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Abstract

With advances in the capabilities and affordability of brain sensing technologies,
brain data is increasingly being integrated as input into interactive systems. Such
data can give insight into the cognitive and affective states of users, augmenting their
capabilities and enriching interactions, as well as informing user-centered design and
evaluation of innovative interfaces. However, there is a dearth of user-friendly tools
supporting the development of brain-computer interfaces, which typically requires a
high level of time and expertise. The aims of this dissertation are to develop and
evaluate such tools and methods to make working with brain data accessible, and to

demonstrate the utility of brain signals in novel interaction paradigms for collaboration.
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Chapter 1

Introduction

As brain sensing technologies have become cheaper and more widespread, researchers and
developers have designed systems able to leverage the unique insights into users’ mental
states these devices offer to create more intelligent and adaptive user experiences. Such
systems have utilized users’ cognitive and affective states to enhance their capabilities in
several domains, including communication, entertainment, marketing, rehabilitation, and
smart control of devices and interfaces [166, 367]. Applications have been developed al-
lowing users to share their brain signals for social expression [200, 298], receive tailored
recommendations in response to their valence and arousal levels [371], optimize interface
layout and workflow based on cognitive load [307], and more [274, 295, 346]. In the follow-
ing sections we first briefly describe brain-computer interfaces (BCIs) generally as well as
existing applications and areas of study by human-computer interaction (HCI) researchers
exploring brain-computer interaction, before outlining unmet needs and underexplored areas
in the field that this dissertation will address.

1.1 Overview of Brain-Computer Interfaces

Broadly, BCIs fall into two main categories: those that use explicit or direct control, in
which intentional changes in brain activity are used an alternative input-control mode for
a digital system, and those that rely on implicit or passive input, adapting intelligently to
the internal state of the user [90, 153, 310]. Although they are able to provide a host of
communication and control applications for clinical populations, BCIs that use explicit con-
trol may not be as useful for healthy users, due to the typically lower bandwidth available
and higher effort required compared to traditional modes of input, such as speech or text
entry [381]. These systems may also be asymmetrical with respect to information exchange,
similar to standard mouse-and-keyboard computer systems: computers are able to provide
a wealth of information about their moment-to-moment state and capabilities, but are blind
to such information about their users [127]. A computer is unable to detect when a user’s



condition or requirements have changed in a way that impacts the function or goals of the
human-computer interaction taking place, and is thus unable to alter its behavior in real time
in response these needs unless the user themselves provides a command. Passive neuroad-
aptive interfaces rectify this asymmetry by allowing computers to respond intelligently and
autonomously to the intentions, emotions, and cognitive states of users [88], thus increasing
the bandwidth available for information exchange between human and machine [91].
Brain-computer interface research in HCI builds off the concept of the biocybernetic
loop [270], in which a physiological computing system collects biological signals from users,
extracts meaningful information about the user (e.g., their level of engagement, heart rate,
or movement speed), and responds in some way to guide them toward a particular goal
state (e.g., altering the appearance of interface components to ensure engagement is above
a chosen threshold, or to alter the tempo of music according based on a user’s heart rate
to provide a positive emotional experience during exercise) [90]. The system then continues
to respond to any further changes in user state that occur in response to the initial and
subsequent adaptations. However, designers and researchers have since developed several
BCI interaction paradigms in addition to the closed loop described above. Along with
systems that use brain signals for direct user control, BCIs have been developed that assess
the mental state of the user, provide neurofeedback about the user’s cognitive or emotional
state, or use information about the user’s brain state to evaluate a digital interface [187].
Once biosignals of interest are acquired—usually via wearable sensors connected to the
user, but possibly with no-contact optical [267] or electromagnetic [329] sensing in some
applications—the data are then typically preprocessed to remove artifacts and isolate signal
components or frequency bands of interest. After preprocessing, the data is then analyzed
to extract a control signal that is then used to trigger a response from the system, such as
an event-related potential (ERP) or the mean power of a particular frequency band in the
case of electroencephalography (EEG) systems enabling direct control by the user, or the
detection of a cognitive or affective state of interest as determined by a machine learning
model for passive systems. The response by the interface could then enable direct control by
the user (e.g., the ability to control a cursor or send commands), or in the case of adaptive
systems trigger either an overt event (e.g., displaying a prompt asking if the user would like
help with a task) or make a covert adjustment that may be subtle or unnoticed by the user
(e.g., altering the prominence of Ul elements, adapting the difficulty of a video game) [90, 89].
Thus, successful development of BCIs requires the integration of expertise in several different
domains, including neuroscience, cognitive science, signal processing, machine learning, and
interface design, making the full development of a functional BCI challenging for non-experts.



1.2 BCls and HCI: Prior Work and Future Directions

Human-computer interaction researchers work to improve people’s relationship with tech-
nology and enhance user capabilities by designing systems that are accessible, efficient, and
desirable to use. A necessary part of this design process is imagining how the current
technological landscape will evolve: what kinds of technologies and interactions will be com-
monplace years and decades in the future? While the ability to interface directly with the
human brain has been an alluring possibility in popular culture for several decades, advance-
ments in cognitive neuroscience and brain sensing technologies have made this frontier more
accessible than ever before. Faced with the prospect of more widespread adoption of this
emerging technology, HCI researchers are tasked with designing novel applications which
leverage its unique capabilities to enhance the lives of users of the future.

Though still in the nascent stages, work exploring the use of brain sensing has been
increasingly published at HCI conferences and journals [275]. This work has examined
several novel applications for brain sensing in various domains, including entertainment
(283, 266, 369, 56, 377], gaming [186, 159], VR [172], education [95, 322|, healthcare and
rehabilitation [10, 234], robot control [192, 4], and more [262]. Some examples of novel
BCI applications researchers have developed include a brain-augmented system allowing for
direct and adaptive control of robots and drones [192, 4], movies that branched according to
the cognitive states of observers [283, 266], and neurofeedback to help children with emotion
regulation [10]. This prior work by HCI researchers has mainly focused on understanding how
brain activity changes when users interact with or via digital systems, as well as developing
applications using brain signals to control or moderate the behavior of such systems, but
as the field has matured in the past few years, more researchers have used metrics based
on brain activity (e.g., levels of workload or engagement) as objective indicators of user
experiences without the need for self-report. Several studies have also explored the ethical
considerations surrounding the use of BCIs and attitudes of different populations of users
toward them [230, 291].

However, several areas have been neglected or underexplored in the HCI literature on
neurophysiological interactions. While existing work has developed numerous novel systems
using physiological data as input, there has been considerably less focus on making the
design and development of these complex systems accessible for non-experts, or what best
practices for research and design of these systems should be within the HCI community.
Furthermore, while several interfaces have leveraged brain signals from individual users,
there are few applications which are able to utilize data from multiple users simultaneously.
This dissertation explores methods and frameworks for making the design of digital systems
using brain signals more accessible to HCI researchers and non-experts in general, as well as
forward the development of novel BCI applications to enhance day-to-day interactions and
tech-mediated relationships, specifically in the context of collaboration.



1.3 Motivation

This dissertation builds on prior work in HCI and cognitive neuroscience on brain sensing
and brain-computer interaction. It adapts and extends existing research and design methods,

while addressing three key gaps in the current landscape:

1. The absence of standard best practices for HCI researchers working with brain sig-
nals, which hampers reproducibility and reuse. While HCI introduces unique research
priorities that demand tailored guidance, integrating lessons from the neuroscience
community can help inform the development of reporting standards for brain-computer

interaction research.

2. The high barriers to entry for researchers and designers working with brain data,

due to limited tools that make neurotechnology accessible to non-experts.

3. The limited development of passive brain-computer interfaces for everyday,
real-world applications, especially those designed to support collaboration or make

use of multi-user brain data.
These gaps motivate the two core aims of this dissertation:

1. To develop tools and methods that support accessible, reproducible workflows
for working with brain data across the full research lifecycle—e.g., problem forma-

tion, study design, data collection, prototyping, and analysis; and

2. To explore how brain signals from individuals and groups can enable novel interac-
tion paradigms that enhance human relationships and collaborative expe-
riences, especially through ethically-designed, team-facing BCls.

Through achieving these aims, this dissertation lays groundwork for the design and de-
ployment of ethical, accessible, and collaborative BCI systems.

1.4 Dissertation Outline and Organization

This dissertation is organized as follows: After this high-level overview, Chapter 2 provides a
review of prior work related to accessible BCI development and the use of BCIs in multi-user
contexts, grounding the dissertation’s aims in existing research.

Chapters 3 and 4 then each address the first aim of supporting accessible and reproducible
BCI research and design. In Chapter 3, we describe our work developing a taxonomy of HCI
research using brain signals to serve as a model for best practices, enabling researchers
to more easily ensure their work is reproducible and reusable by others, potentially across



other disciplines such as neuroscience. We surveyed a collection of 110 papers published in
HCI venues which utilized brain signals to inductively construct our model to represent the
breadth of current research, and used exploratory factor analysis to uncover latent patterns
in reporting strategies captured by our model. We then conducted a survey of HCI and BCI
experts to confirm the validity of our model, and explore potential use cases and implications.
Chapter 4 describes the development of BrainkEx, a GUI-driven tool allowing non-experts to
explore brain signals or other time series data, and presents results of a user study illustrating
that user needs for exploring and drawing insights from data were met.

Chapters 5, 6, and 7 then address the second aim of exploring the human-centered devel-
opment of a multi-user BCI for enhancing collaboration. Chapter 5 begins with an overview
of relevant literature regarding teamwork and creativity—our chosen collaboration context.
We follow with a discussion of existing creativity support tools and BCIs for creative ap-
plications, as well as emerging work toward the development of BCIs to support teamwork,
and conclude with work exploring public perceptions and ethical concerns regarding BCls
and other emerging technologies.

Chapter 6 investigates practical implementation considerations for such a support system—
to design a useful and usable system, we need to ask, “What can we learn about the quality
and nature of collaboration from the brain activity and behavior of team members?” To
explore this question, we conducted a multi-institution study in which participants worked in
teams on a realistic creative task while recording their brain activity, and report our findings.
Modest links between behavioral measures of team dynamics and brain derived metrics were
observed, and their potential implications and remaining future work toward developing a
working support tool are discussed. Complementing this exploration of technical feasibility,
Chapter 7 explores the needs and concerns of the various stakeholders that might benefit
from such an intervention. Adopting a user-centered approach, we conducted a series of
design interviews and brainstorming exercises with members and leaders of various teams to
examine the challenges they face during collaboration, the tools and strategies they employ
to address them, and possible ethical concerns with possible BCI solutions. We conclude
by proposing guidelines for the ethical development of BCIs supporting collaboration, which
can be used by prospective developers and researchers to ultimately design systems that
provide value for teams while minimizing potential risks.

Finally, Chapter 8 explores the ethical implications and broader impacts of this work,
focusing on ramifications for user autonomy, privacy, and identity, additionally providing

ethical guidelines for the responsible use of BCIs in collaborative settings.

1.5 Summary of Contributions

The work in this dissertation makes strides toward improving the accessibility and repro-

ducibility of HCI research using brain signals, and explores how this work could be actualized



in the real-world context of creative collaboration. Chapter 3 provides a taxonomy of HCI
research using brain signals, which can serve as a model for ensuring such work is repro-
ducible and reusable. We have made this model publicly available and open to contributions
from others, and provide guidance for its use. This chapter is adapted from work published
in Transactions on Computer-Human Interaction (TOCHI) in 2022 [275]. Chapter 4 intro-
duces BrainEx as an easy-to-use tool for exploring and understanding brain signal data; it is
adapted from work published in the Proceedings of the ACM SIGCHI Symposium on Engi-
neering Interactive Computing Systems (EICS) in 2022 [139]. Lastly, Chapter 7 provides an
analysis of stakeholder needs and outline design guidelines for designing ethical BCIs sup-
porting collaboration, while Chapter 6 gives insight into the relationship between brain and
behavior necessary for the practical implementation of such systems; each of these chapters
will be submitted for publication in an HCI journal or conference.

1.6 Authorship Statement

The work in this dissertation is the product of years of collaboration with my fellow re-
searchers, especially my advisor Prof. Erin Solovey. Chapter 3 is adapted from our TOCHI
paper [275], and was a joint collaboration with colleagues from the University of Bremen—
Suzanne Putze, Merle Sagehorn, and Felix Putze. I was not the first author of the manuscript,
but I was actively involved in discussions planning and interpreting the work and contributed
in several key ways: I coded all manuscripts to incorporate them into our taxonomy, refined
the resultant experiment model, performed a keyword search to further categorize the report-
ing practices of each manuscript, wrote the section of the paper describing the emergence of
a sub-field of HCI work using brain signals distinct from classical BCI research, and edited
the final draft.

The work in Chapter 4 is adapted from [139] and was a close collaboration with my
colleague Alicia Howell-Munson, who was the first author of the accepted manuscript. I
co-wrote and edited the final manuscript along with Alicia, co-supervised the creation of the
front-end GUI, and performed analysis of benchmarking data to evaluate the performance
of the tool. BrainEx was also the product of work by several undergraduates who assisted
on the project, including Ziheng Li and Yuncong Ma who implemented the computational
backend; Michael Clements, Andrew Nolan, and Jackson Powell, who first implemented the
front-end GUI as part of their major qualifying project; and James Plante, Eric Schmid,
Ellery Buntel, and Yufei Lin, who built off their work; as well as Prof. Rodica Neamtu, who
co-advised the project.

I am the principal author of the work in Chapters 7 and 6. The latter is a collaboration
with colleagues at the University of Bremen co-advised by Dr. Felix Putze, with assistance
from undergraduates at Harvard College in the United States. Lasse Warnke at Uni-Bremen

is the main co-author of the manuscript. Lasse and I were both responsible for recruitment,
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data collection, and analysis; I focused chiefly on the analysis at the group level, and Lasse
focused on the individual user data and its relationship with the other metrics. Asmus A.
Eilks (Uni-Bremen) assisted with our data recording setup, and Lourengo A. Rodrigues (Uni-
Bremen) assisted with study design, initial pilot testing, and interpretation of results. Max
Chen (WPI), Henry Huang (Harvard College), and Itzel Sanchez (Harvard College) assisted
with data annotation and analysis in the United States.

To acknowledge all my collaborators’ contributions, I use first-person plural pronoun
“we” throughout this dissertation.



Chapter 2

Background

2.1 Accessible BCI Development

In the past several years, researchers have made strides toward reducing the barrier to entry
for designing and working with BClIs, both for amateurs just getting started as well as
experts looking to meaningfully contribute to the field. Part of these efforts are in line with
the emerging phenomenon of Open Science [337], a worldwide push toward making research
open and accessible to others in order to enhance transparency and reproducibility and foster
collaboration. Researchers have engaged in Open Science through several ways, including
pre-registering their experiment and analysis methodologies (to enhance the discoverability
of their work as well as hold them accountable for the conclusions they draw from the analyses
they conduct), writing blog posts about their work to make it more accessible to the public,
and providing open access to code and datasets. BCI researchers and the neuroscience
community in particular have released several tools and datasets that others have used to
advance their own work.

Among the tools that have been made available to the public to enhance accessibility
to analyzing and integrating neurophysiological data are several freely available software
packages, many of which are open source. EEGLAB [70] is a popular open-source MAT-
LAB toolbox that provides users with several functions for working with EEG data across
several stages of analysis, including channel and event information importing, signal pre-
processing, visualization, and subsequent analysis (independent component analysis, time-
frequency analysis, etc.) as well as a GUI exposing these functions in a way that is accessible
to users. BioSig [338] is an open-source software library available for MATLAB and C/C++
both standalone and as an EEGLAB plugin, providing functionality for signal processing
including signal segmentation and artifact detection, as well as tools for classification and
import/export capabilities for a variety of data formats. Analagously, nirsLAB [365] pro-
vides a similar GUI environment and underlying functionality for working with data from
functional near-infrared spectroscopy (fNIRS), which uses near-infrared light to measure the



relative concentrations of oxygenated and deoxygenated hemoglobin in the brain as a proxy
for neural activity. sktime [212] is an open-source Python library providing several different
methods for performing time series classification, making it especially suited for developing
applications which use neural data.

While these for general purpose of processing and analyzing neurophysiological data,
other tools designed expressly for developing brain-computer interfaces. simBCI [199] is an
open-source MATLAB framework designed to alleviate the design and testing of BCI systems
by providing an environment where users can use simulated BCI data and execute signal
processing and classification pipelines to more easily determine which aspects of the system
are affected by the user, the equipment, and the data processing routines employed, making
it easier to iterate over different possible system configurations. Similarly, SimBSI [255] is
an open-source Simulink library for developing closed-loop brain signal interfaces able to
leverage the Simulink interface to provide an intuitive graphical environment allowing users
to perform tasks such as EEG source imaging, closed-loop neuromodulation, and cognitive
task design for experiments with either humans or animals, integrating with Lab Streaming
Layer for real-time signal streaming and acquisition. Finally, Turbo-Satori [208] is software
toolbox enabling users to develop closed-loop BCIs and neurofeedback systems using fNIRS
data, and is able to interface directly with NIRx hardware to perform signal acquisition,
preprocessing, and classification in real time.

Complementing the availability of these software packages for data processing and anal-
ysis, several researchers have documented and published open access datasets of neural data
differing in size, recording device, modality, and context, making them useful for bench-
marking classification algorithms or testing designs for BCI systems. Among these are
the Database for Emotion Analysis using Physiological Signals (DEAP) [173], which in-
cludes EEG recordings and associated peripheral physiological signals from 32 participants
who rated their preferences and affective states while watching music video excerpts; the
DREAMER [165] dataset of electrocardiogram (ECG) and EEG data recorded using low-
cost off-the-shelf devices from 23 participants who rated their affective states while watching
videos; a combined EEG and fNIRS dataset recorded from 26 participants who performed a
variety of cognitive tasks (n-back, discrimination/selection response, and word generation)
[302]; the Tufts fNIRS mental workload dataset [144], a large dataset with data from 68
participants who performed an n-back task; and a dataset of resting-state fNIRS recorded
from 12 participants [343]. To provide a centralized platform where researchers could share
such datasets, Markiewicz et al. developed OpenNeuro [217], a repository where neuro-
science data from different modalities are shared in accordance with the Brain Imaging Data
Structure (BIDS) community standard.

In addition to the availability of free-to-use datasets, affordable consumer-grade hardware

exists researchers and enthusiasts can use to easily collect their own EEG data. The MUSE
[185, 45|, EMOTIV EPOC [17], and OpenBCI Ultracortex Mark IV headset with the Cyton



Biosensing Board [7] are able to record with 4, 16, and 16 channels, respectively, and are
all available at price points below $1,000. Researchers have validated of each of the head-
sets, which have demonstrated the ability to resolve several canonical EEG characteristics,
including the N200 and P300 event-related potentials (ERPs) and frontal alpha asymmetry.

Given the availability of these tools and devices, a major challenge remaining for those
hoping to design useful and effective BCI systems is determining which design strategies to
employ to best take advantage of them. Several researchers have investigated the quality of
different BCI systems and the effectiveness of different design strategies in a clinical context to
develop guidelines for developers. In general, a user-centered approach seems recommended,
whereby the needs of a target population of end users are evaluated in order to inform the
design of the system [196, 297, 234]. This is especially important for clinical populations,
where BCI paradigms that work well for typical users or some patient populations may not
be as effective for others, e.g., in a case study by Schreuder et al. [297], where patient with a
brainstem ischemic stroke was able to use a BCI controlled via visually evoked ERPs, but not
auditorily evoked ERPs, for text entry and item selection. Similarly, Lightbody et al. [196]
employed a user-centered approach to design a BCI for use in a domestic environment by
those with physical disabilities or brain injuries, engaging with potential users and healthy
controls directly to help design and evaluate the system. The researchers were able to utilize
feedback from users and their caregivers to identify pain points in their interface design
(e.g., need for an EEG setup that was easier for caregivers), as well as features desired in
future iterations (e.g., control of multimedia and smart devices). This allowed researchers
to ultimately design a system that was usable and useful for the target population, rather
than merely a proof of concept. Such a design process is in line with recommendations from
rehabilitation professionals attending a workshop on the design of assistive BCI systems
[247], who advocated for including users in the BCI design process, and provided guidelines
for developing assistive systems that encourage designers to consider the practical and human
problems users face in daily life rather than concentrating solely on technological problems.
More generally, Mason & Birch [220] propose a functional model for BCI system design,
consisting of the user, operating environment, and system components, along with associated
feedback paths. Though developed with clinical systems in mind, this work provides a
common taxonomy that other non-clinical systems can build from.

Beyond a clinical context, researchers in human-computer interaction and other dis-
ciplines have compiled recommendations and reviews for tools, and created systems and
frameworks to demonstrate novel interaction paradigms and enable development by others.
Such work includes reviews of the different classification algorithms used in a BCI context
(with a focus on considerations especially relevant for BCI applications, such as online clas-
sification and transfer learning) [204] and different software tools available to assist with
BCI development, including those for developing web-based BCI systems [312], as well as
explorations of how brain signals have been integrated in particular contexts, such as user
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experience (UX) and neuromarketing research [195] or virtual reality (VR) games and ex-
periences [205]. HCI researchers have also expanded on prior work with their knowledge of
interface design methods and user research to model user interactions with BCI systems [280]
and conceptualize novel reinterpretations of existing interaction paradigms. Williamson et al.
[360] developed Hex-O-Spell, an iteration upon a traditional BCI speller designed to increase
the information bandwidth of users, by arranging character groupings in a radial menu with
selection controlled via motor imagery. The design has since been adapted and enhanced
by others, e.g., by modifying target selection to use ERPs [331], and combining it with
rapid serial visual presentation (RSVP) of images to build a BCI-based framework for image
search on the web [190]. Semertzidis, Zambetta, & Mueller [299] provides a critique of the
traditional “command-response” design of BCI systems, and envisions a future which goes
beyond mere “interaction” toward human-computer integration, in which humans and digital
technology work together toward the same or complementary goals. The authors explored
the design space of this paradigm by developing three different prototypes as case studies:
Inter-Dream, an interface to guide participants toward healthy sleep states; Neo-Noumena,
a system to communicate participant emotional states to users and others via mixed-reality
displays; and PsiNet, a system designed to amplify inter-brain synchrony across users using
transcranial electrical stimulation.

Based on their design prototypes, Semertzidis and colleagues [299] developed a design
framework for their brain-computer integration paradigm, envisioning systems as existing
on a two-dimensional plane, with “neural congruence” (the degree to which the experience
the BCI is encoding from brain activity is similar to that the user experiences when decoded
by the system) on one axis and “distribution of agency” between multiple users, or between
the user(s) and the system, on the other. Other HCI researchers have also developed similar
frameworks and taxonomies. Vasiljevic & de Moranda [334] developed a model, taxonomy,
and methodology recommendations for research exploring EEG-based BCI games to aggre-
gate the terminology and methodologies used in the BCI and game domains. Kosmyna
& Lécuyer [176] developed design guidelines for BCI guiding systems (i.e., how users are
instructed on how to use BCI systems), examining the feedback and feedforward aspects of
these systems and their temporal, content, and medium characteristics. More generally, they
also developed a multidimensional feature space to help characterize, compare and design
EEG-based BCI systems [177], largely enumerating possible design choices along the dimen-
sions of signal acquisition, signal processing, classification, and the type of BCI application.
Jeunet et al. [157] likewise developed guidelines for researchers conducting experiments with
BCIs enumerating possible design considerations in several relevant dimensions (signal ac-
quisition, data processing, and experiment design). However, while this work is undoubtedly
useful for researchers and developers looking to design useful BClIs, they tend to focus on
BCIs used in specific domains (e.g., games), or else examine BCIs more generally and not
in the context of HCI research. The guidelines that do draw from insight into both the BCI
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and HCI communities [176, 178] are geared more toward placing work in a particular design
space, rather than ensuring that research is reproducible by others in either community. To
develop a model that does so, a systematic accounting of the existing literature in the HCI
community using brain signals is necessary.

Along with design guidelines, HCI researchers have also developed software and hard-
ware tools to educate novice, non-technical users about brain-computer interfaces and phys-
iological sensing. These include environments for students to design and experiment with
brain-controlled applications [61, 126], tangible interfaces allowing users and others to visu-
alize their brain activity [100], low-cost brain sensing hardware [14, 26], and crafting toolkits
making it easy for users to create interfaces built from thermochromic fabrics responding to
their physiological arousal [332]. While useful for introducing the relevant technical concepts
to novices and giving them the freedom to implement their ideas for interfaces, their capabil-
ities may be limited, and do not allow users to deeply explore and manipulate their data, or
iterate over multiple experiment and interface designs quickly. However, several tools from
the HCI and neural engineering communities enable rapid prototyping of BCIs and other
interfaces using physiological sensing. Several of these tools are programming environments
pre-packaged with analysis methods useful in multiple stages of the BCI lifecycle (e.g., sig-
nal acquisition, preprocessing, feature extraction, and classification) as well as the ability
to easily test and evaluate new methods[294, 222], with some capable of performing online
analysis for real-time systems [118, 181], integrating with VR headsets and virtual environ-
ments [285], and even allowing collaboration and sharing data with other researchers on the
web [211]. However, despite these capabilities, a modular framework for rapidly prototyping
BClIs able to interface with websites or web-based applications does not currently exist.

2.2 Multi-User BClIs and Inter-Brain Synchrony

Somewhat separate from the question of what best practices and tools are available for de-
signing BCI systems is what useful and innovative applications do they enable, and in which
contexts are they well-suited. Collaboration, in particular, has emerged as a promising area
for further exploration, with insights into users’ mental states enabling the creation of more
personalized and supportive work environments. As many day-to-day interactions, whether
mediated by technology or otherwise, are social in nature, a major area of interest rele-
vant to members of the HCI community employing brain signals to drive novel interactions
is work from social neuroscience — an interdisciplinary field studying the underlying bio-
logical mechanisms of social interactions and cognition. Though historically relying almost
exclusively on experiments with single participants, studies which employ hyperscanning, the
recording of brain or other physiological activity simultaneously from multiple participants,
has become more prevalent in recent years [50]. Such studies typically rely on a measure-

ment of synchrony between the brain activity of users to explore the dynamics of different
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types of social interactions. This interpersonal synchrony is typically task-independent, and
has been observed in several different types of tasks with a social component [64], includ-
ing team Jenga [201], tangram puzzles [245, 246], solving math problems, finger tapping,
singing, drawing [64], word games [249], group brainstorming and creative problem solving
[206, 366], and more. Although greater synchrony has tended to correlate with greater team
performance, this is not universally the case [49]; Dommer et al. [77] found that partic-
ipants experienced greater inter-brain synchrony when working together in a joint n-back
task versus individually, despite achieving worse performance, indicating that the social na-
ture of the task plays a role in this phenomenon [64, 49]. Teams are complex metastable
dynamical systems, and oscillating between states of high and low synchrony is typical in
realistic interactions [224]. The studies above measure inter-brain synchrony by measuring
the coherence [113] between participants’ brain activity, but other techniques exist as well;
Eloy and colleagues [85] demonstrated that fNIRS can be used to measure levels of team
processes important for collaboration in real-time by employing multidimensional recurrence
quantification analysis (MdRQA), a technique able to identify patterns in multidimensional
data without a priori assumptions, making it an ideal technique to employ for quantifying
team processes across a variety of contexts.

Despite the numerous studies examining brain synchrony in different social contexts,
very little work has been done employing brain sensing specifically in the context of group
creative collaboration, and even less has employed hyperscanning to leverage data from
multiple users simultaneously (one example is Morgan, Gunes, & Bryan-Kinns [235], who
measured the behavior, heart rate, and brain activity of pairs of drummers during collabo-
rative music making). Of the work that exists, the majority of BCIs leveraging inter-brain
synchrony have been for art pieces or proof-of-concept systems exploring social connection.
PsiNet, developed by Semertzidis, Zambetta, & Mueller [299], was designed to explore the
interpersonal integration of consciousness through brain-to-brain integration of participants.
Participants’ brain activity was recorded, and synchronized between group members using
transcranial electrical stimulation, allowing users to experience others’ brain signals as if
they were generated by their own body. The Magic of Mutual Gaze was an art installation
and performance piece for two participants seated across from each other. EEG headsets
are used to record the participants’ brain waves, and visuals are displayed capturing the
spontaneous synchronization of their brain activity [272]. Similarly, BrainWave Drawings by
Nina Sobell displays a real-time portrait of two participants who brain waves are recorded
via EEG, which becomes distorted when their brain waves diverge [272]. Though such art
pieces have provided thought-provoking opportunities for examining the physiological un-
derpinnings of social connection, the practical applications for a BCI to assist teams with
collaboration remains largely unexplored.
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Chapter 3

A Model for Enhancing the
Reproducibility and Reuse of HCI
Research Using Brain Signals

Abstract

In HCI, there has been a push towards open science, but to date, this has not hap-
pened consistently for HCI research utilizing brain signals due to unclear guidelines
to support reuse and reproduction. To understand existing practices in the field, this
chapter examines 110 publications, exploring domains, applications, modalities, mental
states and processes, and more. This analysis reveals variance in how authors report
experiments, which creates challenges to understand, reproduce, and build on that
research. It then describes an overarching experiment model that provides a formal
structure for reporting HCI research with brain signals, including definitions, terminol-
ogy, categories, and examples for each aspect. Multiple distinct reporting styles were
identified through factor analysis and tied to different types of research. The paper
concludes with recommendations and discusses future challenges. This creates action-
able items from the abstract model and empirical observations to make HCI research
with brain signals more reproducible and reusable.

3.1 Introduction & Motivation

In human-computer interaction (HCI), there has been growing interest in integrating brain
sensing into interactive systems. The field is developing traction and we anticipate further
expansion as sensor technology becomes more practical for interactive applications. While
HCI researchers have demonstrated many novel ways of integrating brain data into HCI
practice, there are several challenges that slow progress toward reaching the potential for
real-world use.
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In particular, HCI research with brain signals requires a diverse skillset, including un-
derstanding of brain function, signal acquisition methods, signal processing, and machine
learning, in addition to HCI, design, and software engineering. Each of these aspects are
themselves active research areas. This steep learning curve and interdependence of numerous
research areas limits the pace of innovation. To overcome this challenge, researchers often
attempt to build on each other’s work. However, this has been difficult to date, and it is
more common to see each research group creating their own datasets, analysis pipelines, and
following their own methodologies to move their research forward.

A contributing factor to the limited research reuse is the differing norms stemming from
research cultures in related fields, making it challenging to publish, reuse, and reproduce
work in HCI venues. Reviewers often have contradictory expectations, depending on their
background. In addition, page limitations and cultural norms result in valuable details
omitted that could support reproduction, reuse, and extension of published HCI research.

As an example, we consider the creation of adaptive interactive systems that modify sys-
tem behavior based on a cognitive or affective state, measured by brain sensing. Developing
such systems requires real-time processing pipelines for brain input, including infrastructure
to capture, transmit, and interpret neural signals. It also involves designing appropriate
experimental paradigms for data collection, implementing and tuning user interface compo-
nents, devising adaptation strategies for responding to brain data, integrating all components
into a cohesive application, and conducting user evaluations to assess performance and us-
ability.

Currently, researchers start from scratch when implementing and studying such systems.
This is not only very costly and time-consuming, it also creates opportunities for errors
and requires extensive expertise in a number of different fields. Under such conditions,
reproducible research and sharing of resources and datasets are especially important for
effective progression of the field. Once research is under review in HCI venues, some reviewers
may expect rigorous experimental controls as in neuroscience, while other reviewers may
expect clear demonstration of usability, and still others may value highly novel and visionary
proof-of-concept demonstrations over rigorous experiments. In HCI, contributions can be
made to the field from many of these perspectives, and more, but it can be challenging to
understand what is valued.

To move towards better reproducibility and sharing of resources, there are two related
gaps that need to be filled. First, there is a need for systematic exploration of the approaches,
methods, and applications in HCI research with brain signals today, to identify common
themes and potential for re-use. This involves identifying recurring domains and applications,
types of modeled cognitive and neurological states, methods of integrating brain signals
in HCI research, and the method and sensor for measuring brain activity. Secondly, it
is important to study the current practices for presenting and documenting work in this

research area to ensure the feasibility of reproduction and reuse. Both of these goals require
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the collection and curation of a large database of HCI publications that specifically focus on

the use of brain signals in HCI research.

3.2 Contributions

This chapter is an abridged version of our TOCHI manuscript [275] focusing on the devel-

opment of our experiment model for HCI research using brain signals and its implications

for reproducibility and reuse. For further details about specific examples and analyses, we

refer the reader to the full paper. Here we report on the following:

1.

The curation of a dataset of 110 HCI papers published since 1996 that explore brain
sensing. Through analysis of these published works, we can look at the current state

of HCI research and reporting practices when working with brain signals.

. Systematic analysis of the dataset to compare domains, applications, modalities, mea-

sured mental states and processes. This work substantiates existing manifestations of
HCI research with brain sensing today and identifies commonalities as well as hetero-
geneity within this emerging, independent research area.

. Coming from the broad variety of research identified in (2), we created an overarching

experiment model that provides a formal structure for describing HCI research with
brain signals. The experiment model serves as a starting point for further analysis
on how experiments in this field are reported and what aspects may be of relevance
(See (4)). The model provides definitions as well as examples for each aspect and is
evaluated by a group of external experts. This step creates an abstract foundation of
experiment reporting beyond individual papers.

. We compare the experiment model with the reality of the curated dataset of HCI

papers. We perform statistical analysis to investigate the structure of experiments and
experiment reporting in a data-driven way. This provides evaluation of the model as
well as analysis of reporting structure and reporting gaps, and reveals connections to
the different sub-groups identified in (2).

Informed by our data-driven analysis of current practices within and outside of HCI,
we derive a set of recommendations and considerations for future authors and reviewers
and discuss future challenges. This creates actionable items from the abstract model
and the empirical observations in the analysis.
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3.3 Related Work

Multiple processes have been developed that support the goal of reproducible research, such
as citable open data repositories and pre-registration (such as the Open Science Framework®
or Zenodo?). More and more, publication outlets and funding agencies expect the publication
of recorded data to ensure that other researchers can check the reported results, but also
benefit from the investment of time and money. It should be noted that open data (in
the sense of releasing purely the raw recorded data) on its own is not enough to ensure
replicable research: If the data is not well-documented, the ability of independent researchers
to reproduce or build on it is restricted. This challenge in the curation process of open data
is related to the long tail of science. This term describes the phenomenon that most data
is produced in small, individual research projects with specific applications, domains, or
restrictions in mind (see [93] for an analysis of this phenomenon in the field of neuroscience).

Making this data accessible to other researchers requires a joint understanding, or even
better, a formal model of how the data should be shared and what information is necessary
to use the data successfully. Such an experiment model provides a list of mandatory or
optional attributes, each of which describes a specific aspect of an experiment. Attributes are
structured in categories of related items. Often, these models are associated with software
ecosystems that support the documentation, publication, and querying of data. As even
minimal models with few attributes were shown to prevent common documentation gaps
in the literature [227, 123], over 50 publishers, e.g., Nature and PLoS, already recommend
using such a model as part of the publication workflow?. Disciplines such as genomics [160],
systems biology [362], enzymology [327], and materials science [279] have all developed such
models which allow the description of experiments in a common language on the basis of
common attributes, enabling re-use of data.

In other fields, some of which are closely related, there are standard practices in place
to facilitate reproduction and reuse of prior work, building a solid foundation that later
research can build on. For example, the field of neuroscience has invested much effort into
the creation of standards for published data sets with a joint documentation model, such
as the OpenNeuro initiative 4. Assessment of the impact of shared brain imaging data
on the scientific literature has found that sharing data can “increase the scale of scientific
studies conducted by data contributors, and can recruit scientists from a broader range of
disciplines” [233]. Babaei et al. [16] extracted published practices of EDA recording and
analysis and published a structured and modifiable version of the resulting model® and simi-
larly, Bergstrom et al. [24] analyzed reporting strategies for Virtual Reality experiments and

'https://osf.io/

’https://zenodo.org/
Shttps://www.beilstein-institut.de/en/projects/strenda/journals/
“https://openneuro.org/

Shttps://edaguidelines.github.io/
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distilled a checklist for future publications. For structured publication and documentation
of experimental processes, approaches like open electronic lab notebooks (e.g. “Open Lab
Book”%) have emerged, offering this opportunity. In the field of machine learning, which
is often applied to brain signals, it has become increasingly common to publish executable
code on the basis of open toolkits and programming languages, often on version control
platforms such as GitHub. This overcomes the difficulty of reporting all algorithm parame-
ters in a page-limited paper. The “Papers with Code” database ” provides a repository for
publications with associated code.

There also exist unifying initiatives in the brain-computer interfaces (BCI) community,
which has some overlapping as well as some clearly distinct goals from the HCI community.
The BNCI Horizon 2020 initiative [37] is a large-scale effort for standardization in concep-
tualizing and communicating of BCI technology. A difference to the approach in our paper
is that the BNCI initiative is mostly driven by the BCI community, and focuses strongly on
aspects of signal processing and machine learning. We will see later that many applications
of brain signals in HCI are not BCI-related (i.e. do not involve real-time processing of brain
activity) and we also argue that the HCI community of researchers using brain signals over-
laps with the BCI community to some extent, but is ultimately different from it and exhibits
different needs for publication. The BNCI initiative outlines four main challenges, including
the lack of a “common terminology” and the absence of “curated benchmark data sets.” It
also acknowledges that “the BCI community might not be fully aware of relevant work in
other fields,” highlighting the need for communication in interdisciplinary formats, which are
a staple of the HCI community. In one of the few conceptual works in the field, Kosmyna and
Lécuyer [175] establish a conceptual framework to characterize different works using brain
signals along four axes (some with sub-axes) related, for example, to the type of input or
the underlying neural mechanism. Many other reviews in BCI literature summarize parts of
the research landscape systematically: For example, Arico et al. [12] discussed passive BCIs
that are developed for use outside the lab, and Lotte et al. [205] explored BCI in combina-
tion with VR technology. While these reviews give a good overview on the state-of-the-art
methods, they do not have a particular HCI focus and do not discuss experiment conduc-
tion and reporting. In contrast, a recent monograph provides an introduction and review
of brain input research from an HCI perspective [310], but is not centered on experiment
reporting, reproducibility and reuse. In comparison to past publications, our paper focuses
on a tailored subgroup of papers, namely HCI-centric work which uses brain data. This focus
gives us the opportunity to dive deeper into the specific characteristics of these papers and
their reporting practices. However, this does not mean that the other meta analyses in BCI
are not applicable; indeed, we find that many of their observations regarding good research

practices are a common thread which we also encounter here.

Shttps://openlabnotebooks.org/
"https://paperswithcode.com/
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The Association for Computing Machinery (ACM) has introduced an alternative ap-
proach to strict enforcement of particular practices. It instead uses positive reward mecha-
nisms through the concept of badges that reward the publication of artifacts, such as code
or data, for reproducing research results®. This approach has seen adaption at some ACM
venues, such as ACM RecSys?, however it is not yet widespread at HCI conferences. We
think that is because HCI is not a purely computational discipline, but a field that combines
computational, experimental, analytical, and human-centered aspects; thus, it may not be
clear what information is needed and expected for reproducible research.

Still, efforts toward reproducible research and an open data culture have reached the
HCI community as well and have sparked discussions about the utility and necessity of
replication studies in HCI [136]'°, the benefits and challenges of open source and open data
publishing [81], the use of pre-registration [58]. This resulted in changes to incorporate repro-
ducibility and transparency in the review process of HCI conferences, such as ACM CHI'.
Besides CHI and ACM, several other publishers which are relevant to the HCI community'?
encourage their authors to publish their experiment protocols and refer to them within the
corresponding manuscript. Despite such initiatives on an organizational level, Wacharaman-
otham et al. [348] investigate the status quo in transparency of CHI research artifacts and
come to the conclusion that most researchers do not publish their research artifacts due to
misunderstandings about possible options and the reasons behind making them available.
Echtler and HauBler come to a similar conclusion with regards to open source publication of
HCI software [81]. We find that in a diverse and interdisciplinary field such as HCI, it is not
always clear what this should look like and how it applies to each sub-field within HCI. By
examining current practice in the HCI subfield using brain signals, our paper takes initial
steps toward building this understanding.

3.4 Literature Database Curation

In this section, we describe our methodological approach to collecting and curating a large
database of publications on the use of brain signals in HCI research. We created the database
with two central goals in mind. First, we wanted to identify how the field is structured in
terms of domains, employed sensor technology, common brain input paradigms, recurring
cognitive and neural constructs, and other attributes. Additionally, we looked at factors
which are often tied to reproducibility, such as the number of participants and the number of

times the data or artifacts of a paper were actually building on another study. The methods

Shttps://www.acm.org/publications/policies/artifact-review-badging
Yhttps://recsys.acm.org/recsys20/call/#content-tab-1-1-tab

Onttp: //www.replichi.com/

see https://chi2020.acm.org/blog/changes-to-the-technical-program/#more-1870

12F . https://plos.org/open-science/, https://www.hindawi.com/journals/ahci/guidelines/
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Table 3.1: Counts of regarded papers per year

Year Number of Papers H Year Number of Papers

1996 1 2011 9
2001 1 2012 8
2002 1 2013 7
2003 1 2014 13
2004 3 2015 16
2006 1 2016 11
2007 1 2017 10
2008 2 2018 8
2009 6 2019 8
2010 3

and results of this investigation will be presented in Section 3.5. Second, we wanted to
systematically categorize and statistically analyze the current reporting practices, looking
for commonalities as well as gaps, with an eye toward reproducibility and reuse of brain
signal research in HCI. The methods and results of this investigation will be presented in
Section 3.7.

We considered publications that made use of brain signals in combination with HCI
methods. This often falls into two categories: 1) the application of HCI methods to systems
employing brain input (e.g. usability evaluation of a brain-based adaptive system), or 2) the
use of brain signals to create or enhance HCI methods (e.g. using brain signals to evaluate
workload induced by a user interface). In the selection, we aimed to exclude publications
which focus solely on the processing of brain signal data to study signal processing or machine
learning techniques, without an intention to employ the results to HCI-related research
questions. To identify such publications, we included only peer-reviewed papers that were
published at dedicated HCI conferences or journals; see the full manuscript for the complete
search criteria and list of venues [275].

After applying our search criteria, we ended up with 110 papers eligible for the survey.
The created database is available as supplementary material to the paper.

We are aware that our restriction to HCI-focused venues excludes some potentially rel-
evant papers from the analysis, for example ones focusing on BCI itself, neuroergonomics,
or specific domains to which brain signals can be relevant. While such works can be very
important from an HCI perspective, identifying them among other, less HCI-oriented papers
in said fields, is very difficult without formal filtering criteria. We made this decision to
ensure that the authors themselves considered HCI to be the central contribution in their
work, thus minimizing the chance of adding “false positives” to the database. By publishing
research at an HCI venue, authors signal that they consider their work to be most impactful
in the field of HCI. They also use this decision to select a specific target audience, namely
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the HCI community for which brain input is one tool among many, in comparison to a venue
dedicated to such systems. As these conferences and journals employ HCI experts as re-
viewers and editors, we can assume that the accepted manuscripts indeed have a focus on
HCI. Additionally, the selected venues all put an explicit focus on interdisciplinary research,
which makes it more likely that the publications address a wider audience. The fact that
other HCI-oriented research on the use of brain data exists does not limit the generalizability

of our results as we still cover a sample of 110 papers with an in-depth analysis.

3.5 Characterizing HCI Papers with Brain Signals

To gain a better understanding of what HCI research contributions with brain signals look
like today, we systematically explored the curated literature database. We were interested
in characterizing the diversity and common themes across published HCI papers, the rela-
tionship to other fields, and the potential for reproducibility and re-use.

3.5.1 Methods

For each paper, we collected a number of “paper demographics” to characterize the state
of HCI research with brain signals. On the one hand, we were interested in aspects which
provide a general context of the paper to study different types of investigations. On the
other hand, we looked at aspects related to reproducibility of the reported research. These
demographics include:

e Application/Domain: For what domain or specific application is the brain signal used?
(e.g. education, robotics)

o Cognitive/affective state or process: Measured brain activity is usually inspected for
specific patterns related to specific cognitive or affective states or processes. (e.g. error
potentials, cognitive workload)

e Brain signal integration type: These are described in more detail at the end of this
section, and include explicit control, implicit closed loop, implicit open loop, neuro-

feedback, mental state assessment, and HCI evaluation.

e Brain signal modality: Which type of signal is used to capture brain activity? (e.g.
EEG, fNIRS)

e Main contribution: From the abstract, we extracted the sentence that summarizes the
main contribution of the paper.

o Number of participants: We included this item because a frequent point of discussion in
reviews and studies on reproducibility is the number of participants in an experiment

and the resulting power of the analysis.
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e [s follow-up: Is this paper a conceptual or concrete follow-up to an earlier publication

of the same or other authors?

e Ezploratory or Confirmatory: We look for evidence for whether the analysis is confir-
matory, i.e., driven by explicit a priori hypotheses, or exploratory analysis to generate
new hypotheses.

The first four categories were inspired by an analysis of the 218 unique keywords authors
assigned to their papers. Apart from a small number of specific methodological keywords
referring to the type of analysis employed in the paper, all keywords could be grouped into
these categories. It is interesting to note that only four generic keywords “brain-computer
interface” (42 times), “EEG” (49), “fNIRS” (17), and “human-computer interaction” (13)
occur more than 10 times, showing the large variety of topics covered by these papers.

The employed definitions for the types of brain signal integration are based on the char-
acterization presented by Krol et al. [187], extended by additional categories which play an
important role in HCI (neurofeedback and evaluation)'3. The categories can first be differ-
entiated in online and offline use cases of brain input. The online ones are then further
differentiated by how the measured brain activity is exploited. In particular, some systems
use explicit or direct control and others use implicit or passive input [308, 380, 379, 63].
With implicit input, brain signals that occur naturally are detected passively in real-time,
with no special effort from the user. Unlike most explicit control systems, which often utilize
brain data as the primary system input, implicit input paradigms frequently integrate brain
signals as a secondary input channel to interactive systems. Implicit paradigms can further
be broken down into open loop and closed loop systems. Thus, the categories that we used
for integration type are described below.

e Explicit Control: Also referred to as direct control, paradigms in which mental
commands (such as motor imagery, directing the attention towards a blinking pattern)
are given by the user and these are mapped directly to user interface operations (e.g.
cursor movement or letter selection). These are sometimes categorized into active
control and reactive control paradigms [382], depending on whether brain activity
is controlled independent of any external stimuli or in response to external stimuli,

respectively.

e Implicit Closed Loop: The initiated response to specific aspects of the measured
brain activity is designed to directly influence these aspects through online system
behavior changes. For example, a closed loop system could measure workload and
adapt the interface specifically to adjust the user workload.

13]187] also defines the concept of “Automated Adaptation”. We did not encounter any paper that qualifies
for this kind of system during our analysis.
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e Implicit Open Loop: Online use of brain input in which specific cognitive or af-
fective states or processes from the data is detected and used to inform and adapt an
interactive system. Open loop refers to the absence of any direct or intended coupling
of the adaptation back to the input. For example, when detecting changes in workload,
an open loop system may notify the user.

e Neurofeedback: Online use of brain signals which visualizes or otherwise backchan-
nels aspects of the captured neural activity (in raw or processed form) to the user,
enabling them to self-regulate their own brain activity consciously (in contrast to pro-
cessing the brain activity to adjust the interface as for implicit closed loop).

e Mental State Assessment: Offline processing of brain sensor data for the classifi-
cation of specific cognitive or affective states or processes from the data. This analysis
is performed as a self-contained methodological contribution, without leveraging the
result further. The goal is often to transfer the results to an online system at a later
point.

e HCI Evaluation: Offline processing of brain sensor data with the explicit purpose
of evaluating stimuli or a (non-BCI) HCI system offline from brain signal data. While
the previous types of brain signal integration describe HCI approaches that employ
a brain input component, evaluation is concerned with the use of brain signals to
analyze general HCI systems. In contrast to mental state assessment, this is not done
with the intention of explicit integration in the system control loop and usually focuses

on low-level neural responses in contrast to high-level cognitive states.

3.5.2 Paper Demographics

Our goal in this section is not to report empirical findings per se, but to understand the
breadth of use cases, constructs, modalities, and methodological patterns occurring in HCI
research using brain signals in order to inform the experiment model we propose in the
following section. We summarize the key findings of this analysis below, but refer the reader
to the full manuscript for a more in-depth discussion.

The earliest paper that we identified is from 1996 [335], outlining a vision of using brain
signals among other methods as a control signal for human-computer interfaces. It took five
years for the next paper [76] to appear and five more for the third one [193]. Since then, the
number of papers related to brain signals in HCI increased steadily over the years.

The surveyed literature varies widely in both application domains and the mental states
modeled using brain data. Despite this diversity, most papers focus on constructs like at-
tention and workload, often using EEG (particularly low-cost consumer-grade devices), with
limited use of fNIRS or multimodal combinations. There is no single dominant applica-
tion area, although entertainment, education, and gaming are among the most commonly
explored.
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The type of brain signal integration employed likewise varied considerably. While several
papers detailed systems that were responsive to user brain signals, either via explicit control
or open- or closed-loop implicit adaptation, most systems did not achieve full integration with
real-time adaptation, often due to technical and methodological challenges. The majority of
studies used brain signals for mental state assessment or HCI evaluation, typically in offline
settings.

In comparing papers from HCI and traditional BCI communities, we found notable dif-
ferences in motivation, methodology, and evaluation. HCI papers tend to emphasize user
experience and system-level outcomes, while BCI papers focus more on classifier performance
and low-level signal fidelity. Very few HCI papers offered replication, reuse, or follow-up on
previous work, and data/code sharing remains rare. Tables 3.2 and 3.3 provide explicit
examples for comparison.

Finally, although exploratory approaches dominate the literature, there is little standard-
ization around confirmatory practices such as hypothesis pre-registration, power analysis, or
formal effect size reporting. This further reinforces the need for clearer reporting standards

and reproducibility guidelines tailored to HCI contexts.

3.6 Experiment Model for HCI Research with Brain
Signals

In examining papers covering a broad variety of use cases, it becomes apparent that different
publications contain different approaches of reporting the experiments, even within the field
of HCI. One aspect may be covered in great detail in one paper and only briefly touched
upon in another. Sometimes, this is due to the type of research contribution (e.g., whether
it involves the application of machine learning techniques), while other times it is due to
cultural differences (e.g., method-driven vs. application-driven research).

Thus, to investigate how HCI experiments involving brain signals are described in the
literature, we first define a model of such experiments. The benefit of a model is that
it provides vocabulary and structure for comparing different works and reporting styles
and can act as a guideline on what other researchers report and expect to be reported.
An experiment model is a superset of items, or attributes, occurring multiple times in the
relevant publications, which is grouped into different categories. Each attribute defines a
unit of information related to the experiment. Not all attributes are necessarily applicable
to every paper. However, they should be general enough to appear regularly and across a
number of applications and use cases.

The model we discuss here was created in an iterative process during initial passes of
the surveyed literature: A superset of reported attributes was created, similar concepts (or
identical concepts with different names) were grouped together and categories were defined
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Table 3.2: Comparison of experiment representation in two papers from HCI and BCI (first

pair).

Hcil [321]

Bcil [238]

Motivation

Targeted “appropriate, effective responses”
in “educational settings”

Expressed the goal to “facilitate greater ac-
curacy” of the (active BCI) systems they
want to improve, i.e., they aim for a more
technical in a more focused area of applica-
tion.

Setting

Implemented their model in a humanoid
robot that performs real-time adapta-
tion; participant interaction is structured
coarsely.

Collected data for offline processing in a
design structured into a sequence of short,
repetitive trials. Participants performed
various mental tasks with different levels of
difficulty.

Both studies were conducted in a laboratory setting.

Construct Differentiation

Took a relatively broad strokes approach for
the definition of attention, explicitly stat-
ing that the terms engagement and atten-
tion are used “interchangeably”.

Differentiates three related, but distinct
mental states (fatigue, frustration, and at-
tention) and manipulates them individually.

Signal Processing

Described a custom mapping algorithm that
builds on the “proprietary” preprocessing of
the consumer-grade EEG hardware.

Elaborated the parameter values for how
their signals were filtered and digitized, but
goes on to state that “all aspects of data
collection and experimental procedure were
controlled” by the BCI system that was
used. Choices of electrode placement, ref-
erence, and signal decimation were exper-
iment parameters that were manipulated
over the course of data collection.

Metrics of Success

Looked at objective and subjective outcome
measures, such as task success rate and at-
titude towards the agent or motivation.

Assessed and compared classification perfor-
mance using the accuracy score.

Validation
Used a manipulation check to test whether
the attention model reacts to different sit-
uations. They further look at the partic-
ipants’ objective and subjective responses
to the robot behavior and differentiate be-
tween genders.

Approaches

Discussed the neural mechanisms poten-
tially underlying the observed classification
performance; the authors also discuss how
electrode selection and electrode reduction
influence the classification performance.
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Table 3.3: Comparison of experiment representation in two papers from HCI and BCI (second

pair).

Hci2 [376]

Bci2 [188]

Motivation

Developed a “multi-touch table using [a]
P300-based BCI” to explore “the embed-
ding of BCI in new HCI situations.”

Sought to “improve classification perfor-
mance” of a traditional P300 speller.

Setting

Participants performed analogous selection
tasks using both a traditional P300 speller
and a new “multi-touch system” that relied
on a multi-touch table to detect the presence
of objects and flash the areas beneath them.

Required participants to perform a selection
task using a traditional P300 speller.

Both studies used within-subjects, trial-based experiment designs, and performed both

offline and online classification.

Construct Differentiation

Does not greatly differ across the two papers; both describe how participants must
“attend” to a target stimulus in order to select it with their respective P300 systems,
but do not attempt to specifically define or measure “attention.”

Signal Processing

Used MATLAB software provided by the
BCI headset vendor to handle signal acqui-
sition and classification.

Elaborated the parameter values for how
their signals were filtered and digitized, but
goes on to state that “all aspects of data
collection and experimental procedure were
controlled” by the BCI system that was
used. Choices of electrode placement, ref-
erence, and signal decimation were exper-
iment parameters that were manipulated
over the course of data collection.

Metrics of Success

Sought to show that participants who used
their multi-touch P300 system selection suc-
cess that was comparable to a traditional
P300 speller.

Aimed to determine the set of recording and
classification parameters that resulted in op-
timal classification accuracy for a standard
P300 speller paradigm.

Validation

Compared the online classification perfor-
mance of their multi-touch P300 system to
a P300 speller, as well as to speller perfor-
mance from a prior recent study.

Approaches
Analyzed offline classifier accuracy in a fac-
torial fashion across multiple recording and
feature configurations to determine the op-
timal set of parameters, then validated their
choice with another, online classification ex-
periment.
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Table 3.4: Summary of the experiment model, listing all regarded attributes of HCI experi-
ments involving brain signals. Attributes are structured in several categories. Tables A.1-A.6,
in the Appendix, provide further details, including definitions and examples.

Category Experiment Attributes

type of sensor, sensor position, sampling rate, measure-
Technical aspects of recording ment quality, reference, auxiliary signals, synchronization
with stimuli and other signals, recording environment
participant restraints, output devices, input devices, mid-
dleware/communication, framework/technical platform,
task functionality, architecture, stimulus material, visu-
alization provided?, timing, code for task provided?
recruitment strategy, incentives, age, gender, occupation,

Task description

Participants inclusion or exclusion criteria, approval of ethics commit-
tee
experiment structure, instructions, training procedure,
Experiment flow trial ordering, repetitions, blocks & breaks, pre-study

screenings, questionnaires
derivation of labels, data transformation, filtering, win-
dowing, artifact cleaning, hyperparameter optimization,

Data processing outlier handling, feature extraction, feature selection,
learning model, evaluation procedure, processing code
provided?

Brain signal integration brain input effect, type of integration

in accordance to the typical section structure of the papers. This process resulted in the
following categories: Technical aspects of recording, Task description, Participants, Exper-
iment flow, Data processing, and Brain signal integration. Of course, such an experiment
model contains aspects which may also be covered in a general model of experiments in HCI
or cognitive psychology; however, we opted for creating a model specific to brain signals in
HCI to cover the unique combination of experimental work in an HCI context together with
aspects of cognition, neuroscience, signal processing, and machine learning. In the future,
the model could be extended to cover other types of physiological interfaces.

In Table 3.4, we introduce these categories and list the attributes contained within them.
Tables A.1-A.6, in the Appendix, provide further details, including definitions and examples.
For each attribute, we give a definition of the item and present an example taken from the
surveyed literature. We tried to identify examples which are biased towards a more detailed

documentation, but individual examples may still lack certain information.
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3.7 Reporting Practices in HCI Research with Brain
Signals

In this section, we discuss our analysis to determine what aspects of an experiment the HCI
community considered relevant to report, what structure we could identify through statistical
analysis (compared to the a-priori structure of the experiment model), and what differences
we encounter in relation to the variance of research as observed in Section 3.5. For this
purpose, we annotated each of the 110 papers, as described in Literature Database Curation
according to the presence or absence of each attribute in the presented experiment model
(Section 3.6). Thus, we not only extracted statistics on what was investigated (Section 3.5),
but also how it is reported. We then explore the prevalence of different attributes across
papers and the relationships between different attributes and topics.

The goal of this review was not to judge specific papers for absence or presence of certain
details, but to get a picture of how experiments are reported today, and what differences
we observe in style of reporting for different types of papers. This provides an indication
of what aspects of the experiment model are central to most HCI publications, what parts
need refinement, and what parts are considered niche.

Attributes could be rated as present, absent, or not eligible (for example, “brain input
effect” for non-real-time studies). Every paper was examined by one to four raters (me-
dian is 2), primarily authors of the paper and research assistants, all with background in
human-computer interaction, computer science and /or neuroscience, and including graduate
students, a senior postdoctoral researcher and professor. We first compiled a set of detailed
definitions and examples for the different attributes and then all raters annotated the same
paper and discussed the process to identify any questions or areas that needed additional
clarity. Between raters, we arrive at an agreement rate of 81%. All raters could add addi-
tional information (e.g., additional attributes) or refinements to the definitions to the model
during the annotation process. Ambiguities could be settled through a growing collection of
examples and explanations. The annotated list of all papers as well as the data matrix of

ratings is available as supplementary material.

3.7.1 Prevalence of Experiment Model Attributes

In Figure 3.1, we show the prevalence of the attributes of the experiment model across papers,
i.e., the relative number of papers reporting the corresponding aspect. We see a large variety
of resulting scores: A number of attributes related to data acquisition is present in nearly
every paper in which they are eligible. These include mostly basic signal-related aspects,
such as the type of device/sensor or sensor positioning. On the other end of the spectrum,
we find that many attributes of data processing and machine learning are rarely reported,
even if eligible.
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One point to consider is that we rated attributes as absent in cases where no information
was given, even if logically possible, because it was not considered by the authors. An
example of such a case is the attribute “participant restraints.” If the authors did not apply
any restraints and thus do not report on this, this is indistinguishable from a situation in
which a restraint was applied but not reported. A consequence of this observation is that
it may be necessary to explicitly report attributes of the model as not applicable, to avoid
such ambiguity.

To get a rough estimate of the impact of reporting these attributes, we calculated Pearson
correlation between the fraction of reported attributes which were present in a paper with
the number of citations per year since publication. This yields a modest, but significant
correlation of 7 = 0.16 (p = 0.04), indicating that comprehensive experiment reporting may
play some role in the paper’s impact and success. Similarly, we correlated the number of
reported attributes with the age of an paper, to study whether reporting changes over time
globally. The correlation of r = —0.12 is not significant (p = 0.12). For a more detailed
view, we repeated this analysis for individual attributes and found that some attributes,
such as questionnaires and methods of synchronization, appear more frequently in recent
publications (occurrence of these attributes correlates negatively with age), while others, such
as participant restrictions or non-standard preprocessing techniques, occur less frequently in
newer publications (occurrence of these attributes correlates positively with age). See Figure
3.2 for the attributes with the highest absolute values for r.
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Figure 3.1: Prevalence of attributes across all analyzed papers, values indicate the relative
number of papers reporting the corresponding aspect.

3.7.2 Structure of Experiment Reporting

In the following, we analyze the collected prevalence information on experiment model at-
tributes to uncover a structure. While the proposed experiment model in Section 3.6 is
structured based on expert perspective, we sought to explore whether a data-driven ap-
proach would reveal meaningful groupings that might support or refine that structure.

As a first step towards this goal, we investigated the (in)dependence of the different
attributes of the experiment model to identify possible relationships or redundancies. We
calculated the Pearson correlation between all pairs of attributes across all scores. On av-
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Figure 3.2: Correlation of model attributes prevalence and paper age for selected items,
sorted by correlation coefficient.

erage, the maximum correlation between any attribute and others was 0.56, suggesting that
most attributes are sufficiently distinct. However, some attribute pairs exhibited higher
correlation (the highest value, 0.89, was between “gender” and “age” in the “participants”
category), indicating some jointly occurring model aspects exist.

We explored this further by conducting an exploratory factor analysis with Varimax ro-
tation on all attributes to investigate latent structural relationships underlying the analyzed
papers, potentially revealing different reporting patterns for different types of publications.
Factor analysis reduces the dimensionality of the data by grouping related attributes while
preserving as much variance as possible. The factor analysis therefore allowed us to identify,
through a data-driven process, a structure in the form of groups of experiment-reporting
attributes that occur jointly in many papers. To preserve the variance of the original data,
we avoided any scaling of variables or other preprocessing which could influence it. We sum-
marize key points of our analysis and results below, leaving more detailed discussion in the
full manuscript.

We found that ten factors were sufficient to explain the variance in our data. Examining
the factor loadings—a measure of the correlation between a factor and attributes of our
model—reveals that several of these factors mapped neatly to individual model categories,
while others revealed unique groupings spanning multiple categories. For example, individual
factors clearly mapped to the “participants” and “experiment structure” categories, while
however, other factors mapped to clusters of attributes that were more broadly related to
aspects of, e.g., experiment design or signal processing techniques. These clusters offer a
complementary, data-driven structure that reinforces some elements of the original model
while reflecting associations in reporting patterns. Based on the attribute loadings of each
factor, we assign semantic categories that summarize the associated model aspects: F1:
Fundamentals, F2: Experiment Design, F3: Data Processing, F4: Machine Learning, F5:
Integration, F6: Software, F7: User Input, F8: Data Acquisition, F9: Quality Assurance,
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F10: Recording Conditions.

Finally, we used this data-driven categorization to investigate whether there were pat-
terns in reporting dependent on the demographic information related to each paper (as in
Section 3.5). We observe that papers which had different study designs tended to prioritize
reporting different experiment details, with the type of brain signal integration (e.g., neuro-
feedback, explicit control, open-loop, etc.) emerging as a stronger differentiator than either
contribution type or equipment used. This indicates that this alternative categorization is
sufficient to meaningfully capture the breadth of HCI research with brain signals.

3.8 Expert Perspectives and Review

In Sections 3.6 and 3.7, we explored a model for the description of empirical work in using
brain input with HCI methods and explored the current practices in existing literature. To
understand what information researchers find to be relevant for reproducing and reusing
work, we distributed an online questionnaire to experts and collected their feedback and
comments. This is described below.

Questionnaire Structure

First the questionnaire asked for background information about the participant. Then,
it asked questions to understand the extent to which the participant felt that their own
papers were reproducible, followed by questions about their own sharing practices. The
questionnaire then asked about the participant’s experience reproducing or reusing other
published work. Finally, the questionnaire contained all of the potential experiment model
attributes along with a description and example as in the Appendix. Participants were
asked to consider three contexts: experiment reproduction, (i.e., re-performing the same
experiment), data reuse (e.g., running different analysis on published data), and artifact re-
use (e.g. extending a presented software framework with additional functionality). For each
of these three contexts, the participants rated the level of detail needed for each item as one of
the following: Not Needed at All, Not Very Detailed, Moderately Detailed or Highly Detailed,
which have been coded as 0, 1, 2, or 3 respectively. Throughout, there were opportunities
for the participants to provide free comments.

Participants

To recruit experts to the study, we contacted all authors of papers considered in the previous
sections. We received feedback from 12 external experts (from 6 different countries, ranging
from graduate students to full professors from HCI and BCI) in the field who commented
on the model and provided suggestions for minor adjustments. Two participants did not
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complete the entire survey, and we include their ratings and responses for the questions that

they did answer.

Data and Code Sharing Practices

Four out of ten of the participants regularly share recorded data, data processing code, exper-
iment processing code and study materials. Seven out of ten felt that most of their published
studies are reproducible from the information given in the article. Space limitations were
identified by four participants as the barrier to publishing fully reproducible experiments.
In addition, one participant mentioned that the data is often regarded as medical data that
has privacy requirements and cannot be shared and another participant mentioned that per-
mission from the participants may not have been given for sharing. Another participant
discussed the additional time requirements for preparing data for sharing. One participant
mentioned that application or data processing code might not be shared for intellectual

property protection.

Experience with Reproducibility and Reuse

We also asked the participants to reflect on any experiences that they have had reproducing
study results from published work by other researchers. All six of the participants who
indicated that they have attempted this, expressed that doing so was challenging and time
consuming in some way. One mentioned getting lower accuracy than reported in the original
paper. Another mentioned that lack of documentation about channel positions, markers, etc.,
made it difficult. One response directly contrasted the neuroscience/BCI/machine learning
journals and the HCI publications, stating that the former is “much more reproducible” than
the latter. Specifically, this participant mentioned that the former provides more details on
algorithms, parameters, and precise timing of the protocol, while the latter is often, but not
always, “vague/generic”. They also pointed out the difference between practices of sharing
code with “BCI/machine learning papers do[ing] it much more often (but not enough).”

Research Community Views on Reproducibility

We also asked participants to rate the level to which reproducibility is valued in their main
research community. Six participants rated it either 4 or 5 out of 5 (high). Of these, one
researcher identified their main fields as perceptual graphics and the other five identified
BCT as their main research area. The four other participants rated this as 1 or 2 (not valued
highly) and they identified their primary field as human-computer interaction, cognitive
systems or computer security user behavior, with one mentioning it being “valued in theory,
but no way of receiving credit for it”.
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Feedback on Experiment Model Attributes

The participants provided 41 comments to the different model attributes, leading to an in-
cremental improvement of the category definitions. Their responses showed they rated the
attributes of the model with an average of 2.04, with no model category scoring lower than
1.92. This indicates that the model lists relevant information. Bonferroni-corrected pair-
wise Wilcoxon signed rank tests showed that their importance ratings differed significantly
depending on whether the experts rated the attributes for the purpose of experiment re-
production, (median importance of 2.26), data re-use, (2.12), or artifact re-use, (2.0). This
shows that the context and viewpoint of the author and reader influence the priority for
different attributes.

Summary

Many of the comments about experiences with reproduction and reuse of their own work
as well as that of others aligns and confirms the motivation of this work. In addition, their
feedback on the experiment model attributes constitutes a preliminary evaluation of the
model.

3.9 Discussion & Outlook

From our observations in the literature survey and the experiment model, as well as the
insights from the expert questionnaire, we derive a number of recommendations.

Exchanging Best Practices

Our analysis showed that different types of papers use different practices and could benefit
from exchange. For example, we showed a divide between application-oriented and method-
oriented HCI research in the types of sensor headsets used and the important trade-off
between user comfort and signal quality. This divide becomes especially important if we
consider that a substantial number of papers do not report details on aspects related to
signal processing, sometimes taking the output of the commercial systems at face value. On
the other hand, the method-oriented community could learn from others that comfort and
user experience matter and working towards that is a merit which may even warrant a certain
loss of classification performance (but not empirical validity). There is an opportunity for
these papers, that have different end goals, to be written to have broader appeal and potential
for reuse. Another cultural difference lies in the way that the modeled mental states and
processes are referred to, i.e. from a neural perspective or a cognitive perspective. A common
vocabulary and a better awareness of similarities and relations could help to better leverage

common resources and insights.
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It would also be valuable to turn specifically to the publications of the core BCI commu-
nity to transfer some of the relevant standard practices of these experts in experiment design,
signal processing, machine learning, and the underlying neural processes to the HCI com-
munity, to avoid common pitfalls, especially if they are BCl-specific. In particular, Brouwer,
et al. describes six recommendations related to BCI studies, which include 1) define your
state of interest and ground truth 2) connect your state of interest to neurophysiology, 3)
eliminate or address confounding factors, 4) practice good classification methods, 5) provide
insight into classification results and 6) justify the use of neurophysiology [35]. Jeunet, et al.
details best practices related to signal acquisition, data processing, experiment design and
the user component [157]. These BCI-focused papers make recommendations that can carry
over into HCI research with brain signals.

HCI does not have a consistent record of meta-research and model-building as has helped
the BCI field, (e.g. through the BNCI 2020 initiative), to establish common terms and public
data sets. Besides improving internal communication, it would also help to make the field
more accessible to HCI researchers who do not yet use brain signals in their research but

could benefit from it.

Awareness of the Heterogeneity of HCI Research with Brain Signals

As authors, reviewers, and editors in the field, it is important to be considerate of the
heterogeneity of HCI research with brain signals. To study and organize reporting practices
in breadth, we first analyzed range of domains, of cognitive vs. neural states, of types of
headsets, types of brain input integration, etc., to get an understanding of the diversity
of concepts a model needed to cover. This “demographic heterogeneity” directly impacts
experiment reporting. For example, the choice of headset determines whether details about
sensor positions, filtering, data quality can be reported, and the factor analysis reveals
differences in reporting for different types of integration.

Our analysis provides some evidence that the HCI research community using brain signals
is different from the traditional BCI community. Furthermore, we showed that even within
the community, there are different sub-communities with different reporting styles. This
observation is not only relevant for future authors seeking guidance, but also for reviewers,
who may use our findings to see what level of detail can be expected on the one hand, but
also to recognize the range of acceptable contributions, on the other hand. Because of the
diverse disciplinary backgrounds in the field, a critical challenge in publishing is the mis-
alignment of expectations (e.g. papers being criticized for being “too neuroscientific” for an
HCT conference, or papers “lacking rigor” when using commercial devices). Another source
of heterogeneity is the wide spread in the acceptable number of study participants. Inter-
disciplinary research then runs into the risk of being “shot down” by multiple disciplinary
reviewers, pulling the paper in multiple, opposite directions. This may discourage attempts
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at interdisciplinary work, which we consider crucial for the long-term development of the
field. By uncovering the model that represents current HCI research with brain data, based
on existing peer-reviewed publications, further discussion can emerge about expectations,
reproducibility, and opportunities to strengthen future research in the field.

This recommendation should not be understood as a call for a lack of carefulness or
willingness to improve. On the contrary, the diversity in research creates ample opportunity
for learning for everybody, as elaborated in the previous recommendation. For example,
researchers need to be aware and properly address the frequent problems that can lead to
overfitting and non-reproducible results, such as improper handling of artifacts and pre-
mature parameter tuning. Utilizing strict validation criteria with pre-defined metrics, and
appropriate chronological validation during offline analysis as well as the use of established
processing pipelines can prevent that. However, not all learning is actionable immediately,
e.g., because data has already been collected or necessary collaborations with experts from
other areas need to be build up. We therefore think that in many cases, the inclusion of a
transparent and honest discussion of shortcomings and opportunity for improvement may be
an chance to offset imperfect, but thought-provoking research that others can build on (see
also the third recommendation below).

Creating Opportunities to Build on Each Other’s Work

Our analysis has shown that no publication or series of publications by the same group
of researchers covers all aspects in the maximal depth. A reason for this is that complex
research on brain input often involves multiple real-time components for signal processing,
machine learning, and user interface design and no individual researcher is an expert in all
of these areas. We recommend leveraging the fact that the research community in this area
is large (396 unique authors contributed to the papers we analyzed) and diverse. This goal
has several implications: First, it is necessary to provide enough information for others to be
able to build on the work. Again, the experiment model can help to provide a sufficient level
of detail. Second, we also recommend moving away as a community from expecting papers
with full end-to-end systems as well as large-scale user studies all as novel contributions.
A publication can have merit if it provides the research community with an exciting new
experimental paradigm, even if the performed user studies has limitations. Incremental
research which reproduces and advances an already published system can strengthen validity
of results and ultimately leads to more mature artifacts. As an important support for
this, researchers should be able to receive credit beyond citation of publications. Platforms
like Open Science Framework (OSF) or Zenodo allow the assignment of DOIs to artifacts
(software, data, or technical descriptions) which are not peer-reviewed papers and these can
be referenced in a work that makes use of them. Finally, it should be noted that building

on existing work can also mean to follow-up research on own studies, for example to confirm
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the results of an exploratory experiment through validation with independent metrics (e.g.,

validating a system for workload classification through a user study measuring efficiency).

Data and Code Sharing

One way of reporting experiments which seems to be still underused in the community is the
sharing of data and code for analysis and experimental paradigms. It is important to further
explore the challenges, such as the additional effort it takes to prepare the material with little
perceived benefit or recognition. In addition, there may be concerns of increased scrutiny
or loss of competitive edge in an academic race for high-impact publications. An “open”
culture of publishing material could and should lead to a paradigm change, allowing the
publication and joint improvement of research contributions: When an expert in empirical
HCI develops an innovative experimental paradigm but an expert in biomedical engineering
identifies areas to improve the published data preprocessing pipeline, both should be able to
get credit for an updated joint work in contrast to work that is never published.

To move toward increased data sharing in the HCI community, however, there is a need
for additional author and reviewer guidance and support. In some venues, particularly the
main research conferences, anonymous review is expected, discouraging authors from sharing
external links that may de-anonymize them. However, the paper submission systems often
do not easily support the submission of data, code, metadata, etc. An author submitting a
paper might not know the best way to anonymously share their data for review. Similarly,
reviewers need guidance about what level to examine the data, code and other materials

during the review process.

Publishing Expanded Experiment Descriptions

Another recommendation for HCI papers with brain signals is to consider publishing ex-
panded experiment descriptions beyond the conference or journal paper. The analysis of the
papers shows that no individual paper achieved more than 72% of coverage of all eligible
model aspects. The missing details limit the ability for other researchers to easily build
on the work. For example, a paper by Jones, et al. [161] is detailed in its reporting of
technical aspects during EEG recording. Many newer papers omit many of these details.
However, the experiment from 2003 is also relatively simple compared to modern experiment
designs, such as [10], which in turn covers other aspects. The analysis shows that journal
publications exhibit on average a better coverage of experiment model aspects compared
to conference proceedings. This is likely due to the limitations in space, as brought up in
Section 3.8 by study participants. We therefore recommend to make use of the opportunity
to publish supplementary material as offered by many conferences and journals. In addition,
publication in open data repositories gives the opportunity to share concrete information.
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Both approaches allow to provide unlimited and more technical information. Alternatively,
authors may consider accompanying blog posts or other forms of documentation beyond
the publication manuscript itself. Future work needs to study obstacles for making data
available [348], especially such reasons which are specific to brain data; one example is the
question of long-term anonymity of brain data, that has implications on the ability to share

such data liberally in the context of data protection and privacy laws.

Applying the Experiment Model

One outcome of the experiment model is that researchers can now compare past and future
HCI publications against the model to identify strengths and weaknesses in reporting. The
model was cross-checked through the analysis with 110 HCI publications to cover a wide range
of information that is considered relevant to the HCI community for experiment reporting. It
can therefore act as a reference for deciding what information to present in a publication or
experiment description. This can help researchers to make their research more accessible and
reproducible. We also recommend the consideration of aspects of the model which did not
apply to your research, but for which there may be uncertainty if unreported. An example
of such a situation is “participants restraints”: If a researcher did not restrain participants
in any way, it may not occur to them to report this in the paper; however, other researchers
may wonder if no restraints were applied or whether they were not reported. Furthermore,
our database can help researchers identify “role models” for certain types of experiments
and certain aspects of experiment reporting. Finally, the experiment model can also be used
by reviewers by providing a check list to guide the systematic and objective assessment of

experiment reporting.

Further Refinement and Expansion of Experiment Model

We have presented an experiment model as a starting point for further discussion, critique,
and extension of the model, as well as identification of the importance of its attributes
for different use cases. One source for improvement might be an alternative structure or
even a multi-dimensional structure, as the statistical analysis of the papers showed multiple
potential approaches to group the model attributes into categories.

Despite being based on 110 papers, the model cannot cover the full breadth of all relevant
papers and future use cases. For example, the database currently only contains one paper
of multi-user BCI and thus does not reflect the specific aspects of such BClIs, for example
how the different users communicate. Multiparty experiments are complex and may require
the experiment model to cover additional aspects (e.g., in the roles of the different partic-
ipants) as these designs become more common. As other novel study designs emerge, the
experiment model would need to adapt to represent these new paradigms. Another pos-
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sible area of refinement is the description of statistical analysis and the discrimination of
exploratory and confirmatory aspects, which could be formalized beyond our analysis once
an explicit discussion of these aspects becomes more common. Another limitation of our
current analysis is that we did not consider papers in domain-specific publication outlets,
such as neuroergonomics or learning research, as we wanted to focus on HCI venues. From
the identified core domains (see Characterizing HCI Papers with Brain Signals), we can in
the future extend the analysis to publications in these areas.

Finally, the model could also evolve more in the direction of a broader contextualization of
research, documenting how researchers discuss their specific experiment in relation to ethical
concerns and societal implications [87, 150, 149, 174] revolving around the use of brain data
in HCI. Several specialized works present a systematic discussion of these aspects, and list
the following characteristics of ethical issues related to BCIs: personhood, stigma, autonomy,
privacy, research ethics, safety, responsibility, and justice [40, 60]. However, they also note
that the discussion of ethical aspects is not widespread in empirical papers. This is also
reflected in our database: Apart from informed consent, which is the most common one and
already covered by the experiment model, we selected autonomy, safety and privacy as the
most tangible ones from the list above and identified the papers which referred to them.
When accounting for false positives (e.g., a discussion about “autonomous driving”), we
found that 11.8% of all papers referred to safety (for example in reference to safety-critical
BClI-applications), 6.3% referred to privacy (often in the context of the data collection),
and 5.5% referred to autonomy (for example in the context of users with disabilities). This
count is also generous, because sometimes the concepts are only mentioned briefly in the

introduction or discussion.

3.10 Conclusion

In this chapter, our motivation was to characterize the current state of affairs to facilitate
future discussion on reproducibility and reuse of HCI research with brain signals. We studied
the diversity of HCI research using brain signals, with regards to domains and applications,
modalities, measured mental states and processes, and more. From 110 publications since
1996, we showed the large variety and thus the broad applicability of brain activity mea-
surement to improve or quantify HCI. The analysis also revealed that the studied field is
heterogeneous and composed of sub-categories, which use different ways of reporting their
experiments. We conclude that these differences may pose a challenge to understand, repro-
duce, and build on this research.

One result of this work is the creation of an initial experiment model, which acts as
a unified superset of recurring aspects of empirical work on using brain signals for HCI
purposes. This model and the example attributes can act as a guideline to structure a report

on empirical work in this area. It can help to reduce the mental workload and uncertainty for
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both authors and reviewers by providing structure for publications. Explicating, structuring,
and naming different aspects of the model can facilitate a discussion in the community on
what and how to report. The empirical analysis has confirmed the general structure of the
proposed model but also revealed potential alternatives for future explorations. We saw
that while some parts of the model define a minimal standard most papers report on, there
are other aspects that are only addressed by parts of the community. A discussion and
re-iteration in the scientific community would be an important follow-up from this starting
point to create a more mature and comprehensive version of the model. This requires a
broadening of perspectives beyond the scope of this analysis, e.g., through a workshop series
at one of the premier HCI conferences. We made the model accessible through a GitHub
repository at https://brain-signals-hci.github.io/experiment-model/, through
which interested researchers can send pull requests to submit suggestions for improvements.

While there is much room for subsequent research, the presented work is an initial step
toward reproducibility and reuse of HCI research with brain signals.
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Chapter 4

BrainEx: An Easy-To-Use Tool for
Exploring Brain Signal Datasets

Abstract

Technology advances and lower equipment costs are enabling non-invasive, conve-
nient recording of brain data outside of clinical settings in more real-world environ-
ments, and by non-experts. Despite the growing interest in and availability of brain
signal datasets, most analytical tools are made for experts in the specific device technol-
ogy and have rigid constraints on the type of analysis available. We developed BrainFx
to support interactive exploration and discovery within brain signal datasets. BrainFx
takes advantage of algorithms that enable fast exploration of complex, large collections
of time series data, while being easy to use and learn. This system enables researchers
to perform similarity search, explore feature data and natural clustering, and select
sequences of interest for future searches and exploration, while also maintaining the
usability of a visual tool. In this chapter, we describe the distributed architecture and
visual design for BrainEz, and illustrate its improved performance relative to existing
systems. Additionally, we report on a preliminary user study in which domain experts
used the visual exploration interface and affirmed that it meets the requirements. Fi-
nally, it presents a case study using BrainEzr to explore real-world, domain-relevant
data.

4.1 Introduction

Recent innovations and declining costs for non-invasive brain monitoring technologies are
paving the way for future innovations in brain-computer interfaces, clinical applications,
and intelligent systems that adapt to changes in an individual’s dynamic cognitive state
(94, 310]. While existing tools help with brain data acquisition and signal processing, most

are geared toward biomedical engineers, scientists, or clinicians who analyze the sensor data
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Explore Data

Sequence plot, colored by Subject Name

Figure 4.1: BrainEx is a web-based visual analytic tool, designed for exploring sequence
similarity and clusters within brain signals. On the left, we see 50 similar sequences with
color used to encode metadata about the search results, and on the right is a person wearing
a functional near-infrared spectroscopy brain sensing cap.

in highly controlled and specific contexts and are experts in the underlying device technology.
Their well-established practices come from traditional neuroimaging and neuroscience studies
where data is collected following strict experimental protocols and analyzed by the same team
that collected the data. While these practices have enabled groundbreaking insights into the
brain, they are less effective in more real-world contexts or when datasets are reused by
others.

In these contexts, exploration can be valuable for gaining familiarity real-world data
and identifying brain signal patterns that might indicate a cognitive state of interest. For
example, researchers or developers may be interested in finding signature signal patterns that
indicate that a driver is distracted, or a student is focused. They might also want to scan
datasets for recurring patterns that suggest underlying events or mental processes common
across conditions or experiments. Researchers may also be interested in finding events or
tasks that lead to similar brain signals, even if they had not been associated together prior
to the data collection (e.g. doing a particular math problem or detouring while navigating).
These exploratory steps could inform future confirmatory studies. However, current tools are
not designed to support this kind of data-driven exploration and do not leverage advances
in time series data mining.

In this chapter, we introduce BrainFEzx, a web-based, brain data analytics platform for
visual exploration and discovery within time series datasets. Its core design philosophy is ex-
ploration at every stage. BrainFEx builds on data mining approaches for interactively finding
similar sequences in large datasets, and integrates them into a workflow specifically designed
for brain signals. We focus on signals from functional near infrared spectroscopy (fNIRS),
a non-invasive neuroimaging tool [339, 48] that has been used to measure cognitive states
in real time [3]. BrainEz preprocesses datasets, uncovers structural patterns, and enables
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users to interactively query, filter, and visualize similar signals, supported by metadata and
contextual information. This way, BrainFz is designed not simply for statistical analysis,
but broadly for empowering users to better understand brain data, and to explore it in search
of meaningful relationships for further study.

4.2 Contributions

This chapter presents an abridged version of the full BrainEx manuscript [139]. Readers
interested in further implementation details or performance benchmarking should refer to
the original publication. Here, we detail the following contributions, focusing on the system’s

functionality and accessibility to non-expert users:

e BrainFEz provides an interactive visual interface for brain signal exploration, supporting
cluster browsing and query-by-example similarity search across datasets. The use of
multiple similarity metrics allows researchers to uncover patterns that might otherwise

remain hidden.

e A user study conducted with experts in data visualization, neuroscience, and human-
computer interaction demonstrates BrainFz’s effectiveness at achieving five functional
goals: similarity search, feature distribution exploration, cluster exploration, integra-
tion between different components of BrainEz, and accessibility to researchers from
different backgrounds. The positive feedback shows promise for advancing the field of

brain-computer interaction.

e A case study with real-world fNIRS data illustrates how BrainEz supports discovery
of relationships between task events, brain regions, and cognitive states, highlighting

its potential as a tool for exploratory research.

4.3 Background

The BrainEzr system brings together research on brain sensing with research on time series
data mining and visualization to address challenges in brain signal analytics, with a focus on
functional near-infrared spectroscopy (fNIRS) used in HCI settings. This section provides
background on fNIRS, analytics tools for {NIRS, as well as time series similarity search and

clustering.

4.3.1 Functional Near-Infrared Spectroscopy (fNIRS)

Functional near-infrared spectroscopy (fNIRS) is a noninvasive form of neuroimaging that

provides time series data about cortical hemodynamics, which is correlated with brain activ-
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ity [265], using near-infrared light. fNIRS relies on the fact that infrared light can penetrate
human skin and is absorbed in different amounts dependent on the oxygenation of the blood.
An fNIRS cap (Figure 4.1) contains multiple fNIRS light sources and light detectors on it,
with each source-detector pair forming a channel of brain data. These measurements allow
researchers to compare activity in different areas in the brain at the same time [94]. fNIRS is
a useful tool for researchers due to its accurate, non-invasive, and portable properties. f{NIRS
research is a growing field within neuroscience [94]; in 2020, approximately 500 papers were
published on the subject [131]. In addition, there has been a growing number of HCI pub-
lications that use fNIRS brain signals [368, 214, 209, 21, 269, 215, 158, 355, 231, 11, 67].
[214].

The data generated from an fNIRS study typically consists of multivariate time series,
with one time series from each channel in the fNIRS cap (e.g. [355]). These time series
represent the oxygenated and deoxygenated hemoglobin in the location where the channel
is placed on the head. In addition to the fNIRS data itself, a dataset usually includes
additional metadata that describes the sensor locations, the study participant identifier, the
activity or events that occur during the study, among other things. These characteristics are
similar to other brain sensing modalities, such as electroencephalography (EEG), as well as
physiological sensing channels. Only the shapes of the signals and the sampling rate would
differ, depending on the sensing modality.

From these multivariate time series and the associated metadata, researchers typically
search for patterns in the brain data that indicate a particular cognitive or emotional state.
This can be done by using statistical methods to look for significant differences between two
sets of labeled sequences (e.g. distracted vs. focused). These labels would come from the
experiment design where particular states are elicited in a controlled way and then marked
or labeled in the data. Machine learning approaches are also common where labeled data
is used to build a classifier for future unknown data. Both statistical and machine learning
approaches can be difficult when brain signal sequences are of different lengths or different

scales, but workarounds exist.

4.3.2 Analytic Tools for fNIRS

With the growing field, specialized tools have been developed to aid researchers in the analysis
of fNIRS brain data [112, 208, 146, 319, 137, 373, 292] and each device typically comes
with some basic analysis software (e.g., NIRx NIRSLab). These tools generally support
the calculation of oxygenated and deoxygenated hemoglobin, as well as various filtering,
signal processing, and visualization techniques [137, 373, 146]. However, many of these tools
are specialized for specific experiment designs or application areas, typically supporting
task-based (HOMER [146] and POTATo [319)]), resting-state (NIRS-KIT [137]), or real-time
analysis (Turbo Satori [208]). While widely used in for analyzing fNIRS data, these tools
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were primarily designed for domain experts and do not prioritize visual exploration, a key
feature for other medical fields [42, 43, 44]. Few options exist for interactively exploring large
or unfamiliar datasets, especially in the context of functional near-infrared spectroscopy.
Facilitating brain data exploration is particularly critical today given the growing empha-
sis on sharing diverse datasets of increasing size and complexity. This means that researchers
may look at brain signal data that other researchers collected, and that they are not neces-
sarily familiar with. As more fNIRS data becomes publicly available, new insights may be
unlocked by applying time series data mining techniques and drawing from related work in
other domains. However, effectively analyzing heterogeneous datasets remains a challenge.

Dynamic Time Warping

Pointwise IH ’m

Figure 4.2: Comparison of how DTW and point wise similarity matching occurs. DTW (on
top) allows for a one-to-many mapping, as seen by points from the top sequence all mapping
to a single area on the bottom sequence that occurs earlier. Pointwise (on bottom) only
allows for a one-to-one mapping of points that occur at the same time in both sequences.

4.3.3 Exploring Similar Sequences in Time Series

Finding similar sequences of {NIRS data is an essential operation for identifying brain signals
that might be indicative of key cognitive or emotional states. Similarity search also plays a
prominent role in many other areas, such as finance or meteorology. Like brain signal data,
datasets from these domains can be large, often spanning tens of thousands of time points
at minimum [242]; thus existing work on efficient similarity search for large datasets informs
our approach.

Pointwise distance metrics, such as Euclidean or Manhattan, are easy to compute, but
are limited because they require sequences to be equal in length and aligned temporally, re-
stricting their applicability to real-world datasets. FElastic distance metrics, such as dynamic
time warping (DTW) [27, 282, 300], enable more flexible comparisons by compressing or
expanding the time axis, allowing a single point in one sequence to map to multiple points
of another (Figure 4.2). Thus comparisons via elastic distance metrics focus on the shape of
sequences rather than their values [72]. DTW’s flexibility has made it a popular choice for
similarity search in several domains, including comparing RNA sequences in bioinformatics
2], ECG pattern matching in medicine [41], and matching temporally misaligned sequences

in brain data [80, 51, 216]. However, its quadratic time and space complexity [164, 239] and
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lack of a proven triangle inequality make it difficult to scale to large datasets. Nonetheless,
several modifications have been proposed to improve its efficiency [169, 92, 374, 340, 281].

Although DTW is widely used, typical implementations only support a small collection
of distance metrics—usually Euclidean and Manhattan. Prior work has shown that different
distance metrics are better suited to different domains [46, 241]. A poor choice of distance
metric may distort similarities between sequences, leading to misclassification [241]. As a
result, effective exploratory tools must support multiple distance metrics to ensure robust
pattern detection across contexts [163, 306, 316, 320].

Data Series Sequences

Cluster 1 Cluster 2 Cluster 3

|
Representative 1 Representative 2 Representative 3

Figure 4.3: Representations and groupings derived by GDTW. The colors of the sequences
correspond to clusters of similar sequences and their respective representatives.

Generalized Dynamic Time Warping (GDTW) [243] builds on this need by aligning se-
quences using diverse pointwise distances, allowing for more flexible and accurate matching
(Figure ?7?7). GDTW employs clustering via simple distances (e.g., Euclidean, Manhattan)
and refines results using warped counterparts like DTW or warped Chebyshev [243, 241].
Such flexible and generalized approach is a promising basis for interactive brain data explo-

ration. However, there are no existing tools that support this for general use by non-experts.

4.3.4 Efficient Sequence Similarity Search Using Multiple Warped

Distances

BrainEz rests on the foundation created by the frameworks introduced in ONEX [242, 244]
and GENEX [243], enabling researchers to perform very fast and highly accurate similarity
searches in large datasets. We briefly discuss these approaches below.

ONEX [242] introduced an offline preprocessing approach that clusters sequences using
Euclidean distance, then performs similarity search using DTW. This leverages a customized
triangle inequality between the distances to allow efficient querying while maintaining ac-
curacy. By allowing for fast, accurate similarity search online, researchers may explore the

similarity of time series more easily and interactively.
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GENEX [241] generalized this idea by allowing researchers to warp their own distances
and then incorporate them into the clustering pipeline, offering greater flexibility. However,
it is limited by high memory requirements and long response times, which make it challenging
to scale to large datasets. A distributed system would be better suited to provide interactive

response times and reasonable memory requirements.

4.4 BrainEx Engine Architecture

When conducting studies with brain signals such as fNIRS, researchers generate large, com-
plex and often noisy datasets. These datasets consist of multivariate time series of brain
signals coming from multiple scalp recording locations. They also contain metadata docu-
menting the participant, the sensor channel, and any events occurring during the experiment
session. A common goal in this research would be to better understand the impact of one
or more of these attributes on the corresponding time series data. For example, researchers
may want to answer questions such as: What parts of the dataset look the most similar to
a particular instance of user distraction? Are there particular patterns that are frequent in
the dataset, in general? Are there particular patterns that are frequent for a particular study
participant? Or sensor location? Or event? Or a combination of these factors? To answer
these questions, researchers cannot assume that all sequences in the dataset are the same
length, since real-world tasks can vary. However, the search results should still find the most
similar sequence. Many of these questions could be answered by building on the foundation
of GENEX.

In this vein, we created BrainFz, extending GENEX with a distributed preprocessing
architecture that improves both speed and memory efficiency (Figure 4.4). BrainEz also
leverages rich metadata to support flexible operations such as cluster exploration, filtering,
and sorting through a user-friendly interface accessible to non-coders. Its modular design
allows researchers to integrate new distance functions with minimal effort, making it more
adaptable for diverse BCI research contexts.

BrainFEx is implemented as a full-stack web application with three main components: a
Python-based engine using Apache Spark for computation, a Django API, and a React front-
end 4.5). The server handles dataset preprocessing and similarity search, while the browser-
based interface enables users to explore clusters and view results. For implementation details,
see the full BrainEx paper.

In the following sections, we briefly summarize the algorithms and distributed archi-
tecture underlying BrainEzx which enable interactive visual exploration and discovery (Sec-
tions 4.4.1-4.4.2; further details in [139]). Section 4.5 continues with a description of the
front-end interface.
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Figure 4.4: BraimEz Pipeline Overview. When preprocessing a dataset, the time series
are divided into all possible sequences of all possible lengths and then clustered into similar
groups of equal length. After preprocessing, researchers can interactively explore the clusters
and perform a fast similarity search by finding the cluster representatives most similar to
the target sequence, and only searching the clusters they represent.
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Figure 4.5: The BrainEx System Architecture. The first component on the left is the BrainEz
Engine Server, developed in Python and usable with Linux OS. The middle component is
the API that preprocesses datasets, performs similarity searches, and clusters data which is
implemented with Django. The last component is the BrainFx website interface which the
user accesses and is developed in HTML, CSS, React, and D3.js.
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Figure 4.6: The Preprocess Data page is where a user will upload a new dataset and specify
the parameters for preprocessing. A) Users must manually provide the number of header
rows and feature columns; the default for each is 0. B) The user-defined similarity threshold
is the minimum similarity requirement between sequences in the same cluster. C) The length
of interest is the range for subsequences to be spliced; the default is 1-n where n is the
maximum sequence length in the dataset. D) The available warped distances for similarity
matching. Currently, Warped Euclidean, Warped Manhattan, and Warped Chebyshev are
available, however the code is built to easily accept more warped distances.

4.4.1 BrainEx Engine: Distributed Preprocessing Algorithm to
Compute Clusters

To enable fast similarity search, BrainFx organizes time series data into clusters based on
sequence length and a user-defined similarity threshold (Figure 4.6). Each cluster contains
sequences with similar structure and is represented by a single exemplar sequence. This
clustering enables efficient querying by comparing against a smaller subset of representative
sequences.

Improving upon the resource requirements of GENEX, the clustering process uses a dis-
tributed preprocessing algorithm that segments time series data across multiple computing
cores using a balanced slicing method we call Generalized Distributive Step Slicing (Gener-
alized DSS), shown in Figure 4.7. After segments are distributed equitably across compute
workers, each worker independently forms clusters using efficient pointwise distance measures
(e.g., Euclidean or Manhattan), checking whether a new sequence fits within the similarity
bounds of an existing cluster or should form a new one. Cluster representatives are fixed
so each cluster will have the first sequence that was sent to that cluster as representative,
to simplify processing and preserve natural variation in the data. Preprocessing is complete
once all workers have clustered their respective sequences.

At this point, the user can investigate each individual cluster to understand its charac-
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teristics, such as what features are present in the cluster, how many sequences it contains,

and the length of the sequences. This feature will be referred to as cluster exploration.

Sequence 1 O—O—O—O— Q—@}—,
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Figure 4.7: Parts (a) and (b) demonstrate the difference between the naive distribution
scheme and our implementation of distributive step slicing (DSS). The discs on the time
series are individual data points. The curves above the data points represents the sliced
subsequences. Different colored curves represent work done by different executors. Figure
(a) shows the naive distribution scheme, when the number of time series is not divisible
by the number of executors. This results in load imbalances. In this case, the load of the
‘orange’ executor is twice the amount of its fellows. Figure (b) shows a Generalized DSS for
load (number of sub-sequences) balances over multiple time series; note that the executors’
start index for each time series is set in a round-robin style to ensure further balancing of
the loads.

4.4.2 BrainFEx Engine: Distributed Similarity Search Algorithm

BrainEz allows users to query datasets by example, returning sequences similar to a selected
target. As with GENEX [241], instead of searching all sequences, BrainEx compares the
query to cluster representatives to the user-specified similarity threshold. If a representative
is sufficiently similar, the system searches within that cluster to find matching sequences.
This reduces computational load while preserving accuracy. As with cluster formation above,
this operation is performed in a distributed fashion to increase computational efficiency. It
enables real-time interaction with large datasets, helping users surface relevant brain signal

patterns across different time scales or contexts.
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4.4.3 BrainEx Engine: Time Series Indexing and Memory Opti-

mization

To reduce memory demands, BrainFx avoids storing all possible subsequences directly. In-
stead, it uses lightweight indexing with unique identifiers and start/end markers to represent
each subsequence. During computation, these index objects are used to retrieve subsequences
from the full dataset as needed, and are quickly discarded after use. This approach ensures

that BrainFx can handle large datasets efficiently without overwhelming system resources.

4.4.4 BrainFEx Engine: Operations

BrainEz performs three main operations: best match selection, ranked similarity search, and
cluster exploration. To assist in these operations, the user is presented with a number of
parameters to filter the results. Below are descriptions of the parameters and operations
they assist; more robust descriptions of similarity search and cluster exploration are found

in Sections 4.5.4 and 4.5.5 respectfully, where we discuss the user interface.

Similarity Search

BrainEz’s similarity search includes four parameters to adjust either the query or the se-
quences that match the query. Users specify their target sequence from the preprocessed
dataset and then specify the start and end index from that sequence to search for matches.
The returned matches will be approximately the same length as the target sequence with a
+1 margin of error. The user can choose any number of matches for their target sequence
with an upper limit of the total number of sequences of similar length to the target. The
last two parameters limit the sequences that can be selected as a match. First, the user
can limit the overlap between results to prevent results from the same parent sequence that
are offset by only a few data points. Secondly, the user can exclude sequences that include
points from the target sequence.

Cluster Exploration

All clusters can be filtered by how many sequences are grouped in the cluster (cluster size)
and the length of the sequences. Each cluster contains sequences of a single length. Therefore,
if one sequence in the cluster is of length 40, all of its sequences have length 40.

In addition, the user can also filter clusters by values of specific user-customized features.
In brain signal datasets (e.g., fNIRS), common features are participant name, event name,
and channel name. By filtering by these features, the user can search for clusters that are
primarily composed of a certain event or a specific subject, or look for clusters that have an

equal number of sequences from different channels.
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4.4.5 BrainFEx Engine: Supported Datasets

BrainFEx supports the input of TSV and CSV files. Columns contain features or datapoints
for a sequence while each row is an individual sequence. Each sequence must contain the
same number of features, but need not be the same length. We show below a snapshot of

an example dataset, containing one header row, two features, and sequences of length 3.

Subject | Condition
1 Indwidual | 1.1 | 1.2 | 1.3
1 Cooperative | 2.3 | 2.4 | 2.5
2 Individual | 1.9 | 2.0 | 2.1
2 Cooperative | 2.8 | 2.9 | 3.0

4.5 BrainEx Visual Exploration Design

The BrainFx engine described above provides sophisticated time series analytical tools to
enable interactive exploration. All of the functionality described above can be accessed using
a command line API. However, this requires domain expertise and deep technical knowledge
to execute. In addition, without visual representation of the data, the functionality is not
particularly useful for an end user to familiarize themselves with and truly explore the data.

Thus, we aimed to build an effective visual interface on top of the BrainFx engine to
expose the underlying cluster exploration and similarity search algorithms in a way that is
easy to use by users of all skillsets. The goal is not necessarily to introduce novel ways of
visualizing time series data, but rather to make the underlying algorithms more accessible and
valuable to researchers, so they can more easily explore and discover interesting relationships
in time series datasets. Users of BrainFr may not be familiar with command line interfaces

and would not be able to use BrainFx to its full potential without a visual interface.

4.5.1 Usage Goals

We developed the following simple usage scenario to motivate the design of the BrainEx
interface. A researcher has performed an fNIRS study, collecting data from several partic-
ipants as well as multiple sensor locations on each participant, creating multivariate time
series signals. In this hypothetical study, participants were asked to complete several short
tasks, some that were calibrated as easy, others that were calibrated as hard, and some task
with unknown difficulty. The researcher is interested in better understanding this data dur-
ing the task of unknown difficulty, and would like to use the data collected during the other
two calibrated tasks to see if there are connections.

In this scenario, a researcher would need to get a sense of the distribution of the data by

understanding which sequences are similar to each other in the dataset. In this case, they
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would not have any particular sequences of interest in mind. Instead, they would need to
explore the entirety of the data. The researcher may want to understand how the sensor
location and task are related to the underlying brain activation. They may also want to get
a sense of the “shape” of a time series which represents some grouping. In the process of
exploring, a researcher might come across a sequence which is of particular interest. It is
important to be able to search for any number of sequences similar to the one discovered.
Once these are retrieved, they will need to explore the distribution of the related metadata.
When a researcher has identified any subset of the data, whether by exploration or searching,
would need to be able to explore the distributions of one or more features of this data. This
is just a simple example to help identify the functional requirements for the visual interface
design, but much more complex analysis is possible; some of this is illustrated in the case
study described in Section 4.8.

4.5.2 Functional Requirements

By exploring the usage goals, we determined five functional requirements to incorporate from
the BrainFx Engine into the user interface. The first requirement is the ability to compare
one sequence to the rest of the dataset by finding which sequences it is most similar to.

Requirement 1: Similarity Search

a) Support retrieving and ranking any number of sequences similar to another se-
quence of a researcher’s choice.

b) Support exploration of search results and attributes of the sequences in the result
set.

The second requirement is the ability to explore the feature distribution in a set of
sequences that are naturally grouped together.

Requirement 2: Feature Distribution Exploration
a) Support exploring the distribution of a single feature in a cluster or result set.
b) Support exploring the joint distribution of two features in a cluster or result set.

¢) Support comparing the relationships between three or more features in a cluster
or result set.

d) Support identifying a sequence shape that well-represents a cluster or result set.

Similarly, BrainEx should support the ability to explore the distribution of all such
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natural groupings in the dataset.

Requirement 3: Cluster Exploration
a) Support exploring the range of cluster sizes and sequence lengths within clusters.

b) Support finding clusters of similar sequences with skewed feature distributions

(i.e. clusters that mostly contain a particular User, Channel, or Event).

From the insights gained by exploration into clusters of sequences and feature distribu-
tions, BrainFx should support using these insights to start new explorations and searches

on sequences found to be of interest.

Requirement 4: Integration

a) Support searching and finding sequences of interest to explore further based on
the results of cluster exploration.

b) Support exporting sequences of interest and other findings to explore further in
other tools.

In addition to the functional requirements above, the final requirement was that use of
the tool should not be limited to a small group of highly trained researchers with access to

high performance computing.

7

Requirement 5: Accessibility to All Researchers
a) Support fast computations, regardless of researcher’s computer.
b) Support researchers at all levels, from novice to expert.

¢) Support diverse experiments to be explored, and remain agnostic to the partic-

ular user-customized metadata (e.g. participant, events, channels, etc.) that are

associated with the dataset.

4.5.3 Interface Components

Based on these requirements, we built a visual interface on top of the BrainEzr engine. It
provides an integrated pipeline for researchers to move between the broad exploration of a
dataset and queries for specific sets of most similar sequences. Our tool is fully agnostic,
and can accommodate any number of customized, researcher-specified labels on the data. A
user can select any of the preprocessed datasets and then select Similarity Search (Figure
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Figure 4.8: Similarity Search. BrainEzr Visual interface for conducting similarity search
consisting of search options in the left panel (marked A) and a visualization of the dataset’s
sequences on the right (marked B).

4.8) to find the best k£ matches to a specific subsequence of the dataset or the user can select
Cluster Exploration (Figure 4.9) to explore the distribution of features among clusters in
the dataset.

4.5.4 Similarity Search

Our visual interface leverages the power of time series analysis [242, 241, 244] and expands
it with interactive visualizations, as well as analytic workflows developed for fNIRS data
analysis, to provide the time series exploration experience outlined in Figure 4.4.

BrainFEx enables researchers to visually investigate the sequences in the dataset. Before
initiating a similarity search, researchers can explore the sequences in the dataset via a line
chart. To reduce the number of sequences visible and to enable more targeted exploration,
BrainFx provides filtering, zooming, and panning support in the sequence view seen in Figure
4.8.B. For a more specific search, BrainEz enables researchers to select start and end indices,
specify a maximum number of results to return, and exclude the target sequence from the
search results. As there may be overlap among similar sequences, BrainFx also enables the
selection of a percentage of allowed overlap. These filters can be set with the options shown
on the left side in Figure 4.8.A.

Once the search is completed, results are presented via a table containing details about
the resulting sequences and a line chart where each sequence is visualized. The table enables

the researcher to see each sequence, the features associated with it, and its distance from
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Figure 4.9: Cluster Explorer. BrainEz interface for exploring the clusters consisting of a
table of filtering options in the left panel (marked A), a table of the dataset’s clusters and
their color-coded feature distributions (marked B), and a visualization showing the overall
distribution of clusters in the dataset (marked C). When a cluster is selected, the visualization
changes to show that cluster’s representative.

the target sequence. For easy comparison, the target sequence is always located at the top
of the table and is highlighted in the line chart. Hovering over a sequence in either the line
chart or the table highlights the sequence in both locations and scrolls to the sequence in the
table if it is not already visible. To enable more refined control over the visualization of the
results, the sequences can be sorted and filtered by each feature, the number of visible results
can be limited, and a maximum distance can be specified. BrainFEx also allows researchers
to export the resultant sequences as a CSV file and to save the line chart as an image for
further exploration and/or interpretation. Moreover, the distribution of features in similar

sequences can be investigated through the feature distribution explorer.

4.5.5 Cluster Exploration

BrainEzr enables researchers to explore the clusters of sequences through a table (Fig-
ure 4.9.B) containing information about every cluster in the dataset. This information
includes the number of sequences in each cluster, the length of the sequences in each clus-
ter, and the single distribution of the features of sequences in each cluster. Table cells are
colored to show the salience of particular feature values, allowing users to scan for clusters
with interesting distributions to investigate further.

The number of clusters can grow quickly as the number of sequences and the range of
sequence lengths increases. To provide researchers with the ability to target their exploration
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in this large space, BrainFEx provides sorting on each column, filtering, and a visualization.
Researchers may use sorting to quickly find clusters that may be more interesting, such as
clusters with more sequences or those with particularly skewed feature distributions. This
sorting can also be tuned by using the filtering on the length and number of sequences in the
clusters that are shown in the table (Figure 4.9.A). As researchers may not know how best to
apply these filters, we also provide a scatter plot (Figure 4.9.C) showing the distribution of
clusters against the number and length of sequences within each cluster. This visualization
can provide context for the researcher’s expectations when applying the filters, while also
describing more general properties of the dataset’s sequences and their tendencies to be
clustered together.

In addition to exploring the distribution of clusters and the features within those clusters,
researchers may also explore the shapes of sequences in each cluster. These shapes are
provided in the form of the cluster representative sequence to which the other sequences
in the cluster are similar. Once a researcher selects a cluster, they see a line plot of this
representative sequence to show this shape with a scale to allow comparison between the

representatives of different clusters.

4.5.6 Feature Distribution Exploration

Once BrainEz retrieves a group of sequences, either from a similarity search or from cluster
exploration, it supports visualization of relevant information. This is complicated by the fact
that BrainFEz is fully agnostic of the user-defined, customized metadata provided. When
researchers preprocess the dataset, they can specify any number of attributes (e.g. channel,
user id, condition), which can have different values and data types. User-provided datasets
may also vary in size.

As a result, the visualization techniques must be able to show the distribution for an
arbitrary number of sequences. Further, they must be able to present the distribution with
respect to any number of feature labels. Thus, BrainEzr combines several data visualization
techniques to present data depending upon the sort of information a researcher is looking
for.

Researchers can choose the set of features that they are interested in by using feature
specification checkboxes. As they check boxes, the visualization display pane updates in real
time, allowing for seamless exploration. The display may change among four states: single
feature bar charts, two feature heatmaps, many feature parallel coordinates views, and a
time series sequence view. Detailed information about individual visualizations is presented
when a user clicks the “More Info” button.

The first visualization state is a bar chart (Figure 4.10.A), which is used whenever a
researcher needs to display the distribution with respect to one feature. Bar charts are
well-studied for the application of comparing two or more values in a single dimension [57].
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Figure 4.10: The three different vizualizations to explore the content of a cluster. A user will
progress from the bar chart (A) to the heat map (B) then to the parallel coordinates (C)
as they add additional features to the visualization. A) A bar chart displaying the distri-
bution of a single feature in a sample set of sequences. B) A heat map displaying the joint
distributions of two features in a sample dataset. C) A parallel coordinates view displaying
the joint distributions between three features in a sample dataset. This visualization will be
used for any number of features > 3.

The bar chart has a mouseover component, which allows researchers to explore the precise
number and percent prevalence of any value presented.
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The second state is a heat map (Figure 4.10.B) that presents the joint distribution over
two user-selected features. It uses a linear saturation scale from white to the primary orange
or blue color of BrainFEzx, orange when in dark mode and blue when in light mode. White
corresponds to 0 percent prevalence, and the full saturation to the highest prevalence present.
The use of a consistent, single-hue color scheme means researchers who examine multiple
heat maps don’t have to learn a new encoding every time. Mouseover text is also available,
giving the precise counts and prevalence of the joint distribution.

The third is a parallel coordinates view (Figure 4.10.C). Parallel coordinates allow the
visualization of N-dimensional data in 2-dimensional space, making them a powerful choice
for researchers who might be interested in any number of data labels [151]. BrainEz lets
researchers select any number of features, and visualize the joint distribution of all of them at
once. Like many implementations, BrainEz allows researchers to rearrange the ordering of
the axes to explore different pairwise distributions. While increasing the number of features
is known to increase the time necessary to explore the data [237], researchers can choose to
visualize only features which they are interested in, reducing this exploration time. There are
known cases where the display of thousands of data points on a single parallel coordinates
map can become unreadable [237]. To accommodate this, we provide a box-select tool,
which allows researchers to indicate which sequences they would like highlighted. This
allows researchers to separate out a readable subset of the dataset whenever it becomes too
large to read.

Once a researcher has some understanding of the overall distribution, they may want to
do a more sequence-focused exploration of the data. For this reason, the tool provides a plot
sequence feature. This button allows researchers to view a line plot of any set of sequences.
This line plot uses color encoding to show the association between the sequences and a single
feature of the researcher’s selection. This allows researchers to visually check for patterns
within the sequence data with respect to the features, or to get a sense of the sort of shapes
of series that they are studying. An example of this is in Figure 4.1.

4.5.7 Integration Pipeline

In summary, BrainEx provides researchers the ability to perform similarity searches on time
series data. It also provides overviews and visualizations to allow researchers to understand
the shape and content of their data. These tools cover the breadth of our first three functional
requirements. All of these requirements are important for the exploration of time series data
and can be used effectively on their own. However, by integrating the separate tools we can
allow researchers to have a more powerful exploration workflow.

When exploring the data distribution within a cluster, researchers may discover interest-
ing time series sequences that they want to explore further outside of the feature distribution
exploration. We allow researchers to select a time series from this feature exploration view
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and then perform a similarity search with that sequence as the target. This allows researchers
to better understand the contents of the cluster. Additionally, it allows researchers to find
sequences similar to interesting time series discovered in the exploration workflow. This will
allow researchers to better understand their data during exploration and potentially reveal
previously unknown patterns in the dataset.

In order to integrate BrainFx’s exploration capabilities with other systems, our tool also
enables researchers to export the contents of similarity search or cluster exploration to a CSV
file. This data can then be used in other tools for further analysis after initial exploration
and pattern discovery in BrainFEx.

4.6 Performance Benchmark Summary

To evaluate the scalability and accuracy of BrainFz, we conducted a performance bench-
mark using datasets from the UCR Archive [66], a widely used repository of time-series data.
We compared BrainFr against three well-established competitors: Piecewise Aggregate Ap-
proximation (PAA) [168], Symbolic Aggregate Approximation (SAX) [198], and Generalized
Dynamic Time Warping (GDTW) [243] (our ground truth for measuring error, because it
provides exact results). These methods represent strong baselines for elastic distance-based
time series similarity search.

The experiment assessed both accuracy and response time using three warped distance
metrics: warped Euclidean, warped Manhattan, and warped Chebyshev. BraimmFx consis-
tently outperformed the competitors in both speed and accuracy across small and medium
datasets. On average, BrainEzr was more than 30 times faster on small datasets and over
100 times faster on medium datasets compared to the next best alternatives. Importantly, it
maintained error rates below 1% across all distances tested, while the other systems exhibited
significantly higher error rates, particularly for Chebyshev distance.

These results demonstrate that BrainEzx not only supports efficient, interactive querying
of large datasets but does so with high accuracy and scalability. For further details on
benchmarking methodology and results, we refer readers to the full EICS paper [139].

4.7 Preliminary User Study

To get feedback on the visual exploration interface, we conducted a preliminary user study.

4.7.1 Study Design

For this study, participants were invited to use an instance of BrainFx that included a pre-
processed dataset containing 8 users with activity in 4 channels. This dataset was generated

to represent the usage scenario described in Section 4.5.1. To ensure the study delivered
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meaningful insights, we sought to draw on the experience of experts in the fields of f{NIRS,
data visualization, and/or HCI research. The participants were encouraged to spend time
exploring the preprocessed dataset in BrainEzr before answering a questionnaire. The par-
ticipants were also encouraged to refer back to the application while taking the survey. The
study was designed to take approximately 45 minutes to an hour to complete.

Questionnaire

The questionnaire was an online survey developed in Qualtrics. The form consisted of three
main sections: one for general demographic questions, the largest section focused on the
functional requirements defined in Section 4.5.2, and one section for general BrainEz usability
and usage questions. The general demographic questions collected background information
about the participants’ experiences with fNIRS, other brain activity tools, data visualization,
and HCI. The functional requirements section of the survey asked study participants to
explore a preprocessed dataset through the lens of the usage scenario described in Section
4.5.1. For each of the bullet points within the first four functional requirements, participants
were asked to rank how much they agreed with the statement on a 5-point Likert scale.
They were also asked to provide any insights they made about the dataset, and any positive
or negative comments about their experience completing the requirement. The final section
asked the study participants to rate the general usability of BrainEz as well as share other

comments about BrainkEx.

Participants

Our study was sent to 40 neuroscience researchers, data visualization experts, and HCI
experts who represent our target user base. Of these, 10 responded and participated in
our user study. The recruited participants represented a diverse group of target users. The
education level and self reported expertise of the participants can be seen in Table 4.1. Six of
the participants have published fNIRS or neuroscience research, and five have published HCI
papers. Three of the participants had used BrainFEx before. All participants used Chrome
or Firefox to complete the study.

Limitations of the Study

The results of this study are predicated on the subjective responses of the survey participants.
We limited the study participants to data visualization researchers, HCI experts, and fNIRS
researchers because they are the most likely primary users of BrainFz. This is part of what
contributed to the small sample size for this preliminary user study. It is also important to
note that since the fNIRS research community is small and well-connected, the Likert scale
results may experience a positive skew due to familiarity with the research team.
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Table 4.1: Participant Demographics

This table provides demographics details for the 10 user study participants. It includes their
academic positions and their self-identified expertise in several fields.

Participant Position fNIRS Neural Data Analysis HCI Data Visualization
P1 Other Expert Knowledgeable Expert Knowledgeable
P2 PhD Candidate Knowledgeable Passing Knowledge Knowledgeable Knowledgeable
P3 Bachelor Passing Knowledge No Knowledge Knowledgeable Passing Knowledge
P4 PhD Candidate Knowledgeable Knowledgeable Knowledgeable Knowledgeable
P5 Bachelor Knowledgeable Knowledgeable Passing Knowledge Knowledgeable
P6 Post Doc Knowledgeable Expert Expert Knowledgeable
pP7 Master Passing Knowledge Expert Expert Expert
P8 PhD Candidate Knowledgeable Passing Knowledge Knowledgeable Passing Knowledge
P9 PhD Candidate Passing Knowledge  Passing Knowledge  Passing Knowledge Passing Knowledge
P10 PhD Candidate Knowledgeable Passing Knowledge Knowledgeable Knowledgeable

The dataset used for this study is smaller than most fNIRS datasets and may not be
reflective of all possible brain datasets. Thus, we assume some use scenarios may result in
future users interacting with BrainEz in ways that the study participants did not. The func-
tional requirements defined for this work can be abstracted from our usage scenario to cover
possible use cases. In addition, the questionnaire was designed to encourage participants to
explore the tool and all of its features.

4.7.2 User Study Results

User Study Results
Users were asked to rank their agreement with the following statements: BrainEx supports...
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Figure 4.11: The results of the user study. For each plot, the x-axis shows possible responses
and the y-axis shows the frequency of each.

Study participants were asked to rank their agreement with statements matching the

sub-requirements discussed in Section 4.5.2. The Likert scale covered the range of strongly
disagree to strongly agree; these were mapped to the range 1 to 5 for visualization purposes
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(Figure 4.11).

Requirement 1: Similarity Search

Participants agreed that BrainFEz successfully met our functional requirements for similarity
search. Participants ranked both sub-requirements very high as seen in Figure 4.11. Nine
out of ten participants said they agreed or strongly agreed with the statements, six of the
participants strongly agreed with both statements. Six of the participants (P1, P2, P4, P5,
P6, P10) provided additional positive feedback in the optional text field informing us the
task was very easy to perform and provided results that looked correct and useful. P10
summarized their experience: “I loved it - very comprehensive. I liked that I could query
the most important aspects of the data, and have a fine-grained level of control.” Despite the

positive feedback, P4 and P10 expressed issues with the filter feature of the similarity search.

Requirement 2: Feature Distribution Exploration

Participants were overall satisfied that the system allowed them to explore feature data
through BrainEz. In general, the more features users attempted to explore, the less strong
their agreement. In the case of exploring a single feature, all but one participant (P9) at
least somewhat agreed that BrainEzr supported them, with six participants believing this
strongly. The results were similar when considering the visualization of joint distributions.
Only one participant (P9) expressed neutrality, and six participants strongly agreed.

The sub-requirements of exploring the distributions of three or more features had weaker,
but still favorable results. Two participants (P7, P9) were neutral as to whether the system
supported this use case. The rest agreed, but only four participants strongly agreed.

In particular, users expressed an appreciation for the options presented in BrainEz. P10
listed the fine level of control as a positive experience when interacting with the system. P5
found the tasks related to feature distribution more challenging than the other tasks, citing
the amount of work they had to do in manually examining the data. P6 expressed confusion
about the dataset presented in the trial. Despite this, they were able to use the feature-wise
visualization to explore the dataset, and make statements about the different user attributes.
They felt the software was “very adaptable,” as they were not bound to specific filters. This
suggests BrainEkr may be useful to analysts who still need to learn more about their dataset

of interest.

Requirement 3: Cluster Exploration

Both sub-requirements of the cluster exploration requirement were found to be well sup-
ported. Figure 4.11 shows that eight out of ten participants agreed or strongly agreed with
requirements 3a and 3b. P5, P6, and P10 liked the fine control provided over what char-
acteristics of the clusters they could view at a time when selecting the cluster. Despite the
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positive feedback, P2, P4, P5, P6, and P10 found the task of finding an interesting clus-
ter overwhelming due to the number of clusters and desired more features in the cluster
exploration tool.

Some of this feedback pertained to features that currently exist in the tool that partic-
ipants may not have been aware of. For example, the ability to sort and filter the table to
more manageable sizes exists as described in Section 4.5.5. Additionally, a toggle is avail-
able to show the average feature distribution for the dataset as a baseline for comparison of
feature skewness in individual clusters as desired by P10.

Additional features were also suggested in the feedback to improve the efficiency of scan-
ning the cluster list and the ability for cluster comparison. P4 and P10 suggested adding
a mechanism for paging through the table quicker and to change the color gradient used
for different feature groups to make the cluster table quicker to sift through and easier to
separate different feature sets. To improve the ability to compare clusters, P2 suggested
being able to view multiple cluster representatives at once so that they could be directly
compared.

Future work can make the task of finding an interesting cluster less overwhelming and
more informative. Filtering, sorting, and baseline comparison features can be made more
exposed to the users and features for more powerful sorting, fine-grained filtering, and navi-
gation through the table can be added. Additionally, the suggested features for comparing
multiple clusters and cluster representatives as well as differentiating between feature groups
in the table can also be added. However, the results of these survey results still indicate that
BrainEz successfully supports the exploration of clusters within a dataset.

Requirement 4: Integration

Both of the integration requirements scored very highly. Eight out of ten participants agreed
or strongly agree with requirement 4a and nine out of ten participants agreed or strongly
agreed with requirement 4b. Requirement 4b was rated as strongly agree by seven partic-
ipants implying they found BrainFEx’s ability to export findings into other tools to be very
strong. The feedback for this section matched the positivity of the responses. In particular,
four participants (P2, P5, P6, P10) filled out an optional text feedback section to share that
they thought the integration of the cluster explorer and similarity search was very easy to
use and allowed for “exploring potentially interesting aspects of the data” (P10). P6 rated
this requirement the lowest (neither agreeing or disagreeing with the first sub-requirement),
and found the user task somewhat overwhelming and hard to keep track of the patterns and
data they were comparing. However, they found the concept of the integration pipeline very
promising stating “The pipeline of clustering and search has a lot of potential to explore the
data” (P6).

Future work could be done to polish the workflow pipeline and make it easier for analysts
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to remember the clusters they began the similarity search from. However, the results of this
user study show that BrainFEz successfully completes functional requirement 4 and shows
that the cluster exploration and similarity search pipeline provides a novel and powerful
exploration workflow for time series exploration.

Requirement 5: Accessible to All Researchers

The accessibility requirement was measured by the ability of participants to use BrainEz suc-
cessfully during the study. Based on feedback of only two users (P2, P8) having bandwidth
issues when searching for over a 1000 similar sequences, BrainFx supports fast computa-
tions. Additionally, based on the positive feedback for the other requirements and the varied
expertise and experience of the participants, BrainFEx can support researchers of all levels.
However, improvements can be made to reduce the overwhelming nature of the presented

information to further support analysts.

Usability and Additional Feedback

While not surveyed directly, based on the text feedback for each of the functional require-
ments, participants found BrainEz generally usable. Study participants particularly enjoyed
the amount of detailed control they had for exploring the data as well as the ease of using
the visuals. For example, P1 commented that “very clear presentation of the results and en-
able users to explore different attributes” with regards to the Similarity Search requirement.
However, participants found the amount of information to be overwhelming at times. For
example, P6 noted after the cluster exploration task that “The number of clusters is often
overwhelming” and that “It is not easy to identify which ones are most important to look at
or to compare a specific small selection of clusters.” BrainEx does provide filtering on the
table of clusters. However, this feedback indicates that this functionality should be better
exposed and expanded to allow the user more control over managing the data. While par-
ticipants did not find severe usability issues with the system, there is room for improvement
to expose hidden features, distinguish and clarify elements of the user interface, and allow

for better management of large amounts of information.

4.8 fNIRS Case Study

To further illustrate the potential of BrainFx, we describe a case study using real-world
experiment data from an fNIRS study on cognitive control [140]. This dataset has been
analyzed in more traditional methods with mixed effects modeling and investigating the
sequence shape. In the study, participants performed the AX-Continuous Performance Task

(AX-CPT) which induces different cognitive control states, such as proactive and reactive
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control [34]. The study concluded that proactive and reactive cognitive control can both be
seen in the right dorsolateral prefrontal cortex.

For this case study, we developed a model of the expected fNIRS brain signal when a
participant is in each of the two cognitive control states that we were studying. These model
sequences were based on the expected hemodynamic response, given the tasks and timing of
stimuli in the dataset [34]. Using these model signals, we can explore the dataset’s clusters
to find connections to particular sequences in the dataset.

The goal of this case study was to use BrainEx’s cluster exploration to investigate which
events and brain regions are associated with the model cognitive control sequences. We
identified clusters that had higher-than-average representation of subsequences from the
model cognitive control sequences. Our hypothesis was that clusters with a larger number
of the model subsequences would contain brain data related to those cognitive states from
the AX-CPT task. Therefore, if there was a different distribution of events or brain regions
in these clusters compared to the master dataset, then we have identified which events and
brain regions are most associated with cognitive control. We expect the cluster results to be
different than Howell-Munson et al.’s results because they detected both cognitive control
states in the same region, while we are looking for clusters that indicate a specific region for
each cognitive control state [140].

4.8.1 Dataset Description

The dataset contained the two model cognitive control sequences along with 3,360 sequences
from one participant divided between six brain regions. Each sequence is 157 datapoints
long and spans approximately 18 seconds of neural data for a total of 527,834 points in the
dataset. Along with the brain signal, there is associated metadata for each signal consist-
ing of the subject name, brain region, event name, start time, and end time. The model
sequences have a subject name of “representative” and a region name of “Channel-0” to
designate them as different from the collected data. The collected data has six possible
region names from the prefrontal cortex (PFC): dorsomedial (DMPFC), left dorsolateral
(IDLPFC), right dorsolateral (rDLPFC), ventromedial (VMPFC), left orbitofrontal (10F-
PFC), and right orbitofrontal (rOFPFC). There are six possible events with the percentage
of the dataset they occupy in parentheses: AX cue (30%), AY cue (20%), BX cue (20%),
BY cue (20%), A# cue (5%), and B# cue (5%). These names are associated with the trials
in the task, and the details can be found in [34, 140]. We are most interested in AY cue and
BX cue, as they can be indications of proactive and reactive cognitive control [34]. Start
time is the time in milliseconds when the sequence begins in relation to data collection, and
end time is the time in milliseconds when the sequence ended in relation to data collection.
The dataset is available here: https://wp.wpi.edu/hcilab/brainex/.

We preprocessed the dataset using the Warped Euclidean distance metric, a similarity
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Table 4.2: Expected and observed distributions of events from 49 clusters that have high
inclusion of modeled cognitive control sequences.

Event AX AY A# BX BY B#
Expected | 132,268 | 88,179 | 22,044 | 88,179 | 88,179 | 22,044
Observed | 127,083 | 71,795 | 16,229 | 92,471 | 106,561 | 27,524

threshold of 0.1, and a length of interest of 1-157. In the cluster exploration, we only viewed
clusters with a minimum of 20 sequences and a minimum length of 45 (approximately 5
seconds of brain data).

4.8.2 Case Study Results

To ensure the clusters we sampled had a large number of the model cognitive control se-
quences, we analyzed clusters that were at least 0.15% model sequences, which included 49
clusters. The cluster with the most model sequences had 0.56% which is 11 times greater
than the distribution of model sequences in the master dataset. While the ratio of model to
participant data is small, this is to be expected as there are 3,780 sequences in the master
dataset of participant data and 2 model sequences, making the master dataset consist of
0.05% model sequences.

We used a Chi-square test to determine if the distribution of events and channels in the
49 clusters differed significantly from the distribution in the master dataset. There were a
total of 440,895 sequences in the clustered data; the expected and observed distribution of
events are located in Table 4.2. Our Chi-square statistic was 10,184, and with 5 degrees of
freedom we can reject the null hypothesis (p < 0.05) and say the distribution of events in
the clusters differs significantly from the master dataset. Notably, all events that start with
an A cue appeared less frequently in the clusters than expected, and all events that started
with a B cue appeared more frequently in the clusters than expected. The B cue could be
indicative of reactive control, one of the modeled cognitive control sequences. Therefore, we
can associate these clusters with reactive control for future similarity searches.

The observed and expected distribution for each region in the brain can be found in Ta-
ble 4.3. Here we also had 5 degrees of freedom and our Chi-square statistic was 887, showing
that we can reject the null hypothesis (p < 0.05) and say the distribution of brain regions
in the clusters differs significantly from the master dataset. Notably, the left hemisphere
and VMPFC had a higher frequency in the clustered data while the right hemisphere and
DMPFC had a lower frequency in the dataset.
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Table 4.3: Expected and observed distributions of channels from 49 clusters that have high
inclusion of modeled cognitive control sequences.

Region | DMPFC | IDLPFC | rDLPFC | VMPFC | IOFPFC | rOFPFC
Expected | 82,888 62,166 62,166 103,610 | 62,166 62,166
Observed | 80,208 65,808 61,023 110,237 | 63,139 99,353

4.8.3 Case Study Conclusion

Sometimes a researcher may not know which sequences in a dataset are particularly signif-
icant, or which subsequence is a crucial element in their dataset. Through the use of the
cluster exploration feature in BrainFz, researchers can explore the distribution of the dataset
and which sequences are most similar, teasing out meaningful patterns. Through our case
study, we demonstrated how one can discover events and brain regions that are correlated
with model sequences. The cluster exploration can also help identify which parts of the mod-
eled sequence were most informative by investigating the subsequences that appeared most
frequently. For example, in the master dataset, all of the sequences were 157 datapoints long
(18 seconds). However, the average sequence length of the clusters was only 80 datapoints
(9 seconds) with a maximum sequence length of 126 (14.5 seconds) and minimum sequence
length of 45 (5 seconds). By using this information, a researcher can fine-tune their query
to be more meaningful to their research questions when using the similarity search feature
of BrainFEz.

4.9 Discussion

Previous research teams have provided basic visual interfaces for DTW based engines to
address the increased for interpretability and accessibility by researchers without expertise
in using command-line interfaces and APIs (e.g. [242]). These basic visual interfaces for
data exploration tools mark a step towards making similarity searches more available [240,
363, 130, 290]; other work focuses on visualizing the results of clustering [129, 189]. BrainEx
fills a gap in this field by providing a comparison of results across multiple elastic distances
and offering insights through combined similarity searches and cluster exploration.

Due to the growing popularity of time series data, there are many other time series
exploration tools [108]. TimeSearcher provides an interactive similarity search of time series
[130]. This tool allows analysts to see a line plot depiction of time series in a dataset.
Analysts can use a drag and drop box, known as a SearchBoz, to select a part of a time
series representing an interesting pattern. This pattern can then be queried to discover
similar patterns in other sequences. It supports exploration of multivariate data. While it
provides a similarity search feature similar to BrainEz, TimeSearcher does not provide the

additional cluster exploration workflow. QueryLines is a similarity search tool for time series
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data that allows analysts to specify soft constraints and preferences which are then used to
perform a similarity search on other sequences to discover matching or almost matching
patterns [290]. These constraints are added by drawing lines to show the pattern you wish
to match. Work by Buono and Simeone into extending the SearchBox of TimeSearcher
showed that drawing a query is an increasingly popular approach in time series similarity
searches [38]. Like TimeSearcher, QueryLines is a similarity search tool and does not provide
cluster exploration. Similan is a visual similarity search tool for temporal data [363]. It was
designed to use a similarity measure called “match and mismatch” to account for temporally
misaligned records. The Similan researchers propose clustering as a future feature.

Not all time series tools focus on similarity search. Himberg, Hyvarinen, and Espositoc
[129] designed a neuroimaging cluster visualization tool using independent component anal-
ysis. Kumar et al. proposed a time series clustering tool that represents clusters using a
bitmap [189]. These bitmaps can be used for pattern recognition of time series datasets.
These tools provide interesting approaches to exploring time series clusters, but do not allow

for exploration via similarity search.

4.10 Future Work

Future work on the BrainEz engine could focus on making the preprocessing step of BrainEz
even more efficient through converting the code into another language, such as Rust. Addi-
tionally, BrainEz could replicate studies with fNIRS curated specifically for validating tools,
such as the n-back dataset from Wang et al. [355]. While we used the original versions
of SAX and PAA to do our benchmark comparison with BrainFzx, newer versions of these
algorithms exist and can be tested against BrainEz [318, 378]. These versions were out of
the scope of the experiment presented in Section 4.6.

In addition, further refinement and evaluation of the interactive visual interface could
improve the user experience. Future user studies could aim to provide the participants with a
larger fNIRS dataset to explore with the interface. In addition, a larger cohort of participants
could be recruited from a more diverse set of expertise to be able to investigate the differences
in the usability of the tool between experts in data visualization and neuroscience compared
to researchers who are just starting their scientific careers.

To promote collaborative research and accessibility, we created a website (https://wp.w
pi.edu/hcilab/brainex/ to make the BrainEz code available to researchers. In addition,
the results from the performance experiment and the clusters from the case study can be

found there.
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4.11 Conclusion

We present BrainEz as a tool for visual exploration of brain signals. By combining cluster
exploration, feature distribution exploration, and similarity search we provide a powerful and
novel exploration workflow that existing fNIRS and time series analysis tools do not provide.
In our performance experiment, we demonstrated how BrainFx is lightning fast compared
to state of the art competitors as well as highly accurate. We developed five functional user
requirements, and based on the results of a preliminary user study with HCI and neuroscience
researchers, we determined BrainEzr meets these requirements. Finally, we used a case study
to demonstrate how a researcher could use BrainFxr to make inferences about real-world
fNIRS brain data. Overall, we have shown that BrainFExz could be an effective tool for {NIRS

or other neuroscience researchers.
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Chapter 5

BClIs for Teamwork: Relevant

Background

Here we present relevant literature and prior work across the domains of social psychology,
human-computer interaction, and neuroergonomics to provide a foundation for our studies.
First we discuss the nature of teams and creative collaboration, how creative synergy can
arise, and pitfalls that can result in process loss. Then we briefly discuss the existing work
on creativity support tools and BCIs for creative applications and how BCIs can be used to
support creative collaboration. Finally, we summarize prior studies that assessed perceptions
of BCIs and other emerging technologies.

5.1 Teams and Creativity

In sociology and social psychology, a group is typically defined as a collection of two or more
individuals connected by and within social relationships [97]. Likewise, a team is a partic-
ular type of group whose members work together in pursuit of a shared goal [97]. Teams
work together as an organizational unit—failure or success occurs at the group level, rather
than for members individually. Beyond this, however, teams can vary considerably in size,
composition, or structure [260], with global trends such as digitalization and globalization
increasingly challenging the traditional notion of what teams are and how they function
[349]. Team composition can be selected by members (e.g., for a school project), or by orga-
nizational leadership (e.g., for a company division); members can be co-located, or dispersed
to various degrees technologically and geographically [120]; and have varying distributions
of skills, knowledge, and expertise [349]. The bounded and stable membership of classical
teams has frequently given way to teams in which membership changes frequently, and mem-
bers taking on multiple roles, or even roles in multiple interdependent teams. Organizations
have in some instances encouraged the formation of self-organizing and self-governing teams,
in addition to (or in lieu of) traditional top-down leadership structures.
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As illustrated above, teams are complex dynamical systems, and their success is a func-
tion of the social and environmental context in which they are operating as well as team
composition (demographics, cultural background, expertise, leadership and pacing styles,
etc.) [79, 23]. These in turn give rise to affective states, cognitive states, and behavioral
processes, which can evolve over time as team composition changes, conflicts occur, or trust
grows between team members. Such states are emergent both at the individual level (e.g.,
the valence, arousal, cognitive load, and trust of individual team members) and at the team
level (in the case of team processes such as coordination, strategy formulation, affect man-
agement, etc.) [30, 218]. Work by Woolley et al. [364] has shown that the contribution of
these processes toward task performance can be summarized by a collective intelligence (CI)
factor, which is predictive of success across a variety of group tasks [287, 170]. Teams with
high CI tend to have members with greater social perceptiveness, and a greater proportion
of women. In general, gender and ethnic diversity is associated with greater CI in teams [54];
however, the level of group and individual processes of team members is a greater predictor of
CI than team composition [287]. Interpersonal emotion regulation (IER), when individuals
engage in actions motivated to modify emotional expressions or experiences, may also impact
the quality of relationships between team members. TER strategies that are appropriate for
the given context may positively impact the affect, well-being, and interpersonal closeness
of team members [73], with engagement-oriented strategies, such as resolving conflicts and
seeking emotional support, predictive of lower feelings of loneliness and greater feelings of
connection and relationship satisfaction [256].

Creativity is defined by Paulus, Dzindolet, & Kohn [260] as “the generation or production
of novel products or ideas.” While much of the early research on creativity focused on
creativity of individuals [191, 119, 313, 314], more recent work has investigated creativity at
the team level. Teams engaging in creative tasks are in many respects equivalent to other
teams, and the goal of collaboration broadly remains the same: that of realizing synergy,
whereby team performance is enhanced relative to that of individuals. Thus, supporting
teamwork in general can be advantageous to team creativity as well. However, there are
several factors that can have an outsized influence on a team’s creative potential. One
model of high-performing creative teams (e.g., interdisciplinary teams at Pixar) suggests
that teams formed from subgroups from different disconnected disciplines (e.g., art and
technology) with different skillsets and expertise, rather than merely just a large array of
diverse viewpoints and perspectives, are most successful [125]. Thus, a team that has a
membership with diverse perspectives (experiences, expertise, problem-solving strategies)
that are task-relevant can draw on them to explore a greater number of ideas, provided
the work environment facilitates integrating and exchanging these perspectives [261, 259].
Fostering a work environment where team members feel psychologically safe enough to share
their ideas without fear of discouraging and harsh feedback, while also allowing some amount

of conflict and constructive criticism, is likewise necessary for maximizing creative potential
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[191]. Furthermore, the generation of novel ideas relies upon lateral or associative thinking
(in which thoughts leap from category to category via semantic associations) and divergent
thinking (i.e., free-flowing, non-linear thinking where ideas are generated in an emergent
fashion) [353, 325, 357, 182]. The degree to which team members can successfully employ
lateral and divergent modes of thinking is dependent on the dynamic interplay of cognitive
states and processes active during ideation [47, 342]. Cognitive flexibility (the ability to
update goals and actions in response to changing contexts and task demands) may also play
a role [78, 135].

Despite their potential for creative synergy, there are several challenges creative teams
face that can lead to process loss. Behaviors such as social loafing (when some group members
put forth less due to the presumption that others will contribute more) or social comparisons
with other team members, as well as lack of internal or external motivation (e.g., due to lack
of trust between team members or incompatibilities between team members and leaders) hin-
der creative output [191, 223, 55]. Verbally expressing ideas can lead to production blocking,
where participants forget their ideas while waiting for a turn to speak, or choose not to share
them because they feel they are less relevant after time has passed, and eventually become
discouraged from sharing future ideas [248]. Alternatively, rehearsing ideas internally can
prevent group members from being attentive to the ideas of others. While asynchronous
remote collaboration has the potential to alleviate these issues by allowing team members
to record their ideas in real time [261], remote collaboration has been shown to curb idea
generation by narrowing the cognitive focus of communicators to screens [36]. The poten-
tial for remote collaboration technology to be misused for surveillance, coupled with the
always-on nature of digital communication channels, can also impede collaboration by re-
ducing the time available for cognitive and social processes required for divergent thinking
and the integration of others’ perspectives [154]. The consensus in the literature seems to be
that teams need balance among several qualities to avoid process loss and maximize synergy
[260]. Teams should have some amount of cohesion and trust, but not so much that inter-
personal bonds between team members are prioritized over commitment to the task at hand.
Teams should have some amount of diversity in task-relevant expertise and experiences, but
teams that are too diverse may have difficulty integrating knowledge across domains. Team
members require both intrinsic motivation and external support (e.g., a work environment
that facilitates creative thinking and collaboration, where members feel safe to share their
ideas [347, 226], as well as tasks and goals set by team leaders). Teams can also benefit from
workflows that integrate remote and in-person collaboration, to mitigate the pitfalls of each.
These approaches to enhance creative synergy ultimately aim to benefit the affective states,
cognitive states, and behavioral processes that belie collaboration.
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5.2 Artistic Brain-Computer Interfaces and Creativity

Support Tools

Creative professionals have historically been quick to experiment with and adopt novel tech-
nologies to augment art and ideation [83]. From recording devices such as the phonograph or
camera, to graphic design software and generative artificial intelligence programs, technology
has shaped the ways artists are able to create emotionally engaging and thought-provoking
experiences for audiences. Artists have been using physiological sensing and brain-computer
interfaces to shape such experiences for decades. The first use of a BCI for artistic explo-
ration was in 1934, where alpha waves recorded via EEG were converted to sound. American
composer Alvin Lucier later used the technique in concert in 1965 [272]. Since then, BCIs
and recordings of physiological signals have—via passive or active control by users—been
used to create music [235], generate lighting/sound effects during performances in response
to audience engagement [369], alter the narrative flow of movies [266, 283], provide visual or
auditory representations of users’ cognitive or affective states, play games [52], and more [9].

In addition to being integrated with art exhibits and experiences directly, researchers
have also demonstrated how BCIs can serve as creativity support tools, which are digital
systems that can enhance creativity by assisting users of varying levels of expertise in one or
more phases of the creative process (e.g., planning, ideation, implementation, evaluation, and
iteration) [101]. A wide variety of such tools have been developed both for individuals [354]
and groups [102], including tools which help define problem scope of prior to brainstorming
[22], allow users to map the semantic connections between ideas [303], iteratively generate
new graphics based on initial user input [145], and more [354]. BCI-based support tools are
additionally able to respond to the cognitive and affective states of users. Botrel, Holz, &
Kiibler [32] and Todd et al. [328] developed hands-free, brain-powered graphic design tools
which used the P300 event-related potential, a response to conscious decision making. Other
tools include an artificial agent that provides design suggestions for architectural designers
based on their affective state [371], neurocognitive feedback to enhance creative problem
solving [141], and a brainstorming assistant that can alter the semantic distance between
suggested ideas in response to a user’s level of cognitive effort [47]. However, while these
tools are able to leverage brain activity to provide novel forms of assistance, thus far the
BClI-based tools in the literature collect data from and provide assistance to individual users.
No existing BCI-based creative support tools have simultaneously recorded and processed

the brain data of multiple users to assist with creative collaboration.
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5.3 Brain-Computer Interfaces to Support Teamwork

Given that the affective states, cognitive states, and behavioral processes of team members
are indicative (and sometimes predictive ([287, 170]) of successful collaboration, measuring
these states and processes in real-time as teams are working could provide useful input to
a tool or interface designed to aid teams in achieving synergy during collaboration. While
prior work has demonstrated that affective states, such as valence and arousal [143, 84, 65],
and cognitive states such as mind wandering [74], multitasking [307, 5], learning stages [138],
and workload [277, 13, 311] can be measured and integrated into online systems via contin-
uous non-invasive physiological sensing, determining the presence and magnitude of team
processes has generally relied on administering periodic surveys and behavioral assessments
[218, 225], which can disrupt team workflow and only provide sporadic indicators of how
well they are collaborating. However, some work employing hyperscanning (simultaneous
recording) using electroencephalography (EEG) [75] and fNIRS [64, 138] has demonstrated
differences in neurophysiological signals between participants working individually versus as
a team, and between expert and novice teams.

Eloy and colleagues [85] demonstrated that fNIRS can be used to measure levels of team
processes in real-time. Similar to functional magnetic resonance imaging (fMRI), fNIRS
measures hemodynamic responses that occur in the brain following neuronal activation.
Instead of relying on an expensive and non-portable MRI scanner, fNIRS employs emitters
and detectors of near-infrared light placed on the scalp to determine the concentrations of
oxygenated and deoxygenated hemoglobin in the brain. fNIRS has temporal resolution that
is comparable to fMRI and boasts greater spatial resolution than electroencephalography
(EEG) [1]. Additionally, fNIRS devices are low-cost, portable, and require little advance
preparation, making them a good choice for real-world scenarios [309]. By employing fNIRS
hyperscanning (simultaneous recording) while pairs of users collaborated with an artificial
agent during a realistic resource allocation task, Eloy and colleagues were able to reliably
model the levels of different team processes (coordination, strategy formation, and affect

management).

5.4 Public Perceptions of BCIs and Emerging Tech-
nologies

As a BCI support system for creative collaboration does not currently exist, we look to
existing work examining perceptions of BCIs and other emerging technologies to inform the
design of our study exploring stakeholder needs (Chapter 7). Studies generally choose either
of two main approaches: conducting surveys of large samples representative of the general
public or demographics of interest, or semi-structured interviews of smaller, targeted groups
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of participants (usually with a design probe to stimulate thinking and discussion).

An example of a relevant larger-scale study is work by Sample et al. [291], who conducted
a large (N = 1,403) web-based transnational survey of the public in Germany, Canada, and
Spain assessing attitudes toward ethical issues related to BCIs. They found participants had
moderate concern for agent-related issues (changing self-perception, stigma, autonomy) and
consequence-related issues (new forms of hacking, privacy concerns, moral /legal accountabil-
ity), with women and those who were religious slightly more likely to have stronger concerns.
A related study by Sattler & Pietralla [293] used a nationally representative sample of Ger-
man adults (N = 1,089) asking about their willingness to use BCIs and whether they were
morally acceptable. In a 2 x 2 x 2 factorial experiment, the authors varied purpose (treat-
ment vs. enhancement), invasiveness (invasive vs. non-invasive) and framing (i.e., the order
questions assessing moral acceptability vs. willingness were presented) in vignettes that in-
troduced BCI technology to participants, and moderate moral acceptability and willingness
to use, with a preference for treatment over enhancement use cases and non-invasive over
invasive devices. Finally, Tindale et al. [326] surveyed 344 people (employers and employees)
about the use of brain and body signals in the workplace across a wide variety of occupa-
tions (construction, healthcare, government, education, etc.) in British Columbia, Canada.
While 95% of participants did not use brain or body signals in their workplace, benefits for
it they envisioned included uses for health monitoring, wellness, and safety, while potential
risks included stress, a lack of privacy, and excessive oversight of employees by employers.
Interestingly, brain sensors were more likely to be seen as inconvenient and having no benefit
compared to body sensors, and a majority of participants said employees should own the
info recorded from them (with employers more likely than employees themselves to say this).
However, while these larger studies can gauge the perspectives of the public and get a clearer
picture of trends for specific sub-populations, these studies miss the chance to ask probing
questions to further explore perspectives of individual participants and could miss out on
unexpected insight.

In contrast with the larger studies above, studies that recruited smaller, more targeted
cohorts of participants were better able to engage with particular groups of interest in greater
depth. Merrill & Chuang [230] wanted to assess software developers’ narratives and anxieties
around BCIs and explore their visions of the future for these devices—how do their ideas
about the mind and how it relates to the brain and body inform and constrain beliefs about
what BCIs can and should do? The authors conducted semi-structured interviews with
8 Silicon Valley software engineers who did not have prior experience working with BCls,
using a user authentication BCI built with a Muse EEG headset as a design probe to inspire
thoughts and questions from interviewees. Participants voiced different positions on what
the mind was (e.g., the brain acting like a computer; “conscious awareness” separate from
unconscious phenomena that affect the mind; embodied cognition arising from the connection
between brain, body, and the environment), but all believed BCIs could “read” and decode
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it. The probe caused participants to speculate on the future of BCI technology generally.
Similar to the Tindale et al. study above, the chief concerns participants had related to
privacy and security, with several wary of BCIs being able to “leak their thoughts.” The
consensus among participants was that BCIs would become pervasive (one said we would
have to “come to terms with [them]”) whether we wanted them to or not, rather than
individuals having agency about using them.

Devendorf et al. [71] were interested in examining the future of technology and fash-
ion, and explored an emerging technology altogether different from BCIs: computationally
responsive clothing. The authors used Ebb, a textile display made from conductive thread
coated with thermochromatic paint, as a design probe in semi-structured interviews where
12 potential wearers and 5 designers compare it to existing similar technologies (e.g., fiber
optic or flexible LED screens). The interviews elicited several novel use cases in real-world
contexts—EDbb could be used to connect physical and digital lives, display physiological data,
show time or transit info, have many-in-one garments, and more.

Merrill & Chuang [230] and Devendorf et al. [71] both used design probes in their studies,
but what if a prototype is not available, or has not adequately considered the needs of users?
Holstein, McLaren, & Aleven [133] conducted interviews with 10 middle school teachers
to explore their needs for intelligent tutoring systems (ITSs) with the goal of designing a
real-time I'TS. Instead of using a design probe to facilitate this exploration, the researchers
relied on a combination of other techniques, so the assessment of needs would inform the
development of a prototype, and not the other way around. First, the researchers conducted
design interviews using superpowers as a probe, asking the teachers, “If you could have any
superpowers you wanted, to help you do your job, what would they be?” The teachers wrote
responses on index cards and were asked to prioritize them. This allowed the researchers
to get a sense for teachers’ needs in the classroom, where breakdowns in current practices
occurred, without feeling constrained by solutions offered by existing technology. To inquire
about the teachers’ needs more directly, the researchers conducted semi-structured interviews
asking about their experiences with ITSs, and how they could be improved. Many teachers
were concerned that I'T'Ss were replacing their roles rather than supporting them, and desired
analytics that could provide more valuable insights about either their teaching or their
students learning. Finally, participants “speed dated” several possible futures based on their
superpowers depicted with storyboards in quick succession. Researchers used this to probe
boundaries of what participants considered acceptable system behavior, and discovered that
while teachers appreciated designs that presented them with information that could help
them prioritize their time, they disliked alert systems with direct recommendations because
they were perceived as threatening their autonomy in the classroom.

In summary, while their results may not generalize to larger populations, the studies
with smaller cohorts above demonstrate several advantages over studies with larger pools

of participants. Smaller studies allow researchers to target specific populations more easily,
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and it is easier to try a variety of different approaches with the same participants or ask
probing questions to further explore ideas that arise in discussion. Additionally, meeting
with participants face-to-face allows researchers to present tangible artifacts to participants
that they can interact with, which can elicit perspectives that may be difficult to attain
otherwise. All these advantages make adopting the methodological approaches they used

appealing for our present studies.

7



Chapter 6

BCls for Teamwork: Exploring the
Relationships Between Brain Markers
for Individual and Group States
During Collaboration

Abstract

This exploratory study investigates the relationships between individual- and group-
level neural measures, team behavior, and collaborative performance in small groups
engaged in a creative design task. Participants collaborated to design a virtual escape
room using digital tools and an Al assistant, while EEG recordings captured both
individual cognitive states and inter-brain synchrony dynamics. Analyses revealed
modest but meaningful associations between neural activity and behavioral dimensions
of collaboration, aligning with prior research linking group neural dynamics to team
processes. These findings demonstrate the potential for brain-computer interface (BCI)
systems to leverage such signals in supporting teams during collaboration.

6.1 Introduction

Creativity is key for developing novel art and ideas, tackling complex challenges, and gen-
erally driving innovation. Several convergent factors—individuals’ backgrounds, behaviors,
and personalities; their cognitive processes; and the environment and broader social con-
text in which they operate—influence creative thinking and output [191]. Thus, properly
accounting for and manipulating these variables is necessary in order to maximize creative
production [28, 226]. Additionally, prior work has shown that collaboration between individ-
uals has the potential to fuel creative synergy, where new cognitive inputs, the combinations
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of personality characteristics, or interaction dynamics can yield a volume, breadth, and
fluency of creativity greater than what would be possible from working alone [191].

However, an increase in creative output as a result of collaboration is not guaranteed;
indeed, several studies have shown that creative collaboration can result in decreased output,
despite the potential gains. Such process loss can be caused by a number of mechanisms,
including groupthink (the tendency of group members to adopt the majority perspective),
social anxiety or apprehension toward sharing ideas, downward comparison with others,
cognitive load, or distraction by other group members [191, 85, 68, 258, 261]. Thus, while it
is possible to have high-performing creative teams, the appropriate environment, resources,
and workflow must be fostered for creative synergy to occur.

Monitoring and supporting effective cognitive states and team processes is critical for
enabling teams to reach their full potential while minimizing process loss. Adaptive support
systems that can operate in real-time and unobtrusively—without disrupting ongoing inter-
action—may help facilitate productive social and cognitive activities such as coordination,
negotiation, and planning [325, 260]. Recent advances in neuroergonomics suggest that such
systems could benefit from the integration of physiological and neurophysiological sensing
modalities, including EEG, which has been shown to capture dynamic changes in cognitive
states like attention, workload, and mind-wandering with relatively high temporal resolution
[381, 197]. For example, EEG-based indices have successfully been used to detect lapses in
attention and cognitive fatigue, supporting their relevance in collaborative scenarios [197].

In addition to individual-level metrics, surface brain sensing approaches such as EEG
and functional near-infrared spectroscopy (fNIRS) have also been used to investigate inter-
personal neural synchrony and coordination dynamics in social and collaborative contexts
[85, 64]. Various measures including wavelet transform coherence [64], the recurrence rate
from multidimensional recurrence quantification analysis [85], mutual information [315], and
others have been demonstrated to assess joint mental processes during collaboration.

In this chapter, we report on an exploratory study examining teams as they perform a
creative collaboration task (designing a virtual escape room with the help of an Al assistant)
while undergoing brain recording via EEG. We investigate how both individual measures of
cognitive engagement and workload and group measures of brain dynamics relate to team
behaviors and performance, as well as how individual-level neural dynamics correspond with
group-level synchrony.

We ask the following research questions:

1. What is the relationship between neural measures of individual, internal states (relative
band power, engagement, workload) and neural measures of joint interpersonal states
(measures of inter-brain synchrony)?

2. What is the relationship between group performance and behavior, individual emotion

regulation strategies, and brain state measures?
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Our aim is to gain a better understanding of the relationships between internal states
and interpersonal coordination in real-world team contexts, with the goal of informing the
future development of neuroadaptive systems to support team collaboration.

6.2 Study Design

This exploratory study was a multi-institute collaboration between Worcester Polytechnic
Institute (WPI) and the University of Bremen, which leveraged behavioral and physiological
data collected from team members working together to complete a complex creative task
(designing a virtual escape room) in order to gain a more comprehensive understanding of
collaboration dynamics in realistic scenarios. To capture the complexity of real-world work
teams and the current roles technologies can play in facilitating synchronous collaboration,
team members were distributed across both sites and collaborated remotely, with access to
a digital whiteboard and a generative Al assistant.

6.2.1 Participants

Participants were 44 members of the WPI and University of Bremen communities with
no known neurological conditions (median age range 18-24, 26 male; full demographics in
Table B.1) grouped into 12 teams of three or four members each (max two people per
institution) collaborating remotely. To help ensure that we could capture a variety of team
dynamics over the course of the study, we did not require that participants knew each other
beforehand, nor did we require that they were familiar with escape rooms or generative Al
tools (they were briefed on these prior to the study). We anticipated that varying degrees
of familiarity with their teammates, the task, and AI tools would lead to a spectrum of
more and less successful teams, as well as different levels of the variables of interest (e.g.,
workload, team coordination). Participants were compensated $15/hr or €15/hr, depending
on their respective locations, for their time. Recruitment and experimental procedures were
approved both by WPT’s Institutional Review Board and the University of Bremen’s Ethics
Committee. Participants completed informed consent forms upon arriving at each lab.

6.2.2 Data Acquisition and Experiment Procedure

Participants worked in teams of three or four (up to two from each respective institution) to
design a virtual escape room—an immersive game where one or more players work together
to solve puzzles and complete challenges to “escape” within a set time. In anticipation of
their widespread use by teams in the future, we also allowed participants to employ the
assistance of ChatGPT, a generative Al chat assistant. This design task was chosen because
it represents a complex, realistic creative problem-solving scenario that lends itself to multi-
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person collaboration (requiring the exchange of information and the establishment of a joint
mental model), while not being so straightforward that assistance from an Al tool would
trivialize it. Furthermore, prior work has shown that engaging in such creative collaboration
tasks can elicit group-level physiological phenomena such as interbrain synchrony [64, 207,
366], which could serve as real-time indicators of the quality of team interactions.

Participation took place remotely over Zoom to facilitate video and audio recording.
Participants were still physically present in separate rooms at their respective institutions so
physiological data could be collected. Participants had one hour to work together to design
a virtual escape room with help available from ChatGPT, and were required to document
their design via a shared Miro digital whiteboard. The long duration of the experiment
helped ensure that states observed in real-world teams such as distraction, disengagement,
or internal reflection naturally occurred.

Prior to the experiment session, participants were provided an overview of the study
goals and experiment procedure and a copy of the informed consent form. In order to ensure
a common baseline understanding, we also provided a briefing document with information
about what virtual escape rooms are, important elements to include in their design, and how
ChatGPT could be used to assist them. Using Krekhov et al.’s [184] taxonomy for escape
room games as a foundation, we described several items and questions participants should

consider, including

e Mental Challenges: Puzzles involving observation, pattern recognition, calculation,

and knowledge.
e Physical Challenges: Tasks requiring object movement, alignment, or agility.

e Emotional Challenges: FElements that evoke strong emotions (e.g., unease, fear,

surprise), require difficult decisions, or deal with negative consequences.
e How many players is the challenge made for?

e Why are players trapped in a room? What is the theme or narrative for the
challenge?

e Will players be able to receive hints if they are stuck?

e How much time do players have to escape?

Finally, we provided a copy of the rubric that would be used to score their escape room
design after the session, likewise based on the taxonomy from [184]; the rubric criteria and
scoring scheme are provided in Table 6.1.

We also administered a brief pre-experiment survey via Qualtrics to collect demographics

data, measure participants’ familiarity with escape rooms (1 - Not at all familiar (I've never
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heard of them before); 2 - Somewhat familiar (I know about them, but I've never tried
one myself); 3 - Moderately familiar (I've been to physical escape rooms or played virtual
escape room games once or twice); 4 - Very familiar (I have been to several physical escape
rooms and/or played several virtual escape room games, or have designed escape room
experiences)), and assess differences in their emotion regulation strategies using the Process
Model of Emotion Regulation Questionnaire (PMERQ) [256].

During the experiment session, participants were first introduced to the study goals and
experiment procedure, and given the opportunity to ask the researchers any outstanding
questions. If after the briefing they still wished to participate, participants signed a physical
version of the consent form and the experiment session proceeded. Participants were advised
that they could withdraw from the study at any time.

Participants were each seated in front of a laptop or desktop computer at their respective
locations, all in separate rooms to ensure audio isolation. On each computer, participants had
access to a common Zoom meeting allowing for video communication with the researchers
and other participants, as well as the Chrome browser with tabs open to the shared Miro
digital whiteboard, ChatGPT, and a copy of the rubric that would be used to score de-
signs. Each participant’s camera feed and screen, along with microphone and system audio,
were recorded simultaneously using Open Broadcaster Software (OBS) Studio [18]. To en-
sure the audio and video could be aligned with recorded brain data, we also integrated an
OBS plugin® which allowed relevant timing information to be published to a data stream
in Lab Streaming Layer (LSL) [180], an open source middleware framework for streaming,
receiving, and synchronizing multimodal time series. Specifically, the LSL plugin generates
a filter overlaying the recorded video containing the frame number and UNIX timestamp as
measured by the clock of the recording computer, and publishes an LSL stream with this
information that can be recorded by one or more other computers on the same local network.

Additionally, participants’ brain activity was recorded via EEG at both study locations
using g.tec Unicorn Hybrid Black headsets (g.tec medical engineering GmbH, Scheidlberg,
Austria [114]). Each headset recorded electrical activity from eight rubber electrodes across
the cortex (located at Fz, C3, Cz, C4, Pz, PO7, Oz, and PO8 according to the International
10-10 system [252]) at 250 Hz, using two mastoid references. Conductive gel was applied
to each electrode site to ensure optimal signal quality, which was assessed with the Band-
power component of the g.tec Unicorn Suite software prior to recording. Participants were
instructed to silence their cell phones and place them on the table away from any equipment
for the duration of the experiment to minimize electrical interference. Once the signal for
each channel had stabilized and acceptable quality was confirmed, a custom Python pack-
age utilizing the pylsl library? was used to publish LSL streams for each Unicorn device
containing their respective channel data.

thttps://gitlab.unige.ch/sims/Isl-modules/obs-plugin
Zhttps:/ /pypi.org/project/pylsl/
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Category

Criteria

Description

Points

Puzzle Variety

Mental Challenges

Physical Challenges

Range and balance of observation,
pattern recognition, calculation,
and knowledge puzzles.

Inclusion of object movement,
alignment, agility, and timing

30 pts
( ) tasks.
Emotional Incorporation of puzzles that
Challenges evoke and require overcoming
& emotions.
Inteeration with How well the theme is integrated
Th " P gl with the puzzles and overall 10 pts Excellent
(20 pts) . Consistency and creative use of 4 pts Average
Consistency and 1 pt Poor
.. the theme throughout the escape o
Creativity 0 pts Missing
room.
Narrative Story Depth Depth and engagement of the
toryline.
Integration StoLyihe ] ]
(20 pts) Story-driven Puzzles How well the narrative drives the
puzzle-solving process.
Practicality of Practicality and feasibility of
Technical Implementation implementing the design in a
Feasibility virtual environment.
(15 pts) Effective Use of Effective use of available
Technolo technology without complicating
&y the user experience.
Intuitiveness and Ease of navigation, clarity of 5 pts Excellent
User - instructions, and overall 3.5 pts Good
Accessibility . . 2 pts Average
Experience user-friendliness. 0.5 ots P
. s Poor
(10 pts) Engagement and How engaging and enjoyable the 0p tI; Missing
Enjoyment experience is for players.
Innovation Creativity in Puzzle  Creativity and uniqueness in
(5 pts) Mechanics puzzle design and room features.

Table 6.1: Scoring rubric used for escape room designs, based on the taxonomy of digital
escape rooms by Krekhov et al. [184]. A maximum of ten points could be earned for each
of the first eight criteria, an a maximum of four points could be earned for each of the last
four, for a total possible score of 100 points.
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Once the OBS and Unicorn LSL streams for each participant were published, the streams
were recorded on at least one computer at each site using the LabRecorder application®. All
computers were connected to a common virtual private network (VPN) using the ZeroTier
VPN client* to ensure that all streams were visible to the computers at both sites. Video
and audio recording through OBS was started a few seconds after beginning to record LSL
streams in LabRecorder, due to instability in OBS with simultaneous remote-controlled start.

Finally, after the data recording setup was complete, participants were ready to begin
the study. Participants were first provided a brief overview of the Miro interface, and then
given directions for the design task. Participants were told that they had one hour to design
a virtual escape room according to the criteria in the rubric, and that they should aim to
score as high as possible, though given the time constraints it was understood that designs
would not be perfect. We advised participants that they did not need to build or implement
their designs; all that was required was that they work together to come up with a design
and document their design process using Miro. We also advised that participants might
prefer to delegate responsibilities for using each of the available tools, or divide their use
equally, and that because data provided to the tools or shown to others was not necessarily
protected, that participants should refrain from entering or verbalizing personal information
they wanted to omit from the recorded data.

After receiving these directions, participants were instructed to begin the task, and a
one-hour timer was started. Researchers remained in the Zoom call with participants to
answer any questions, but turned off their audio and video feeds to avoid distraction. When
the timer elapsed, participants were instructed to add any final touches to their designs and
then cease all work, after which compensation was provided.

6.3 Analysis Methods

Due to the rich multimodal nature of our dataset, we employed several analysis techniques
to explore the different levels of our data and their relationships with one another. Here
we describe the preprocessing and analysis methods we used to analyze group performance,
participant emotion regulation strategies, their behavior during the task, the recorded EEG
data on both the individual and group levels, and the relationships between these different
measures.

6.3.1 Task Performance

Task performance was scored using the rubric in Table 6.1. Two researchers first individually
scored each group’s designs as documented on the Miro board (referring to the session videos

3https://github.com /labstreaminglayer /App-LabRecorder
4https://www.zerotier.com/
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if necessary for clarification), providing numeric scores and notes explaining the reasoning
for the score choice for each of the 12 design criteria. Then, if the researchers’ scores for
any criteria differed by more than one ranking (i.e., if one researcher rated one item as
“Excellent” and the other rated it as “Average,” or if one rated an item as “Good” where
the other rated it as “Poor”), the researchers discussed their reasoning for assigning their
respective scores and deliberated until the discrepancy was resolved, and scores differed by
at most one item ranking. Finally, the final score was calculated by summing the average
scores for each criterion. (E.g., if Researcher 1 assigned a score of 10 for “Mental Challenges”
and Researcher 2 assigned a score of 7, the final score for that criterion was 8.5.)

6.3.2 Emotion Regulation Strategies

Emotion regulation strategies for each participant were assessed prior to the experiment using
the Process Model for Emotion Regulation Questionnaire (PMERQ) [256]. The PMERQ as-
sesses the degree to which respondents’ emotion regulation strategies are either engagement-
focused or disengagement-focused in each of the five stages of emotion generation as described
in the process model of emotion requlation. These stages occur in sequence in response to an
emotion-generating situation; at each, one can intervene to change the emotion, typically to
increase positive emotion or decrease negative emotion.

According to Olderbak et al. [256], the first stage, situation selection, involves taking
action in anticipation of a situation, such as by confronting or avoiding it. The second,
situation modification, involves taking action in response to the situation, such as resolving or
sidestepping conflicts. The third, attentional deployment, involves changing one’s attention
to the situation, such as directing attention away from certain information and toward other
information, (e.g., away from people yelling and toward a supportive friend or authority
figure). The fourth, cognitive change, involves reframing how one thinks about the current
situation to alter how one feels about it. Finally, response modulation occurs after the
emotion has been generated and involves changing components of the generated emotion
such as subjective feelings, physiological arousal, and expressive behaviors.

At each stage, an individual’s regulation strategies can either be engagement-focused
(e.g., confronting/facing the situation) or disengagement-focused (e.g., avoiding or removing
oneself from the situation); such strategies are thought to be trait-like, and stable for individ-
uals across different situations. In general, engagement-focused strategies are associated with
higher well-being and better relationship functioning than those which are disengagement-
focused.

The PMERQ consists of 45 questions to assess the degree of engagement- or disengagement-
focus of an individual’s emotion regulation strategies during each of the five stages, resulting
in subscales for 10 strategies in total (2 focus types x 5 stages); see Table 6.2. Each item
was a statement relating to one of the 10 emotion regulation strategies (e.g., “I work to
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Emotion Regulation Stage Engagement-Focus Disengagement-Focus

. . . f 1 i i Avoi 1 i i
Situation Selection Confront Unpleasant Situations Avoid Unpleasant Situations

4 items 6 items
Situation Modification R?SO ve Conlflicts YOl Conflicts
6 items 5 items
) F Elsewh tivelv Di
Attentional Deployment O,CHS sewlere C(.)gnltlve y Distract
4 items 5 items
Cognitive Reappraisal Consider Benefits Reduce Importance
SV PP 6 items 3 items
. E i hari E i :
Response Modulation Sgpport by Emotion Sharing )_(presswe Suppression
3 items 3 items

Table 6.2: Emotion regulation strategies measured by the PMERQ), and the number of asso-
ciated survey items. The final score for each strategy is the average of item-level responses.

negotiate a resolution to conflicts I have with others, to decrease how bad I feel.”), to which
participants indicated their level of agreement from 1 (Strongly Disagree) to 6 (Strongly
Agree). The final score for each strategy was the mean of its item-level responses. Three
participants failed to complete the pre-experiment survey, leaving 41 complete responses.

6.3.3 Team Processes from Speech and Behavior

In order to gain meaningful insights into the processes and dynamics at play during team-
mate interactions and facilitate comparison with physiological data, we employed approaches
from interaction analysis [33] to analyze the audio and video of participants during their ex-
periment sessions. To quantify the levels of team processes present during verbal interactions
between team members, we adapted the approach from [221], who developed and validated
a dictionary for performing computer-aided text analysis (CATA) to measure the 10 dimen-
sions of Marks et al.’s [218] taxonomy of team processes, which has been used widely in prior
work [33, 85, 171, 221, 289, 361]. Briefly, Marks et al.’s framework describes a recurring
phase model of team interactions, in which teams perform in temporal cycles of goal-driven
activity marked by identifiable periods of action and transition between actions, with the
management of interpersonal relationships occurring throughout. These episodes can vary
in their length and consistency, and might be divided into sub-episodes or occur simulta-
neously so teams can multitask effectively. The framework includes the three higher-order
dimensions of action processes, transition processes, and interpersonal processes, which are
further divided into 10 lower-order dimensions—mission analysis formulation and planning,
goal specification, and strategy formulation under transition processes; monitoring progress
toward goals, systems monitoring, team monitoring and backup behavior, and coordination

under action processes; and conflict management, motivation and confidence building, and
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affect management under interpersonal processes. See Figure 6.1 for the full taxonomy and
definitions for each of the lower-order processes.

We first used WhisperX [19] to generate text transcripts with word-level timestamps
using one audio recording from each group, making manual corrections to the transcription
and speaker attribution as necessary. We then trimmed each transcript to the duration of
the task (e.g., from the time when a researcher told participants to start through the time
they were told their time had elapsed), and categorized each word of the trimmed transcript
using the dictionary developed by Mathieu et al. [221]. Following Mathieu et al.’s approach,
each occurrence of a word in the CATA dictionary could be assigned to either one of the 10
lower-order dimensions of Marks et al.’s framework; one of the three higher order dimensions
(in the case of words relating to multiple lower-order dimensions—e.g., the word prepare
could relate to mission analysis formulation and planning, goal specification, and strategy
formulation); or teamwork overall (if a word mapped to multiple higher-order dimensions).
Finally, we counted the frequencies of words belonging to each category in successive 30-
second windows with 15 seconds of overlap, chosen to match the approximate time scale of
meaningful interaction episodes between group members. The final output of this analysis
was a collection of time series for each group member depicting the levels of the higher-
and lower-order team processes over the course of the task, as well as for each group as a
whole when the respective time series of its members were summed. At the time of writing,
transcripts for one group have not yet been analyzed due to audio processing difficulties;
levels of team processes have been calculated for the remaining 11 groups.

While analyzing levels of team processes from speech gives some insight into the nature
of teams’ interaction dynamics during collaboration, nonverbal interactions—such as a team
member submitting a prompt to ChatGP'T, or participants jointly manipulating a graphical
element on the Miro digital whiteboard—cannot be captured using this approach. To gain
a better understanding of nonverbal behaviors that occurred during the task, we calculated
the frame-by-frame structural similarity index measure (SSIM) [356] for videos of each par-
ticipant’s screen, as implemented in the scikit-image library for Python®. The SSIM is
designed to measure the degree to which two images are perceived as similar to the human
visual system, taking into account the effects of noise or distortion which could be ignored
when using other measures such as the mean squared error (MSE).

For two images x and y, the SSIM is given by

SSIM(x, y) = [[(x, ¥)]” - [e(x, ¥))? - [s(x,y)]" (6.1)

where [(x,y) compares the luminance of the images, ¢(x,y) compares their contrast, and

s(x,y) compares their structure, with a;, #, and v weighting their relative importance. The

Shttps://scikit-image.org/docs/0.24.x/api/skimage.metrics.html#skimage.metrics.struct
ural_similarity
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TABLE 1

Taxonomy of Team Processes

Process Dimensions Definition

Previous Research on Team Processes

Transition processes
Mission analysis

formulation and
planning

Interpretation and evaluation of the team'’s mission,
including identification of its main tasks as well as the
operative environmental conditions and team resources
available for mission execution

Goal specification [dentification and prioritization of goals and subgoals for

mission accomplishment

Development of alternative courses of action for mission
accomplishment

Strategy

formulation

Fleishman & Zaccaro (1992); Prince &
Salas (1993)

Dickinson & Mcintyre (1997); Levine &
Moreland (1990); O'Leary-Kelly,
Martocchio, & Frink (1994); Prussia &
Kinicki (1996); Saavedra, Early, & van
dyne (1993)

Cannon-Bowers, Tannenbaum, Salas, &
Volpe (1995); Gladstein (1984);
Hackman (1983); Hackman & Oldham
(1980); Prince & Salas (1993); Stout,
Cannon-Bowers, Salas, & Milanovich

(1999); Weldon, Jehn, & Pradhan (1991)

Action processes

Monitoring Tracking task and progress toward mission
progress toward accomplishment, interpreting system information in
goals terms of what needs to be accomplished for goal
attainment, and transmitting progress to team members
Systems Tracking team resources and environmental conditions as
monitoring they relate to mission accomplishment, which involves

(1) internal systems monitoring (tracking team resources
such as personnel, equipment, and other information
that is generated or contained within the team), and (2)
environmental monitoring (tracking the environmental
conditions relevant to the team)

Team monitoring Assisting team members to perform their tasks. Assistance

and backup may occur by (1) providing a teammate verbal feedback
behavior or coaching, (2} helping a teammate behaviorally in
carrying out actions, or (3) assuming and completing a
task for a teammate
Coordination Orchestrating the sequence and timing of interdependent

actions

Cannon-Bowers, Tannenbaum, Salas, &
Volpe (1995); Jentsch, Barnett, Bowers,
& Salas (1999)

Fleishman & Zaccaro (1992)

Dickinson & Mclntyre (1997)

Brannick, Prince, Prince, & Salas (1992);
Brannick, Roach, & Salas (1993);
Fleishman & Zaccaro (1992); Zalesny,
Salas, & Prince (1995)

Interpersonal processes
Conlflict
management

Preemptive conilict management involves establishing
conditions to prevent, control, or guide team conflict
before it occurs. Reactive conflict management involves
working through task and interpersonal disagreements
among team members

Motivation and Generating and preserving a sense of collective

confidence confidence, motivation, and task-based cohesion with
building regard to mission accomplishment

Affect Regulating member emotions during mission
management accomplishment, including (but not limited to) social

cohesion, frustration, and excitement

Cannon-Bowers, Tannenbaum, Salas, &
Volpe (1995); Gladstein (1984); Jehn
(1995); Pace (1990); Simons, Pellad, &
Smith (1999); Simons & Peterson (2000);
Smolek, Hoffman, & Moran (1999);
Tjosvold (1985); Van de Vliert, Euwema,
& Huismans (1995)

Fleishman & Zaccaro (1992)

Cannon-Bowers, Tannenbaum, Salas, &
Volpe (1995)

Figure 6.1: Marks et al.’s [218] taxonomy of team processes.

88



SSIM is strictly positive and at most 1 when the images being compared are identical. In
the case of our video data, values for the SSIM are highest when a participant is not actively
interacting with any tools on their computer, and are lowest when a participant switched
tools (e.g., changing their foreground window from Miro to ChatGPT or the Zoom meeting).
To reduce the time required for computing the SSIM, videos were re-encoded from 1080p
30fps to 360p Hfps prior to calculation. We then calculated the SSIM on a frame-to-frame
basis using the re-encoded video, and averaged these values for each second of the recording.

Due to problems with video recording, the SSIM calculation was omitted for two partic-
ipants.

6.3.4 Individual EEG Metrics of Attention

Power spectral density (PSD), or the ratio of signal power to signal frequency, is the most
frequently used EEG measure to assess mental workload and task engagement [152]. The
PSD of the alpha frequency band from the occipital and parietal lobe and the PSD of theta
bands from the frontal lobe are the indicators most frequently used in literature. A reduction
in the PSD of the parietal alpha bands and an increase in the PSD of the frontal theta bands
have been observed when task difficulty or mental workload increases, whereas a decline in
beta power seems to indicate the end of a cognitive task.

The Task Load Index (TLI) and Task Engagement Index (TEI) are indices derived from
these observations. The Task Load Index is defined as the ratio of the mean frontal midline
theta power to the mean parietal alpha power (Equation 6.2), and has been shown to increase
with cognitive load during a task [105, 132, 162].

0
TLI = o (6.2)

The Task Engagement Index is defined as the ratio of mean beta power to (mean alpha
power + mean theta power) (Equation 6.3). Task engagement is a positive, excited state that
is influenced by cognitive workload. TEI has been shown to increase with task engagement
/ attention and cognitive load [25, 98, 228, 251].

B

TEI =
a-+0

(6.3)

In the analysis of each participant’s individual EEG data, TLI and TEI are used to
assess different phases of task engagement and cognitive load during the task, be it during
discussion with other team members or during individual thinking. This gives us the ability
to assess a participant’s engagement with the task as well as with the other participants and
how these states change over the course of the experiment session.

The PSD band power values for a run are calculated by computing the mean band power
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for each of the relevant frequency bands (theta, alpha, and beta) individually over 1-second
windows. As both indices only rely on the PSD of the frontal and parietal lobe, we can
reduce the number of relevant channels down to 5 (Fz, Oz, PO7, Pz, PO8). This leaves
us with 1250 samples per 1-second window (250 samples for 5 channels) and approximately
3600 windows per participant per 1-hour experiment session. The PSD is calculated using
MNE’s [111] compute_psd function. To reduce electric noise and outside interference, we only
use the relevant frequencies for each band and ignore all frequencies over 30 Hz. Using these
band power values, we then calculated the TLI and TEI for each window and individual
participant.

PSD, TLI, and TEI calculations were omitted for two participant in different groups of
four whose EEG recordings failed to save. The TLI calculation was also omitted for another
participant due to poor signal quality in the Fz electrode.

6.3.5 Team Brain Metrics

To measure the collective brain dynamics of our group members while they were collaborat-
ing, we employed four analysis methods which have been used in prior work to relate group
dynamics in EEG or other physiological data with levels of team processes: wavelet trans-
form coherence (WTC) [64, 122]; the driver-empath model of team dynamics [117]; mutual
information [315]; and multidimensional recurrence quantification analysis (MdRQA) [85].

EEG Preprocessing

Before conducting the group analysis of our EEG data, we first performed preprocessing
to remove noise and restrict our analysis to frequencies of interest. The start and end
times of the task were determined for each participant using the WhisperX transcripts of
their respective videos; these were then used to determine the corresponding indices of each
participant’s EEG time series by 1) finding the UNIX timestamp of the frame of the video
when the task started, 2) finding the corresponding LabRecorder timestamp (which occurs
at the same index in the OBS LSL stream), and 3) finding the sample of the EEG LSL
stream with the corresponding timestamp. Each EEG time series was trimmed to 9000
samples before and after the task to mitigate any edge effects, then filtered from 0.1-40 Hz
(as recommended in [359]). Filtering was performed using EEGLAB’s default filter, which is
a single-pass zero-phase finite impulse response filter using a windowed sinc function kernel
with a wide transition band to limit artifacts and a variable filter order for low- versus high-
pass to attenuate the stopband optimally, and compares favorably to default filters in other
packages [69]. Finally, the filtered EEG data was trimmed to the duration of the task. Note
that for some groups, one of the recording computers wrote data more slowly at a lower
effective sampling rate as a result of high usage of system resources, resulting in less data
recorded than the full duration of the task.
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For all analyses below, data for all participants was truncated to length of the shortest
participant stream, and analyses were performed on successive 30-second windows with 15
seconds of overlap. For two groups, the EEG streams from two participants were lost, and
were omitted from analysis. Furthermore, two groups had streams from two participants
which terminated prematurely 20 minutes after the start of the task; applicable analyses
were performed using data from all participants truncated to this shorter length, as well
as the full duration of the task with streams from these participants omitted. Finally, four
groups had one participant whose data had one to two excessively noisy channels, which
were omitted from the analysis on an individual basis (that is, data from these channels was

included in the group analysis from participants for whom they were clean).

Wavelet Transform Coherence

Wavelet transform coherence (WTC) is an analysis technique measuring the local corre-
lation in signal power between two or more signals across various frequency bands and
time intervals. It is commonly used in hyperscanning studies by the social and cognitive
neuroscience communities for measuring inter-brain synchrony [122, 64], which has been
commonly observed during group collaboration across a wide variety of tasks and contexts
(64, 210, 201, 245, 249, 284] in multiple neurophysiological recording modalities, including
fMRI, EEG, and fNIRS. In contrast with other methods of calculating synchrony such as
cross-correlation and Fourier transform coherence, WTC is especially suitable for assessing
synchrony in physiological data because the its time resolution varies with frequency—with
higher resolution with increasing frequency—rather than being fixed for all frequencies, and
can thus better account for the non-stationarity of most biological signals and more appro-
priately model time-varying naturalistic interpersonal interactions.

The ability for WTC to optimize its resolution of different frequency components is due
to the use of wavelets in the underlying continuous wavelet transform (CWT). A wavelet is
a function with zero mean that is localized in both time and frequency [113], and acts as a
bandpass filter when convolved with the signal of interest. By convolving the signal with a
series of wavelets that are stretched in time to different scales, the power of the signal can be
optimally localized across time and frequency. One family of wavelets, the Morlet wavelet (a
sine function windowed with a Gaussian), is typically used in wavelet analysis, and is defined
as

o) = 7 tetemem s (6.4)

where wy is dimensionless frequency and 7 is dimensionless time. Empirically, choosing
wo = 6 has been shown to provide a good balance between time and frequency localization,
and is the default value used in Grinsted’s [113] wavelet-coherence® and Hu & Si’s [142]

Chttps://grinsted.github.io/wavelet-coherence/
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Multiple Wavelet Coherence” MATLAB toolboxes used in our analysis.
At different scales s = 7, the CWT of a time series z,, (n = 1, ..., V') with uniform time
steps 0t is given by

W) = /2 i et |0 =) (65

where the wavelet 1y has been normalized to have unit energy. The wavelet power of the
signal is given by the squared magnitude of the CWT |WX(s)|%. Because the transform can
introduce edge effects, a cone of influence (COI) where such effects can occur is typically
omitted from further analysis.

Extending to comparisons between two signals, the cross-wavelet transform XW'T of two
time series x,, and y, is defined as WY = WXWY* where * denotes the complex conjugate.
The cross-wavelet power, [IW*Y| indicates when the signals exhibit high common power in
the same frequency range simultaneously.

Finally, the wavelet transform coherence, which provides a measure of the localized cross-
correlation between the two signals, is given by

1S (s7'WY (s)) |2

n

8l = SE @R S WGP

(6.6)

where S is a smoothing operator operating along both the time and scale dimensions. Like
the typical normalized correlation coefficient, R2(s) ranges from 0 to 1, with a value of 0
indicating no coherence and a value of 1 indicating identity. See [6] for further discussion of
the more general multivariate case with more than two time series.

We used Grinsted’s [113] wavelet-coherence MATLAB toolbox for our analysis (as well
as Hu & Si’s [142] Multiple Wavelet Coherence toolbox for some preliminary analyses
integrating data from all group members simultaneously), using default parameters: Dj =
1/12 for 12 sub-octaves per scale octave; S0 the minimum wavelet scale was double the signal
period; and Morlet wavelets were used as the “mother” wavelet of the wavelet family used for
the transform. For each 30-second window of (centered) data, we first calculated the mean
coherence for the § (0.5-4 Hz), 6 (4-7 Hz), o (7-13 Hz) and § (13-30 Hz) frequency bands
for each channel across each pair of participants within the group, omitting all values in the
cone of influence. We then calculated the coherence for each frequency band both for all
eight channels and the subset of five channels (Fz, Oz, PO7, Pz, PO8) used for the individual
analyses above by averaging the subject-pair coherence values for the relevant channel sets,
resulting in two collections of four time series (one per frequency band) for each group of
participants.

"https://figshare.com/articles/code/Matlab_code_for_multiple_wavelet_coherence_and_part
ial_wavelet_coherency/13031123
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The Driver-Empath Model of Teamwork

Guastello & Peressini [117] developed the driver-empath model of teamwork to better cap-
ture the nonlinear interdependent nature of team dynamics as they arise in group behavior or
physiological activity. The authors build on prior work modeling teams as nonlinear dynami-
cal systems, starting with the assumption that the time series originate from low-dimensional
chaotic systems—which have been shown to exhibit self-organizing behavior when coupled
20, 224]—and provide several improvements over existing approaches such as phaseclustering
or multilevel correlation analysis. Unlike these other approaches for quantifying synchrony,
the driver-empath model is able to separate autocorrelational and cross-correlational effects
(and thus determine whether cross-correlations between group members are real and not spu-
rious), account for asymmetry in influence among group members, and ultimately provide
both individual and group-level metrics for describing the synchrony of the team.

The first step in computing the metrics for the driver-empath model is calculating the
prototype matrix P, which contains information about the group’s effects on individuals.
The matrix is populated by fitting linear or nonlinear Granger causality regression models
describing the directional influence of each group members’ time series on the others’, with
the autocorrelations 7;; of physiological time series on the diagonal and transfer coefficients
ri; on the off-diagonal entries.

Table 6.3: Example prototype matrix for the driver-empath model from [117], calculated for
a team with four members. (AR represents autoregression.)

To
From P P, P P, Driver Score
Pl ARl R12 R13 Rl4 Z R%z
P Ry AR, Ro3 Ray > R,
P3 R31 R32 AR3 R34 Z R%i
P, R Ry Ry3 ARy > Ri

Empath Score >"R%, > R%, > R% > R}

The sums of squared coefficients of the rows and columns are then calculated to produce
driver scores and empath scores respectively. The person with the largest row total is the
driver of the group, the team member who exerted the strongest influence on the others. The
person with the largest column total is the empath, the team member who was most receptive
to the influences of others. The driver has minimal impact on the synchrony between group
members unless others in the group are responding, so connections with the empath reflect
the strongest synchronization of any one person with the others. This group-level effect is
captured by the synchronization coefficient Sg (synchronization with the empath).

To calculate the synchronization coefficient Sg, first the empath is identified as above,

then the column of coefficients for the empath is removed from P. The empath’s autocor-
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relation is dropped, and the remaining coefficients become a column vector V’. Then the
empath’s row is removed from P, leaving a square matrix M. Then a weight vector Q is
calculated with

Q=M'V. (6.7)

Finally, the synchronization coefficient Sg is given by
Sg=V'Q. (6.8)

Sg is approximately normally distributed, and does not have bounded lower or upper limits.

We adapted the ProcPlayer® R script from Guastello & Peressini to calculate the driver
and empath scores of each participant as well as the synchronization coefficient for each group
where all data was available. (Due to the causal nature of this analysis, two groups where a
participant’s EEG data failed to record—and thus missing information about the directional
influences between group members—were omitted.) This processing script from the authors
includes four models with different theoretical origins shown to accurately capture autonomic
synchrony in groups [116] which can be used to calculate the P matrix. Each models the
time series of a target participant as a function of the influence of past values from the time
series of both the target participant and another group member at a particular lag j.

The first such model is a linear model, which has been shown to sufficiently characterize
pairwise levels of synchrony over relatively short time intervals in homogeneous conditions
[117]. The model is given by

X, = Bo+ B1Xn—j + B2P_y, (6.9)
where X, is the data of the participant of interest at time point n (to be predicted); X,,_;
is data from the participant of interest, lagged j time points; and P,_; is data from another
participant influencing the participant of interest, likewise lagged.

The second is a nonlinear model (Nonlinear Model 1; NL1), which uses a double expo-
nential structure of the form
X, = ae?Xn-i 4 i, (6.10)
This model was shown experimentally to capture transfer effects between group members
more often, and were better correlated with psychological variables and other important
effects when applied to physiological data [115].

The third is a nonlinear logistic map model (Nonlinear Model 2; NL2), used by [333] to
explore the coordination of behavior with respect to team members’ internal psychological
states. In this model, each member of a dyad acts as a control parameter modulating

the dynamics of their partner, leading to the emergence, maintenance, and disruption of

8https://academic.mu.edu/peressini/synccalc/slinks.htm
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behavioral synchrony and similarity in internal states including autonomic arousal, mood,
and motivation. This model represents the simplest structure able to produce these dynamic
features, and is given by
Xp =P i X j(a—BX, ;). (6.11)
Finally, the fourth model (Nonlinear Model 3; NL3) is an exponential variant of the
logistic map of NL2:

Xp = aP,_;jX,_e*Xn=i 4. (6.12)

For each 30-second window of (centered) data, the we calculated the driver and empath
scores and synchronization coefficient on a per-channel basis, using each model included in
the ProcPlayer preprocessing script described above, using a lag j of one second (typically
enough to capture events of interest in biological data [117, 167]). We then calculated the
mean of these metrics across all eight channels and the subset of five channels (Fz, Oz, PO7,
Pz, POS8) used for the individual analyses by averaging across the relevant channel sets,
yielding time series for the driver and empath scores for each participant and a time series

of the synchronization coefficient for each group for each model and channel set.

Mutual Information

Mutual information (MI) is a measure of the amount of information shared between two or
more variables, and indicates the degree to which they are mutually dependent. A collection
of variables with no mutual information are completely independent; that is, their joint
entropy is exactly equal to the sum of individual entropies, and no information is shared.
Values of mutual information greater than zero indicate that information about one variable
can be gleaned through observations of another. In the context of team dynamics, increased
mutual information between the neural signals of team members has been associated with
shared attention, social coordination, and synergistic interactions [315].

Suppose we have a set of N measurements x (e.g., a participant’s EEG recording) in
one or more dimensions, which are realizations of a random variable X (e.g., the underlying
mental process) with probability density p(z). The Shannon entropy of X is given by

H(X) = —/,u(x) log pu(x) dx (6.13)

where the base of the logarithm determines the unit (“bits” for base-2, “nats” for the natural
logarithm, and “bans” for base-10; the natural logarithm will be used for all subsequent
calculations).

Suppose we have another set of N measurements y of random variable Y with probability
density u(y), such that Z = (X,Y) is the space spanned by X and Y, with associated mea-
surements z = (z,y) and joint probability density u(x,y). Then the joint entropy H(X,Y)
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of X and Y is given by

- // p(z,y)log plz, y) dx dy, (6.14)
with H(X,Y) < H(X)+ H(Y). The mutual information I(X,Y) between X and Y is then
[(X,Y) = HX)+ H(Y) - HX,Y), (6.15)

or, after simplifying,

I(X,Y) // z,y)log ————— e, y) dx dy, (6.16)
e () 1y ()
where i, (z) = [ p(z,y)dz and p,(y) = [ p(x,y) dy are the marginal densities of X and Y
[183].

It is not possible to exactly calculate the entropy and mutual information of real-world
data if the underlying probability densities of the measured variables are unknown. Instead,
these quantities are often estimated, typically by partitioning the measured data into bins
to generate a frequency distribution of its values, which is then used to approximate the
probability density functions of X and Y. Despite the existence of estimators using adaptive
bin sizes to improve accuracy, such methods nonetheless exhibit systematic errors from
partitioning the data to compute the estimate, and from approximating probabilities with
frequency ratios. Instead, we used the second estimator provided by Kraskov et al. [183],
which estimates mutual information using k-nearest neighbor statistics. This estimator is
efficient, adaptive to data of different sizes and dimensionality, and minimally biased. It also
is invariant to scaling operations on the data, and does not assume Gaussianity, amplitude
comparability, or a particular underlying distribution.

Considering Z = (X,Y’) the space spanned by X and Y, the max norm is used for
calculating the distance between any two observations z; that is, ||z — 2/|| = max{||z —
2|, lly — ¢'||}. €(i)/2 is defined as the distance from an observation z; to its kth neighbor.
€:(1)/2 and €,(i)/2 are likewise the distances between the same observation and its kth
neighbor in the X and Y subspaces, respectively. This information is used to estimate the
joint and marginal probability densities of the variables being measured, i.e., the probabilities
such that for any observation z;, y;, or z; there is one point at a distance such that there
remain k — 1 points at smaller distances and N — k — 1 points at larger distances.

ng(i) and n, (i) are defined as the number of points with ||z; — ;|| < €,(i)/2 and ||y; —
y;i|| < €,(i)/2, respectively. Then the final estimator for the mutual information between X
and Y is given by

I(X,Y) = (k) = 1/k = (d(na) + 1(ny)) + $(N), (6.17)
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where

() = NI B () (6.18)

and ¢(x) is the digamma function; see [183] for the full derivation. Note that while the
introduction above estimates the mutual information between two random variables, the
estimator can be generalized to estimates for more than two variables as well.

We used the implementation of Kraskov et al.’s [183] second estimator provided in the rmi
R package for our calculation of mutual information, choosing a value of 5 for k£ to mitigate
the tradeoff between the bias and variance of the estimate [103, 304]. For each 30-second
window of data, we calculated the mutual information for each pair of participants both for all
eight channels and the subset of five channels (Fz, Oz, PO7, Pz, PO8) used for the individual
analyses above. For each subject, all relevant channels were considered simultaneously—that
is, each observation for each participant was an n-element vector, where n was the number of
channels included in the set. We then averaged the subject-pair mutual information values
for the relevant channel sets, resulting in two time series (one per set of channels) per group.

Multidimensional Recurrence Quantification Analysis (MdRQA)

Recurrence quantification analysis (RQA) is a technique for measuring the structural and
temporal characteristics of nonlinear dynamical systems without a priori assumptions and
only a few free parameters. The main goal of the analysis is to quantify recurrences, or re-
peating patterns or states, occurring in time series data. Though the concept of recurrence
has a long history in mathematics, the introduction of RQA by Zbilut & Webber [383] in
1992—and subsequently MARQA [352], its multivariate extension—Iled to widespread use in
several fields and applications, including Earth science [358], economics [257], civil engineer-
ing [106, 370], psychology [286], and ergonomics [85, 110, 156, 344]. Work in psychology and
ergonomics in particular has examined the relationship between behavioral and physiological
synchrony and the quality of group interactions, relating recurrence-derived metrics (most
commonly the recurrence rate, or percentage of recurrent observations) to team members’
emotional valence, shared visual attention, frequency and understanding of communication,
and levels of coordination and other team processes relevant to collaboration. As Eloy et
al. [85] reported a negative correlation between the group recurrence rate of team members’
brain signals and levels of team coordination, strategy formulation, and affect management
from Marks et al.’s [218] team processes framework, we focus on this metric for our analysis
as well.

We begin here with a discussion of the univariate case (i.e., ordinary RQA), then extend
this to the more general case for multiple variables (MdRQA) we used in our analysis. A
key feature of RQA is its reconstruction of a higher-dimensional representation of the system
being analyzed through time-delayed embedding to uncover higher-order dynamics.

97



Counsider the time series of interest x:
X = (21, %2, 23, ..., Tp), (6.19)

where x is a vector with values x; through x,, representing observations of x sampled at
regular times ¢y, t; + At, t1 +2A¢t, ... t1+ (n—1)At. If we know (or have estimated) the true
dimension D of the system from which x is sampled, then we can construct D-dimensional
embedded vectors V;, (i =1,2,3,...,n) of the form

V= (% Litr; Titory -, SCH(DA)T), (6.20)

where each element of V; is an element from x, beginning with z; sampled at time t;,
and subsequent elements are lagged by integer multiples of the time delay 7 and likewise
sampled at multiples of TAt. The full phase space of the system V can then be described
using n — (D — 1)7 such vectors:

Vi L1 Lit+r e T1+(D-1)r
vV Y2 _ x‘z $2'+T . $2+(1‘7—1)T ‘ (6.21)
Vn—(D—l)T Tn—(D-1)7 Tpn—(D-2)7 ce Ty

The row index of V is a measure of time, and each column index corresponds with a
dimension in phase space. Thus the row vectors V; correspond with a particular snapshot
of the dynamics of the phase space of the system measured at time point ¢, and the column
vectors are lagged copies of the signal of interest. The phase space matrix is then used to
construct a recurrence plot, a (typically) graphical representation of the recurrent dynamics
of the system from which the recurrence rate and other associated metrics are derived [82].
In essence, the recurrence plot for a given time series describes repetitions of phase-space
values V;.

Let RP be the 2-dimensional n — (D —1)7 x n— (D — 1)7 matrix depicting the recurrence
plot of the phase. A point RP;; is considered recurrent if the distance ||V;(x) — V,(x)|] is
smaller than some threshold ¢, termed the radius. This is expressed by

RPj; =0 (e = [[Vi(x) = V;(x)]]) (6.22)

where 6(x) is the Heaviside step function.

Creating the recurrence plot thus necessitates computing the pairwise distances for all
V;; Euclidean distance is the typical choice, but any metric distance function may be used.
These distances are typically rescaled relative to the maximum distance, with e likewise

expressed as a percentage of the maximum distance, for the sake of comparability between
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time series. Once the recurrence plot has been created, several metrics exist to quantify
aspects of the system’s dynamics (e.g., the recurrence rate, Shannon entropy, average line
length, etc.) [358]. The metric used for our analysis, the recurrence rate, is the percentage
of recurrent points in the recurrence plot.

The extension of RQA to multiple time series in MdRQA is accomplished by includ-
ing these additional variables in the phase space representation of the system. Let Y =
(¥1,¥2,¥3,---,¥n) be a matrix where each column y; is one of N time series. Then we
construct a matrix W such that

W, Vil Y21 --- YN
W — Wz _ y1',2 y?,2 e y]w (6.23)
Wn Yin Ya.n cee YNn

where each element y;; is the value of y; sampled at time ¢;. Then the phase space recon-

struction V is given by

W, Wiir o Wi,
w W, o Wi,
V= - . oy (6.24)
W.—o-1yr  Wa_p—2)r ... W,

The recurrence plot RP is calculated as in RQA.

We first estimated the optimal time delay 7, embedding dimension D, and radius €
parameters for each group, with data for all team members considered jointly (i.e., as a
matrix Yy where N was the number of channels x the number of participants in the group).
Parameters were estimated separately for two sets of channels: the set of all eight EEG
channels and the subset of five channels (Fz, Oz, PO7, Pz, POS8) used for the individual
analyses above.

The time delay and embedding dimension were estimated using the procedure outlined
in [351] and the associated MATLAB code®. First, the optimal delay was estimated via
the mdDelay function by calculating the average (auto) mutual information (AMI) between
the data Y and a copy of itself lagged by a particular value of 7. This procedure was
repeated for 7 = 1,... maxLag, with the value for 7 minimizing AMI chosen as the optimal
delay. Due to the large size of our data, we used mdDelay argument values maxLag = 1,000,
numBins = 100, and criterion = ‘localMin’, where maxLag is the maximum lag tested,
numBins is the number of bins used for the AMI calculation, and criterion is the optimality
criterion.

https://github.com/danmOnster/mdembedding
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Second, the optimal embedding dimension was estimated using the mdFnn function, which
determines the percentage of “false nearest neighbors” resulting from possible values of
D. The general idea is that an embedding is sufficient if subsequent embedding in higher
dimensions does not appreciably alter the relative distances between points in the phase
space; if the distances between a point and its nearest neighbor changes by greater than
some tolerance when embedded to a higher dimension, or is greater than some absolute
threshold, the neighbor is labeled false. The first value of D such that the percentage of false
nearest neighbors is zero, or else plateaus to some value, is the optimum. For our dataset,
the optimal value of D was 1 for all groups, indicating that the dimensionality of our data
was already high enough to sufficiently capture the higher-order dynamics of the system,
and that no time-delayed embedding was necessary.

Finally, we estimated the optimal radius €, a non-trivial process for our dataset. The
prevailing guidance in much of the existing literature is to select a radius such that the
recurrence rate is “small” and the dynamics of the system are visible in the recurrence plot,
and provide some rules of thumb for doing so—[358] recommends the recurrence rate be kept
from 0.1 to 2%; [350] recommends it be 1 to 5%, but states that some stochastic time series
might warrant higher values; and [59] recommends choosing a radius yielding a recurrence
rate from 2 to 5%, but also notes that the choice of radius must be tailored to the particular
dataset being analyzed, as each has its own idiosyncrasies. However, as recurrences can be
meaningful at various distance scales in the phase space, we adopted a more data-driven
approach used by Yang et al.[370].

The idea is to choose the radius that provides the best discrimination between our real
data and surrogate data with comparable spectral qualities with respect to the recurrence
metric of interest. This assures that the recurrence dynamics observed are caused by the
true underlying dynamics of the system, rather than noise or artifacts. This optimization
procedure was performed with R using the wsyn and ParBayesianOptimization packages,
as well as a modified version of the crqa package able to leverage multiprocessing to more
efficiently calculate the recurrence metrics of our large dataset (specifically regarding the
calculation of pairwise distances, which requires O(n?) memory). We first construct a col-
lection of N phase-randomized surrogates, using the amplitude-adjusted Fourier transform
method [296] implemented by the surrog function in wsyn (which does not require the data
to be normally distributed). A surrogate that is phase-randomized has the same PSD as the
original signal with the phase component of its frequency domain representation randomized,
destroying its time-varying structure. All channels of the original data and its surrogates
were then z-scored, and the maximum pairwise distance of the z-scored original data was
calculated; this distance was subsequently used to rescale the distance matrix for all calcula-
tions of the recurrence rate. Finally, we implemented an optimization routine to determine

the optimal radius, using the Taguchi quality loss function from [370] as our scoring function.
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Considering a quality characteristic represented by Y

Y = ’QSurro - QOri‘a (625)

where Qsuro 18 the recurrence rate from surrogate data and QQo,; is the recurrence rate from
original data.
The loss L(y) incurred for a given value Y = y is given by

QLF = KV (6.26)

1 n
Vi = — § )2 = o? 2 6.27
T n & (?J ) Oy + My ( )

where 0% and p2- are the variance and mean of y. The optimal radius is the value which
maximizes the loss function QLF, maximally discriminating the original data from the surro-
gate data. Here K is a constant representing cost; we used a value of 100. For a given value
of the radius, a the recurrence rate QQsuro for each surrogate and (Qo,; for the original data
are calculated. Rather than calculate the recurrence rate using all data points, we used a
sampling approach to reduce the computational resources required; for the original data and
each surrogate, the mean recurrence rate from 60 randomly selected 30-second windows was
used for Qoy; and each Qsuro. This scoring function was then used to find the optimal radius
via Bayesian optimization, as implemented the in ParBayesianOptimization package.

Finally, once the optimal values for the delay 7, embedding dimension D, and radius €
were obtained, we used these values to calculate recurrence rates for successive 30-s windows
(with 15-s overlap) for each group. As in the optimization procedure above, first the channels
of entire dataset for each group were z-scored, then the maximum pairwise distance was
calculated, and subsequently used as a scaling constant for the distance matrix of each
window. This procedure was performed using all eight channels and the subset of five
channels (Fz, Oz, PO7, Pz, POS8) used for the individual analyses above, resulting in two
recurrence rate time series per group (one per channel set).

6.3.6 Analyzing the Relationship Between Individual and Team
Metrics

We employed several methods to examine the relationships between the different behavioral
and neural metrics described above. As the vast majority of our analyses return time series
data, we used several techniques suitable for comparing multiple time series. We used dy-
namic time warping distance and similarity to compare the individual neural metrics (TLI
and TEI) of participants within each group, as well as to determine the relationship between

each participant’s individual neural metrics with the team’s group level neural metrics. We
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used cross-correlation and sliding window correlation to additionally these metrics to our
measures of team processes, as well as linear and decision tree regression to examine the
relationships both among continuous measures as well as between these measures and team
design scores.

Dynamic Time Warping

Dynamic time warping (DTW) is an an elastic method for comparing two sequences. In
contrast to pointwise distance metrics such as Euclidean distance, which require one-to-one
correspondence between sequences of equal length, elastic distance metrics allow for many-
to-one mappings between sequences of potentially different lengths by warping them along
the time axis, aligning each point with its most similar neighbor in a local window [169].

We used functions provided by the DTAIDistance Python library to calculate DTW
distance for our analysis [229]. DTAIDistance first calculates the Euclidean distance between
each pair of data points. It then generates a warping path, a mapping of alignments showing
which point of the first time series is aligned with which point of the second series. This can
be used to take a closer look at temporal differences between the two time series, and can be
especially useful if the lag or difference between the two series varies over time. In all cases,
we provide z-scored input sequences, and restrict the search for each point’s optimal match
to a window of three adjacent points.

In addition to the DTW distances, DTAIDistance can calculate a similarity measure for
the analyzed time series, which enhances interpretability. This is accomplished by mapping
the DTW distance values on the interval [0,00) to similarity scores on the interval [1,0),
i.e., DTWym = e~ P, where D is the DTW distance. Note that this mapping is non-linear; if
comparing to the same target signal, the relative difference between time series with scores
of 0.8 and 0.9 is smaller than that of series with scores of 0.2 and 0.3. Thus the similarity
score magnifies relative differences between signals closer to the target than those farther
away.

We calculated the DTW Distance between each individual index for each individual
participant and each of the group measures.

Cross-Correlation

In addition to the DTW Distance, we also calculated the normalized cross-correlation for each
of the individual indices and the group measures. Cross-correlation is a measure of similarity
between two time series as a function of their relative displacement to one another. It can
be considered a “sliding inner product”; for two signals z and y each of length n, the cross-
correlation between x and y at lag any lag m € [—n, n| is the inner product between x lagged
by m and the original non-lagged signal y. The result is a list of correlation coefficients for
each possible lag, with the cross-correlation at lag 0 equivalent to the Pearson correlation.
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Analogous to Pearson correlation coefficients, values for the correlation coefficients from

cross-correlation are bound between -1 and 1.

Sliding Window Correlation

Due to the long length of the data collected from our experiment sessions, which each contain
several thousand data points per participant even after processing, it is unlikely that any of
the derived measures would be perfectly correlated. Thus we also employed sliding window
correlation for each of the individual and the group measures.

Windowed correlation calculates the Pearson correlation on smaller windows that are
slid over the time series, which increases our likelihood of identifying possible subsequences
with high correlation. We used a window size of 5 min with a 2.5 min overlap, unless
otherwise indicated. Most of our analyses were already windowed to 30-second windows
with a 15-second overlap, so this larger window was chosen to get at least 10 data points per
window and increase the chance of getting a statistically relevant result. The 50% overlap
was chosen to be in line with the windowing of the other analyses. We report the mean

correlation coefficient across all windows unless otherwise specified.

Linear Regression Analysis

We also conducted regression analyses in addition to the correlation analyses above. Regres-
sion analysis is appropriate for examining how one or more independent variables affect a
dependent variable, making it well-suited for exploring the relationship between our different
neural measures and the multiple dimensions of team processes extracted through the text
analysis.

For our analysis, we used the ordinary least squares linear regressor provided by
scikit-learn [263] using default parameters. We used the coefficient of determination, or
r2, value to evaluate the goodness of fit of our models. The r? value indicates how much the
variation in the dependent variables predicted by the model is explainable by the independent
variables.

Decision Tree Regression

In addition to linear regression, we used decision tree regression, a method that is more
adaptable to multiple different independent variables. As with the linear regression, we used
the Decision Tree Regressor provided by scikit-learn [263]. We initialized the regressor
with the maximum tree depth set to 3, minimum samples per split set to 10 and the minimum
samples per leaf node to 5. These parameters were chosen to reduce the chance of overfitting
on the data, according to the scikit-learn documentation. The settings were the same for
all evaluations to keep comparability between the different indices and group measures. As
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with the linear regression, we based our evaluation on the r? results. We also examine the
coefficients of the decision trees and the tree structure to take a closer look at the impact of
the different input variables.

6.4 Results

In this section we outline findings from our analyses exploring the relationships between
neural measures of individual and team dynamics during collaboration, as well as their
respective relationships with team performance and behavior.

Due to the richness of our dataset and the large number of derived metrics, analysis is
still ongoing, and several planned analyses are incomplete at the time of writing—we discuss
these further in Section 6.5. Specifically, analyses examining results from the PMERQ as
well as the driver-empath model and WTC metrics for team brain dynamics were omitted
from this section, though they are described earlier.

6.4.1 Relationship Between Individual and Group Neural Mea-

sures

To examine how individual-level EEG measures relate to group-level synchrony metrics, we
compared Task Engagement (TEI) and Task Load (TLI) indices to both mutual information
(MI) and MdRQA recurrence rate (RR). To enable direct comparison, we re-windowed the
individual indices using 30-second windows with 15-second overlap, matching the group
measures.

Dynamic Time Warping (DTW) distance analyses showed that, for TEI, most groups
exhibited lower distances to MARQA than to MI (mean 12.8 and 14.2, respectively) and
higher similarity (mean .44 and .49, respectively), indicating a closer alignment between
individual engagement and group recurrence patterns. This trend was present in 10 of 12
groups, and was statistically significant in a paired t-test (¢(40) = —4.36, p < .001). For
TLI, no consistent pattern emerged.

Cross-correlation analyses further supported a link between TEI and MdRQA. Many
participants showed modest positive correlations (r > 0.2) within a +5-lag window, with
some reaching above 0.5. A corresponding negative correlation between TEI and MI was
observed in several cases, though not universally. For TLI, results were more variable, with
no consistent pattern across participants.

Together, these results suggest that individual engagement, as measured by TEI, may
be more strongly associated with group recurrence than mutual information—though the
observed relationships are modest (average r =~ .23) and should be interpreted cautiously.
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6.4.2 Influences on Team Performance

The distribution of escape room design scores across all groups is shown in Figure 6.2.
Overall, team performance varied considerably, with scores ranging from 49.5 to 93.5 out of
a possible maximum of 100 (M = 74.8, SD = 14.1). While there were some groups at the
extreme ranges of performance, with two groups each in the highest and lowest bins, most
groups performed modestly well, reaching scores of ~ 75 or above.

Total Score Distribution
4.5

# Groups

[49.5, 59.6] (59.6, 69.7] (69.7, 79.8] (79.8, 89.9] (89.9, 100]

Total Score

Figure 6.2: Distribution of scores for escape room designs. Scores were grouped into five
equal-width bins, ranging from the minimum score (49.5) to the largest possible score (100).
The largest score received by any group was 93.5.

Here we discuss the influences of team composition and team processes on the scores for

each group’s escape room designs.

Impact of Prior Escape Room Familiarity on Team Performance

Although all participants were briefed prior to the task so they would have a baseline fa-
miliarity with generative Al and virtual escape rooms, that did not preclude participants
from already having some familiarity prior to the experiment. We assessed each participant’s
familiarity with escape rooms before their experiment session to determine whether it had
an impact on team performance; an overview for each group is shown in Figure 6.3.

The design scores for each group and each participant’s prior familiarity with escape
rooms are provided in Figure 6.4. Familiarity levels could range from (1 - Not at all familiar)
to (4 - Very familiar), as in Section 6.2.2, and are listed for each participant (P1 or P2) at
each study location (Location 1 - WPI or Location 2 - UniBremen) in the final four columns

of the figure.
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Team Escape Room Familiarity
4.5

3.5

1

0.5

w

N

Escape Room Familiarity

Group

Figure 6.3: Box and whisker plots for each group showing team members’ prior familiarity
with escape rooms.

We had initially assumed that teams which had one or more members who were “Very
familiar” with escape room games would score higher than teams with a lower familiarity,
with members who had higher familiarity providing guidance and leadership for those with
less. However, this did not bear out in our data: while the a team with the highest familiarity
(a value of 4) achieved the highest score and the team with the lowest familiarity (a score of 2)
achieved the lowest score, there was no clear consistent relationship between prior familiarity
and team performance on the task. This is further illustrated in Figure 6.5, which shows
that teams with a maximum familiarity of 3 or 4 achieved a similar range of scores. Indeed,
Group 5 was one of the lowest scoring teams, despite having a mean familiarity of 3.7, while
Group 3 achieved the second-highest score despite a relatively low mean familiarity of 2.

The absence of a strong relationship is supported by a relatively low Pearson correlation
of r = .25 between a team’s maximum escape room familiarity and the score of their design.
Fitting a linear regression model to predict design score as a function of maximum famil-
iarity and mean familiarity yielded values of r? = .09 and r? = .006, respectively, further
corroborating the minimal effect of prior familiarity with escape room familiarity on team
performance.

An additional point of observation is the mediating impact of participant location on
familiarity with escape rooms, with participants at L1 having a mean familiarity of 2.8 and
participants in L2 having a mean familiarity of 2.1. This is likely indicative of cultural
differences in the prevalence of or exposure to escape rooms at each of the study locations.
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Escape Room Familiarity

Group Total Score Location 1 Location 2
P1 P2 P1 P2

1 93.5 4 3 2 2
2 61.25 2 3 2 2
3 91.75 2 2 3 1
4 74.5 3 1 3 2
5 50.5 4 4 3
6 88.75 3 3 2 1
7 71.5 2 3 2 2
8 80.5 4 2 3 3
9 73.75 4 3 1

10 49.5 2 2 1

11 85 2 3 1

12 77.5 3 3 2 4

Figure 6.4: Escape room design scores and prior familiarity with escape rooms for all groups.
Design scores could range from 0 to 100, and are color-coded based on the minimum and
maximum scores that were achieved—49.5 (the minimum) maps to red, and 93.5 (the maxi-
mum) maps to green, with intermediate values interpolated. Familiarity levels are provided
for each participant (P1 or P2) at each study location (Location 1 - WPI or Location 2 -
UniBremen) in the final four columns: 1 - Not at all familiar; 2 - Somewhat familiar; 3 -
Moderately familiar; 4 - Very familiar. Values are likewise color-coded, with 1 mapping to
red and 4 mapping to green. Blank cells indicate groups with fewer participants.

Relationship Between Team Performance and Levels of Team Processes

To explore whether team communication patterns were related to design outcomes, we exam-
ined the relationship between escape room design scores and the three higher-order team pro-
cess dimensions from Marks et al.’s taxonomy outlined in Section 6.3.3: transition processes
(mission analysis, goal specification, strategy formulation); action processes (goal monitoring,
team monitoring, systems monitoring, coordination); and interpersonal processes (conflict
management, motivation building, affect management). For each group, counts of utterances
in each category were summed across the task duration (see Table 6.4 and Figure 6.6).

When computing Pearson correlations across all 11 groups with transcripts (Table 6.5),
we observed a strong negative relationship between interpersonal processes and team perfor-
mance (r = —.62), as well as a moderately negative correlation between transition processes
and performance (r = —.47). These findings suggest that higher frequencies of interpersonal
and planning-related communication may be associated with lower design scores for our task.
However, these results appear to be strongly influenced by two statistical outliers: Group 3,
which communicated relatively little but achieved a high score, and Group 5, which showed
high overall communication but performed poorly.

To assess the robustness of these correlations, we repeated the analysis with Groups 3

107



Scores by Escape Room Familiarity

100
90
80
70
60
50
40
30
20
10

Total Score

4 3 2

Max Escape Room Familiarity

Figure 6.5: Box and whisker plots illustrating the relationship between design scores and the
maximum prior familiarity with escape rooms for each team.

and 5 excluded. This adjustment substantially weakened the negative correlations for the in-
terpersonal (r = —.24) and transition (r = —.17) process dimensions. Interestingly, the cor-
relation between action processes and performance shifted from slightly negative (r = —.12)
to moderately positive (r = .53), suggesting that task-focused communication such as co-
ordination and monitoring may support higher performance, while excessive planning or
interpersonal negotiation could potentially hinder progress under time-constrained condi-
tions.

These results do indicate that team processes play a role in governing team performance
during collaboration, corroborating prior work. However, due to our small sample size and
the potential influence of outliers, these results should be interpreted with caution. Further
study with a larger sample is likely necessary for more robust conclusions. Furthermore,
while team processes are correlated with performance, the nuances of these relationships are
unclear. The negative association between interpersonal processes and performance, for in-
stance, might indicate that teams achieve lower performance because of their levels of these
processes, or that teams which, e.g., felt time pressure more acutely or had members with in-
compatible personalities were likely to require more frequent conflict and affect management,
and also exhibit lower performance. It is unknown whether our findings reflect phenomena
specific to our task or collaboration more generally.

The fact that the relationship changes drastically with the removal of two outliers suggests
that important aspects of collaboration during our task may be unaccounted for. Since our
current analysis is largely restricted to examining team processes as they emerge through
verbal communication, future analyses will also examine nonverbal interactions and their
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Table 6.4: Counts of the utterances for each higher-order dimension of Marks et al.’s taxon-
omy of team processes [218] and escape room design scores for each group. Utterances were
summed across group members for each category; the total number of such utterances for
all group members is shown in the “Total” column.

Group Transition Action Interpersonal Total Score

1 530 684 986 2688 93.5
2 594 578 1142 2834  61.25
3 178 246 344 878 91.75
4 288 358 614 1546 74.5
3 972 764 1482 3328 50.5
6 430 656 696 2232 88.75
7 544 394 854 2346 71.5
8 362 606 720 2050 80.5
9 330 480 996 2198  73.75
10 426 366 798 1842 49.5
12 306 378 678 1534 85

Table 6.5: Pearson correlation between higher-order team process dimensions and design
scores.

Transition Action Interpersonal Total

All Groups -.48 -.12 -.62 -.45
No Outliers =17 .53 -.24 .05

relationship with performance and team processes.

6.4.3 Relationships Between Individual Neural Measures and Be-

havior

While we will devote more focus to the relationships between group measures in this chapter,
we summarize results exploring the relationship between individual neural measures and

behavioral measures here to provide a full picture.

Relationship Between Individual Neural Indices and Team Performance

Building on our earlier analysis of team performance, we next examined whether neural
indices of task engagement and cognitive load measured from the brain activity of individual
participants were related to the quality of the escape room designs produced by each group.
Specifically, we computed mean values for the Task Engagement Index (TEI) and Task Load
Index (TLI) across the duration of the task for each participant, and then averaged these
within groups to obtain group-level TEI and TLI values.
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Figure 6.6: Counts of higher-order team process dimensions per group.

We first assessed correlations between each index and the groups’ design scores. Both
indices showed small but positive associations with design quality, with TLI (r = .34) showing
a slightly stronger relationship than TEI (r = .26). These results suggest a modest link
between increased cognitive demand and higher design performance, potentially indicating
that more cognitively active teams engaged more deeply with the task.

To further explore predictive relationships, we conducted regression analyses using both
linear and decision tree models (Figure 6.7). Across models, TEI and TLI outperformed
measures of prior experience (e.g., average or maximum escape room familiarity) in predicting
design scores for at least one of the regression techniques. The strongest individual predictor
was TEI, with a decision tree 72 of .13. When both indices were combined, the linear model
showed modest improvement (r? = .11), while the decision tree result remained unchanged.

Incorporating maximum prior experience into the model yielded a further increase in
predictive accuracy, particularly in the linear regression, where the combined model (TEI +

2 value of .18. By contrast, average prior expe-

TLI + maximum experience) reached an r
rience continued to show little predictive value. These findings suggest that both cognitive
activation during the task and the presence of at least one experienced group member may
play a role in successful design outcomes, although the overall explanatory power remains
limited.

Taken together, while no strong predictive relationship emerged, the results point to a
small but consistent role for cognitive engagement and task load in shaping collaborative cre-
ative performance. These findings complement earlier behavioral analyses by suggesting that
more cognitively involved teams may be better positioned to generate high-quality designs

under time constraints, though again, more data is necessary for definitive conclusions.
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Figure 6.7: r? values from regression analyses modeling escape room design scores as a
function of individual EEG indices and prior familiarity with escape rooms.

Relationship Between Individual Neural Measures and Levels of Team Processes

While uncovering a link between EEG indices and team performance could be useful for
monitoring or evaluating team performance and progress during creative collaboration, un-
covering relationships with team processes could prove even more useful, as they provide a
more holistic picture of team function and dynamics. To explore this possibility, we followed
the same procedure as our prior analysis from Section 6.4.2 investigating the relationship
between design scores and levels of team processes.

Neural Indices and Team Processes Using windowed correlation and regression anal-
yses, we compared TEI and TLI to transition, action, and interpersonal team process cate-
gories. Correlations across individual participants were generally weak, with most near zero
and only a few exceeding +.2. Regression models offered clearer insight: decision tree regres-
sors consistently outperformed linear models (Figures 6.8 and 6.9), with group-level r? values
ranging from .15-.25 for TEI and .12-.22 for TLI. Interpersonal processes emerged most fre-
quently as predictors of TEI, while TLI had a more evenly distributed set of predictors
(Tables 6.6 and 6.7).

At the team level, we observed modest negative correlations between average TLI and
overall team processes, strongest for transition processes (r = —0.39; Table 6.8)). Removing
outlier teams reduced these effects, suggesting sensitivity to group composition (Table 6.9).
Taking the trends at face value would seem to suggest that increased levels of communi-
cation and planning among the team lead to reduced workload. However, further analysis
of nonverbal coordination and interaction between team members is necessary for a fuller
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Table 6.6: TEI decision tree regression coefficients for higher-order team process dimensions.

Overall Teamwork Transition Action Interpersonal

Times Picked 4 6 8 15

Avg Coef 16 A8 27 40

Max 7?2 42 45 .30 A7

Mean 7?2 .26 .26 17 22
picture.

Frequency Bands and Team Processes We also evaluated how EEG frequency bands
(theta, alpha, and beta) related to team processes (Figures 6.10, 6.11, and 6.12). Beta band
features yielded the highest predictive accuracy across models (r?=.23 for decision trees),
slightly outperforming TEI and TLI. While beta activity was evenly associated across team
processes, theta and alpha bands were more closely linked to interpersonal dynamics.

Regression results further indicated that alpha and beta activity were best predicted by
action processes (mean r? = .29 and mean r? = .27, respectively), and theta by interper-
sonal processes (r?=.25) (Tables 6.10, 6.11, and 6.12). Out of all three frequency bands,
beta activity had the highest mean 72 value (r? = .25) for overall team processes, in line
with earlier results for TEL

Taken together, these analyses had limited predictive power, and do not indicate there
was a strong overall relationship between the neural indices and team processes. The most
prominent relationship was a moderate negative correlation between TLI and transition pro-
cesses, with a comparable negative correlation with overall teamwork, which could indicate
engaging in early planning and goal setting result in lower team workload, but further inves-
tigation is necessary to substantiate this. Regression models also suggest similar moderate
relationship between team communication and beta band activity, which are plausible given
beta activity is associated with active thinking and concentration. The differences in 72
values between the regression models of the frequency bands additionally indicate that the
power of different frequency bands could be more responsive to different team processes,

though the relationship is modest and varies between groups.

6.4.4 Relationships Between Group Neural Measures and Behav-

10r

In this section, we explore the relationships between team behavior and the collective brain
dynamics of team members. Due to the size of our dataset and time constraints, we only
include the recurrence rate (RR) from MdRQA and mutual information (MI) as our group
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Table 6.7: TLI decision tree regression coefficients for higher-order team process dimensions.

Overall Teamwork Transition Action Interpersonal

Times Picked 7 8 9 9

Avg Coef 22 25 28 .26
Max r? 31 .38 .26 32
Mean r? 21 19 15 18

Table 6.8: Pearson correlation between higher-order team process dimensions and mean
individual neural measures (all groups).

Transition Action Interpersonal Total

TEI -.16 -.25 -.12 -.22
TLI -.39 -.25 -.19 -.32

Table 6.9: Pearson correlation between higher-order team process dimensions and mean
individual neural measures (outliers removed).

Transition Action Interpersonal Total

TEI .002 -.12 13 -.06
TLI -.13 -.002 .16 -.04

Table 6.10: Theta band decision tree regression coefficients for higher-order team process
dimensions.

Overall Teamwork Transition Action Interpersonal

Times Picked 5 9 7 12
Avg Coef .20 .25 .24 31
Max 72 .28 .29 .30 .0l
Mean 72 15 18 .20 .25

Table 6.11: Alpha band decision tree regression coefficients for higher-order team process
dimensions.

Overall Teamwork Transition Action Interpersonal

Times Picked 6 5 8 14
Avg Coef 18 21 .25 .36
Max r2 .26 .24 .46 AT
Mean r2 .22 .13 .29 .20
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Reression Analysis: Text Analysis - Task Engagement Index
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Figure 6.8: Regression modeling TEI as a function of higher-order team process dimensions
for each individual per group. Error bars show the maximum and minimum r? values within
a group.

Table 6.12: Beta band decision tree regression coefficients for higher-order team process
dimensions.

Overall Teamwork Transition Action Interpersonal

Times Picked 8 7 10 8

Avg Coef 19 .25 .29 27
Max r? .35 34 Y 45
Mean 7?2 .25 18 27 .22

brain measures here; additional analyses incorporating wavelet transform coherence and the
driver-empath model are left for future work.

Relationship Between Group Neural Measures and Team Performance

To assess whether group-based neural synchrony measures related to team performance,
we analyzed correlations between escape room design scores and the summary statistics
(minimum, maximum, mean, and standard deviation) of the MI and RR values for each
group values. Of the two, MI exhibited stronger associations with design outcomes. The
highest correlation was observed for minimum MI values (r = .31), followed by the standard
deviation of MI (r = —.29), and mean MI (r = .22). In contrast, recurrence rate showed a
minimal relationship with design quality, with all correlation coefficients below 0.1.
Regression analyses reflected similar patterns. Among all predictors, the standard devia-
tion of MI yielded the strongest predictive performance, with an r? of .087 in a linear model
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Reression Analysis: Text Analysis - Task Load Index
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Figure 6.9: Regression modeling TLI as a function of higher-order team process dimensions
for each individual per group. Error bars show the maximum and minimum r? values within
a group.

and .16 using a decision tree. MARQA values again showed negligible predictive power.

While results suggest a weak relationship between group-level MI and collaborative design
quality, these effects are small and should be interpreted cautiously. Given the limited sample
size (n = 12), further research with larger datasets is needed to determine whether these
patterns hold more broadly.

Relationship Between Group Neural Measures and Levels of Team Processes

To explore how group-level neural synchrony relates to team communication dynamics, we
applied the same analysis methods as with the individual neural measures. We first per-
formed windowed correlation to measure the similarity of the measures, then created linear
and decision tree regression models to predict MI and RR values based on higher-order team
process dimensions. Both measures were already computed using the same 30-second sliding
window with 15-second overlap as the team process time series, so no additional alignment
was required.

Correlation analyses showed minimal direct relationships between team processes and
group synchrony. MARQA RR coefficients ranged from -0.083 to 0.022, while MI correlations
were similarly low and consistent across dimensions (-0.058 to -0.051). Regression models,
however, yielded modest predictive performance. For RR, the average r? was 0.061 (linear)
and 0.16 (decision tree), with Group 7 achieving the highest accuracy (r = .27) (Figure 6.13).
For MI, average 72 values were .058 (linear) and .15 (decision tree), with Group 3 reaching
the top result (r? = .22) (Figure 6.14).
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Reression Analysis: Text Analysis - Theta Frquency Band
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Figure 6.10: Regression modeling theta band power as a function of higher-order team pro-
cess dimensions for each individual per group. Error bars show the maximum and minimum
r? values within a group.

Table 6.13: Pearson correlation between higher-order team process dimensions and mean
group neural measures.

Transition Action Interpersonal Total

MdRQA -.18 -.045 -.38 -.27
MI .054 5l 018 18

We also examined relationships between overall synchrony and team processes by corre-
lating group mean MI and MdRQA RR values with total utterances in each team process
category. Two strong relationships emerged: a negative correlation between mean recurrence
rate and interpersonal processes (r = —.38), and a positive correlation between mean MI and
action processes (r = .51) (Table 6.13). After removing outlier groups (3 and 5), these effects
strengthened considerably (r = —.64 with p = .06 and r = .78 with p < .05, respectively),
representing the strongest observed correlations in the study (Table 6.14).

These findings suggest that higher inter-brain recurrence may be linked to reduced inter-
personal dialogue form managing conflict, emotions, and motivation, while increased mutual
information is associated with task-oriented coordination. While exploratory, these patterns
represent highly promising results, corroborating findings from prior work linking RR and
MI with collaborative behavior at the group level.
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Reression Analysis: Text Analysis - Alpha Frequency Band
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Figure 6.11: Regression modeling alpha band power as a function of higher-order team pro-

cess dimensions for each individual per group. Error bars show the maximum and minimum
r? values within a group.

Table 6.14: Pearson correlation between higher-order team process dimensions and mean
group neural measures (outliers removed).

Transition Action Interpersonal Total

MdRQA -21 -0.016 -.64 -39
MI -.007 76 099 29

Reression Analysis: Text Analysis - Beta Frequency Band
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Figure 6.12: Regression modeling beta band power as a function of higher-order team process

dimensions for each individual per group. Error bars show the maximum and minimum 7?2
values within a group.
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Reression Analysis: Text Analysis - MdARQA
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Figure 6.13: Regression modeling MARQA recurrence rate as a function of higher-order team
process dimensions for each individual per group.
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Figure 6.14: Regression modeling mutual information (MI) as a function of higher-order
team process dimensions for each individual per group.
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6.5 Discussion

Although our analysis is ongoing and largely exploratory, we nonetheless uncovered several
promising findings to which we can direct further attention.

Our first research question asked what relationship, if any, exists between neural measures
of individual, internal states and neural measures of joint interpersonal states. Of our two
individual measures, we found that the task engagement index (TEI) was significantly more
closely related to the recurrence rate from MdRQA than mutual information, while the task
load index (TLI) exhibited no clear relationship. One of the major distinguishing factors
between the two indices is the influence of beta band activity on TEI (TEI = ai—&—é and
TLI = g) While the cross-correlation between TEI and recurrence was modest, its existence
across participants in several groups suggests that the group recurrence rate reflects patterns
of cognitive engagement among group members.

Corroborating the existence of some relationship is the fact that beta activity has been
used jointly with recurrence features in prior work classifying EEG signals [253, 372], most
directly with recurrence rate for classifying cognitive effort [232]. Despite the existence of
this work, we did not find research describing the specific nature of a relationship between
recurrence rate and beta activity or recurrence rate and engagement. Future work could
explore this further; it remains to be seen whether beta activity drives recurrence, or whether
this relationship arises from collaboration or from other factors.

Our second research question focused on examining the relationships between neural
measures and behavioral measures during collaboration, including performance and team
processes. We generally observed weak to moderate relationships between our variables of
interest, though there were some notable exceptions.

There was no clear relationship between prior familiarity with escape rooms and team
performance, counter to our initial expectations. We initially assumed team members who
had the most expertise—those who had been to many escape rooms, played escape room
games, or took classes designing escape room experiences—would be able to provide guidance
to the rest of their teammates and ultimately achieve high scores. In actuality, merely having
expertise was not enough—in our observation of participants, it became clear that expert
team members needed to be willing to take a leadership role offering guidance, and their other
team members needed to be receptive to it, in order for it to be useful. Regression models
additionally considering the individual neural indices (TEI and TLI) were modestly better
predictors of performance, though still not robust. Considering group measures, mutual
information was moderately correlated with team design scores, which could corroborate
prior work by Stevens & Gallway [315] relating mutual information to problem-solving during
collaboration. However, all of our analyses of performance have low reliability because our
predictors were averaged across the duration of the experiment in order to match the number

of available performance observations (i.e., one per group), so relevant temporal information
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is lost.

Arguably more important than performance are the levels of team processes at play dur-
ing collaboration, which can provide a sense of the overall functioning of the team and its
workflow. We did see fairly robust correlations between team performance and levels of team
processes: performance negatively correlated with transition processes (goal specification,
planning) and interpersonal processes (motivation, conflict and affect management), suggest-
ing that excessive planning or disagreement resolution can be detrimental to performance.
After removing data for outlier groups who communicated the least and the most (Groups 3
and 5), action processes (coordinating, monitoring progress) were also positively correlated
with performance, which indicates task-focused communication can support higher perfor-
mance. However, the sensitivity of these relationships to outliers (causing a sharp positive
adjustment in the correlation coefficients) supports the need for augmenting our understand-
ing of team processes with data describing nonverbal interactions to get a more complete
understanding. The fact that Group 3 was one of the highest scoring teams but had the
lowest level of process-relevant speech, while Group 5 exhibited the opposite relationship,
suggests that other factors in addition to speech are relevant to team performance. We plan
to investigate these factors in subsequent analyses.

We observed generally weak relationships between the individual neural indices and levels
of team processes across regression and correlation analyses, with the exception of a moderate
negative correlation between TLI and transition processes as well as overall process-relevant
communication prior to the removal of outliers. It is possible this indicates that engaging in
early planning and goal setting results in reduced workload over the course of collaboration,
but further data is needed for a robust assertion.

Additionally, theta, alpha, and beta activity were best predicted by different team pro-
cesses, with alpha and beta most closely related to action processes and theta related to
interpersonal processes. The fact that different frequency bands are related to different team
processes makes sense because of their association with different cognitive functions—beta ac-
tivity is associated with task-related cognitive processing; alpha is associated with relaxation,
and inversely associated with sustained attention and engagement; and theta is associated
with relaxation or emotional processing [121]. Considering interpersonal processes such as
affect management or conflict management might require emotional processing, and action
processes such as coordination or systems monitoring might require changes in attention and
cognitive effort, one would expect an association with the frequency bands indicative of these
necessary cognitive and emotional processes. The fact that the raw frequency bands were
more related to team processes than the composite TEI and TEI measures, which contain
contributions from multiple frequency bands, may be interesting to explore further.

Finally, although the group neural measures did not have strong relationships with team
processes when all group data was considered in regression and correlation analyses, repeating

the correlation analysis between the group mean the neural measures and the total levels of
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each team process for per group—and thus eliminating the temporal characteristics of the
data—ryielded our most robust relationships, which were further bolstered upon the removal
of outliers. Mutual information was strongly correlated with action processes, supporting
prior work from Stevens & Gallway [315], who observed increased mutual information and
decreased symbolic entropy in team member EEG recordings during periods of problem-
solving. Similarly, recurrence rate was strongly negatively correlated with interpersonal
processes, mirroring findings from Eloy et al. [85], who found a negative relationship between
recurrence rate and all team process dimensions in fNIRS recordings of dyads performing a
collaborative task. While the negative association may seem surprising, Eloy et al. report
that such decreased regularity in physiological and behavioral signals can yield increases in
performance and other facets of collaboration. Teams that revisit or remain in the same
state, and get “stuck,” while teams with more irregular dynamics are more adaptive. In
our study, these more adaptive teams may have spent less time resolving conflicts about
aspects of their designs, reflecting their levels of interpersonal processes. The fact that our
data can replicate these prior findings indicates that we are able to detect collective brain
dynamics relevant to collaboration in the context of our experiment, which shows promise
for the development of a BCI system able to leverage these processes.

This result is also interesting because it arises from an average across time, much like
event-related potentials do in EEG recordings from event-driven studies. Where other similar
studies typically measure team processes or other measures of collaboration quality via self-
report surveys after the task, we took care to preserve as much temporal information as
possible in our study design and recording setup; the ability to respond in real-time to new
information might be a necessary capability for a future BCI support system for teams.
Since a clear relationship exists between group neural measures and team processes in the
aggregate data, but not at the temporal resolution of our time series, it is likely that we will
need to use a larger window size when calculating the group neural measures and levels of
team processes in order to accurately capture these dynamics. We will explore this in future
work.

6.5.1 Limitations and Future Work

The analyses described in this chapter represent first steps toward exploring the relationships
between the brain and behavioral dynamics of team members during collaboration, and
yielded some promising results. Nonetheless, there are still many more aspects of our data
we wish to explore in future work. First among these are the two remaining group neural
measures, the driver-empath model and wavelet transform coherence, which we were unable
to include in our analyses due to time constraints, but would provide another dimension
with which to examine how group neural dynamics relate to team behavior. We also plan
to incorporate analysis of responses to the PMERQ to assess how the emotion regulation
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strategies of team members impacts team performance. Following our discussion above, we
also plan to redo our analyses and compare all measures using different window sizes, to
see whether stronger relationships between team processes and the different neural indices
emerge.

While our analysis of team processes is theoretically grounded, our approach is limited
due to the nature of our task, where a large amount of collaboration between team members
happens non-verbally, either with one another through interaction with the Miro digital
whiteboard, or mediated through interaction with ChatGPT. Measuring team processes
purely through the text from transcripts is inadequate for describing the full breadth of
the interaction context. Drawing from prior work, there are several possible approaches
we can take to capture more information about the non-verbal dimensions of participant
interactions. One straightforward first step is to categorize participant interactions while
they used Miro to document their designs. Adapting the approach from Aytes [15] since it
is applicable to our data, we can classify participant behavior as either parallel (each team
member working separately), interactive (all team members working together on the a single
design element), or scribe (one team member is chosen to document the group’s ideas). It
is also possible to log the object manipulations participants made (i.e., when objects were
created, destroyed, and modified). We can also further investigate how participants used
the AL This could merely be frequency of use [301], or we could develop a coding scheme to
categorize the types of interactions people had [124]—from our observations of participants,
these might be, e.g., asking for ideas for escape room themes, or asking for ideas about
potential puzzles. Finally, we can use participants’ camera recordings to collect data about
their body posture, facial expression, or eye gaze over the course of the experiment [104].

Furthermore, although adequate for initial exploration, our regression analyses are limited
because they only model the data of individuals or groups, rather than taking into account
the whole of the data. It would be more appropriate to model team processes using a
mixed-effects model with participant group as a random effect to account for between-group
differences. This could be further extended to a multi-level model to account for effects
at the individual, group, and population levels. It would also be interesting to explore the
reverse direction of our regression models in this study to model team processes as a function
of different neural measures, rather than the other way around.

Finally, once all the data for this study is analyzed and relationships between all vari-
ables fully established, we plan to conduct a follow-up study where we provide feedback to
participants derived from the brain data that was collected during collaboration, in order to
determine how best to present such feedback to users. We would take note of factors such as
whether users are able to distinguish between others’ feedback and their own, whether they
would change or alter their behavior in response to this feedback, and what narratives they
form about their experiences over the course of interaction. Eventually, we hope to be able

to test a fully operational prototype.
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6.6 Conclusion

This chapter examined the extent to which neural and behavioral signals can reflect the qual-
ity and nature of collaboration in small teams engaged in a creative design task. By analyzing
EEG-derived metrics of individual cognitive states and group-level synchrony alongside de-
tailed observations of team behavior, we identified modest but interpretable links between
neural activity, communication patterns, and collaborative performance. Recurrence and
mutual information measures showed the strongest associations with task-relevant behaviors,
while cognitive load and engagement were modestly predictive of team outcomes. Though
exploratory in nature, these findings provide early evidence that brain-derived signals can
offer meaningful insights into team dynamics. This work serves as a step toward identifying
which types of neural information might be useful for future support systems designed to
enhance team collaboration.
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Chapter 7

BCls for Teamwork: Exploring the
Potential for Brain-Computer
Interfaces in Collaborative Contexts

Abstract

Engaging in collaboration can enable greater efficiency and output than working
individually. However, teams are also vulnerable to process loss, where suboptimal
working environments, member decisions, or group dynamics lead to inefficiencies that
prevent them from reaching their full potential. Recent work has shown that brain
signals recorded via hyperscanning can be used to reliably and non-invasively detect
levels of individual and team processes indicative of whether a team is functioning
effectively. However, to date there are no existing interventions that leverage this
ability to facilitate effective teamwork in collaborative contexts. To explore the needs
and concerns of the various stakeholders that might benefit from such an intervention,
we employed a user-centered approach by engaging with members and leaders of various
teams, and synthesize insights for future designers and developers.

7.1 Introduction

Prior work has shown that collaboration between individuals has the potential to fuel cre-
ative synergy, where new cognitive inputs, the combinations of personality characteristics,
or interaction dynamics can yield a volume, breadth, and fluency of creativity greater than
what would be possible from working alone [191]. However, an increase in creative output as
a result of collaboration is not guaranteed; indeed, several studies have shown that creative
collaboration can result in decreased output, despite the potential gains. Such process loss
can be caused by a number of mechanisms, including groupthink (the tendency of group
members to adopt the majority perspective), social anxiety or apprehension toward shar-
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ing ideas, downward comparison with others, cognitive load, or distraction by other group
members [191, 85, 68, 258, 261]. Thus, while it is possible to have high-performing creative
teams, the appropriate environment, resources, and workflow must be fostered for creative
synergy to occur.

Monitoring and supporting effective cognitive states and team processes can enable sup-
port systems to maximize team potential and mitigate process loss. Such systems work best
when they are unobtrusive and do not impair the team processes of team members, instead
monitoring team dynamics in real-time to facilitate the social and cognitive processes nec-
essary for successful collaboration (coordinating, persuading, planning, etc.) [325, 260]. In
addition to containing information about relevant individual cognitive states such as mind
wandering [202] and workload [13], recent work has shown that brain signals recorded us-
ing functional near-infrared spectroscopy (fNIRS) can be used to reliably detect levels of
these team processes in team members engaged in collaborative problem-solving [85]. fNIRS
recording is non-invasive and robust to motion-induced artifacts, making it useful as input
for a brain-computer interface (BCI) that could serve as a creative support system.

While some existing systems from prior work have been introduced that use BCIs to
enable creative output or provide support for design and ideation [328, 32, 47, 141, 371],
the vast majority have focused on assisting individual users. Very little work has been
done employing brain sensing specifically in the context of group collaboration, and even
less has employed hyperscanning to leverage data from multiple users simultaneously (see
[235] for one example). To date, no general-purpose BCI support tools for collaboration
exist that leverage the relevant phenomena they can sense to assist real-world users, and
the perspectives of relevant stakeholders have not been assessed to inform the development
of one. With the increasing rate of research on brain-computer interfaces in the real-world
275, 310] as well as the commercialization of wearable brain sensing devices (e.g. Neurable
MW?75 Neuro, Mendi, Cognixion Axon-R, OpenBCI Varjo, etc.), it may be possible for team
brain-computer interface tools to become a reality in the near future.

However, proceeding directly with the design and implementation of a system incorpo-
rating user physiological data has several potential risks. There is a chance of creating a
system that users do not find useful, and thus will not want to use; or that the system would
rely on measuring or displaying physiological markers that users may not feel comfortable
sharing with others, such as their level of engagement or workload during team meetings.
It is possible to develop a system both team members and leaders find useful, but has po-
tentially harmful downstream consequences, such as enabling new forms of discrimination
based on brain activity, or allowing employers to tie cognitive metrics to employee perfor-
mance reviews. In order to mitigate these issues and concerns, it is necessary to integrate
user perspectives in the earliest stages of designing the system, before any prototyping takes
place.

Therefore, in this chapter we outline an exploratory study evaluating the needs and
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concerns of stakeholder groups that would be impacted by the introduction of a BCI support
system for collaboration, seeking answers to the following research questions:

1. What unmet (or under-met) needs do stakeholders (team members and team leaders)

have over the course of collaborating?
2. In what ways could a BCI help fulfill these needs?

3. What concerns do stakeholders have about a BCI being used for this purpose, and
what risks do they foresee?

4. How could such risks and adverse impacts be minimized over the course of design and
development?

Specifically, we adapt user-centered approaches employed by Holstein et al. [133] to
assess user needs and develop design requirements for emerging technologies, entailing a
series of design interviews and brainstorming exercises with the members and leaders of

various teams.

7.2 Exploring User Needs: Design Interviews with Team

Members and Leaders

In order to examine stakeholder needs and preferences for working on teams, as well as
regarding the use of technology to assist during collaboration, we employed a user-centered
approach utilizing several different design interviews. Here we outline our study design and
summarize key findings.

7.2.1 Participants

We recruited 11 participants (7 female) that were either members or leaders of teams engaging
in creative collaboration. To avoid unnecessarily restricting perspectives that may ultimately
prove insightful, we use the definition of creativity from Amabile & Pratt [8]: “the production
of novel and useful ideas by an individual or small group of individuals working together.”
This is contrasted with innovation, which is “the successful implementation of creative ideas

2

within an organization.” Thus, for the purposes of our study, a team engaging in creative
collaboration is one engaging in any form of creative problem solving; our cohort included
educators, software engineers, a marketing professional, healthcare professionals, student
researchers, a university sports coordinator, and more, several of whom also engaged in
team activities as hobbies. Participant backgrounds are provided in Table 7.1. Recruitment

was conducted via email outreach to potentially eligible participants.
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Table 7.1: Study participants and their respective team backgrounds. Participants marked
with an asterisk (*) were unavailable for the second experiment session.

Participant Background
P1 Graduate student mentoring undergraduate project teams; former officer on
the executive board of university’s graduate student robotics honor society
P2 Former release engineer and program manager for a well-known online retail
company

P3* Chief operating officer of a nonprofit supporting technology companies and the
tech ecosystem more broadly in Massachusetts

P4 School psychologist in the special education department at a large regional
high school
P5 Former estimator/current project engineer for general contracting company

overseeing construction projects in a large metropolitan area; player in a recre-
ational baseball league; singer in a church choir

P6 Part of a team of educators at a university-based center providing professional
development for Pre-K-12 teachers as well as engaging in education research
community outreach

P7 Veteran service representative for the Department of Veterans Affairs; Dun-
geons & Dragons party member/Dungeon Master with a group of friends

P8* Team leader in account management for an advertising technology company

P9 Graduate student mentoring undergraduate project teams, and leader of a

student AR application development team

P10 Director of physical education and athletics at a university

P11* Team member at a concierge health services provider
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7.2.2 Study Design

Adapting the design of Holstein et al. [133], the study consists of three different types of
design interviews, conducted remotely over the course of two Zoom sessions. The procedure
for each session is outlined below.

The first Zoom session consisted of:

1. Generative card sorting with “superpowers” (Part 1): Participants were asked
to consider their roles on any creative teams that they typically engage with, and to
think about and describe the sorts of challenges they face. They were then asked, “If
you could have any superpowers you wanted, to help you accomplish your goals when
working as part of these teams, what would they be?” Participants were instructed to
create sticky notes with their desired superpowers using Miro, an online platform for
visual collaboration, and then sort them based on their relative priority. If this process

inspired new ideas, participants were encouraged to add new notes.

2. Semi-structured interviews: After ranking their superpowers, we conducted semi-
structured interviews with participants in order to better assess their needs for support
and to investigate the role supportive technology could play in providing this support.
Participants were asked to reflect on their experiences on the teams they were a part of,
any challenges they have faced, whether they had used any technologies to overcome
these challenges, and to imagine how a technology that could detect how well teams
were working together could improve their team interactions, assuming it had no limi-
tations. We also asked participants whether they had experience using any generative

AT tools, and what role if any they play in the workflow for their teams.

After responses from the first session were compiled and synthesized, the final design
interview took place in a second Zoom session. Of the 11 participants who completed the
first session, 8 (4 female) were available to participate in the second. The components of the

second session were as follows:

3. Generative card-sorting with “superpowers” (Part 2): Following the initial
sorting, participants were presented with a representative selection of cards based on
responses from the first session (see Section 7.2.3) and asked to rank them as well. If
any of these new superpowers were considered equally important or redundant with
other powers that had been generated, participants were encouraged to align them
vertically to indicate a tie. If the participant did not desire one or more of the new
superpowers, they could be omitted from the ranking.

Once the study was complete, the relative rankings of the superpowers were compared

between each of the participants to explore trends.
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Table 7.2: Results from the superpower card-sorting exercise from the first experiment ses-
sion. Shown are the superpowers which were generated by multiple participants, and were
chosen as most important for at least one. The total frequency of occurrence across all
participants and the frequency of selection as the most important power are provided in the
second and third columns, respectively.

# Total # Most

Superpower Occurrences Important

Slow down time/
infinite time

Mind reading 5t 2
Build trust/

change attitudes g 2

Better communication/
. 6 1

understand perspectives
Cloning 3 1
Super intelligence/ 5 1

memory

4. Speed-dating possible futures: To explore potential concerns and design tensions
arising from the prior session and further probe and evaluate user needs, we presented
storyboards of futuristic scenarios based on the ideas presented during card sorting
and semi-structured interviews. These scenarios were shown to participants in quick
succession in “speed dating,” a design method for rapidly exploring new technology
concepts. The scenarios were designed to probe potential concerns or ethical issues that
could arise if a BCI technology for supporting creative collaboration was implemented
based on ideas and needs raised in the earlier session. Further details are provided in
Section 7.2.5.

7.2.3 Generative Card-Sorting with “Superpowers” to Probe Chal-
lenges Faced by Teams

Initial card-sorting results from the first experiment session are summarized in Table 7.2. In
general, participants desired a way to ensure and keep track of the level of shared under-
standing between team members, as well as ways to motivate and engage the team members
they worked with. Some also focused on the team’s objective performance, indicating they

wanted to increase their own performance or that of team members.
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To ensure that common trends among the superpowers participants generated in the first
session were synthesized into a tractable number of representative powers for the second
session while preserving the breadth of responses, we engaged in a collaborative clustering
approach. First, the we consolidated similar and duplicate superpowers, then generated
further superpowers to clarify participants’ intentions for their chosen superpowers based
on their thinking aloud during the session (i.e., one participant might have chosen “mind
reading” because they wanted to understand the thoughts and intentions of teammates, while
another might have chosen it to know whether misunderstanding or miscommunication had
occurred). Finally, we grouped the new reduced set of superpowers into representative groups
based on their similarity, iterating until agreement was reached on the number of groups and
their composition. Clearly descriptive names for each cluster of superpowers were chosen
as new representative superpowers to use for the second session. In total, 16 representative
superpowers were generated: “Align team effort and output,” “Align team motivation and
attitudes,” “Knowledge of what team members are thinking/feeling,” “Control over external
factors that can limit the team,” “Boost your own skills/abilities,” “Eliminate travel time,”
“Build and maintain relationships with clients/others not on the team,” “Avoid errors,”
“Accomplish more in less time,” “Ability to reduce stress and burnout,” “Understand team
assets and skills,” “Build and maintain trust/camaraderie among the team,” “Know how
the team can be helped and improved,” “Build confidence,” “Transfer knowledge, skills, and
understanding to others,” and “Detect and avoid miscommunication/misunderstanding.”

Results from the second session are summarized in Figure 7.1, which depicts aggregate
pairwise comparisons of the relative importance of the superpowers ranked by participants.
Note that two participants (P5 and P7) completed two different rankings, each with respect
to a different team they were part of, so the maximum possible agreement is 10. Participant
rankings for this portion of the experiment were rather heterogeneous—some participants
ranked all 16 superpowers linearly with little or no ties, some grouped powers into several
columns of one to five powers of equivalent importance, and others chose to make three
or four large sets of groupings; one participant discarded several powers as not applicable
or unimportant, while most others did not discard any. Nonetheless, when viewed as a
whole, it is possible to draw some conclusions about their preferences. In general, the
most important superpowers were those that would enhance knowledge about how a team
is working and how it could be improved (e.g., “Know how the team could be helped and
improved”; “Detect and avoid miscommunication/misunderstanding”; “Transfer knowledge,
skills, and understanding to others”), versus changing specific qualities about the work and
work environment (“Control over external factors that can limit the team”; “Eliminate
travel time”; “Build and maintain relationships with clients/others not on the team”) or
the team (“Align team effort and output”; “Align team motivation and attitudes”; “Build
confidence”).

An interesting phenomenon to note is that the “Ability to avoid errors” was generally seen
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as important, but less important than “Boost your own skills/abilities” (which was considered
of medium importance) compared to preferences for other similarly prioritized superpowers.
Participants who prioritized the ability to avoid errors over boosting their own skills (P2,
P7, P9, P10) tended to emphasize the importance of deliverables and favorable performance
in their line of work, or cared more about the cohesiveness of the team and productive
relationships between team members versus their own individual abilities. Participants who
viewed avoiding errors as less important tended to rank it at or close to the lowest priority;
of these, several noted that making errors could actually be beneficial, because it could allow
team members to learn and grow from their mistakes.

Finally, while it tended not to be the most important consideration, the “Ability to reduce
stress and burnout” was a priority for many participants. Some participants reported feeling
burnt out from their work, and several noted that stress and burnout could result in several
other negative downstream effects for the team, such as reduced motivation and ultimately
reduced productivity.

7.2.4 Semi-Structured Interviews: What Works Well, What Doesn’t,
and How Tech Could Help

We analyzed audio transcripts from interviews using two techniques from Contextual Design
[134]. First, we examined the transcripts through the lens of interpretation sessions, through
which we extracted quotes representing key issues and insights. We then constructed affinity
diagrams using the extracted quotes. An affinity diagram is a multi-level hierarchical clus-
tering method whereby higher-level categories gradually emerge from bottom-up clustering.
First, quotes were grouped into 329 unnamed level-1 categories based on their perceived level
of similarity, and then labeled. These categories were then grouped into 29 level-2 categories,
and the process was repeated until categories representing more abstract, high-level themes
were reached. In total, six top-level categories emerged from the 29 mid-level categories:

1. Team member differences can be both an asset to use and a challenge to overcome
2. Clear communication is crucial

3. There are benefits and drawbacks both to working in person and remotely; a workflow
that leverages both approaches might be best

4. Tech can be used to inform team decision making and alter or augment team workflows
to provide interventions to make them more effective, minimizing burnout and process

loss and maintaining team morale

5. Desire for knowledge about team members’ mental states, their dynamics with one
another, and contributions to the team

131



“(smox aa13oedsal o1y Jo wms oY) *9°1) sourlIodUr
QATIR[OI IR} U0 jJuawealde juedorired jo Ioplo ur wojjoq 03 doy PalIos ale SIomoq ()] SI juswealse o[qissod wnuxew
o) 0s ‘Jo 1red olom A9 WL} JUSISPIP ® 0} 109dsol IIM [Pro ‘SBUDURI JUSIoPIp om) pajeiduwiod (L4 pue ¢J) syuwedoryred
omj) ety 9joN sjuedorired Uoom)o(q JUSUINOISE I9)ROIS 9)RIIPUI SOPRYS IoYIRD/SIOqUINU IOUSIH UwWnjod Surpuodsaliod o)
Ul jey} uRY) I9)eaIS MOl Surpuodsoriod oy} ul remodiodns o) poxuer oym syuedoijred Jo Ioquunu oy} 9)RIIPUL [[90 YoRO UL
SIO[0D pUR SIOCUINYN UOISSOS juowiliddxo puooos oY) ul romodrodns yoeo 10j sgursuel jo uosmreduwoo osimireg :1°) 9INSig

[ z z € 4 z T 1 z T 0 T 4 z [
L [ € € T z 1 T € 1 T T z € 0
8 9 4 v € z € z v € z S 4 € T
A A v 0 € s v € € € 0 € z v z
9 9 S v 0 S € € € z z S € 14 z
A s 9 s € 0 z € s v v v € € T
8 9 v S S z 0 € 9 € 12 v v 14 z
2 A s 9 v v z 4 S z s v v 14 z
2 A 9 v S s v v 0 s € € 4 € €
8 9 S 9 S v € z S [ S v v S z
2 A v L s s v € L € [ s € S z
6 g S L S S € € L € S 0 € 9 z
ot L 9 L S s v v g v s € 4 v z
2 A A S 9 A 9 9 S s s v v [ €
6 g A L S 9 9 S L v 9 L 9 9 0
6 6 A 8 A 9 s 9 9 s A 9 L S v

{iesious uo weay weay ay Suowe Sunoay/Bupiui sietio Su
awn jousiauio/siusno |y} ywi uedjeyy awi ssa)ul sepmine ndino pue SNIDIS pue syasse B/SIID|S  @uapeliewed/isni} inouing ale silaquiaw orBupueisiopun Ipuejsispunsjw/u
jonenojeunung PN SASUOREIRE L lewope  olow ysnduwioooy 0UPPHUCOPING  PUEUOREAIOW Sy weer pumsiopun  umonok1soo uieyutew pue ssens weayjeym pue SIOUSPIONY o eonunwwossiu

ureuew weay usny sanpai o1 faniay 5 ‘SIS ‘apaimouy
pue ping Jsnojonuoy pue ping 10 33paimou| Jossueiy ploAe pue 1081eq

panoidu
pue padjay

2q ued weay
ayy moy mouy

awin 19ne jeuiung
LS} 3U3 U0 10U SIBLIO/SIUBND

yum sdiysuonelal ueurew pue ping
wea) ayy ywn

UED JEY} S10108) |BUIBIXD 1IN0 |0.3UOD

auwy ss91 Uy 210w ysidwoooy

29U3plU0d plINg

S3pnye pue uoneAow wea) usny

ndino pue poya wea} usny

STIDIS PUE S19SSE Wea) puelsIapun

SaRINIGE/SIDIS UMO In0K 35008
weay ayy Suowe
SU1BPRIBWIEI/ISII UlRIUIRW PUE PIING

nouing pue ssans sanpai o} KAy
Bunaay/Bunuiuy

a1e S12qWBWI W) 1M O 35paIMou)
s12130 0} Sutpue}SIAPUN

pue ‘snipis ‘aBpajmous 1ajsuell

10113 plony
SUIPUBISISPUNSIW/UONEDIUNWWODSIW
plone pue 10939

panosdw

pue padiay aq UED Wea} 3y3 Moy Mou)|
1amodiadns

uwnjod ueyy Juepoduw) alow se
1amodiadns moi paxues oym syuediored
10 J9qUINY UIR0D S8 T3

132



6. Concerns about privacy, equity, and usability of technology to help teams

Team member differences can be both an asset to use and a challenge to overcome

One of the most common challenges participants encountered on their respective teams was
friction between team members due to differences in motivation or incompatible personal-
ities, a phenomenon consistent with prior work. In such cases, team members not pulling
their weight and performing the duties asked of them, or who were otherwise resistant to
necessary changes to their typical workflows (such as using new software tools or execut-
ing new company policies) led to decreased performance, frustration, and failure to meet
deliverables. As described by P2,

“One of the biggest challenges is always...having people come to the meeting,
come to the table very opinionated, set in their ways...that don’t want to listen
to new ideas. Or accept change. Even when change means growth. You know,
people get comfortable...people get comfortable in what they're doing. And it’s

working for them. So, making a change is scary.”

Similarly describing their experiences with former team members one the executive board

of their university’s graduate student robotics honor society, P1 recalled

“The people who were in the past involved really did not mesh well with my
personality and work style. And so I’d get really frustrated. And so I think like.
A challenge is personalities. Personality mismatch that just doesn’t feel like you

mesh, feels like you’re oil and water with somebody.”

Despite the challenges that arose from these incompatibilities, however, one of the positive
aspects of working on teams that participants cited most frequently was the ability to learn
from and take advantage of the diverse backgrounds, expertise, and collaboration styles
of other team members, ultimately forming wholes greater than the sum of their parts.
According to P6,

“I' think personalities are really the big thing, and having different personali-
ties and different perspectives. And while that’s really challenging, recognizing
like, the importance of that, that everyone brings different perspectives and that
makes like whatever your end product is better and stronger.”

Similarly, P8 describes how their professional experience was enriched because of their

colleagues’ different skillsets and areas of expertise:
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“I think just being able to learn from and take advantage of different people’s
skill sets is so valuable. Like for example, like I know, people who work in sales
who are, you know, just like extremely well connected. They have a really strong
understanding of the politics of different companies that we work with. They’re
particularly good at client facing skills. I know I mentioned also I work with like
a trading team that’s more, in the platform every day and, you know, they tend
to have like a deeper level of knowledge about the product and more technical
savvy and I think I learned so much from working with those different teams
also even just within my own account management team. Obviously people have
different backgrounds and they might have worked on different kinds of accounts

throughout the years. So everyone brings something unique to the table.”

Clear communication is crucial

Another common sentiment participants expressed during their interviews was the over-
whelming need for clear communication between team leaders and other team members,
with several relating experiences when team performance suffered because of miscommuni-

cation or misunderstanding. As P7 summarizes,

“Let’s say the person who explained ABC isn’t fully clear and the person that’s
really supposed to be A thinks they’re supposed to do B. And then the person
who’s supposed to do C is doing A. If you don’t clearly communicate that, and
everyone is doing their own little bit of things, you know, A B and C aren’t
actually really done. So to speak. And then the whole team would suffer for it.”

Many other participants expressed similar frustrations regarding occasions where impor-
tant work was not adequately completed because of an incorrect understanding of the task
at hand; P8 likewise notes

“Something that I've seen at my current job and responsibilities and even at
my previous job is like people either accidentally stepping on each other’s toes
or maybe not doing the work that other people expected of them. Because
for whatever reason, there was some confusion about who was responsible for a

specific task.”

Thus it is extremely important that those with leadership roles on teams are able to
ensure their directions or guidance are understood by those reporting to them, though this
is far from easy. Recalling their role mentoring an undergraduate student project team, P1
stated

“I can give all of the energy and support possible, and they could still not un-
derstand what I'm trying to say and the project could still not turn out to be
successful no matter how much effort I put in as a guide.”
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Both in explaining their reasoning for the superpowers they chose as well as when describ-
ing ways they wished technology would assist them on their teams, participants consequently
expressed desiring ways to mitigate such miscommunication or misunderstanding. When
stating why they chose “mind reading” as their most important superpower, P3 explained

“As a manager, I would use the mind reading to kind of know what the team
is thinking, right? So sometimes, I don’t know if you've experienced this in
meetings, sometimes people will nod and smile and then, you know, 3 hours later
it’ll be very clear that they didn’t understand and didn’t ask the questions. And
so, if I could read their minds, then I could, you know, sort of address issues and

questions in the moment.”

Describing a technology they wish existed to help presenters ensure that their fellow
team members were engaged audience members, and that key takeaways were understood
and delivered convincingly, P2 stated

“I know that there’s reactions they can have to what’s being presented to them,
what’s being told to them. It would be, you know, and again, if you're in a
meeting and you're talking to 40 people, you're not gonna pick up on all of that
for all 40 people. You might notice it in one or two of them at best. So if
there was, some sort of the technology that was scanning, looking at the people
and interpreting the way that they’re holding themselves to present like,...a little
dashboard that could give you an indication, if I was talking to 50 people and
47 out of 50 were green and two were yellow and one was red, I’d be like, “Okay,
that’s good, I read the room well, I did a good job, I gave them what they
wanted, and they believed me and accepted what I told them.” Whereas if I get,
you know, 25 reds because you know people are unhappy with what I'm saying,
I'll be like, “Okay, that one didn’t go well.”

Considering these responses from participants, a tool to reduce or eliminate this sort of

miscommunication would likely be considered useful to others working on teams.

There are benefits and drawbacks both to working in person and remotely; a
workflow that leverages both approaches might be best

A large majority of participants in our cohort worked on teams which allowed hybrid work;
only P5 worked only in person, and only P11 worked entirely remotely. While this tended
to afford participants with a great deal of flexibility in executing their responsibilities, many
also noted benefits and drawbacks in equal measure to both remote and in-person work,
favoring each approach for different reasons. Working remotely, for instance, eliminated the
time required for commuting, and in some cases allowed face-to-face meetings to occur where

distance would have otherwise rendered them impossible, or very infrequent, as noted by P2:

135



“There’s a lot of meetings where there’s people from multiple locations and it
doesn’t really make sense to think that we would ever all sit around the same
table except for very occasional times. So, having the ability to do something
like this, certainly helpful for being able to quickly jump together and be able to
see somebody face-to-face and and talk to them and so, that’s a helpful thing to

hold the concept of, Zoom or any other meeting, video meeting capability.”

A remote digital workflow can also eliminate the need for physical space and materials;
P9’s AR application project team initially started their work in-person and used a physical
kanban board (implemented with sticky notes on a whiteboard) to keep track of task progress,
but eventually moved to a hybrid workflow and switched to a digital alternative, which was
easier to modify and share remotely.

Though it can afford convenience, a potential downside to remote work that was reported
by participants was the increased difficulty in “disconnecting” from their digital environment.
Several participants described relying on asynchronous messaging applications to keep in
contact with their fellow team members, and the need to implement strategies to use these

tools effectively while mitigating distractions, as exemplified by P6

“I have like my work Outlook on on my phone, but I don’t, I don’t have like
notifications popping up that I got emails or anything, like I turn those notifica-
tions off. I really struggled with even just like Slack, ‘cause I felt like that was

constantly notifying me if things I didn’t necessarily need to know about.”

The need for a stable internet connection for video calls was indicated as a possible
challenge as well.
Alternatively, some problems may be easier to solve in person. As P11 notes,

“I know I said I like working remote, it’s great. I love it, but I do think that that
partially comes with a challenge because you don’t have someone to just like pop
over and ask a question to. You have to either go to email, phone or, or Zoom,
but like it’s not as easy. Like when I started my other job, he would just literally
be like, “oh, so like, hey, what, what do you do for this?” You can’t do that as
easily remotely.”

P10 likewise indicated that in-person conversations were sometimes more effective:

“I can do videos in my role to alumni and and others and you know being inter-
viewed and all that. So I'm fine with that but as far as the form of communication,
there’s nothing more powerful than walking into somebody’s office, closing the
door and sitting down and having a conversation.”
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Technology can be used to inform team decision making and alter or augment
team workflows to provide interventions to make them more effective, minimizing

burnout and process loss and maintaining team morale.

All participants in our cohort used some form of technology to streamline some aspects
of their day-to-day workflows and improve their team’s organization and efficiency. Due
to the diverse nature of the teams represented, the specific tools and platforms used by
each participant tended to differ, though there was a degree of overlap with commonly
used consumer software. In particular, all participants regularly used some form of video
conferencing software (typically Zoom or Microsoft Teams) for remote meetings, as well as
tools for asynchronous communication (sometimes email and text messaging, but increasingly
instant messaging platforms such as Slack or Teams). Several participants also used cloud-
based document collaboration platforms, such as Google Docs Editors, Microsoft Office, or
Confluence.

Other software tended to be tailored for executing the specific job duties of P3, P4, P5,
P7, and P8 (e.g., construction planning/estimation, filing benefits claims, etc.). Another
relatively common use for technology platforms by some participants was to organize and
allocate tasks, and keep a record of what has been done and what is left to do.

P1, for example, used Canvas (typically a learning management system for students) for
this purpose:

“For the [student project], I use Canvas to assign the team... I guess assignments,
that are trying to like, help push them along or like think more critically about
a certain topic and that has been working really well.”

P6 similarly describes their experience using Milanote, an organizational tool for creative

projects:

“We're using Milanote as a tool. That’s one of our favorite tools to use. And it’s
helpful. T like that I can go back to see what we were talking about. Maybe it’s
like notes from a meeting or things [my supervisor] is thinking about, or maybe
it’s like a checklist of things that has to happen. So, it’s helpful to have like
documentation of what we did.”

Participants agreed that the tech tools they regularly used mitigated some cognitive
overhead and helped them be more effective on their teams. Nonetheless, when asked about
technologies they wished existed to help them on their teams, they identified many aspects
of their work and interactions with other team members which could still be improved, and
were optimistic that future technologies could be used to make their teams more effective.

Several ideas participants raised centered on detecting if the team was veering off course
or not operating to its fullest potential, and providing some intervention to get people back
on track. As suggested by P3,
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“If a tool could detect where things are missing and help you prioritize, that
would be the other thing that a tool like this could do is, there’s deadlines that
I miss or there’s projects that I miss or that I don’t get to... but are they the
important ones? Or am I how am I spending my time doing the things that
aren’t priority that aren’t moving me forward just because they’re tasks that
I can spin on. So a tool that could help identify, but would have to get into
somebody’s head somehow to. Or know or know the keystrokes or know that I
don’t know what I don’t know how it would do it but yes that would be amazing.
To kind of give you a sense of where things are getting. Getting stuck because
of miscommunication or misunderstanding or other blockers.”

P1 suggested a system that could help resolve impasses or conflicts between team mem-
bers, or direct them to seek out more targeted assistance:

“I think if there was a way that it could either like, send you to a place where the
issues could be solved. Or have some sort of like not escalating way to discuss the
problem. Like if it sends me a message like, “hey, by the way, this team member
like gets really annoyed when you write the to-do list because she’s the secretary
and she should be writing the to-do list but she’s not, so that’s why you do it.”
Even a messaging system instead of maybe direct confrontation just being like
“So-and-so is like not feeling really great right now.””

Others suggested a system to help with managing employee workload, so team leaders
could more effectively balance tasks and maintain morale:

“I think I would like it to tell me... How other people are responding to their current
workloads, and what each individual person’s, I don’t know, stress level is so that we can
come together more as a team to, you know to problem-solve the pervasive issues that are
going on in our department.” — P4

“I"d like to know if they’'re burnt out, if they feel like they’ve given their all and they
need a break or something. If they feel insecure about, if they feel vulnerable, knowing the
morale of the team would help me know how to manage it, I guess.” — P5

Finally, others noted that a system able to automatically provide positive feedback for

teams which performed well would benefit team member well-being. For example, P1 stated

“If we were doing good, then I think it would be something like, “Oh, look at how
great we are.” It’s like in addition to like the feeling of like this is a great team,
there’s like a satisfaction of like some sort of score or number or green light.”

P6 also advocated for a system providing positive reinforcement for teams that were
performing well:
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“I really like thinking about the positive, positively reinforcing. Sometimes I
would ask my groups, I would like tell them that I want to hear you like praising
people, other people’s ideas, like maybe we were brainstorming something and I
say I purposefully want to hear, “I'm gonna walk around and listen for...” and
I would ask them to like, so I would like tell them, “I want to hear praising.”
And so it would actually change the dynamic of the group because they would
be wanting to get, I don’t know if I did bonus points or whatever, but like you
know, they would get that reaction from me like, “Nice job.” So I think the
positive interactions would be good.”

Desire for knowledge about team members’ mental states, their dynamics with
one another, and contributions to the team

Related to other suggestions for possible technologies enhancing collaboration by providing
specific interventions, participants also expressed interest in technologies which would mea-
sure attributes relevant to teamwork, such as the relative contributions of each team member,
their mental states, and the team’s collective dynamics. This approach could afford teams
flexibility to tailor responses to the measured metrics to their specific needs, or allow them
to examine the relationship between these variables and the quality of team members’ work
or day-to-day experiences.

P10 was strongly in favor of collecting data to measure team members’ level of contribu-

tion to their teams, since it would improve accountability:

“Imagine if you're in and it’s not with an athletic team like, you know, we get
management council together, right? And we wired it somehow that you’re able
to see. And be able to provide feedback individually of like, are you bringing
your best attitude today? Are you really paying attention? Are you really
contributing? Are you really listening? Like, to be able to measure that in
a team? To be able to give that feedback that people like, look, you're not
holding up your end of the bargain in this teamwork. That would be, I think,
revolutionary.”

Participants also proposed systems which would measure the quality of relationships be-
tween each member of the team, both to provide incentive for having productive and positive
interactions but also to examine and address any tension or lack of synergy that might be
observed. P1 outlines what they imagine what a new technology supporting collaboration
might be like, stating

“If we had a technology like this, I feel like I would be able to see like my, attitude
or disposition with each person, and with each other between the team. And I

feel like I can picture like, green light green light green light and then like orange
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light, kind of...[I envision it being like a map|, where I can see the connections
between the other people are good. And even if that’s like a map of like lines
connecting the nodes of people.”

P6 had a similar idea, modeled after an activity they performed as an educator:

“I think about something that I used to do in the classroom. When my students
would be working in teams, I would walk around with like a green a yellow and
a red card. And like if I saw something really great happening in the team, I
would give them a green card. And if I maybe heard some struggling or heard
something, I might give them like a yellow card or if there was like, either like
the team was like being really loud or something like, something was not working
in the group, I might give them a red card, and I'd be like, I would just put it on
the table and let them sort of talk about what was happening and then I would
come back around or maybe eventually I would stop and talk with them about

what I'm seeing. So it just reminds me of that.”

Rather than a system examining the team as a whole, P9 envisioned a system that could
assist teams by way of enabling individual team members to be more informed about their
own mental states and contributions:

“Perhaps prior to the meeting they would set a goal for themselves and basically
I'm describing a technology for an individual to manage the efficiency and the
productivity of themselves. And those values are kept only for them only for this
individual instead of sharing it with the team or team manager.”

This approach would theoretically better safeguard user privacy by restricting the avail-
ability of their data from others on the team.

Concerns about privacy, equity, and usability of technology to help teams

Despite the potential utility of the new technologies participants suggested, some also voiced
concerns about the data that would be collected and how it could be used. If a device
measuring the behavior, cognitive states, or collective dynamics of team members existed,
these participants correctly noted that this data could be sensitive in nature, and expressed
trepidation about such data being collected. For instance, P9 observed,

“My take on [the question of how a device that could detect how well teams were
working together without any limitations| might be switching the role from being
a member on the team to being the project manager or the mentor of the project.
Because the change of role makes me more want to break into someone’s mind
and know what they really think of. And I know it this is not ethical. And if
I'm the team member, I wouldn’t want anyone else to do it.”
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P10 specifically also raised questions about the equity and usability of future tools and
current technology supporting teams more broadly, noting that people who struggle with
technology might eventually be left behind if new technology were adopted:

“We've got to understand there is this gap for people in my age group...I'm not
great with technology at all. And I'm seeing people like myself or others who
are brilliant leaders, but the technology is holding them back from being able to
work with people.”

P10 also noted that data from these tools had the potential to counter racial and gender
biases if used appropriately, but also had the potential to exclude underrepresented groups
as well if they are not adequately considered in the development of a new tool:

“The sensor to be able to wash your hands. Well, it was based upon white skin.
Black skinned people can’t use that. You know, just other things that have been
built into technology that that is stereotypical or racist. You sit there and you
go, “Oh boy, this is going to be really difficult moving forward.” Even more so for
non-white communities, right, with technology, and just think about ChatGPT
and the thinking that has been pulled into it is still predominantly white. And
so what are we going to do in order to make it you know, it’s just not gonna,
not gonna work. We know it. It just, you can’t. And that’s where it gets really
crazy. When technology can be so wonderful. But the limitations are still there.

It’s only as good as what you put into it.”

Summary of Interview Findings

When discussing their experiences working on their respective teams, participants consis-
tently expressed two complementary perspectives on differences between team members,
citing incompatible personalities or imbalances in engagement or motivation as challenges
to team performance, while highlighting the chance to learn from other team members with
different backgrounds or skillsets as one of the most fulfilling parts of collaboration. The need
for clear communication and a common understanding across team members also emerged
as a crucial element for successful collaboration. Several participants in leadership roles
noted that misunderstandings regarding their directions or guidance had led to setbacks in
the completion of goals and deliverables, and expressed the desire to mitigate the issues
when describing suggestions for future technology or the reasons for their chosen superpow-
ers. Considering how participants used technology to overcome the challenges faced on their
teams, most participants engaged in hybrid work, and saw benefits and drawbacks both to
working in person and remotely. Remote work allowed teams to meet and have face-to-face

conversations easily regardless of geographic distances, but increased reliance on other forms
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of asynchronous communication technology (such as email or instant messaging applications),
which could generate distracting volumes of notifications. In-person interactions, while re-
quiring meeting space and commuting time, provide elements of physical presence without
technological overhead, which could increase the depth and effectiveness of communication.

All participants who were interviewed used an array of software applications to streamline
their workflows and improve team efficiency. When asked about technologies they wish
existed that could help them on their teams, they suggested tools which could detect and
respond to team member burnout, allow managers to measure and maintain team morale,
and suggest an intervention to resolve conflicts between team members. In addition to
such interventions, participants also voiced desires for tools which would allow them to gain
insight into team members’ mental states, their dynamics with one another, and their relative
contributions to the team in order to improve accountability, provide incentive for positive
interactions, or allow team leaders to address tension or lack of synergy among the team.
Some participants also indicated that a dashboard showing their own mental states and
contributions could be useful for setting personal goals and gaining a better understanding
of their cognitive and emotional processes during collaboration. Several participants also
raised concerns about the privacy, equity, and usability these systems, noting that different
power dynamics could exist between team members and leaders and that the usability and
usefulness of the system could vary across different groups, especially if there were differences
in how the data were used and interpreted.

To explore these further, we incorporated several ideas raised by participants into a set of
speculative scenarios illustrating potential implementations of a BCI support system. In the
following section, we present participants’ reactions to these scenarios, gathered through a

“speed-dating” design exercise aimed at uncovering concerns and surfacing design tradeoffs.

7.2.5 Speed-Dating Possible Futures

In order to further explore possible concerns and design tensions arising from the capabilities
and use cases participants desired for supportive technology, we presented a series of seven
storyboard scenarios depicting possible future implementations of BCI-enabled support tools
for teams. These scenarios were presented using a speed-dating design method, which en-
abled participants to rapidly engage with and react to a range of potential BCI-enabled
collaboration tools. Each scenario was crafted to surface possible tensions, tradeoffs, and
ethical implications that could arise if such systems were implemented in practice. Par-
ticipant responses helped assess ways a BCI could help fulfill the needs of teams during
collaboration, as well as risks and concerns stakeholders may have about the use of such

systems, addressing our second and third research questions.
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Setting

Each scenario utilized the same overall setting—mnamely, a workplace where brain sensing
devices have been deployed to assist teams—in order to explore the ramifications of design
and implementation decisions, and participants’ reactions to these.

The description provided to participants is as follows: “An animation studio is working
hard to produce a cartoon series. The production team has tight deadlines, and wants the
episodes of the show to be the best they can be before they air. The team works in a smart
office of the future, and wear headbands for a support tool that uses brain and behavioral
data from team members to measure how well they are working together.”

We selected a workplace as our setting because we anticipate this is a context where the
need for and impact of a support system for creative collaboration would be greatest, a po-
sition corroborated by our discussions with participants. We specifically chose an animation
studio because it is a workplace where creative collaboration frequently occurs; where team
members can have several different roles and responsibilities, and may be on one or more
different sub-teams within the larger organization; which tends to have a hierarchical man-
agement structure; and where team members can experience stress and time pressure from
deadlines—all important considerations raised by participants during the first experiment

session.

Storyboard Scenarios

Using the representative set of 16 “superpowers” from the second experiment session as our
basis, we developed seven storyboard scenarios depicting possible design futures for a new
BCI system for supporting creative collaboration. Each scenario addressed a particular user
need corresponding to a superpower, with several including implementation ideas directly
suggested by participants in the first session.

Descriptions of each scenario and the needs/superpowers they address are provided below:

1. Scenario 1: Align team effort and output (Figure 7.2). Some animators are putting
in really long hours and overtime, while others aren’t pulling their weight. The
support system indicates this, showing that the workload of some team members is
consistently higher than others’. This awareness enables the team to align effort
and output and maintain accountability.

2. Scenario 2: Knowledge of what team members are thinking/feeling (Figure 7.3).
Writers and animators are mocking up storyboards and a draft script for the
next episode. Some team members work together, while others work separately.
The team dashboard shows a map of the synergy between team members based on
the brain and behavioral data. It provides notifications when the team is consistently
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out of sync and not working together well, prompting them to openly discuss
any concerns before things escalate.

. Scenario 3: Detect and avoid miscommunication/misunderstanding (Figure 7.4). A
team member is giving a presentation about new directions for the series. Some
team members are confused by ideas that were raised, but do not speak up and
ask for clarification. The support tool detects incomplete understanding in the
moment, enabling clarification and elaboration.

. Scenario 4: Know how the team can be helped and improved (Figure 7.5). A team
dashboard provides analytics for team dynamics based on brain and behavioral
data. The team uses it to track overall team dynamics over time, and how that
changes due to team composition, project timelines, workload and work pro-
cesses. It provides awareness on how changes or interventions in their workplace
impact these dynamics, both within their immediate team and the larger organiza-

tion.

. Scenario 5: Understand team assets and skills (Figure 7.6). The members of the
team perform a variety of tasks (mocking up storyboards, drawing video frames,
synchronizing frames with audio), each of which some team members are better at
than others. Team metrics on the dashboard for some team members are worse when
they perform some tasks and better when they perform others. This makes it easier to
know team members’ strengths and weaknesses, and to allocate responsibilities
and training more intelligently.

. Scenario 6: Ability to reduce stress and burnout (Figure 7.7). After working hard
and putting in overtime to meet upcoming deadlines, the dashboard indicates that
multiple team members are getting burnt out. It recommends they take a break,
and suggests quick and fun activities they can do together to take their minds
off work.

. Scenario 7: Build and maintain trust/camaraderie among the team (Figure 7.8).
Marcy isn’t a big fan of working with Jake. He’s very extroverted and always
strikes up a conversation with everyone on the team, but is also one of the team’s
highest performers. Marcy is more introverted, and struggles to raise her
ideas or feel good about her work when Jake is in the group. However, she notices
on the team dashboard that there are times when Jake has low focus and seems
to struggle too, which makes her feel a bit better about him and enables her to
work more confidently with him.
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Analysis and Results

For each scenario, participants were asked to answer the following questions, and to voice
their thoughts aloud as much as possible:

1. Consider this storyboard showcasing a new technology for teams. Do you think the
solution presented meets the needs of the team in this scenario? Why or why not?

2. What if the system provides a real-time indicator/notification vs. allowing after-the-
fact reflection?

3. Consider the visibility of the data the tool collects. Does anything change if the data
is private vs. shared (with team, with manager)?

4. Would your perspective change if you were the team leader/manager vs. being a team
member? Would your answers to previous questions change?

5. What potential concerns, if any, do you think might arise in this scenario?

Additionally, we also asked the following question about diversity and equity during the
first scenario, and noted that participants might consider this in future scenarios:

6. What if the team member is underrepresented in the group? Does anything change?

The transcripts for the speed-dating sessions were analyzed via inductive open coding to
uncover any common themes. Results for each of the scenarios are summarized below.
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higher than others’.

Figure 7.2: Scenario 1: Align team effort and output

Scenario 1: Align team effort and output Participants were about evenly polarized in
their perspectives regarding this scenario, with half of the participants believing the solution
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presented met the needs of the team, while most others did not (one participant believed
that the solution met some needs of the team, but not others). Participants were similarly
split between whether the data from the system was best presented in real time versus
after the fact—with a slight preference for real-time updates—as well as perspectives on the
visibility of the data, with slightly more than half in favor of keeping the data restricted
between individuals and managers, and the others mainly favoring visibility to the whole
team (either anonymized or not). Finally, participants were similarly divided on whether
their perspective on the system would change if they were managing a team versus a team
member, with slightly more than half stating it would (team members might prefer that the
data be private and not shared with other team members, but managers could use it as a
tool to help determine if an employee is slacking, or as a basis for checking in about their
well-being if workload is consistently high).

Participants raised concerns that the data could be used to enforce a particular model of
productivity or teamwork, and that workload might not be enough for a full picture of team
member performance—some people could have low workload but high output, and some
might be the opposite. Additionally, the system also did not appear to factor in the different
roles and responsibilities of team members; it is possible that team members in some roles
would be expected to exhibit higher or lower workload than members in different roles. The
visibility of the data could also lead to unhealthy competition or reduced morale among team
members, if team members try to outperform one another on the basis of workload metrics.
Some team members could also try to game the system, attempting to make sure their
workload is consistently high, or lower it to meet the levels of others. Participants were also
concerned that the workload values observed could be is misinterpreted or misattributed; it
is not clear that the values observed are due to the nature of the work as opposed to external
factors. Thus using the data from the tool as the sole basis for managerial decisions is likely
unwise. Finally, participants expressed concerns about the privacy of the data, especially if
the data were shared explicitly with others on the team.

Scenario 2: Knowledge of what team members are thinking/feeling Participants
were similarly divided in their responses for the second scenario. Slightly more than half
of the participants believed the solution presented met the needs of the team, and were
likewise divided regarding the granularity of the data, with half preferring updates in real
time and three preferring after-the-fact reflection, and one participant seeing merits to both
approaches. Participants were split on preferences for the visibility of the data, with equal
portions in favor of keeping the data restricted between individuals and managers, visible
only to the manager, and visible to the whole team (either anonymized or not). Finally,
participants were similarly divided on whether their perspective on the system would change
if they were managing a team versus a team member, with half stating it would; managers

could use the data to help team members navigate potential interpersonal friction, while
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Figure 7.3: Scenario 2: Knowledge of what team members are thinking/feeling

team members might use it to clarify their relationships with others with whom they have
poor synergy, or prioritize interactions with those where the system indicates synergy is
optimal.

Regarding potential concerns, one participant worried that the system could enable mi-
cromanaging by the team manager if they were constantly monitoring the synergy of team
members. There were also concerns that the data could be used to enforce a particular
model of productivity or teamwork, because some people might not be as comfortable in
social situations, and might work better alone for certain tasks while periodically updating
the rest of the team on progress. The data does not give a full picture of team interactions
or performance; it might be difficult to understand why the synergy between some people is
low, especially if their subjective perceptions of their interactions are positive. Participants
were also concerned that the data could be misinterpreted or misattributed, or that the
feedback from the system could be inaccurate, since it is unclear how “synergy” was being
defined and measured. It is also unclear what impact a team member working separately
from the others would have on the the synergy levels depicted by the system. Participants
also expressed concerns about the privacy of the data, and that showing low synergy between
some people and not others could lead to negative feelings between team members.

Scenario 3: Detect and avoid miscommunication/misunderstanding There was
much more consensus in participant perspectives on the solution presented in the third
scenario, with all participants agreeing that it met the needs of the team. All but one
participant was in favor of the system working in real time to capture team member confusion,
with nearly half additionally supporting after-the-fact reflection (so that the presenter or
manager could see what data from the audience looked like after the presentation). Nearly
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Figure 7.4: Scenario 3: Detect and avoid miscommunication/misunderstanding

all participants believed that the data should be anonymized, but visible to the presenter,
and a slightly majority stating their answers would be unchanged regardless of if they were
a team member or leader.

Participants raised concerns mostly about the social stigma surrounding the intervention
enacted in the scenario, and whether a team member exhibiting hight confusion would lead
to an uncomfortable confrontation with the presenter after the presentation to resolve it.
The presenter responding to a team member’s confusion in public with other members of the
audience present could lead them to feel dumb or called out. Finally, there were also some
concerns that the results could be inaccurate, or due to some factors unrelated to confusion,

such as lack of sleep.

Scenario 4: Know how the team can be helped and improved Participants unani-
mously believed that the solution presented in scenario 4 met the needs of the team, and most
were in favor of a system that allowed for after-the-fact reflection (i.e., one that presented
a daily or weekly average of each metric) versus one that updated frequently in real time.
There was greater diversity in preferences for the visibility of the data; half of participants
felt that the data should be kept between managers and individuals, while others were in
favor of the data being shared with the whole team, strictly visible to either individuals or
managers, or the team as a whole. Participants tended to feel that their perspectives would
be different if they were a manager instead of a team member in this scenario, noting that
team members might be able to use the data to advocate for reassignment to a different role,
or demonstrate to leadership that a particular team composition is not working well.

Half of participants had no concerns for this scenario. Some concerns raised by the
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Figure 7.5: Scenario 4: Know how the team can be helped and improved

remainder were that the metrics measured by the system might not necessarily equate to
performance on the team, and might not accommodate different learning or collaboration
styles. It is also difficult to know whether the observed dynamics are due to factors related
to work or external to it, or what the relationship between the dynamics measured by the
system and productive output may be; it is possible people could still be productive even if
their data is different from others’, and thus using the data from the tool as the sole basis for
managerial decisions would also be concerning if it occurred. Participants were also concerned
that team member morale could be reduced if the brain metrics of the team become “worse”
if someone is added, or if members see that others’ brain metrics are “better.” Privacy was

also a concern.

Scenario 5: Understand team assets and skills There was a similar degree of consen-
sus in participant responses for the fifth scenario. All participants thought that the solution
presented met the needs of the team, and were largely split between a system able to provide
after-the-fact metrics versus one able to work both after the fact and in real time. Partic-
ipants were likewise evenly split in their preferences for the visibility of the data provided
by the system, with half of participants preferring that data only be shared between indi-
vidual team members and a team leader, and half that it be shared with the whole team—a
majority of whom preferred it not be anonymized for other team members, so that teams
could make adjustments based on others’ capabilities and be mindful of the fact that all
team members have different strengths and weaknesses. Most stated they would have a dif-
ferent perspective depending on whether they were a team manager or leader versus a team
member, with managers ideally leveraging the data from the system to ensure employees are
assigned tasks suited to their individual strengths, and employees using the data to present a
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Figure 7.6: Scenario 5: Understand team assets and skills

case to managers for taking on different responsibilities if they are struggling in their current
role.

Participants were concerned that if the team manager could overemphasize the data mea-
sured by the system when assessing team member performance—the data is important, but
it should not be the only thing used to evaluate team effectiveness; outcomes and deliverables
are also important. There were also concerns about hurt feelings if people were unhappy
with their brain data (e.g., if they changed teams because their metrics were low and the
metrics didn’t change in response), or that team members could become discouraged or com-
pare themselves unfavorably if the data were shared with others. One participant also noted
that making decisions about team assignments based on the data could lead to unfavorable
outcomes for team members, since they might be good at a task or role according to the
metrics the system measures even if they are not passionate about it, or vice versa. Data
privacy was also a concern.

Scenario 6: Ability to reduce stress and burnout Participants were largely in agree-
ment about their perceptions of the solution presented in the seventh scenario, with nearly
all indicating that it met the needs of the team. They largely saw merits in implementations
of the system able to provide updates in real time as well as periodic reports allowing for
after-the-fact reflection, and generally preferred that the data collected only be visible to
managers, not team members. A majority of participants also stated that their perspectives
on the system would differ depending on whether they were team members or managers,
with managers able to utilize the data to reflect on how they are managing their employees,
and ensure that they are providing enough support to mitigate the risk of employee burnout.
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Figure 7.7: Scenario 6: Ability to reduce stress and burnout

Participant concerns for this scenario centered around the reliability of the measurement
and the feasibility of the data. One participant noted that team members could start at
their positions burnt out (and might therefore have an incorrect baseline), or the system
could be measuring burnout due to factors outside of work, and might not differentiate
between different causes of burnout.
members could try to game the system to make it recommend breaks more frequently. If
breaks are collective, recommending a break could be distracting for team members who are
focused and on-task. Other participants noted that depending on the organization and work
environment, breaks sometimes are not feasible, especially if the team is operating under a
tight deadline. Participants were also concerned about the privacy of the data, and whether
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Scenario 7: Build and maintain trust/camaraderie among the team Participants
near unanimously agreed that the solution presented met the needs of the team in the
seventh scenario, but were near evenly divided on how granular they thought the data
should be, with similar degrees of preference for whether the data should be shown in real
time, aggregated after the fact, or both Participants likewise disagreed about how visible
the data should be, with near equal degrees of preference for the data being shared with
individuals and managers, managers only, a team member’s immediate work group, and the
whole team (either anonymized or not). Participants likewise agreed that their perspectives
would change if they were team managers, noting that while team members might prefer
to either keep the data completely private, or else view others’ data while keeping their
own protected, managers might take on the role of intermediaries, noticing in the data if
team members are struggling and helping them positively reframe their relationships with
coworkers.

The chief concern participants raised about this scenario was hurt feelings or reduced
morale among team members. Most noted that while the outcome was ultimately positive
in this case, having everyone’s data visible could encourage team members to look for short-
comings in others. Furthermore, giving managers access to employee data could encourage
or enable micromanaging; if the data were visible to team members, they might ascribe
qualities or mental states to coworkers that are incorrect (e.g., that someone is dumb or

depressed when they are not). The privacy of the data was also a concern.

What if the team member is underrepresented in the group? Just over half of
participants indicated that their thinking about the system would change if the team member
featured in the scenario was part of an underrepresented group, with those who said it
would not specifying that the metrics used by the system should not be the primary basis
for managerial decisions, such as firing, hiring, or providing raises. Participants who stated
that the team member’s underrepresented status was an important consideration raised
concerns that the data output by the system could be used to reinforce existing stereotypes
or contribute to othering, or that the data itself could exhibit biases based on gender, race,
age, or other demographics.

7.3 Discussion and Future Work

The results of our study provide insights into the potential role of BClIs in facilitating effective
teamwork, highlighting both opportunities and challenges. Here we discuss answers to our
research questions, implications of the results for the design of a BCI system to support

collaboration, and future work exploring the possible implementation of such a system.
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7.3.1 RQ1l: What unmet needs do stakeholders have during col-

laboration?

Across our study, participants consistently voiced a desire for tools that could enhance shared
understanding, foster communication, and mitigate friction caused by differences in work
style or motivation. While technology has already begun to support remote collaboration
and task management, participants expressed that these tools do little to reveal how their
teams are functioning on a cognitive and emotional level. In interviews with participants,
miscommunication and misalignment of expectations were frequently cited as barriers to ef-
fective collaboration, especially in circumstances where team members refrained from openly
expressing confusion, or were otherwise unaware miscommunication had occurred. This is
supported by the fact that “know how the team can be helped and improved,” “detect
and avoid miscommunication,” and “align team effort and output” were among the most
prioritized superpowers during card sorting, reflecting an unmet need for greater shared
understanding of team dynamics, especially between team members and team leaders.
Cognitive overload and stress also emerged as concerns, with many participants noting
that burnout negatively impacted both individual and team performance. Participants ex-
pressed a desire for insight into the well-being and workload of their team members, not only
to prevent burnout, but to ensure more equitable distribution of responsibilities, as some
team members reported taking on disproportionate amounts of responsibility. However,
these needs were often tempered by concerns about privacy and the ethics of surveillance,
highlighting a need for systems that can support these goals without overstepping personal

boundaries or compromising trust.

7.3.2 RQ2: In what ways could brain-computer interfaces help
fulfill these needs?

BClIs have the potential to provide real-time insights into cognitive and emotional states, en-
abling more adaptive and responsive collaboration. Indeed, as described above, participants
voiced several challenges and unmet needs over the course of their experiment sessions, such
as detecting stress, imbalances in workload, or differences in shared understanding, which
may be measured by such systems in the future. When asked to imagine how a future tech-
nology which could detect how well teams were working together might improve their team
interactions, participants envisioned a variety of use cases: dashboards showing levels of en-
gagement during meetings, alerts signaling when teammates are confused, or visualizations
that help teams understand their social dynamics over time.

Such ideas could feasibly be implemented as BCI support systems for teams (and are sce-
narios we highlighted via storyboards in the second session, incorporating these ideas from
participants): a system might detect when individuals were disengaged or experiencing cog-
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nitive overload, thus allowing for timely interventions. A system capable of non-intrusively
monitoring engagement levels could help team leaders adjust communication strategies to
ensure discussions remain productive and inclusive. Additionally, BCIs could assist with
workload distribution by identifying early signs of burnout, prompting proactive adjust-
ments to task assignments. By synthesizing neurophysiological data at the team level, a
well-designed BCI could enhance awareness of group interactions, improving coordination
and decision-making without disrupting workflow. Crucially, while engaging with the sto-
ryboard scenarios depicting such implementations, participants saw merit both for systems
capable of providing feedback or alerts in real time as well as systems which provide sum-
maries reports for future reflection or consideration, both use cases that BCI systems could

accommodate.

7.3.3 RQ3: What concerns do stakeholders have about BCIs being

used to support teams, and what risks do they foresee?

Despite excitement about the possibilities of BCls, participants expressed serious concerns
about how such technology could be implemented in practice. Chief among these related to
privacy and autonomy: participants worried about how their brain data might be used by
managers or institutions, particularly if it were linked to performance evaluations or used to
make decisions about promotion, hiring, or firing. There was also skepticism regarding the
accuracy of neurophysiological signals as indicators of engagement, given the complexity of
cognitive states and the potential for misinterpretation. There was a strong consensus that
access to brain data should remain under the control of the individual, with transparency
about what is collected, how it is used, and who can see it.

Equity and inclusivity also surfaced as important issues. Participants expressed con-
cern that BClIs, if not designed with diverse populations in mind, could exacerbate existing
biases or exclude certain groups (e.g., older individuals or those from underrepresented back-
grounds in tech). Others noted that such tools could become burdensome or inaccessible for
individuals less comfortable with new technology, raising usability and adoption concerns.

Finally, some participants worried that such a system could inadvertently introduce new
forms of surveillance, reinforcing managerial oversight in ways that might pressure employees
to conform to predefined behavioral expectations. Participants imagined futures where brain
data could be used coercively or punitively, and expressed discomfort with systems that

inferred intention or cognition without their explicit consent.
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7.3.4 RQ4: How could such risks and adverse impacts be mini-

mized over the course of design and development?

To responsibly design BCIs for teamwork, it is imperative to adopt a user-centered and
participatory design approach from the earliest stages. Based on our findings, we developed
guidelines for the ethical design and deployment of these systems, which we further outline
in Section 8.3.

To summarize, we assert that use of the system should be fully voluntary, with users
retaining control over whether and how they engage with the system, including which data
(if any) are shared and with whom. Consent must be dynamic and revisable, allowing
individuals to opt out or modify their settings at any time without facing repercussions or
stigma. Data practices should adhere to a principle of minimalism: raw brain signals should
never be stored, and only the smallest necessary set of derived metrics should be computed.
These metrics must be purpose-bound, anonymized, and retained only for a limited, clearly
defined duration aligned with user goals and project needs.

Equally important is a commitment to transparency and shared understanding among
all stakeholders. Users, team leads, and administrators must be clearly informed about what
the system captures, how it works, and what the data means—ideally through collaborative
onboarding or participatory design practices. Feedback should be framed to support well-
being and team functioning rather than serve as a tool for evaluation or compliance. To avoid
coercion, the system should be useful even when adopted by only a subset of team members.
Finally, neurophysiological data must never be used in isolation to guide managerial decision-
making; instead, it should be interpreted alongside behavioral observations, team discussions,
and broader organizational context to ensure fair, holistic, and informed action.

By adhering to these principles in the design process, developers can build tools that are
not only powerful, but equitable and respectful of the individuals they aim to support.

7.3.5 Future Work

This study lays the groundwork for the ethical development of BCI systems to support
collaborative work, but many avenues remain for future exploration. First, a broader sample
of participants from different industries and cultures could yield additional insights and help
test the generalizability of these findings. Second, the design and evaluation of low-fidelity
prototypes based on participant feedback could be used to further validate acceptability and
refine technical requirements before implementing real-time systems.

Additionally, studies could investigate the longitudinal use of such systems: how do team
members’ perceptions change over time? Does regular feedback improve team cohesion, or
introduce fatigue or resistance? There is also room to explore hybrid approaches that blend

BCI input with behavioral data or self-reports to triangulate team dynamics while offering
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users greater interpretive context and control.

Ultimately, the development of BCls for collaboration will require the convergent efforts
of neuroscientists, HCI researchers, ethicists, designers, and end users. Integrating these
unique perspectives throughout the design process will ensure that these systems meaning-
fully enhance teamwork while safeguarding user autonomy and well-being.

7.4 Conclusion

This study highlights both the opportunities and challenges of implementing brain-computer
interfaces to support collaborative teamwork. Through engaging team members and leaders
in user-centered design interviews and brainstorming sessions, we identified key unmet needs,
such as enhancing shared understanding, preventing miscommunication, and managing cog-
nitive overload and stress. Participants envisioned BCIs addressing these needs by providing
insights into cognitive states and team dynamics, enabling proactive, supportive interven-
tions. However, significant concerns about privacy, autonomy, equity, and usability also
emerged, underscoring the importance of ethical guidelines and careful design. By proposing
concrete ethical guidelines for voluntary participation, minimal and transparent data col-
lection, supportive feedback mechanisms, and contextual decision-making, this research lays
a foundation for developing BCIs that effectively enhance teamwork while prioritizing the

well-being and autonomy of individual users.
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Chapter 8

Ethics and Broader Impacts

The emergence of brain-computer interfaces within collaborative and workplace contexts in-
troduces pressing ethical questions that demand proactive engagement. While BCIs have
historically been deployed in clinical and accessibility-focused applications, more recent work
has expanded to focus on monitoring and augmenting cognitive and affective processes in a
wider variety of contexts, including in teams and organizations. My dissertation investigates
both technical and user-centered dimensions of this shift, particularly with regard to making
BCI systems more accessible and equitable, and supporting team dynamics in future work-
places. This chapter focuses on ethical considerations and broader societal impacts, drawing
on prior work in neuroethics and empirical data from my own user-centered study on BCls
for teamwork.

As the use of BCIs extends beyond therapeutic interventions and into the realm of perfor-
mance augmentation, questions surrounding autonomy, privacy, consent, and equity become
increasingly salient. Scholars and international frameworks such as the IEEE Neuroethics
Framework [147] and IEEE Ethically Aligned Design [148] have identified core principles
to guide ethical BCI development, including mental privacy, transparency, and fairness.
However, while some empirical studies have begun to examine stakeholder perspectives, par-
ticularly in general workplace contexts, grounded empirical insights into how stakeholders
perceive and prioritize ethical concerns in team-based or collaborative BCI settings remain
limited. My research contributes to this discourse by offering a detailed, stakeholder-informed
perspective on the ethics of collaborative BCI systems.

This chapter is organized as follows: First, I survey key themes in the neuroethics litera-
ture and ethical BCI design, highlighting relevant values and theoretical orientations. I then
explain how my own research addresses gaps in this body of work, showing how participants
imagined, critiqued, and contextualized BCIs within collaborative settings. Then, I inte-
grate these insights from my work and the literature to provide guidelines for the design of
ethically responsible BCI systems for collaboration. Finally, I examine the broader impacts

of this work, focusing on how it contributes to making brain signal research more accessible
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and reproducible within the HCI community, and how ethically designed BCIs can support
collaboration.

8.1 Prior Work in BCI Ethics and Neuroethics

Neuroethical discussions of BCIs frequently center on core values such as autonomy, mental
privacy, responsibility, and identity. These values not only reflect long-standing ethical
principles but are also inflected in new ways by the particular affordances and risks of brain-
computer interaction technologies. Several scholars have organized their analyses around
these value domains, making it possible to synthesize insights across different traditions and
disciplines.

Autonomy is one of the most frequently discussed concerns in BCI ethics. The potential
for BCIs to influence, predict, or bypass user intention raises fundamental questions about
self-determination and agency. Passive BClIs, for example, can infer affective states or cog-
nitive load without requiring the user’s active engagement, raising questions about whether
users have meaningful control over how they are represented or interpreted by the system.
Emerging work on multi-person brain-to-brain interfaces [128], where brain signals can be
transmitted and received by multiple users, raises further questions about the preservation
of individual intentionality and free will. In this context, minds operate collectively as part
of a network, and individual users may not be able to easily discern the precise origins of the
data they receive, or might transmit data unintentionally, blurring the boundaries of con-
sent if user output depends in part on the inputs from others. In the workplace, autonomy
may also be compromised by unequal power dynamics—for instance, when organizational
pressure implicitly compels workers to adopt neurotechnologies [40, 203].

However, the literature also suggests that BCIs can enhance autonomy in some contexts.
For example, when designed with adjustable transparency and user-configurable settings,
BCIs may empower individuals to reflect more deeply on their cognitive and emotional
states [96]. In group settings, shared neurofeedback has the potential to help team members
identify miscommunication or interpersonal tensions early [109, 236], enabling more inten-
tional collaboration. Thus autonomy is not just a matter of individual choice but is shaped
by context, and highlights the importance of designing systems that allow for negotiated,
ongoing consent and support user self-determination [109].

The issue of mental privacy builds upon concerns about autonomy but introduces its own
set of challenges. Unlike traditional biometric or behavioral data, neurodata can be deeply
intimate, potentially revealing aspects of a user’s intentions, emotional state, or cognitive
processes, raising concerns about who has access to this information and how it might be
used. Some scholars advocate for the recognition of mental privacy as a distinct human
right, given the unprecedented access BCIs provide to internal states [31, 375]. Workplace
applications intensify this concern, especially when users are not fully aware of the kinds
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of inferences being made from their brain activity or when data is accessible to employers
219, 236].

Responsibility emerges as a complex issue, particularly in systems where BCIs augment
or mediate action. If a decision is influenced by neuroadaptive interfaces, assigning account-
ability becomes more difficult. Questions arise around whether users are fully responsible
for decisions that were facilitated or filtered through BCIs—if such devices are only able to
measure a small portion of the user’s full brain state, can the user ever be held liable for
downstream consequences? [203] Moreover, system designers and organizations share ethical
responsibility for creating environments where these tools are used. Ethical frameworks that
emphasize relational and shared responsibility, rather than individual blame, are particularly
relevant [317, 341].

Another important dimension is identity and selfhood. Using neural activity for feed-
back or performance evaluation can influence how users see themselves, their roles, or their
emotional and cognitive capacities. Such feedback might reinforce certain narratives—such
as being a “focused” or “high-performing” teammate—but could also produce tension or
alienation, especially if users feel misrepresented by the system [109]. These concerns are
often framed in terms of narrative identity: the capacity to construct and sustain coherent
self-understandings through time [271]. Still, identity-oriented frameworks also underscore
the positive potential of BCIs to support user reflection. Systems that allow users to explore
fluctuations in attention or emotional state may foster greater self-awareness and personal
growth [264, 271], provided they avoid essentializing or determinist interpretations of neural
data.

Finally, equity and inclusivity also emerge as key ethical concerns, particularly regarding
access to BCI technologies and differential impacts across social groups. Studies emphasize
the risks of marginalization for users with less technological fluency or for those whose
neurodata does not align with normative expectations. There is also concern that BCls
might entrench workplace hierarchies or be differentially imposed across roles or sectors
[203, 326].

Across these works, ethical frameworks vary: some adopt a rights-based approach [31],
others draw on care ethics [341], relational autonomy [330], or empirical ethics [40]. Despite
these differences, a shared concern emerges: BCIs pose novel challenges to dignity, equity,
and control that cannot be addressed by technical design alone. A recurring critique is that
ethical discussion must move beyond high-level speculation to address the everyday realities
of BCI use. Scholars call for empirical, participatory, and interdisciplinary approaches that
incorporate stakeholder values and lived experience [40, 60, 264].

Taken together, these concerns suggest that ethical BCI development must attend to
both the technological capacities of systems and the relational, situated contexts in which
they are used. The following section builds on these insights by examining how participants

in my research articulated their own values and ethical concerns about collaborative BClIs.
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8.2 Ethics in Context: Stakeholder Perspectives on the
Development of BCIs for Workplace Teams

This dissertation contributes to ongoing neuroethical conversations by grounding ethical
principles—such as autonomy, privacy, and responsibility—in the lived perspectives of po-
tential end-users. Participants in my user-centered study examining stakeholder perspectives
on BClIs for collaborative contexts (Chapter 7) surfaced both expected and underexplored
ethical dimensions of collaborative BCI use. Their responses affirm many of the concerns
raised in the prior literature, but also extend these lines of ethical inquiry to the affective
and interpersonal dynamics within teams.

Participants voiced clear concerns about autonomy and coercion, echoing existing discus-
sions. Several participants noted that even if it were aggregated or anonymized, sharing data
depicting the cognitive and affective states of team members could introduce subtle pressures
to conform. For instance, some participants expressed worry that making mental workload
levels of all team members visible could lead to a kind of peer pressure, which would encour-
age them to either attempt to maximize their workload levels to meet expectations set by
supervisors, or moderate their workload to match the rest of the team. This highlights how
consent is not only an individual decision, but embedded in social relationships and power
structures. Others emphasized the importance of being able to configure what data is shared
and with whom, stressing the value of contextual autonomy and selective self-disclosure.

Privacy and mental transparency were also key themes. Participants consistently raised
the fear of involuntary exposure, particularly in contexts where emotional data might be
shared in real time. For example, several participants each described scenarios in which a
teammate might appear confused or disengaged on a shared dashboard, without any room
for that data to be qualified or contextualized. Such moments were seen as potentially
embarrassing or damaging to morale. At the same time, others expressed excitement about
being able to “see how the team is doing” in a more immediate and nuanced way, suggesting
that with careful design, neurodata could foster empathy and group awareness.

Responsibility and accountability were addressed implicitly in participant reflections on
misinterpretation. Concerns were raised about team leaders using neurodata to draw prema-
ture or incorrect conclusions about individual contribution or engagement. For example, par-
ticipants noted that emotional or attentional states fluctuate for reasons unrelated to team
performance, and that BCIs could easily amplify bias if their outputs were over-trusted.
These reflections highlight the need for shared responsibility in BCI-mediated teamwork,
where system developers, users, and organizational leaders collaborate to establish clear
norms for how brain data should be interpreted and used to inform action.

Despite these ethical concerns, participants saw promise in BCIs as tools for improving
communication and reducing misalignment. Several mentioned that teams often struggle

with differences in member understanding or engagement, or latent frustration that goes
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unspoken until it becomes disruptive. A BCI-based system that gently indicates these sources
of divergence might allow teams to address issues earlier, when they are more manageable.
Others noted that BCIs could help individuals monitor their own cognitive states and set
personal goals for focus or workload regulation, which could also support narrative identity
by enabling users to better understand and author their mental experiences. Participants
also speculated that objective neural data might offer a counterbalance to racial or gender
biases in workplace assessments, helping to validate individuals’ contributions or cognitive
engagement when such factors might otherwise be overlooked or undervalued.

8.3 Ethical Guidelines for the Responsible Use of BCIs

for Collaboration

These findings from my work suggest that ethical design of BCIs for collaborative contexts
must consider not only the dyadic relationship between the user and system or employer, but
the broader network of social dynamics and interpretations that shape how neurotechnologies
are experienced and understood within teams.

Drawn largely from a care ethics perspective, which prioritizes healthy interpersonal
relationships and well-being, and integrating the insights outlined in prior sections, I propose
the following guidelines for the design of ethically responsible BCI systems for collaboration.
These consist of six interrelated principles:

1. Agency and Configurable Consent — Team members should retain full agency
over whether and how they engage with a BCI system. They must be able to choose
whether to use the system at all, which data (if any) is shared, and how visible it is
to others. Consent should be ongoing, not a one-time agreement, and users must have
the ability to opt out or adjust their settings at any time without penalty or stigma.

2. Minimal and Purpose-Bound Data Collection — Organizations must err on the
side of collecting and retaining as little data as possible. Raw brain data should never
be stored, and only the minimal set of derived metrics needed to support intended
functionality should be generated. These should be anonymized and aggregated by
default, and stored only for a limited, clearly defined duration, such as the length of a
project or a user-specified timeframe.

3. Transparency and Stakeholder Comprehension — All stakeholders—including
employees, team leads, and system administrators—must be clearly informed about
what data will be collected, what metrics are calculated, what those metrics mean,
and how they will be used. The benefits and risks of using the system must be openly
discussed, ideally as part of a collaborative onboarding or co-design process.
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4. Support-Oriented Feedback Design — BClIs should function as tools that enhance
collaboration and team well-being, not as mechanisms for performance monitoring or
behavioral enforcement. Feedback should be constructive, team-centered, and framed
to support mutual understanding and the overall health of the team. Systems that
foster interpersonal trust and shared responsibility are more likely to be ethically sus-
tainable.

5. Optional and Non-Uniform Participation — The system’s usefulness must not
depend on universal adoption within the team. Requiring full participation compro-
mises agency and may coerce individuals into opting in to maintain alignment with
teammates or management. Instead, systems should be designed so that partial usage
still offers value.

6. Contextual and Collaborative Decision-Making — Neurodata should never serve
as the sole basis for managerial decision-making, especially in punitive or evaluative
contexts. Instead, it should be used as one form of context among others, triangulated

with behavioral observations, team dialogue, and other organizational knowledge.

Together, these principles aim to create conditions where BCIs can serve as empowering,
reflective tools that improve team cohesion and communication without introducing new

burdens or inequalities.

8.4 A Motivating Example

To illustrate how these guidelines might be enacted, consider an optimal implementation of
a team-facing BCI system in a workplace setting:

Imagine a cross-functional project team in a mid-sized technology firm. Team members
opt into using a lightweight BCI headband during project sprints. Each user configures
their settings individually, choosing whether to share their data with others, and if so, which
categories: emotional valence, cognitive workload, and/or focus. Shared data appears on a
central dashboard only in aggregate form (e.g., “team stress trending upward”), color-coded
for clarity. Raw neural signals are never stored, and all derived metrics are deleted at the
end of the project.

The system was co-developed with employee input, and onboarding included a values-
centered workshop where stakeholders discussed how the tool should be used—and not used.
Feedback appears periodically and unobtrusively in team retrospectives, highlighting pat-
terns rather than individual anomalies. A rising team stress score might trigger a shared
reflection or lead to minor scheduling adjustments, rather than disciplinary action. Individ-
ual users can access their own historical data if they choose to reflect on personal patterns

over time.
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Importantly, the system continues to function even if only a subset of team members
use it. This allows for staggered adoption and respects differing comfort levels. Through-
out deployment, an internal review board evaluates outcomes and updates system policies
in response to user feedback. Managers are explicitly prohibited from using the data for
individual performance evaluation; rather, it serves to enrich ongoing conversations about
workload, communication norms, and team well-being.

Such a system does not eliminate ethical risks, but does reflect a careful balancing of
power, agency, and insight. It operationalizes ethical commitments not through values alone,
but through specific, embedded design features and workplace practices that prioritize re-
spect, care, and collaboration, as well as exemplifies under what conditions using BClIs in

team contexts is justifiable.

8.5 Broader Impacts

This dissertation contributes to a range of broader impacts across domains including HCI
research reproducibility, the accessibility of brain data for design, ethical technology devel-

opment, and public understanding and engagement.

8.5.1 Advancing Research Reproducibility and Accessibility in HCI

One of the most immediate impacts of this work lies in improving the reproducibility and
accessibility of brain-computer interface research in the HCI community. As noted in our
work developing an experiment model for conducting reproducible BCI research (Chapter 3,
[276]), reproducibility in brain signal research within HCI has been hindered by inconsistent
reporting practices, methodological diversity, and a lack of unified documentation standards.
The development of structured experiment models and recommendations for transparent re-
porting directly addresses these concerns. By adopting reproducibility-friendly approaches
and clearly reporting data acquisition, analysis pipelines, and experiment design, this dis-
sertation contributes to a more robust and cumulative body of research.

Moreover, the introduction of BrainEx (Chapter 4, [139]) lowers the barrier to entry for
exploring brain signal data by enabling intuitive visual exploration and search functionality.
By facilitating use by non-experts and emphasizing usability, tools like BrainEx open up
possibilities for broader participation in neurotechnology research and design. These contri-
butions support the National Science Foundation’s societally relevant outcomes of advancing
discovery and innovation through shared infrastructure and cross-disciplinary collaboration,
as well as fostering more inclusive research ecosystems [250].
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8.5.2 Societal and Workplace Impacts of BCIs for Teams

From a societal perspective, the potential deployment of BCIs in team settings raises both
significant opportunities and concerns. As discussed earlier in this chapter, BCIs for teams
can enable novel forms of insight into collaborative dynamics, allowing users to reflect on
interpersonal patterns that may otherwise go unnoticed. For example, as participants in
my user-centered study noted, systems that surface shared attentional or emotional signals
may help teams course-correct more quickly, promote transparency, and balance work more
equitably. In ideal conditions, these systems can serve as supportive scaffolds for more
empathetic and intentional collaboration.

However, the risks of surveillance, coercion, misinterpretation, and erosion of trust must
also be taken seriously. This dissertation responds to those risks by proposing design guide-
lines to ensure BCI systems are deployed in ways that preserve user autonomy, data agency,
and interpersonal dignity. Ethical use cases for BCls, as surfaced in this work, are ones that
emphasize user control and frame neural data as a lens for reflection rather than the sole
determinant of performance, touching upon the Ethically Aligned Design (EAD) principles
of transparency, data agency, and well-being [148].

These design choices are not just technical—they have the potential to influence how BClIs
might shape workplace culture, interpersonal norms, and even the nature of team decision-
making. Making explicit how ethical values map onto concrete system features provides a
roadmap for deploying systems that enhance human capability without compromising ethical
integrity.

8.5.3 Community and Public Engagement

This dissertation also contributes to broader engagement with the public and user communi-
ties around neurotechnology. In particular, it models and advocates for participatory, user-
centered design processes in BCI development. As exemplified by our user-centered study,
speculative design activities not only elicit concerns but also surface creative, value-driven
visions for how technology might be used well. This participatory approach is grounded in
the belief that systems should reflect the lived realities and aspirations of the people who
will use them, not just the assumptions or wishes of researchers or designers.

By prioritizing accessibility and usability, particularly through tools that allow novice
users to explore their own brain data, this work helps foster a culture of curiosity and
reflection. Public-facing tools like BrainEx may help demystify neuroscience and empower
individuals to think critically about cognitive processes and brain-sensing, which can serve
to increase public understanding of and engagement with science and technology. In the long
term, democratizing access to neurotechnology tools may also promote grassroots innovation
and education, enabling members of the public to explore cognitive and emotional processes,
understand the ethical stakes, and develop their own novel applications.
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8.5.4 Evaluating Broader Impacts

Several pathways exist for evaluating the broader impacts proposed here. For reproducibility,
future work could examine the uptake of tools and reporting practices proposed in this
dissertation by tracking citations, replication studies, and adoption in research pipelines.
Surveys or interviews with researchers or members of the public working with brain data
could also gauge the usability and influence of frameworks like BrainEx or the reporting
guidelines developed.

For collaborative BCI systems, longitudinal deployments in team-based workplace or ed-
ucational settings could be used to assess perceived utility, ethical comfort, and outcomes
on team dynamics. Additional user studies could explore whether the ethical safeguards
proposed—such as consent controls or team-level aggregation—successfully mitigate the con-
cerns participants raised in our work. Tracking public discourse or media representation
around BCIs may also reveal changing perceptions and values.

Further evaluation might involve studying the spread and salience of team-facing BClIs
in real-world use. This could include a meta-review of papers describing workplace BCI
deployments, interviews with developers and users of such systems, and surveys gauging
organizational attitudes toward brain sensing technologies. Such research would provide
empirical grounding for assessing the ethical, social, and practical consequences of this dis-

sertation’s proposed approaches.

8.6 Conclusion

As BCIs move from clinical settings into team-oriented workplace environments, their ethical,
technical, and social implications demand critical attention. This chapter has examined
these implications through the lens of stakeholder concerns, ethical principles, and broader
societal relevance. Drawing on a rich body of prior work and user-centered design research,
I have argued that ethical BCI systems must prioritize individual agency, data stewardship,
transparency, and interpersonal well-being. When designed with these values in mind, BCIs
can serve as reflective tools for enhancing collaboration and self-understanding, rather than
instruments of control or surveillance.

In parallel, this work advances reproducibility and accessibility in HCI’s engagement with
brain signal research, opening doors for cross-disciplinary innovation and public engagement.
Through tools like BrainEx and a commitment to open, user-friendly design practices, this
dissertation contributes to a future where neurotechnology is not only more ethical, but
also more inclusive and comprehensible. Ultimately, these contributions support a vision
for BCIs that enable thoughtful, responsible augmentation of team dynamics by centering
people, their relationships, and their values at the heart of design.
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Chapter 9

Concluding Remarks

This dissertation explored how brain-computer interfaces (BCIs) can be made more acces-
sible, reproducible, and ethically integrated into collaborative settings. Through a series of
technical contributions, empirical studies, and human-centered design interviews, this work
addressed key challenges in the development and deployment of BCI systems: the lack of
standard practices for reproducibility in brain signal research, the steep learning curve for
non-experts hoping to work with neurophysiological data, and the ethical implications of
using BClIs to support team dynamics and collaboration.

Chapters 3 and 4 addressed the first of these challenges, focusing on supporting open
and transparent research practices. Chapter 3 presented a taxonomy of HCI research using
brain signals, developed through a systematic review of 110 publications, and proposed
an experiment model for more consistent and informative reporting. The model not only
supports reproducibility and cross-disciplinary understanding, but also sheds light on the
diversity of approaches and reporting strategies in BCI research. Chapter 4 introduced
BrainFzx, a visual exploration tool designed to make brain signal analysis more accessible
to researchers without deep technical expertise. Combining high-performance similarity
search and interactive data exploration, BrainEx supports new forms of insight generation,
encouraging broader participation in BCI development. Together, these chapters contribute
practical tools and frameworks that make it easier for others to engage with and build upon
BCI research.

Chapters 7 and 6 shifted focus to the second core aim of the dissertation: understanding
how brain signals can be leveraged in real-world collaborative settings to support more
effective and meaningful team interactions.

Chapter 6 presented an exploratory empirical study examining the relationship between
neural activity, team processes, and collaborative performance. Participants worked in small
groups on a creative task while wearing EEG headsets. Analyses revealed modest but mean-
ingful relationships between brain-based measures of engagement, workload, and synchrony,

and behavioral indicators of team function. These findings support the technical feasibility
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of real-time BCI systems that help teams reflect on their own dynamics. While more research
is needed to translate these signals into actionable feedback, this study lays groundwork for
understanding the neurocognitive underpinnings of collaboration.

Chapter 7 complemented this exploration of practical feasibility with a user-centered
design study investigating how team members and leaders imagine future BCI support tools,
uncovering unmet needs, ethical concerns, and desired functionalities. Participants described
the challenges of collaboration (such as incompatible team member personalities, motivation
gaps, and miscommunication), as well as their hopes for technologies that could enhance
mutual understanding, accountability, and synergy across the team. Informed by these
insights, the chapter proposed a set of ethical guidelines for designing BCIs that center user
agency, transparency, and well-being.

Beyond its technical and empirical contributions, this dissertation speaks to broader ques-
tions about the future of neurotechnology and the values that should guide its development.
Chapter 8 engaged with the ethical and societal implications of deploying BCIs in team-
oriented contexts. Drawing on prior literature, empirical data, and theoretical frameworks,
it explored key considerations regarding the ethical principles of autonomy, privacy, and in-
terpersonal responsibility. This work not only highlighted the potential risks of surveillance,
coercion, and misinterpretation, but also argued for the transformative potential of BCIs
when designed to promote self-awareness, empathy, and supportive rather than punitive
feedback.

The broader impacts of this work span research, practice, and public engagement. By
advancing reproducibility and accessibility in BCI research, this dissertation contributes to a
more robust and inclusive scientific ecosystem. By modeling participatory, user-centered de-
sign, it demonstrates how neurotechnology can be shaped by the people it aims to serve. And
by developing tools and frameworks that support values such as transparency, well-being,
and autonomy, it offers a roadmap for responsible innovation in brain-computer interaction.

In sum, this dissertation lays the conceptual, methodological, and ethical foundation for
BCI systems that are technically sound, but also responsive to the lived realities of users,
envisioning a future in which BCIs amplify human insight, support collaboration, and enable
richer relationships between people and technology. Future work may continue to build on
these contributions by deploying functional BCI systems for teams, refining their feedback
mechanisms, and evaluating their long-term impacts in workplace and educational environ-
ments. Despite considerable remaining challenges, the promise of designing neurotechnology

in service of human values remains a powerful and worthwhile pursuit.
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Appendix A

Detailed Experiment Model with
Examples

In the tables below, we present the experiment model for HCI research with brain signals,
described in Section 3.6. We describe each category and list the attributes contained within
them. For each attribute, we give a definition of the attribute and present an example taken
from the surveyed literature. We tried to identify examples which are biased towards a
more detailed documentation, but individual examples may still lack certain information.
An online version which allows to submit changes is available at https://brain-signals
-hci.github.io/experiment-model/.
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Aspect of Model

Example

Technical Aspects of Recording

Type of Sensor: For a given brain sens-
ing modality, report the manufacturer and the
specification of the sensor chain employed.

Sensor Position: Report where on the scalp
electrodes are positioned. For EEG, this is
most often done in terms of the 10-20 position-
ing system or its refinements. For fNIRS, the
placement of transmitters and receivers has to
be distinguished and the respective distances
need to be reported.

Sampling Rate: Report the number of sam-
ples recorded per second in Hz.

Measurement Quality: For EEG, the
threshold for the maximum impedance level (in
kQ) is often reported. For fNIRS, no stan-
dardized quality measurement exists, different
devices provide different ways of measurement
(e.g. photon count).

Reference: Specific to the EEG signal, it is
custom to report the electrode to which the
recording was referenced.

Auxiliary signals: The brain sensing modal-
ity may not be the only signal, which is cap-
tured during the experiment. Often, other sen-
sors, such as eye trackers or heart rate monitors
are employed. For these, similar information as
for the brain sensing modality may be reported,
especially about the specific type of sensor and
its placement.

Synchronization with stimuli and other
signals: For analyzing a continous stream of
brain signal data, it needs to be synchronized
to the events of the experiments (and poten-
tially any other signal sources). This can be
done through timestamps, trigger signals, light
sensors or other means and the method may
be reported to determine the precision of the
achieved synchronization.

“The FEG was recorded using a NeuroScan sys-
tem with 32 Ag-AgCl electrodes” (Lee et al.,

[194])

“Electrodes were positioned according to the ex-
tended 10-20 system on CPz, POz Oz, Iz, O1
and O2” (Evain et al., [86])

“A sampling rate of FEEG signals was set as 300
Hz.” (Terasawa et al. [323])

“electrode impedance was below 5 KQ”7 (Vi et
al. [356])

“Two electrodes were located at both earlobes as
reference and ground.” (Terasawa et al. [323])

“Fye positions were measured with an embedded
infrared eye-tracking module: aGlass DKI from
Tinvensun (https://www. Tinvensun.com).”

(Ma et al.[213])

“A parallel port comnection between record-
ing PC and experimental PC synchronized the
EEG recording with the experimental events,
such as the sound onset and button press.”
(Glatz et al., [107])

Table A.1: Experiment Model: Part 1.
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Aspect of Model

Example

Recording Environment: This point re-
ports where and under what conditions the ex-
periment was conducted. Of relevance can be
the conditions regarding control of light, sound,
electromagnetic fields as well as the positioning
of the participant. This attribute is often illus-
trated through a photo or video of the environ-
ment.

“#Scanners was presented in an intimate 6
person capacity cinema, within a caravan |[...].
The space had no windows, low lighting, plush
seating, an eight foot projected image, and
stereo speakers. Figure 3 [shows a] participant
wearing the EEG device, experiencing #Scan-
ners inside the caravan.” (Pike et al.[266])

Task Description

Participant Restraints: This attribute re-
lates to any instructions or physical restraints,
which were in place during the experiment to
avoid artifacts or other undesired effects influ-
encing the signal.

Output devices: Describes through which de-
vices (e.g. computer screen, mobile phone, etc.)
information and material is communicated to
the user. As many brain activity patterns are
sensitive to the specific characteristics of the
stimulation, details of the presentation may be
reported.

Input devices: Describes through which de-
vices (besides the brain signal itself) the user
communicates commands and other types of in-
put to the system.

User Input: Describes which kind of com-
mands and input users can enter into the sys-
tem at which point of the task. May specify
which input devices are used and whether there
are any requirements or restrictions to the in-
put.

Middleware/Communication: For interac-
tive applications or distributed recording se-
tups, this attribute reports how the different
parts communicate to exchange data, triggers,
commands, etc.

“the participants were instructed to refrain
from excessive movement by keeping arms at
rest on the table in a position that allowed them
to reach the keyboard without excessive move-
ment.” (Crk et al., [62])

“The [...] game stimulus was run on a pow-
erful high-end gaming PC (CPU: Intel®) Core
M i7-6850K @ 3.60 GHz; RAM: 32 GB; GPU:
NVIDIA Geforce GTX 1080) and displayed on
a 27-inch BenQ ZOWIE XL2720 144 hz gam-
ing monitor at a 1920x1080 resolution.” (Terk-
ildsen and Makransky,[324])

“HMD-mounted Leap Motion (https://www.
leapmotion.com) to track participants’ hands.”

(Skola and Liarokapis [345])

“They had to respond to auditory notifications
whenever one was presented, with a button
press using either their left or right index fin-
gers. Siz notifications (i.e., 8 complementary
pairs of verbal commands and auditory icons)
were pre-assigned to a left index-finger press
and the remaining siz, to a right index-finger
press.” (Glatz et al., [107])

“We wrote a custom Java bridge program to
connect the headset to the Android OS and
Unity application on the Game tablet. The
Java program polled the headset 60 times a sec-
ond for EEG power spectrum [...] We con-
nected the Calibrate tablet to the Game tablet
using WiFi Direct [...].” (Antle et al. [10])

Table A.2: Experiment Model: Part 2.
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Aspect of Model

Example

Framework/Technical platform: What
software or development toolkit (in what ver-
sion) was used as the foundation to implement
the task (e.g. PsychoPy, Unity, etc.)

Task Functionality: Reports what function-
ality the involved software provides to the user
(in the case of a working interactive applica-
tion) and how it responds to different user in-
put. For experiments which are based on or
inspired by established paradigms (e.g. from
cognitive psychology), this source may be re-
ported (e.g. in reference to a source such as the
Cognitive Atlas [268].

Architecture: For experiments which involve
non-trivial custom software artifacts, this at-
tribute reports the underlying software archi-
tecture, informing about structure of and in-
formation flow between modules.

Stimulus Material: For tasks which involve
the repeated presentation of uniform stimuli
(e.g. pictures to rate, text prompts to enter,
etc.), this attribute reports the form of these
stimuli (e.g. picture size, length, language, etc.)
and their source.

Visualization provided?: This attribute re-
ports visually (through screen shots or video)
the task as shown to the user. If the task has
multiple distinct parts, all of them may be vi-
sualized. If the task is not in English, the visu-
alization may be accompanied by a translation.

Timing: Reports on if and how the task is
(partially) paced by an internal clock, for ex-
ample for controlling the duration for stimulus
presentation or the time time for responding to
a prompt.

Code for task provided?: Reports on
whether the task is provided in source code
or an executable file and under what licence.
If custom hardware is involved, this could also
include a blueprint or a circuit diagram.

“The scene was developed using Unity version
2017.3.0f3, for the representation of hands,
the realistically looking hand models “Pepper
Hands” from Leap Motion suite were used (vis-
ible in Figure 8).” (Skola and Liarokapis [305])

“the main task for the study is a multi-robot
version of the task introduced in [27]. Partic-
ipants remotely supervised two robots (the blue
robot and the red robot) that were exploring dif-
ferent areas of a virtual environment. Partici-
pants were told that the two robots had collected
information that needed to be transmitted back
to the control center. [continues...]” (Solovey

et al.,[307])

“To prepare experimental materials, a dataset
of notifications from the websites Notification
Sounds and Appraw were collected. Seven mu-
steally trained raters were recruited to deter-
mine the melody complexity of the 40 notifica-
tions. [...] (The stimuli can be downloaded at
https://qoo.gl/SnZrzG).” (Cherng et al.,[53])

“Fach trial began with a black screen for 3s,
followed by a fization dot in the center of the
screen for 200ms. After that, the screen re-
mains clear for 200ms before one of four stim-
uli was displayed for 300ms.” (Vi et al. [336])

Table A.3: Experii?(fnt Model: Part 3.



Aspect of Model

Example

Participants

Recruitment strategy: How where study
participants recruited, e.g. through social me-
dia, in class, etc.?

Incentives: What compensation (if any) was
offered to study participants, e.g. money, class
credit, etc.? What were the criteria for being
eligible for the compensation?

Age: How old are the participants (mean and
standard deviation)?

Gender: With what gender do participants
identify (relative frequencies)?

Occupation: What is the profession or - in
case of students - the field of study of the par-
ticipants?

Inclusion or exclusion criteria: Where
there rules on which participants were eligible
to take part in the experiment and what were
these criteria (e.g. handedness, disabilities, caf-
feine consumption, etc.)?

Approval of ethics committee: Was the
study approved by an ethics committee? If so,
by which one?

“A snowball procedure was used to gather the
sample of study participants. The study was ad-
vertised via university courses, email and social
media.” (Johnson et al.,[159])

“Participants received monetary compensation
for their participation (10 Euro).” (Putze et
al.,[278])

“mean age 24.53 (SD: 3.00)” (Frey et al.,[99])

“2 females and 9 males” (Ma et al.,[213])

“Data were collected from 34 computer science
undergraduates at the first two authors’ insti-

tution” (Crk et al., [62])

“Fach of the individuals was enrolled in at least
one computer science course” (Crk et al., [62])

“the experimental protocol was approved by the
University Research Ethics Committee prior to
data collection.” (Burns and Fairclough, [39])

Experiment Flow

Experiment Structure: Order of different
segments of the experiment, such as instruc-
tion, sensor placement, training, debriefing,
etc. For “in-the-wild” experiments, which do
not follow a fixed, predefined pattern, this at-
tribute may report the boundary conditions
and which parts of the experiment could be.

Instructions: Instructions given to the partic-
ipants regarding purpose of experiment, experi-
ment setup, task operations, restrictions, safety
considerations, etc. If possible, the written in-
struction documents may be provided.

“e5-10min of explanation (slideshow with a de-
tailed description of the interface), e5min to
set up the hardware, eFor each BCI paradigm:
10min of calibration, familiarization e10min to
play the game e5min of rest eQuestionnaires”
(Kosmyna et al.,[179])

“Participants were instructed to focus visual
attention on a target symbol, whilst silently
counting the number of times the target char-
acter flashed.” (Obeidat et al.,[254])

Table A.4: Experiment Model: Part 4.
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Aspect of Model

Example

Training procedure: This attribute reports
about how the participants familiarized them-
selves with the task. it may report the du-
ration of training, specific training conditions
compared to the main experiment, and specific
training instructions.

Trial ordering: For any experiment that is
organized in trials, this attribute reports how
the ordering of the blocks was derived. It may
report whether and how ordering differed be-
tween participants.

Repetitions, blocks & breaks: This at-
tribute reports the larger structure of the ex-
periments, such as blocks of trials and their
duration, ordering as well as pauses between
blocks. If applicable also reports stopping cri-
teria, if these are individual.

Pre-study screenings: Reports any proce-
dures prior to the experiment that determine
the eligibility of a participant for the study,
their assignments to an experiment group or
other aspects of the experiment process.

Questionnaires: Reports which question-
naires were administered before, during and
after the experiment. May give a reference
to a published questionnaire or list the items
of a custom one. May also report when and
how often questionnaires were administered
and through what means (paper or computer-
based).

“All participants first undertook a training task
where they played 15 easy and 15 hard pieces on
the piano. Each piece was 30 seconds long with
a 30-second rest between each piece.” (Yuksel
et al.,[377])

“The order of conditions was counter-balanced
across subjects and participants wore the fNIRS
device during both trials so they did not notice a
difference between the two conditions.” (Afer-

gan et al.,[{])

“Fach session comprised four testing blocks:
two using club ambient noise and two using city
street ambient noise as standard stimuli. Be-
tween any two consecutive blocks, subjects had
three minutes to rest.” (Lee et al.,[194])

“None of the subjects had any history of brain
disease, drug use, or hearing problems. Nomne
had any musical expertise.” (Lee et al.,[194])

“At the end of the evaluation, end-users
were asked to complete the NASA-TLX, the
eQUEST 2.0, and a customized usability ques-
tionnaire. [...] After each session was com-
plete, the therapist station would automatically
open up on the laptop and ask the user to an-
swer, How satisfied were you with the BCI ses-
sion? (with 10 being very satisfied and 0 is
not satisfied) [continues ...]” (Miralles et al.,

[234])

Data Processing

Derivation of labels: Outside neurofeedback
applications the recorded brain signal data
is distributed between multiple groups or as-
signed a continuous value. This attribute may
report how the label is derived from the col-
lected data (e.g. defined by the experiment
structure, by questionnaire responses, or exter-
nal ratings).

“We considered the mean of the three NASA-
TLX parameters (effort, mental demand and
frustration) to evaluate the overall mental
workload. The average score was thresholded
at the mean value of 2 (since the used scale
was 0—4) to quantize or characterize a parame-
ter block as inducing low/high workload.” (Bi-
lalpur et al.,[29])

Table A.5: Experiment Model: Part 5.
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Aspect of Model

Example

Data transformation: This attribute refers
to all processing steps which transform raw
data while keeping it in the original time-
domain representation.  Examples of such
transformation steps are: re-referencing, base-
line normalization, downsampling, etc.

Filtering: This attribute reports any filtering
of the data. This may include the type of filter
applied as well as necessary parameters, such
as the filter order.

Windowing: This attribute reports how seg-
ments of data are aligned (e.g. locked to an
event in the experiment), how long they are
and with which window function they are ex-
tracted.

Artifact cleaning: Reports through which al-
gorithms (beyond filtering) artifacts were re-
moved and which artifacts are targeted.

Hyperparameter optimization: For ma-
chine learning models, this attribute reports
how the hyperparameters of the model were
chosen (e.g. through grid search) and which hy-
perparameters where chosen in the final model.
This also includes other parameters of the pro-
cessing pipeline which are optimized (e.g. in
preprocessing).

Outlier handling: Reports any methods for
excluding certain samples, windows, or sessions
based on the contained data or other external
factors.

Feature extraction: This attribute reports
on how a feature vector for classification or
regression is calculated from the preprocessed
data.

“the common average was subtracted from all
EEG channels.” (Lampe et al.,[192])

“FEG data was first low-pass filtered with a
cutoff frequency of 50hz and high-pass filtered
with a cutoff frequency of 0.16hz, both using
a third-order butterworth filter” (Rodrigue et
al.,[288])

“The data was then segmented into 1.5-second
epochs, owverlapping each previous epoch by
50%” (Rodrigue et al.,[288])

“Independent Component Analysis (ICA) is
applied [...] The components are first filtered
using a band-pass filter with cut off frequencies
1 - 6 Hz. Choosing the component with the
highest energy [and] applying a high-pass filter
with a cut off frequency of 20 Hz.” (Jarvis et
al., [155])

“A grid search was performed to optimize sigma
for all participants, the remaining parameters
were left as default.” (Rodrigue et al.,[288])

“Any rest or trial period with 20 percent or
higher error rate is considered noisy and can be
excluded from the analysis” (Crk et al., [62])

“IWle partitioned each data window into
smaller segments of 50 ms length. We then
used the signal mean of the segment, calculated
on the band-pass filtered signal, with cutoff fre-
quencies at 4 and 13 Hz (i.e. 6- and a-bands).”
(Putze et al., [278])

Table A.6: Experiment Model: Part 6.
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Aspect of Model

Example

Feature selection: This attribute reports on
procedures to reduce the number of features
automatically.

Learning model: This attribute reports on
the specific machine learning model that is em-
ployed (if any) to perform classification or re-
gression.

Evaluation procedure: For machine learning
models, this attribute reports how they were
evaluated to assess their performance. This in-
volves the exact metric used for assessment as
well as the approach to (sometimes repeatedly)
determine test and training data sets.

Processing code provided? Reports if the
code for processing the brain signal data is re-
leased with the paper or in a separate repos-
itory. If the code cannot be provided, as a
substitute it is possible to report the employed
frameworks (e.g. EEGLAB).

“we performed a feature selection using the
Fisher ratio as selection criterion. The number
k of selected features [...] was a tuning param-
eter in the range between 5 and 50.” (Putze et

al., [278])

“the Neural Network Toolbox of MATLAB was
used to create an artificial neural network
(ANN) with 198 inputs, 20 hidden neurons and
4 outputs. The patternnetfunction, which cre-

ates a feed-forward neural network, was used.
[...]7 (Lampe et al.,[192])

“To assess the classifiers’ performance on the
calibration data, we used 4-fold cross-validation
(CV). [...] The performance was measured us-
ing the area under the receiver-operating char-
acteristic curve (AUROCC).” (Frey et al.,[99])

“The full classification pipeline is implemented
in Python. For EEG processing, we use the
MNE toolboz [17]. For machine learning and
evaluation algorithms, we use scikit [28] and
custom routines build on numpy and scipy.”
(Putze et al.,[278])

Brain Signal Integration

Brain Input effect: This attribute describes
how the output of the brain input processing in-
fluences the design, the behavior, or the content
of the application or experimental paradigm.

Type of integration: This attribute de-
scribes the algorithmic implementation of the
brain signal integration, i.e. whether an explicit
conditional statement, an Influence Diagram, a
state graph, or a different way of behavior mod-
eling was used.

“when the system was confident that the user
was n a state of low or high workload, one
UAV would be added or remowved, respectively.
After a UAV was added or removed, there was
a 20 second period where no more vehicles were
added or removed.” (Afergan et al.,[}])

“[The self-correction algorithm] inspects the
probability distribution [...] and picks the now
highest scoring class [...]. [W]e only used the
second best class if its re-normalized confidence
[..] is above a certain threshold T [...]. Oth-
erwise, the user was asked to repeat the input.”

(Putze et al.,[275])

Table A.7: Experiment Model: Part 7.
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Appendix B

Team Collaboration Task
Demographics

Here we provide demographic information for participants in the escape room design team
collaboration task from Chapter 6.
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Table B.1: Team collaboration task participant demographics (Part 1). Escape room famil-
iarity levels could range from (1 - Not at all familiar) to (4 - Very familiar), as in Section 6.2.2;
the final column lists the location of each participant (Location 1 - WPI or Location 2 - Uni-

Bremen).

ID  Age Range Gender Ethnicity Education Familiarity ~Group Location
P1  18-24 Male White High school 4 1 Location 1
P2 1824 Male Asian College 3 1 Location 1
P3 1824 Male Asian Graduate degree 2 1 Location 2
P4 25-34 Male Asian Professional degree 2 1 Location 2
P5 1824 Male White High school 2 2 Location 1
P6  18-24 Male Asian Professional degree 3 2 Location 1
P7  25-34 Male Asian Professional degree 2 2 Location 2
P8 25-34 Female White Graduate degree 2 2 Location 2
P9 1824 Male Asian Graduate degree 2 3 Location 1
P10 18-24 Male Asian High school 2 3 Location 1
P11 35-44 Female White College 3 3 Location 2
P12 18-24 Male Asian High school 1 3 Location 2
P13 18-24 Male White College 3 4 Location 1
P14 18-24 Female Asian Professional degree 1 4 Location 1
P15 18-24 Female O High school 3 1 Location 2

(Amazigh)

P16 18-24 Female White College 2 4 Location 2
P17 18-24 Male Asian Graduate degree 4 5 Location 1
P18 18-24 Other  Asian High school 4 5 Location 1
P19 25-34 Female Asian Professional degree 3 5 Location 2
P20 18-24 Male Asian College 3 6 Location 1
P21 18-24 Male White High school 3 6 Location 1
P22 18-24 Male Asian Graduate degree 2 6 Location 2
P23 25-34 Female Asian Graduate degree 1 6 Location 2
P24  25-34 Male Asian College 2 7 Location 1
P25 18-24 Male White High school 3 7 Location 1
P26 18-24 Male Asian Graduate degree 2 7 Location 2
P27 18-24 Male c(l)ig}Sr (In- Graduate degree 2 7 Location 2
P28  18-24 Male White High school 4 8 Location 1
P29 25-34 Male Asian Professional degree 2 8 Location 1
P30 18-24 Female White High school 3 8 Location 2
P31 18-24 Female Asian College 3 8 Location 2
P32 25-34 Male White Graduate degree 4 9 Location 1
P33 25-34 Female White Graduate degree 3 9 Location 1
P34 18-24 Female Asian Graduate degree 1 9 Location 2
P35 25-34 Male Asian College 2 10 Location 1
P36 25-34 Male Asian Professional degree 2 10 Location 1
P37 25-34 Female Asian Professional degree 1 10 Location 2
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Table B.2: Team collaboration task participant demographics (Part 2). Escape room famil-
iarity levels could range from (1 - Not at all familiar) to (4 - Very familiar), as in Section 6.2.2;
the final column lists the location of each participant (Location 1 - WPI or Location 2 - Uni-
Bremen). Missing information from two participants who did not complete the demographic
questionnaire is omitted.

ID  Age Range Gender FEthnicity = Education Familiarity Group Location
Other

P38 25-34 Female (Middle Graduate degree 2 11 Location 1
Eastern)

P39 18-24 Male Asian Graduate degree 11 Location 1

P40 - - - - 1 11 Location 2
Other

P41 18-24 Male g\\fﬁiid&;n o High school 3 12 Location 1
Asian)

P42 18-24 Non-binary White High school 3 12 Location 1

P43 - - - - 2 12 Location 2

P44  25-34 Female White College 4 12 Location 2

218



	Introduction
	Overview of Brain-Computer Interfaces
	BCIs and HCI: Prior Work and Future Directions
	Motivation
	Dissertation Outline and Organization
	Summary of Contributions
	Authorship Statement

	Background
	Accessible BCI Development
	Multi-User BCIs and Inter-Brain Synchrony

	A Model for Enhancing the Reproducibility and Reuse of HCI Research Using Brain Signals
	Introduction & Motivation
	Contributions
	Related Work
	Literature Database Curation
	Characterizing HCI Papers with Brain Signals
	Methods
	Paper Demographics

	Experiment Model for HCI Research with Brain Signals
	Reporting Practices in HCI Research with Brain Signals
	Prevalence of Experiment Model Attributes
	Structure of Experiment Reporting

	Expert Perspectives and Review
	Discussion & Outlook
	Conclusion

	BrainEx: An Easy-To-Use Tool for Exploring Brain Signal Datasets
	Introduction
	Contributions
	Background
	Functional Near-Infrared Spectroscopy (fNIRS)
	Analytic Tools for fNIRS
	Exploring Similar Sequences in Time Series
	Efficient Sequence Similarity Search Using Multiple Warped Distances

	BrainEx Engine Architecture
	BrainEx Engine: Distributed Preprocessing Algorithm to Compute Clusters
	BrainEx Engine: Distributed Similarity Search Algorithm
	BrainEx Engine: Time Series Indexing and Memory Optimization
	BrainEx Engine: Operations
	BrainEx Engine: Supported Datasets

	BrainEx Visual Exploration Design
	Usage Goals
	Functional Requirements
	Interface Components
	Similarity Search
	Cluster Exploration
	Feature Distribution Exploration
	Integration Pipeline

	Performance Benchmark Summary
	Preliminary User Study
	Study Design
	User Study Results

	fNIRS Case Study
	Dataset Description
	Case Study Results
	Case Study Conclusion

	Discussion
	Future Work
	Conclusion

	BCIs for Teamwork: Relevant Background
	Teams and Creativity
	Artistic Brain-Computer Interfaces and Creativity Support Tools
	Brain-Computer Interfaces to Support Teamwork
	Public Perceptions of BCIs and Emerging Technologies

	BCIs for Teamwork: Exploring the Relationships Between Brain Markers for Individual and Group States During Collaboration
	Introduction
	Study Design
	Participants
	Data Acquisition and Experiment Procedure

	Analysis Methods
	Task Performance
	Emotion Regulation Strategies
	Team Processes from Speech and Behavior
	Individual EEG Metrics of Attention
	Team Brain Metrics
	Analyzing the Relationship Between Individual and Team Metrics

	Results
	Relationship Between Individual and Group Neural Measures
	Influences on Team Performance
	Relationships Between Individual Neural Measures and Behavior
	Relationships Between Group Neural Measures and Behavior

	Discussion
	Limitations and Future Work

	Conclusion

	BCIs for Teamwork: Exploring the Potential for Brain-Computer Interfaces in Collaborative Contexts
	Introduction
	Exploring User Needs: Design Interviews with Team Members and Leaders
	Participants
	Study Design
	Generative Card-Sorting with ``Superpowers'' to Probe Challenges Faced by Teams
	Semi-Structured Interviews: What Works Well, What Doesn't, and How Tech Could Help
	Speed-Dating Possible Futures

	Discussion and Future Work
	RQ1: What unmet needs do stakeholders have during collaboration?
	RQ2: In what ways could brain-computer interfaces help fulfill these needs?
	RQ3: What concerns do stakeholders have about BCIs being used to support teams, and what risks do they foresee?
	RQ4: How could such risks and adverse impacts be minimized over the course of design and development?
	Future Work

	Conclusion

	Ethics and Broader Impacts
	Prior Work in BCI Ethics and Neuroethics
	Ethics in Context: Stakeholder Perspectives on the Development of BCIs for Workplace Teams
	Ethical Guidelines for the Responsible Use of BCIs for Collaboration
	A Motivating Example
	Broader Impacts
	Advancing Research Reproducibility and Accessibility in HCI
	Societal and Workplace Impacts of BCIs for Teams
	Community and Public Engagement
	Evaluating Broader Impacts

	Conclusion

	Concluding Remarks
	Detailed Experiment Model with Examples
	Team Collaboration Task Demographics

