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Abstract

Convection is a ubiquitous process driving geophysical/astrophysical fluid flows, which are typi-
cally strongly constrained by planetary rotation on large scales. A celebrated model of such flows,
rapidly rotating Rayleigh-Bénard convection, has been extensively studied in direct numerical simu-
lations (DNS) and laboratory experiments, but the parameter values attainable by state-of-the-art
methods are limited to moderately rapid rotation (Ekman numbers Ek > 1078), while realistic
geophysical /astrophysical Ek are significantly smaller. Asymptotically reduced equations of mo-
tion, the nonhydrostatic quasi-geostrophic equations (NHQGE), describing the flow evolution in
the limit Ek — 0, do not apply at finite rotation rates. The geophysical/astrophysical regime of
small but finite £k therefore remains currently inaccessible. Here, we introduce a new, numerically
advantageous formulation of the Navier-Stokes-Boussinesq equations informed by the scalings valid
for Ek — 0, the rescaled incompressible Navier-Stokes equations (RINSE). We solve the RiNSE
using a spectral quasi-inverse method resulting in a sparse, fast algorithm to perform efficient DNS
in this previously unattainable parameter regime. We validate our results against the literature
across a range of Fk, and demonstrate that the algorithmic approaches taken remain accurate and
numerically stable at Ek as low as 10~'°. Like the NHQGE, the RiNSE derive their efficiency from
adequate conditioning, eliminating spurious growing modes that otherwise induce numerical insta-
bilities at small Fk. We show that the time derivative of the mean temperature is inconsequential

for accurately determining the Nusselt number in the stationary state, significantly reducing the
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required simulation time, and demonstrate that full DNS using RiNSE agree with the NHQGE at
very small Fk.
Keywords: Rapidly rotating Rayleigh-Bénard convection, rescaled Navier-Stokes equations,

asymptotically reduced equations, quasi-inverse method
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1. Introduction

Buoyant convection in the presence of rotation represents a ubiquitous scenario for geophysical
and astrophysical fluid flows that is largely responsible for the observed turbulent dynamics of
planetary and stellar interiors [1l, 2} [3], and planetary atmospheres |4 [5] and oceans [6] [7]. The
dynamics are highly complex with many influential ingredients such as geometry, compressibility,
multiple components, and the presence of magnetic fields. In the absence of such complexities,
the quintessential paradigm for investigating rotationally influenced buoyant flows is provided by
rotating Rayleigh-Bénard convection (RRBC). A large number of studies has been published on this
model system, which is very well suited for detailed experimental, numerical and theoretical studies,
including [8] 9}, 10} [1T], 12} [13] 14} [15] 16} [17) 18] [19, 20], to name but a few. In its most distilled
form, the problem consists of a rotating plane layer of fluid confined between two parallel horizontal
plates which maintain a destabilizing temperature gradient. However, the interpretation of a layer
within this paradigm may be broadened to include confined fluid domains such as cylinders, annuli,
and spherical interiors and shells, which often arise in geophysical and astrophysical applications.

Five nondimensional parameters of geophysical and astrophysical interest highlight the relative
importance of the Coriolis, pressure gradient, buoyancy, and dissipation forces in setting the accel-
eration of the fluid. These are the bulk Rossby, Euler, buoyancy, Reynolds and Péclet numbers,
respectively:
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which are comprised of intrinsic, extrinsic and characteristic properties of the fluid. Intrinsic ma-
terial properties include the coefficient of thermal expansion «, the kinematic viscosity v, and the
thermal diffusivity &, with Pr = v/k denoting the Prandtl number. Extrinsic properties include
the magnitude ) of the rotation rate, the layer depth H, the gravitational acceleration g and the

applied temperature gradient |[VTp||. Characteristic properties include the velocity U, pressure P,



Celestial body Fk Pr Roy Reqy
Earth’s outer core 10~ 0.1 1077 108
Mercury (core) 10~12 0.1 1074 108
Jupiter (core) 10719 0.1 10710 10°
Europa (ocean) 10-12 11.0 | 10725-10~%° | 10%5-1010-®
Ganymede (ocean) | 10710-10713 | 10.0 | 1073°-10'5 | 10%5-10'15
Saturn (core) 1018 0.1 107? 10?
Enceladus (ocean) | 10710-1071* | 13.0 | 1073-5-10~1 107-5-10°
Titan (ocean) 10~1-10712 | 10.0 10731 109-1011
Neptune (core) 1016 10.0 107¢ 100
Uranus (core) 10716 10.0 10-¢ 1010

Table 1: Nondimensional parameter estimates for planetary [21] and satellite interiors [7]. Estimates of the Rossby

number are derived from the relation Rog = Rep Ek.

and the constant reference density pg. The subscript ‘H’ signifies association with the bulk layer
depth. Also of importance is the ratio of the viscous and Coriolis forces that provides an a priori
external parameter referred to as the Ekman number
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Turbulent flows are characterized by Rey > 1, and when strongly influenced by rotation, by
the ordering Fk < Rog <1 (cf. Eq. ) Table I provides estimates of these nondimensional
parameters in important geophysical and astrophysical settings. It can be seen that all such flows
are rapidly rotating (Ek < 1), highly turbulent (Rey > 1), and in the majority of situations
strongly influenced by rotation (Roy < 1). To first approximation, using the theory of isotropic
and statistically stationary turbulence as a benchmark, an order of magnitude estimate of the range
of scales between the integral and dissipative scales in terms of the number of degrees of freedom
per spatial direction and time is given, respectively, by Re?}f > O(10%) and Re}f > O(10%)
[22, 23]. Probing this region of parameter space is further complicated by an extended temporal
range. Specifically, the smallness of the Rossby number 10710 < Roy < 107! indicates an extreme

timescale separation between fast inertial waves, associated with the Coriolis force, propagating on



O(Q271) time scales and the motion of eddies evolving on the advective time scale O(H/U). From
the combined values of Rey and Rog, Table |1] indicates that this extended temporal range may

span as much as ten logarithmic decades.
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Figure 1: Overview of the parameter space of RRBC spanned by the Ekman number Ek and the bulk Reynolds
number Rep. Experiments, simulations, and dynamo models populate the parameter space characterized by mod-
erately large Ekman numbers and moderately low Reynolds numbers (shaded) but these are far from their geo-

/astrophysically relevant values. Adapted from [24], based on Table

From the standpoint of direct numerical simulations (DNS) — which are required to resolve
all scales of the motion — these estimates are truly daunting. The current capability of state-
of-the-art 3D DNS is O(10?) degrees of freedom in each spatial direction [25| 26, 27], indicating
an upper threshold of Rey = O(10%). Hence, directly accessing the geophysical and astrophysical
parameter regime is out of reach for the foreseeable future, even with impending advances to exascale
supercomputing. Figure [I] captures this void visually. Recent DNS studies place the threshold at
Ek 21078 Reg < 104, e.g. |28, 1291 30, 311 132, 133}, [34] [35]. Inclusion of spherical geometry and the
capability for dynamo action in the simulations further restricts the reported range to EFk > 1077,

Rep <102 [36, 137, 138, 139], although Ek = 10~® has been reached, albeit at great numerical cost



[40]. Given these limitations, a popular DNS strategy has been to vary Re over the accessible range
and attempt to uncover scaling laws in global quantities such as momentum and heat transport
with a goal of extrapolating the results to the geophysical and astrophysical settings of Table
However, to be physically meaningful, such an extrapolation must be performed while respecting
the strong rotational constraint Rog = Rey Ek < 1. Inspection of this expression indicates that
this gives rise to the challenging and somewhat incompatible requirement that the Ekman number
be repeatedly lowered as Rep increases (see also Figure . This leads to an amplification in the
stiffness of the governing equations due to an increased separation between the time scales of inertial
waves and advection, as well as between the advective and dissipation time scales (see section .
As a result, this requirement imposes severe time-stepping constraints on the majority of numerical
algorithms currently in use.

The specific issue resides with the precise implementation of the time-stepping scheme. Specif-
ically, the linear Coriolis force 2QUZ x u, of relative order Ro~! compared to inertial forces, is
often treated explicitly, e.g. in [16] [30] [41] [42] [43], [44], while the advective timescale associated with
the nonlinear advection term, u - Vu, is invariably treated explicitly and so is known from a prior
time step. Algorithmically, this avoids the complexities of implementing a coupled numerical solver
for the momentum equations, and by contrast permits the use of a decoupled solver that updates
fluid variables sequentially at each time step. However, several recent codes for simulating rapidly
rotating convection, including [45] [46] [47], treat the Coriolis force implicitly. This formulation has
a number of advantages and we use it below to identify a rescaled RRBC model and numerical
algorithms capable of accessing regimes characterized by Re > 1 and Fk < Rog < 1.

The remainder of this paper is organized as follows. In Section [3] the detailed spatiotemporal
resolution requirements for buoyantly driven, rotationally constrained flows are discussed and the
need for implicit time-stepping treatments is highlighted. In Section |4l an asymptotically reduced
set of equations, the nonhydrostatic quasi-geostrophic equations (NHQGE), is established as an
instrumental guide for deducing a reformulation of the full incompressible Navier-Stokes equations
(iNSE). Informed by the asymptotic equations, Sectionintroduces a novel formulation of the INSE
termed the rescaled incompressible Navier Stokes equations (RINSE). Section |§| highlights some of
the advantageous numerical properties of RINSE, establishing that the numerical discretization is
well conditioned. Section [7] contains a detailed comparison of fully nonlinear DNS using the newly

introduced reformulation with established results from the literature, together with an analysis



of the mean temperature equation, along with novel DNS results for the Nusselt and Reynolds
numbers at unprecedented Ekman numbers (Ek as low as 10715 and smaller). Finally, Section
concludes with a discussion of the implications of our results for future numerical simulations of
rapidly rotating convection. Where necessary, relevant detailed calculations are relegated to four

Appendices.

2. The incompressible Navier-Stokes Equations: iNSE

In the classic paradigm of rotating Rayleigh-Bénard convection in a horizontal plane layer the
fluid motion is accurately captured by the Boussinesq approximation that assumes small density
fluctuations about a static background state, resulting in the incompressible Navier-Stokes equations

(iNSE)

(Or+u-V)u = —20Zxu—Vr+gadz+vVu, (3a)
Vou = 0, (3b)
Oy +u-V)I+u-VI, = sV, (3c)

where u represents the convective fluid velocity, 7 is the modified pressure, and T' = Tp(2) + ¥ (=, t),
i.e., the temperature is split into a static background profile, T,(z), in the vertical direction and
a convective temperature contribution 1. The system rotates at a constant frequency €2 about
the vertical direction z; the rotational Froude number is assumed to be sufficiently small that the
centrifugal force can be neglected.

The equations of motion can be nondimensionalized by a characteristic but as yet undetermined

flow velocity scale U, the layer depth H, and the characteristic temperature gradient | VT || giving

1
) . = - Zxu—FE 'z + ——V? 4
(O +u-V)u ROHzxu uVm + 'y z+R6HV u, (4a)
V-u = 0, (4b)
1
Or+u-V)d+u-VI, = Pevaﬁ' (4c)

The nondimensional parameters are defined in . In the next section, we describe the challenges
associated with solving the above set of nondimensional equations numerically in the limit of Roy <

1, Reyr > 1.



3. Spatiotemporal resolution requirements for buoyantly driven flow

A review of the rotating convection literature illustrates why the Roy < 1 regime has proven
to be so challenging for DNS [24] [34] [35] 48] [49]. Hereafter, for simplicity of exposition, we focus
our discussion on the case where the rotation axis is antiparallel with gravity, i.e., the polar regime
where VT, = 9,T,z. For fixed temperature boundary conditions 9,7, = (Tp(H) — T5(0))/H, while
for a fixed heat flux F, 0.7, = —F/k instead. Within this regime a dynamical balance exists
between the ageostrophic Coriolis, inertial and Archimedean (buoyancy) forces. This so-called CIA
balance [50] establishes the rotational free-fall velocity

_ gallo. | H
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as an appropriate estimate for the characteristic velocity, an estimate that has been verified both
numerically [51] [52] and experimentally [53] [54, [55].
We define the convective Rossby number Ro,. as the ratio of the rotational free-fall velocity to

the buoyancy free-fall velocity Uy observed in rotationally unaffected regimes,

Uy = V9ol 0Ty || H? . (6)

Thus
Urff Ra
Ro. = =1/ —Lk. 7
%= Ty Pr ")
Here
T, || H*
Ra — goz||3z b” (8)
VK

is the thermal Rayleigh number. This definition of Ro, is physically more precise than the equivalent
definition Ro. = Uy /(20H), i.e. as the Rossby number Roy based on Uyy.

The convective Rossby number provides an external measure of the rotational constraint based
on the imposed thermal Rayleigh number. Since Ro. < 1 for rotationally constrained flows, it
follows that Uy,py < Uyy.

With U = U, as the correct characteristic velocity scale it follows from ([1)) that

1 Ro?
= @7 Rey = Ekc

Ty (9)

Moreover, asymptotic linear theory [8] and simulations [56] [57] both indicate that rotating flows
are highly anisotropic with

H
Vi~ Ek~'3, 9y~ 1, (10)



and an (’)(Ek_4/ 3) onset Rayleigh number, indicating that horizontal variations occur on the scale
{ <« H while vertical variations occur on the scale of the layer depth. Together with the corre-
sponding nonlinear theory [58] 59] 60] these results lead to the introduction of the reduced Rayleigh
number

Ra = RaEK*? (11)

with Ra = O(1) defining the strongly forced (Ra > 1) but still rotationally constrained (Ro. <
1) regime of interest. This regime extends from the convective threshold to highly supercritical
Rayleigh numbers subject to the requirement that Ra is no larger than Ra = O(Ek’_l/ 3). This

upper bound represents the constraint required to maintain the local rotational constraint

L7f7 2H 2 —-1/3 1 1
RO( = 0 ROC }%0c k O( ) ( )

It is now clear that the external order parameter threaded throughout the rapidly rotating regime

is Ek'/3. Anticipating the derivation and discussion of the rescaled formulation, this observation

suggests the definition of the small parameter:
¢ = EEY3. (13)

For given (nondimensional) grid resolutions Az, Az < 1 and temporal resolution At < 1, the
assumption of an explicit time-stepping algorithm leads in Table[2]to the spatio-temporal constraints
known as the Courant-Friedrich-Lewy (CFL) criteria required for accurately discretizing the various
forces in the iNSE. The most to least restrictive CFL conditions are shown in dimensional (row
2) and nondimensional forms according to the vertical or horizontal diffusion timescale (rows 3
& 4). This ordering holds provided Az ~ Az < I/%vcfl. In the limit Fk — 0, it is clear from
Table that the Coriolis term (column 2) imposes the most restrictive constraint on the time step
At (provided Az ~ Az > RaE'/3 /Pr). This suggests that it is numerically advantageous to
treat this linear term implicitly with the additional expense of numerically coupling the momentum
equations. It is also evident that, compared to nonlinear horizontal advection, an implicit treatment
is desirable for the linear horizontal dissipation, the next most prohibitive constraint, o< (Az )2
provided Az =o (}%_1). If this strategy is adopted then all remaining time-stepping bounds for
the linear terms are less severe than the O(Az ) nonlinear horizontal advection timescale. Thus

all remaining linear terms can be treated explicitly without a numerical penalty.



CFL timestep | rotation horiz. diff. horiz. adv. | buoyancy | vert. adv. vert. diff.
Aty Atq Aty | Atggy, At, AN Aty,
* \2 * * %\ 2
Dimensional 1 7(Axl) Lxl Uiy —AZ 7(AZ )
20 14 Urff ga9 Urff v
. H? 2/3 o || BRY3 . Ek 2
Nondim., — Ek EE*3 (Ax)) Ro? Az, Ek?* R—OgAz (Az)
] £2 13 5 Ek2/3 Ekl/S a3 5
Nondim., ~ Ek (Az)) Ro? Ax 1 RiogAz Ek (Az)

Table 2: Ordering of most to least restrictive CFL conditions for the explicit time step Aty associated with the
forcing term f in the incompressible Navier-Stokes Equation (iNSE): yu = f = —2Qzx u— Vp—&—z/Viu— u-Vyu—
gabf—u-V u+vVﬁu. The time constraint for the pressure force is identical to that of the Coriolis force. Row 2 gives
the dimensional time step estimate. The later rows express the nondimensional estimates based on vertical (H?/v)
and horizontal (¢2/v) diffusion times. Here £ ~ Ek'/3H such that Az’ =LAz, , Az* = HAz where Az N;J_l
and Az o< N; 1. From [57} [50], Urss ~ RocUpp and 6 ~ Ek'Y/3)|8.Ty||H where Ro. = /Ra/PrEk. Forces in need
of an implicit treatment are presented to the left of the vertical separator ||. This holds provided Az; < 1/37171,
otherwise, no advantages arise from the implicit treatment of horizontal dissipation (column 3) given that its CFL

constraint becomes as restrictive as nonlinear horizontal advection (column 4).

The mechanical conditions at an impenetrable boundary also result in additional resolution
constraints in space. Specifically, no-slip boundaries and/or stress-free boundaries that are not
perpendicularly aligned to the axis of rotation result in O(Ek'/?) Ekman boundary layers. For
no-slip boundaries, it has recently been established that this prohibitive constraint can be relaxed
by parameterizing its effect on the bulk through the pumping boundary conditions w = +FEk'/2Z -
V x u/v2 [43,61].

Given the enormous challenges faced by DNS in the Ro < 1 regime, an attractive alternative is
to resort to large-eddy simulations (LES), which resolve only the large turbulent scales, and employ

subgrid-scale models for the smaller turbulent scales below a certain threshold scale. This technique



has been applied in the context of nonrotating Rayleigh-Bénard convection [62] 63 [64]. However, it
must be stressed that, for the highly anisotropic turbulent flows encountered in the geophysical and
astrophysical context, LES are still in their infancy and ill-understood due to the complex structure
across scales which such flows exhibit. Even when LES can be applied, the results thus obtained
still need to be extrapolated to the extreme parameter regimes of geophysical and astrophysical
flows. Importantly, LES and subgrid-scale modelling are particularly challenging because there is

a notable paucity of validation data in the relevant regimes.

4. Asymptotically reduced model as a guide

Attempts to increase the achievable Reynolds number in DNS (or LES) of RRBC while lowering
the Ekman number to sustain the low Rossby number environment must result from improving the
conditioning of the matrices obtained from numerical discretization. Ultimately this means reducing
or removing the discretization dependence on the Rossby or Ekman number. The asymptotic system
of equations for RRBC valid in the limit Ek — 0 derived and extensively studied by Julien &
coworkers serves as a template for accomplishing this task [56] [57] [60] [65]. Assuming a local plane
layer about the North pole, the system leverages Ro, ~ Ek'/3=¢ < 1 as the small parameter,
along with characteristic anisotropic scalings , and the relations . A primary geostrophic

balance is obtained together with horizontal incompressibility on horizontal spatial scales, namely,

~

zZxu~ —Vm, Vi-u, ~0. (14)

It follows that u;, =z -V, x 7 2 V7 where V+ = (—0y,0z). Moreover, it is found that

the modified pressure 7 = ¥ serves as the geostrophic streamfunction with u = (V¥ w). When
observed on the characteristic anisotropic spatial scales £ and H, and velocity scale v/¢, the reduced

system of equations (the Non-Hydrostatic Quasi-Geostrophic Equations [56]) is given by

HVIV +J[¥,ViV] —0zw = V1Y, (15a)
ow + J [V, w] + 0,V = §0+Viw, (15b)
0,0+ J [W,0) +w (9,6 — 1) = PiTvie, (15¢)
€ 20,0 + 0z (wh) = Pirazzé (15d)
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with
w=0=0, on Z=0,1. (15¢e)

Here J[U,f] = u, -V.f, 2 -w

= V2V is the vertical vorticity and corrections at O(EKY?)
have been dropped; Z is the O(1) vertical scale. The temperature field is decomposed into a mean
(horizontally-averaged) and O(e) fluctuating component, i.e., ¥ = ©+¢f. It follows that the Ekman
number dependence remains only in the evolution of the mean temperature © which can be seen
to evolve on a much slower timescale T = €2t compared to the convective dynamics. Importantly,
it has been established in [56} 57, [65] that this term can be omitted provided: (i) © evolves to a
statistically stationary state 8;0 ~ 0, and (ii) the fluid domain is sufficiently large that numerous
convective cells or plumes contribute to the horizontal spatial averaging.

The result serves as an accurate representation for © with O(Ek?/3) error (see @.
Assuming an implicit treatment in time for all linear terms, it can now be seen that the most
restrictive condition is the Ekman number-independent CFL constraint on the horizontal advection
terms, i.e. At = Az/||[Uras||, which is consistent with our discussion in Table

The NHQGE - have been instrumental in probing and identifying the properties
of turbulent Rayleigh-Bénard convection in the rapidly rotating regime, from the identification of
regimes of distinct flow morphologies [57], to the understanding of a novel inverse energy cascade in
three dimensions [51] 66], through to uncovering the dissipation-free momentum and heat transport
scaling laws [51} 52 [67]. However, by design, the NHQGE are constructed to be valid in the asymp-
totic regime EFk < Ro — 0, and a complete understanding of its robustness to finite £k remains an
open question [68]. Bridging the intermediate void in parameter space between the regimes obtained
in current laboratory experiments and DNS and actual geophysical and astrophysical settings as

highlighted in Figure|l|is a key scientific objective.

5. Rescaled incompressible DNS

Based on the discussion in the previous section of the asymptotically reduced governing equa-
tions, we can now reformulate the iNSE in a rescaled form, which is advantageous for simulating
very low Ekman and Rossby numbers. For this we will follow the template that produced the
reduced system . We begin by introducing anisotropic characteristic length scales: we nondi-

mensionalize vertical lengths by H and horizontal lengths by ¢ = eH, where ¢ = Ek'/3 as before.

11



We also adopt the velocity scale U = U, = v/¢ which differs from a rotational free-fall velocity
scale according to U, = (Ra/ Pr)U,s;. This implies that

U 1 Ra 1 Pr

Rog = =Ek*=¢ Tw=——, Reyg=-, Pey=PrRey=— 16

OH (QQH) €, H 2 Pr’ € pe € roeg Pt ( )
P 2003 1 1

Fu= = = = —. 1
b poU? V2 EEK1/3 ¢ (17)
Note that due to the anisotropic rescaling one finds

1 . 1

Vi— EVJ_, Z~V:82, at|—> Eat (18)

As in the derivation of the reduced equations, we decompose the temperature deviation from the

linear conductive background state according to ¥ = ©(Z,t) + ef(x,t). Finally, we define the

ageostrophic velocities
1 1 1 N
U=—-(u+0ym), V=—-(v—0,7m) <= U,=-(u—V-m). (19a)
€ € €

Recall V+ = (=0,,0,) and V| = (9;,0,). The iNSE then take the form

dyu+ Nouw—V = V. (19Db)
v+ N.ow+U = Vo, (19¢)
dvw + Now 4 dzm = Viw + %9, (19d)
0, U+ 0,V +0zw = 0, (19e)
90 + N.O+ (0,0 — )w = Piﬁfo, (19f)
20,0 + 0,700 — Pirag@, (19g)
where
VZ=Vi+0%,  V2E=092+02 N = udy + vdy + ewdy. (20)

We consider impenetrable stress-free, fixed-temperature boundary conditions, i.e.,
w=0zu=0zv=0at Z=0,1, (21)

and

f=0=0at Z=0,1. (22)

12



The equation set — is an equivalent reformulation of the iNSE obtained by rescaling
terms (without omitting any terms in the process) in accordance with the asymptotic theory, specif-
ically utilizing the distinguished limits — described in the previous section. We refer to these
equations as the Rescaled incompressible Navier-Stokes Equations (RiNSE).

We complete our exposition of these equations by noting that the limit e — 0 in the equation set
(19), leads directly to the asymptotic reduced equations (15a)-(15d)) describing quasi-geostrophic

Rayleigh-Bénard convection. This follows on noting that
T2 o2 .
lim V2 = v ; (23)

moreover, introducing the stream-function ¥ and velocity potential xy decomposition of the hori-
zontal velocity field,

u, =ViU eV y, (24)

where V| = (9,,0,,0)T and V*+ = (-9,,0,,0)T, we see that

limr="; lmU, =V, yx; limu, =ViU. (25)
e—0 e—0

e—0
Thus, as in the asymptotic equations, the dependence of the pressure on the velocity changes
from quadratic to linear and a leading order geostrophic velocity field is recovered. Three-dimensional
incompressibility is maintained through the ageostrophic velocity, V, - U = Vix = —Jzw. We
will demonstrate empirically in Sectionlﬂ that €720,0 ~ 0, within sufficiently large domains, in the

statistically steady state, including at very small values of Ek.

6. Conditioning properties of rescaled iNSE, RiNSE

The advantage of the RINSE formulation can be displayed through the properties of its spatio-
temporal discretization. The findings of Table [2 suggest an implicit-explicit time discretization

scheme for the momentum equation of the form
(M — L) X = £ox™ 4 (™) x() (26)

with implicit and explicit vectors of state X (1) = (u(»+1), U(fH), 7+ gn+NT and similarly
for X(™. The exact list of the variables that enter X and the expression of differential operators

M, L;, Lg and N all depend on the adopted formulation. The specific details for various forms of
RINSE and the asymptotic model NHQGE are relegated to [Appendix C.

13



Numerically, given that £; is a non-diagonal operator this requires the utilization of a cou-
pled solver at each timestep. The non-diagonal component is associated with the Coriolis force
that would impose an O(e~!) explicit time-stepping constraint. The linear operator £g represents
vertical diffusion that, consistent with Table [2} imposes a nonrestrictive O(e~2(Az)?) explicit time-
stepping constraint. However, we note an apparent dichotomy in pursuing an explicit treatment
of vertical diffusion, namely, this is also the term via which mechanical boundary conditions (e.g.,
stress-free or no-slip) are imposed, be it grid-based or via a basis of special functions. Two possi-
bilities arise as resolutions to this predicament: (i) a reversion to an implicit treatment of Lg, or
(ii) the construction of Galerkin basis functions that automatically impose the mechanical bound-
ary constraint. Implementation of the latter is insensitive to implicit/explicit treatments while the
former requires a near-boundary resolution

A
672 (Azb)2 ,S Atad?u_ & ﬁ = AZb S/ € (Atade)l/Q (27)
1 {loo

to ensure that the numerical scheme is aware of the boundary constraint. This is more prohibitive
than the O(e%/?) resolution constraint of an Ekman boundary layer in the limit ¢ — 0. Hence a
Galerkin function approach is pursued.

Equations and their thermal counterpart are solved with the numerical code Coral [47], a
flexible platform for solving systems of PDEs with spectral accuracy, i.e., with exponential error
convergence. All fluid variables are discretized with a Fourier mode expansion in the horizontal and

a Chebyshev-Galerkin polynomial expansion in the vertical direction, i.e.,

v=> Vi, j({H)eF TP (Z). (28)

Here the Chebyshev-Galerkin basis functions @, (Z) are constructed to satisfy Dirichlet (®; = 0),
Neumann (9z®; = 0) or stress-free conditions (®; = dzz®P; = 0) or mixtures thereof on the bound-
aries. The code temporally evolves the spectral coefficients of the modes Vi, ;(t) in spectral space,
here via the third order-four stage implicit-explicit Runge-Kutta time-stepping scheme RK443 [69].
For constant-coefficient differential equations, as considered here, Coral adopts the quasi-inverse
method presented in [70], based on an integral formulation of the problem, applied to Chebyshev-
Galerkin bases obtained by basis recombination [47, [46] [70]. This procedure, detailed in @

B, is implemented in Coral and results in a sparse banded structure for the coupling matrices M

and L7 in .

14



We note that, given the dependence of the time step At on Ek through its presence in L, the
ability to take the limit Ek — 0 is ultimately bounded by the accuracy of the time integration
due to the specific time-discretization error associated with the scheme and round-off errors. Such
errors are ultimately related to the condition number of the matrix A in the linear algebraic system
Av = b that result from the spatial-temporal discretization of . Here A is the discretization of
O¢M — L and b is the explicit right-hand side of . Alternatively, the sensitivity of an implicit
time-stepping scheme can be explored through the eigenspectrum of the generalized eigenproblem
AM — L; deduced from the discretization of (0;M — L1)v = 0.

Figure |2| shows this eigenspectrum, obtained with the RiNSE formulation, in the complex plane
for four different Ekman numbers Ek = 10-6,10~°,10712,10~15 at Ra = 0 (top row) and Ra = 5
(bottom row), with the numerical results indicated by blue crosses (for the mixed velocity-vorticity
formulation with Nz = 256 Chebyshev modes in the vertical), magenta circles and green
squares (for the primitive-variable form with Nz = 256 and Nz = 512 Chebyshev modes,
respectively), in excellent agreement with the analytical result shown by the black line. This result
should be compared with Fig. which displays the eigenspectrum obtained with the unscaled
Boussinesq equations at Ekman numbers Ek = 1077,107?2,10719, 107!, again at Ra = 0 (top
row) and Ra = 5 (bottom row), with magenta circles (Nz; = 256) and green squares (Nyz =
512) indicating the numerical data for comparison with the analytical result shown by the black
line. In contrast with Fig. [2] Fig. |3| shows that the accuracy of the numerical spectra deteriorates
significantly as the Ekman number decreases below Ek < 10~7. Particularly damaging to time-
stepping the solution are the spurious, linearly unstable modes (i.e., modes with (R(s) > 0)) visible
in Fig. for Ra = 0 when Ek = 10~11 (top row) and even more spectacularly for the thermally
forced case Ra = 5 when Ek = 10~° (bottom row), i.e., at a substantially slower rotation rate than
in the purely hydrodynamical case. These results indicate why traditional DNS has proved unable
to reach Ek = 1077,

The behaviour of the spectra associated with the standard and the rescaled formulations is
quantified and summarized in Fig. 4] which presents the condition number of the operator L; as
rotation increases. High values for the condition number of matrices are commonly associated
with unstable numerical computations. With the standard formulation , the conditioning of the
discretized operator degrades rapidly as the Ekman number decreases following an approximate

Ek—3/2 scaling law at Ra = 0, and an even steeper scaling close to Ek~2 at Ra = 5, as Ek — 0.
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Figure 2: Linear spectra from the rescaled equations and in the complex plane obtained numerically
using the quasi-inverse method with Chebyshev-Galerkin bases (see appendix B). The top row illustrates the case
of pure inertial waves (RE = 0) while thermal stratification below the convective onset (EZL = 5) is included in the
bottom row. All panels use F’;J_ = 1.3 and Pr = 1. Numerical solutions are obtained for both the primitive variable
formulation with Nz = 256 (magenta circles) and Nz = 512 (green squares), and the mixed velocity-vorticity
formulation with Nz = 256 (blue crosses). For reference, the analytical dispersion relation is represented with
black dots appearing as a continuous black line. In both cases the computation of the numerical spectra remains
stable as Fk reaches values as low as 10712, The mixed velocity-vorticity formulation leads to a remarkably accurate

numerical spectrum, at the cost of larger memory usage.
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Figure 3: Linear spectra from the unscaled equations @ in the complex plane obtained numerically using the quasi-
inverse method with Chebyshev-Galerkin bases (see appendix B). The top row illustrates the case of pure inertial
waves (RTL = 0) while thermal stratification below the convective onset (EZL = 5) is included in the bottom row. All
panels use EJ_ = 1.3 and Pr = 1. Numerical solutions obtained with Nz = 256 (magenta circles) and Nz = 512
(green squares) are compared against the analytic dispersion relation (black dots appearing as a continuous black

line). In both cases spurious unstable modes proliferate with decreasing Ek.
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Figure 4: Condition number of the operator L; computed for both the standard formulation [equation , open
symbols| and the rescaled formulations [equations and , filled symbols]. Both panels use %J_ = 1.3 and
Pr = 1. (a) Pure inertial waves for Ra = 0. (b) Thermally stratified case Ra = 5. The dash-dotted, dashed, and
dotted lines are eye-guides with slope 1/2, 3/2 and 2, respectively.

For comparison, the condition number associated to the RiNSE obeys a more moderate Ek~1/2

scaling for the primitive variable form , and only a somewhat steeper scaling for the mixed
velocity-vorticity form . The relative values of the condition number also speak clearly in
favor of the rescaled formulation: the condition number computed with the RINSE (in either the
primitive variable or mixed velocity-vorticity forms) for geophysically relevant rotation strengths
(Ek = 10716) appears to be smaller than its counterpart computed with the standard formulation
even at modest rotation rate (Ek ~ 107°).

These results reflect the well-posedness and the practicability of the RINSE equations in the
small Ek limit, which the unrescaled Boussinesq equations do not possess. This provides a strong

motivation for using the RiNSE system to perform accurate DNS in the limit of small Ek.

7. Results

To further validate the RiNSE formulation, going beyond the improved conditioning properties
of RINSE presented in Sec. [6] we perform extensive direct numerical simulations of RRBC using
Coral. All runs described below were performed with Pr = 1 and a rescaled (nondimensional)
domain with dimensions 10¢. x 10, x 1 was used throughout, with critical convective onset length

scale £, =~ 4.82, except when specified otherwise. An explicit treatment is used for all advective terms
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Ni, i = u,v,w,0,0 in the RINSE and also for the mean temperature advection term (970 — 1)w
in the 6 equation. The CFL condition is imposed based on the horizontal velocity components.
Stress-free boundary conditions are adopted in all runs.

First, in Secs. and we discuss different numerical schemes that can be used for solving
the RINSE. These differ in the treatment of the mean temperature equation and vertical derivatives
in the diffusion terms. Our results focus on the global heat and momentum transport as defined by

the nondimensional Nusselt and Reynolds numbers, namely,
Nu=1+Pr{wl).; =1+870)01,  Rew= (W7, (29)

where (-),; denotes averaging in the vertical and in time. Along with the Nusselt number Nu,
the quantity Re,, saturates significantly earlier than the horizontal velocity components that are
strongly impacted by an inverse kinetic energy cascade [51l [52]. In Sec. we compare the
Nusselt number obtained in our simulation to published results in the literature. Next, in Sec.
we present the Nusselt and Reynolds numbers for different values of Ek and E:z, verifying the
convergence of RINSE to the asymptotically reduced equations presented in Sec. Finally, we
provide visualisations of our RiNSE simulation results at a very low Ekman number, Ek = 10715,

well within the geostrophic turbulence regime.

7.1. Slaving: the role of €720,0 in the mean temperature equation

In the statistically steady state, quantities of interest, such as the Nusselt and Reynolds numbers
are typically given as space-time averages. It is natural to expect that this averaging improves as the
domain size is increased. This motivates the hypothesis, discussed in that the term
€720,0 in the equation may become subdominant in calculating, for instance, the Nusselt number,
provided the domain size is sufficiently large. The strategy of omitting the temporal variation of the
mean temperature, which we will refer to as the slaving strategy, has the significant advantage of
accelerating the convergence to the steady state at small € by orders of magnitude, due to the fact
that €720, = Op, where T = €°t, is a derivative with respect to a slow time variable. The slaving
approach has already been used successfully for the reduced equations of Sec. {4] in a number of
works, including [56l [65] [67, [66]. Here, we begin with a detailed verification of the slaving approach
for the full Boussinesq system in the RiNSE formulation.

Figure [5(a)-(c) shows the time series of the Nusselt number for long simulations in domains

of three different sizes, 5¢. x 5. x 1, 10¢, x 10¢, x 1, and 15¢, x 15, x 1 at Ra = 40, Pr =1

19



— Nu-1

—Nu-1

98/t turned on

—Nu-—1

98/t turned on

90 /0t turned on
25 25 25
0.0 0.0 0.0
% e e o, B b s w0 g a0 N I T R T
Box dimensions 50, X 50, x 1 100 Box dimensions 10¢, x 10£, x 1 100 Box dimensions 15¢, x 15¢, x 1
= \ _
7 b oY R . Witho®/at
1 \ i o -
10 = = 0! LA Ik . Noo®/or
= P N = ‘ \ = LA
/ X : \ 10- N
210 = X 2 10-2 / L L e
Z. \e Z 10 e \ Z il H
I _ \ a ! 4 [ oot |3
102 With 96/0t - i 0 P
. Nod®/ot / i i
! 1 .
5 10 15 20 5 0 15 20 7.5 100 125 150 175 20.0
Nu—1 Nu—1 Nu-—1

Figure 5: Panels (a)-(c): time series of Nu — 1 at Ra = 40, Pr = 1, Ek = 102 for varying horizontal domain
sizes. (a) L = 5f. (resolution 642 x 128 modes), (b) L = 10¢. (resolution 1283 modes), (¢) L = 15{. (resolution
1923 modes), with the rescaled most unstable length scale £. ~ 4.82. Each simulation consists of two parts. In
the first part, which extends from ¢ = 0 to the time t = t. indicated by a black arrow, the time derivative of ©
in Eq. is omitted, leading to a slaving relation between © and the heat flux. At ¢t = t. (at which the large
scale vortex condensate reaches saturation), the time derivative of © is restored. Horizontal dashed lines indicate
time averages over each of the two segments of the simulation, while the blue and orange shaded areas indicate the
observed standard deviation. The agreement between the results of the two numerical schemes improves noticeably
as the domain size increases. Fluctuations are seen to be larger in smaller domains since the volume average contains
fewer points. Panels (d)-(f): histograms of Nu — 1 computed from each time series with and without the mean
temperature time derivative, with dashed lines indicating a Gaussian fit. The histograms illustrate the convergence
of the mean between the two schemes with increasing domain size. The histograms also show that fluctuations in

the presence of the e 29;© term are of larger amplitude, a fact consistent with the time series in the top row.
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and Ek = 107°. With this set of parameters, an inverse cascade of energy is observed, which
leads to the accumulation of energy at large scales and the formation of a large-scale vortex dipole
(LSV), also observed in the nonhydrostatic quasi-geostrophic equations , cf. [67, [51] 66]. Each
of the three simulation sets consists of two parts: first, each set is initialized with small-amplitude
initial conditions and integrated for a long time with the slaving approach, until the LSV has
saturated. Then, at the time indicated in Fig. [5fa)-(c) by an arrow, the time derivative of the
mean temperature is again included, restoring the full RiINSE equations, and the run is continued.
In small domains there is a notable discrepancy between the slaving strategy and the solution of
the full RINSE equations, but this discrepancy decreases as the domain size increases (see dashed
lines). This is accompanied by a decrease in the statistical fluctuations about the mean Nusselt
number, as expected given the improved horizontal averaging in larger domains. The histograms
in Fig. [5(d)-(f), corresponding to each of the two parts of the time series above, illustrate both of
these trends: the averages of the two PDFs approach each other as the domain size is increased, and
the variance decreases, being somewhat larger for the full equations than with the slaving strategy.
Thus, for large enough domains (horizontal domain size L 2 10, in terms of the critical length scale
£.), the slaving scheme yields approximately the same answers for mean quantities as the unaltered
equations. On the other hand, differences remain in the fluctuations about that mean, owing to the
additional slow time scale arising from the time derivative of the mean temperature, eliminated in
the slaving strategy. We also note that in all cases, the peak of the histogram is close to a Gaussian,
while in the presence of the ¢729;0 deviations from that shape are seen, most strikingly in panel
(e) in the intermediate domain, leading to a certain degree of skewness. This is not observed to
the same degree in the smaller or larger domain, and remains to be better understood in future
investigations.

Figure |§| shows long time series similar to those in Fig. a)—(c), again at Fk = 107Y. The first,
earlier part of each simulation (orange curve in Fig. @ is identical between the two figures and
was computed using the slaving approach. In contrast, the second part (in blue) was computed
with €729,0 replaced by 9,0 (without the e~2 prefactor). The Nusselt number evolution in the two
segments is found to be close to indistinguishable. This indicates that, in the statistically stationary
state, 3,0 is small compared to the remaining terms in the mean temperature equation.

In summary, the slaving strategy is a highly attractive scheme for accelerating transient dynamics

in the approach to a statistically steady state, and it is often preferable to adopt this strategy for
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Figure 6: Time series of Nu — 1 for varying horizontal domain size at Ek = 107°. (a) L = 5¢, (resolution 642 x 128).
(b) L = 10¢. (resolution 128%). (c) L = 15¢. (resolution 1923). First part of each simulation is performed without
the 9;© term in the mean temperature equation. In the second part of each run, the term e~29;0 is replaced by

0:0. The mean and variance of each of the two segments are found to be very close.

a sizeable efficiency gain. We therefore adopt the slaving strategy in all the runs described below.

7.2. Implicit and explicit vertical derivatives in the diffusion terms

A particular feature of the RINSE equations is that due to the rescaling, vertical derivatives
appear with a prefactor of € = Ek'/3. This indicates that, for sufficiently small €, terms involving
vertical derivatives become subdominant and their numerical treatment becomes irrelevant in the
CFL constraint for the integration of the equations of motion.

To test whether this intuition is correct, we perform two sets of runs at Ra = 60, Pr = 1,
varying Ek between 10~ and 10712, as listed in Tab1e|§l In the first set of runs, all diffusive terms
are treated implicitly (as in all other runs described in later sections), while in the second set the
diffusive terms in Egs. — involving a vertical derivative are treated explicitly (the CFL
condition is still only applied based on the horizontal velocity field). This is expected to produce
no significant difference in the simulation outcome, provided Ek is sufficiently small.

The data provided in Table[3|and its visualization in Fig.[7]show that the runs with explicit and
implicit vertical diffusion schemes produce Nusselt and Reynolds numbers which are compatible
with each other within the margin of error (computed as the standard deviation in steady state),
provided that Fk = 1/v/Ta <1076, For Ek > 1075, i.e. € > 0.01, the simulation becomes unstable
with a CFL prefactor of 0.2 and a time step tolerance of 0.3, leading to an unphysical blow-up.

In short, diffusion terms involving vertical derivatives become irrelevant in the limit of small

FEk. This is consistent with the discussion in Sec. which highlighted that, as Ek — 0, the
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Figure 7: Visualization of the data listed in Table[3, comparing the results of implicit and explicit vertical diffusion
schemes at different Taylor numbers Ta = Ek~2. At Ta > 10'2, implicit and explicit diffusion schemes are both

stable and yield very similar results which are compatible within the margin of error (given by the standard deviation).

RiINSE formulation directly converges to the asymptotically reduced equations, which do not contain

vertical diffusion terms except in the mean temperature equation.

7.8. Comparison with published Nusselt numbers

To further ascertain the validity of the RiINSE formulation, we reproduce results from the
literature. In [31], Kunnen and co-workers provide Nusselt numbers obtained from direct numerical
simulations of the same set-up as ours, using a second-order energy-conserving, finite-difference
code with fractional time-stepping. We stress that, while the authors of [31] discuss the transition
to geostrophic turbulence, they are only able to reach relatively moderate Ekman numbers, Ek 2>
1.34 x 10~7 (which is large compared to the values of Ek which can be achieved using RiNSE,
as shown in Sec. and Sec. . Nonetheless, the results presented in [31] provide a valuable
benchmark as one bookend at moderate Ek.

We perform runs at the same parameters as those given in [31]. In Table |4} set A, we list those
runs along with the Nusselt and Reynolds numbers obtained from our simulations. We choose a
relatively moderate number of up to 256 x 256 dealiased Fourier modes in the horizontal directions
and up to 256 dealiased Chebyshev modes in the vertical derivation, while Kunnen et al. [31]
consider up to 512 x 512 x 1024 spatial grid points. We stress that these numbers cannot be easily

compared between a spectral code such as Coral and finite-difference codes such as that employed
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9z (diffusion) Ek Ra Ra Nz X Ny X N, | Stability | (Nu—1) 4+ ANu | Reyw £+ ARey

Implicit 1.0x 1071 | 60 | 1.29 x 10% | 128 x 128 x 128 | Stable 0.6+0.1 1.8+0.1
Implicit 1.0x 1072 | 60 | 2.78 x 10* | 128 x 128 x 128 | Stable 3.240.2 5.540.1
Implicit 1.0x107% | 60 | 6.0x10° | 128 x 128 x 128 | Stable 8340.3 9.140.2
Implicit 1.0x 107 | 60 | 1.29 x 107 | 128 x 128 x 128 | Stable 20.7+0.6 17.74£0.3
Implicit 1.0x 107% | 60 | 2.78 x 10° | 128 x 128 x 128 | Stable 26.1+1.0 18.3+0.4
Implicit 1.0 x 107% | 60 | 6.00 x 10° | 128 x 128 x 128 | Stable 25.44 1.4 18.8 £ 0.7
Implicit 1.0x 1077 | 60 | 1.29 x 10* | 128 x 128 x 128 | Stable 21.9+14 17.440.5
Implicit 1.0x 1078 | 60 | 2.78 x 10'? | 128 x 128 x 128 | Stable 19.6 £1.0 16.6 £0.5
Implicit 1.0x 1072 | 60 | 6.00 x 10" | 128 x 128 x 128 | Stable 19.6 £0.9 16.6 £ 0.5
Implicit 1.0x 1071 | 60 | 1.29 x 10*® | 128 x 128 x 128 | Stable 19.4+1.0 16.7+0.5
Implicit 1.0 x 10712 | 60 | 6.00 x 1017 | 128 x 128 x 128 | Stable 19.54+0.9 16.54+0.5
Explicit 1.0x 1071 | 60 | 1.29 x 103 | 128 x 128 x 128 | Unstable - -

Explicit 1.0x 1072 | 60 | 2.78 x 10* | 128 x 128 x 128 | Unstable - -

Explicit 1.0x 107™* | 60 | 6.00 x 10° | 128 x 128 x 128 | Unstable - -

Explicit 1.0x107* | 60 | 1.29 x 107 | 128 x 128 x 128 | Unstable - -

Explicit 1.0x 107% | 60 | 2.78 x 10°% | 128 x 128 x 128 | Unstable - -

Explicit 1.0 x 107% | 60 | 6.00 x 10° | 128 x 128 x 128 | Stable 25.4+1.3 18.6 £ 0.6
Explicit 1.0x 1077 | 60 | 1.29 x 10* | 128 x 128 x 128 | Stable 21.7+£1.2 175+ 0.6
Explicit 1.0x 1078 | 60 | 2.78 x 10'? | 128 x 128 x 128 | Stable 19.7+£1.0 16.940.5
Explicit 1.0x 1072 | 60 | 6.00 x 10" | 128 x 128 x 128 | Stable 19.6 + 1.0 16.8 4+ 0.5
Explicit 1.0x 10719 | 60 | 1.29 x 10'® | 128 x 128 x 128 | Stable 19.4+0.9 16.8+ 0.5
Explicit 1.0 x 107" | 60 | 2.78 x 10™® | 128 x 128 x 128 | Stable 19.2+0.9 16.6 0.4
Explicit 1.0 x 107'2 | 60 | 6.00 x 10™" | 128 x 128 x 128 | Stable 19.3+1.0 16.74+0.5

Table 3: Overview of runs with Ra = 60, Pr = 1 and implicit or explicit vertical diffusion schemes (in a rescaled

domain of size 104, x 10¢. X 1, where £, = 4.82) for Ekman numbers between 10~12 and 10~1. Values of Nu — 1 and

Reyw, defined in Eq. (29)), refer to the average in the quasi-steady state during the early phase of the nonlinear evolution

where a large-scale vortex condensate slowly grows in amplitude if an inverse cascade is present.

represent the standard deviation of the time series.
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Figure 8: Comparison of Nusselt numbers from [31] with the RINSE results. The simulations shown correspond to

runs A1-A12 in Table[4] Error bars for RiINSE data represent the observed standard deviation.

in [31]. However, the differences reside in the exponential vs algebraic error convergence properties
of the two algorithmic approaches.

Despite the different codes and resolution requirements, Fig. [8| shows that the Nusselt numbers
obtained using RiINSE and those of Kunnen et al. agree well within the margin of error (the
standard deviation of the Nusselt number time series). This provides a first bookend at relatively

large Ekman numbers, where the RiNSE formulation correctly reproduces known results.

7.4. Convergence to the geostrophic branch

As discussed in Sec. [4] it is expected that rotating convective flows converge to the well-studied,
asymptotically reduced equations in the limit of small Ekman numbers. However, to date, it has
not been possible to achieve sufficiently small Ekman numbers in direct numerical simulations of
the full Boussinesq equations to observe this convergence.

Owing to the improved conditioning of the RINSE formulation in the small Ek limit, it is shown
below that it becomes possible, for the first time, to observe this convergence. We perform four
sets of simulations of the RINSE at Ra = 40, 60, 80, 120, Pr = 1 and Ek varying between 107!
and 107! (corresponding to Ta between 10% and 10°°), summarized in Tables and @ We

note that the RiINSE formulation remained numerically stable even at Ek = 10724, and yielded
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Figure 9: Nondimensional heat flux measured by the Nusselt number Nu, defined in Eq. , compensated by
the turbulent scaling law %3/2, cf. [57], versus the Taylor number Ta = Ek~2 for fixed Ra = RaEkY/3 (blue
Ra = 40, orange Ra = 60, red Ra = 80, green Ra = 120), computed with implicit vertical diffusion. Dashed lines
show the average in steady state predicted by the reduced equations — with the shaded region indicating
one standard deviation about the mean. At low Ekman numbers, the RiNSE predictions converge to the reduced

equations.

approximately the same Nusselt and Reynolds numbers as the case Ek = 10715, but in order to
avoid potential issues due to machine precision, these results are not shown here. In addition, we
perform simulations of the asymptotically reduced equations described in Sec. 4| with Pr = 1 and
Ra = 40, 60, 80, 120 and compare the observed Nusselt and Reynolds numbers with the RiNSE
results.

Figures |§| and show, respectively, the Nusselt and Reynolds numbers (based on vertical
velocity and domain height), obtained at each Ra as a function of Ta (symbols), with error bars
indicating the observed standard deviation of the time series. The Nusselt number is rescaled by
15213/2, the turbulent scaling law [50], leading to an approximate data collapse between different Ra
at large T'a (small Ek), in agreement with the asymptotically reduced equations [67]. The Reynolds
numbers are rescaled by j%VCL, leading to a less satisfactory collapse, which is known to be related to
the presence of the inverse energy cascade [51, [52].

In addition, the dashed lines in Figs. [9] and [L0] indicate the results obtained using the asymptot-
ically reduced equations, with the shaded area showing the standard deviation. The RiNSE results
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Simulation nr. Ek Ra Ra Nz X Ny XN, | (Nu—1)+ ANu | Rew £ ARey
Al 4.0x 1077 | 29.5 1x 10" | 128 x 128 x 128 7.940.6 7.540.2
A2 6.0x 1077 | 50.6 1 x 10'° 128 x 128 x 128 19.2+1.1 15.340.4
A3 9.0x 1077 | 86.9 1x 10" | 128 x 128 x 128 44.0 £2.7 28.7+1.3
A4 1.2x107% | 1275 | 1x 100 | 256 x 256 x 256 67.2+ 3.1 39.6+1.5
A5 1.5x107% | 171.5 | 1x10' | 256 x 256 x 256 89.8+4.6 53.14+2.4
A6 20x107°% | 252.2 | 1x10' | 256 x 256 x 256 114.7 + 6.7 69.6 & 4.2
AT 1.34 x 1077 | 34.3 5x 10" | 128 x 128 x 128 9.4+0.5 62.44+2.4
A8 1.79 x 1077 | 50.4 5 x 1010 128 x 128 x 128 176 £1.1 9.14+0.3
A9 2.95x 1077 | 98.3 5x 10% | 128 x 128 x 128 52.3 4+ 2.9 34.0+1.5
A10 4.02x 1077 | 148.3 | 5x 100 | 256 x 256 x 256 88.9+6.1 47.74+2.0
All 4.92x 1077 | 194.6 | 5x 10" | 256 x 256 x 256 116.7 £8.2 74.2 4+ 6.6
Al12 6.71x 1077 | 293.6 | 5x 10 | 256 x 256 x 256 166.5+11.0 87.35+ 4.0
Bl 1.0 x 107! 40 8.62 x 10% | 128 x 128 x 128 0.029 4 0.007 0.34 £ 0.02
B2 1.0 x 1072 40 1.86 x 10% | 128 x 128 x 128 0.287 £ 0.014 1.48 +0.03
B3 1.0 x 1073 40 4.0 x 10° | 128 x 128 x 128 6.26 +0.17 7.0£0.1
B4 1.0 x 1074 40 8.62 x 10° | 128 x 128 x 128 12.0+£0.4 10.3+£0.2
B5 3.0 x 1075 40 4.29 x 107 | 128 x 128 x 128 14.74+0.4 11.440.3
B6 1.0 x 107° 40 1.86 x 10% | 128 x 128 x 128 15.8 £0.7 12.2+0.3
B7 1.0 x 107 40 4.0 x 10° | 128 x 128 x 128 14.8 +£1.0 12.0+0.4
B8 1.0 x 1077 40 | 8.62 x 10" | 128 x 128 x 128 12.2+£0.7 10.9+ 0.3
B9 1.0x 1078 40 | 1.86 x 10'2 | 128 x 128 x 128 11.7£0.5 10.6 0.2
B10 1.0 x 107° 40 4.0 x 10" | 128 x 128 x 128 11.54+0.6 10.74+0.3
B11 1.0 x 10710 40 | 8.62 x 10' | 128 x 128 x 128 11.65 4+ 0.65 10.740.3
B12 1.0 x 107 40 | 1.86 x 10" | 128 x 128 x 128 11.4+0.6 10.740.3
B13 1.0 x 10712 40 4.0 x 10'7 | 128 x 128 x 128 11.440.6 10.6 +0.3
Bl4 1.0x 107% | 40 4.0 x 107t | 128 x 128 x 128 11.4+0.6 10.6 £ 0.3
B15 1.0 x 107%° 40 4.0 x 10%* | 256 x 256 x 256 11.44+0.5 10.740.3

Table 4: List of simulations described in this work (see also Tables E and @ All simulations are done with Pr =1
in a rescaled domain of size 104, X 104, x 1, where ¢, ~ 4.82. Simulations Al through A12 have Ra, Ek and Pr

identical to those in [31]. The resolution is specified by the numbers N, N, of Fourier modes in the horizontal

directions and the number N, of Chebyshev modes in the vertical. The values of Nu and Re, defined in Eq. ,

refer to the average computed in the early, quasi-steady, nonlinear stage of the evolution, in the absence of an LSV.

Uncertainties represent the standard deviation of the time series.
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Simulation nr. Ek Ra Ra Nz x Ny X N, (Nu—1)+ ANu | Rey £ ARe,,
C1 1.0x107Y | 60 | 1.29 x 10® | 128 x 128 x 128 0.6 +0.1 1.84+0.1
2 1.0x 1072 | 60 | 2.78 x 10* | 128 x 128 x 128 3.2+0.2 5.5+ 0.1
C3 1.0x 1073 | 60 | 6.0x10° | 128 x 128 x 128 8.3+0.3 9.1+0.2
C4 3.0x107% | 60 | 2.99 x 10° | 128 x 128 x 128 12.5 + 0.4 12.14+0.2
C5 1.75x 107 | 60 | 6.13 x 10° | 128 x 128 x 128 14.74+0.4 13.3+0.3
C6 1.0x107™* | 60 | 1.20 x 107 | 128 x 128 x 128 20.7+ 0.6 17.7+0.3
C7 1.0x 1075 | 60 | 2.78 x 10® | 128 x 128 x 128 26.1+1.0 18.3+ 0.4
C8 1.0x107% | 60 | 6.0x10° | 128 x 128 x 128 25.44+1.4 18.8 0.7
C9 1.0x 1077 | 60 | 1.29 x 10" | 128 x 128 x 128 21.9+1.4 17.4+0.5
C10 1.0x 1078 | 60 | 2.78 x 10'2 | 128 x 128 x 128 19.6 £ 1.0 16.6 + 0.6
C11 1.0x107° | 60 | 6.00 x 10*3 | 128 x 128 x 128 19.6 £ 0.9 16.5 4+ 0.4
C12 1.0x 10719 | 60 | 1.29 x 10'° | 128 x 128 x 128 19.4+1.0 16.6 + 0.5
C13 1.0x 107 | 60 | 2.78 x 10*° | 128 x 128 x 128 19.7+ 1.0 16.5 + 0.4
Cl14 1.0x 1072 | 60 | 6.00 x 10'7 | 128 x 128 x 128 19.5+ 1.0 16.5+ 0.4
C15 1.0x 107 | 60 | 6.00 x 10%* | 128 x 128 x 128 19.44+1.0 16.7+ 0.5
D1 1.0x 1071 | 80 | 1.72x 10 | 192 x 192 x 192 0.95 + 0.05 2.440.1
D2 1.0x 1072 | 80 | 3.71 x 10* | 192 x 192 x 192 3.8+0.1 6.8+ 0.1
D3 1.0x 1073 | 80 | 8.00 x 10° | 192 x 192 x 192 9.7+0.2 11.6 +£ 0.2
D4 1.0x107% | 80 | 1.72x 107 | 192 x 192 x 192 20.7+ 0.6 17.7+0.3
D5 1.0x 1075 | 80 | 3.71 x 10® | 192 x 192 x 192 33.84+0.9 25.7+0.9
D6 1.0x107% | 80 | 8.00 x 10° | 192 x 192 x 192 38.94+0.9 24.44+ 0.7
D7 1.0x 1077 | 80 | 1.72 x 10" | 192 x 192 x 192 34.44+1.4 24.44+0.7
D8 1.0x 1078 | 80 | 3.71 x 10*2 | 192 x 192 x 192 30.8+1.1 22.840.8
D9 1.0x107° | 80 | 8.00 x 10' | 192 x 192 x 192 28.9+1.2 22.34+0.6
D10 1.0 x 1071 | 80 | 1.72 x 10*® | 192 x 192 x 192 29.1+1.6 22.64+0.7
D11 1.0 x 1071 | 80 | 3.71 x 106 | 192 x 192 x 192 28.5+1.4 22.44+0.8
D12 1.0 x 1072 | 80 | 8.00 x 10'7 | 192 x 192 x 192 29.1+1.2 22.84+0.7
D13 1.0 x 1071 | 80 | 8.00 x 10%' | 192 x 192 x 192 28.5+1.4 22.74+0.7

Table 5: List of simulations described in this work (continued 1); see also Tables Eand E Simulations C1-C3, C6-13

are identical to the runs with an implicit vertical diffusion scheme listed in Table B
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Simulation nr. Ek Ra Ra Nz X Ny XN, | (Nu—1)+ ANu | Rew £ ARey
E1l 1.0 x 107" | 120 | 2.59 x 10® | 128 x 128 x 128 1.3£0.1 3.440.1
E2 1.0x 1072 | 120 | 5.57 x 10* | 128 x 128 x 128 4640.1 8.740.1
E3 1.0x 107 | 120 | 1.2x10% | 128 x 128 x 128 11.8+£0.2 14.8 £ 0.2
E4 1.0x 107* | 120 | 2.59 x 107 | 128 x 128 x 128 26.1+0.6 22.7+0.4
E5 1.0 x 107° | 120 | 5.57 x 10® | 256 x 256 x 256 45.0+1.9 30.240.9
E6 1.0x107% | 120 | 1.2 x 100 | 256 x 256 x 256 63.2 £3.5 37.9+1.6
E7 1.0 x 1077 | 120 | 2.59 x 10 | 256 x 256 x 256 64.4 + 3.7 39.6+1.1
ES 1.0 x 1078 | 120 | 5.57 x 10*? | 256 x 256 x 256 58.2 +3.9 40.5 +2.1
E9 1.0x 107 | 120 | 1.2 x 10 | 256 x 256 x 256 54.0+ 3.4 40.14+2.2
E10 1.0 x 10719 | 120 | 2.59 x 10'5 | 256 x 256 x 256 54.9 £2.5 39.7+1.5
El1 1.0 x 1071 | 120 | 2.59 x 10" | 256 x 256 x 256 55.24+2.9 38.7+1.0
E12 1.0 x 10712 | 120 | 1.20 x 10'® | 256 x 256 x 256 56.5 & 3.8 40.3+1.1
E13 1.0 x 107'% | 120 | 1.20 x 10%* | 256 x 256 x 256 56.6 + 2.9 40.4+1.0
F1 FEk <1 40 Ra>1 | 128 x 128 x 128 11.3+ 1.0 10.6 £ 0.3
F2 FEk< 1 60 Ra>1 | 128 x 128 x 128 19.5 + 0.7 16.740.5
F3 FEk<1 80 Ra>1 | 128 x 128 x 128 29.3+1.3 23.1£0.8
F4 Fk<1 120 | Ra>>1 | 256 x 256 x 256 56.0 + 2.8 40.9+2.1

Table 6:

List of simulations described in this work (continued 2); see also Tables E and E
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Figure 10: Reynolds number Re,,, defined in Eq. , versus Ta = Ek~2 at fixed Ra = RaEk*/3 = 60. The dashed
line shows the corresponding mean value obtained from the asymptotically reduced equations, with the shaded area

indicating one standard deviation above and below that value.

are seen to converge to the values observed in the asymptotically reduced equations above a certain
threshold in the Taylor number T'a, within the error margins given by the standard deviation of
the time series from the reduced equations. The threshold T'a required for this convergence appears
to increase with ﬁt, but a more detailed investigation will be required in the future to quantita-
tively investigate this behavior. The observed convergence of the RiINSE to the reduced equations
provides an additional bookend validating the accuracy of the RINSE formulation against an es-
tablished body of work in the limit Fk — 0 (Ta — oo). We also verified that the flow statistics
obtained in the low Ek regime are independent of the time step using runs with CFL prefactor 0.4
or 0.1 instead of 0.2 (which was used in all other runs) using Ek = 1075, Ra = 80, both of which
gave the same Nusselt and Reynolds numbers within one standard deviation (not shown).

The above simulations were performed with between 128 and 256 dealiased Fourier modes in the
x and y directions and between 128 and 256 dealiased Chebyshev modes in the vertical direction.
It was verified for each simulation that the thermal boundary layer (defined in terms of the root-
mean-square temperature fluctuation, cf. [57]) was well resolved, with at least 10 grid points.

Beyond the convergence of the Nusselt and Reynolds numbers to the values predicted by the

asymptotic equations, an interesting pattern emerges. Both Nu and Re are small when T'a is small
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(weak rotation). As Ta increases, Nu and Re increase as well and exhibit an overshoot before con-
verging to the asymptotic value. The amplitude of the overshoot is seen to decrease with increasing
Ra. Similar results were very recently reported in [71] for high Pr rotating Rayleigh-Bénard con-
vection with no-slip boundary conditions, but the physical origin of these features remains to be
explained. An enhancement of the Nusselt number with increasing rotation rate has also been
observed for Pr = 4.38 and 6.4 [72]. The RiNSE formulation allows us, for the first time, to ob-
serve the full range of Ek from order one values down to the asymptotic regime within a single
code, opening the door to detailed numerical studies of the classical problem of rapidly rotating

convection, which has long posed a major challenge to the fluid dynamics community.

7.5. Visualizations

Here, we provide some visualizations of the various fields from run D12, at the low Ekman
number of Ek = 10715 with Pr = 1 and Ra = 80. This run is in the geostrophic turbulence regime
and the visualizations are produced in the statistically steady state, where a pronounced large-scale
vortex (LSV) is present. The software Vapor [73] was used to generate the visualizations. We
indicate positive values by orange and red contours and negative values by light and dark blue
contours.

The left column of Fig. shows the pressure field, where the large-scale columnar vortices
are clearly visible. The right column of Fig. shows the y-component v of the velocity, which
displays smaller scale features than the pressure field. Figure shows w, (left column) and w
(right column), the vertical component of the velocity. In the u field, a clear trace of the large-scale
vortex column is visible, while this is less obvious in the w snapshot. Finally, Fig. shows the
temperature perturbation field 6 (left column) and the ageostrophic z velocity U. Both fields show

small-scale structures without any visible trace of the large-scale vortex.

8. Conclusions

In this work, we introduced the Rescaled incompressible Navier-Stokes Equations (RINSE) —
a new formulation of the Navier-Stokes-Boussinesq equations describing rotating Rayleigh-Bénard
convection, informed by the scalings valid in the asymptotic limit Ek — 0. We solved these
equations for stress-free boundary conditions using the quasi-inverse method to perform efficient

DNS in a previously unattainable parameter regime of extremely small Ekman numbers Ek revelant
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Side view pressure p Side view v

Top view pressure p

X
; z Z

Figure 11: Snapshots of the pressure (left column) and y-component v of the velocity (right column) from run D12

(with Bk = 10715, Ra = 80, Pr = 1) in the steady state, where a saturated LSV is present. The axes in all panels
are indicated by black arrows. Top row: side view. Bottom row: same data as in the top row (viewed from top).

Blue color indicates negative values while orange and red colors indicate positive values.
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Side view w, Side view w

Figure 12: Snapshots of the vertical vorticity w, (left column) and the vertical velocity w from run D12 (with
Ek=10"15, Ra = 80, Pr = 1) in the steady state, where a saturated LSV is present. The orientation in all panels
is identical to Fig. Top row: side view of w, (left) and w (right). Bottom row: same data as in top row (viewed

from top). Blue color indicates negative values while orange and red colors indicate positive values.
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Side view 0 Side view U

Figure 13: Snapshots of the temperature fluctuation € (left column) and the ageostrophic velocity component U
(right column) from run D12 (with Ek = 10715, Ra = 80, Pr = 1) in the steady state, where a saturated LSV is
present. The orientation in all panels is identical to Fig. Top row: side view. Bottom row: same data as in the

top row (viewed from top). Blue color indicates negative values while orange and red colors indicate positive values.
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to geophysical and astrophysical fluid dynamics. We showed that the reduced equations of motion
derive their increased efficiency from being well conditioned, thereby eliminating spurious growing
modes that otherwise lead to numerical instabilities at small Ek. We have validated our simulation
results against published results in the literature, and showed that the vertical diffusion terms can
be treated implicitly or explicitly for small Ek due to their smallness. We demonstrated for the
first time that the full DNS of the RiINSE converge to the asymptotically reduced equations for
small Fk, and showed that the time derivative in the mean temperature is inconsequential for the
accurate determination of the average Nusselt number in the statistically stationary state, thus
allowing a reduction by orders of magnitude in the simulation time required.

The results presented here provide an important advance in the numerical treatment of rotating
convection in the rapid rotation regime, which will make it possible to explore for the first time
the previously unattainable parameter regime of small but finite Ekman and Rossby numbers. Fu-
ture studies will address the physics of the transition to the asymptotic parameter regime and the
properties of optimal heat transport in rapidly rotating convection and the associated Reynolds
numbers. Another direction for future investigation concerns the possibility of misalignment be-
tween the rotation axis and gravity, which has previously been studied in the context of the tilted
f-plane using both the asymptotically reduced equations of motion [58| [74] and the full rotating
Boussinesq equations [75] [76], [77].
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Appendix A. Mixed vorticity-velocity formulation of the RiNSE

The primitive variable formulation of the RINSE in terms of u = (u,v,w), U, = (U,V),
7, and ©,0 given by equations in the main text is of 11*" order in Z. Specifically, the
continuity equation requires, e.g., the imposition of an 11*"* auxiliary boundary condition applied
to the pressure function. Instead of pursuing this option, we numerically solve the following modified

set of equations for the variables u = (u,v,w), w = (Wy, wy,w.), U, = (U,V), 7 and ©,6:

1 1
U=—(u+0yn), V==(v—0,m), w, = 0,v — Oyu, (A.1a)
€ €
€dzv — Oyw +w, =0, (A.1b)
€dzu —wy — 0w =0, (A.1c)
0. U + 0,V +0zw =0, (A.1d)
Ou—V —D, = — N, (A.le)
ov+U—-D, = —N,, (A.1f)
Oyw + Oz — %G—Dw = — Ny, (A.1g)
0:0 + (82@ —DHw—-Dy = — No, (A.1h)
6_28t@ —Dg = — N, (A.li)
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where the linear diffusion and nonlinear advection terms are given by

—D, = Oyw, — €dzwy, Ny = w0 — wyw,
=Dy = €0zwy — Opws, Ny = wew — weu,
—Dyy = Dpwy — Oywy, —Ny = wyu — wyv,
Dy= (24 8+ 0}) Dy =~ 0.(ub) — 0,(v6) — O (wh).
—De = — Pir 72 —No = — dz(wh).

The above equations are of 10th order in Z and do not require an auxiliary pressure boundary
condition. We apply impenetrable, stress-free, fixed-temperature boundary conditions at the top

and bottom which provide the 10 conditions

W=w,=wy=0=0=0at Z=0,1. (A.2)

An immediate consequence of this formulation is the fact that dzp = 0 on Z = 0,1. We note that

the CFL constraints on the linear and nonlinear terms are identical to those presented in Table

Appendix B. The quasi-inverse method with Chebyshev-Galerkin bases

We illustrate how the direction z is treated in Coral using the quasi-inverse method and Galerkin
bases. This technique can readily be applied to coupled sets of equations of arbitrary order. For

brevity and clarity, however, we consider the simple case of the second-order, scalar heat equation:
Orp — (022 — ki)‘b = b(z) (B.1)

on the interval z € [—1, 1], where the right-hand side b contains explicit contributions (e.g. source
terms or advection).

‘We suppose this second-order equation is supplemented with two linear and homogeneous bound-
ary conditions, a common case in fluid mechanics. By computing linear combinations of N Cheby-
shev polynomials (7)<, .y, one defines a Galerkin family of function (®,,), y:

Pm(z) = Z SmnTn(2) (B.2)
0<n<N
each of which obeys the linear, homogeneous boundary conditions. It is crucial to note here that,

as a result of enforcing these two boundary conditions, the Galerkin basis has been reduced as
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compared with the initial Chebyshev basis and now contains only N — 2 polynomials. Next, we
expand the variable ¢ in this Galerkin basis:

o) = 3 om(Ou(2). (B.3)

2<m< N

The standard discretization of Eq. consists in using expansion and projecting on Cheby-
shev polynomials. Owing to the presence of derivatives 0., this is conducive to dense (triangular)
and, perhaps more importantly, ill-conditioned matrices [78]. The spirit of the quasi-inverse method
consists in integrating the differential equation repeatedly, until the reformulated problem is clear

of derivatives. In our case, we integrate Eq. (B.1]) with respect to z twice:

8t//¢5—(1—//ki>¢://b(z)+ao+alz, (B.4)

where ap and a; are two arbitrary integration constants. Fortunately, these unknown constants
appear in (and pollute) the Ty(z) (constant) and T3(z) (linear) projections only. By projecting
Eq. on the unpolluted N — 2 higher Chebyshev polynomials, one obtains an algebraic system
for the N — 2 unknown Galerkin coefficients $m Denoting the natural scalar product for Chebyshev

polynomials with brackets, (...), we have for 2 < m,p < N:

> Som <Tp(z), // Tn(z)> Oibm — Smpbm

0<n<N
21X S (100 [[ 1)) 6 = (10, [0} . B9
0<n<N
where we have used the orthonormality condition (T},(z),Tn(2)) = 0pn. Crucially, the matrix

representing the double integration,

(1) [[ 1)) (B5)

is penta-diagonal and, more importantly, well-conditioned.

Finally, a discussion is in order considering the Galerkin stencil S,,,. Some care must be
taken when defining the Galerkin basis, among all the possibilities. Considering the simple case
of Dirichlet boundary conditions on both boundaries, one may be tempted by the following simple

recombination:
Pop(2) = Top(z) —To(2) and  Popy1(2) = Topta(z) — Ti(2). (B.7)
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However, a dense discretization would result and therefore this stencil should be avoided. Instead,
one should use

Py (2) = Tin(2) — Trn—2(2) , (B.8)

which is a well-conditioned and banded stencil. Thus, all coupling matrices appearing in Eq.
are also banded and the system can be efficiently marched in time implicitly, e.g. with a Runge-
Kutta scheme.

We emphasize that this procedure, exemplified on a simple scalar equation, can be generalized to
systems of coupled PDEs without noticeable difficulty (but at the cost of increased book-keeping),

as long as linear and homogeneous boundary conditions are imposed.

Appendix C. Implicit-explicit time discretizations and the quasi-inverse method

In this appendix, we summarize the specific formulation of implicit-explicit time discretization
for both the NHQG model and the rescaled equations and (A.1). In all generality, these

governing equations are represented by a system of the form:
(M — L) v+ = Lov 4 N (v vy 4 .’Fén). (C.1)

where the superscripts (n 4+ 1) and (n) denote implicit (unknown) and explicit (known) variables
from a prior time step, and v represents the dependent variables associated with the hydrodynamics
problem only. Generalization to the full problem including thermal effects is straightforward
and omitted for brevity. We summarize below the expressions for the various operators appearing

in this equation for the different equations studied here.

A. NHQG-RRBC: v = (¥, w)T and differential operators for equations (e ,b)

V2 |0 vt Jw, 0
M=|—= P 0 S VA ] (C.2)
0 |1 o, | v 0 |Jw. ]
B. RiNSE: Primitive variable formulation: v(¥) = (u, U, ) for equations (19h-d) and
J2 ] 0
—V2 T, 2
.1 o0 00|0
M= |12 o= z , (C.3)
03 | O3 J2| 0 —eJo | VT
0 0|0z A\ 0
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Figure C.14: Spy plots of the mass M (left) and stiffness £; (center) matrices, both in banded format. The fine

structure of the stiffness matrix is illustrated in the close-up in the right panel.

(uy -V +ewdz)Is ‘ 03
03 ‘ 03

(C.4)

T2 = . (C.5)

Figure demonstrates the sparsity of the quasi-inverse approach via spyplots for the mass

and stiffness matrices M and Ly, respectively.

C. RiNSE: Mixed vorticity-velocity formulation: v0) = (u | U 1,7 | w) (see |Appendix A) and

0220
04 0, | 2221
Zs | 03 | O3 0 0
M= 03 | 03 | O3 , —Lep=¢ 03 03 03 ) (06)
03 |03 ]0 0zT2 |0
3 3 3 zZdJ 2 | ¥ 03 03
0 0
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T2 | 0 0 | —VviT
03 S S
0 | 9z v+ 0
J 0 —eJo | VT
—Lr = L 2L 03 ;

0 | 0z Vi 0

0 | -VvVLT
03 IS
A\ 0

and N = Dzag [{Nu,Nv,Nw}, 03, 03}

From L in each case, we see that system (C.1]) is second order in Z requiring impenetrable boundary

conditions w = 0 at Z = 0,1. For cases B and C stress-free (Ozu, = 0) or no-slip boundary

conditions (u; = 0) are enforced via an appropriate Chebyshev-Galerkin basis ®;(Z) for each

variable. This holds regardless of whether Lg is treated explicitly or implicitly. For case B only,

an implicit treatment of Lg increases the order of the system to seven and an additional auxillary

boundary condition on the pressure is required. This does not occur for Case C which is preferred.

Appendix D. Analysis of the mean temperature equation
The mean temperature equation
o= — 1 =
€“0O+0z | wld— —0z0) =0
Pr
in a statistically stationary state implies
—t ——t —t
Nus — 1= Prwf — 020 = Nu;—1=Pr{wb
z
With this interpretation Nu; is strictly a constant. It follows

_ SE— . —
€ 20,0 + 0z <w9 —wh — Pir <8Z@ - 8Z@t>) =0

_ — _ —t
and given €204+ = 2]22 €/0;, 90 (9,1) = 0 such that 870 9,1) = 020 (g 1). This implies

_ E— 2 _ —t
0:Os+ + 0z <U)6 —wh — % (82@2+ — 32@2+)> =0.

r

To leading order

— - —t
0:09 + 0y (w&—w@) ~0
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indicating that O(1) fluctuations in the heat transport about the mean Nu; are accounted for
by mean temporal variations in the mean temperature at O(€?), i.e., ©5. However, for numerical

efficiency it is found that the temporal fluctuations of €=29,0 can be neglected. Hence,
N 1 _
62 <w9 - Pr&g@) = 0, (D6)
resulting in the time-dependent Nusselt number
Nu(t) — 1 = Prwf — 970. (D.7)

This implies
t

Nu(t)—1=Pr(wf), — Nu@®) —1="Pr(uwd),. (D.8)
The difference in averaged Nusselt numbers from the two methods is given by
JR— —t —t — —t
Nu(t) — Nuy = Pr <<w9>Z - <w0 > ) = (82@ — 020 ) (D.9)
z 0,1

If the operations of depth- and time-averaging commute then assuming equivalence in the thermal
—t
and velocity mean statistics implies Nu(t) = Nuy.

Moreover, if € — €* such that € > € then it follows

—t e —% —_—
Nuf — Nu, = Pr (<w9 > - <w9 > ) _ (aZ@ f aZ@t)
zZ Z

If the period of time-averaging is sufficiently long then assuming equivalence in the thermal and

(D.10)

0,1

velocity mean statistics this implies Nuj = Nug.

It is found that the magnitudes |W(t)t — Nuy| or |[Nuf — Nug| depend on the horizontal
domain size upon which area-averaging is performed. Increasingly larger domains contain greater
statistical sampling advantageous to the aforementioned commutation that results in asymptotic

€rror convergence.
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