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Abstract

Continuous advances in photo and video manipulation yield
increasingly sophisticated deepfakes that greatly endanger
societal perception of reality. Deepfake detection is an intu-
itive and natural research direction, which is unfortunately
shaping up to be a never-ending arms race. An alternative
promising direction is provenance assertion, which blends
hardware-based secure camera design with the cryptographic
means of authenticating the source of visual content and any
post-processing (e.g., filters) applied to it.

This work starts by highlighting a very effective attack
type, called a recapture attack, against all provenance-based
techniques. In such an attack, the adversary displays fake
content on some form of a screen (e.g., TV, projector, or com-
puter screen) or surface (e.g., cardboard, canvas, or paper) and
uses a provenance-asserting secure camera device to capture
photos and videos of the displayed content.

We then introduce Scoop,1 a systematic solution for mit-
igating recapture attacks. Scoop leverages state-of-the-art
depth sensing technologies as well as learning-based depth
estimation to detect misleading recaptures, i.e., a recaptured
photo or video where the presence of a display medium is not
visually identifiable.

We implement Scoop on both iOS and Android platforms
(Apple iPhone 14 Pro and Samsung Galaxy S20 Plus), using
their built-in depth sensors. To evaluate the effectiveness of
Scoop, we construct a first-of-its-kind dataset consisting of
78 recapture attack scenarios. Our results show that Scoop
achieves as high as ≈ 95% accuracy on the iPhone and 74%
accuracy on the Samsung phone.

1 Introduction

Today, digital media is constantly produced and consumed
in enormous volumes. It is an undisputed fact that modern
society is dependent on and, to some degree, even addicted,

1Scoop: Secure Content Origin from Optical Properties

Figure 1: Demonstration of effectiveness of recapture attacks.
One of these photos is real (i.e., captured by a camera in a real
environment) and one is a recapture attack (i.e., captured by a
camera pointed at a screen showing a modified photo). Even
though we have used a mid-range TV, detecting the attack is
very challenging (especially if the user is not suspecting an
attack). Appendix A mentions which one of these photos is
real.

to it. Due to the global popularity and affordability of digital
cameras and camera-equipped smartphones (and, increasingly,
eye-wear and AR/VR headsets), almost everyone can create
visual content (photos and videos) anywhere anytime. Further-
more, ubiquitous Internet connectivity allows visual content
to be easily shared online. It is estimated that over 3.2 bil-
lion images and 720,000 hours of videos are shared daily on
various social media platforms [71].

On the other hand, besides recreational purposes, visual
content can benefit the entire society, e.g., via news reporting
(both mainstream and citizen journalism), legal proceedings,
law enforcement actions, and so on. Over one quarter of Amer-
ican adults get their news from YouTube, and over half – from
social media platforms [39,70]. Also, about 65% of American
X users cite reading news as their main reason for using the
platform [38].

Unfortunately, lots of visual content found on the Internet
is not real, ranging from manipulated to fully synthetic. Con-
tinuous advances in image and video editing techniques and
deepfake creation [76] make it very hard for consumers to



determine visual content’s veracity. To make things worse,
recent development of generative artificial intelligence (AI)
technologies [23, 30] enable deepfakes to produce arbitrary
lifelike photos and videos with just a few lines of text prompt.

The above, coupled with the popularity of social media
sharing platforms and human gullibility, results in rapidly
growing volume and efficacy of mostly nefarious misinforma-
tion [1, 9, 67, 68, 73]. One notable example is a manipulated
video of the Ukranian president Zelinsky, publicly addressing
the war between Russia and Ukraine [40]. Misinformation
impacts organizations and institutions (industry, non-profit,
and government) as well as individuals.

The unprecedented rise in misinformation attributed to
deepfakes triggers an urgent need for authenticity and integrity
of visual content. To this end, both industry and academia
developed various provenance-based techniques [5, 7, 45, 57,
58, 60]. The key idea behind this line of work is the use of
cryptographic metadata attached to visual content, coupled
with a secure camera design. The end-result is the ability for
anyone to authenticate the source camera, the content it cap-
tured, and any post-processing filters applied to that content.
Based on secure components, such as a Trusted Execution
Environment (TEE) [3, 57] and specialized hardware, such
as a secure camera module (sensor) [58], provenance-based
techniques aim to provide strong security for generation and
subsequent (benign) modification of visual content.

Many prominent industry players from diverse sectors (e.g.,
Canon, Adobe, BBC, and Microsoft) already committed to –
or even commercialized – provenance-based media authenti-
cation techniques [5]. For example, Truepic teamed up with
Qualcomn to provide provenance-based media authentica-
tion for smartphones with Qualcomm Snapdragon SoCs [26].
Another example is Adobe’s recent integration of content
authenticity into its tools [16].

This paper sheds light on an important vulnerability in
provenance-based techniques: vulnerability to recapture at-
tacks. In such an attack, the adversary prepares some fake
content, which it then either: (1) displays on a screen, e.g.,
TV, monitor, or projector, or (2) prints or replicates on some
physical surface, e.g., paper, cardboard, or canvas. Finally,
the adversary captures this fake content with a camera that
uses a provenance-based technique. The fake content might
comprise the entire frame or part(s) thereof.

The adversary’s goal in a recapture attack is to present
all captured content as real, including the fake parts. Since
a provenance-based camera cannot distinguish real content
from displayed, painted, or printed one, the entirety of cap-
tured content gains credibility as having been generated by a
secure camera. Figure 1 demonstrates the effectiveness of this
attack. It shows two photos, both of which are captured by
the same smartphone. One of these photos is captured in the
real physical environment depicted in the photo. The other is
a fake, manipulated version of the original photo displayed
on a TV and recaptured by the same smartphone. Detecting

the malicious photo is very challenging, if not impossible,
especially if the viewer is unaware of the attack. To demon-
strate this vulnerability, we conduct a user study. In §2.3, we
present the results of this user study that show that people
are not able to to distinguish between an original photo and a
photo recaptured from a digital screen.

To mitigate recapture attacks in general, we introduce
Scoop2. It uses depth information captured at the same time
as the visual content with a time-of-flight (ToF) sensor present
on the camera to detect flat display mediums that could be
used to mount recapture attacks (e.g., TVs, printed cardboard
cutouts, and projector screens). Scoop tries to detect mislead-
ing recaptures, i.e., a recaptured photo or video where the
presence of a display medium is not visually identifiable. We
note that not all misleading recaptures are malicious, hence
we intend Scoop as an assistant tool, helping the user detect
recapture attacks.

Although the use of depth may seem intuitive and/or trivial,
it poses an important challenge: the majority of flat surfaces
are not display mediums that can be used in recapture attacks,
e.g., walls and floors. To address this challenge, Scoop com-
putes a learning-based depth map of the scene, which provides
us with the perceived depth in the same photo. When the per-
ceived depth map fails to match the real depth map generated
by the ToF sensor, Scoop marks that region of the photo as
misleading, prompting the viewer to pay more attention to it.

To evaluate the efficacy and practicality of Scoop, we as-
semble a first-of-its-kind dataset, which contains 122 unique
data points, including 78 recapture scenarios and 44 benign,
ordinary daily scenes.3

To demonstrate Scoop’s viability and practicality, we built
a prototype composed of two parties: producer (camera) and
consumer (viewer). The former runs on both Apple iPhone 14
Pro (w/ dToF sensor) and Samsung Galaxy S20 Plus (w/ iToF
sensor), while the latter runs on a Linux desktop. Evaluation
results show that Scoop achieves up to 94.81% accuracy of
detecting with as low as 0.02% false positives on an iPhone
and 74.03% accuracy and 17.78% false positives, respectively,
on a Samsung phone.

This paper makes the following contributions:

• Discussion and analysis of recapture attacks against
provenance-based techniques.

• Design of Scoop, a technique that blends depth and vi-
sual information and can effectively detect misleading
recaptures using flat display medium.

• A first-of-its-kind dataset containing 122 unique data
points (both photos and videos) including 78 recapture
scenarios, serving as a cornerstone for evaluating sys-
tems such as Scoop.

2We will open source Scoop upon publication.
3We will release this dataset so that it can be used for evaluating future

methods that tackle the same problem.



Figure 2: An example of a recapture attack on a provenance-based secure camera.

• A fully functional Scoop prototype on commodity de-
vices and a thorough evaluation thereof, including effec-
tiveness, performance and storage overhead, and energy
consumption.

2 Recapture Attack

Workflow and example. Figure 2 illustrates a recapture
attack. The photo on the left is real and captured by a smart-
phone. The one in the middle is a recapture attack. To conduct
this attack, the adversary digitally modifies the original photo
to remove the wallet, displays the modified photo on a TV
screen, and recaptures it using a provenance-based secure
camera. The result is a fake photo that looks very real and,
even worse, is endorsed by a provenance-asserting camera,
creating a false and dangerous sense of authenticity for the
viewer.

Admittedly, such attacks raise the bar for the adversary in
terms of the amount of effort required. Purely digital fakes can
be easily generated in large quantities by software tools with
minimal human involvement. In contrast, recapture attacks
require the adversary to physically stage the scene. However,
the cost is not prohibitive since recapture attacks can be or-
chestrated with minimal equipment (e.g., a TV) and relative
ease (e.g., mounting a phone in front of a TV).
History. Recapture attacks are not a new concept [37, 42,
50, 53, 72, 74]. In the past, these attacks have been used to
deceive face authentication systems (aka face spoofing), since
most early facial recognition systems lacked liveness detec-
tion and/or depth-based defense means [59]. Printed photos
were a common way of mounting such attacks [59]. However,
the display technology evolved to the point where a screen
could display images with the same quality as that of printing.
Plus, digital displays support high-definition video playback.
Consequently, screens became the dominant tool used in re-
capture attacks [35]. Much effort has been made to mitigate
these attacks, and some countermeasures are already deployed
commercially [11, 27, 43, 52, 56].
Why relevant now? We found that many current counter-
measures focus on one specific problem (i.e., face authentica-
tion), rather than providing a systematic approach to mitigat-
ing recapture attacks. One important reason is that recapture
attacks have only targeted specific systems, such as spoofing

face authentication systems. Indeed, in the past, there was
no need for recapture attacks to deceive people with some
fabricated information, since no provenance-based techniques
were deployed and the adversary could simply present fake
visual content.

2.1 Categorizing Recapture Attacks

The envisioned recapture attack is conducted by displaying
fake content on some display medium and capturing that with
a provenance-asserting camera.

One component needed to mount the attack is the display
medium – the physical medium used to display fake content.
We identify three categories for the display medium:

1. Screen-based (e.g., LCD/OLED TVs)

2. Projection-based

3. Print-based (e.g., Inkjet/laser/3D printing)

Moreover, the display medium could be flat, curved, or
custom-shaped (e.g., a 3D-printed model).

(a) Full-Recapture (b) Partial-Recapture

Figure 3: Illustration of full-recapture (a) and partial-
recapture (b) attacks. Face in the image is blurred for
anonymity.

We also categorize recapture attacks into full-recapture
and partial-recapture attacks, which are demonstrated in Fig-
ure 3. In the former, all contents (i.e., pixels) captured with
the camera are recaptured, e.g., the camera points directly at
a TV screen and captures part of the screen, while the TV is
displaying fake content. In the latter, captured contents (i.e.,
pixels) contain both genuine and recaptured information, e.g.,
the camera points at a TV, while a real person is standing
in front of the TV screen. In this example, the screen could
display a place of interest, which would create a false sense of
the person being physically present at the displayed location.



Figure 4: These two example photos, even if display medi-
ums (i.e., a monitor and a TV) are presented in them, do not
constitute an attack since the presence of the medium can be
recognized by the viewer.

Figure 5: Terminology of recaptured visual content. Note that
Recapture is the largest set, with Misleading Recapture as a
subset of it, followed by Malicious Recapture as a subset of
Misleading Recapture.

2.2 Terminology

We categorized recaptured attacks based on the type of display
medium. However, the presence of one of the aforementioned
mediums in a photo/video does not constitute an attack if the
viewer can clearly recognize it. Moreover, whether a recapture
is an attack or not depends on the content, i.e., whether it
has been maliciously created. In this subsection, we more
accurately define the terms we use to refer to recaptures.

We define a photo/video to be a recapture if it is taken off a
display medium (fully or partially). However, sometimes, the
presence of the display medium might be visually identifiable.
This happens when the frames/boundary/edges of the medium
are clearly visible. Figure 4 shows two such examples.

When the display medium is not visually identifiable, we
refer to the recapture as misleading since the viewer might not
realize that the content is recaptured. Note that a misleading
recapture is not necessarily malicious. For a misleading recap-
ture to count as an attack, the content shown on the display
medium must be maliciously crafted in order to fool the view-
ers in some way. For example, consider a user taking a photo
of a large TV showing some important event (a full-recapture).
Viewers of this photo might be misled into thinking that the
photo was taken during the event. However, this photo is
not maliciously crafted and does not intend to be an attack.
Figure 5 illustrates the aforementioned terminology.

As mentioned earlier, Scoop’s goal is to identify misleading
recaptures and highlight them to the viewer, enabling the
viewer to further analyze them in order to detect attacks.

2.3 User Study

As mentioned, Scoop’s goal is to identify misleading recap-
tures. A key question is whether users themselves are able
to detect misleading recaptures or not. In other words: are
today’s display mediums and cameras capable of creating a
misleading recaptured photo/video with adequate quality that
goes undetected by a human viewer?

We conduct a user study to answer this question. In the user
study, we only focus on using large, high-quality TVs (see § 8
for the TV models) as the display medium. While we believe
high-quality projectors and printed cardboard cutouts can
also go undetected by viewers, we do not own such display
mediums in order to test that hypothesis. In addition, we
focus on full-recaptures. This is because we deem full-capture
attacks as the most common and effective recapture attack at
the moment. We do however believe that partial-recaptures
can also be effectively used to mount attacks, but we do not
evaluate that in this user study.

In the user study, we showed 16 photos (8 original and
8 recaptured) to each user in a random order. Photos are
selected to cover as much diversity as possible, i.e., lighting
conditions, distance to objects, and complexity of the scenes,
where all of them can be found in Appendix B. We recruited
a total of 43 adult participants from the authors’ institution.
They have an average age of 24 years old, where 28 of them
are in graduate degrees, and 15 of them are in undergraduate
degrees. Among all participants, 25 of them are male and 18
of them are female.

Each session of the user study was conducted in person
with one participant. All participants used the same device: a
laptop featuring a 14-inch 2K resolution screen. To minimize
potential psychological stress, the user study was unsuper-
vised, where each participant took the survey with the laptop
in an empty room using the QuestionPro [4] platform. The
survey first provided each participant with the definitions of
an original photo and a recaptured photo. Then for each photo
in the survey, it gave them two choices to select from: original
and recaptured. At the end of the survey, we asked participants
about their experience completing it and confidence in their
responses.

The results prove the fact that original and recaptured
photos are perceptually indistinguishable. To demonstrate
it, we conducted a one-sample t-test comparing our mean
accuracy against chance performance. The results show
that participants’ (correct classification) accuracy 50.15%
(SD= 13.89%) is close to pure chance at 50% (t(42) = 0.071,
p = 0.944), where the 95% confidence interval is between
45.88% and 54.42%. The negligible effect size (d = 0.011)
indicates that any deviation from chance performance is prac-
tically meaningless. We also note that 44% of our participants
classified exactly 8 out of 16 photos correctly. Additionally,
most participants of our survey also stated that they did not
have any confidence when they were making their decisions.



Finally, we note that in the user study, the participants were
made aware of the presence of misleading recaptures and yet
could not identify them. In realistic attack scenarios, users
will be unsuspecting and hence are very unlikely to identify a
misleading recapture.

3 Threat Model

There are two entities in Scoop interacting with photos or
videos: producer (camera owner/operator) and consumer (con-
tent viewer). We assume the adversary to be the former, who
might try to capture malicious photos or videos in order to
deceive the latter who is the victim here. The adversary uses
a provenance-asserting camera to take a photo/video of a dis-
play medium showing fake content. The adversary can show
arbitrary fake content on the display. They cannot, however,
modify the final photo/video captured by the provenance-
asserting camera. Adversary’s attempts to tamper with the
captured content will be detected in the provenance verifi-
cation process. (Please see §10.5 for a discussion on some
limited form of provenance-based post-processing that could
be allowed on the final photo/video.) The adversary cannot
mount any software or hardware attacks on the camera device
either, which is deemed trusted (e.g., secured with a trusted
camera sensor [58]). In other words, we assume that the
captured content’s provenance information can be reliably
and securely generated. This assumption is based on signifi-
cant advancements in minimizing the trusted computing base
(TCB) for provenance-based media authentication systems
by both academia [57, 58] and industry [5, 7, 26] over recent
years.

In this paper, we focus on recapture attacks using flat dis-
play mediums (see §2.1). Attacks using curved or custom-
shaped display mediums are out of our scope. We note that
our solution is likely able to handle curved display mediums.
However, we do not have any samples of such attacks in our
dataset and hence cannot evaluate our approach. (But we note
that even the flat display mediums we use in our dataset are
not completely flat and they can be slightly curved, textured,
or bumpy.) On the other hand, our solution, as it stands, fails
against custom-shaped medium (e.g., a 3D-printed model)
since the depth map of the medium matches the learning-
based perceived depth map. (Please see §10.1 for a more
detailed discussion on 3D display-based attacks.)

In addition, we consider any objects outside of the sup-
ported range of the depth sensors as out of scope as well. Ex-
isting ToF sensors on smartphones have limited range – about
8 meters or 26 feet in our experiments. Those on autonomous
vehicles have much higher range. While not a fundamental
limitation of Scoop, we believe the ≈ 8 meter range is suffi-
cient to detect most indoor misleading recaptures, as the cost
of very large screens to mount attacks beyond 8 meters is very
high. We hope that Scoop inspires smartphone vendors to
include more powerful ToF sensors. Some professional-grade

cameras have ToF sensors with more range, such as the DJI
Zenmuse L2 with a range of 450 meters or 1476 feet [29].

Finally, we note that Scoop cannot distinguish between a
flat surface such as a wall, and a display showing an image
of a wall. In such situations, both the ground truth depth map
and the learning-based depth map would match. We do note
that meaningful attacks could exist in such scenarios, such as
a recapture of a digitally modified signed contract. Scoop is
not capable of detecting such recaptures.

4 Overview

Scoop tries to detect misleading recaptures. These recaptures
can then be brought to the attention of the viewer, who can
determine whether they are malicious or not.

Our first key idea to detect recaptures is to use a Time-of-
Flight (ToF) depth sensor, available in some modern smart-
phones (almost all newer iPhone models and some Android
devices) and cameras, to capture depth information of the
scene. ToF depth sensor is a kind of camera sensor that mea-
sures the distance between the sensor and objects in front of
it, thus providing a precise depth map [25]. Since we focus
on recaptures that use flat surfaces, the idea is to use the ToF
sensor to detect misleading recaptures.

However, mere use of depth information to mitigate re-
capture attacks faces an important problem: the existence of
many non-display flat surfaces (e.g., walls). Scoop’s goal is
to detect display mediums, but not these other flat surfaces.
To do so, Scoop computes a learning-based depth map of the
scene. By comparing this map with the one generated by the
ToF sensor, Scoop can detect content that has visual depth
information and is shown on a display medium.
Insights behind our approach. We begin by looking at how
and why recapture attacks work. They work by trying to make
the viewer believe that the content shown in the photo/video is
captured at its original scene rather than on a display medium,
such as a poster or a TV screen. These attacks mainly abuse
the fact that the viewer can only observe the captured con-
tent at the viewpoint decided by the photographer, i.e., in 2D.
Moreover, since both printing and digital displaying technolo-
gies quickly advance, it becomes hard for a human eye to
tell if they are looking at a real scene or a photo/video being
shown on a medium at certain angles. Therefore, certain re-
captures can mislead viewers into believing that a fake scene
is real, i.e., has depth. As a result, detecting misleading recap-
tures requires us to understand human perception of the depth
of an image. The main idea here is to achieve that using AI.

As is well known, AI has been dramatically growing in
popularity in recent years. Various learning-based models
have advanced to the point where they perceive information
akin to humans, including monocular depth estimation, which
is a kind of model that estimates depth using only a single
photo containing RGB information.



Figure 6: Illustration of a learning-based depth estimation model got tricked by a photo displayed on a TV, while a ToF sensor
captured depth map correctly represents the depth of the real scene.

After some initial experiments, we found that, similar to hu-
mans, such models can be easily tricked by recapture attacks.
For instance, we conducted an experiment where an RGB
photo of a real scene was displayed on a TV screen and then
was captured with: (1) TV screen frame being visible (i.e.,
a non-misleading recapture) and (2) without it being visible
(i.e., a misleading recapture). In (1), depth estimation models
did not recognize any depth in the photo, just a flat surface.
In contrast, in (2), all models [32–34, 46, 49, 62, 63, 77–79]
estimated depth information based on the content displayed
on the TV screen.

While monocular depth estimation models fail to recognize
a recapture attack in (2), the ToF depth sensor can recognize
that there is no depth in this scene, since it measures the
physical distance between the camera and each point in the
scene. Figure 6 illustrates the depth maps generated using
monocular depth estimation model and the ToF sensor.

Based on the above observations, our approach involves
comparing the depth information generated by the learning-
based method and the ToF sensor. If there is a significant
discrepancy between the two, it is likely that we have identi-
fied a misleading recapture.
Alternative approaches. One might wonder whether pro-
viding verifiable provenance for time and location of content
might be adequate to detect misleading recaptures. We note
that these two types of metadata can help identify some mis-
leading recaptures, but they are not always useful, i.e., when
the content itself does not suggest a clear time or location.
Moreover, providing authentic time and location metadata in
the camera is not straightforward. For time, the camera needs
to synchronize its clock to an external reference server. For
location, it needs to use an external signal, e.g., GPS. How-
ever, GPS is unavailable for indoor scenarios and vulnerable
to spoofing through low-cost tools [64, 75, 80].

5 Depth Estimation Preliminaries

We now summarize two main building blocks used in Scoop:
ToF depth sensor and learning-based monocular depth esti-
mation.

5.1 ToF Depth Sensor

ToF sensor, also known as ToF camera, is a special camera
sensor used for measuring distance between the camera lens
and the measured object. Similar to traditional camera sensor,
it usually has multiple pixels, where each pixel can produce
a distance value. Combining all pixels together, a depth map
can be produced to recreate the 3D scene that the ToF sensor
is seeing. ToF sensor can achieve high precision to the range
of centimeters or even millimeters on some high-end mod-
els [31]. Also, because a ToF sensor works by detecting light
it emits, it works well under low-light conditions.

There are mainly two types of ToF sensors: direct time-of-
flight (dToF) sensors and indirect time-of-flight (iToF) sensors.
A dToF sensor works by directly counting the time difference
between the time that the sensor emits the light and the time
that the sensor receives that light. Apple devices, such as
iPhone 14-Pro, use a dToF (i.e., LiDAR) sensor [12]. An iToF
sensor works by comparing the phase of emitted light and
received light, where the phase difference is used to derive
the distance value. Some Android devices, such as Samsung
Galaxy S20 Plus, use an iToF sensor [6]. Due to the technical
principle of a iToF sensor, it is more vulnerable to environ-
mental lights and is also more likely to get confused when its
emitted light bounce around before coming back [8, 28, 44].

5.2 Learning-based Monocular Depth Estima-
tion

Monocular depth estimation is the ability to determine dis-
tance to each pixel in a photo with only a single RGB image.
With the rise of AR/VR and autonomous driving, it has be-
come a hot research topic in computer vision community in
recent years. Its task is usually carried out by a machine learn-
ing model, trained on a large number of datasets with various
scenarios and their corresponding depth maps.

The task has also been classified into two categories: rela-
tive and absolute depth estimation. The former aims to give
the relative depth relationship among multiple objects in a
photo, while the latter provides a precise estimation of the
distance value for each pixel in the photo. Recent advances
in absolute depth estimation can achieve centimeter-level



Figure 7: Scoop viewer’s workflow.

accuracy [34]. However, just like human beings, the learning-
based approach sometimes make mistakes, especially on flat
surfaces showing content.

6 Design

We design Scoop to be integrated with both existing camera
pipelines and provenance-based media authentication sys-
tems [5, 7, 57, 58]. In Scoop, in addition to the ordinary RGB
information, the camera also captures depth information with
its ToF sensor and embeds it as part of the final captured
content’s provenance information. The embedded depth infor-
mation is essentially another photo containing the same scene
of the RGB photo, but it keeps an absolute metric depth value
for each pixel instead of a RGB value.

Whenever the captured content (a photo/video) reaches the
viewer side, it can be opened with any content viewer, but the
embedded depth information is only utilized when the content
is opened with a Scoop-compatible viewer. During content
playback, Scoop reads the depth information and generates
a ground truth point cloud. At the same time, it also uses the
corresponding RGB information to produce a depth map with
a learning-based monocular depth estimation model. After
that, the depth map is used to generate another point cloud.
Scoop then compares these two point clouds against each
other with Scoop comparison techniques. If any mismatch
is found between the two point clouds, the content viewer
highlights the mismatch to warn the users.

Note that Scoop only warns users of misleading (i.e., poten-
tially malicious) recaptures by highlighting the part(s) of the
frame flagged by its techniques. We made this design choice
as we do not view Scoop as a determination tool of telling
users if the digital content should be trusted or not, but as an
analysis tool to assist users to make their own decisions. To
better understand if this approach would work out or not, a
future user study needs to be conducted. Another solution we
have in our mind is to have a third party service running Scoop
and make a decision, which helps offloading users’ need to
analyze Scoop’s highlights. We also note that advanced rea-
soning AI could be a great fit to fulfill the need to analyze if
Scoop’s highlights may pose serious misinformation.

Figure 7 shows the entire workflow of Scoop viewer. We
discuss more technical details of Scoop in §7.

Algorithm 1 Scoop’s depth map comparison algorithm
Inputs: depthlearning, depthtruth
Output: violated_pRegions

1: Create pCloudlearning with depthlearning
2: Create pCloudtruth with depthtruth
3: Extract pRegionstruth from pCloudtruth using regional segmentation
4: Initialize violated_pRegions
5: for Every pRegiontruth in pRegionstruth do
6: if Technique_1 (direct comparison) with pRegiontruth and pCloudlearning re-

turns true then
7: Add pRegiontruth to violated_pRegions
8: else
9: Continue

10: end if
11: if Technique_2 (deviation correction) with pRegiontruth and pCloudlearning

returns true then
12: Add pRegiontruth to violated_pRegions
13: else
14: Continue
15: end if
16: if Technique_3 (transformation) with pRegiontruth and pCloudlearning returns

true then
17: Add pRegiontruth to violated_pRegions
18: else
19: Continue
20: end if
21: end for
22: Return violated_pRegions

7 Depth Maps Comparison

As stated in §6, when the digital content is opened with an
Scoop-compatible viewer, Scoop generates two point clouds
(for each photo or video frame): a ground truth point cloud
based on the ToF sensor captured depth map and a learning-
based point cloud based on the estimation model perceived
depth map using RGB information. Scoop then compares
these two point clouds by first performing regional segmen-
tation on the ground truth point cloud, followed by corre-
lating each of the ground truth regions with its pixel-level
corresponding part in the learning-based point cloud using
multiple techniques: direct comparison, deviation correction,
and transformation. Algorithm 1 shows the algorithm used by
Scoop, where details are explained in the below subsections.

7.1 Regional Segmentation

The technical goal of Scoop is to find mismatches between
the two point clouds. Unfortunately, this is not as easy as
calculating the difference between two point clouds. First
of all, although ToF sensors can produce depth maps with



Figure 8: Scoop viewer’s techniques. In each technique, we try to match the region extracted from the ground truth point cloud
with its corresponding (pixel-level correspondence) region in the learning-based point cloud. Only if it cannot be matched, we
move to the next technique, until we run out of techniques, where we would flag the region as suspicious.

high precision, their resolutions are usually relatively low,
especially when compared with RGB camera sensors; addi-
tionally, noises are common in the captured depth map. On
the other hand, learning-based point clouds can achieve high
resolutions, but their precision is usually relatively low, es-
pecially when compared with ToF sensors’ captured depth
maps. Even if we match their resolutions by scaling, their
depth values are still drastically different from each other, and
the difference changes across the same photo. In our obser-
vation, the learning-based point cloud usually represents the
relative depth of a single object well in one photo, but when
combined with other objects and backgrounds, its precision
drops significantly.

To overcome these challenges, Scoop does not blindly com-
pare absolute depth values across all pixels, but instead it
compares by regions. After initial noise reduction is applied
to both point clouds, Scoop uses a region growing algorithm
to perform cluster segmentation on the ground truth point
cloud. We choose a region growing algorithm due to the na-
ture of surfaces, where it is hard to find any perfectly flat ones.
Even if this paper focuses on display mediums that are flat,
our algorithm still needs to compute on depth information
of non-flat surfaces and objects in the photo. We think the
region growing algorithm is well suited for our use cases and
can correctly separate all different surfaces existing in one
scene. After the first segmentation, Scoop applies the same
algorithm to the learning-based point cloud’s corresponding
regions (i.e., regions created with the previous segmentation
on the ground truth point cloud) as well, which is detailed in
§7.2

We note that parameters for performing cluster segmenta-
tion varies across depth maps for different capture/generation
methods and scenes. For the former, difference in parameters
is almost always fixed, where for the latter, parameters might
need to be specially tuned for different objects. For example,
human bodies tend to be continuous and could be recognized
as a single surface with our default parameters, where stricter
thresholds need to be set for correctly segmenting human bod-
ies. In this case, learning-based image understanding mod-
els [21] could be used to first recognize different types of

objects in the photo and then pick the best parameters for
conducting cluster segmentation.

7.2 Regional Comparison

After performing cluster segmentation, we end up with many
regions in the ground truth point cloud. For each of these
regions, we compare it with its counter part in the learning-
based point cloud, where the counter part is extracted by
matching X and Y axes of all individual pixels in the region.
We use multiple techniques to perform region comparison,
where our goal here is to understand the similarity between
them, and the reason we apply multiple of them is that there
is no single technique that can cover all kinds of scenes, and
there are also always imperfections in cluster segmentation,
which could render some of them unusable. There are three
techniques in Scoop (as illustrated in Figure 8): (1) direct
comparison, (2) deviation correction and (3) transformation.

In Technique (1), we perform cluster segmentation again on
the learning-based point cloud’s part to check if we are only
getting one region, which tells us that the learning-based point
cloud agrees with the ground truth point cloud in this region.
In Technique (2) (which is used when Technique (1) cannot
be satisfied), we then try to relax the standard for checking.
For example, we further examine if the biggest sub-region
covers more than a certain threshold (e.g., 90%) percentage
of the entire region (that is being checked). In Technique (3)
(which is used when both Techniques (1) and (2) cannot be
fulfilled), we use the iterative closest point (ICP) [19] and clus-
tered viewpoint feature histogram (CVFH) [47] algorithms to
perform the last attempt for getting the two regions matched
with each other. The ICP algorithm tries to register one point
cloud in another by transforming depth points, where once
it succeeds, we check its convergence score to see if it falls
below our threshold. On the other hand, the CVFH algorithm
first create feature descriptors of geometric properties of two
point clouds and then compare them. The reason we need
CVFH in addition to ICP is that ICP is known to get stuck in
local minima, which then it would falsely register two point
clouds that are drastically different from each other. There-



Figure 9: Example from our dataset showing different display
mediums used.

fore, we need a fail-safe to verify the convergence result given
by ICP. As CVFH tends to be computationally heavy, we first
calculate the mean squared error (MSE) difference between
two point clouds, and CVFH is only used if their it exceeds
a set threshold. The logic behind this is that a lower MSE
difference represents higher similarity and better alignment
of two point clouds, and they are both positive indicators for
ICP.

8 Dataset

Even though the Internet contains many fake/recaptured pho-
tos and videos, they do not contain depth information making
them unsuitable for evaluating Scoop. Moreover, although
there are existing RGBD datasets, to the best of our knowl-
edge, none of them is constructed with recaptures in mind.
We found that existing RGBD datasets consists of various
3D objects but have little or no recapture scenes, meaning
that they cannot fully assess the capability of systems like
Scoop. Therefore, in order to properly evaluate Scoop, we
collect an RGBD dataset containing photos and videos cap-
tured with recaptures in mind. Our dataset covers a wide
range of recapture scenarios. More specifically, we cover all
flat display mediums (listed below) as well as a diverse set of
content to be shown on them. We note that our main focus
is on TV-based full-recapture attacks, which we believe to
have the most imminent threat, but we also collected data
of other recaptures with different flat display mediums and
partial-recapture scenes so that we can thoroughly evaluate
the potential of Scoop. On the other hand, we did not include
any potential recapture attack that is defined as out of scope in
§3, e.g., a misleading recapture of a flat surface/object shown
on a display medium.
Display mediums. We use the following display mediums
to collect our dataset:

1. Screen: a 85-inch Samsung The Frame LS03B LCD TV,
which has a special coating for reducing reflection and
tuned color and brightness mode for displaying photos
like realistic arts, a 77-inch LG B4 OLED TV, and a
65-inch TCL R646 Mini-LED TV.

2. Projection: an Epson PowerLite L510U projector.

3. Printed: three life-size whole-body cardboard cutouts

with different skin colors (two of them are celebrities
and another one is an author of this paper) and a life-size
celebrity face cutout.

Figure 9 demonstrates three example photos for each of the
three options in the flat surface category: Figure 9(1) is a life-
size cardboard cutout of a celebrity; Figure 9(2) is Figure 9(1)
displayed on a TV; Figure 9(3) is Figure 9(1) displayed on a
projector. Any of the three options may potentially fit into a
malicious scenario; for example, they could be used to claim
the presence of that celebrity at a certain location using the
GPS location embedded in the provenance information [7] of
those photos.

Our dataset also covers benign cases where display medi-
ums are present, but their presence can be clearly recognized
by the content viewer, as mentioned in §2.1 and shown in
Figure 4.
Content. We collect some photos/videos of real environ-
ments to be used in the dataset. These contents are captured
by a smartphone camera and are included in the dataset as
benign scenarios. We also use the same photos/videos in the
recapture scenarios. That is, we show them on our display
mediums and capture photos/videos of the mediums in a way
that it is not obvious that they are being displayed. For our
dataset, we assign the ground truth to each photo/video to be
either benign content or misleading recapture.

To thoroughly evaluate the effectiveness of our techniques,
we try to collect a diverse content set. To do so, we use a total
of three different categorization methods when collecting the
content: background, object, and lighting.

Our categories for “background” include:
1. Plain (i.e., very simple color and/or depth distributions,

such as white walls)

2. Textured (i.e., relatively simple color and/or depth distri-
butions, such as patterned mats)

3. Complex (i.e., complex color and/or depth distributions,
such as a shelf fully stacked with items)

Our categories for “object” include:
1. None (i.e., no specific object other than the background)

2. Item (i.e., item(s) is shown as the main object; the item
could be small (e.g., a water bottle) or large (e.g., a TV))

3. Human/Animal (i.e., living being such as a person)

4. Mixed (i.e., mix of the above two)
Our categories for “lighting” include (note that all options

can be either indoor or outdoor):
1. Very dark (i.e., from no light to the captured footage

being barely visible)

2. Dark (i.e., most parts of the captured footage are visible,
but only little light is presented)

3. Lit (i.e., the captured footage is clearly visible, but shad-
ows can be easily found)



4. Well lit (i.e., the captured footage has almost no shadow)

Please refer to Appendix C for sample photos of different
categories. We mix and match almost all options of the above
three categories to the best of our effort in order to have
the content set contain scenes as versatile as possible. We
note that in some scenes, the object category’s option could
completely cover the background category’s option, making
the latter invisible.

8.1 Collection of Our Dataset

We first mix and match the normal three categories to capture
different scenes, where we have multiple different settings for
each type of scene, and there is one photo and one 10-second
video clip for the data point of each setting. Followed by that,
we then replay them using options in various display mediums.
This results in a total of 488 data points collected in the final
dataset, comprising 122 unique ones captured as photos and
videos and on two different smartphones. We made use of two
smartphones in order to learn the difference between different
types of depth sensors (dToF vs. iToF); more specifically, we
used two smartphones (Apple iPhone 14 Pro and Samsung
Galaxy S20 Plus to capture each data point. More technical
details about our dataset such as RGB and depth resolutions
can be found in §9.

9 Prototype & Evaluation

We have implemented a complete prototype of Scoop. The
producer (camera) side is implemented on both iOS and An-
droid platforms. On the iOS platform, Scoop captures depth
frames with a resolution of 768×432 during photo capture
and 320×180 at 30 frames per second during video capture.
On the Android platform, Scoop captures depth frames with
a resolution of 310×205 during both photo capture and same
resolution at 20 frames per second during video capture. On
both producer platforms, their captured RGB photo has a
resolution of 3840×2160 with JPEG codec, and same reso-
lution for RGB video at 30 frames per second with H.265
codec. The iOS platform is evaluated on an Apple iPhone 14
Pro running iOS 18.2, and the Android platform is evaluated
on a Samsung Galaxy S20 Plus running Android 13. It is
noteworthy mentioning that the dToF sensor on the iPhone is
pre-calibrated with the primary RGB camera sensor, where
the iToF sensor on the Samsung phone is not. Such calibration
is crucial for Scoop to work properly, as we rely on the fact
that both depth and RGB camera sensors capture the exact
same content. Although we manually calibrated the Samsung
phone’s iToF sensor with its primary RGB camera sensor,
the lack of sensors’ factory information make it hard for our
calibration result to match with the iPhone. We used our
producer prototype on both phones to capture our dataset,
and iOS captured footage is used for playback on display

mediums due to its higher picture quality.
The consumer (viewer) side has two components: generator

and analyzer, where generator is responsible for producing
the RGB frame based depth map using monocular depth esti-
mation learning-based model and analyzer contains the algo-
rithms for comparing the two depth maps for each RGB frame.
The generator uses a state-of-the-art model: depth-pro [34],
which utilizes PyTorch 2.5.1 [61] with CUDA 12.4 [2]. The
analyzer is implemented with OpenCV 4.x (11-02-2024) [36]
and PCL (10-27-2024) [65] libraries using C++. Both genera-
tor and analyzer run on top of Ubuntu 24.04.

The consumer uses a single CPU core and a GPU. We use
the Intel Xeon Gold 6438M CPU (which has a lower single-
thread performance than desktop CPUs) and an Nvidia RTX-
4090 GPU, which is a consumer-grade GPU. Admittedly, this
is a powerful GPU. We have not evaluated the performance
of the consumer on weaker GPUs. But we note that Scoop’s
consumer could be performed off-line (e.g., in a server), the
result of which could be simply appended as metadata to
a photo/video (which then could be easily verified in any
consumer device). We leave it to future work to optimize
Scoop’s consumer to run with good performance in various
consumer devices.

Figure 10 show-cases Scoop viewer’s prototype. We can
clearly see that some facial features, details of clothes, hands,
and gift boxes have depth information registered in the
learning-based point cloud, which contradicts with the ground
truth point cloud. In this case, we simply highlight all the vio-
lated parts with red color in the final displayed photo.

9.1 Effectiveness

The prototype of Scoop viewer and its parameters are de-
veloped using some test data we collected in our daily lives.
Similar to the dataset we have, those test data covers a wide
range of camera use cases, including capturing benign scenes
and display mediums. We note that this set of test data is
completely disjoint from our evaluation dataset. We then eval-
uate it on the dataset we collected, for both true positive rate
(TPR) and false positive rate (FPR). True positive means
successfully classifying the existing of a misleading recap-
ture, where false positive means falsely classifying a benign
scenario as a misleading recapture. Figure 11 shows the re-
sults on different display mediums; Figures 12(a-c) show the
results on different benign content categories; and Figure 13
shows the overall results. In Figure 11, each of the first four
x-axis options means the screen is captured without its frame
being visible in photos, making them fall into full-recapture
scenarios. The cutouts option represents a cutout put in front
of either plain or textured background without any other ob-
jects, which is counted as a part of partial-recapture scenar-
ios. Lastly, the mixed option indicates the photos contain
either multiple cutouts or display mediums blended with real
3D object(s) , which also falls into partial-recapture attacks.



Figure 10: Demonstration of Scoop viewer prototype’s workflow with a sample photo containing a life size cardboard cutout of a
celebrity.

In summary, the iPhone 14 Pro (w/ dToF) based prototype
achieves exceptional overall results with 94.81% of TPR and
only 0.02% of FPR; The Galaxy S20 Plus (w/ iToF) based
prototype achieves good overall results as well with 74.03%
of TPR and 17.78% of FPR.

One observation is that the Android prototype struggles in
complex scenes; for instance, the mixed option in Figure 11
points out that the Android prototype cannot even reach half
the TPR as of what the iOS prototype is capable of achiev-
ing. Another observation about the Android prototype is it
seems to be more sensitive to reflective surfaces; for exam-
ple, the LG TV’s screen is more reflective than other display
mediums, and even if our data on that TV was captured in a
very dark room, as shown in Figure 11, the Android proto-
type still does not perform well. We then further discovered
that whenever we have scenes allowing lights to be bounced
back and forth in different paths and distances, the Android
prototype seems to perform worse. Such observation aligns
with how the industry reviews dToF and iToF sensors: that
dToF sensors generally have greater capability under complex
lighting situation and long distance measurement and iToF
sensors tend to suffer more from noise (e.g., multi-path inter-
ference) [8, 28, 44]. In addition to the fundamental technical
difference, proper optimizations of hardware, firmware, and
software (i.e., algorithms) matter as well. And our observation
is that iPhone’s dToF sensor is better calibrated.

Comparison with human’s performance. In the user
study we conducted, the participants have achieved 44.19%
of TPR and 56.1% of FPR. In comparison, for the same set of
photos, our iOS prototype achieves 100% of TPR and 12.5%
of FPR, where the Android prototype achieves 87.5% of TPR
and 12.5% of FPR. We believe that Scoop is more capable
in terms of recognizing misleading recaptures than human
beings.

To learn about the effect of different depth resolution, we
have also conducted another round of experiments on the
same iOS captured content, but with downscaled depth reso-
lution (320×180), which roughly matches with the Android

Figure 11: Results of Scoop’s prototype under different display
mediums.

counterpart. As seen in Figure 13, at the lower depth resolu-
tion, iOS prototype still manages to retain a great TPR result
of 90.91%, but suffers from a worsen FPR of 17.78%. We
noticed that in benign scenes with lower depth resolutions,
whenever most of the captured scene is filled with flat sur-
faces, it is more likely that the ground truth depth map would
disagree with the learning-based depth map as learning-based
depth maps tend to contain more subtle details in these scenes,
and this is proven by the relatively high false positive rates of
both the iOS prototype with lower depth resolution and the
Android prototype on None and Item options in Figure 12(b).

9.2 Overheads
Performance. Scoop introduces computational overhead
in three main places: camera capture, learning-based depth
estimation, and viewer analysis. At camera capture time, al-
though additional computation is performed, no human no-
ticeable runtime overhead has been observed in both photo
and video capturing. As Figure 14(a) shows, depth estimation
takes on average of 0.28 ±0.02 second for the iOS prototype
captured photo (no matter what the depth resolution is) and
0.26 ±0.01 second for the Android prototype captured photo;
Scoop viewer’s analysis, on the other hand, introduces the
most runtime overhead: an average of 69.38 ±95.17 seconds



Figure 12: Results of Scoop’s prototype under different benign content categories.

Figure 13: Overall effectiveness of Scoop’s prototype.

Figure 14: Both performance and storage overheads of
Scoop’s prototype.

for the iOS prototype, 2.96 ±3.48 seconds for the iOS pro-
totype with lower depth resolution, and 3.68 ±2.99 seconds
for the Android prototype. Note that the analysis duration
varies significantly due to difference in scene complexity and
usage of our techniques, resulting in large standard devia-
tions. While this statistical variation produces negative values,
all actual measured durations in our experiments were posi-
tive. The reason our depth estimation runs much faster is it
uses well-optimized software (i.e., PyTorch with CUDA sup-
port) and powerful hardware (i.e., RTX 4090); in contrast, our
viewer analysis runs slow, as it is currently not optimized for
performance. We also note that standard deviation of analysis’
runtime for both platforms are large. This is due to our tech-
niques (§7.2), where sometimes running only one technique
is enough, and other times all techniques are needed. We can
also observe that the content captured by the iOS platform has
worse runtime overhead than the Android prototype. This is
caused by both the fact that the iOS prototype capturing depth
maps with higher resolution than the Android counterpart and
our picks of point cloud algorithms where some of them have

runtime complexities worse than linear.

An alternative approach to boost performance is to perform
frame-level comparison instead of region-level comparison.
As only one comparison needs to be done in this way, the over-
head can be significantly reduced and such light version of
Scoop is still capable of detecting misleading full-recaptures,
but not partial-recaptures.

Storage. Figure 14(b) shows the percentage of extra storage
space Scoop takes for each photo. The overhead on the iOS
prototype is 648 KB (about 26.91 ±13.09%) for higher depth
resolution and 112.5 KB (about 4.69 ±2.27%) for lower depth
resolution. The overhead on the Android prototype is 125 KB
(about 10.4 ±4.47%). As can be seen, the depth map size stays
unchanged across photos, whereas photo sizes vary depending
on the complexity of scenes (which determines how much
compression can be done) and compression ratios determined
by different software platforms (iOS v.s. Android).

Energy consumption. We use the Samsung Galaxy S20
Plus for this experiment, as there is no direct way to get de-
tailed power consumption data on the iOS platform. By lever-
aging Android Power Profiler [14], we managed to measure
the energy consumption of both capturing a RGB photo and a
10-second video using Scoop prototype camera. We also intro-
duce a baseline application that functions the same but do not
capture depth information. During photo capture, the baseline
consumes energy at a rate of 1986.67 ±48.17 microamps and
the Scoop prototype consumes energy at a rate of 2793 ±98.85
microamps. As it takes about 0.09 ±0.01 second to capture a
RGB photo and 0.1 ±0.01 second to capture a RGB photo and
a depth map, our prototype captures photos with an energy
consumption overhead of 56.2%. During video capture, the
baseline consumes energy at a rate of 1764.1 ±152.08 mi-
croamps and the Scoop prototype consumes energy at a rate
of 2435.7 ±193.04 microamps. Since there is no difference in
capture times for both of them (10s for videos), we conclude
that our prototype incurs an energy consumption overhead of
38.07% during video capture.



10 Additional Considerations

10.1 3D Display-Based Attacks

In Scoop, we consider attacks using 3D display mediums to
be out of scope. For these attacks, we assume custom-shaped
(e.g., a 3D-printed model) objects are used along with display
mediums (e.g., 3D projection). To some extent, we do not
think our system would fail easily against naive versions of
such an attack. As explained in 7, Scoop works by apply-
ing regional analysis based on absolute depth information, so
in order to spoof Scoop, the 3D objects need to be refined
enough to surpass our comparison thresholds. Furthermore,
if captured objects are not made in real life-size (e.g., minia-
tures), Scoop can also utilize triangulation to figure out the
difference in sizes between the ground truth depth map and
the learning-based depth map. While we do not perform any
direct size comparison in our current prototype, we note that
Scoop’s Technique (3) (as mentioned in §7.2) is likely able
to handle this due to the use of rigid transformation without
any uniform scaling, where a large size difference will cause
the convergence score to exceed our set threshold. In other
words, for such an attack to succeed, it has to be mounted
with life-size refined custom shapes along with high quality
display mediums. That said, we opt to not claim any capabil-
ity against 3D display-based attacks without a comprehensive
evaluation, which will be a future work of Scoop. Moreover,
we believe that flat display mediums are the immediate threat
to provenance-based media authentication, and this work’s
main contribution is about tackling flat display-based recap-
ture attacks.

10.2 Binocular Vision

In this work, we explicitly choose to make use of ToF-based
depth sensors, as they are widely used in the smartphone
industry. We considered binocular vision technology [15],
which works similarly to human eyes by making use of two
camera sensors in a device to measure the absolute distance
between the device and captured objects. However, such de-
vices are rare and relatively new [17, 18]. It is unclear how
well they work for distance estimation, and particularly esti-
mating the relative distance between objects and their depth.
It is possible that their use, in addition to ToF, could make
Scoop more robust.

10.3 Forward Looking Infrared (FLIR)

Some recent phones, such as the Google Pixel 9, are equipped
with a sensor [24] that can measure the temperature of distant
surfaces. Some prior work uses temperature to generate depth
maps [10, 66], which works exceptionally well on scenes
containing human bodies, and we acknowledge that this is still
an ongoing research topic. However, they are mostly limited

to known objects with relatively fixed ranges of temperature
- knowingly human beings. To make matters worse, such
sensors on existing smartphones have limited resolution for
distant objects. There is still potential light in this path though,
military-grade FLIR cameras can produce 720p resolution
heat maps for up to 10 kilometers or 6 miles [22]. We hope
that over time, the price point and energy consumption of
those sensors can be brought down to meet the requirements
to be included in smartphones.

10.4 Videos
As videos are essentially bundles of photos (frames) being
play-backed in sequence, Scoop supports videos out of the
box. However, its support of videos is also very preliminary
and can be vastly improved. Here we list three points that
we believe can be used to enhance Scoop for videos, but we
do note that more can be done. First, consecutive frames in
videos tend to contain continuous motion, especially in videos
captured with a camera; with the support of either software al-
gorithms and/or hardware such as gyroscope and accelerome-
ter, point clouds can be built across multiple frames for higher
accuracy. Second, as frames are being play-backed at high
speed, where each frame has limited visible time, assigning
suspiciousness on a frame-by-frame based is most likely not
needed. Third, similar to the second point, depth maps may
not need to be captured on a per-frame based.

Although various enhancements can be applied to videos, it
is noteworthy to mention that the adversary may also take ad-
vantage of unique features of videos. For example, they may
move the camera and display medium freely at capture time
to craft an illusion of movement. Another dangerous factor
is that videos have more post-processing potentials. There-
fore, we believe that video-specific enhancements should be
considered thoroughly before being applied to Scoop.

10.5 Post-Processing
The captured content may need further post-processing, such
as cropping, coloring, or applying other filters. Similar to the
provenance information proposed by Vronicle [57], the em-
bedded depth information needs to get updated along with
its corresponding RGB photo. This does not mean that the
depth information can be freely updated whenever a change
is applied to its RGB counterpart, as this could easily open
up an attack vector for the adversary. Instead, the depth in-
formation can only be applied with subtraction-based update.
This means that every time an update is being applied, the
update must be a removal of depth information. For example,
when the RGB photo is cropped, its depth information is also
cropped with the same scale. Another example would be when
a person’s face is blurred in the RGB photo, the face’s depth
information is also removed (by setting 0 to all face-related
pixels). On the other hand, if an object is artificially added to



the RGB photo, no depth of that object is applied to the depth
information of the original photo; instead, all pixels covered
by the newly added object would have their depth counter-
parts zeroed out, effectively turning the covered area into a
flat surface with no depth value, and this can be picked up
by Scoop viewer. During post-processing, all updates to the
depth information are done automatically according to how
the corresponding RGB pixels are modified and users (editors)
are not allowed to directly make any change to the depth infor-
mation, where all of these are enforced by provenance-based
secure post-processing systems such as Vronicle [57].

11 Related Work

Provenance-based authentication. As photo and video
modification tools have become increasingly sophisticated,
especially with the advent of generative AI, content au-
thenticity is increasingly important. To this end, various
methods were developed to restore credibility of visual
content [7, 48, 54, 55, 57, 58]. One promising approach is
provenance-based authentication [7, 57, 58], since it provides
traceability of digital content with a verifiable cryptographic
proof. Many major industry players (including BBC, Adobe,
and Microsoft [5]) either already adopted provenance-based
countermeasures or announced plans to do so in the near fu-
ture. Scoop augments provenance-based solutions by provid-
ing depth information in the provenance metadata, allowing
for accurate discovery of misleading recaptures.
Display screen recapture detection. There has been quite
some research effort put on detecting recaptured images that
were displayed on a screen, where most of them have been
focusing on detection of LCD screen displayed images [37,
50, 72]. They rely on the unique moiré pattern [20] that could
be detected on LCD displays. There is also work that further
extends this technique to OLED display [74]. Most of those
works utilize machine learning to help recognizing the almost
invisible unique patterns of each display, where the models
need to be trained on the exact display model’s panel. Given
the fast development of display technology, rapid release, and
extensive amount of existing displays in the market, it is hard
to come up with a model that is capable of detecting all display
models. Furthermore, there are more kinds of display methods
that can be used to display arbitrary photos and videos, such
as projecting, printing, and so on.
Face anti-spoofing. There are many previous works that
focus specifically on face recapture detection [13, 43, 52, 56].
This is due to the fact that face is widely used as an authenti-
cation method nowadays, where deceiving the facial authenti-
cation system may bring enormous benefits to the adversary.
Some commercial solutions [11, 27] already exist. They use
additional sensors to help detecting displayed images by ei-
ther filtering unwanted display surfaces (e.g., printed photos
or display screens) or reconstructing 3D model of the user’s
face. There is also research work [43] done for attempting to

reconstruct user’s 3D face model without the use of additional
sensor. Other works [52, 56] utilize facial feature extraction
and analysis with machine learning model to figure out the dif-
ference between real faces and displayed faces. Another line
of work [13] is to conduct active liveness detection, which re-
quires the user to perform randomly assigned actions in front
of the camera. Although all these above works are reasonably
powerful, they are highly limited to only one specific use case
- face authentication, where Scoop aims to be a more generic
approach for both photos and videos.
Object anti-spoofing. Serval previous works [41, 51, 53,
69] have considered object anti-spoofing on top of face anti-
spoofing, where most of them have all opted for machine
learning based approaches mToFNet [51] also makes use
of the ToF sensor presented on the camera, but only as an
auxiliary input to the model. Additionally, these solutions
are limited to either the type of displays that their models
are trained on or the kind of objects that their models are
optimized for.

12 Conclusions

Visual content is an essential form of information consump-
tion by humans. A variety of consequential news is obtained in
this medium, including presidential addresses, parliamentary
debate, police action, and war footage. We now increasingly
rely on such content for automation of critical tasks, includ-
ing driving, manufacturing, and border control. Provenance-
based techniques from both academia and industry protect
the pipeline from camera sensor to consumption display, but
fail to protect us from recapture attacks in front of the camera
sensor. We presented Scoop, a solution designed to protect
us from an adversary launching recapture attacks, where the
physical scene is manipulated with digital screens or posters.
We showed that it achieves high accuracy in finding mis-
leading recaptures, which it presents to viewers to help them
detect attacks. We hope our work will inspire adoption of
ToF sensors by more cameras, such as security cameras. We
expect that the cost, range, and resolution of ToF sensors will
improve as adoption increases. We expect that with increasing
use of multi-modal AI, even more sophisticated techniques
will be built to interpret the depth information collected by
Scoop. All these trends will contribute to making Scoop more
powerful against such attackers.
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14 Ethics Considerations

This paper is motivated by recapture attacks that pose increas-
ing threats to society’s trust in visual content. We constructed
Scoop, a systematic mitigation for some of these attacks. We
also collected a dataset containing many data points that were
used to thoroughly evaluate our approach. Moreover, we
conducted a user study to show that human beings cannot
distinguish between original and recaptured photos, where
Scoop can easily outperform them.

Beneficence. Our intent is for this work to yield better
public awareness of the dangers of recapture attacks. We also
provide a means of mitigating some (though not all) types of
such attacks. One potentially negative impact of this work is
the possibility of someone being motivated by this paper to
conduct such attacks. This is further discussed in “Justice"
below.

Respect for Persons When developing and evaluating
Scoop prototype, we collected and used some test data that
involved human participation. This was limited to the authors
of this paper, each of whom has given explicit consent for
their photos and videos (no audio) to be collected for that
purpose. Also, all collected test data was used privately and
immediately deleted thereafter, with no backup whatsoever.
In addition, the collected dataset contains human images that
also involve only the authors, each of whom consented for
their photos and videos (no audio) to be collected and poten-
tially published after the paper is published.

The user study had been conducted with full disclosure
of the process to the participants prior to their participation.
Furthermore, there was no personally identifiable information
(PII) collected or stored throughout the user study, where
none of the responses can be linked to any individual. Each
participant was also treated respectfully and compensated
with the same amount of rewards (i.e., a $10 Amazon gift
card) upon completion of each user study session, where their
performance (i.e., whether they can correctly classify photos
or not) did not impact their compensation.

Besides the above, this work did not collect, use, or poten-
tially endanger any person.

Justice As mentioned above (in Beneficence), we acknowl-
edge that this work raises awareness of recapture attacks,
which – though generally a positive outcome – might trigger
someone to try mounting such attacks in practice. We believe
that public awareness of recapture attacks is just a matter of
time. Thus, we consider that earlier awareness is beneficial,
especially since this work provides a practical and effective
means of mitigating some such attacks. This gives us confi-
dence in this paper being pro-justice, rather than anti-justice.

Respect for Law and Public Interest We made sure to
obey all relevant laws, especially during the development
of Scoop and collection of the dataset. For example, since
our work entailed human involvement and collecting person-
ally identifiable information (authors’ faces), we followed

all guidelines provided at the authors’ institutions and sub-
mitted an IRB application for the public release of the data,
which was determined to be an exempted case, meaning that
no review was needed. Some domestic pets (cats) were also
involved in evaluating Scoop prototype and in dataset collec-
tion. However, these pets were/are owned by authors, and no
harm was caused and no forced behavior was involved. A sep-
arate IRB application for the user study was also submitted,
which was also determined to be an exempted case. Note that
we made both determinations by using the institute-provided
protocols and tools.

15 Open Science

This paper is in full compliance with the Open Science Pol-
icy. It yields two artifacts: Scoop research prototype and the
collected dataset. As stated earlier, we will fully open-source
the prototype once the paper is published. Also, we intend to
publicly release the full dataset once the paper is published
and the IRB application is approved. Recall that the dataset
needs IRB approval since it contains personal identifiable
information of the authors; this is also discussed in §14.
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A Answer to The Figure

In Figure 1, the right one is a real photo. The left photo was
displayed on our TCL Mini-LED TV, with the person in the
photo digitally erased.

B User Study

B.1 Photos

Figure 15 shows all the photos we used in our user study.
Original photos include (d), (e), (h), (j), (l), (n), (o), and (p).
Recaptured photos include (a), (b), (c), (f), (g), (i), (k), and
(m).

C Dataset Photos

Figure 16 shows an example for each option of the three
categories as mentioned in the main paper. In addition to the
sample photos for different categories in the dataset and user
study, Figure 17 shows more photos from our dataset. Original
photos include (a), (b), (c), and (d). Recaptured photos include
(e), (f), and (g).
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(e) (f) (g) (h)
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(m) (n) (o) (p)

Figure 15: Photos used in our user study.



Figure 16: Our dataset’s three categories: background, object, and lighting.

(a) (b) (c) (d)

(e) (f) (g)

Figure 17: More sample photos in our dataset.



D Artifact

There are four artifact components in our paper.

• Viewer: The Scoop Viewer is the main tool that we de-
veloped to detect the existence of misleading recaptures
in photos/videos.

• iOS App: The iOS App is a mobile application that can
be used to capture photos/videos that can be analyzed
by the Scoop Viewer.

• Android App: The Android App is a mobile application
that can be used to capture photos/videos that can be
analyzed by the Scoop Viewer.

• Dataset: The dataset that can be used to evaluate systems
such as Scoop.

They can all be found on our Zenodo page at https://
doi.org/10.5281/zenodo.15611905. There are three ways
to test the Scoop system, which are described in the following
subsections.

D.1 Quick Test (Recommended)
We provide a quick way to test out the Scoop system. Please
download the Scoop Viewer (viewer.zip), which contains ev-
erything needed to conduct a quick test of Scoop.

The Scoop Viewer requires the following dependencies:

• C++ compiler (e.g., g++, clang++)

• CMake 3.5 or later

• OpenCV 4.5 or later

• PCL (Point Cloud Library) 1.12 or later

• Boost 1.75 or later

• Eigen 3.3 or later

• Python 3.9 or later

You may set up the dependencies yourself and modify the
CMakeLists.txt file accordingly, or you can use our provided
script to set up the environment automatically. Our script
is tested on Ubuntu 24.04 LTS, but it should work on other
Linux distributions (e.g., Fedora, Arch Linux) and MacOS
(with Homebrew) as well. Assuming the viewer is now at
a directory called $VIEWER_DIR, you can run the following
commands to set up the environment:

cd $VIEWER_DIR
bash ./scripts/install_required_libraries.sh

After the installation is complete, you can run the following
commands to build the Scoop Viewer:

cd $VIEWER_DIR
cmake .
make -j$(nproc)

After the build is complete, you can run the quick test with
the following command:

cd $VIEWER_DIR
python3 ./scripts/eval.py sample_data/ 0000 9999

This command will run the Scoop Viewer on the sample data
in the sample_data directory, which contains 8 sets of data
provided (with 4 unique data points). Among the 4 data points,
1 is original and the rest 3 are recaptured photos (with 2 TVs
and 1 projector).

D.2 Test with Your Own Data
You can also test the Scoop Viewer with your own data. To
do this, you can either use our iOS or Android app to capture
photos/videos, or you can use your own camera to capture
photos/videos. However, please make sure you follow the
guidelines in the iOS/Android app repositories for correctly
capturing the data or refer to the Scoop Viewer repository for
the correct format of the data. For building iOS and Android
apps, please refer to the respective repositories for instruc-
tions.

After you have extracted the data from your iOS/Android
app, you need to generate perceived depth data for each
photo/video. Please refer to the Scoop Viewer repository for
instructions on how to generate perceived depth data. You can
pick any depth estimation model that you prefer, but we rec-
ommend using the ml-depth-pro model, which we included a
script for using it in the Scoop Viewer repository. You may
need to refer to the script to see how to generate the perceived
depth data for your photos/videos and make sure the gener-
ated data is in the correct format so that the Scoop Viewer
can analyze it. After you have generated the perceived depth
data, you can run the Scoop Viewer on your data with the
commands provided in the Scoop Viewer repository.

D.3 Test with the Dataset
You can also test the Scoop Viewer with our dataset. We
provide full instructions on how to use the dataset in the
Scoop Viewer repository. You can also refer to the Scoop
dataset repository for more information about the dataset.

https://doi.org/10.5281/zenodo.15611905
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