi-Agent Hypothesis Generation and Verification Framework. The system uses Retrieval-
Augmented Generation, Tree of Thoughts, and Feasibility, Utility, and Novelty evaluation agents to generate
and refine hypotheses for sustainable concrete design.

as hallucination. This presents a significant challenge for researchers leveraging LLMs in scientific fields.
Various strategies exist to mitigate hallucinations. One approach involves fine-tuning models or construct-
ing additional lightweight models after pretraining, but these methods require substantial computational
resources, making them impractical in many cases.A more accessible alternative is retrieval-augmented gen-
eration (RAG), which enhances LLMs by incorporating external information. Conceptually, if a fine-tuned
model resembles a domain expert with deep knowledge, a pre-trained model is akin to a generalist with
broad understanding. By supplying additional context, pre-trained models can generate more accurate and
reliable outputs. To address this challenge, Min-Hsueh Chiu introduced an automated framework  Active-
Science that leverages large language models to ingest scientific articles into a knowledge graph and enable
natural language queries for domain knowledge extraction.The framework integrates three key components:
a data source API, a large language model, and a graph database.While these components can be replaced
with equivalent technologies, this work specifically utilizes the ArXiv API [105], GPT-3.5 Turbo [25], and
Neo4j [106].

For structured representation of knowledge and relationships, ActiveScience employs an ontology that
defines key entities such as Application, Property, Material, Element, and Metadata. The ontology design
is adaptable and scalable to specific use cases.ActiveScience constructs its knowledge graph by extracting
relevant triples from scientific articles. Specifically, prompts are generated using the predefined ontology
and the introduction sections of articles to produce Cypher import statements containing structured triples,
such as (Material: ”Nanowire”) - [HAS ELEMENT] - (Element: ”Aluminum”) and (Material: ”Nanowire”) -
[HAS FORMULA] - (Formula: ”Al-Si alloy”). These triples are then imported into a Neo4j graph database.
To facilitate RAG, the GraphCypherQAChain module from LangChain is employed. For instance, given
the query, ”Retrieve the top three reference URLs where the Property contains ‘opti’?”, GraphCypherQAChain
dynamically generates a Cypher query based on the predefined ontology schema,executes it within Neo4j,
and returns the relevant results. The processes of query generation and natural language processing are
handled by LLMs. The pipeline and output are illustrated in Figure 10.
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Figure 10: ActiveScience Framework for Knowledge Extraction. The system combines ontology-driven
prompts, large language models, and a Neo4j knowledge graph to enable natural language queries and
retrieval-augmented generation (RAG) for scientific research insights. Additionally, a code snippet demon-
strating the use of LangChain is shown.
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Figure 11: Schematic overview of the GlossaGen project. Textual information is extracted from PDF and
LaTeX files and a glossary is generated with terms and their definition. From this, a knowledge graph is
created, showing entities and relationships between terms.

7.2 GlossaGen
Academic literature, particularly review articles and grant applications, would substantially benefit from
the inclusion of comprehensive glossaries elucidating complex terminology and discipline-specific nomencla-
ture. However, the manual generation of such reference materials is a labor-intensive and redundant process.
To address this limitation, Lederbauer et al. developed GlossaGen, which leverages large language models
to automate the creation of glossaries for academic articles and grant proposals, eliminating the need for
time-consuming manual compilation. To efficiently process PDF or TeX articles, a pre-processing step auto-
matically extracts the title and DOI, and chunks the text into smaller, context-preserving sections for LLM
analysis. LLMs such as GPT-3.5-Turbo [25] and GPT-4-Turbo [24] then identify and define scientific terms
with the help of Typed Predictors [107] and Chain-of-Thought [108] prompting, ensuring well-structured,
contextually relevant, and accurate outputs. The generated glossary is not merely presented as a list of terms
but also as an ontology-based knowledge graph using Neo4J [106]and Graph Maker [109], visualizing the
intricate relationships between various technical concepts (Figure 11). A user-friendly interface prototype,
developed with Gradio [110], enables seamless interaction and customization, making the system accessible
to researchers.

Future enhancements could focus on improving glossary output through LLM fine-tuning, integrating
retrieval-augmented generation, and enabling article image parsing. Additionally, the system can better
support users by allowing them to input specific terms for glossary explanations, ensuring comprehensive
coverage even when LLMs omit key concepts.Overall, GlossaGen’s rapid development and promising capa-
bilities highlight the potential of LLMs to assist researchers in their scientific outreach.

7.3 ChemQA
Foundation models exhibit strong capabilities in chemistry reasoning, yet their performance across differ-
ent input modalities — text, images, and their combination, remains underexplored. Building upon prior
benchmarks such as IsoBench [111] and ChemLLMBench [112],the VizChem team (Khalighinejad et al.)
introduced ChemQA[113], a multimodal question-answering dataset designed to assess chemistry reasoning
in language models.

ChemQA comprises five distinct QA tasks:atom counting, molecular weight calculation, name conversion,
molecule captioning, and retrosynthesis planning. Each task is formulated with both molecular images and
textual SMILES representations, enabling a systematic study of multimodal reasoning in chemistry.

The evaluation results, shown in Figure 12, reveal that the models achieve higher accuracy when provided
with both text and images, while the performance drops significantly with image-only inputs. Notably,
Claude 3 Opus demonstrates superior performance in text-based tasks, whereas Gemini Pro and GPT-
4 Turbo excel in multimodal settings [114, 115, 116]. These findings highlight the limitations of current
models in processing visual chemistry data independently.

By introducing ChemQA, the VizChem team underscored the need for enhanced multimodal reasoning
in chemistry. Future work should focus on improving the integration of textual and visual representations
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Figure 12: Performance of Gemini Pro, GPT-4 Turbo, and Claude3 Opus on text, visual, and text+visual
representations. The plot shows that models achieve higher accuracy with combined text and visual inputs
compared to visual-only inputs.

to advance AI-driven scientific analysis.

Hackathon Event Overview
The second annual Large Language Model (LLM) Hackathon for Applications in Materials Science and
Chemistry was held on May 9, 2024, bringing together a global network of researchers, students, and industry
professionals.With 556 registered participants and over 120 active contributors forming 34 teams, the event
spanned multiple time zones and research domains, underscoring the broad interest in applying LLMs to
scientific discovery(Figure 13). This hackathon built on the success of the previous year’s event, described
in detail in [30]. The hybrid format included physical hubs in Toronto, Montreal, San Francisco, Berlin,
Lausanne, and Tokyo, fostering interdisciplinary collaboration across institutions and time zones.The event
began with a kickoff panel featuring experts Elsa Olivetti (MIT), Jon Reifsneider (Duke), Michael Craig
(Valence Laboratories), and Marwin Segler (Microsoft), who discussed the evolving role of LLMs in scientific
research.

The charge of the hackathon was intentionally open-ended: to explore the vast potential application
space and create tangible demonstrations of the most innovative, impactful, and scalable solutions within
a constrained timeframe. Participants leveraged open-source and best-in-class multimodal models to tackle
challenges in materials science and chemistry.These teams submitted projects covering molecular property
prediction, materials design, automation, hypothesis generation, and knowledge extraction, demonstrating
the versatility of LLMs in scientific research. Many incorporated retrieval-augmented generation (RAG),
multi-agent reasoning, and natural language interfaces, showcasing AI’s expanding role in scientific discovery.

Beyond technical contributions, the hackathon fostered a global research community, with 483 researchers
continuing collaborations via Slack. The event demonstrated the value of structured collaboration in accel-
erating AI-driven discovery and bridging computational scientists, experimentalists, and AI researchers.
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Figure 13: LLM Hackathon for Applications in Materials and Chemistry hybrid hackathon. Researchers
were able to participate from both remote and in-person locations (purple pins).
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Conclusion
The LLM Hackathon for Applications in Materials Science and Chemistry has demonstrated the dual utility
and immense promise of LLMs to impact materials science and chemistry research across the entire lifecycle.
Together, the projects 1) demonstrate the promise of a new set of tools that together form a cohesive
patchwork to perform tasks ranging from hypothesis generation to data extraction, novel interface design,
analysis of results, and more; and 2) showcase the ability of LLMs to enable rapid prototyping and exploration
of the application space. Participants effectively utilized LLMs to explore solutions to specific challenges
while rapidly evaluating their ideas over just a short 24-hour period, highlighting compelling abilities to
enhance the efficiency and creativity of research processes across many applications.It’s important to note
that many projects benefited from significant advancements in LLM performance since the previous year’s
hackathon. That is, the performance across the application space was improved simply via the release of
more powerful versions of Gemini, ChatGPT, Claude, Llama, and other models and more easily accessible
APIs and examples. If this trend continues, we expect to see even broader applications in subsequent
hackathons and in materials science and chemistry more generally. We note that reliance on proprietary
APIs raises reproducibility concerns as models evolve or are deprecated, while infrastructure demands for
training, fine-tuning, or running inference on models with parameters reaching hundreds of billions require
yet more computational resources, leading to significant infrastructure roadblocks to further academic work.

Importantly, the hybrid hackathon format itself proved to be an effective mechanism to foster inter-
disciplinary collaboration, accelerate the prototyping of AI-driven tools, and create a global community of
researchers engaged in exploring LLM applications.The hybrid format, combining physical hubs with virtual
participation, facilitated knowledge exchange across continents,highlighting the importance of accessible,
multimodal, and scalable approaches to scientific innovation.
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