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Abstract—This paper introduces a novel offline approach to
power control in wireless networks using a multi-agent reinforce-
ment learning (MARL) framework. We develop a multi-agent
decision transformer method to optimize performance metrics
including sum-rate or packet delay. In this distributed method,
each agent controls an individual link and determines its power
level based on its own measurements and information exchange
with a few agents within a limited neighborhood.

Numerical results demonstrate that the proposed method
achieves quality of service performance comparable to centralized
methods using global information, for both sum-rate maximiza-
tion and traffic-driven packet delay minimization problems. As
an offline learning solution, it can efficiently leverage knowledge
from existing mature techniques and offers significant advantages
in the safety, stability, and convergence rate over existing online
methods. This work provides a promising alternative for learning-
based resource management in wireless networks.

Index Terms—decision transformer; multi-agent reinforcement
learning; offline reinforcement learning (RL); radio resource
management; wireless networks.

I. INTRODUCTION

The growing number of devices in cellular networks, driven
by increasing consumer demand, has made interference man-
agement a key area of wireless networks research. Power con-
trol is a well-known interference mitigation tool used in wire-
less networks. Centralized optimization-based methods such as
the weighted minimum mean-squared error (WMMSE) [1] and
fractional programming (FP) [2] have demonstrated good qual-
ity of service (QoS) performance in power allocation. How-
ever, both algorithms require global and up-to-date channel
state information (CSI), and their computational complexities
scale quickly with the network size. Distributed optimization
approaches like [3], [4] aim to avoid the extensive information
collection required by centralized methods, but often exhibit
inferior performance compared to centralized methods due to
partial or imperfect CSI. We aim to develop distributed power
allocation methods that achieve QoS performance comparable
to centralized approaches while utilizing only locally-available
information for decision-making.

In realistic wireless contexts with delayed or imperfect
CSI, data-driven methods show promise over model-driven
approaches like FP and WMMSE. Reinforcement learning
(RL), a data-driven method with inherent sequential decision-
making capabilities, has been extensively experimented with
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in recent years. Deep RL was applied to perform power control
in [5]. More recently, RL has found applications in joint
resource allocation [6]-[11].

While the aforementioned works utilize online RL, where
policies improve through environmental interactions, offline
RL has been introduced for radio resource management [12].
This shift addresses a major obstacle in deploying state-of-the-
art RL algorithms in real-world wireless systems: the lack of
performance guarantees during exploration. In the early stages,
when environmental information is scarce, online RL tends to
explore randomly, which could lead to poor QoS for users.

Offline RL offers two key advantages: 1) It trains policies
without costly online interactions and leverages existing good
policies; and 2) with datasets collected from mature policies,
offline RL often enjoys a cleaner dataset and thus normally
outperforms online RL in terms of training efficiency.

Previous research [12] explored offline algorithms such
as batch-constrained Q-learning [13], conservative Q-
learning [14], and implicit Q-learning [15]. However, all these
deep RL methods build upon neural networks with multi-
layer perceptron (MLP) layers, which are limited in capturing
sequential information. Previous work [11] demonstrated that
sequential information is crucial for power control in dense
wireless networks. Therefore, we employ the decision trans-
former [16], leveraging the attention module, known for its
effectiveness in extracting sequential features.

The main contributions in this paper are as follows:

o We formulate power allocation as a distributed learning
problem and adopt offline RL to learn efficient control
policies. This approach, which eliminates the need for
real-time interactions while offering performance guar-
antees, represents a significant step towards practical RL
implementation in wireless networks.

o« We extend the decision transformer to a multi-agent
setting, aligning with our distributed deployment require-
ments and ensuring that only locally-available informa-
tion is needed post deployment.

o In addition to using sum-rate as a performance metric
as in [5]-[10], we explore traffic-driven resource allo-
cation, prioritizing average packet delay. This approach
necessitates learning adaptable policies that map dynamic
traffic and CSI to a broad spectrum of actions, rather than
converging to a static sum-rate-maximizing solution.

o Our simulations validate the performance and scalability
of the proposed solution. Results show that our method,
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using only delayed and partial CSI, achieves performance
(in terms of both sum-rate and packet delay) comparable
to genie-aided centralized methods.

The remainder of this paper is organized as follows. We
describe the system model and problem formulation in Sec-
tion II. Section III introduces the MARL framework and
offline training. Section IV presents the simulation setup and
numerical results. Concluding remarks are given in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System model

We consider the problem of power control in a network
comprising N transmitter-receiver pairs or links, modeling a
mobile ad hoc network or a cellular network where each access
point serves a single device. We assume that all transmitters
and receivers are equipped with a single antenna. Let time
be slotted with duration 7' and let N' = {1,2,...,N}
denote the set of link indices. For simplicity, we consider a
single frequency band with flat fading. The channel gain from
transmitter ¢ to receiver j in time slot ¢ is expressed as:

gl =aiy |80, t=12,... (1)
where a;_,; > 0 accounts for the large-scale path loss, which
remains constant over many time slots, and 3;_,; represents a
small-scale Rayleigh fading component. In simulations, we use
a first-order complex Gauss-Markov process to model small-
scale fading:

50, = st +
where (3% ” et vei?).,...) are independent and identically
distributed circularly symmetric complex Gaussian random
variables with unit variance.

The power allocated to transmitter n in time slot ¢ is denoted
as pgf ). Then the global power allocation of the network in time
slot ¢ is defined as p(*) = (pgt),pg), ... ,pg\t,)). We also assume
additive white Gaussian noise (AWGN) with the same power
spectral density o2 for all receivers. The spectral efficiency of

link n in time slot ¢ can be expressed as
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B. Problem formulation

We consider two performance metrics: sum-rate and packet
delay. If we use sum-rate as the metric, the dynamic power
allocation problem in slot ¢ is to maximize the weighted
network sum-rate ) ;. - wft) . Ci(t). A central controller must
solve this NP-hard problem [17] in each time slot.

Beyond the classic sum-rate maximization problem, we
investigate a traffic-driven system where each link has a
First-In-First-Out queue for packet transmission, aiming to
minimize packet delays. At time slot ¢, we define Q(f) as the
number of packet arrivals at the slot’s beginning and let L
denote the packet size in bits. With bandwidth W, the queue
length at the slot’s end is denoted as q7(f ) and the system’s
queueing dynamic is described as:
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Fig. 1: Examples of MARL framework with three agents.

In this traffic-driven scenario, the environment dynamics en-
compass both channel state and queueing dynamics. As formu-
lating a tractable delay minimization problem is challenging,
we propose a model-free MARL method to address both sum-
rate maximization and packet delay minimization problem.

III. OFFLINE MARL
A. MARL framework

To leverage historical information and enable distributed
execution for real-world deployment, we propose a distributed
MARL approach. In this framework, each agent makes local
power allocation decisions based on locally-available informa-
tion and receives feedback, collectively forming a near-optimal
global power allocation.

We define a neighborhood for each agent, allowing for
observation sharing within the neighborhood. Fig. 1 illustrates
an example of agent-environment interaction in our MARL
framework, showing three agents with agents 1 and 2 forming
one neighborhood, agents 2 and 3 forming another. Agents
receive local observations from the environment and commu-
nicate with neighboring agents before making decisions. The
global state evolves according to joint actions and exogenous
randomness, with the environment generating rewards for each
agent per state transition.

In this work, each link acts as an agent. An agent’s
neighborhood includes all agents that may cause significant
interference to its link. Specifically, if the ratio of path loss
gains a;_; /ajﬂ- is below a certain threshold, agent j is
included in agent ¢’s neighborhood. Let /,, denote the number
of neighbors of agent n, and D(n) = {n,vn1,...,Vn1,}
denote agent n’s neighborhood, which always includes the
agent itself.

B. RL design

We assume each agent can measure its direct channel
gain, total interference-plus-noise power, and compute its
spectral efficiency, with all CSI delayed by one time slot. The
transmitter also records the previous time slot’s transmission
power. The local observation Off) for agent n at time slot
t includes: link n’s previous action decision p(!~Vn, the
direct gain g,(f_ﬂl), the interference-plus-noise power at receiver
n ZjeN7j¢nl g](-t:),i)p(t’l)j + 02, and the spectral efficiency

cii— (p""~V) computed from (3).
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The local aggregate information of agent n at time slot ¢
is xP = (o, 0¥, ... 00

va1, |» incorporating neighbor-
hood information exchange. Based on this, agent n makes a
local power allocation decision pgf ) from a quantized log-step
power action space ranging from P, to Pp,x in addition to

Z€1r0o power:

Prnax | 12
OapminaPmin(P. > ;---aPmax . (5)
min

To maximize weighted sum-rate, agent n’s direct contri-
bution is w’ - C{) (p'). We incorporate neighbors’ indirect
contributions to promote collaborative behavior and discourage
aggressive power allocation that might lead to high interfer-
ence. Consequently, the individual reward function of agent n

is defined as:
RO = 3w o ©6)
i€D(n)

A=

In the traffic-driven system, packet arrivals Q(f) occur at the
beginning of each time slot. We add queue length after packet
arrival qr(f) —&—Q(f) to the local observation described in the sum-
rate maximization problem. The action space remains as in (5).
To minimize packet delay, we define the learning objective
using queue lengths as surrogates, as longer queue lengths
lead to longer packet delays. The utility function of agent n
is u,(f ) = —qﬁf). Similarly, neighbors’ utilities are included as
indirect contributions. The reward function remains as in (6),
with Ci(t) replaced by the utility function ugt).

C. Decision transformer

The policy of agent n is denoted as m,, which represents
a conditional probability distribution of actions based on the
agent n’s historical local observations. Agent n samples its
power allocation decision from this distribution. The learning
goal for agent n is to find a good policy 7, to maximize its
own future cumulative reward defined in (6). As mentioned in
Section I, we adopt offline RL to learn efficient policies due
to its advantages over online RL.

Recently, transformers [18] have emerged as a powerful
tool for modeling multi-modal data distributions, including
language and images. Building on this, the authors of [16]
introduced the decision transformer, reformulating reinforce-
ment learning as a sequence modeling task. Unlike traditional
RL methods using value or policy iteration via temporal dif-
ference learning, decision transformers generate future actions
by conditioning on sequences of past trajectories, including
previous states, actions, and rewards. This approach leverages
the transformer architecture’s strength in capturing long-term
dependencies and sequential patterns, enabling it to perform
well in environments where temporal relationships are crucial.

We adopt a decision transformer as our policy net-
work and extend it to multi-agent setting. For each agent
n, given the episode length 7 and return ]%S ) =
let Rgf ), the transformer determines a policy that maps

a historical sequences to action distribution agf )~
ﬂn(_|X7(1t7K+1:t)7aq(ithJrl:tfl)’RthfKJrl:t))’ where X de-
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Fig. 2: Network configuration example

notes the local aggregate information as defined earlier, super-
script (¢t — K + 1 : t) denotes past K time slots, and ag’ is
the discrete power allocation choice from (5). This forms an
auto-regressive model of order K. The decision transformer,
which learns from pre-collected datasets derived from behavior
policies, has been shown to converge to the performance level
of these policies, as demonstrated by [19].

D. Offline training

The policies are trained using trajectories of states, actions,
and return from offline datasets generated by methods with
good QoS performance (e.g., WMMSE and FP). The training
procedure comprises two phases: data collection and central-
ized training. In data collection, we execute the centralized
method for multiple episodes while simulate agents in the
network and collect their accessible local observations and
rewards in each time slot. Joint action decisions are split for
individual agents, and return is calculated for each episode
to formulate the offline dataset. In centralized training, all
agents share a common policy mpr and a common policy
network is trained using experience from all agents. Denote a
sequence transition trajectory (of all agents) with starting time
index t as 7" = {Rﬁf:HK*l),XT(f:HK*l),ag:HK*l)}ne,\/.
For each training step, we sample sequence transition mini-
batch {7()};cp from different episodes, update the policy by
minimizing the cross-entropy loss:

1 N
BV 2= 2 2

n=11€eB

(l+K—1)|X(l:l+K—1) RUHE-1) a(l:l+K—2)>.

—logmpr (a
Once the training is finished, the policy network operates

using only local information for each agent during execution,
ensuring decentralized deployment.

IV. NUMERICAL RESULTS

A. Simulation Setup

To evaluate the performance of proposed methods, we simu-
lated different wireless network configurations with parameters
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500m
128.1 + 37.6 log; o (distance) (dB)
02 = —114 dBm
Priaz = 23 dBm

Cell radius:
Path loss (LTE standard):
AWGN power:
Max transmitter power:

Discretized power levels: [Pl=7
Time slot duration: T =20 ms
Bandwidth: Wy, =10 MHz

TABLE I: System model parameters
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Fig. 3: Policy convergence in sum-rate maximization

listed in Table 1. Due to space limitation, we present the results
of a network comprising of 19 devices in 19 homogeneously
deployed cells, as depicted in Fig. 2. Each cell’s transmitter is
located at the center, and the corresponding receiver is located
randomly within the cell.

We compare the QoS performance of our multi-agent de-
cision transformer scheduler against four benchmarks: 1) full
power, 2) random uniform power, 3) FP [2] assuming real-
time global CSI, and 4) WMMSE [1] assuming real-time
global CSI. In the traffic-driven system, we model link traffic
arrivals as discrete-time Poisson processes. The links’ weights
are proportional to queue lengths.

B. Offline training and policy convergence

We generate the offline RL dataset by operating FP for
20,000 time slots (chosen for its speed advantage over
WMMSE). Offline training then proceeds based on this
dataset. We use a GPT-2 Mini model (6 layers, 192 hidden
size, 6 attention heads) as the foundation of our policy
network. The network is trained using Adam optimizer with a
learning rate of 0.005. We use a sample batch size of 64 and
sequence length K = 20.

The model is evaluated every 1000 training time steps, with
the resulting learning curves shown in Fig. 3 and Fig. 4. In both
tasks, the agent achieves and maintains stable performance
closely matching the benchmark used for dataset generation.
Notably, offline RL in wireless network learns efficient policies
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within a few thousand time steps, converging much faster than
online RL studied in [6]-[11]. One possible reason for the
superior sample efficiency of offline RL stems from learning
from experience generated by expert policies. In contrast,
online RL agents interact with the environment to collect
transitions and perform training based on these experiences.
Many of these transitions, especially in early stages, provide
limited useful information, hindering learning efficiency.

C. Performance

After centralized training, we test our learned policies using
distributed execution. Provided with only local information,
we plot the CDF of all links’ spectral efficiency over a test
episode in Fig. 5 and the CDF of packet delays for all
transmitted packets in Fig. 6. Compared to the genie-aided
centralized methods, our methods offer similar performance
utilizing only partial and delayed information.

V. CONCLUSION

We have presented an offline multi-agent decision trans-
former approach as a solution to the power allocation prob-
lem in wireless networks. The proposed distributed method
achieves sum-rate and packet delay comparable to those of
two most advanced centralized optimization-based power allo-
cation algorithms. By leveraging offline training from existing
techniques, our method offers advantages in safety, stability,
convergence rate over online RL methods.
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