Designing The Conformable Lumen
Assessment Robotic Assistant

A Soft Bodied Mobile Robot for Pipeline Inspection.

Antonio Giancarlo Sanchez
A thesis presented for the degree of
Master of Science
N
Robotics Engineering

Worcester Polytechnic Institute
Worcester MA
May 2025
APPROVED:

Name: Professor Cagdas Onal, Major Thesis Advisor

Name: Professor Yunus Telliel

Name: Professor Andre Rosendo

Contents

List of Figures

List of Tables

List of Symbols

1

Introduction

1.1 CLARA . . .
1.2 Inmitial Broader Impacts Lo oo
1.3 Causes e

Related Work & Project Goals

2.1 Traditional Methods
2.2 Robotics
2.2.1 Wheeled Robots
2.2.2 Novel Movement
2.3 Soft Robotics Lab
2.3.1 Yoshimura Module
2.3.2 SRL Mobile Robots L
Design
3.1 Project Goals & Overview
3.2 Mechanical Designo
3.2.1 Yoshimura Modules
3.2.2 Central Module
3.2.3 Winch Module & Pulleys
3.2.4 Battery Housing and Variable Diameter Motor Housing
3.2.5 Variable Suspension System
3.3 Embedded System
3.3.1 Embedded System Organization
3.3.2 Voltage Regulator Work Around and new SIMC boards
3.4 Software L
3.4.1 Gamepad & Transmitter Code
3.4.2 SIMC Firmware & Receiver Code
3.5 Differences From Previous Version

iii

vi

=W NN

4 Testing & Results

4.1 Kinematics Verification
4.1.1 Test Setup & Data Processing

4.1.2 Results . .

4.2 Max Bend & Rate of Change

4.2.1 Test Setup
4.2.2 Results . .
4.3 Speed
4.3.1 Test Setup
4.3.2 Results . .
4.4 Elevation Test . .
4.4.1 Test Setup
4.4.2 Results . .
4.5 Battery Test . . .
4.5.1 Test Setup
4.5.2 Results . .

4.6 Maze & Joint Maneuvering

4.6.1 Test Setup
4.6.2 Results. .

5 Conclusion

5.1 CLARA Efficacy

5.2 Future Recommendations and Further Broader Impacts

5.3 Final Thoughts .
A Tables and Figures
B Software

Bibliography

i

29
29
30
32
35
35
35
38
38
39
40
40
40
41
42
42
44
44
45

49
49
50
51

52

54

82

List of Figures

1.1

1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

Probability of failure for different coefficients of correlation p (Mahmood-

lanetal) 5
Portion of Austin Texas’s Water Distribution Network (Rifaaiet al.). .. 5
Schematic of NDT Optical System (Safizadeh et al.) 7
Choi et al. Steerable Pipe Inspection Robot 9
Choi et al. Rigid segment diagram 10
Hayashi et al. pneumatic inch worm 11
Kurata et al. bio inspired screw robot 12
Savin et al. robot path diagram 13
Santos et al. Yoshimura module diagram 13
SRL Mobile Robots 15
CLARA Section Diagram 17
Yoshimura Module Component For Laser Cutting 19
Central Module Exploded View 19
Winch Module Assembly oo 20
Variable Diameter Suspension System Components 21
Variable Diameter Suspension and Wheel Housings 22
CLARA Back System Diagram 23
CLARA Central System Diagram 24
CLARA Front System Diagram 24
Central Voltage Regulators in Parallel 25
CLARA Yoshimura Kinematic Diagram 30
CLARA Kinematic Test Sample 33
CLARA Kinematic Distribution Graphs 34
Maximum Bend Angle L 36
Module Theta Rate of Change Graphs 37
CLARA 30 RPM Speed Test Time Lapse 40
Elevation Test 41
Current Draw During Elevation Test 44
Successful Joint Maneuver Time Lapses 45
CLARA Fail States 46
Damaged CLARA Parts 47

il

4.12 Maze Fail States

A.1 Successful Joint Maneuver Time Lapses

v

List of Tables

3.1 New CLARA Commands 27
3.2 CLARA Dimensions i 28
4.1 Yoshimura Kinematic Statistics 32
4.2 CLARA Speed Test: Time to Traverse 1 Meter In Pipe (s) 39
4.3 CLARA Battery Tests 43
4.4 CLARA Battery Tests 45
A1l Bill of Materials 52

List of Symbols

Number sets

K Arc Curvature
0 Arc Angle

s Arc Length
Other symbols

) Plane Transformation Angle
1 Cable 1 Length
[2 Cable 2 Length
3 Cable 3 Length
Physics constants
p Arc Radius

c Arc Center

o) Base Plate Origin

vi

Abstract

Pipe infrastructure is an extremely important issue for modern day society. Pipes trans-
port necessary materials such as clean water, oil and gas, and hazardous waste. Failure
in these networks can lead to millions of dollars in damages and can endanger commu-
nities depending on the payload. In order to ensure the health of these structures, pipes
need routine inspection to identify any potential failures. The inside of pipes especially
need inspecting due to failures at pipe joints and internal corrosion and cracks due to
transported material. In order to keep repair efforts to a minimum, non-destructive
testing (NDT) is typically preferred. The purpose of this thesis is to update and test
a compact wall-press pipe inspection robot with a novel design centered around using
origami inspired continuum modules. The Yoshimura module allows this design to have
an extensive level of flexibility similar inspection robots do not possess. A variable sus-
pension system and front viewing camera allow it to traverse and inspect a multitude
of different pipes. To determine the efficacy of the design, tests involving speed, battery
life, verifying the kinematic model, and recording the time it takes to navigate different
sized pipes and joints were preformed.

Acknowledgements

[would like to thank the following people and groups for their contributions to my thesis
project:

This material is based upon work partially supported by the National Science Foun-
dation (NSF) under Grant No DGE-1922761 and Grant No NSF CMMI-1752195
and Amazon Fulfillment Technologies via the Robotics Day One Fellowship. Any
opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the NSF or
Amazon Fulfillment Technologies.

The previous 2022 and 2023 MQP teams for the initial groundwork that made this
current design possible

Soft Robotics Lab member Gabby Conard and Tim Jones for guidance on design
challenges and the approach to the test setups.

Dr. Cagdas Onal for guiding me through the thesis process and his thoughtful
insight.

My parents and brother for much needed moral support throughout my time as a
master’s student.

Madie Gorman for the support that made this project possible.

Chapter 1

Introduction

Mobile robotics have been used in numerous fields for a variety of reasons and in a variety
of settings. Reconnaissance robots have been used to gather data in harsh or inaccessible
environments such as Mars or deep sea depths or for tasks deemed too dangerous such as
bomb defusals and exploring unstructured disaster areas. Payload robots have been used
to move large heavy objects deemed unsuitable for human laborers to move. Swarms of
these robots can be programmed to coordinate complex patterns such as those seen at
Amazon processing facilities. Mobile robotics is one of the two core groups of traditional
robots, meaning that the number of applications is half or even more than the totality
of robots can do. In this chapter I will introduce an update of a novel pipe inspection
robot and demonstrate the necessity of this robot as it applies to wider society and the
problems it seeks to solve.

1.1 CLARA

CLARA, or the Compliant Lumen Assessment Robotic Assistant, is a pipe inspection
robot created and then updated by two separate MQP teams under the guidance of the
Soft Robotics Laboratory. The concept was to use the Yoshimura module that the lab
had developed and use it as the basis of the robot’s body. Traditional ground mobile
robots are wheeled and have rigid bodies. The Yoshimura’s design allows for multiple
degrees of freedom in bending and in compression when cable actuated. Having the
Yoshimura module as the base body allows for a greater range of flexibility within a pipe
environment. This is especially critical at junctions such as elbows and tee joints.

The other mechanical aspects of CLARA includes a variable diameter suspension
system that allows it’s motor driven silicone wheels to adjust to different sizes of pipes
and press against its walls for needed traction. This is a common design within pipe
inspection mobile robots. Pipe networks can often shrink or expand in diameter as the
material flows through it. This system allows CLARA to continue operating even when
reaching those junctures and still maintain traction. Combining the Yoshimura body and
this traditional wheeled design will give CLARA the speed and flexibility to effectively
navigate different networks of pipes.

CLARA has two microcontrollers on it that processes the motor commands and
streams visual feed respectively. The first is a Tiny Pico UM which issues simple com-
mands to the 11 different smart motors that CLARA has. These smart motors are
comprise of an N:20 micro-motor and miniature PCB board called SIMCs (Smart 12C
Motor Controller). These SIMCs contain a microchip that processes these commands
and preforms the necessary PID calculations to get the desired result. The second is the
ESP32 Cam and lens that transmits a live feed to the operator’s computer so that they
can remotely pilot CLARA through the network. The robot operation is handled at the
operator’s computer station through an ESP-32 micro controller transmitter.

There are 4 main pieces of software and a set of firmware that controls the robot.
The first 3 files dictate the robots actions via the Tiny Pico. A python file interprets the
operators actions via an X-box gamepad and transmits this information to the transmit-
ter connected to both the computer and gamepad via the USB serial bus. The operators
actions are interpreted via an Arduino .ino on the transmitter and sent to the Tiny Pico
via a signal packet. The packet is unpacked and informs the Tiny Pico which actions to
take based off of an .ino file that is flashed onto it. The SIMC boards contain firmware
which is a set of Arduino files and libraries written in C that allows it to interpret the
commands from the Tiny Pico. The last file is the .ino file that sets up and allows the
ESP-32 camera to operate.

1.2 Initial Broader Impacts

This section will analyze the justification for CLARA through the problem it was de-
signed to solve and the broader impacts of said problem. CLARA was meant for the
purpose of monitoring and reporting on pipe infrastructure. Pipe infrastructure delivers
water, oil and gas, and other hazardous material. These networks can be found in reg-
ular commercial buildings such as houses and stores to industrial plants such as water
treatment facilities and oil refineries. These networks are often vast and intricate with
many different bends and junctions in order to transport the material efficiently and
maintain adequate pressure. A breakdown in these networks can incur financial losses
and cause physical harm to a population. Restrepo et al. [1]| derived a model to predict
the financial cost of pipe failures for networks transporting hazardous chemicals. Their
model takes into account a variety of factors such as cause of failure, location, amount
of resources lost, and any volatile reaction that might occur and the location of the
occurrence in order to find a lower and upper bound of what the financial cost will be.
A hypothetical scenario involving internal corrosion of an onshore pipeline cost as much
as $523 thousand in product loss, property damage, and cleanup based on their model.
Rifaai et al. |2] justifies the creation of their water infrastructure scoring model on stat-
ing that that breakdowns in water distribution networks (WDN) can potentially lead to
$1 trillion worth of repairs and restructures. Taiwo et al.[3] expands on this by saying
that water loss can be as up to 30% in most global WDNs, which creates major financial
losses in terms of the resources lost and time spent fixing the issue. They mention that
the money needed to properly fix these issues isn’t typically available as they cite that
in 2006 only $1.2 billion was spent out of the requested $6 billion.

Another aspect is the humanitarian cost that these failures incurred. The previous
financial model [1] for oil and gas pipeline failures factors in possibilities of explosions
and in which areas they may occur. Pipelines are typically located away from residential
areas, but this fails to mention any maintenance workers or facilities that might be caught
in these explosions. Beyond financial concerns, human lives could be put at risk if these
types of pipes are not properly taken care of. Rifaai et al. [2] determined that the rate of
deterioration and the ability to repair these damages is widening, leading to an unreliable
WDN infrastructure. The ability to get potable water will start to become a challenge
for the average person if this is not resolved before hand. Taiwo et al. [3] gathered
the number of pipe bursts per 100 miles or kilometers depending on the country. These
disruptions can create a large loss in potable water and the study even found that this
was the case in the UK with a loss of 22% in water yearly. The study justifies their
model further by stating that roughly 780 million people are effected by issues like this
and 3.41 million die yearly due to poor potable water conditions.

1.3 Causes

Due to high cost of these failures, many studies have been conducted to find the different
types of failures and their frequency. Determining which failures are the most prevalent
will assist with any inspection process on the network. How and where to find any defects
in the system will facilitate the implementation of any preventative measures. It’s been
determined by several of the aforementioned studies|1, 2, 3, 4] that factors such as pipe
size, length, wall thickness, age, corrosive substances, and pressure can cause different
internal failures such as fractures and pitting.

Due to CLARA’s size, this section will be focusing more on issues that effect pipes
networks with smaller sized pipe diameters such as WDNs and pipes found in chemical
refinement plants. Large transport pipes like oil and gas pipelines will not be the main
focus. Taiwo et al. [3] found that specifically circumferential cracking and corrosion
pitting effect pipes less than 200 mm in diameter. These can be caused by the outside
factors such as the environment the network is in such as soil acidity and the bedding
around the pipe or temperature issues freezing temperatures creating frost. Internal
factors such a water quality and micro-organisms can cause pitting in the inside and lead
to a blow out, something all pipes are susceptible to. An elevated level of trace elements
such as chloride and sulfates as well as unwanted bacteria can corrode the material from
the inside. The study by Respetero et al. [1] suggests that internal corrosion is the cause
of 5.9% of known pipe failures, the second largest value of the known reasons for pipe
failures in their study.

The general shape and condition of the pipe is also a contributing factor. All of the
aforementioned studies [1, 2, 3, 4] agree that age, length, and pipe diameter are a factor
in pipe failure. Mahmoodian et al. [4] heavily studies how the age of a pipe fails due to
a variety of conditions such as internal pressure, size of internal pitting that is present,
and the corrosive content of the liquid. Figure 1.1 from Mahmoodian et al. [4] shows
the correlation between the age of pipes and probability of failure given the correlation
coefficient that is tied to the aforementioned causes. The larger the correlation coefficient

—=—p=0.2
—e—p=0.5

—a—p=0.8

Probability of Failure
o
«

0 10 20 30 40 ;0 60

Time (year)
Figure 1.1: Probability of failure for different coefficients of correlation p (Mahmoodian
et al.)

the sooner the pipe is going to fail. It draws a clear conclusion that older pipe networks
are more susceptible to failure under most conditions. Rifaai et al. [2] noted that there
can be 13 to 19 different failures every 100 km of pipe in a year. Their data set showed
that the city of Austin, Texas had 6.5% of it’s 5202.1 mile long WDN, a portion of which
is pictured in Figure 1.2, failed within the time frame of 2009 to 2010. Larger stretches
of pipe have more material and resources to move, meaning the probability of it failing
increases. This same study identified that smaller diameter pipes with thinner walls
tend to blow out as well and considered this factor heavily within their model. Taiwo et
al. 3] discusses the same thing and notes that pipes with diameters diameters 300 and
150 mm fail 6 and 43 times within a year respectively, drawing a conclusion that as a
pipe shrinks it is more likely to have issues. Wall thickness is directly correlated to pipe
diameter and is thus the main contributing factor to this problem with smaller pipes.

i
N S
Sl Y TR Yol
PP e 97 ~, N ’
3~ -‘T'L v .?- s 4
N e e R P
by . PR s 2 /
b i p— AW R ~ Py SR i |
" L - S el e r's
~ r AL)
o 4 L ‘
‘tf; a & § f’r"):‘ 2 \"J‘|“.r e
LT i ’
l3q & 7t n R VIR e, T ! &l
s ".\\‘-'q‘,._‘xf,“ e + 7 ot
Crgi=y M T By 4./
B5 s AR Sy) P [
L T R : > 3
P T BTN | e & a
Fult <& B Y ’
s e s SN
NSt T T T A
e L T !
o)
oy T 7
AR Ul ~5 ~
il el vacs d
2 _}\‘. W
b BRGSO Wl gl e
e i L2

Figure 1.2: Portion of Austin Texas’s Water Distribution Network (Rifaai et al.)

The costs and causes of pipe failure are important to understand as it is the basis for
why CLARA exists. As a pipe inspection robot, CLARA is meant as a preventative tool
to identify these causes so that proper maintenance can be conducted and future loses
would not have to be incurred.

Chapter 2
Related Work & Project Goals

This chapter will cover the types of ways that technicians currently inspect pipes as well
as novel methods that are being actively developed at other universities. These types
of inspections methods range from simple sensor packages pushed through the pipe to
traditional forms of mobile robots and finally novel robots that use methods of traversal
that go beyond wheel driven bodies. The pros and cons of these types of robots will
discussed and how they may compare to the proposed design of CLARA. The chapter
finishes with a review of the different mobile robots that the Soft Robotics Lab has
created and how the new version of CLARA has taken inspiration and improved upon
certain aspects of these designs.

2.1 Traditional Methods

Pipe inspection technology has been a major focus for these industries that have a stake
in the health of these networks. Thus there have been a variety of different methods
developed to inspect these pipes. Literary reviews|5, 6] compiled the different methods
that are used to monitor various pipe networks such as oil & gas and WDNs. These
reviews focused mainly on Non-Destructive-Testing (NDT). This is when a method can
preserve the integrity of the system and still determine if it is being compromised by
a defect. In some cases, these methods can be done during normal operation and even
require it to collect the data. Many of these methods use signals ranging from acoustic,
thermal, and electromagnetic frequencies. These signals are processed by the way they
interact with the internal and external geometry of the pipe as well as the material itself.
This is then used to determine if and where a defect in the network maybe. Visual
methods such as simple CCTV or laser scanning is also employed, but are typically tied
to a mobile robot that is moving through the network. Image processing and surface
topography data from each respective method reveal defects directly on the pipes inner
surface.

These studies [5, 6] determined that these methods can give a map out the pipe
in very fine detail. For example, Carvalho et al. [7]| determined that inspection using
radiographic, ultrasonic, and light diffraction techniques were found as small as a mil-
limeter in height and 20 millimeters in length. The study even automated the process
by adding an artificial neural network to automatically identify and classify the defect.
However these methods can also be challenging to preform due to how signals are sent
and received. The same paper [7] noticed that the error in sizing the defects can be
up to 29% for the manual inspectors and the automatic light diffraction method can’t
identify some errors. These types of signal processing is very complex, and error can
easily creep upwards as it depends on how well the sensors are placed and calibrated.
The methods that rely on bouncing signals off the geometry, regardless of the type of
signal, have these exact issues. The range of pipe length and sizes are other factors to
consider. Signal interaction may be limited and even putting the sensor on or in the
pipe can be a very involved process. Covering the entirety of a network this way can be
a very long and tedious process. While methods involving a visual aspect such as video
feed and laser are simpler in terms of setting the process up, it still requires another
system to get it to move through the network. The optical inspection system developed
by Safizadeh et al. [8] can detect pit holes as small as 2 mm in diameter. It is especially
effective as the tests show that the laser diode light’s narrow angle makes the intensity
of the defect detection greater as demonstrated by Figure 2.1. However, this system still
needed a method of transport and worse it needs to be tethered for the CCD camera.
Due to the improvements in technology, a wireless system would be feasible, so adding
it to a mobile robot like CLARA would be extremely advantageous.

CCD camera Pipe
\ Pl

i

l

Laser diode i A Pngolight

Figure 2.1: Schematic of NDT Optical System (Safizadeh et al.)

A specialized sensor package called a Pipeline Inspection Gauge (PIG) is heavily
used in pipe inspection. They are a type of instrument that contain the the sensors
that preform the aforementioned signal tests and are run through the pipe. Most have
linkages that allow it to bend around junctions of the pipe. Its movement is typically
passive and relies on the flow of liquid to traverse the network. Very few have limited
controllability and most can be considered sensor packages. Ma et al. [5] compiles a
list of PIGs which ones are best for which type of defect they want to identify, liquid
medium the PIG is traveling in, and the general features of the pipe. These instruments
can help with issues of sensor placement mentioned above, but still have the issues of
passively relying on fluid mediums and the large size of the instrument itself.

2.2 Robotics

This section will discuss two types of robots. The first type is wheeled robots with rigid
links. Typically in smaller pipes these robots have to rely on the geometry of the pipe to
gain traction when moving. These are known as wall-press robots as there a mechanisms
that push the wheels out radially to make contact with the inner walls. The other type of
robot is one that uses novel movement to traverse the pipe. There are a variety of reasons
to why these robots are considered novel. They range from what actuation system they
are using to the exact movement pattern of their body. Both types will be analyzed for
its pros and cons. The majority of these robots can be found in these literary reviews
9, 10].

2.2.1 Wheeled Robots

The way a wall-press robot works is that the suspension system holding the wheels
is positioned in a way where the wheels gain traction from the curved pipe walls. The
curvature of the pipe makes it so that these robots are unable to properly gain traction. A
suspension mechanism needs to provide the necessary radial force towards the surface of
the pipe wall to gain traction for movement along the pipe. At least 2 points of contact
are needed with more providing stability. The points of contact must also be evenly
spaced so that the force applied by the suspension mechanism is evenly distributed.
Moving through pipe junctures are a challenge for these robots due to most wheeled
robots having a rigid chassis and curves in pipes necessitate changes in the suspension
system diameter as the robot moves through it. The biggest advantage of these robots
is their speed and traditional control scheme for steering and propulsion.

The suspension system itself is important as the design can determine how effective
the wheels gain traction. Kahnamouei et al. [10] details the different types of variable
suspension systems. They typically involve a rotary system or sliding crank to position
the linkage structure where the wheels make contact. This can be an issue as there are
many considerations when designing a linkage system that can adjust to any changes
in the pipes shape or size as well provide the necessary force for traction. Ni et al.
[11] goes heavily into the calculations needed to properly create a variable suspension
system. Their system is comprised of both an actuated and passive elements that allows
their robot to be flexible within the pipe. A motor and series of belt and pulley systems
drives a lead screw that extends and retracts a support link that pushes the cantilever
the wheels are attached to. Passive springs help push the cantilever for added traction
force, but also help clear small obstacles as it makes the cantilever compliant. Jatsun et
al.’s [12] design employees a similar method of a belt system to actuate a screw to push
out each individual wheel with the same passive spring. This paper goes into similar
calculations on the required normal force to properly move.

Plasetary Driving Wiheel

Link Mechanism

Figure 2.2: Choi et al. Steerable Pipe Inspection Robot

The biggest issue for wheel pressed robots is they are typically difficult to navigate
within curved pipes. Navigating elbow junctions in particular is difficult as the size and
shape of the chassis heavily factors into maneuverability. Moving through the curve also
requires a change in suspension diameter. In order to account for these factors, novel
changes to the rigid chassis have been designed in previous robot designs. Choi et al.
[13] was one of the first instances of creating a robot that was a chain of rigid sections
connected by universal joints. Figure 2.2 from the same paper details the basic structure
of the robot. Furthermore, the paper goes into detailed calculations that can determine
if a rigid section can clear an elbow based on its height h and width w of the section.
The following equations describes a rigid section that clears an elbow if the width is
significantly smaller than the height leaving one or both ends of the section outside of
the curved section when moving:

0<w<((R+D/2)sin(45°) — (R — D/2)) (2.1)
h=2y2%(D/2+ R — (R — D/2+ w) * cos(45°)) (2.2)

The second scenario would be when portions of both ends of the rigid structure is within
the curvature of the elbow due to the larger width compared to the height.

(R4 D/2) xsin(45°) — (R— D/2)) <w < D (2.3)
h=2y(D/2+ R)?— (R~ D/2+ w)? (2.4)

In this scenario, there are points in which some wheels might not be in contact with the
walls, meaning that the traction of the remaining wheels and stability of the body are
important to maintain movement. Figure 2.3 from Choi et al. shows the two different
scenarios that the above equations describe.

Preceding designs |14, 15| have gone on to do similar concepts of segmentation and
simplifying it by only having two points of contact and omni-directional wheels to help
maneuver down a desired path with the simplified design. Kakogawa et al.’s [14] design
has been proven to navigate extended circular pipe sections in simulation and some tee
joints in practical test setups.

Figure 2.3: Choi et al. Rigid segment diagram

2.2.2 Novel Movement

Due the complexities of moving a traditional robot through a pipe network, many meth-
ods of novel pipe movement have been developed. Their movements often take inspiration
from biological agents such as caterpillars|16] and micro organisms [17]. Typically these
robots have unique methods of actuation involving pneumatics 18|, linear motion [16],
cable wires [17], and even legs [19]. These robots are broken down into several categories
as outlined in the literary studies |9, 10]. They are inchworm, screw, and walking.

Inchworm Type

Inchworm type robots utilize linear motion and a combination of anchoring methods to
move along the pipe. Typically the steps are to anchor the backend of the robot, extend
the body of the robot, anchor the front end of the robot, de-anchor the backend, retract
the robot, and then anchor the back end again. This motion will be repeated ad nauseam
to reach the end. Examples of this are the the robots designed by Hayashi et al. [18§]
and Chablat et al. [16].

The first one is an inchworm utilizing pneumatic actuation to expand and contract a
silicone rubber tube they call EFPAs. Combing them into a set of 3 for the main body
and adding 1 on each end in a ring shape to act as anchors as shown in Figure 2.4 The
expanding and contracting the 3 tube in the body can get you different configurations to
the point that it is considered a 2 DOF robot with 1 DOF axial movement. Expanding
the ring shaped EFPAs allows the ends to press up against the pipe and lock itself into
place. This robot has been proven to work well in small diameter pipes with the smallest
they tested for being 50 mm diameter. It has also been proven to pass through elbows
and tee joints as well as inclined pipes. The biggest drawback is that it requires to be
tethered to a compressor and valve unit. It is also seen to be slow, averaging at 14 mm/s.

10

The design from Chablat et al. [16] opts for prismatic joints powered by rotatory
motors. Sliding legs can expand and retract in order to dig into the inner walls. This
particular design and how its motions are set up allows it to traverse variable pipe
diameters ranging from 32 mm to 52 mm. Due to the clamping nature of their design,
force calculations were pivotal in determining the efficacy of this robot. The normal forces
of the pipe walls effect the main body differently at different points in the movement
cycle. Learning this allows the user to output the most efficient level of clamping force
during the movement cycle as well as during movement through different configurations
of pipes. No mention of speed was in the conference paper. Both literary studies|9, 10|
have determined that while they are good for small pipes, their repetitive movement
cycle leads to fairly slow robots in comparison to other methods.

l 240mm [

Tarmim

Sespee Bending unit : L
Front holdmg mechanism :

Figure 2.4: Hayashi et al. pneumatic inch worm

Screw Type

Screw type robots rely on a rotary motion to propel the robot as well as steer it. In
some cases it can be the entire body such as the design from Kurata et al. [17] or part
of the body can act as a rotor such as the design from Ren et al. [20]. In the case of
the full body helical robot, the design was inspired by microorganisms that move using
a flagellum. The helical motion is meant to roll and spin so that the motion at the
contact points of the pipe walls will propel it forward. Figure 2.5 show its body which is
comprised of a spring that had small solid segments in it where the cables used to pull
the spring into shape were threaded through. The cables run through the segments in
a helical path so that when pulled, the spring body would create a spiral shape. The
pitch of the helical path was important to determine the type of motion the spring would
have. The design only got as far as demonstration of motions in a pipe.

11

Figure 2.5: Kurata et al. bio inspired screw robot

The robot that had a rotor had a more complex structure, but has a been shown to
be very effective. It is comprised of 4 main part which are the power unit, central unit,
variable-pitch unit and the driving unit. The central unit keeps the robot centered with
the pipe and has passive wheels that press against the pipe walls. The driving unit has
passive wheels and is spun by a central driving motor in order to create propulsion. In
order to have these wheels at the proper angle to create forward propulsion and turning,
the variable-pitch unit has linear stepper motors that pull on struts connected to them.
At certain pitch angles, the robot can also go faster. This design has been proven to be
effective as they were able to go through a 135° bend within 7 seconds. Both literary
studies|9, 10] believe that these types of robots excel at the traversal speed and navigation
capabilities. Due to how specific they are to circular pipes, they might not do well in
unstructured environments and one study believes they might even damage the pipe they
are in with their high speed movements.

Legged Type

The final novel movement type is the legged robots. Typically legged robots are designed
for open spaces. Designing legged robots is a very complicated process, even for basic
environments such as a lightly unstructured one. Putting them into a confined space like
a pipe adds another layer of complexity. In the literary studies [9, 10|, most work done
has only been simulation based. Both works by Savin et al. [19, 21] detail the necessary
motion requirements for a robot to operate within an environment as well as navigating
them. The first work by Savin et al.[19] breaks down the necessary leg trajectory for a six
legged robot. This particular had 6 legs with 3 links each. Determining kinematics and
pathing of each leg in this unique environment is extremely difficult as shown in Figure
2.6. His next work|21] goes further and calculates the RRT motion planning algorithm
that allows the robot to navigate the pipe. In both works the tests are purely simulation.
Both literary studies|9, 10| agree that a walking robot, while having good steer ability
and speed when implemented well and in normal circumstances, they are too needlessly
complicated for something like pipe inspection.

12

Figure 2.6: Savin et al. robot path diagram

These different novel methods have tried to shed the conventional method of wheels in
favor of trying a potentially more efficient way of navigating pipes. There are strengths
and weaknesses to all methods and it was important to understand them in order to
make a design the maximizes these strengths and minimizes these weaknesses.

2.3 Soft Robotics Lab

The final section of this chapter focuses specifically on the work that the Soft Robotics
Lab has completed. As CLARA is mainly based on the previous work from this lab, it
is important to review the technology that has been previously developed. This section
will first describe the Yoshimura module and then move on to the mobile robots that
incorporated this module.

2.3.1 Yoshimura Module

Z

Figure 2.7: Santos et al. Yoshimura module diagram

13

The Yoshimura module is based on the origami pattern of the same name. The Soft
Robotics Lab used this pattern by creating a module from a thin PET (Polyethylene
terephthalate) sheet that has a pattern laser cut into it. From there it is folded to
mirror the aforementioned origami pattern. This module can have a number of side, but
traditional Yoshimura patterns are triangular in shape. At the vertices of the module
are through hole in the bellows which cable is run through. One side of the module has
a plate where the cables are anchored to and the other side has a plate where motors are
attached to and wind up the cables. With three cables actuated like this, the module
has a 2 DOF movement and can move in the axial direction as well. This movement is
similar to the inchworm robot|18| and bio inspired helical robot[17]| to a certain degree.
Santoso et al.[22] wrote the initial paper that described the Yoshimura module. In their
work, they detail the forward kinematic equations to find the distal point B and the
inverse kinematics equations to determine cable length. Both can be found through
these physical parameters of the module (¢,x,s) and the values derived from them.
Figure 2.7 shows the general diagram of the module while it is partially actuated and
the kinematic parameters associated with that configuration. The distal point of the
module is located on the anchor plate and is where a second module would be connected
to create a continuum module. The following equation is used to determine the physical
position of this point relative to the reference frame of the module:

[pcos(¢)(1 — cos(0)), psin(¢)(1 — cos(6)), psin(6)]" (2.5)

where ¢ and p are found through their relationship with s and . The cable lengths are
found from the following inverse kinematic equations:

ks, 1

[y =2n Sin(%)(g — dsin(¢)) (2.6)
Iy = 2n sin(%)(% + dsin(g +6)) (2.7)
I3 =2n sin(%)(% — dcos(% + ¢)) (2.8)

This work was the basis for all Yoshimura module work going forward including the
mobile robots.

2.3.2 SRL Mobile Robots

The Yoshimura module has been used in a number of applications including continuum
arms, quadrapeds, and ariel drones. Traditional wheel-based mobile robots are among
those applications. The first mobile robot utilizing the Yoshimura was the tethered
Salamander Bot|23] . This first attempt included a single Yoshimura module with the
actuation plate containing 3 N20 micro metal gear motor that wind the cables. The other
plate acted as the anchor plate and contained 6 silicone wheels with 2 at each module
side. Using two different transmission systems and a single motor that was housed in
the module that turned all 6 wheels in order to drive the module backward and forward.
The initial test results showed it was able to navigate a simple curved maze, reach a max
linear speed of 303.1 mm/s on low friction surfaces and go up inclines of up to 60°.

14

The natural evolution was the Lizard Bot|24]|. This version had two Yoshimura mod-
ules in sequence, was untethered with its own power supply and wireless microcontroller
for each module, and had motor driven whegs for obstacle traversal. Adding another
module allows for more complex configurations and flexibility as they have their own set
of actuation motors and operate independently of one another. Being untethered allowed
it to move freely from the operator and the wheels allowed it to traverse up obstacles up
to 132 mm in height. The fastest speed was on carpet at 39.2 cm/s, a much faster speed
than the previous mobile robot when considering the surface. As well as the mechanical
upgrades, Lizard received a motion planning algorithm called CHOMP-+ that allowed
the robot to easily and autonomously navigate unstructured environments by mapping
out a path around observed obstacles.

The last mobile robot this section will talk about is CLARA itself. CLARA[25],
originally called Continuum Locomotive Alternative for Robotic Adaptive-exploration,
was conceived from an MQP project. The original designs included the original lead
screw variable suspension system, mainboard that connected the Tiny Pico to the SIMC,
and the SIMC designs themselves. The second team|26] improved upon the design by
encasing the electronics, improving the variable suspension system by making it more
stable and making the rear suspension system active instead of passive like in the original
design, simplified the silicone wheels, and introduced the ESP32 camera to the system.

This version was able to navigate a junction at a 45° and had a maximum bend angle of
150°.

(b) Schroeder et al. CLARA robot 2023

Figure 2.8: SRL Mobile Robots

15

Chapter 3

Design

This chapter will detail the mechanical, embedded system, and software design of CLARA.
The first section will detail the project goals and overview of the design and the rationale
behind these decisions. Next the exact details of the mechanical design will be covered
including the inclusion of an additional Yoshimura module and what that entails, changes
to the rigid section modules, and the change in the variable diameter suspension system.
The embedded system section will detail the changes in the voltage regulator config-
uration and review the structure of the system and subsystems. Finally the software
section will detail the changes in Arduino and python code including moving to an x-box
gamepad controller and the updated SIMC firmware.

3.1 Project Goals & Overview

Considering the information in the , this section will discuss the goals for this thesis
project. The original intent of the CLARA design was to combine the traditional wall
press method with the flexibility of the Yoshimura module for a fast and flexible pipe
inspection robot. MQP teams typically do not do rigorous testing of the designs they
submit. The previous version [26] only states the maximum bending angle and that it
can go through a 45° junction. This new version is meant to be more versatile in the
types of junctions it can navigate by increasing its range of motion and this thesis is
meant to prove the efficacy of the design and its updates.

This current version seeks to further increase its flexibility by doing two things. The
first change is to add a second module to the design. The improvement from Salamander
[23] to Lizard [24] showed that adding a second module had an impact on the types of
configuration the robot can make and the overall maximum bending angle it has. Adding
a second module to CLARA should similarly increase the flexibility. The second change
would be to try to reduce the length of the rigid sections. The equations from Choi
et al. [13] demonstrates that longer and wider rigid sections will have a harder time
passing through elbow joints. A variable diameter suspension system changes the width
of the rigid section meaning that its ability to pass through a junction is dependent on
its constant length.

16

The next goal is to thoroughly test the capabilities of CLARA. The basic concept
of using the Yoshimura module for a mobile pipe inspection robot has not been proven
during the MQP process to an acceptable degree where the concept can be considered
proven effective. Basic qualities such as speed, maximum traversable incline, and battery
life need to be tested and determined. The final metric is to see how CLARA does in a
practical test setting that involves traversing lengths of pipe and maneuvering through
junctions over a prolonged period of time.

Yoshimura
Modules
Camera
Central Module

Module

Variable Diameter
Modules

Figure 3.1: CLARA Section Diagram

Figure 3.1 displays the assembly sections that will be detailed in the upcoming
sections. Additionally, Table A.1 in Appendix A contains the major components for
CLARA. The rigid sections and links were made from PLA and Tough 1500 V1 for
which the price is not factored in. The PCB and SIMC boards require a quote from
a PCB manufacturer which will vary from manufacturer to manufacturer. Unit prices
are suppliers are reflect the current time of writing. The gear ratio of the micro motor
is dependent on what application the motor is being used for and range from 150:1 to
380:1. The unit price remains the same for all gear ratios at the time of writing.

17

3.2 Mechanical Design

The biggest update that CLARA received was in its mechanical design. The novel
element introduced to this design was an added Yoshimura module and how it was
implemented. The rationale behind this addition was to break up the rigid sections and
add more flexibility to the robot. The second biggest change was the variable suspension
system. Instead of a lead screw design, this version of CLARA had a worm gear style
system with the wheels pointed forward instead of both sets of wheels pointing in opposite
directions and away from the center.

3.2.1 Yoshimura Modules

The novel aspect about adding the second module is that it was actuated by the same
cables that actuated the other meaning only one set of cable motors. Other platforms
that utilized the Yoshimura modules had a set of cable motors for each module. The
n variable in the inverse kinematic equations for the module represents the number of
modules within the continuum. Due to the novel nature of this version of CLARA, this
equation would no longer be considered valid. However due to the constant curvature
created by the Yoshimura’s mechanical properties, if each module is analyzed on its own
instead of as a continuum, the each module’s forward and inverse kinematic parameters
can still be solved for.

Each module was created from 7 mil PET sheets that were laser cut into a specific
pattern. For a triangular module, three folded parts comprise the entire module. Figure
3.2 is the template used for the Yoshimura modules on CLARA. Each part is 144.53
mm long and 61.3 mm wide with 22 creases creating a module with 11 bellows at ap-
proximately 98 mm long. Fully compressed, each module is approximately 35 mm long
factoring the wires threaded inside of each module. If the triangular shape of the module
were transcribed in a circle, it would be approximately 70 mm in diameter. This makes
it slightly larger than the modules so that the cables can run just outside of the central
module separating the two.

3.2.2 Central Module

The module that holds the Tiny Pico and mainboard PCB separates the two Yoshimura.
Like every rigid module on CLARA, the central module is 3D printed from PLA material.
Including the plates that are at the ends of each Yoshimura module, the height of the
central module is 41 mm. A small slot on the side gives the operator access to the
microcontroller for ease of flashing new software.

The lip of what would be the triangular shape’s vertices are slots that the cables
run through. All the rigid modules are slightly altered versions so they were originally
designed for the smaller singular Yoshimura module. The cables are protected and held
in place by small struts that run along the side of the module and are screwed in along
with the Yoshimura modules. This keeps the cables from any potential pinching. Figure
3.3 shows the central module and the struts in the exploded view.

18

61.30mm

144.53mm

Figure 3.2: Yoshimura Module Component For Laser Cutting

Figure 3.3: Central Module Exploded View

3.2.3 Winch Module & Pulleys

To compensate for the larger sized modules, small hollowed out sections for the winch
module were added. The hollowed out sections were still small enough that they did
not over overshadows the silhouette of the modules. The 3 298:1 gear ratio motors
inside the module are positioned in a way where the pulleys attached to the motors poke
inside these hollowed out section to ensure cable alignment with the Yoshimura module’s
through holes. The cables then run through small slots located on the walls and toward
the edge. Figure 3.4 shows the full assembly with the composition of the motors and the
inside view showing the hollowed out section and pulley piece.

19

(a) Transparent View (b) Inside View

Figure 3.4: Winch Module Assembly

The pulleys that are attached to the micro motors are slightly redesigned so that
the ruts keep the cables from wrapping around the motor shaft instead of the pulley.
Previous SRL mobile robots have had issues with the cables tangling and jamming due
to this. The material was changed from resin printed material to PLA due to the fast
printing nature and the fact that not much material durability is needed to be effective.

3.2.4 Battery Housing and Variable Diameter Motor Housing

The rigid section designs that remained the most consistent from previous versions are
the Battery Housing and Variable Diameter Motor Housing. Slots are put into sides to
allow for JST wires and the lipo charging plugs to go through instead of a singular slot
through the middle. Cable slots are added to the battery housing due to the it being
the anchoring module.

3.2.5 Variable Suspension System

The previous versions of CLARA has a long lead screw that pulled and pushed the links
holding the motor housing in and out. The issue with this design is that it made the rigid
sections very long compared to the singular module and made the total percentage of
the robot comprised mostly of rigid material. As mentioned in the related work sections,
the longer a rigid section is, the more difficult it will be to pass through spaces such as
elbows[13]. Reducing this rigid section length was one of the two major goals of this
redesign.

20

Replacing the lead screw from the previous design, a smaller brass worm gear was
used in it’s place with a diameter of 9.7 mm and length of 20 mm as shown in figure
3.5 .The modulus for the worm gear was 0.5 and informed the design of the rigid links.
This worm gear has a 3 mm d shaft through the middle which lets it secure tightly to
the micro motor that drives it, which is housed in it’s own simple rigid module. The
gear ratio of this motor has either had a gear ratio of 298:1 or 380:1 through out the
testing process. The wall press design of the robot means that most of the normal force
is directed towards the worm gear motor. Higher torque motors are required to expand
the wheels within a pipe and hold them in place.

(a) Brass Worm Gear (b) Rigid Suspension Link

Figure 3.5: Variable Diameter Suspension System Components

Driving the worm gear turns the rigid links up and down in order to contract and
expand the wheel. Figure 3.5 shows a picture of the link in Solidworks. The actual
component is made from Tough 1500 V1 resin and has two parts. The basic link that
has the small through holes that connect to the wheel motor housing and is angled at
a 33 degree angle. This is so that the wheels can rest as close as possible to the body
and still have the link avoid hitting the side of the module the wheels are pointed to.
The second part of the link is the 0.5 modulus gear with a pitch diameter of 16.5 mm,
a working depth of 0.25 mm, and 33 teeth. The gear is combined with the rigid link to
make one complete piece that holds and moves the wheel housing when the worm gear
is actuated. The link has a hole for a d-shaft through the middle of the gear which the
link pivots on when driven.

Originally both sets of wheels where pointed inwards to minimize the length of the
rigid sections on the robot. This design change causes the width of the robot to in-
crease but the overall length of the rigid sections to decrease causing a net benefit for
maneuvering. However, during testing it was determined that pointing the front wheels
forward allows for better control when moving through a joint. By having the points of
contact with the pipe surfaces being at the front most part of the robot, it is easier to
actuate the body and still have proper traction. This design change made the front rigid
section have a similar length to previous versions, but is still within a reasonable range
that allows it to move within the target pipes.

21

The links are spaced 120° apart and are located approximately 12.3 mm from the
center of the plate using the middle of the gear as its point of reference. The d-shafts
are held by a small plate that is situated 6 mm away from the base plate of the worm
gear motor’s module is located by small plastic struts. The height of the d shaft holders
is 10 mm which allows the middle of the gear to hit the top of the worm gear. The gears
need to properly mesh in order for the torque to fully and efficiently turn the links. The
full assembly is shown in Figure 3.6

Determining the number of teeth on the link was a trial and error process. Originally
the rigid links were split into two parts where the gear was sandwiched into a slot of
the link. The rationale was that if one piece became worn, the other piece could still
be used. Eventually I learned it was much easier fabricate and use if the two pieces
were one. Originally, given the known dimensions and the chosen distance the center of
the gear, the link was designed to have 30 teeth instead of 33. Testing the sub assembly
showed that the gear could not mesh from that distance and was too lose. A 0.5 modulus
gear at that size has very small teeth. Increasing the number of teeth slightly increases
the pitch diameter by 0.5 mm so I tested out a number of gears until it was determined
that 33 tooth gear has the best mesh and can operate without jamming or skipping in
the worm gear. It was decided that the adjusting this part of the link was easiest as
other aspects of the link such as the angle and length would have to be adjusted.

(a) Variable Diameter Suspension As-
sembly (b) Wheel Housing Assembly

Figure 3.6: Variable Diameter Suspension and Wheel Housings

22

These links are attached to motor housing that holds the motor driven wheels. This
involves a motor driving bevel gears to rotate silicone wheels made from Dragon Skin
10 NV, the same silicone from the previous CLARA design. This design is largely
unchanged with the main change being the pattern on the wheels having small ruts and
minor alterations to fit the SIMC better in the housing and a small added bracket to
keep it in place. A assembled wheel housing without the holding bracket is shown in
Figure 3.6. It is also important to note that the wheels had either a gear ratio of 150:1
or 298:1. During testing, the front wheels were shown to need more torque to properly
get the first section of CLARA through a joint.

3.3 Embedded System

The embedded system is largely unchanged. The mainboard is still bare bones in that
it simply connects the SDA and SCL pins of the Tiny Pico with 4.7k pull-up resistors
and a voltage regulator that safely steps down the voltage from the battery source to
acceptable levels for both the Tiny Pico and the SIMC boards. The LiPo batteries are
still 7.4 voltage batteries but changed from 3 250 mAh to 2 400 mAh batteries for a
slight 50 mAh increase and slightly more room in the housing. The main change was a
work around for a power discrepancy with the SIMC boards.

3.3.1 Embedded System Organization

Back Variable Diameter
Suspension System and
‘Wheels

{ - Back Variable Diameter

o
Suspension System and
SM11 ‘Wheels

e

Lipo Battery Packape

SM9

—_—

SM10

—JST 5 Pin

\ J -

Figure 3.7: CLARA Back System Diagram

The overall structure of the system has not changed from the previous version. The
central PCB shown in Figure 3.8 is located in the central module discussed in the me-
chanical section. The main board PCB which houses the Tiny Pico micro controller
and the voltage regulator used for powering the Tiny Pico and SIMC boards. Every
connecting JST and power cables come out of or through the central module. The back
portion of CLARA shown in Figure 3.7 has the back motors and batteries housed in it.
The structure has the JST cables running through the battery housing.

23

Central Control
Module

Buck Regulator Package

JST 5 Pin

Figure 3.8: CLARA Central System Diagram

The front portion of CLARA is more complex with the majority of the motors being
located in this section. Along with the JST cables, a power cable connecting directly
to the LiPo batteries is run through to connect to a 5 V voltage regulator which was
housed in the Variable Diameter Motor housing. This is used to power the ESP-CAM
which is a system that runs in parallel to the PCB main board. Figure 3.9 shows the
organization.

Camera System

Front Variable Diameter g ™

Winch Module Suspension System and
Wheels ESP CAM

ra i P

»

Y
i ’t 7’ ™

w
o« > =
@

:

MM (7.4V

Figure 3.9: CLARA Front System Diagram

3.3.2 Voltage Regulator Work Around and new SIMC boards

Due to a change that is still yet to concretely be determined, sending a 3.3 voltage logic
level to the SIMC boards made them unreliable and prone to shutting down without
warning. Through experimentation, it was found that a 5 voltage logic level results in
the SIMC boards becoming stable. There was however an issue with this as the voltage
regulator output is for both the Tiny Pico and SIMC boards. The battery pin on the
Tiny Pico board can only handle up to 4.2 volts. If a 5 V regulator was swapped in for
the 3.3 V regulator, it would supply too much voltage to the Tiny Pico and damage it.

24

The voltage regulator that was originally on the main board was a Pololu 3.3V, 1A
Step-Down Voltage Regulator D24V10F3. This was a 5 pin voltage regulator with a
shared common ground pin, VIN, and VOUT pin. The 5 volt variant from the same
family was chosen for the logic level of the SIMCs. The issue was using both on the
same board. The solution was to connect the regulators in parallel with split jumper
wires connecting the VIN and GND pins to where the regulator would rest on the main
board and regular jumper wires to where their output needs to go. In the case of the 5
Volt regulator, the VOUT pin was connected to the main board as it was what connected
to all 11 SIMC motors. For the Tiny Pico, the battery pin was carefully removed and
replaced with one that was bent outward and not connected to the main board. This
is so that the 3.3 volt regulator was able to directly connect to the Tiny Pico and the
Tiny Pico was still able to rest on the board and provide the 12C signals for the SIMC
boards. As shown in Figure 3.10, both regulators were carefully tucked into the control
module to keep them from freely moving around.

(a) Outside Central Module (b) Inside Central Module

Figure 3.10: Central Voltage Regulators in Parallel

The potential issue with the SIMC is still yet to be determined. The only known
difference between the current and previous ordered batches of SIMC boards is that the
current batch uses the ATMEGA328P-AU chip instead of the ATMEGA328-AU chip.
The only noticeable difference between these chips is that the ATMEGA328P-AU chip
was designed to be more power efficient. Originally, the first CLARA team designed the
board with this chip in mind[25] but needed to adjust their design for the ATMEGA328-
AU due to a supply chain issue. These chips should have similar specifications, but it’s
possible that the minor differences might make them unstable with the current design.
Other issues might be due to manufacturing issues or other damaged components. Time
and budget constraints necessitated continued use of the current batch of SIMC boards.
If future designs were to use this batch of SIMC boards, CLARA would need a redesigned
main board that holds both regulators on it.

25

3.4 Software

The overall control scheme of CLARA remained the same but the functionality of the
SIMC and gamepad were tweaked due to new firmware and outdated python libraries.
Since the first CLARA redesign, the SIMC boards have been utilized in the other SRL
mobile robot project, Lizard[24]. That project had the firmware updated considerably
for ease of use when programming the Tiny Pico micro controller. Although this thesis
did not program the firmware, this report will briefly detail the changes as they have
heavily effected the arduino code of the Tiny Pico. Next the gamepad code had switched
libraries from using the generic hid library which allowed 3rd party controllers to Xinput.
I will also detail new commands that were implemented to give users the choice on how
to operate the robot.

3.4.1 Gamepad & Transmitter Code

The operator directly controls CLARA through an x-box gamepad controller and ESP32
transmitter. Both connect to a PC workstation that the operator is stationed at. From
here the commands are transmitted and the video stream from the ESP32 CAM and any
motor sensor data is received. The x-box gamepad code is written in python B.1 and
uses the serial terminal to transmit a 13 bit binary object that represents the button
combination currently being pressed. The first bit represents a non idle game pad state,
the next three bits represents gamepad direction, and the final bits represent each of the
various face, shoulder, and trigger buttons. Bit wise functions create the object based
on the gamepad state, encodes it using ascii encoder and sends it through the serial
terminal when it is determined that the current state is new. A small delay is added
after the serial write line to allow time for the serial write function to be processed.

The transmitter code B.2 is written in C and flashed via the arduino IDE to an
ESP32. Changing the binary object into a character string and checks which character
is a 1 or 0 to determine which command needs to be sent based on a specific combination.
Certain commands take precedent over others due to an if-else . For example actuating
cables using the d-pad will send a command before any other inputs can be read. This
means that CLARA can not actuate its body while moving forward unless you switch
inputs very quickly before the SIMC motors can be set to idle. To ensure that the stop
command is sent immediately, the first check in the code is to check if the controller is
idle which sets the motor speed to zero.

Once it is determined which input the user is preforming on the controller, the trans-
mitter sends out signals via ESP-NOW to its registered peer. The only time a signal is
transmitted is when a change in input is detected. The signal sent is a simple integer
which the receiver will interpret.

The basic format for both the gamepad and transmitter code was created from the
previous iterations of CLARA. Adjustments that were made included swapping out the
generic hid library with the x-input library due to outdated versions of the pervious
library and only writing to the serial bus when the controller state changes. This is so
that the transmitter signal would not constantly prompting the receiver with commands.
Instead CLARA continues doing the last operation it was given until told otherwise.

26

3.4.2 SIMC Firmware & Receiver Code

In order to consolidate the functionality of the SIMC boards so that any project may
use them, firmware was created to simplify the process of creating base code using the
boards. This includes moving all the communication functions from the base code into
libraries. These libraries breaks down the read and write [2C functions into separate files
as well as how it handles addressing for these functions. The information is written in
struct and class formats to compile all the relevant values such as the PID values, address
of the motor, and position and velocity functions. This makes utilizing the motors in
the main function simple.

The receiver code on the Tiny Pico B.3 was also adjusted from the previous iterations
of CLARA. The smart motors and sensor data structs are declared in the code setup
and are separated into corresponding arrays of cable motors, front wheels, back wheels,
and suspension motors. The sensor data structs are declared for sending back current
and position data from the SIMCs via the ESP-NOW. The transmitter has similar data
stucts declared to properly receive the signal based on the memory size of the struct.
The Tiny Pico is structured event based instead of having the loop run commands in
the same way the transmitter is. A simple if-else block checks for which integer is sent
when the Tiny Pico receives a signal via ESP-NOW. Each if-else statement has the set
RPM command for their corresponding motors. It was determined that this was the
best method to use as precise position control was not needed to operate CLARA with
a game pad. Certain commands take precedent due to the if-else format. The first thing
the Tiny Pico checks is the command to halt all motors to reduce processing time due
to the idle state being the most frequently changed to state.

Certain commands were added from the base code to try to streamline operator
controls. The trigger and d-pad combinations allows more than one cable motor to be
actuated simultaneously. Using only the trigger inputs will compress and decompress
motors at the same time for a more consistent straight shape during operation. The same
type of commands are used to expand and retract the wheels at the same rate. Table
3.1 contains the specific commands for these expanded movements. Actuating cable 1
and 3 creates an upward motion, 1 and 2 a right downward motion, and 2 and 3 a left
downward motion. The original commands were left unchanged.

Table 3.1: New CLARA Commands

Bend Bend Bend Body Body All All Current

Upward | Left- Right- Com- Expand | Wheels | Wheels | Check
Down Down press Expand | Retract

RT+LT | D-pad D-pad RT LT RT-+A RT+Y X+other
Down+LT Down+RT

27

3.5 Differences From Previous Version

One of the aforementioned goals of these design changes is to increase flexibility and
reduce the length of the continuous rigid links. Below is a table to compare the current
version of CLARA with the previous version. This includes the lengths of each section,
size of the Yoshimura modules, percentage of flexible material the robot is comprised
of, and the size of pipes the robot is able to traverse through. The values recorded for
the previous version were taken from physical measurements and information from the
previous MQP report|26].

Table 3.2: CLARA Dimensions

Version | Front Module(s) | Module | Middle | Back Total Flexible | operable
(mm) | (mm) Dia (mm) (mm) | Length | Body | Pipe Dia
(mm) (mm) | % (in)
Previous 170 130 60 N/A 202 202 259% |4-5
Current | 145- 98 70 37 100 478- 39.3%- | 5-7
166 499 41.0%

Both robots are similar in size with the difference being the percentage of flexible
material that CLARA is comprised of. The current version has 39.3% of its body made
of the Yoshimura module material, which is almost a 15% increase from the previous
version. Depending on how far the wheels expand, the front rigid link length can change
to a minimum of 145 mm. The diameter range of the variable suspension system dou-
bles, but loses the ability to traverse 4" pipes. Considering these values, the design
changes satisfy the goal of increasing flexibility through the increasing the flexible body
percentage.

28

Chapter 4

Testing & Results

This chapter will detail the testing process and results for evaluating the new CLARA
design. These tests include the kinematics verification test, maximum bend angle & rate
of change, speed test, elevation test, battery life test, and joint maneuverability and final
maze test. The second goal of this thesis is verifying the efficacy of the design concept
by focusing on practical testing for CLARA. Previously CLARA had minimal testing
done as the focus for the MQPs had been on the design and implementation aspect of
engineering. This meant that any concrete data regarding the efficacy of this design was
minimal. Determining how well this version of CLARA does in a practical setting will
determine if the concept of combining the wheel press model and the novel concept of
using a flexible origami body could be viable option for pipe inspection work.

4.1 Kinematics Verification

The first test preformed was to verify CLARA’s kinematic model. The kinematic model
for the Yoshimura module has already been established|22], but due to the novel concept
of using the same set of motors for two separate modules it was not clear if that same
model can be applied to CLARA. The initial assumption was that both modules would
have similar if not the same main kinematic values (k,0,¢) and all secondary values
associated to them that are described in the model. Due to a rigid section in between
the two modules, there is an expectation that friction would compress the back module.
The back module is where the cables are anchored which makes it the module that
experiences the full cable tension force unaffected by friction. In order to verify this a
kinematics test was preformed.

29

4.1.1 Test Setup & Data Processing

Original kinematics tests for the Yoshimura module involved using the Motive motion
capturing system and tracking the position of both the base plate and the top plate
relative to each other (Satnoso et al. [22]). The same principal was used here where both
modules plates were measured relative to one another and each module was analyzed
separately from one another. It was determined that the plates for each module that
were furthest away from the motors were to be considered the base and the ones closest
were to be considered the top. Due to how CLARA is structured, the distal point would
be considered towards the front of the mobile robot which are where the motors are
located. The choice of which is considered the top plate and where the distal point is is
arbitrary as there is no plate that is fixed in the global frame. The inherent properties
of the module and how it maintains a constant curvature in any configuration means
the only real difference in values would be ¢ due to it explicitly being defined by what
the local frame of the module’s base is. However, both modules need to have an agreed
bottom plate and local frame orientation to properly compare ¢ values.

The test setup involves setting CLARA on top of a table in the middle of the testing
room. The Motive motion capturing system has a series of cameras pointed toward the
middle of the room. While running, the system tracks small reflective spherical markers
as they move relative to an origin plate containing the same markers. These markers
are 12 and 16 mm in diameter and were stuck to the vertices of each triangular plate.
The vertex that corresponds to cable 2 is near the ground, so the marker was placed on
the side opposite of it where the altitude point would approximately be. CLARA was
put into different pose configurations and time stamps were recorded for each pose. The
raw data of the marker coordinates were processed by a MATLAB code I had developed
that would determine all the relevant parameters.

p Arc Radius

0 Arc Angle
s Arc Length

Figure 4.1: CLARA Yoshimura Kinematic Diagram

30

The first step of processing the data was to set the markers to where the cable through
holes were. This involved finding the altitude vector for marker 2 as defined by the rigid
body triangle it makes with markers 1 and 3. The coordinates for where that tracker
would normally be was found by moving it the length of the altitude, 62.5 mm, along
this vector direction. Once this coordinate is found, the same process is done for all the
trackers to move them 5.02 mm to the through hole position. The plate is based on an
equilateral triangle with the through holes being located on the altitude of each vertex.
The size of the trackers were considered in all instances of moving the position of the
marker coordinates. The new coordinates of the markers were used to define a plane in
the global coordinate frame. This includes finding the normal vector (a, b, ¢) via the cross
product of two vectors calculated from the markers and the d value of the plane. Finding
the —d value involves finding the centroid of the plate via averaging the coordinates and
then preforming the dot product of this coordinate and the normal vector. The points
on the module’s arc are located at these centroid points so they will be used for any
planar calculation going forward.

The next step was to find the plane on which the arc is located. First the intersection
vector of the plate planes is found using the cross product of the plates planes’ normal
vectors. This vector is considered the normal vector for the arc plane. Next the —d
value is found by plugging in both centroid coordinates to the dot product function.
Due to the imperfect method of tacking the markers onto the plate, different —d values
are found when plugging in the different centroid values to the dot product equation.
To account for this, the d values were averaged. After defining the arc plane, the center
of the arc was calculated by using all three plane equations for a systems of equation.
From there the parameters for both forward and inverse kinematic models were found..

Using the center point and centroids, the radius p and arc angle 6 were found. The p
value was averaged similarly to the d value which means the error is compounded. The
0 value was found using the two vectors found going from the center to the centroids.
Next the arc length s and curvature x were calculated. Finding the plane transformation
angle ¢ is a more involved process as it requires a local coordinate frame to rotate. In
this case the base plates will always be considered where the local frame is originated. A
rotation transformation matrix was created by choosing the vectors going from cable 3 to
1 as the x-axis and the vector going from where marker 2 is to where it was adjusted to
is the y-axis. The cross product to these vectors is the z-axis which is pointing into the
module. The origin is the centroid of the plate. Figure 4.1 shows how these parameters
would be represented on CLARA. It should be noted that the angle of the diagram does
not show the ¢ angle, but it can be assumed that it’s value is near 7 for this example.

Converting the center to the local frame allows the angle between the x-axis and the
vector to the local center to be calculated. This value is ¢. The coordinate value of
the local center coordinate was considered in the calculations to account for direction.
The next step is calculating the cable lengths of each module. Each module’s inverse
kinematic values are calculated using their own forward kinematic parameters. Cable 2 is
found using the [; equation and the following cables in the clockwise direction correspond
to the next 2 equations. Summing the cables and the length of the rigid section gives
the total cable length.

31

4.1.2 Results

To process the data further, the lengths of CLARA were plotted in 3D to provide a clearer
picture of the results. This includes the rigid sections, the Yoshimura arc and the cable
lengths for each module. The plots were calculated parametrically using 6, arc center,
plate normals, and centroids. The plotted arcs began at the bottom centroid towards
the direction of the top centroid and the cable arcs where calculated by translating this
equation to where the through holes are located. Markers were placed on the plot that
represented the tail and nose of CLARA, and the simple and parametrically calculated
plate centroids. The simple plate centroids are the coordinates calculated initially when
processing the data and defining the equations for the plate planes. The parametrically
calculated centroids were found when plotting the arc lengths. The difference in these
points represent the absolute error in calculating the values of the whole system. The
error stems from the imperfect method of tacking the markers onto the plates. This
resulted in the d value for arc plane to be an averaged value which informed every value
afterwards including the key kinematic values. Assuming that the true value is closer
to the simply calculated centroid, the average absolute error out of 40 different pose
configurations was 5.09 mm with the largest error being in a pose being 18.14 mm. A
standard deviation for this error is 4.67 mm meaning the error population is relatively
close to the average value.

Figure 4.2 is a side by side comparison for one of the poses gathered. The results of
the graphs and processed data show that there is a significant difference in their forward
kinematic values, specifically their respective ¢ values. Even when looking at it relative
to their base plates, the ¢ values not only have a standard deviation error of 1.90 radians
but also often were in opposite directions. This created configurations that were closer
to a non-monotonic spline made by 2 constant curves separated by a rigid section.

Table 4.1 shows the average difference and standard deviations when comparing the
kinematic parameters of the two Yoshimura modules. The values from the back module
were subtracted from the front module’s values which means a positive value means that
the front module’s value was larger than the back’s value and a negative value means it
was smaller. The distribution of the 40 samples can be shown in the following Figure 4.3.

Table 4.1: Yoshimura Kinematic Statistics

p 0 S K 0] 1 [2 [3
Avg A | -13.63 | 0.20 4.28 0.0030 | 1.56 4.72 10.05 4.55

mim rad min rad min min mim
o 110.77 | 0.27 5.24 0.0039 | 1.90 6.47 12.30 6.83

min rad min rad min min mim

Outliers were removed from certain data sets with. The p data set had 3 outliers removed
and the s, k, and cable 2 data sets each had one outlier removed. The distribution is
skewed to the front module having larger kinematic values than the back module. This
is most notable in the arc lengths for the module (s) and the cables (I1,12,13). The arc
radius (p) and arc length (s,(1,12,13) are closer to a normal distribution.

32

(a) CLARA Configuration

——Front Module
Rigid Section
———Back Module
Cable 1
Cable 2
Cable 3
Bottom Centreid
Parametrically Galculated Bottom Centroid
Top Centroid
Parametrically Calculated Top Centroid
Parametrically Calculated Tail Point
ically Calculated Nose Point

O0Oxx

CLARA Configuration

-150 X-Axis (mm)

Y-Axis (mm)

(b) Matlab Representation Plot

Figure 4.2: CLARA Kinematic Test Sample

Due to the nature of the ¢ angle being along the unit circle, the front module tended
to be further along than the back module as shown by the distribution graph. The value
has most of the distribution between 0 and 7 and most other values extending to 2.
Given the orientation that the base frame was chosen, it means that the front module
was angled upward while the back module was angled downward more often than the
reverse. This is supported by the fact that cable 2 had the largest difference out of
the three cables and cable 1 and 3 having similar values. This could be due to how
the samples were collected. The least notable values were the curvature and arc angle
meaning the shape was relatively close to one another.

33

Frequency

Frequency
©

Frequency
[
o N B ® ©® O N B ®

-
N

Frequency
=
o

o N B O

Frequency
[I~ S
N A ® ©® B N B O
|
Frequency
on b o ® 5 R

o

Yoshimura Theta Difference Distribution
Yoshimura Rho Difference Distribution 20

Frequency
[T T
o N A O ® O R BB G

-235.17(-20) -124.4(-0) -13.63(w) 97.14(c) 207.91(20) -0.34(-20) -0.07(-c) 0.20 (w) 0.47(c) 0.74(20)
Axis Title Theta Difference (rad)

Yashimudrzic LengEhDIfSrencEDIStbton Yoshimura Curvature Difference Distribution

-
©

-0.0048 (-26) -0.0009 (-c) 0.0030 (W) 0.0070 (c) 0.0109 (20)

-6.19(-20) -0.95(-0) 4.28(p) 9.52(0) 14.75(20) Kappa Difference
Arc Length Difference (mm)

Yoshimura Phi Difference Distribution

Yoshimura 1 Difference Distribution

Frequency
bR e s e N
oN b O O R PO BSOS

-2.25(-20) -0.35(-c) 1.56(p) 3.46(c) 5.36(20)

822(20) 175(0) 472(y) 11.19(c) 176620
Phi Difference (rad) 8.22(-20) -175(0) 472(n) (9) (20)

L1 Difference (mm)

Yoshimura |2 Difference Distribution

Yoshimura |3 Difference Distribution

-14.55(-20) -2.25 (-0) 10.05 (4) 22.35 () 34.65 (20) -9.10(-20) -2.28(-0) 455(4) 11.38(c) 18.21(20)

|12 Difference (mm) |1 Difference (mm)

Figure 4.3: CLARA Kinematic Distribution Graphs

34

4.2 Max Bend & Rate of Change

This next subsection analyzes the maximum bend angle that CLARA is able to achieve
as well as the rate of change in each modules bend during this action. This is information
is relevant to the operator so that they know the maximum capabilities of CLARA as
well as how to approach actuating the body.

4.2.1 Test Setup

The maximum bending angle was determined by setting a camera directly above CLARA
recording while I actuated cable 1 until the motor stalled. The frame were this occurred
was taken from the video and processed by physlet tracker program to determine the
angle by using the Yoshimura plates as reference.

A separate video was recorded preforming the same action and processed via the
Kinovea program to track the bending of each module. Actuating a single cable means
that the module’s bending arc is aligned with that single cable’s bending arc and that
they would exist on the same plane in 3D space. If the camera’s view can be aligned
with this plane, then an accurate estimation of the change in bend angle for the whole
module without worrying about any change in orientation angle ¢. Video will be taken
of both the compression and release. Due to the shape of CLARA and how the wheels
are attached, the body when straight will have the bending angle of cable 1 slightly
angled and give a slightly inaccurate calculation of the bending angle. While it begins
to compress, CLARA will naturally roll over and align itself to the camera and begin to
give an accurate reading. CLARA was gently held still to keep it at this angle once rolled
over and try not to influence the test. These factors are important to consider in order
to properly interpret the data. The video is processed by the Kinovea program with
trackers attached to the Yoshimura plates by using the heads of the screws as guiding
points. 2 vectors for each module and the angle between them are calculated from this
tracking data.

4.2.2 Results

Figure 4.4 pictures the maximum bending angle, which is 7° away from a full 180°. This
was expected due to the limitations of a Yoshimura module’s bending angle being around
90° when actuating a single cable.

35

Figure 4.4: Maximum Bend Angle

Figure 4.5 shows the rate in change of the module angles with respect to time. Both
graphs have both modules in order to draw comparisons between their behavior. Notable
results include the time it takes to compress and release, the rate at which both modules
change, and the behavior at certain points in the actuation process.

Compressing to the max bend angle takes approximately 9 seconds longer than re-
traction. There are two reasons for this. The first reason is that it takes more force to
compress a module than it is to release the tension. The natural spring force of the mod-
ule allows the release action to be faster. The second reason is because at approximately
15.5 second I began to near the maximum bend angle and began to operate CLARA
by intermittently actuating the cable. This is to avoid any potential damages to the
motor or the cable. Due to this approach, the increase in bend angle happens in brief
moments with static values in between. Taking this into account means that the true
time difference between compression and release is likely shorter than 9 seconds.

For compression, the point between the main body rolling over and the max bend
angle is when the camera is aligned with the module’s arc. This is the region where
the tracking is the most accurate to the true behavior of the Yoshimura modules. Both
modules had approximately the same rate of change at 0.1% and the front module
having a larger theta value than the back module until CLARA begins to approach it’s
maximum bending angle. The time before the the body shifts, both modules had a
compression rate of 0.75%1. As noted previously, this is due to the body being at an
angle to the camera and is not properly reflective of the true compression rate.

36

Theta vs Time During Compression
17
16

1.4 Main Body Shift
13
12

11
Nearing Max Bend Angle
0.9
0.8
07

—a—Front Module

—ea—Back Module

Theta (radians)

0.6

0.4

03
0.2

0.1

0 2 4 [8 10 12 14 16 18 20 22 24

Time (s)

(a) Module Compression Graph

Theta vs Time During Release

1.7
1.6

14
13 Main Body Shift
1z

11

0.9
0.8
0.7

—a—Front Module

Theta (radians)

—ea— Back Module

0.6

0.4
03
0.2

0.1

Time (s)

(b) Module Decompression Graph

Figure 4.5: Module Theta Rate of Change Graphs

The beginning of the graph shows a small peak that signifies when the cable starts to
exert tension force on the module. This does not happen immediately as the cable started
at a slightly lax position. As the module approaches its maximum bend angle, the front
module remains static while the back module continues to compress. This may suggest
that as CLARA reaches its final position the modules begin to adjust to remain at rest.
Friction forces exist between the rigid module and the modules which may necessitate a
larger compression force in the back module as it is the module connected to the anchor
plate and experiences the full tension force directly.

37

For release, the back and front module have a release rate of approximately 1.25%1
and 1% respectively. This is due to the fact that the back module started in a more
compressed state. The potential energy is higher in the module that is more compressed.
The front module doesn’t begin to release until approximately 1.5 seconds while the back
module immediately starts to decompress when the cable begins to actuate. The back
module has the same rate of change throughout and the front module begins to slowdown
at approximately 10 seconds. Both stop decompressing at approximately 12 seconds.

4.3 Speed

The speed at which it travels is an important factor in a pipe inspection robots. As
mentioned in the Related Works chapter, the some of the robots with a novel method
of travel tend to be slower than traditional wheeled robots. The robots that had similar
functionality to the Yoshimura module[18, 17| tend to have the slower speeds because
they rely on the repetitive bodies motion to move. This test was to determine how
effective combining the wheel press design with the Yoshimura module in terms of its
speed.

4.3.1 Test Setup

It should be noted that these tests were done before the design decision was made to
point the front wheels toward the mid-section instead of away like in the final design.
These results should still be reflective of the final design. There were 2 different sets of
speed tests preformed with CLARA the first set involved a 6 inch PVC dust collector
hose that was stretched over the length of a table. Markers indicated the starting and
stopping point of CLARA which is 1 meter in length. To fit on the table, CLARA
was slightly compressed to a total length of 388 mm with the back and front modules
compressed to approximately 38 mm and 47 mm respectively. This test was done before
the decision to switch the wheel motors from ones with a 150:1 gear ratio to motors
with 298:1 gear ratio and to run them at 60 RPM. The second set of tests involved a 5
inch PVC hose and with 298:1 gear ratio wheel motors running at 30 RPM. 30 RPM was
chosen due to the belief that 60 RPM was beginning to overwork the battery and motors.
The bevel gears for the second set were also switched out from being made from PLA to
Tough 1500 V1 resin as it was found that PLA wore out very fast. The second test had
CLARA compressed to 50 mm on both modules resulting in a total body length of 403
mm. CLARA was controlled to move 1 meter forward and then 1 meter backwards. It
was assumed that CLARA will maintain a consistent speed going forward or backwards
and that changing the gear ratio would not affect it.

38

4.3.2 Results

Table 4.2 is for 10 trails for both sets of data forwards and backwards. Both test sets
show that the speed going forward and backwards is similar. Set 1 showed the forward
direction was approximately 0.3 seconds faster than the backward direction and set 2
had it being approximately 0.15 seconds slower. The average speed of 81.633™™ can
be converted to 0.210% with 1 Body Length Unit (BLU) equaling to 388 mm in this
instance. The second set gives an average speed of 42.59™™ which converts to 0.106¥
with 1 Body Length Unit equaling 403 mm. Due to the fact that one of the main features
of CLARA is to expand and contract, using Body Length Units does not accurately
describe the speed at any given point. If the previous values were expressed with the
fully stretched out length of 499 mm , the speeds would be 0.167% and 0.085%.

Table 4.2: CLARA Speed Test: Time to Traverse 1 Meter In Pipe (s)

Trial | 1 2 3 4 d 6 7 8 9 10 Avg
60 11.87| 12.07 | 12.17| 12.30 | 12.23 | 12.33 | 12.04 | 12.10 | 12.64 | 12.67 | 12.25
RPM
FWD
60 12.40| 12.13 | 12.80 | 12.83 | 12.90 | 12.74 | 12.00 | 11.60 | 12.17 | 13.74 | 12.53
RPM
BKWD
30 23.40 | 23.30 | 23.00 | 23.40 | 23.20 | 23.50 | 23.30 | 23.50 | 22.90 | 25.30 | 23.48
RPM
FWD
30 23.50| 23.4 | 23.10 | 23.00 | 23.50 | 23.60 | 22.60 | 23.10 | 22.90 | 24.40 | 23.31
RPM
BKWD

Figure 4.6 demonstrates a time lapse of CLARA during the 2nd test set going for-
ward. As shown, the time lapse demonstrates a constant speed throughout the pipe
traversal which is typical of wheel type mobile robots. A notable issue that was shown
during testing was that CLARA can spiral as it goes through the pipe. This can present
problems over time most of the weight of CLARA can start to offset onto a single wheel,
causing undue strain in the part.

39

2 4 - , UL / A

im- AN i im : \

E‘fﬂ:?} e ~:7 e e -]:BW‘.-“::; ':7 e ‘2352

Figure 4.6: CLARA 30 RPM Speed Test Time Lapse

4.4 Elevation Test

There are many pipe network configurations that contain stretches of pipe that are sloped
or completely vertical. Determining CLARA’s capabilities when navigating inclined
pipes will give a better insight on its versatility when navigating these pipe networks.
The following test was designed to determine the steepest incline CLARA can navigate.

4.4.1 Test Setup

Similarly to the speed test, the 6 inch diameter PVC hose was stretched along the floor
to allow CLARA to effectively navigate the pipe. 0.75" (19.05 mm) thick wooden planks
were stacked under a section of the pipe as CLARA moves back and forth, increasing
the number of planks each time it successfully moves up and down the incline. This
process was repeated until CLARA could either no longer move up the incline or there
was some sort of mechanical failure due to the strain of climbing. Video recording was
taken during the test to analyze how CLARA moved through the pipe when climbing
an incline.

4.4.2 Results

CLARA was able to scale up an incline of 15° when stacking 5 plates for a total of 3.75
in (95.25 mm) in height. Any increase afterwards lead to a breakdown in the suspension
components. The spiraling effect detailed in the previous test is the main cause of this
issue and it was noted that CLARA tended to spiral more often going up and down the
different elevations. Figure 4.7 shows a time lapse of the max elevation that CLARA
can handle which shows that is takes roughly half a minute to climb it.

40

(a) Maximum Traversable Incline

PR

(b) Elevation Climb Time Lapse

Figure 4.7: Elevation Test

4.5 Battery Test

Pipe inspection can be preformed over an extended period of time. For this reason it is
important to determine the battery life of CLARA. CLARA contains 11 motors, the Tiny
Pico, and the ESP32 camera. The original hypothesis was that CLARA consumes the
most power when it is moving through the pipe. This is when the most amount of wheels
would be running at any given point. This would also be the action that CLARA would
be preforming the most as pipe networks are mainly comprised of lengths of straight

pipe.

41

4.5.1 Test Setup

The code was adjusted so that pressing x during the actions of driving the wheel motors,
actuating the front worm gear, or actuating cable 1 gives the current values of the first
front wheel, front worm gear motor, and cable 1 winch motor respectively as well as the
total current values of all 11 motors via the current output function in the SIMC . Due
to the daisy chain design, the total current that goes through the 11 motors at any given
point is the sum of all current values. The ESP32 CAM was streaming during this test.
The rationale was to emulate a pipe inspection operation which requires the camera
to be streaming throughout the entire process. Parts of these tests were performed
simultaneously with other tests to retain the practical element when gathering data. At
random points during the action, the current values were outputted by the Tiny Pico
and sent back to the ESP32 transmitter which printed out the results in the terminal
line. 10 data points were sampled and averaged. Set 1 data recorded the current draw of
a wheel motor during the speed test, set 2 recorded the current draw of the front variable
diameter suspension system motor while the front suspension diameter was expanding
and retracting in the pipe, and set 3 recorded the current draw of the motor for cable 1
when it was being wound and unwound during the joint test for the 5 inch tee joint.

An additional test was recorded that showed the current draw throughout an elevation
test. The previously described test setup for the elevation test was used. During this
test, the transmitter would prompt the Tiny Pico for the total current of all the motors
every 250 milliseconds. The data is written out into the serial terminal. Data recording
begins when the front module is at the base of the incline and ends when CLARA is on
the other side of the elevation and completely level. The wheel motors will be running as
the data sampling begins. This is so that the results reflect the values for an operation
already in progress.

4.5.2 Results

Table 4.3 are values of the current draw on the motors for the tests. The data sheets
state that the power consumption for the ESP32 CAM at 5 volts and with the flashlight
on is 310 mA and for the Tiny Pico at 3.3 volts is 700 mA. This means that current draw
on average would be 3.93 A at most points in operation, 4.43 A when it is adjusting
the diameter of the suspension system, and 4.06 A when actuating a single cable to
try and maneuver around a joint. The hypothesis that the action that would consume
the most power is moving the wheels was incorrect. It did not take into consideration
the energy required to keep the motors in place. This is especially important for the
motors actuating the variable diameter suspension system. Even during other actions,
the suspension motors were consistently drawing the most current. This is due to the
force on the wheel links while they are pressed agains the pipe surface.

42

Table 4.3: CLARA Battery Tests

Test | 1 2 3 4 5 6 7 8 9 10 Avg
Set
Set 1| 297 | 280 | 263 |275 |272 |271 |283 |272 |268 | 259 | 274
mA
Total | 3.17 | 3.08 | 298 299 |292 |295 |299 |[294 |258 |2.55 | 2.92

Set2 | 379 | 371 368 [364 | 361 |360 | 360 | 359 | 357 |357 |363.6
mA
Total | 3.61 | 3.49 | 3.43 | 3.40 | 3.39 | 340 | 3.39 | 3.37 | 3.34 | 3.35 | 3.42

Set 3 | 302 291 286 285 284 282 281 281 276 289 285.7
mA
Total | 3.27 | 3.21 | 3.20 | 3.01 |3.05 |3.03 |299 |296 | 293 |2.81 | 3.05

The total battery life at full charge is 800 mill ampere hours. Using this value and
the current draw total for set 1, the the maximum battery life would be approximately
10.84 minutes of continuous movement. Any other actions such as adjust the suspension
diameter or actuating the body would decreasing this time. This value does not consider
the fact that when the batteries drop below 5 volts, the SIMC and ESP32 CAM stop
functioning. This duration is pretty short and can cause issues with navigating large
networks. Current draw increases when preforming operations such as adjusting the
suspension size and actuating cables as these actions can experience the most resistance.
Large amounts of resistance can lead to the motors overheating.

Figure 4.8 shows the current draw for CLARA during the elvation test. It factors in
the current draw for the Tiny Pico and ESP32 CAM. The camera was not streaming and
the flashlight was not on so for the purpose of this test the current draw for CLARA was
assumed to be 180 mA instead of 310 mA. As CLARA begins to climb the incline, the
current draw from the system is at its highest with a value of 6.4 A. As CLARA begins
to climb, the current draw begins to drop at a consistent curve until the front module
reaches the top of the elevation where it begins to settle at 3.9 A. It continues to be at
this level until the end of the test. CLARA expends the most power as the wheels start
to move the incline. As the body starts to move onto the incline, the wheels begin to
acclimate to the incline and the power consumption begins to reflect the same values as
moving through a straight pipe.

43

o

u L., [+ L_., ~d

o~

1
1
Front :
s Reaches,
B Top | Front Front
: Begins Reached

&

Decline

n & i

w

Current (A)
[%]

0 2 4 <] 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Figure 4.8: Current Draw During Elevation Test

4.6 Maze & Joint Maneuvering

CLARA’s flexibility was a key design aspect that needed to be tested within a practical
setting. The final test to determine the efficacy of CLARA was to determine how well
it can navigate junctions such as elbow joints and tee joints at different sizes. Due to
the expected span of the suspension systems, the test was limited to using pipe and
joint sizes between 5" and 6". Different joints such as elbows, tee joints, and reducer
couplings would be utilized to satisfy the criteria that was set for CLARA and other
pipe inspection robots.

4.6.1 Test Setup

The first part of the test was to determine how well CLARA does with each individual
joint. The test setup was two lengths of pipe connected by a single joint for each joint
size and type. The test for the 5 inch joints were preformed using the same clear PVC
hose material for the speed and battery tests. The 6 inch joints were tested using covered
PVC dryer flexible hose pipes. This was done to constrain the operator to only using the
ESP32 CAM to determine how and when to maneuver through the pipe. The resolution
the camera streamed at was kept to SVGA (800 x 600) as this was considered to be a
good medium between power consumption and clarity. The pipes were stretched over the
ground and held taut by weights and brackets. The test begins when CLARA reaches
the junction.

44

: (b) Maze Configuration 1 Test
(a) 6" Tee Test Setup Overview Overview

Figure 4.9: Successful Joint Maneuver Time Lapses

The test ends when either the operator successfully moves CLARA through the junc-
tion completely or when the operator has decided that CLARA is unable to move through
the junction. For the clear PVC tests, video footage was recorded and CLARA’s move-
ments were analyzed to measure qualitative data on how it may move through the junc-
tion. For the covered PVC pipes, footage of the ESP-CAM will be recorded for one of
each type of trial to analyze what the operator will be seeing during normal operations.
The final test was to create maze configurations using the joints that CLARA is able
to consistently maneuver and have CLARA run through this maze and see how fast the
operator can finish the maze. The maze had slight changes to its configuration based
on how well CLARA managed to finish the maze to scale the difficulty for the operator.
Figure 4.9 shows the different test setups used.

4.6.2 Results

Table 4.4: CLARA Battery Tests

Joint 1 2 3 4 5 Avg

5" Elbow | DNF DNF DNF DNF DNF N/A
5" Tee DNF 490.47 291.57 DNF 223 335.013
6" Elbow | 50.22 43.39 43.02 36.70 86.87 52.04
6" Tee 85.89 87.64 160.11 244.33* 161.28* 147.85

Table 4.4 illustrates the times for maneuvering the different junction where 5 trials
were preformed. A successful maneuver is the time from when CLARA approaches the
entrance of a joint and when the back wheels reach the exit of the joint. Videos were
recorded for the 5 inch test while the operator judged the time for the 6 inch based on
the ESP-CAM and observing the movement in the pipe from the outside. The average
time of completion for each joint shows that CLARA was more effective maneuvering in
junctions that are 6" in diameter and struggled with 5" in diameter. Figures A.1 from
Appx. A shows time lapses of each type of successful trials.

45

Most notably it is shown that CLARA is incapable of maneuvering in the 5 inch elbow
joint. Analyzing the video shows that the back wheels would not be able to properly
anchor its position in the pipe and would often cause a misalignment and go at awkward
angles when actuating the cables. Due to this the front portion of CLARA would remain
in the same position and not bend towards the exit CLARA was trying to move through.
Figure 4.10(a) shows the misalignment issue in the back module. In both instances, the
wheels could not gain any traction and would sometimes have zero contact with the
inner pipe surface. Furthermore it would create strain on both the wheel motors and the
worm gear motors and create intense heat that would either kill the motor or disfigure
the casings and make them unusable.

(c) Potential Fail State Inside Tee Joint

Figure 4.10: CLARA Fail States

Another notable observation was how it maneuvered through the 5 inch tee joint.
CLARA is able to fully go through the joint when the two outlets are both at a 90° angle,
but fails to get through the joint when only one of these outlets are at an angle. When
the operator partially actuates CLARA in its preferred direction and drives forward, the
body automatically complies to the shape of the joint. CLARA pushing against the inner
wall causes it to do this. The inner wall is also used for traction for one of the wheels
and allows more driving force to be applied. When there is no inner wall to drive into
due to one of the outlets being straight ahead, CLARA can’t get the necessary traction
to move forward or the force it needs to automatically comply toward the outlet. This
means that CLARA can only maneuver through a tee joint from a specific opening.

46

Figure 4.10 shows different fail state of CLARA when navigating the elbow and tee
joint. Figure 4.10(c) shows a potential fail state that can happen within a tee joint. It
is possible for CLARA to get stuck in this position regardless of the size of the pipe.
Depending on how expanded the wheels are, the rigid links can get caught on an inner
pipe edge and cause damage when trying to move forward. The operator must especially
be careful how it angles CLARA and how expanded the wheels are when moving through
a tee joint in this direction.

F _

(a) Plate Damage (b) Rigid Link Gear Damage
I

(¢) Motor Housing Damage
Figure 4.11: Damaged CLARA Parts

CLARA was unable to successful complete a trial within the maze. The furthest it
was able to get was to the 6 inch elbow in the first configuration before the battery died.
Other places it failed was during an incline and within the first tee joint as shown in
Figure 4.12. CLARA might not be able to finish a maze but be able to maneuver through
single joints in isolated tests seems to be due to the orientation issue for the Yoshimura
modules. The misalignment issue makes it difficult for CLARA to readjust after exiting,
creating an awkward orientation that creates the stress that disfigures the components.
Readjustment is not possible with the current system as the kinematic model for this
type of Yoshimura continuum is not fully understood and there is no current method in
the software to properly track the cable lengths of each individual Yoshimura module.

47

Additionally, struggling at any obstacle will exacerbate that misalignment and heavily
drain the battery as stress on the variable suspension motor peaks at these instances.
Shortly after finishing a trial and starting maintenance, it was noted how hot these
particular motors were and in most cases the motor would end up becoming unusable and
needed replaced. Operational stress is the main contributor to how ineffective CLARA
is in this practical setting.

(a) Fail State on Incline (b) Fail State in Tee

Figure 4.12: Maze Fail States

While CLARA can physically be threaded through all these joints, having CLARA
move through it independently would require that the Yoshimura modules bend in a
way where the front module is mostly curved while the back module remains straight. If
CLARA was able to properly anchor itself or if it was structured like Lizard|24] where
the modules are actuated by their own set of motors, this could be achieved. However
in order to keep the novel aspect of CLARA, the design focus would need to be creating
a better suspension system to properly anchor CLARA in place. While the lead screw
design from the previous iterations|25, 26| were more stable by virtue of their metal lead
screw, threaded inserts and the extra brace to keep the lead screw from misalignment,
the added length would make it much more difficult to maneuver through the junctions.
Addressing the issue of the pieces wearing too quickly, fabricating the components out of
stronger material would reduce wearing and extend the lifetime of the part. The current
material for the rigid links is Tough 1500 V1 which has a high ultimate tensile strength
of 34 MPa and Modulus of 1460 MPa. This should be acceptable for the application that
CLARA is using it for, but due to the fine detail in the pieces such as the teeth of the
gears and the press fit hole the motor shaft goes into they are more liable to wear down
or completely break. Similarly, the PLA for the plates and casings should be durable
enough to hold the motors in place despite the torque applied on them, but it is possible
that heat from the motors being stressed contributed to the severe warping in the parts
as shown in Figure 4.11. Due to these factors, parts were switched out more often and
impeded testing.

48

Chapter 5

Conclusion

This chapter will reflect on the results of tests and will deliver the verdict if CLARA is
able to function in a practical environment over a prolonged period of time. Recommen-
dations will also be considered for any future work that CLARA might receive.

5.1 CLARA Efficacy

From the results of the tests preformed, it is determined that CLARA can in fact ma-
neuver within isolated pipe environments at a decent speed but can not be used for
prolonged periods of time within a practical environment. In an isolated environment,
CLARA is able to move through a decent range of junctions but at a relatively slow rate
compared to traversing straight pipe lengths. This can be due to operator inexperience
but also the robot’s misalignment with the pipe and orientation issue from CLARA’s
movements.

The main issue of CLARA’s movements is the awkward configurations that result
from the two Yoshimura module design. Due to the unknown kinematic model for this
continuum configuration, judging how the inputs would effect the robot was difficult
and not always apparent. While the camera view might show a straight a head view,
it’s possible that the back module could still be misaligned and create stress that wears
the parts down. Another contributing factor is the design of the variable diameter
suspension system. Even if it managed to shorten the rigid links, it was shown to be
ineffective in anchoring the robot in place when the robot begins to bend. This creates
the aforementioned misalignment issue.

Coupled with the fact that the only output displayed to the operator is the camera
feed and that the control scheme is fairly basic, controlling CLARA ends up being chal-
lenging and awkward for the average operator. This can explain the long joint traversal
times and the inputs that lead to misalignment and part damage. Although there are
various issues stemming from certain mechanical and software design flaws, there are
potential fixes that future projects can address.

49

5.2 Future Recommendations and Further Broader Im-
pacts

There are two potential routes that future teams can explore for fixing the misalignment
issue. The first method would be to change how the cables are actuated. By moving the
motors to the center, a pulley system can be implemented that actuated both modules at
the same rate, thus reducing the awkward orientation issue. Fixing that issue will reduce
the risk of having misalignment. The second route would be to update the software so
that it can either alert the operator of an awkward orientation or have a controller
that easily adjust the modules to the desired shape. Doing this would require a better
understanding the kinematic model of the current continuum configuration.

In either scenario it would be best to change the variable diameter suspension system
to a more efficient design. Something that can apply the necessary force to stay in the
pipe and not over work the motor that actuates the suspension system. Reducing the
number of wheel motors via some sort of transmission system would also help with the
battery life. Ideally, keeping the system shorter than the lead screw design from the
previous design would still be a focus.

LiPo batteries are noted for being high density battery cells. Using these small
batteries allowed CLARA to remain as small as it is, traveling in 5 inch diameter pipes.
The best way to reduce current draw and increase battery duration would be to reduce
the number of motors being used on CLARA. Since all 6 motors are meant to go at the
same rate when actuating the wheels, reducing that number might be the best method
for the next iteration. The original Salamander|23| utilized one motor to actuated the
front wheels using a power transmission system. Translating that somehow to a variable
diameter suspension system would be the bigger challenge for the next design.

In the introduction chapter of this paper, the initial broader impacts section discussed
how pipe network failures effect broader society as a way to justify designing CLARA.
After conducting the practical testing for CLARA, I have further considerations to how
CLARA is controlled and what that means for an operator. In its current state, CLARA
is difficult to control specifically in how it maneuvers joints even with the x-box gamepad
which is a familiar method of control. Training would have to be conducted to maxi-
mize efficiency and minimize potential damage that can happen to CLARA from poor
operation. The training the operators would receive should prioritize practical methods
such as the maze and joint setups preformed in this thesis project. Environmental con-
siderations would have to be factored into the training such as the type of pipes CLARA
would traverse and any residual material that is in the pipes. Additionally operators
would have to be trained on how to maintain and repair CLARA in these settings. This
will allow inspection processes to continue even in the event of a design failure.

50

5.3 Final Thoughts

Overall the project was a success for both of its goals. This new version of CLARA is
considerably more flexible and the efficacy of its design and concept were verified. Going
forward the main goal of the next iteration would be to make the design efficient enough
to be used for proper pipe inspection. The initial results of this thesis project showed
that there is merit to further developing the design.

51

Appendix A

Tables and Figures

Table A.1: Bill of Materials

Part Name Supplier Quantity Unit Price
ESP32 Development Board | Amazon 1 $8.99
X-Box Gamepad Controller | Amazon 1 $29.99
UM Tiny Pico Develop- | Adafruit 1 $20.00
ment Board
ESP32 CAM Development | Amazon 1 $13.99
Board
MP1584EN Mini 5 Volt | Amazon 1 $1.99
Buck Regulator
Pololu 5V, 1A Step- | Pololu 1 $11.95
Down Voltage Regulator
D24V10F5
Pololu 3.3V, 1A Step- | Pololu 1 $11.95
Down Voltage Regulator
D24V10F3
Pololu Micro Metal Gear- | Pololu 11 $23.87
motor HP 6V with Ex-
tended Motor Shaft
4" 5 Position Socket to | DigiKey 7 $1.37
Socket ZR Series JST Con-
nector
8" 5 Position Socket to | DigiKey 4 $1.65
Socket ZR Series JST Con-
nector
400 mAh 2s 7.4V Lipo Bat- | Amazon 2 $12.00
tery
JST compatible On/Off | Amazon 1 $4.00
Power Switch

Total $405.62

92

(d) 6 in Tee Joint B Time Lapse

Figure A.1: Successful Joint Maneuver Time Lapses

33

Appendix B

Software

Listing B.1: Gamepad Code

import hid
import XInput
import serial
import time
import math
import yaml

LOAD SEMI-OPTIONAL CONSTANTS
load constants from config.yaml file
try:
with open(’config.yaml’, ’r’) as ymlfile:
cfg = yaml.load(ymlfile, Loader=yaml.Loader)
except FileNotFoundError:
print(’config.yaml file not found, fix that please’)
ctg = {}
quit ()

TIME_DELAY = cfg.get(’time delay’)
DESIRED_BAUD = cfg.get(’desired_baud’)
HARDSET_PICO = cfg.get(’hardset_pico’)

def is_idle(state):
active = 0bO
button = XInput.get_button_values(state)
for presses in button.values():
if presses:
active |= Obl
triggers = XInput.get_trigger_values(state)
if triggers[0] !'= 0 or triggers[1] != O:
active |= Obl

o4

return active

def construct_button_bits(state):
nmnn
Constructs the button bits from the gamepad state
:param gpst: Gamepad State
:return button_st: 10 Bits Representing the Button State
nnn
buttons = XInput.get_button_values(state)
Blank Button

button_st = 0b00000000

Regular Buttons
if buttons.get("A"):
if __debug__: print("A")
button_st |= 0b0000001
if buttons.get("B"):
if __debug__: print("B")
button_st |= 0b0000010
if buttons.get("X"):
if __debug__: print("X")
button_st |= 0b0000100
if buttons.get("Y"):
if __debug__: print("Y")
button_st |= 0b0001000

if buttons.get("DPAD_RIGHT") and buttons.get("DPAD_UP"):
if __debug__: print("D-Pad Up Right")
button_st |= 0b0010000
elif buttons.get ("DPAD_DOWN") and buttons.get("DPAD_RIGHT"):
if __debug__: print("D-Pad Down Right")
button_st |= 0b0110000
elif buttons.get ("DPAD_DOWN") and buttons.get("DPAD_LEFT"):
if __debug__: print("D-Pad Down Left")
button_st [= 0b1010000
elif buttons.get("DPAD_UP") and buttons.get("DPAD_LEFT"):
if __debug__: print("D-Pad Up Left")
button_st |= 0b1110000
elif buttons.get ("DPAD_UP"):
if __debug__: print("D-Pad Up")
button_st |[= 0b0000000
elif buttons.get ("DPAD_RIGHT"):
if __debug__: print("D-Pad Right")
button_st [= 0b0100000

95

elif buttons.get ("DPAD_DOWN") :
if __debug__: print("D-Pad Down")
button_st |= 0b1000000

elif buttons.get ("DPAD_LEFT"):
if __debug__: print("D-Pad Left")
button_st |= 0b1100000

Rear Buttons

button_st = button_st << 2

if buttons.get ("LEFT_SHOULDER") :
if __debug__: print("LB")
button_st |= 0b000000001

if buttons.get ("RIGHT_SHOULDER") :
if __debug__: print("RB")
button_st |= O0b000000010

return button_st

def construct_trigs(state):
nmnn
Constructs the sticky bits from the gamepad state
:param gpst: Gamepad state
:return stick_st: 4 Bytes Representing the Sticky State

LT_RT = XInput.get_trigger_values(state)
if LT_RT[0] > 0.5 and LT_RT[1] > 0.5:
triggers = 0b00100000
if __debug__: print("LT_RT")
elif (LT_RT[1] > 0.5):
triggers = 0b01000000
if __debug__: print("RT")
elif (LT_RT[0] > 0.5):
triggers = 0b10000000
if __debug__: print("LT")
else:
triggers = 0b00000000

triggers = triggers << 24

return triggers

def main():

96

Open the Serial Port
ser = serial.Serial (HARDSET_PICO, DESIRED_BAUD,timeout=0)

if __debug__: print(f"Found serial at {ser.namel}" + f" with baud
{ser.baudrate}")
#ser.open()

print("--- Serial Port Opened, Gamepad Connected, Ready for Action ---")

Save Previous State
prev_state = None

Main Loop
while True:

if XInput.get_connected() [0]:

Construct Button Bits
state = XInput.get_state(0)
button_state = construct_button_bits(state)

Construct Sticky
trig_state = construct_trigs(state)

active = is_idle(state)

Print sizes of the variables

Combined Sticky and Button Bits format(enable, ’01b’)
curr_state = format(active, ’01b’) + format(button_state, ’09b’) +
format (trig_state, ’032b’) + ’\n’

Write to Serial

if curr_state is not prev_state:
combo = curr_state.encode(’ascii’)
byr = ser.write(combo)

Assign the

prev_state = curr_state

#if __debug__: print(f"Bytes Written: {byr}")

o7

time.sleep(0.15) #v3

Print from the serial port buffer, allowing for multiple lines of
debug
while ser.in_waiting:
#if __debug__: print("Writing in ser")
#while True:
print(ser.readline())

time.sleep(0.15)

if __name__ == ’__main__"’:

main()

o8

Listing B.2: Transmitter Code

#include <esp_now.h>
#include <WiFi.h>
#include <sensor_data.h>

/] ok ok ok sk sk sk ok ok ok ok ok sk K K ok ok ok ok ok K K K o ok ok ok sk K Kk ok ok ok ok sk Kk o ok ok ok sk K K ok ok ok ok sk K K o ok ok ok ok sk kK sk ok ok ok sk K K K o ok ok ok ok Kk K ok ok ok ok K K

VARIABLES + DEFINITIONS

sk sk ok o o ok ok ok ok ok o o ok ok ok ok ok ok o ok sk ok sk ok o o ok ok sk ok o o ok sk sk sk ok o ok sk sk sk ok o o ok sk sk ok o o ok sk sk sk ok ok sk sk sk ok o o ok sk sk sk ok o o ok sk sk ok ok ok ok ok ok ok
//ESP-NOW Variables
//uint8_t broadcastAddressi[] = {0x4C, 0x75, 0x25, 0xCA, O0x9F, 0x3C};
//replace with the MAC Address of your ESP
uint8_t broadcastAddressi[] = {0xD4, 0xD4, OxDA, OxAA, O0x2E, 0xDO}; // v3
//uint8_t broadcastAddressi[] = {0xC8, 0xC9, 0xA3, OxCF, OxAE, OxE8}; //
Sender 1
//uint8_t broadcastAddressi[] = {0xC8, 0xFO, Ox9E, O0xA2, Ox5F, 0xAO0}; //
Sender 2

typedef struct data_struct_rec { //data struct to receive wifi commands from
the external ESP - must match data struct sent from mainboard
String wifiData;
} data_struct_rec;
data_struct_rec test;
/%
typedef struct data_struct { //data struct to receive from the mainboard
containing address, current sensor, and encoder data
// data types must match data struct that mainboard is expecting
int smdAddress;
int currentData;
int encoderData;
} data_struct;

//create instance of sending struct to be populated with data
data_struct receiveData; //create instance of receiving struct
*/

//SensorData sensor_values;
typedef struct MotorGroup {

//Front Wheels

SensorData M1,

SensorData M2;

SensorData M3;

//Back Wheels

SensorData M4;

SensorData M5;

99

SensorData M6;
//Cables
SensorData M7;
SensorData M8;
SensorData M9;
//Screus
SensorData M10;
SensorData Mi1;
} MotorGroup;

MotorGroup All_Motors;

typedef struct CurrentGroup {
SensorData Wheel;
SensorData Screw;
SensorData Cable;
int16_t Total_Current;

} CurrentGroup;

CurrentGroup Battery_Test;

typedef struct F_struct{
float vi;
float v2;
float v3;

} F_struct;

F_struct f_values;
/%

int countA

0;

int countB = O;

bool countC = true;

*/

bool change = true;

bool mode = true;

bool input_change = true;

bool only_up = false;

String deviceBData = ""; //variable for inputting commands into the serial
monitor and storing the input

String newData = "";
String oldData = "O";

char deviceBdata;
char input[43];

60

/KK ok sk ok ok sk ok sk sk ok ok K sk ok ok K ok ok ok sk sk ok ok K sk ok ok K ok ok K ok K sk ok ok K sk ok K ok sk sk ok ok ok sk ok ok sk sk ok ok sk sk ok ok ok sk ok ok K 3 ok ok ok 3 ok ok oK 3 ok ok K ok

SETUP + LOOP

>k >k >k >k >k >k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k >k >k >k %k >k >k >k >k >k >k >k 3k 3k 3k 3k 3k >k 3k >k >k >k >k >k >k >k >k %k %k %k 5k 5k >k >k >k >k 3k >k 3k 3k 3k >k 3k >k >k >k >k >k >k >k >k >k %k %k >k %k >k >k >k >k >k >k 3k 3k 3k >k >k >k > > > 3

void setup() {
Serial.begin(9600) ;
delay(100) ;

//initialize device as wifi station
WiFi.mode (WIFI_STA);

//initialize ESP-NOW

if (esp_now_init() !'= ESP_OK) {
Serial.println("Error initializing ESP-NOW");
return;

}

//register callback function to be called when a message is sent
esp_now_register_send_cb(OnDataSent) ;

// Once ESPNow is successfully Init, we will register for recv CB to
// get recv packer info
esp_now_register_recv_cb(OnDataRecv) ;

// register peer
esp_now_peer_info_t peerlnfo;
peerInfo.channel = O;
peerInfo.encrypt = false;

// register first peer
memset (&peerInfo, 0, sizeof (peerInfo));
memcpy (peerInfo.peer_addr, broadcastAddressl, 6);
if (esp_now_add_peer(&peerInfo) != ESP_0K) {
Serial.println("Failed to add peer");
return;

}
}

void loop() {
if (Serial.available() > 0) {
if (Serial.peek() != ’\n’) //if we press enter in the serial monitor and
sent data

{

deviceBData += (char) Serial.read(); //add read string into a data cache

61

}
else { //end of aline
Serial.read();
//now need to interpret deviceBData
//Serial.print("You said: ");
newData = interpretData(deviceBData);
//Serial.println(newData) ;
// Changes Being Here
if (newData.toInt() == oldData.toInt()){
input_change = false;
//Serial.println("Not New");
} else {
input_change = true;
oldData = newData;
//Serial.println("New");
}
if (input_change){
//sends the actual data
test.wifiData = newData; //convert data to an integer
//send the message - first argument is mac address, if you pass O then
it sends the same message to all registered peers
esp_err_t result = esp_now_send(0, (uint8_t *) &test,
sizeof (data_struct_rec));
if (result == ESP_0K) {
//Serial.println("Sent with success");
}
else {
//Serial.println("Error sending the data");
}
}
//Changes End Here
deviceBData = "";
}
Yelseq{
//Serial .println("QOopsie! No Serial Available");
}

delay(5);
}

/***>

ESP-NOW WIFI HELPER FUNCTIONS

>k 3k 3k >k 3k 3k 5k >k 3k 3k 5k 3k 3k 5k >k 3k Sk ok >k Sk 3k >k 3k 3k 5k >k Sk Sk 5k 3k 3k 5k >k 3k Sk ok 3k Sk Sk >k sk 3k 5k >k Sk Sk ok sk Sk sk >k sk 3k sk ok Sk Sk ok sk Sk sk ok Sk sk ok sk Sk ok >k sk 3k ok >k Sk 3k >k sk Sk ok ok sk k ok ok sk sk ok kosk ok k>

62

/**
Callback function to be executed when WiFi data is sent to mainboard
prints if message was successfully delivered to know if board received
message
Oparam mac_addr - the mac address of the board that data is being sent to
Oparam status - the status of the transaction - success or fail
*/
void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status) {
char macStr[18];
//Serial.print("Packet to: ");
// Copies the sender mac address to a string
snprintf (macStr, sizeof (macStr), "%02x:%02x:%02x:%02x:%02x:%02x",
mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr([4],
mac_addr [5]) ;
// Serial.print(macStr);
//Changes Begin Here
if (status == ESP_NOW_SEND_SUCCESS && change){
Serial.println("Send Status: Delivery Successful");
change = false;
} else if (status != ESP_NOW_SEND_SUCCESS && !change)<{
Serial.println("Sent Status: Delivery Failed");
change = true;
} // Changes End Here
//Serial.print (" send status:\t");
//Serial.println(status == ESP_NOW_SEND_SUCCESS ? "Delivery Success"
"Delivery Fail");

/%%
Callback function to be executed when WiFi data is received from mainboard
Prints received smart motor driver address, current sensor and encoder data
Oparam mac - the mac address of the board sending the data
Oparam incomingData - the data to be copied into the myData variable - the

instance of the receiving struct

Oparam len the number of bytes received

*/

void OnDataRecv(const uint8_t * mac, const uint8_t *incomingData, int len) {

if (len == sizeof (MotorGroup)){
memcpy (&A11_Motors, incomingData,sizeof (MotorGroup));
Serial.println("Front Wheels Current:");
Serial.println(All_Motors.M1.current);
Serial.println(All_Motors.M2.current);

63

Serial.println(All_Motors.M3.current);
Serial.println("Back Wheels Current:");
Serial.println(All_Motors.M4.current);
Serial.println(All_Motors.M5.current);
Serial.println(All_Motors.M6.current);
Serial.println("Cables Current");
Serial.println(All_Motors.M7.current);
Serial.println(All_Motors.M8.current);
Serial.println(All_Motors.M9.current);
Serial.println("Front Lead Screw Currents");
Serial.println(All_Motors.M10.current);
Serial.println(All_Motors.M11l.current);

} else if(len == sizeof (F_struct) /*&& modex/){
memcpy (&f _values, incomingData,sizeof (F_struct));
Serial.println("Cable lengths:");
Serial.println(f_values.vl);
Serial.println(f_values.v2);
Serial.println(f_values.v3);

} else if(len == sizeof (CurrentGroup)){
memcpy (&Battery_Test, incomingData,sizeof(Battery_Test));
Serial.println("Current of One Wheel");
Serial.println(Battery_Test.Wheel.current);
Serial.println("Current of One Screw");
Serial.println(Battery_Test.Screw.current);
Serial.println("Current of One Cable");
Serial.println(Battery_Test.Cable.current);
Serial.println("Total Current Draw");
Serial.println(Battery_Test.Total_Current);

/***>

CONTROLLER FEEDBACK FUNCTIONS

>k 3k 3k >k 3k 3k 5k >k 3k 3k >k >k 3k 5k >k 3k 3k 5k >k 3k 3k >k >k 3k 5k >k 5k 3k 5k 3k 3k 5k >k 3k 3k >k >k 3k 3k >k 3k 3k 5k >k 3k 3k 5k 3k 3k 5k >k 3k 3k 5k >k 5k 5k 5k 3k 3k 5k >k 3k 3k >k 3k 3k 5k >k 5k 3k 5k >k 3k 3k >k 3k 3k 5k >k 3k 3k >k >k 3k 5k %k %k 5k >k %k >

VETS

* Function to interpret input from Logitech gamepad from registers and return
a command as a String to send to the mainboard

* @param data - String output from controller

*/

64

String interpretData(String data) {
data.toCharArray(input, 43);
//Serial.println(data);

//A button is index O
only_up = true;

// Idle so Brake
for(int 1 = 1; i <= 12; i++){

if (data[i] == ’17){
only_up = false;
break;
}
b
//make D pad into integer 0-7
String dpad = "";

int dpadval = 0;
for (int i = 1; i <= 3; i++) {
dpadval *= 2;
if (datal[i] == ’17){
dpadval++;
}
}
//Brakes
if(datal[0] == 0’ || only_up) {
//Serial.println("Stop");
return "0";
}
// Forward & Backward
else if (datal[8] == ’1’ && datal5] == ’0’) { //right bumper forward
return "8";
}else if (datal9]
return "9";
Yelse if (data[8] == ’1’ && data[5] == ’1’){ //forward battery test
return "31";
Yelse if (data[9] == ’1’ && data[5] == ’1’){ // Back
return "32";

= ’1°&& datal5]

= 20’) { //left bumper backward

}

// Single Cable Control
else if (dpadval == 2 && datal6] == ’0’ &% datal[5] == ’0’) { //cable 1 down
d-pad right

return "12";

Yelse if (dpadval == 2 && data[6] == ’0’ && data[5] == ’1°) {
return "33";

}else if (dpadval == 4 &% datal[6] == ’0’) { //cable 2 down d-pad down
return "14";

65

Yelse if (dpadval == 6 && data[6] == ’0’) { //cable 3 down d-pad left
return "16";
}else if (data[6] == ’1’ && dpadval == 2 && data[5] == ’0’) { //B button
with dpad right cable 1 extend
return "18";

}else if (dpadval == 2 &% datal[6] == ’1’ && data[5] == ’>1’) {
return "34";
}else if (datal6] == ’1’ &% dpadval == 4) { //B button w dpad down cable 2
extend
return "19";
}else if (datal6] == ’1’ && dpadval == 6) { //B button w dpad left cable 3
extend
return "20";
}
// Front Screw Control
else if (data[7] == ’1’ && datal[6] == ’0’ && datal[11] == ’0’ && datal[5] ==
’0°) { //A button NO B - front lead screw down
return "4";
} else if (datal[4] == ’1°> && datal[6] == ’0’ && data[ll] == 0’ && datal[5] ==
’0°) { //y button NO B - front lead screw up
return "1";
} else if (datal[7] == ’1’ && datal[6] == ’0’ && data[11] == ’0’ && datal[5] ==

>1°) { //A button NO B - front lead screw up and check
return "35";
} else if (data[4] == ’1’ && datal6] == ’0’ && data[11] == ’0’ && datal5] ==
’1°) { //y button NO B - front lead screw up and check
return "36";
} // Rear Screw Control
else if (data[7] == 1’ && datal[6] == ’1’) { //A button WITH B - rear lead
screw down
return "28";
} else if (datal[4] == ’1’ && datal[6] == ’1’) { //y button WITH B - rear lead
screw up
return "27";

¥

//Both Screw Controls data[11] Left trigger 10 Right 11 Both 12
else if (data[7] == 1’ && datal[6] == ’0’ && datal[11] == 21°){
return "29";
//expand
} else if(datal4] == ’1’ && datal[6] == ’0’ && datal[11] == ’1°){
return "30";
//retract
}

66

//check buttons
else if (data[5] == ’1’) { //x button - send data
return "2";

}

//Two Cables

// Down and Right Reverse (0x09 & 0x08 currently)

else if(dpadval == 4 &% datal[6] == ’1’ && data[11] == ’1°){
//send for down right reverse
return "22";

} else if(dpadval == 4 &% data[6] == °0’ && data[11] == ’1°){
//send for down right actuate
return "21";

}
// Down Left (0x08 & O0xOF currently)
else if (dpadval == 4 && data[6] == ’1° && data[10] == ’1°){

//send for down left reverse
return "24";
} else if (dpadval == 4 && datal6] == >0’ &% data[10] == ’1°){
//send for down left actuate
return "23";
}
// Right Left AKA Up (OxOF & 0x09 currently) right trigger 7
else if (datal[6] == ’1’ && data[12] == ’1°){
//send for up reverse
return "26";
} else if (datal[6] == ’0’ && data[12] == ’1°){
//send for up
return "25";

3

//A11 Cable Control
else if(data[10] == 21°){
// send vaule for reverse all
return "17";
}
else if(datal[11] == >1°){
// send value for all cables
return "15";
}
// When a nothing button is being pushed.
else if(dpadval == 0){
return "0";

¥

else {

67

}

return "O";

68

Listing B.3: Reciever Code

#include <Wire.h> //include Wire.h library
#include <esp_now.h> //ESP-Wifi comms
#include <WiFi.h>

#include <math.h>

#include <time.h>

#include <smartmotor.h>

#include <simc_write.h>

#tinclude <header.h>

#include <sensor_data.h>

#include <S_OP.h>

//#include <Motoron.h>

/***>

VARIABLES + DEFINITIONS

s sk ok sk sk ok ok o ok ok sk sk ok ok sk ok ok s ok ok sk sk ok sk s ok ok sk ok ok sk sk ok ok s ok ok sk sk ok sk sk ok sk s ok ok sk sk ok sk sk sk ok s ok ok sk sk ok sk sk ok ok s ok ok sk sk ok sk sk ok ok s ok ok sk sk ok sk sk ok ok sk ok ok sk ok ok k3

//ESP-NOW Variables
//uint8_t broadcastAddressi[] = {0xC8, 0xC9, 0xA3, O0xCF, OxAE, OxE8}; //
Sender 1
uint8_t broadcastAddressi[] = {0xC8, 0xFO, O0x9E, O0xA2, O0x5F, 0xAO}; // Sender 2
/%
typedef struct data_struct { //data struct to send to the receiver/external
ESP containing address, current sensor, and encoder data
// data types must match data struct sent from external ESP
int smdAddress;
int currentData;
int encoderData;
} data_struct;
*/
typedef struct data_struct_rec { //data struct to receive wifi commands from
the external ESP - must match data struct sent from external ESP
String wifiData;
} data_struct_rec;

typedef struct MotorGroup {

//Front Wheels
SensorData M1;
SensorData M2;
SensorData M3;
//Back Wheels

SensorData M4;
SensorData M5;
SensorData M6;

69

//Cables
SensorData M7;
SensorData M8;
SensorData M9;
//Screus
SensorData M10;
SensorData Mi11;
} MotorGroup;

typedef struct CurrentGroup {
SensorData Wheel;
SensorData Screw;
SensorData Cable;
int16_t Total_Current;

} CurrentGroup;

MotorGroup All_Motors;
CurrentGroup Battery_Test;

//data_struct test; //create instance of sending struct to be populated with
data

//SensorData sensor_values;

data_struct_rec myData; //create instance of receiving struct

//WHEEL ADDRESSES

uint8_t ADDR_DriveFrontl = 0x07;
uint8_t ADDR_DriveFront2 = 0x06;
uint8_t ADDR_DriveFront3 = 0x05;

SmartMotor F_Wheels[3] =
{SmartMotor (ADDR_DriveFrontl) ,SmartMotor (ADDR_DriveFront2) ,SmartMotor (ADDR_DriveFront3)};

uint8_t ADDR_DriveRearl = 0xO0A;
uint8_t ADDR_DriveRear2 = 0x0C;
uint8_t ADDR_DriveRear3 = 0xOB;

SmartMotor B_Wheels[3] =
{SmartMotor (ADDR_DriveRear1l) ,SmartMotor (ADDR_DriveRear2) ,SmartMotor (ADDR_DriveRear3)};

uint8_t ADDR_Cablel = 0x09;
uint8_t ADDR_Cable2 = 0x08;
uint8_t ADDR_Cable3 = 0xOF;

SmartMotor Cables[3] =
{SmartMotor (ADDR_Cablel) ,SmartMotor (ADDR_Cable2) ,SmartMotor (ADDR_Cable3)};

uint8_t ADDR_LeadScrewFront = 0x0D;

70

SmartMotor LS_Front(ADDR_LeadScrewFront);

uint8_t ADDR_LeadScrewRear = O0xOE; //110
SmartMotor LS_Rear (ADDR_LeadScrewRear) ;

SmartMotor Lead_Screws[2] = {LS_Front, LS_Rear};

//data variables from smart motor drivers

int count = 0; //encoder count

char current = 0; //current reading

const int vRef = 3.3; //reference logic level voltage

const int senseResistor = 0.5; //current sense resistor in Ohms

byte encl, enc2; //encoder variables

const int encTicksPerRev = 12; //encoder ticks per revolution

const float motorGearRatio = 298.0; //gear ratio for cables and worm gear

//cable length and encoder count variables
float 11 = 0;

float 12 0;

float 13 0;

int32_t c1, c2, c3;

const float drumdiameter = 5.5; //Diameter of the winch drums for the cable
motors - mm

const float origlength = 235; //original length of the Yoshimura module
including endplates - mm

const float r = 96 ; //length of module without endplate - mm (I think this is
starting, but I’m always starting at slack?)

const float LO = 37 ;//shortest length of module in mm - Front module can
compress to this - might not be accurate.

float s, theta, phi; //arc length, bending angle, bending directions - from
soft robotics lab paper
typedef struct F_struct{
float vi;
float v2;
float v3;
} F_struct;

F_struct f_values;

/***>

71

SETUP + LOOP

>k 3k 3k >k 3k 3k 5k >k 3k 3k 5k 3k 3k 5k >k 3k 3k 5k >k 3k 3k >k >k 3k 5k >k k 3k 5k 3k 3k 5k >k 3k 3k 5k >k 3k 3k >k 3k 3k 5k >k 3k 3k 5k 3k Sk 3k >k 3k 3k 5k 3k Sk 5k 5k sk 3k 3k >k 3k 3k 5k sk Sk 3k >k sk 3k 5k >k 3k 3k >k sk Sk ok >k sk ok ok >k sk sk >k k sk ok k>

void setup()
{
Wire.begin(); // I2C communication begin
Serial.begin(9600); // The baudrate of Serial monitor is set in 9600 - lower
baudrates work best with motor driver modules
while (!Serial); // Waiting for Serial Monitor to initialize
Serial.println("\nI2C Scanner");

//Set device as a Wi-Fi Station
WiFi.mode (WIFI_STA);

//Init ESP-NOW

if (esp_now_init() != ESP_0K) {
Serial.println("Error initializing ESP-NOW");
return;

}

// Once ESPNow is successfully Init, we will register for recv CB to
// get recv packer info
esp_now_register_recv_cb(OnDataRecv) ;

//run once on startup to verify SAMIs connected
findDevices();

//register callback function to be called when a message is sent
esp_now_register_send_cb(OnDataSent) ;

// register peer
esp_now_peer_info_t peerlnfo;
peerInfo.channel = O;
peerInfo.encrypt = false;

// register first peer

memset (&peerInfo, 0, sizeof (peerInfo));

memcpy (peerInfo.peer_addr, broadcastAddressl, 6);

if (esp_now_add_peer (&peerInfo) !'= ESP_OK) {
Serial.println("Failed to add peer");
return;

}

+

72

void loop() {
//nothing really.... this is all event based

¥

/***>

I2C FUNCTIONS

>k 3k 3k >k >k 3k 5k >k 3k 3k 5k >k 3k 5k >k 5k 3k 5k >k 3k 3k >k >k 3k 5k >k 3k 3k 5k >k 3k 5k >k 3k 3k 5k >k 3k 3k >k 3k 3k 5k >k 3k 3k 5k 5k 3k 3k >k 3k 3k 5k >k 3k 5k >k 3k 5k 5k >k 3k 3k >k >k 3k 5k >k 3k 5k 5k >k 3k 5k >k 5k 5k >k %k 3k 5k >k >k 3k 5k %k %k >k >k %>

/%%
Finds all available I2C devices on the current bus - can be used for
troubleshooting
*/
void findDevices() {
byte error, address; //variable for error and I2C address
int nDevices; //number of devices found on I2C bus

Serial.println("Scanning...");

nDevices = 0;
for (address = 1; address < 127; address++)
{
// The i2c_scanner uses the return value of
// the Write.endTransmisstion to see if
// a device did acknowledge to the address.
Wire.beginTransmission(address); //begin transmission with each possible
address
error = Wire.endTransmission(); //returns O for success, 1,2,3,4 for other
errors

//if we receive a successful transaction then print out the device’s
address in hex format
if (error == 0)
{
Serial.print("I2C device found at address 0x");
if (address < 16)
Serial.print("0");
Serial.print(address, HEX);
Serial.println(" !");
nDevices++;
}
else if (error == 4)

{

73

Serial.print ("Unknown error at address 0x");
if (address < 16)

Serial.print("0");

Serial.println(address, HEX);

Serial.println("No I2C devices found\n");

}
}
if (nDevices == 0)
else
Serial.println("done\n");
}
/**

Reads encoder & current data from a singular motor driver board, stores
them, and sends them to the external ESP for debugging

Oparam address - the hexadecimal I2C address of the motor driver you are
requesting data from

Oparam numBytes - the number of bytes you are requesting from the motor

driver board over I2C

*/

void requestDataMotors(){

//Wire.requestFrom(address, numBytes, true);//create a request from an
individual motor driver board for given number of bytes

All_Motors
Al11_Motors
All_Motors

A1l _Motors
All_Motors
All_Motors

Al1_Motors
All_Motors
Al1_Motors

Al1_Motors.
All_Motors.

M1
.M2.
.M3.

.M4.
.M5.
.M6.

M7
.M8.
.M9.

M10.current
M11.current

current
current
current

current
current
current

current
current
current

F_Wheels[0].get_current();
F_Wheels[1].get_current();
F_Wheels[2] .get_current();

B_Wheels[0] .get_current();
B_Wheels[1].get_current();
B_Wheels[2] .get_current();

Cables[0] .get_current();
Cables[1] .get_current();
Cables[2] .get_current();

= Lead_Screws[0] .get_current();

Lead_Screws[1] .get_current();

esp_err_t result = esp_now_send(0, (uint8_t *) &All_Motors,

sizeof (MotorGroup)) ;

if (result == ESP_0K){
Serial.println("Test C Pass");

} else {

Serial.println("Test C Fail");

}

74

void BatteryTestPacket(){
Battery_Test.Wheel.current
Battery_Test.Screw.current
Battery_Test.Cable.current
intl6_t TC = O;
for(int i = 0;i<=2;i++){
TC += F_Wheels[i].get_current();
TC += B_Wheels[i].get_current();
TC += Cables[i].get_current();
}
for(int j=0;j<=1;j++){
TC += Lead_Screws[j].get_current();
}
Battery_Test.Total_Current = TC;
esp_err_t result = esp_now_send(0, (uint8_t *) &Battery_Test,
sizeof (Battery_Test));
if (result == ESP_0K){
Serial.println("Test A Pass");
} else {
Serial.println("Test A Fail");
}

F_Wheels[0] .get_current();
Lead_Screws[0] .get_current();
Cables[0] .get_current();

void requestDataCables(){

11 = calcCablelen(Cables[0].get_position());
12 = calcCablelen(Cables[1].get_position());
13 = calcCablelen(Cables[2] .get_position());

f_values.vl = 11;
f_values.v2 12;
f_values.v3 13;

esp_err_t result_cable_len = esp_now_send(0, (uint8_t *) &f_values,
sizeof (F_struct));
if (result_cable_len == ESP_0K){
Serial.println("Test B Pass");
} else {
Serial.println("Test B Fail");

/***>

75

ESP-NOW WIFI HELPER FUNCTIONS

>k 3k 3k >k 3k 3k 5k >k 3k 3k 5k 3k 3k 5k >k 3k 3k 5k >k 3k 3k >k >k 3k 5k >k k 3k 5k 3k 3k 5k >k 3k 3k 5k >k 3k 3k >k 3k 3k 5k >k 3k 3k 5k 3k Sk 3k >k 3k 3k 5k 3k Sk 5k 5k sk 3k 3k >k 3k 3k 5k sk Sk 3k >k sk 3k 5k >k 3k 3k >k sk Sk ok >k sk ok ok >k sk sk >k k sk ok k>

/**
Callback function to be executed when WiFi data is sent to external ESP
prints if message was successfully delivered to know if board received
message
Oparam mac_addr - the mac address of the board that data is being sent to
@param status - the status of the transaction - success or fail
*/
void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status) {
char macStr[18];
//Serial.print("Packet to: ");
// Copies the sender mac address to a string
snprintf (macStr, sizeof (macStr), "%02x:%02x:%02x:%02x:%02x:%02x",
mac_addr [0], mac_addr[1], mac_addr[2], mac_addr([3], mac_addr([4],
mac_addr[5]);
// Serial.print(macStr);
// Serial.print(" send status:\t");
//Serial.println(status == ESP_NOW_SEND_SUCCESS ? "Delivery Success"
"Delivery Fail");

/**
Callback function to be executed when WiFi data is received from external
ESP
Handles controller command data and commands motor driver boards to move or
send data based on input
Oparam mac - the mac address of the board sending the data
Oparam incomingData - the data to be copied into the myData variable - the
instance of the receiving struct
@param len the number of bytes received
*/
void OnDataRecv(const uint8_t * mac, const uint8_t *incomingData, int len) {
memcpy (&myData, incomingData, sizeof(myData)); //copy content of
incomingdata variable into mydata variable

// convert data into an integer to figure out what command was sent from the
controller

int commanddata = myData.wifiData.toInt();

/*********************

Controller Responses

76

*********************/

VELS
button pad - drive the lead screw and request data
*/
// Screw Controls
if (commanddata == 1) { //Y button - lead screw retract

Serial.println("lead up");
LS_Front.set_rpm(30); /// fix
}
else if (commanddata == 4) { //A button - lead screw expand
Serial.println("lead down");
LS_Front.set_rpm(-30); /// fix
}

else if (commanddata == 28) { // rear expand
Serial.println("rear lead screw up");
LS_Rear.set_rpm(30);

}

else if (commanddata == 27) { //rear retract
Serial.println("rear lead screw down");
LS_Rear.set_rpm(-30);

}

else if (commanddata == 29){ // Both Expand
LS_Front.set_rpm(-30);
LS_Rear.set_rpm(30);

}

else if (commanddata == 30){// Both Retract
LS_Front.set_rpm(30);
LS_Rear.set_rpm(-30);

}

else if (commanddata == 2) { //X button - send data back from all motors
requestDataMotors() ;

requestDataCables() ;
//invCableKin(11,12,13);
}
/*%
D-Pad - control the cable motors
*/

77

else if (commanddata == 12) { //dpad = 2 - cable 1 down
Serial.println("cable 1 down");
Cables[0] .set_rpm(30);
Cables[1].set_rpm(0);
Cables[2].set_rpm(0);

}

else if (commanddata == 14) { //dpad = 4 - cable 2 down
Serial.println("cable 2 down ");
Cables[0] .set_rpm(0);
Cables[1] .set_rpm(30);
Cables[2] .set_rpm(0);

}

else if (commanddata == 16) { //dpad = 6 - cable 3 down
Serial.println("cable 3 down");
Cables[0] .set_rpm(0);
Cables[1].set_rpm(0);
Cables[2] .set_rpm(30);

}

else if (commanddata == 18) { //reverse cable 1
Serial.println("cable 1 up");
Cables[0] .set_rpm(-30);
Cables[1] .set_rpm(0);
Cables[2] .set_rpm(0);

}

else if (commanddata == 19) { //reverse cable 2
Serial.println("cable 2 up");
Cables[0].set_rpm(0);
Cables[1].set_rpm(-30);
Cables[2].set_rpm(0);

}

else if (commanddata == 20) { //reverse cable 3
Serial.println("cable 3 up");
Cables[0].set_rpm(0);
Cables[1] .set_rpm(0);
Cables[2].set_rpm(-30);

}

//Dual Cable Control
else if (commanddata == 21){ //Down right (1 and 2)
Cables[0] .set_rpm(30);
Cables[1].set_rpm(30);
Cables[2] .set_rpm(0);
} else if(commanddata == 22){ //Down right reverse (1 and 2)
Cables[0].set_rpm(-30);
Cables[1] .set_rpm(-30);
Cables[2] .set_rpm(0);
} else if(commanddata == 23){ //Down left (2 and 3)

78

Cables[0] .set_rpm(0);
Cables[1].set_rpm(30);
Cables[2] .set_rpm(30);
} else if(commanddata == 24){ // Down left reverse (2 and 3)
Cables[0].set_rpm(0);
Cables[1].set_rpm(-30);
Cables[2].set_rpm(-30);
} else if(commanddata == 25){ // Up (1 and 3)
Cables[0] .set_rpm(30);
Cables[1] .set_rpm(0);
Cables[2].set_rpm(30);
} else if(commanddata == 26){ // Up reverse (1 and 3)
Cables[0].set_rpm(-30);
Cables[1] .set_rpm(0);
Cables[2] .set_rpm(-30);
}

//A11 Cables
else if (commanddata == 15){ // All cables actuate
for(int 1 = 0; 1 <= 2; i++){
Cables[i] .set_rpm(30);
}
} else if (commanddata == 17){
for(int 1 = 0; 1 <= 2; i++){
Cables[i] .set_rpm(-30);
}
}

YELS

wheel driving - drive wheels and lead screw based on current sensing

*/

else if (commanddata == 8) { //right bumper - drive forward fast
Serial.println("drive forward");
for(int 1 = 0; 1 <= 2; i++){
F_Wheels[i].set_rpm(-30);
B_Wheels[i] .set_rpm(30);
}

}
else if (commanddata == 9) { //left bumper - drive backward fast

for(int i = 0; i <= 2; i++){
F_Wheels[i].set_rpm(30);
B_Wheels[i] .set_rpm(-30);
}

Serial.println("drive backward");

79

else if (commanddata == 31 || commanddata == 32 || commanddata == 33 ||
commanddata == 34 || commanddata == 35 || commanddata == 36){

BatteryTestPacket () ;

}

/%

else if (commanddata == 7){
Homing () ;

x/

//brake motors
else if (commanddata == 0) { //brake all motors/do nothing
for(int 1 = 0; 1 <= 2; i++){
Cables[i] .set_rpm(0);
F_Wheels[i].set_rpm(0);
B_Wheels[i] .set_rpm(0);
}
LS_Front.set_rpm(0);
LS_Rear.set_rpm(0) ;
}

/***>

SMART MOTOR DRIVER DRIVE
FUNCTIONS

stk stk ok ok ok stk ok ook sk ok ok ook sk sk ok ook sk sk ok ook sk ok sk ok sk sk ok ook sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk ok ok sk ok o

/%%
Calculates the length of all cables using encoder counts
@param enccounts - the integer amount of quadrature encoder ticks

Oreturn float cablelen - the length of the cable
*/

float calcCablelen(int32_t enccounts) {

//Serial.println(enccounts);

int32_t rotationsl = abs(enccounts) / encTicksPerRev; //calculate number of
rotations of the motor shaft from the encoder wheel

float rotations = rotationsl / motorGearRatio; //calculate actual number of
rotations from motor gearbox

//Serial.println(rotations);

float deltacablelen = rotations * M_PI * drumdiameter; //calculate the

80

change in cable length from circumference of drum diameter and the amount
of rotations
float cablelen = origlength - deltacablelen; //calculate final cable length
return cablelen;

}

/*
Calculates the inverse kinematics (bending angle - theta, arc length - S,
bending direction - phi) of the cables given the cable lengths
@param 11 - float length of cable 1
Oparam 12 - float length of cable 2
@param 13 - float length of cable 3
*/
void invCableKin (float 11, float 12, float 13) {
// calc S, theta, and phi

s =(3%L0+ 11+ 12+ 13) / 3;
theta = 2 * sqrt((3 * (11 * 11) - 11 * 12 - 11 * 13 - 12 * 13) / (3 * 1));
phi = atan((sqrt(3) * (13 - 12)) / (12 + 13 - 2 * 11));

f_values.vl = s;
//f_values.vl = 4;
Serial.println(f_values.vl);
f_values.v2 = theta;
//f_values.v2 = 5;
Serial.println(f_values.v2);
f_values.v3 = phi;
//f_values.v3 = 6;
Serial.println(f_values.v3);
Serial.println(" ");
esp_err_t result_FK = esp_now_send(0, (uint8_t *) &f_values,
sizeof (F_struct));
if (result_FK == ESP_0K){
Serial.println("Sent FK");
} else {
Serial.println("Fail FK");

81

Bibliography

1

2]

3]

4]

[5]

(6]

7]

8]

19]

C. E. Restrepo, J. S. Simonoff, and R. Zimmerman, “Causes, cost consequences,
and risk implications of accidents in us hazardous liquid pipeline infrastructure,”
International Journal of Critical Infrastructure Protection, vol. 2, no. 1, pp. 38-50,
2009.

T. M. Rifaai, A. A. Abokifa, and L. Sela, “Integrated approach for pipe failure
prediction and condition scoring in water infrastructure systems,” Reliability Engi-
neering System Safety, vol. 220, p. 108271, 2022.

R. Taiwo, I. A. Shaban, and T. Zayed, “Development of sustainable water infrastruc-
ture: A proper understanding of water pipe failure,” Journal of Cleaner Production,
vol. 398, p. 136653, 2023.

M. Mahmoodian and C. Q. Li, “Failure assessment and safe life prediction of cor-
roded oil and gas pipelines,” Journal of Petroleum Science and Engineering, vol. 151,
pp- 434-438, 2017.

Q. Ma, G. Tian, Y. Zeng, R. Li, H. Song, Z. Wang, B. Gao, and K. Zeng, “Pipeline
in-line inspection method, instrumentation and data management,” Sensors, vol. 21,
no. 11, 2021.

J. Latif, M. Z. Shakir, N. Edwards, M. Jaszczykowski, N. Ramzan, and V. Ed-
wards, “Review on condition monitoring techniques for water pipelines,” Measure-
ment, vol. 193, p. 110895, 2022.

A. Carvalho, J. Rebello, M. Souza, L. Sagrilo, and S. Soares, “Reliability of non-
destructive test techniques in the inspection of pipelines used in the oil industry,”

International Journal of Pressure Vessels and Piping, vol. 85, no. 11, pp. 745-751,
2008.

M. Safizadeh and T. Azizzadeh, “Corrosion detection of internal pipeline using ndt
optical inspection system,” NDT' FE International, vol. 52, pp. 144-148, 2012.

A. Verma, A. Kaiwart, N. D. Dubey, F. Naseer, and S. Pradhan, “A review on various
types of in-pipe inspection robot,” Materials Today: Proceedings, vol. 50, pp. 1425—
1434, 2022. 2nd International Conference on Functional Material, Manufacturing
and Performances (ICEFMMP-2021).

82

https://doi.org/10.1016/j.jclepro.2023.136653
https://doi.org/10.1016/j.jclepro.2023.136653

[10]

[11]

[12]

13

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

J. T. Kahnamouei and M. Moallem, “A comprehensive review of in-pipe robots,”
Ocean Engineering, vol. 277, p. 114260, 2023.

J. Ni, M. Wang, L. Du, S. Bao, Z. Hu, and J. Yuan, “Design of an active suspension
mechanism for obstacle traversal of in-pipe robots,” in 2024 IEEE International
Conference on Mechatronics and Automation (ICMA), pp. 1403-1408, 2024.

S. Jatsun and A. Malchikov, “Adaptive suspension system position-force control
of wheeled wall-pressed in-pipe climbing robot,” in Synergetic Cooperation between
Robots and Humans (E. S. E. Youssef, M. O. Tokhi, M. F. Silva, and L. M. Rincon,
eds.), (Cham), pp. 101-111, Springer Nature Switzerland, 2024.

H. Choi and S. Ryew, “Robotic system with active steering capability for internal
inspection of urban gas pipelines,” Mechatronics, vol. 12, no. 5, pp. 713-736, 2002.

A. Kakogawa and S. M. and, “Design of a multilink-articulated wheeled pipeline
inspection robot using only passive elastic joints,” Advanced Robotics, vol. 32, no. 1,
pp- 37-50, 2018.

E. Dertien, M. M. Foumashi, K. Pulles, and S. Stramigioli, “Design of a robot for
in-pipe inspection using omnidirectional wheels and active stabilization,” in 2014
IEEE International Conference on Robotics and Automation (ICRA), pp. 5121-
5126, 2014.

D. Chablat, S. Venkateswaran, and F. Boyer, “Mechanical design optimization of a
piping inspection robot,” Procedia CIRP, vol. 70, pp. 307-312, 2018. 28th CIRP
Design Conference 2018, 23-25 May 2018, Nantes, France.

M. Kurata, T. Takayama, and T. Omata, “Helical rotation in-pipe mobile robot,” in
2010 3rd IEEE RAS EMBS International Conference on Biomedical Robotics and
Biomechatronics, pp. 313-318, 2010.

K. Hayashi, T. Akagi, S. Dohta, W. Kobayashi, T. Shinohara, K. Kusunose, and
M. A. A. Sani, “Improvement of pipe holding mechanism and inchworm type flex-

ible pipe inspection robot,” International Journal of Mechanical Engineering and
Robotics Research, 06 2020.

S. Savin, S. Jatsun, and L. Vorochaeva, “Trajectory generation for a walking in-pipe
robot moving through spatially curved pipes,” vol. 113, 2017. Cited by: 15; All
Open Access, Gold Open Access, Green Open Access.

T. Ren, Q. Liu, y. Chen, and S. Ji, “Variable pitch helical drive in-pipe robot,”
International Journal of Robotics and Automation, vol. 31, 01 2016.

S. Savin, “Rrt-based motion planning for in-pipe walking robots,” in 2018 Dynamics
of Systems, Mechanisms and Machines (Dynamics), pp. 1-6, 2018.

83

[22]

23]

[24]

[25]

[26]

J. Santoso, E. H. Skorina, M. Luo, R. Yan, and C. D. Onal, “Design and analysis
of an origami continuum manipulation module with torsional strength,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 2098-2104, 2017.

Y. Sun, Y. Jiang, H. Yang, L.-C. Walter, J. Santoso, E. H. Skorina, and C. Onal,
“Salamanderbot: A soft-rigid composite continuum mobile robot to traverse complex
environments,” in 2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 2953-2959, 2020.

T. V. Jones, G. G. Conard, A. G. Sanchez, Y. Sun, and C. D. Onal, “Lizard: A
novel origami continuum mobile robot for complex and unstructured environments,”
Robotics Reports, vol. 3, no. 1, pp. 1-11, 2025.

B. Katz and K. Wheeler, “Continuum locomotive alternative for robotic adaptive-
exploration (clara),” tech. rep., Worcester Polytechnic Institute, 100 Institute Road,
Worcester MA 01609-2280 USA, April 2022.

“n

B. "Schroeder and D. Pignone, “"continuum locomotive alternative for robotic
adaptive-exploration (clara)",” tech. rep., "Worcester Polytechnic Institute", "100
Institute Road, Worcester MA 01609-2280 USA", "April" "2023".

84

	List of Figures
	List of Tables
	List of Symbols
	Introduction
	CLARA
	Initial Broader Impacts
	Causes

	Related Work & Project Goals
	Traditional Methods
	Robotics
	Wheeled Robots
	Novel Movement

	Soft Robotics Lab
	Yoshimura Module
	SRL Mobile Robots

	Design
	Project Goals & Overview
	Mechanical Design
	Yoshimura Modules
	Central Module
	Winch Module & Pulleys
	Battery Housing and Variable Diameter Motor Housing
	Variable Suspension System

	Embedded System
	Embedded System Organization
	Voltage Regulator Work Around and new SIMC boards

	Software
	Gamepad & Transmitter Code
	SIMC Firmware & Receiver Code

	Differences From Previous Version

	Testing & Results
	Kinematics Verification
	Test Setup & Data Processing
	Results

	Max Bend & Rate of Change
	Test Setup
	Results

	Speed
	Test Setup
	Results

	Elevation Test
	Test Setup
	Results

	Battery Test
	Test Setup
	Results

	Maze & Joint Maneuvering
	Test Setup
	Results

	Conclusion
	CLARA Efficacy
	Future Recommendations and Further Broader Impacts
	Final Thoughts

	Tables and Figures
	Software
	Bibliography

